2014年秋季新版新人教版七年级数学上学期2.2、整式的加减同步练习72

合集下载

新人教数学7年级上同步训练:(2.2 整式的加减)(含答案)

新人教数学7年级上同步训练:(2.2 整式的加减)(含答案)

2.2 整式的加减5分钟训练(预习类训练,可用于课前)1.合并同类项:3x2y-4x2y=__________.答案:-x2y2.下列各式运算正确的是( )A.3a+2b=5abB.5y2-3y2=2C.2ab-ab=abD.3x2y-5x2y=2x2y答案:C3.下列各式加括号后正确的是( )A.a+b-c=a-(b-c)B.a-b+c=a-(b-c)C.a-b-c=a-(b-c)D. a+b+c=a+(b-c)思路解析:添括号法则中注意括号前是符号的情况:再把括号里的每一项都改变符号. 答案:B10分钟训练(强化类训练,可用于课中)1.合并同类项:3a2b-5a2b+9a2b.解:3a2b-5a2b+9a2b=(3-5+9)a2b=7a2b.2.化简:xy-13x2y2-35xy-12x2y2.思路分析:一般在合并前,先画出同类项:解:xy-13x2y2-35xy-12x2y2=(1-35)xy+(-13-12)x2y2=25xy-56x2y2.3.已知4a m-3b5与3a2b2n+3的和仍是一个单项式,则m和n的值分别是多少?思路分析:本题考查的是单项式和合并同类项的概念,要想两个单项式的和仍是单项式,这两个单项式一定是同类项才行,否则不能合并,因此根据同类项的概念可得到一个关于m、n的简单方程,由此解出m、n.解:由m-3=2,知m=5;由5=2n+3,知n=1.4.先化简,再求值.5x2-(3y2+5x2)+(4y2+7xy),其中x=-1,y=1.思路分析:本题考查的是整式的加减运算,应先去括号再合并同类项,最后代入求值. 解:5x2-(3y2+5x2)+(4y2+7xy)=5x2-3y2-5x2+4y2+7xy=y2+7xy.当x=-1,y=1时,y2+7xy=-6.5.已知a=9ax2-6xy-y2,b=6x2-xy+4y2,且a、b是关于x、y的多项式,若a-3b的值不含x2项,求a的值.思路分析:此题应先进行整式的加减运算.不含x2项的意思是x2的系数是0,由此算出a的值.解:a-3b=(9ax2-6xy-y2)-3(6x2-xy+4y2)=9ax2-6xy-y2-18x2+3xy-12y2=(9a-18)x2+(-6+3)xy+(-1-12)y2=(9a-18)x2-3xy-13y2,因为不含x2项,所以9a-18=0,a=2.快乐时光老师:“从今天起,我给你补课,以后不要再把时间浪费在玩扑克牌上了.”学生:“是.”老师:“方程x-10=3的解是什么?”学生:“移项,得x=3+10,即x=老K!”30分钟训练(巩固类训练,可用于课后)1.如果M和N都是3次多项式,则M+N一定是( )A.3次多项式B.6次多项式C.次数不低于3的多项式或单项式D.次数不高于3的多项式或单项式思路解析:整式的加减运算实质是合并同类项,字母的次数不会改变,若最高次项合并为0,结果的次数就会减少.答案:D2.如果数轴上表示a、b两数的点的位置如图2-2所示,那么|a-b|+|a+b|的计算结果是( )图2-2A.2aB.-2aC.0D.2b思路解析:根据数轴给定的a、b的大小关系去绝对值|a-b|+|a+b|=b-a-a-b.答案:B3.( )+3x2-5x+2y=x2-4x.思路解析:可用加减互逆的运算性质.答案:-2x2+x-2y4.单项式-3x6y3n与9x2m y12是同类项,那么m、n的值分别是__________.思路解析:同类项的定义,字母相同,相同字母的次数也分别相同.6=2m,3n=12.答案:3、45.找出下列单项式中的同类项,并把它们合并.5a2b,7xy2z,-6ab,-4xym,2ab2,23ab,11xy2z,3xyz,8a2b.思路分析:判定同类项的标准是定义.解:5a2b和8a2b是同类项,合并后等于13a2b;7xy2z和11xy2z是同类项,合并后等于18xy2z;-6ab和23ab是同类项,合并后等于-163ab.6.老师出了这样一道题“当a=56,b=-28时,计算(2a3-3a2b-2ab2)-(a3-2ab2+b3)+(3a2b -a3-b3)的值”.但在计算过程中,有一位同学错把“a=56”写成“a=-56”,而另一位同学错把“b=-28”写成“b=-2.8”,可他俩的运算结果却都是正确的,请你找出其中的原因.思路分析:类似整式计算求值问题一般先化简,有时化简的结果为一个常数,则式子的值与字母的取值无关.解:因为(2a3-3a2b-2ab2)-(a3-2ab2+b3)+(3a2b-a3-b3)的化简结果等于0,和a、b的值无关.所以不管a、b取什么样的值,都不会产生影响.7.计算:(1)(112x2-20x+10y)-(52x2-13x+24y);(2)(xy-32y+12)-(xy-32x+12);(3)2(x2-2x+4)-3(-5+x2);(4)-2a+4(-3a+2b)-3(a-2b+3c).思路分析:熟练掌握去括号法则与合并同类项法则. 解:(1)3x2-7x-14y;(2)32x-32y;(3)-x2-4x+23;(4)-17a+14b-9c.8.A和B两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差异:A公司年薪10 000元,从第二年开始每年加工龄工资200元,B公司半年薪5 000元,每半年加工龄工资50元,从经济收入的角度考虑的话,选择哪家公司有利?思路分析:计算出第一年、第二年及第n年在A公司或在B公司工作的收入并不困难:不过逐年计算每家公司的收入过于麻烦,所以应借助于字母n,计算第n年在每个公司的收入,并进行比较,才能使对问题的讨论具有一般性,才能保证结论是正确的.解:第n年在A公司收入为10 000+200×(n-1);第n年在B公司收入为[5 000+100(n-1)]+[5 000+100(n-1)+50]=10 050+200(n-1). 因为10 000+200(n-1)-[10 050+200(n-1)]=-50,所以选择B公司有利.。

人教版七年级上册 第二章 整式的加减 2.2 整式的加减 同步练习(含答案)

人教版七年级上册 第二章 整式的加减  2.2 整式的加减   同步练习(含答案)

整式的加减同步练习一、填空题1、若单项式a2x b m与a n b y﹣1可合并为a2b4,则xy﹣mn=2、x2y-x2 y-x2y = .3、合并同类项:=4、一个多项式减去a2-b2等于a2+b2+c2,则原多项式是5、粗心的周华在做多项式a3+2a+3加一个单项式时,误做成了减法,得到结果为a3+3,则要加的单项式为 ,正确的结果应是6、如果x=1时,代数式2ax3+3bx+4的值是5,那么x=-1时,代数式2ax3+3bx+4的值是.7、已知m2-mn=3,mn-n2=5,则3m2+2mn-5n2=8、定义为二阶行列式,规定它的运算法则为,那么二阶行列式.二、选择题9、下列运算中,正确的是()A. 4m﹣m=3B. ﹣(m﹣n)=m+nC. 3a2b﹣3ba2=0D. 2ab+3c=5abc10、A=x2-2x-3,b=2x2-3x+4,则A-B等于()A. x2-x-1B. -x2+x+1C. 3x2-5x-7D. -x2+x-711、下列计算中:①;②;③;④;⑤若.错误的个数有()A.1个B. 2个C. 3个D. 4个12、已知长方形的长为(2b-a),宽比长少b,则这个长方形的周长是()A、3b-2aB、3b+2aC、6b-4aD、6b+4a13、已知,则a+b的值为( )A. 1B. 2C. 3D. 414、三个连续奇数,中间的一个是2n+1(n是整数),则这三个连续奇数的和为()A.2n-1 B.2n+3 C.6n+3 D.6n-315、已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1 B.5x+1 C.-13x-1 D.13x+116、当x=-1时,2ax3-3bx+8的值为18,则12b-8a+2的值为()A.40 B.42 C.46 D.5617、若A= 5a2-4a+3,B=3a2-4a+2,则A与B的大小关系是()A.A=B B.A>B C.A<B D.以上都可能成立18、若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.-3 B.3 C.5 D.719、若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2 B.﹣1 C.2 D.120、已知a-b=3, c+d=2 ,则(a+c)-(b-d)的值为()A.1 B.-1 C.-5 D.5三、简答题21、先去括号,再合并同类项.3(x2y-xy2)-4(2x2y-3xy2).22、4(y+1)+4(1-x)-4(x+y),其中,x=,y=.23、如果单项式2mx a y与﹣5nx2a﹣3y是关于x、y的单项式,且它们是同类项.(1)求(7a﹣22)2002的值.(2)若2mx a y﹣5nx2a﹣3y=0,且xy≠0,求(2m﹣5n)2003的值.24、已知A=2x2-9x-11,B=3x2-6x+4,求:(1)A-B;(2).24、某工厂第一车间有m人,第二车间的人数比第一车间的人数的2倍少5人,第三车间的人数比第一车间的人数的3倍还多7人,则第三车间的人数比第一、第二车间的人数的和多还是少?请说明理由.25、有这样一道题目:“当a=0.35,b=-0.28时,求多项式7a3-3(2a3b-a2b-a3)+(6a3b-3a2b)-(10a3-3)的值”.小敏在计算时把a=0.35,b=-0.28抄成了a=-0.35,b=0.28,结果她的结果也是正确的,你知道这是为什么吗?27、小红家一月份用电(2a-b)度,二月份比一月份多用(a+b)度,三月份比一月份的2倍少b度,则小家第一季度共用多少度电?当a=30,b=2时,小红家第一季度一共用了多少度电?参考答案一、填空题1、﹣32、x2 y3、;4、2a2+c25、2a ;a3+4a+3.6、37、348、-x+5二、选择题9、C10、D11、D12、C13、C14、C15、A16、B17、B18、C19、A20、D三、简答题21、-5x2y+9xy222、8-8x,623、解:(1)∵2mx a y与﹣5nx2a﹣3y是同类项,∴2a﹣3=a,解得a=3.∴(7a﹣22)2002=1.(2)a=3时,2mx3y﹣5nx3y=0.∵xy≠0,∴2m﹣5n=0,∴(2m﹣5n)2003=0.24、解:(1)A-B=(2x2-9x-11)-(3x2-6x+4)=2x2-9x-11-3x2+6x-4=-x2-3x-15;(2).25、解:第三车间的人数比第一、第二车间的人数的和多12人,理由如下:由题意得,第二车间的人数为2m-5,第三车间的人数为3m+7,所以3m+7-(2m-5+m)=3m+7-(3m-5)=3m+7-3m+5=12>0,故第三车间的人数比第一、第二车间的人数的和多12人.26、解:7a3-3(2a3b-a2b-a3)+(6a3b-3a2b)-(10a3-3)=7a3-6a3 b+3a2 b+3a3+6a3 b-3a2b-10a3+3=(7a3+3a3-10a3)-6a3b+6a3b+3a2b-3a2b+3=3.因为3是常数,不含字母a和b,所以无论a,b是何值,结果都不变.故小敏将a,b抄错时,结果也是正确的.27、(2a-b)+〔(2a-b)+(a+b)〕+〔2(2a-b)-b〕=9a-4b;当a=30,b=2时,9a-4b=262.。

【精编】新人教版七年级数学上册同步练习2.2 整式的加减及答案.doc

【精编】新人教版七年级数学上册同步练习2.2 整式的加减及答案.doc

2.2整式的加减基础检测1.下列各组中的两项,不是同类项的是().A.a2b与-6ab2B.-x3y与2yx3C.2πR与π2R D.35与53 2.下列计算正确的是().A.3a2-2a2=1 B.5-2x3=3x3C.3x2+2x3=5x5D.a3+a3=2a33.减去-4x等于3x2-2x-1的多项式为().A.3x2-6x-1 B.5x2-1 C.3x2+2x-1 D.3x2+6x-1 4.若A和B都是6次多项式,则A+B一定是().A.12次多项式B.6次多项式C.次数不高于6的整式D.次数不低于6的多项式5.多项式-3x2y-10x3+3x3+6x3y+3x2y-6x3y+7x3的值是().A.与x,y都无关B.只与x有关C.只与y有关D.与x,y都有关6.如果多项式3x3-2x2+x+│k│x2-5中不含x2项,则k的值为().A.±2 B.-2 C.2 D.07.若2x2y m与-3x n y3是同类项,则m+n________.8.计算:(1)3x-5x=_______;(2)计算a2+3a2的结果是________.9.合并同类项:-12ab2+23ab2-14ab2=________.10.五个连续偶数中,中间一个是n,这五个数的和是_______.11.若m为常数,多项式mxy+2x-3y-1-4xy为三项式,则12m2-m+2的值是______.12.若单项式-12a2x b m与a n b y-1可合并为12a2b4,则xy-mn=_______.拓展提高13.合并下列各式的同类项:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b;(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).14.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-12;(2)5ab-92a2b+12a2b-114ab-a2b-5,其中a=1,b=-2;(3)2a2-3ab+b2-a2+ab-2b2,其中a2-b2=2,ab=-3.15.关于x,y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求6m-2n+2的值.16.商店出售茶壶每只定价20元,茶杯每只定价5元,该店制定了两种优惠办法:(1)买一只茶壶赠送一只茶杯;(2)按总价的92%付款.某顾客需购茶壶4只,茶杯x•只(x≥4),付款数为y(元),试对两种优惠办法分别写出y与x之间的关系,并研究该顾客买同样多的茶杯时,两种方法哪一种更省钱?2.2答案:1.A 2.D 3.A 4.C 5.A 6.A 7.5 8.(1)-2x (2)4a 2 9.-112ab 2 •10.•5n •11.6 12.-3 13.(1)-3a 2b -ab (2)(a -b )214.(1)原式=-2a 2-4a-4,值为25 (2)•原式=94a b -5a 2b -5,值为12(3)原式=a 2-b 2-2ab ,值为815.m=16,n=-12.值为416.y 1=20×4+5(x -4)=5x+60,y 2=(20×4+5x )×92%=4.6x+73.6,由y 1=y 2,即5x+60=4.6x+73.6,得x=34.故当4≤x<34时,按优惠办法(1)更省钱; 当x=34时,•两种办法付款相同;当x>34时,按优惠办法 (2)更省钱。

人教版 七年级数学上册 2.2 整式的加减 同步课时训练(含答案)

人教版 七年级数学上册 2.2 整式的加减 同步课时训练(含答案)

人教版 七年级数学上册 2.2 整式的加减 同步课时训练一、选择题1. 下列各式中,与3x 2y 3是同类项的是 ( )A .2x 5B .3x 3y 2C .-12x 2y 3D .-13y 52. 如图,将边长为3a 的正方形纸片沿虚线剪成两块正方形和两块长方形,若拿掉边长为2b 的小正方形后,再把剩下的三块图形拼成一块长方形,则这块长方形较长的边长为( )A .3a +2bB .3a +4bC .6a +2bD .6a +4b3. 已知-6a 9b 4和5a 4n b 4是同类项,则12n -10的值是 ( )A.17B.37C.-17D.98 4. 下列各式去括号正确的是() A .a -(b -c )=a +b -cB .a -(b -c )=a -b +cC .a -(b -c )=a -b -cD .a +(b -c )=a +b +c5. 已知a +b =12,则2a +2b -3的值是( )A .2B .-2C .-4D .-3126. 化简13(9x -3)-2(x +1)的结果是( )A.2x-2 B.x+1 C.5x+3 D.x-37. 若长方形的宽为3m+2n,长比宽长m-n,则这个长方形的周长是() A.4m+n B.8m+2nC.14m+6n D.7m+3n8. 已知A=3a2+b2-c2,B=-2a2-b2+3c2,且A+B+C=0,则C等于()A.a2+2c2B.-a2-2c2C.5a2+2b-4c2D.-5a2-2b2+4c29. 已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为() A.9a-9b B.9b-9aC.9a D.-9a10. 小李家住房的结构如图所示(单位:米),小李打算把卧室和客厅铺上木地板,请你帮他算一算,他至少需买多少平方米的木地板()A.12ab B.10abC.8ab D.6ab二、填空题11. 如果m,n互为相反数,那么(3m-2n)-(2m-3n)=________.12. 若M,N是两个多项式,且M+N=6x2,则符合条件的多项式M,N可以是M=________,N=________.(写出一组即可)13. 若关于x,y的多项式4xy3-2ax2-3xy+2x2-1不含x2项,则a=.14. 把a-b看作一个整体,合并同类项:3(a-b)+4(a-b)2-2(a-b)-3(a-b)2-(a-b)2=.15. 如图是一个数表,现用一个长方形在数表中任意框出4个数,若右上角的数字用a来表示,则这4个数的和为________.16. 观察下列等式:第一行:3=4-1;第二行:5=9-4;第三行:7=16-9;第四行:9=25-16;……按照上述规律,第n(n为正整数)行的等式为________________.三、解答题17. 先化简,再求值:(1)(x2-2x3+1)-(-1+2x3+2x2),其中x=2;(2)3a-[-2b+(4a-3b)],其中a=-1,b=3.18. 有理数a,b,c在数轴上的对应点的位置如图所示.(1)用“>”或“<”填空:b-2c________0,2a-b________0,a+c________0;(2)化简:|b-2c|+|2a-b|-2|a+c|.19. 有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”小明说:“本题中a=0.35,b=-0.28是多余的条件.”小强马上反对说:“这不可能,多项式中每一项都含有a和b,不给出a,b的值怎么能求出多项式的值呢?”谁的观点是正确的?请说明理由.人教版七年级数学上册 2.2 整式的加减同步课时训练-答案一、选择题1. 【答案】C2. 【答案】A[解析] 观察图形可知,这块长方形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍,依此计算即可求解.依题意有3a-2b+2b×2=3a-2b+4b=3a+2b.故这块长方形较长的边长为3a+2b.故选A.3. 【答案】A[解析] 因为-6a9b4和5a4n b4是同类项,所以4n=9.所以12n-10=3×4n-10=3×9-10=27-10=17.4. 【答案】B5. 【答案】B[解析] 2a+2b-3=2(a+b)-3,将a+b=12代入,得原式=2×12-3=-2.故选B.6. 【答案】D[解析] 原式=3x-1-2x-2=x-3.故选D.7. 【答案】C[解析] 这个长方形的周长是2[(3m+2n)+(m-n)+(3m+2n)]=2(3m+2n+m-n+3m+2n)=2(7m+3n)=14m+6n.8. 【答案】B[解析] 因为A+B+C=0,所以C=-(A+B)=-(3a2+b2-c2-2a2-b2+3c2)=-(a2+2c2)=-a2-2c2.9. 【答案】C[解析] 由题意可得,原数为10(a+b)+b,新数为10b+a+b,故原两位数与新两位数之差为10(a+b)+b-(10b+a+b)=9a.故选C.10. 【答案】A[解析] 客厅的面积为4b·2a=8ab(米2),卧室的面积为2a·2b=4ab(米2),所以需买木地板的面积为8ab+4ab=12ab(米2).故选A.二、填空题11. 【答案】0[解析] 原式=3m-2n-2m+3n=m+n=0.12. 【答案】2x2+14x2-1(答案不唯一)[解析] 当M=2x2+1,N=4x2-1时,M+N=(2x2+1)+(4x2-1)=2x2+1+4x2-1=6x2.13. 【答案】1[解析] 因为关于x,y的多项式4xy3-2ax2-3xy+2x2-1不含x2项,所以2-2a=0,解得a=1.14. 【答案】a-b[解析] 3(a-b)+4(a-b)2-2(a-b)-3(a-b)2-(a-b)2=(3-2)·(a-b)+(4-3-1)·(a-b)2=a-b.15. 【答案】4a+8[解析] 由图可知,右上角的数为a,则左上角的数为a-1,右下角的数为a+5,左下角的数为a+4,所以这4个数的和为a+(a-1)+(a+4)+(a+5)=4a+8.16. 【答案】2n+1=(n+1)2-n2三、解答题17. 【答案】解:(1)(x2-2x3+1)-(-1+2x3+2x2)=x2-2x3+1+1-2x3-2x2=-4x3-x2+2.当x=2时,原式=-4×23-22+2=-34.(2)3a-[-2b+(4a-3b)]=3a-(-2b+4a-3b)=3a+2b-4a+3b=-a+5b.当a=-1,b=3时,原式=-(-1)+5×3=1+15=16.18. 【答案】解:(1)<<>(2)原式=(2c-b)+(b-2a)-2(a+c)=2c-b+b-2a-2a-2c=-4a.19. 【答案】解:小明的观点是正确的.理由:因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3=(7+3-10)a3+(-6+6)a3b +(3-3)a2b=0,所以a=0.35,b=-0.28是多余的条件,故小明的观点正确.。

七级数学上册2.2整式的加减同步练习(新版)新人教版

七级数学上册2.2整式的加减同步练习(新版)新人教版

2.2 整式的加减同步练习一、选择题1.以下各组中的两项不是同类项的是A.1 和0B.和C.和D.和2.以下去括号中,正确的选项是A. B.C. D.3.若单项式与是同类项,则的值是A. 2B. 1C.D.4. 若的值与 x 的没关,则的值为A.3B.1C.D.25.去括号后的结果为A. B. C. D.6.已知,,,则的值为A. 0B.C.D.7.假如是同类项,则等于A. B. 0 C. 2 D. 38.一个多项式加上等于,则这个多项式是A. B. C.D.9.以下各组式子中说法正确的选项是A. 3 xy与是同类项B. 5 xy与 6yx是同类项C. 2 x与是同类项D.与是同类项10.化简等于A. B. 2a C. D.11.设,,则可化简为A. B. C.D.12.以下计算正确的有;;;;.A.1 个B.2 个C.3个D.4 个二、填空题13.三个连续偶数中,中间的一个为2n,这三个数的和为 ______ .14.一个多项式与的和是,那么这个多项式是______ .15.单项式与是同类项,则______.16.若与的和还是单项式,则的值为______.17.写出的一个同类项:______.18.当______ 时,与是同类项,它们归并后的结果为______ .19.已知代数式与的和是,则______ .20.的相反数是 ______,______,最大的负整数是 ______.21.假如、是两个不相等的实数,且知足,,那么代数式m n______ .22.若,,则的值为 ______ .三、计算题23.先化简,再求值:,此中.24.先化简,再求值:,此中:,.25.化简:,并求当,时的值.26.若,求的值.27.先化简,再求值:,此中,.28.化简:29.有一道题目,是一个多项式减去,小强误当作了加法计算,结果获得,正确的结果应当是多少?四、解答题30.已知,,求的值,此中,.答案和分析【答案】1.B2.A3.C4.B5.B6. A7. B8.B9.B10.C11.B12.C13.6n14.15.216.1617.答案不独一18.2;19.20.;;21.200822.23.解:原式,当时,原式.24.解:原式,当,时,原式.25.解:原式,当,时,原式.26.解:原式,把代入得:原式.27.解:原式,当,时,原式.28.解:原式29.解:这个多项式为:因此正确的结果为:.30.解:,,,,原式,,把,代入得:.。

人教版七年级数学上第2章 2.2整式加减同步练习(含答案)

人教版七年级数学上第2章 2.2整式加减同步练习(含答案)

2.2整式加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。

3.整式的加减:几个整式相加减,如有括号就先去括号,然后再合并同类项。

4.去括号法则:同号得正,异号得负。

即括号外的因数的符号决定了括号内的符号是否改变:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

一、单选题1.不改变代数式32()a a b --的值,将括号前面的符号变为“+”号,正确的是A .32()a a b +-B .32()a a b ++C .32()a a b +--D .32()a a b +-+ 2.下列等式恒成立的是 ( )A .()a b a b -+=-+B .282)8(a a +=+C .(355)3a a -=--D .1248a a -= 3.下列去括号中,正确的是 ( )A .()222222x xy y xxy y --=-- B .()222222x xy y x xy y +--=-+C .()a b c d a b c d ⎡⎤----⎦+⎣=-D .()()a b c d a b c d -+--=----4.若单项式-3a 4m -n b 2与13a 3b m +n 是同类项,则这两个单项式的积是( ) A .-a 3b 2 B .a 6b 4C .-a 4b 4D .-a 6b 4 5.下列说法中正确的有( )①单项式必须是同类项才能相乘;②几个单项式的积,仍是单项式;③几个单项式之和仍是单项式;④几个单项式相乘,有一个因式为0,积一定为0.A .1个B .2个C .3个D .4个6.若S,R 均为四次多项式,则S+R 的和是( )A .二次三项式B .一次二项式C .四次二项式D .不高于四次的整式7.若15a 3b 2x 与4a 3b 4(x -1)是同类项,则x 的值是( )A .-1B .2C .-2D .18.计算-3(x -2y)+4(x -2y)的结果是( )A .-x -2yB .x +2yC .x -2yD .-x +2y9.化简-16(x -0.5)的结果是( )A .-16x -0.5B .-16x +0.5C .16x -8D .-16x +810.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为m 厘米,宽为n 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A.4m 厘米B.4n 厘米C.2(m+n )厘米D.4(m-n )厘米二、填空题 11.有一长方形花坛,其周长为()142x y +米,长为(3)x y +米,则它的宽为________. 12.计算222a b a b -=________.13.如果2222324,45M x xy y N x xy y =--=+-,则4M N -的值为________. 14.某校组织若干师生到某大峡谷进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是________.15.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为_____.三、解答题16.化简:(1) x-2y+(2x-y);(2) (3a2-b2)-3(a2-2b2);(3) 3(2a2b-ab2)-4(ab2-3a2b);(4) 4a3-(7ab-1)+2(3ab-2a3).17.先化简,再求值:(1)-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=1,b=-2;(2)-6x+3(3x2-1)-(9x2-x+3),其中x=-1 5 .18.有这样一道题:计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x =2,y=-1.甲同学把x=2误抄成x=-2,但他计算的结果也是正确的,试说明理由,并求出这个结果.19.按要求求值(1)化简求值:(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣5)其中a=﹣1.(2)若化简(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值答案1.D 2.C 3.C 4.D 5.B 6.D7.B8.C9.D10.B11.4x 米12.2a b -13.2281315x xy y --14.20015x -15.(45,12).16.(1) x -2y +(2x -y)= x -2y +2x -y=3x-3y ;(2) (3a 2-b 2)-3(a 2-2b 2)= 3a 2-b 2-3a 2+6b 2=5b 2;(3) 3(2a 2b -ab 2)-4(ab 2-3a 2b)= 6a 2b -3ab 2-4ab 2+12a 2b=18a 2b -7ab 2;(4) 4a 3-(7ab -1)+2(3ab -2a 3)= 4a 3-7ab -1+6ab -4a 3=1-ab .17.(1)原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b=-ab 2,当a =1,b =-2时,原式=-4;(2)原式=-6x +9x 2-3-9x 2+x-3=-5x -6,当x =-15时,原式=-5 18解:原式=2x 3-3x 2y -2xy 2-x 3+2xy 2-y 3-x 3+3x 2y -y 3=-2y 3,化简后的结果中没有关于x 的项,即结果与x 无关,所以甲同学抄错了x 的值,但是结果不受影响,原式=-2×(-1)3=219.(1)原式=4a 2﹣2a ﹣6﹣4a 2+4a+10=2a+4,当a=﹣1时,原式=﹣2+4=2;(2)原式=2mx 2﹣x+3﹣3x 2+x+4=(2m ﹣3)x 2+7,由结果与x的取值无关,得到2m﹣3=0,解得:m=1.5.。

人教版七年级数学上册 2.2 整式的加减(练习题含答案)

人教版七年级数学上册 2.2 整式的加减(练习题含答案)

2.2整式的加减一、选择题1.下列各组中的两个单项式,属于同类项的是( )A.和B.与C.与D.与2.下列各式中,合并同类项结果正确的是( )A. B.C. D.3.若与是同类项,则的值是( )A. B.2 C.3 D.4、下面计算正确的是( )A .B 。

C .D 。

5、在下列单项式中,说法正确的是( )① ② ③ ④ ⑤A.没有同类项B.②与③是同类项C. ②与⑤是同类项D. ①与④是同类项6.化简的结果是( )A. B. C. D.0二、填空题6xy 6xyz 3x 3522a b 212ab -40.85xy 4y x -235325x x x +=222538mn m n m n +=660xy yx -=2232a a a -=213a x y -2b xy a b 32122233x x -=235325a a a +=33x x +=10.2504ab ab -+=36x 23xy 20.37y x -214x -213xy z (53)3(2)a a b a b --+-2a 6b -26a b -1、单项式的和是 。

2、两个单项式与的和是一个单项式,那么 , 。

3、当 时,多项式中不含项。

4、把看作一个整体,合并同类项 。

5、减去-x 2+6x-5等于4x 2+3x-5的多项式是 。

6、(1)2(x 2-2x+5)-3(2x 2-5)= .(2)4(m-3n)-5(3n-10m)-13(n-2m)= .7、电影院第一排有a 个座位,后面每排都比前一排多一个座位,第二排有 个座位,第三排有 个座位,第n 排有m 个座位,则m = 。

(用含a 、n 的代数式标示)8、某三角形第一条边长厘米,第二条边比第一条边长厘米,第三条边比第一条边的2倍少b 厘米,那么这个三角形的周长是 厘米。

三、解答题1.计算(1) (2)2.先化简,后求值:22224,6,3,a b ab a b a b --2212m a b 412n a b -m =n =k =21383x kxy xy -+-xy ()a b -7()3()2()a b a b a b -----=(2)a b -()a b +222225533y y x y y x x +-++--()()22224354ab b a ab b a ---(1),其中(2),其中。

人教版七年级数学上册课后同步练习2.2 整式的加减

人教版七年级数学上册课后同步练习2.2 整式的加减

课后训练1.下列各组中的两个单项式能合并的是( ).A .4和4xB .3x 2y 3和-y 2x 3C .2ab 2和22ab D .m 和2nm 2.下列各题中合并同类项正确的是( ).A .2x 2+3x 2=5x 4B .3x +2y =5xyC .7x 2-3x 2=4D .9a 2b -9ba 2=03.下面计算正确的是( ).A .6a -5a =1B .a +2a 2=3a 3C .-(a -b )=-a +bD .2(a +b )=2a +b4.计算6a 2-2ab -2(3a 2+12ab )所得的结果是( ). A .-3ab B .-abC .3a 2D .9a 2 5.如果m -n =15,那么-2(n -m )的值是( ). A .25 B .52 C .25- D .110能力提升6.若A =x 2-5x +2,B =x 2-5x -6,则A 与B 的大小关系是( ).A .A >B B .A =BC .A <BD .无法确定7.把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个因式合并同类项,结果应是( ).A .-4(x -3)2+(x -3)B .4(x -3)2-x (x -3)C .4(x -3)2-(x -3)D .-4(x -3)2-(x -3)8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( ).A .4m cmB .4n cmC .2(m +n )cmD .4(m -n )cm9.计算:(1)2(2a -3b )+3(2b -3a );(2)2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy +y 2)].10.先化简,再求值.(1)-2x 3+4x -213x -(x +3x 2-2x 3),其中x =3; (2)12x -2(x -213y )+231()23x y -+,其中x =-2,y =-3. 11.一个多项式加上-2x 3-x 2y +4y 3后,得x 3-x 2y +3y 3,求这个多项式,并求当x =12-,y =12时,这个多项式的值.12.七年级(1)班分成三个小组,利用星期日参加公益活动.第一组有学生m名;第二组的学生数比第一组学生人数的2倍少10人;第三组的学生数是第二组学生人数的一半.七年级(1)班共有多少名学生?13.有这样一道题:“当a=2 012,b=-2 013时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2 013的值.”小明说:本题中a=2 012,b=-2 013是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.。

人教版七年级数学上册《2.2整式的加减》同步训练(附答案)

人教版七年级数学上册《2.2整式的加减》同步训练(附答案)

人教版七年级数学上册《2.2整式的加减》同步训练(附答案)一、单选题1.下列计算正确的是( ) A .235a b ab += B .22826y y -=C .6612538x x x +=D .43ab ab ab -+=-2.已知式子2x y +的值是2-,则式子241x y ++的值是( ) A .6- B .5- C .4- D .3-3.规定2x y xy y =-◎.则()122-◎( )A .5-B .3C .3-D .14.下列是同类项的是( )A .ab 与aB .3xy 与2x y -C .2π与5D .mn 与3m5.若单项式22a b -与某个单项式合并同类项后结果为27a b -,则这个单项式是( )A .25a b -B .5-C .29ab -D .72-6.当2a =-时,计算22a a +的结果是( )A .6-B .6C .10-D .107.若x 的相反数是3,2y =则x y +的值为( )A .5或1-B .5或1C .5-或1-D .5-或1 8.下列运算正确的是( )A .()a b c a b c --=--B .()22a b c a b c --=-+C .()333a b c a b c --=--D .()444a b c a b c -+=--二、填空题 9.已知5a =,3b =且+=+a b a b ,则a b -的值为 .10.()221x y -+与互为相反数,则4x y += .11.若1a b =+,则代数式322a b +-的值是 .三、解答题(3)若四个班共植树60棵,求二班比三班多植树多少棵?20.下列是小明课堂上进行整式化简的板演,请认真阅读并完成相应任务.解:222211111222233233x y x y x y x y ⎛⎫⎛⎫---=--- ⎪ ⎪⎝⎭⎝⎭ 第一步 221122233x y x y =--- 第二步 232x y =-- 第三步 (1)填空:以上化简步骤中,第一步的依据是______,从第______步开始出现错误,这一步错误的原因是______;(2)请写出该整式正确的化简过程,并计算当=1x -,34y =-时该整式的值. 参考答案:1.D2.D3.A4.C5.A6.B7.C8.D9.2或2-10.2-11.512.1213.314.32-15.282ab -+16.()21226x x +/()22612x x +。

【推荐】新人教版七年级数学上册同步试题2.2整式的加减练习题及答案含答案.doc

【推荐】新人教版七年级数学上册同步试题2.2整式的加减练习题及答案含答案.doc

七年级上册第2.2整式的加减一、选择题(每小题3分,共24分)1、下列各组中,不是同类项的是( )A 、2235.0ab b a 与B 、y x y x 2222-与C 、315与D 、m m x x 32--与2、若七个连续整数中间的一个数为n ,则这七个数的和为( )A 、0B 、7nC 、-7nD 、无法确定3、若a 3与52+a 互为相反数,则a 等于( )A 、5B 、-1C 、1D 、-54、下列去括号错误的共有( )①c ab c b a +=++)(;②d c b a d c b a +--=-+-)(;③c b a c b a -+=-+2)(2;④b a a b a a b a a +-=+--+---222)]([A 、1个B 、2个C 、3个D 、4个5、计算:)](2[n m m n m ----等于( )A 、n 2-B 、m 2C 、n m 24-D 、m n 22-6、式子223b a -与22b a +的差是( )A 、22aB 、2222b a -C 、24aD 、2224b a -7、c b a -+-的相反数是( )A 、c b a +--B 、c b a +-C 、c b a +--D 、c b a ---8、减去m 3-等于5352--m m 的式子是( )A 、)1(52-mB 、5652--m mC 、)1(52+mD 、)565(2-+-m m 二、填空题(每小题3分,共24分)1、若4243b a b a m n 与是同类项,则m =____,n =____。

2、在x x x x 6214722+--+-中,27x 与___同类项,x 6与___是同类项,-2与__是同类项。

3、单项式ab b a ab ab b a 3,4,3,2,3222--的和为____。

4、把多项式3223535y x y x xy +--按字母x 的指数从大到小排列是:____5、若4)13(22+-=+--a a A a a ,则A =_____。

人教版七年级上册数学2.2.3《整式的加减》同步练习

人教版七年级上册数学2.2.3《整式的加减》同步练习

第二章 整式的加减2.2.3 整式的加减【知识点】 整式的加减(1)整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.(2)应用整式的加减进行化简求值步骤:一般是先化简,即先去括号,再合并同类项,直到结果中没有同类项后,再将字母的具体数值代入计算结果,简记为“一化、二代、三计算”.注意:①整式的加减其实质就是合并同类项,整式加减的最后结果中,不能再含有同类项,不能出现带分数,带分数要化为假分数.②化简求值的运算.代值时,若所给的值是负数或分数,应添上括号.【典例】化简,并求x =-2,y =1时的值:(1)3x +2x 2-2-15x 2+1-5x ; (2)3(2x 2-xy)-2(3x 2+xy -1).分析:(1)按照整式加减的运算法则,合并同类项即可得到结果;(2)按照整式加减的运算法则,先去括号,然后再合并同类项即可得到结果.解:(1)原式=2x 2-15x 2+3x -5x -2+1 (2)原式=6x 2-3xy -6x 2-2xy +2=-13x 2-2x -1. =6x 2-6x 2-3xy -2xy +2当x =-2,y =1时, =-5xy +2.原式=-13×(-2)2-2×(-2)-1 当x =-2,y =1时,=-49. 原式=-5×(-2)×1+2=12.1.下列计算正确的是( )A .3x 2-x 2=3B .3a 2+2a 3=5a 5C .3+x =3xD .-0.25ab +14ba =0 2.计算-3(x -2y)+4(x -2y)的结果是( )A .x -2yB .x +2yC .-x -2yD .-x +2y3.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( )A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 24.张庭把4x +8错写成4(x +8),结果比原来( )A .多4B .少4C .多24D .少245.若a>0,ab<0,则||b -a -1-||a -b +3的值为( )A.2 B.-2 C.-2a+2b+4 D.2a-2b-4 x-4与(y+3)2互为相反数,那么2x-(-2y+x)的值为()6.如果||A.-2 B.10 C.7 D.67.【2017·江苏淮安中考】计算:2(x-y)+3y=__________.8.一个多项式加上2x2-x+5等于4x2-6x-3,则这个多项式为__________.a+1为__________.9.若a<-1,则化简||a+||10.若“△”是新定义的一种运算符号,规定:a△b=2a-3b,则(x+y)△(x-y)运算后的结果为__________.11.先化简,再求值:x2+(2xy-3y2)-2(x2+xy-2y2),其中x=-1,y=2.12.由于国际市场油价上涨,某市将出租车的收费标准重新调整如下:不超过2千米的部分,收起步价5元,燃油税1元(超过2千米没有燃油税);2千米到5千米的部分,每千米收1.5元;超过5千米的部分,每千米收2.5元.若某人乘坐了x(x>5)千米的路程,请写出他应该支付的费用;当他乘坐了8千米的路程时,应付费多少元?。

人教版数学七年级上册 第二章 整式的加减 2.2 整式的加减 同步训练及答案

人教版数学七年级上册  第二章  整式的加减   2.2 整式的加减  同步训练及答案

人教版数学七年级上册第二章整式的加减2.2 整式的加减同步训练1. 化简5(2x-3)+4(3-2x)的结果为( )A.2x-3 B.2x+9 C.8x-3 D.18x-32. 用2a+5b减去4a-4b的一半,应得到( )A.4a-b B.b-a C.a-9b D.7b3. 在2-[2(x+y)-()]=x+2中,括号内填的式子应是( )A.3x+2y B.-x+2y C.x-2y D.-x-2y4. 已知A=a2+b2-c2,B=-4a2+2b2+3c2,若A+B+C=0,则多项式C为( )A.5a2+3b2+2c2B.5a2-3b2+4c2C.3a2-3b2-2c2D.3a2+3b2+4c25. 一个长方形的一边长是2a+3b,另一边的长是a+b,则这个长方形的周长是( )A.12a+16b B.6a+8b C.3a+8b D.6a+4b6. 某校组织若干师生到活动基地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A.(200-6x)人B.(140-15x)人C.(200-15x)人D.(140-60x)人7. 多项式7a2-6a3b+3a2b+3a2+6a3b-3a2b-10a2的值( )A.与字母a,b都有关B.只与字母a有关C .只与字母b 有关D .与字母a ,b 都无关8. 一家商店以每包a 元的价格进了30包甲种茶叶,又以每包b 元的价格买进60包乙种茶叶.如果以每包a +b 2元的价格卖出这两种茶叶,则卖完后,这家商店( )A .赚了B .赔了C .不赔不赚D .不能确定赔或赚9. 任意写一个四位数,交换这个四位数的千位数字与十位数字、百位数字与个位数字,得一新数,则这两个数的和一定是下列哪个数的倍数( )A .99B .100C .101D .10210. 计算:3a -(2a -b)= .11. 一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下 .12. 单项式-3x ,-2x ,5x 的和为____.13. 3ab 减去-2ab 列式为 ,结果为____.14. 一个十位数字是a ,个位数字是b 的两位数表示为 ,交换这个两位数的十位数字和个位数字,又得一个新的两位数,新数与原数的差是 .15. 某商场一月份的销售额为a 元,二月份比一月份销售额多b 元,三月份比二月份减少10%,第一季度的销售额总计为 元;当a =2万元,b =5000元时,第一季度的总销售额为 元.16. 先化简,再求值:-3a +[2b -(a -b)+a]+(6a -b).其中a =13,b =2517. 某村小麦种植面积是a hm 2,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5 hm2,列式表示水稻种植面积、玉米种植面积,并计算水稻种植面积比玉米种植面积大多少?18.某轮船顺水航行3 h,逆水航行1.5 h,已知轮船在静水中的速度是a km/h,水流速度是y km/h,轮船共航行多少千米?19. 一位同学做一道题:“已知两个多项式A,B,计算2A+B”.他误将“2A+B”看成“A+2B”,求得的结果为9x2-2x+7. 已知B=x2+3x-2,请求出正确答案.20. 已知有理数a,b,c在数轴上的对应点如图,试化简:|a|-|a+b|+|c-a|+|b+c|.参考答案:1---9 ADACB CDDC10. a+b11. 3a+2b12. 013. 3ab-(-2ab) 5ab14. 10a+b 9b-9a15. (2.9a+1.9b) 6750016. 解:原式=-3a+2b-a+b+a+6a-b=3a+2b,将a=13,b=25代入上式中,得3×13+2×25=1+50=51,即原式的值为5117. 解:水稻种植面积:3a hm2;玉米种植面积:(a-5)hm2;水稻种植面积比玉米种植面积大:3a-(a-5)=(2a+5)hm218. 解:根据题意得3(a+y)+1.5(a-y)=(4.5a+1.5y)千米19. 解:由题意得A+2(x2+3x-2)=9x2-2x+7,则A=9x2-2x+7-2(x2+3x-2)=9x2-2x+7-2x2-6x+4=7x2-8x+11,所以正确答案为2A+B=2(7x2-8x+11)+(x2+3x-2)=14x2-16x+22+x2+3x-2=15x2-13x+20 20. 解:由图可知:a<b<0<c,且|b|>|c|,所以原式=-a+a+b+c-a-b-c=-a。

2014年秋人教版七年级数学上2.2整式的加减(2)同步习题精讲课件(预习导航+堂堂清+日日清)

2014年秋人教版七年级数学上2.2整式的加减(2)同步习题精讲课件(预习导航+堂堂清+日日清)

化简求值及列式计算 9.(12分)计算: (1)(x3-2x2+x-4)-(2x3-5x-4); 3-2x2+6x 原式=- x 解: (2)3(a2-2a-3)-5(-5a2+a-2); 解:原式=28a2-11a+1 (3)2x2-{-3x2-[4x2-(3x2-x)+(x-x2)]}. 解:原式=5x2+2x
三、解答题(共32分) 1 2-3x-5y- 19.(8分)若代数式(2x2+ax-y+6)-(2bx 1 1)的值与字母 x所取的值无关,求代数式 3 a3-2b2-2( - 3 a3+b2)的值.
(2x2+ax-y+6)-(2bx2-3x-5y-1)=2x2+ax-y+6- 解: 2bx2+3x+5y+1=(2-2b)x2+(a+3)x+4y+7,∵原式
解:a+(a+a-1)+ຫໍສະໝຸດ a+a-1-(2-a)] =6a-4
22.(8分)有理数a,b,c在数轴上的位置如图:
化简:2|a+b|+|a-c|-3|b+c|.
解:原式=2×[-(a+b)]+(a-c)-3×[-(b+c)] =-2(a+b)+(a-c)+3(b+c) =-2a-2b+a-c+3b+3c =-a+b+2c
10.(6分)已知A=a2-ab+2b2,B=2a2+3ab-b2, 求A-B的值. 解: 原式=-a2-4ab+3b2 11.(6分)化简求值: 3x-2y-[-4x+(y+3x)]-(2x+3y),其中x=-1, 1 y= .
2
解: 原式=2x-6y,值为1
一、选择题(每小题4分,共16分) 12.化简m-n-(m+n)的结果是( C ) A.0 B.2m C.-2n D.2m-2n 13.下列去括号错误的是( C ) A.3a2-(2a-b+5c)=3a2-2a+b-5c B.5x2+(-2x+y)-(3z-w)=5x2-2x+y-3z+w C.2m2-3(m-1)=2m2-3m-1 D.-(2x-y)-(-x2+y2)=-2x+y+x2-y2

人教版七年级上册数学2.2整式的加减同步练习及答案

人教版七年级上册数学2.2整式的加减同步练习及答案

人教版七年级上册数学2.2整式的加减同步练习一、选择题1.下列各组中的两项不是同类项的是()A. 1和0B. −4xy2z和−4x2yz2C. −x2y和2yx2D. −a3和4a32.下列去括号中,正确的是()A. −(x−y+z)=−x+y−zB. x+2(y−z)=x+2y−zC. a2−34(a+2)=a2−34a+32D. a−(x−y+z)=a−x+y+z3.若单项式23x2y n与−2x m y3是同类项,则m−n的值是()A. 2B. 1C. −1D. −24.若x2+ax−2y+7−(bx2−2x+9y−1)的值与x的无关,则−a−b的值为()A. 3B. 1C. −2D. 25.−(2x−y)+(−y+3)去括号后的结果为()A. −2x−y−y+3B. −2x+3C. 2x+3D. −2x−2y+36.已知A=3x2+5y2+6z2,B=2x2−2y2−8z2,C=2z2−5x2−3y2,则A+B+C的值为()A. 0B. x2C. y2D. z27.如果a2b3−2a m b n是同类项,则3m−2n等于()A. −1B. 0C. 2D. 38.一个多项式加上−2a−4等于3a2+a−2,则这个多项式是()A. 3a2−3a−2B. 3a2+3a+2C. 3a2−a−6D. −3a2−a−29.下列各组式子中说法正确的是()A. 3xy与−2yz是同类项B. 5xy与6yx是同类项C. 2x与x2是同类项D. 2x2y与2xy2是同类项10.化简a−[−2a−(a−b)]等于()A. −2aB. 2aC. 4a−bD. 2a−2b第 1 页11.设A=x2+1,B=−2x+x2,则2B−3A可化简为()A. 4x2+1B. −x2−4x−3C. x2−4x−3D. x2−312.下列计算正确的有()(1)5a3−3a3=2;(2)−10a3+a3=−9a3;(3)4x+(−4x)=0;(4)(−27xy)−(+57xy)=−37xy;(5)−3mn−2nm=−5mn.A. 1个B. 2个C. 3个D. 4个二、填空题13.三个连续偶数中,中间的一个为2n,这三个数的和为______ .14.一个多项式与−2x2−4x+5的和是2x2+x−1,那么这个多项式是______ .15.单项式14a x+1b4与9a2x−1b4是同类项,则x=______ .16.若2a3m−1b3与14a5b2n+1的和仍是单项式,则5m+6n的值为______ .17.写出−23a2b的一个同类项:______.18.当k=______ 时,3kx2y与25x k y是同类项,它们合并后的结果为______ .19.已知代数式2a3b n+1与−3a m−1b2的和是−a3b2,则m−5n=______ .20.−a+2bc的相反数是______,|3−π|=______,最大的负整数是______.21.如果m、n是两个不相等的实数,且满足m2−2m=1,n2−2n=1,那么代数式2m2+4n2−4n+1994=______ .22.若m2+mn=−3,n2−3mn=18,则m2+4mn−n2的值为______.三、计算题23.先化简,再求值:2x2−4x+1−2x2+2x−5,其中x=−1.第 3 页24. 先化简,再求值:4a 2b −2ab 2+3−(−2ab 2+4a 2b −2),其中:a =2,b =3.25. 化简:(−x 2+3xy −y 2)−(−3x 2+5xy −2y 2),并求当x =12,y =−12时的值.26. 若m 2+3mn =10,求5m 2−[5m 2−(2m 2−mn)−7mn +5]的值.27. 先化简,再求值:4(x −13y 2)−(x −13y 2),其中x =−13,y =−1.28. 化简:(3x 2−xy −2y 2)−2(x 2+xy −2y 2)29.有一道题目,是一个多项式减去x2+14x−6,小强误当成了加法计算,结果得到2x2−x+3,正确的结果应该是多少?四、解答题B)]的值,30.已知A=x3−5xy2+3y2,B=2x3+4y2−7xy2,求A−[2A−3(A−13其中x=2,y=−1.第 5 页答案和解析【答案】1. B2. A3. C4. B5. B6. A7. B8. B 9. B 10. C 11. B 12. C13. 6n14. 4x 2+5x −6 15. 2 16. 1617. a 2b(答案不唯一) 18. 2;325x 2y 19. −120. a −2bc ;π−3;−1 21. 2019 22. −2123. 解:原式=−2x −4,当x =−1时,原式=2−4=−2.24. 解:原式=4a 2b −2ab 2+3+2ab 2−4a 2b +2=5, 当a =2,b =3时,原式=5.25. 解:原式=−x 2+3xy −y 2+3x 2−5xy +2y 2=2x 2−2xy +y 2,当x =12,y =−12时,原式=12+12+14=54.26. 解:原式=5m 2−5m 2+2m 2−mn +7mn −5=2(m 2+3mn)−5,把m 2+3mn =10代入得:原式=20−5=15.27. 解:原式=4x −43y 2−x +13y 2=3x −y 2,当x =−13,y =−1时,原式=−1−1=−2.28. 解:原式=3x 2−xy −2y 2−2x 2−2xy +4y 2=3x 2−2x 2−xy −2xy −2y 2+4y 2=x 2−3xy +2y 229. 解:这个多项式为:(2x2−x+3)−(x2+14x−6)=x2−15x+9所以(x2−15x+9)−(x2+14x−6)=−29x+15正确的结果为:−29x+15.B)]30. 解:∵A−[2A−3(A−13=A−[−A+B],=2A−B,∵A=x3−5xy2+3y2,B=2x3+4y2−7xy2,∴原式=2x3−10xy2+6y2−(2x3+4y2−7xy2),=−3xy2+2y2,把x=2,y=−1代入得:−3×2×1+2×1=−4.。

人教版七年级上册数学:2.2整式的加减同步练习(含答案解析)

人教版七年级上册数学:2.2整式的加减同步练习(含答案解析)

2.2整式的加减同步练习一.选择题(共15小题)1.下列不是同类项的是()A.3x2y与﹣6xy2B.﹣ab3与b3aC.12和0D.2.若是同类项,则m+n=()A.﹣2B.2C.1D.﹣13.下面不是同类项的是()A.﹣2与5B.﹣2a2b与a2bC.﹣x2y2与6x2y2D.2m与2n4.下列运算正确的是()A.5a2﹣3a2=2B.2x2+3x2=5x4C.3a+2b=5ab D.7ab﹣6ba=ab5.下列各式运算正确的是()A.3x+3y=6xy B.7x﹣5x=2x2C.16y2﹣7y2=9D.19a2b﹣9ba2=10a2b6.下列化简正确的是()A.2a+3b=5ab B.7ab﹣3ab=4C.2ab+3ab=5ab D.a2+a2=a47.下列去括号正确的是()A.+(a﹣b+c)=a+b+c B.+(a﹣b+c)=﹣a+b﹣cC.﹣(a﹣b+c)=﹣a+b﹣c D.﹣(a﹣b+c)=﹣a+b+c8.下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c9.一个多项式A与多项式B=2x2﹣3xy﹣y2的差是多项式C=x2+xy+y2,则A等于()A.x2﹣4xy﹣2y2B.﹣x2+4xy+2y2C.3x2﹣2xy﹣2y2*D.3x2﹣2xy10.有理数a、b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果为()A.﹣2a B.2b C.2a D.﹣2b11.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m12.已知多项式A=x2+2y2﹣z2,B=﹣4x2+3y2+2z2且A+B+C=0,则C为()A.5x2﹣y2﹣z2B.3x2﹣5y2﹣z2C.3x2﹣y2﹣3z2D.3x2﹣5y2+z2 13.已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣514.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则﹣a+b的值为()A.3B.1C.﹣2D.215.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=()A.﹣1B.1C.5D.﹣5二.填空题(共10小题)16.若3x n y3与﹣xy1﹣2m是同类项,则m+n=.17.若﹣7x m+2y2与3x3y n是同类项,则m+n=.18.计算:x2y﹣3yx2=.19.计算:5x﹣3x=.20.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=.21.若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m=.22.将一些扑克牌分成左、中、右相同的三份.第一步:从左边取两张扑克牌,放在中间,右边不变;第二步:从右边取一张扑克牌,放在中间,左边不变;第三步:从中间取与左边相同张数的扑克牌,放在左边,右边不变.则此时中间有张扑克牌.23.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项,形式如下:﹣(x2﹣2x+1)=﹣x2+5x﹣3,则所捂的多项式为.24.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为.25.一般情况下不成立,但有些数可以使得它成立,例如:m=n=0时,我们称使得成立的一对数m,n为“相伴数对”,记为(m,n).(1)若(m,1)是“相伴数对”,则m=;(2)(m,n)是“相伴数对”,则代数式m﹣[n+(6﹣12n﹣15m)]的值为.三.解答题(共8小题)26.已知﹣4xy n+1与是同类项,求2m+n的值.27.若两个单项式﹣4x2y与nx3+m y的和是0,求代数式m2﹣2n的值.28.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.29.3a2﹣2a+4a2﹣7a.30.(8a﹣7b)﹣(4a﹣5b)31.一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”,求得的结果为9x2﹣2x+7.已知B=x2+3x﹣2,求正确答案.32.先化简,再求值:,其中.33.先化简,再求值:8a2b+2(2a2b﹣3ab2)﹣3(4a2b﹣ab2),其中a=﹣2,b=3.2.2整式的加减同步练习参考答案一.选择题(共15小题)1.解:A、相同字母的指数不同,不是同类项;B、C、D都是同类项.故选:A.2.解:由同类项的定义可知m+2=1且n﹣1=1,解得m=﹣1,n=2,所以m+n=1.故选:C.3.解:A、﹣2与5,是同类项,不合题意;B、﹣2a2b与a2b,是同类项,不合题意;C、﹣x2y2与6x2y2,是同类项,不合题意;D、2m与2n,所含字母不同,不是同类项,故此选项正确.故选:D.4.解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.5.解:A、不是同类项不能合并,故A错误;B、系数相加字母部分不变,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.6.解:A、2a+3b无法计算,故此选项不合题意;B、7ab﹣3ab=4ab,故计算错误,不合题意;C、2ab+3ab=5ab,正确,符合题意;D、a2+a2=2a2,故计算错误,不合题意;故选:C.7.解:A、+(a﹣b+c)=a﹣b+c,本选项错误;B、+(a﹣b+c)=a﹣b+c,本选项错误;C、﹣(a﹣b+c)=﹣a+b﹣c,本选项正确;D、﹣(a﹣b+c)=﹣a+b﹣c,本选项错误,故选:C.8.解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选:B.9.解:A=B+C=(2x2﹣3xy﹣y2)+(x2+xy+y2)=2x2﹣3xy﹣y2+x2+xy+y2=3x2﹣2xy.故选:D.10.解:根据数轴上点的位置得:a<0<b,且|a|<|b|,∴a﹣b<0,a+b>0,则原式=b﹣a+a+b=2b.故选:B.11.解:设小长方形的长为a,宽为b(a>b),则a+3b=n,阴影部分的周长为2n+2(m﹣a)+2(m﹣3b)=2n+2m﹣2a+2m﹣6b=4m+2n﹣2n=4m,故选:D.12.解:由于多项式A=x2+2y2﹣z2,B=﹣4x2+3y2+2z2且A+B+C=0,则C=﹣A﹣B=﹣(x2+2y2﹣z2)﹣(﹣4x2+3y2+2z2)=﹣x2﹣2y2+z2+4x2﹣3y2﹣2z2=3x2﹣5y2﹣z2.故选:B.13.解:∵a﹣b=3,c+d=2,∴原式=a+c﹣b+d=(a﹣b)+(c+d)=3+2=5.故选:C.14.解:原式=x2+ax﹣2y+7﹣bx2+2x﹣9y+1=(1﹣b)x2+(a+2)x﹣11y+8,由结果与x的取值无关,得到1﹣b=0,a+2=0,解得:a=﹣2,b=1,则﹣a+b=2+1=3.故选:A.15.解:∵m﹣x=2,n+y=3,∴原式=m﹣n﹣x﹣y=(m﹣x)﹣(n+y)=2﹣3=﹣1,故选:A.二.填空题(共10小题)16.解:根据题意得:n=1,1﹣2m=3,∴m=﹣1,∴m+n=1﹣1=0.17.解:根据题意得:,解得:,则m+n=1+2=3.故答案是:3.18.解:x2y﹣3yx2=﹣2yx2.故答案为:﹣2yx2.19.解:原式=(5﹣3)x=2x.故答案为2x.20.解:根据绝对值的性质可知,当1≤m<3时,|m﹣1|=m﹣1,|m﹣3|=3﹣m,故|m﹣1|﹣|m﹣3|=(m﹣1)﹣(3﹣m)=2m﹣4.21.解:原式=3a2﹣6ab﹣3b2﹣a2﹣mab﹣2b2=2a2﹣(6+m)ab﹣5b2,由于多项式中不含有ab项,故﹣(6+m)=0,∴m=﹣6,故填空答案:﹣6.22.解:设刚开始每一份为a张,经过第一步后左:a﹣2,中间:a+2,右:a;经过第二步后左:a﹣2,中间:a+2+1,右:a﹣1;经过第三部后左2(a﹣2),中:a+3﹣(a﹣2),右:a﹣1.所以中间有5张,故答案为5.23.解:(x2﹣2x+1)+(﹣x2+5x﹣3)=x2﹣2x+1﹣x2+5x﹣3=3x﹣2.故答案为:3x﹣2.24.解:由题意得:2x2+3x=36x2+9x﹣7=3(2x2+3x)﹣7=2.25.解:(1)根据题意得:+=,去分母得:15m+10=6m+6,移项合并得:9m=﹣4,解得:m=﹣;(2)由题意得:+=,即=,整理得:15m+10n=6m+6n,即9m+4n=0,则原式=m﹣n﹣3+6n+m=m+5n﹣3=(9m+4n)﹣3=﹣3,故答案为:(1)﹣;(2)﹣3三.解答题(共8小题)26.解:由题意得:m=1,n+1=4,解得:m=1,n=3.∴2m+n=5.27.解:因为﹣4x2y与nx3+m y的和为0,所以n=4;3+m=2,所以m=﹣1,当m=﹣1,n=4时,m2﹣2n=﹣7.28.解:原式=(3x2﹣3x2)+(2xy﹣3xy)+(4y2﹣4y2)=﹣xy.29.解:3a2﹣2a+4a2﹣7a=3a2+4a2﹣7a﹣2a=7a2﹣9a.30.解:原式=8a﹣7b﹣4a+5b=(8﹣4)a﹣(7﹣5)b=4a﹣2b.31.解:根据题意得A=9x2﹣2x+7﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4=(9﹣2)x2﹣(2+6)x+4+7=7x2﹣8x+11.∴2A+B=2(7x2﹣8x+11)+x2+3x﹣2=14x2﹣16x+22+x2+3x﹣2=15x2﹣13x+20.32.解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=,y=﹣2时,原式=﹣2+4=2.33.解:原式=8a2b+4a2b﹣6ab2﹣12a2b+3ab2=﹣3ab2,当a=﹣2,b=3时,原式=54.。

人教版七年级上册第二章整式的加减 2.2 整式的加减 同步练习(含答案)

人教版七年级上册第二章整式的加减 2.2 整式的加减   同步练习(含答案)

整式的加减同步练习一、选择题(共12题)1、若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2 B.﹣1 C.2 D.12、下列判断中正确的是().A.与不是同类项 B.不是整式C.单项式的系数是 D.是二次三项式3、下列计算正确的是()A. x5﹣x4=xB. x+x=x2C. x3+2x5=3x8D.﹣x3+3x3=2x34、下列各项中,去括号正确的是()A. x2-2(2x-y+2)=x2-4x-2y+4B. -3(m+n)-mn=-3m+3n-mnC. -(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2D. ab-5(-a+3)=ab +5a-35、减去-3x得x2-3x+6的式子是()A.x2+6B.x2+3x+6C.x2-6xD.x2-6x+66、已知多项式x2–kxy–3(x2–12xy+y)不含xy项,则k的值为()A. 36 B.-36 C.0 D.127、已知a2+2a=1,则代数式1﹣2(a2+2a)的值为()A.0 B.1 C.﹣1 D.﹣28、一个多项式加上3y2﹣2y﹣5得到多项式5y3﹣4y﹣6,则原来的多项式为()A.5y3+3y2+2y﹣1 B.5y3﹣3y2﹣2y﹣6C.5y3+3y2﹣2y﹣1 D.5y3﹣3y2﹣2y﹣19、代数式4x3﹣3x3y+8x2y+3x3+3x3y﹣8x2y﹣7x3的值()A.与x,y有关 B.与x有关 C.与y有关 D.与x,y无关10、若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3 B.3 C.5 D.711、如果多项式A加上﹣2x2﹣1得4x2+1,那么多项式A是()A.6x2+2 B.2x2 C.6x4+2 D.﹣2x2+212、为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S =2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32018的值是 ( )A.32019-1 B. 32018-1 C. D.二、填空题(共6题)13、 (徐州中考)若2m+n=4,则代数式6-2m-n的值为.14、若代数式3a5b m与-2a n b2是同类项,m+n= .15、有一名同学把一个整式减去多项式xy+5yz+3xz误认为加上这个多项式,结果答案为 5yz-3xz+2xy,则原题正确答案为 .16、一个多项式加上-3+x-2x2得到x2-1,那么这个多项式为 ____________ ;17、一种商品每件成本是a元,原来按成本增加20%定出价格进销售,一段时间后,由于库存积压减价,按原价的9折出售,则现在每件售价为元.18、多项式与﹣3x+1的和是x2﹣3.三、解答题(共6题)19、 (m-5n+4mn)-2(2m-4n+6mn),其中m-n=4,mn=-3.20、(1)合并下列同类项: 4a2-3b2+2ab-4a2-3b2+5ba(2)先化简,再求值:2(3x2﹣4xy)﹣4(2x2﹣3xy﹣1),其中|x﹣1|+(y+2)2=0.21、 2a+3(a2-b)-2(2a2+a-b),其中a=,b=-2;22、某同学做一道数学题,已知两个多项式A、B,B=3x2y﹣5xy+x+7,试求A+B.这位同学把A+B误看成A﹣B,结果求出的答案为6x2y+12xy﹣2x﹣9,请你替这位同学求出A+B的正确答案.23、先化简,再求值:求代数式x2﹣[2(2x2﹣xy+y2)﹣3(x2+xy﹣2y2)+y2]的值,其中x=﹣2,y=3.24、探究题.用棋子摆成的“T”字形图如图所示:(1)填写下表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数.(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?)参考答案一、选择题1、 A;2、 C ;3、 D;4、 C;5、 D;6、 A;7、C.;8、D.;9、 D;10、C;11 A;12、C;二、填空题13、 214、 .715、-5yz-9xz.16、3x2-x+3 ;17、1.08a(18、x2+3x﹣4三、解答题19、解:1220、解:(1)原式= 7ab-6b2(2)原式=由|x﹣1|+(y+2)2=0, 解得:x=1, y=-2当x=1, y=-2时,原式=-621、解:322、解:∵B=3x2y﹣5xy+x+7,A﹣B=6x2y+12xy﹣2x﹣9,∴A+B=(A﹣B)+2B=6x2y+12xy﹣2x﹣9+2(3x2y﹣5xy+x+7)=6x2y+12xy﹣2x﹣9+6x2y﹣10xy+2x+14=12x2y+2xy+5.23、解:原式=x2﹣4x2+2xy﹣2y2+3x2+3xy﹣6y2﹣y2=5xy﹣9y2,当x=﹣2,y=3时,原式=﹣30﹣81=﹣111.24、解:(1)11 14 32(2)3n+2 (3)3n+2=3×20+2=62(个) (4)(5+62)×=670(个)。

人教版 七年级数学上册 2.2整式加减 同步测试习题(含答案)

人教版 七年级数学上册 2.2整式加减 同步测试习题(含答案)

2.2整式的加减同步练习一、选择题1.下列计算正确的是 ( )A .a -2(b +c )=a -2b -2cB .a -2b -c -4d =a -c -2(b +4d )C .-12(a +b )+(3a -2b )=52a -b D .(3x 2y -xy )-(yx 2-3xy )=3x 2y -yx 2-4xy 2.化简4a -+a -4的结果是( )A .2a -8B .8-2aC .2a -8或0D .2a -8或8-2a-3.设M 是关于x 的五次多项式,N 是关于x 的三次多项式,则 ( )A .M +N 是关于x 的八次多项式B .M -N 是关于x 的二次多项式C .M +N 是不超过8次的多项式D .以上都不对4.(xyz 2-4xy -1)+(-3xy +z 2yx -3)-(2xyz 2+xy )的值 ( )A .与x 、y 、z 的大小无关B .与x 、y 的大小有关,而与z 的大小元关C .与x 的大小有关,而与y 、z 的大小无关D .与x 、y 、z 的大小都有关5.多项式4n -2n 2+2+6n 2减去3(n 2+2n 3-1+3n )(n 为自然数)的差一定是( ) A .奇数 B .偶数 C .5的倍数 D .以上答案都不对6.下列代数式的值一定是正数的有 ( )①(m +n )2,②x +2,③x 2+1,④x 2+y 2,⑤a 2+1b +A .1个B .2个C .3个D .4个7.已知多项式A =x 2+2y 2-z 2,B =-4x 2+3y 2+2z 2,且A +B +C =0,则C 为() A .5x 2-y 2-z 2 B .3x 2-5y 2-z 2C .3x 2-y 2-3z 2D .3x 2-5y 2+z 28.当x>0,y<0且x <y 时,化简2333x y x y --+等于 ( )A .5xB .-5xC .6yD .-6y二、填空题1.多项式-8xy 2+3x 2y 与-2x 2y +5xy 2的和是_______.2.多项式2x -3y +5z 与-2x +4y -6z 的差是__________。

2014年秋人教版七年级数学上2.2整式的加减(1)同步习题精讲课件(预习导航+堂堂清+日日清)

2014年秋人教版七年级数学上2.2整式的加减(1)同步习题精讲课件(预习导航+堂堂清+日日清)
=-67
(2)4x2+2xy+9y2-2x2-3xy+y2,其中x=2,y=1. 解: 原式=2x2-xy+10y2
=16
20.(6分)已知关于x,y的多项式-ax2-2bxy+x2-x -2xy+y不含二次项,求5a-8b的值. 解: -ax2-2bxy+x2-x-2xy+y=(1-a)x2+(-2b-2)·xy
第二章 整式的加减
习 题 精 讲 2.2 整式的加减
数 学 七年级上册 (人教版)
2.2 整式的加减
第1课时 同类项、合并同类项
1.同类项需要满足两个条件,它们分别是 相同的字母的指数分别相同 (1)_____________ . 所含字母相同 ;(2)_________________________ 2.把多项式中的_______ 同类项 合并成一项,叫做合并同类 项. 3.合并同类项的法则:将同类项的______ 系数 相加,作 为结果的______ 系数 ,__________________ 且字母连同它的指数 不变.
13.已知多项式ax+bx合并后的结果是0,则下列说 法正确的是( C ) A.a=b=0 B.a=b=x=0 C.a+b=0或x=0 D.a-b=0 14.设M,N都是关于x的五次多项式,则M+N是( D ) A.十次多项式 B.五次多项式 C.次数可能大于5 D.可能为单项式,次数不大于5
二、填空题(每小题4分,共12分) 15.若3xm+5y2与x3yn的和是单项式,则mn=____ 4 . 16.把(a-b)看成一个字母,合并同类项8(a-b)2- 9(a-b)2-12(a-b) 7(a-b)+(a-b)2-5(a-b)的结果为________________ . 1 1 2 2 17.当k=____ 2 时,多项式x -3kxy-3y - xy-8中 3 不含xy项.

人教版七年级上册整式的加减单元测试卷72

人教版七年级上册整式的加减单元测试卷72

人教版七年级上册整式的加减单元测试卷72一、选择题(共10小题;共50分)1. 计算,结果正确的是B. C. D.2. 下列运算正确的是A.B.C.D.3. 观察如图图形,照此规律,第个图形中白色三角形的个数是A. B. C. D.4. 如图,由相同的圆组成的一组图中,第个图由个圆组成,第个图由个圆组成,第个图由个圆组成,按照这样的规律排列下去,则第个图形由个圆组成.A. B. C. D.5. 已知与是同类项,则的值是A. B. C. D.6. 在式子,,,,中,代数式的个数为A. B. C. D.7. 目前,财政部将证券交易印花税税率由原来的(千分之一)提高到.如果税率提高后的某一天的交易额为亿元,则该天的证券交易印花税(交易印花税=印花税率×交易额)比按原税率计算增加了多少亿元A. B. C. D.8. 下列式子:;;;,其中属于代数式的是A. B. C. D.9. 下面添括号正确的是A.B.C.D.10. 当时,的值为的值为A. B. C. D.二、填空题(共6小题;共30分)11. 合并同类项:.12. 和统称整式.13. 我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了的展开式的系数规律(按的次数由大到小的顺序):请依据上述规律,写出展开式中含项的系数是.14. 去括号:().().().().().15. 方程中,的次数是.16. 已知单项式与是同类项,则.三、解答题(共8小题;共104分)17. 某大型商场销售一种茶具和茶碗,茶具每套定价元,茶碗每只定价元,“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案,方案一:买一套茶具送一只茶碗;方案二,茶具和茶碗按定价的九五折付款,现在某客户要到商场购买茶具套,茶碗只.(1)若客户按方案一,需要付款元;若客户按方案二,需要付款元.(用含的代数式表示)(2)若,试通过计算说明此时哪种购买方案比较合适?(3)当,能否找到一种更为省钱的方案,如果能是写出你的方案,并计算出此方案应付钱数;如果不能说明理由.18. 有一窗户的装饰物由两个四分之一圆组成(半径相同),如图所示.用关于,的代数式表示窗户中能射进阳光部分的面积.19. 一次性购物金额促销方案低于元所购商品全部按九折结算,不低于元但低于元所购商品全部按八折结算,元或超过元,其中前元按八折结算,超过元的部分按七折结算.“双十一”已经成为中国电子商务行业的年度盛事,每年这一天成为全民的购物节,在今年的“双十一”期间,某网店举办促销活动,方案如下表所示:(1)如果顾客在该网店一次性购物元(),求实际付款多少元?(用含的代数式表示)(2)某顾客在该店两次购物的商品共计元,若第一次购物商品的金额为元(),求该顾客两次购物的实际付款共多少元?(用含的代数式表示)20. 若与是同类项,求,的值.21. 数学课上,老师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”.甲、乙、丙、丁四名同学各有一张多项式卡片,下面是甲、乙、丙、丁四名同学的对话:请根据对话解答下列问题:(1)判断甲、乙、丙三名同学的多项式是否为“友好多项式”,并说明理由;(2)丁的多项式是什么?(请直接写出所有答案)22. 若多项式中不含三次项,求的值.23. 如图()是一个三角形,分别连接这个三角形三边中点得到图();再分别连接图()中间小三角形三边的中点,得到图().(1)图()()()中分别有多少个三角形?(2)按上面的方法继续下去,第个图形中有多少个三角形?24. 计算机在进行计算时,总是根据程序进行的,如图是一个计算程序.当输入的数据为时,请解答下面的问题:(1)填写如表:(2)输出的结果是多少?答案第一部分1. C 【解析】.2. D3. B 【解析】第一个图形中白色三角形的个数是,第二个图形中白色三角形的个数是,第三个图形中白色三角形的个数是,第四个图形中白色三角形的个数是,第五个图形中白色三角形的个数是.4. C 【解析】第个图个圆,第二个图个圆,;第个图个圆,,,第个图,个圆,故第个图有个圆.5. A【解析】由题意,得,移项,得,.6. B 【解析】由代数式是用运算符号把数和字母连接而成的式子,且代数式中不含有等号知,不是代数式,其他均是代数式.故选B.7. B8. B 【解析】含有“”,所以不是代数式;是代数式;含有“”,所以不是代数式;是代数式.9. A 【解析】A.正确;B.,故不对;C.,故不对;D.,故不对.故选:A.10. B【解析】根据题意,可先将代入到中,你能得到什么?根据上步,可得,进一步可得的值为,据此不难得到和的值;然后将它们的值代入到待求式中,计算即可解答本题.将代入中,可得,则,故,,则.故选B.第二部分11.12. 单项式,多项式13.14. ,,,,15.16.第三部分17. (1);【解析】方案一:,方案二:,故答案为;.(2)当时,方案一:(元),方案二:(元),因为,所以方案一更合适;(3)可以有更合适的购买方式,按方案一购买套茶具和只茶碗,需要(元),按方案二购买剩余只茶碗,需要(元),所以,共计(元).18. .19. (1)元.答:实际付款元.(2)①当时,则,购物实际付款:(元);②当时,则,购物实际付款:元;③当时,则,购物实际付款:元.故本次实际付款.20. 根据题意有:,,可得21. (1)是.理由:甲、乙、丙三名同学的多项式是“友好多项式”.(2)丁的多项式是或或.【解析】甲、乙、丁三名同学的多项式是“友好多项式”,丁的多项式可能是,另外还有两种情况:①②;故丁的多项式是或或.22. .23. (1)个、个、个.(2).24. (1);;;(2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时同步与拓展:2.2.2整式的加减
◆随堂检测
1、 判断正误:
(1)z y x z y x -+-=-+-2)2( ( )
(2)z y x z y x 36)33(2-+-=+-- ( )
(3)c b a c b a 22)(2+-=+-+ ( )
2、去括号 :
(1))(d c b a +--+; (2))42(32z y x -+;
(3))4(2
15c b a --
; (4))]3(2[32z y x y x ----.
3、计算:
(1))54()23(y x y x ++-; (2))102()65(b a b a ---;
(3))5(32ab ab ab ---; (4))()3(42222mn n m mn n m ---.
4、一个多项式加上1452-+x x 得2862
+-x x ,则这个多项式是 . ◆典例分析
计算:)2
1(6)3212(22+--+-x x x x 分析:本题有两个地方易错:① 6和括号里的每一项都要相乘,部分学生往往只和第一项相乘;②去括号时,不知道什么时候要变号什么时候不变号,这就说明去括号的法则没有理解.
解:原式=)2
1(6)3212(22+--+-x x x x 273836632
12)366(32
1222222--=-+-+-=+--+-
=x x x x x x x x x x ◆课下作业
●拓展提高
1、计算:
(1))(2
1)(312222xy y x x x xy y x ++-
--; (2))2(2)2(232222b a a b b a +---+-;
(3))22(3)642(3b c c b a a --+--- (4)]2)34(7[322x x x x ----.
2、若多项式18223-+-x x x 与多项式352323+-+x mx x 相加后不含二次项,则m= .
3、(1)已知:2,622=-=-b ab ab a ,求2222,2b a b ab a -+-的值.
(2)已知6063)2(5,522-+--=-x y x y y x 求的值.
4、已知22228,8y x xy B xy y x A +-=+-=,当3
1,21-=-
=y x 时,求B A +2的值.
5、求代数式中的值:
{
})]24(3[2522222b a ab ab b a ab ----,其中5.0,3=-=b a
6、若)1532()2(22-+--+-+y x bx b y ax x 的值与字母x 的取值无关,试求a,b 的值.
●体验中招
1、已知一个多项式与x x 932+的和等于1432
-+x x ,则这个多项式是( )
A 、15--x
B 、15+x
C 、113--x
D 、113+x
2、化简)12(2-+-a a 的结果是( )
A 、14--a
B 、14-a
C 、1
D 、1-
参考答案
随堂检测
1、 错,错,对
2、 (1)原式=d c b a +--; (2)原式=z y x 1262-+;
(3)原式=c b a 22
15+-;(4)原式=z y x y x z y x y x -++-=+---323232)32( 3、(1)原式=y x y x y x 375423+=++-
(2)原式=b a b a b a 4310265+=+--
(3)原式=ab ab ab ab 4532=+-
(4)原式=2222412mn n m mn n m +--22311mn n m -=
4、32132++-x x
拓展提高
1、(1)原式=xy x y x xy y x x x xy y x 6
56561212121313131222222---=----- (2)原式=b a b a a b b a -=-+-+-3422432222
(3)原式=b a b c c b a a 2666423-=--++-
(4)原式335)233(3)2347(322222--=-+-=-+--=x x x x x x x x x
2、由题意得,24)82(5)3523(1822
3323+--+=+-++-+-x x m x x mx x x x x ∵多项式24)82(523+--+x x m x 不含2x 项
∴4082=∴=-m m
3、(1)∵2,622=-=-b ab ab a
∴8)()(,4)()(2222=-+-=---b ab ab a b ab ab a
∴8,422222=-=+-b a b ab a 80
60
535560)2(3)2(560
63)2(5,
52)2(222=-⨯+⨯=--+-=-+--∴=-y x y x x y x y y x
4、∵22228,8y x xy B xy y x A +-=+-=
∴B A +22222222481622y xy x y x xy xy y x -+=+-++-= 当31,21-=-=y x 时,原式=36149)31()31()21(24)21(22=---⨯-⨯+-. 5、{
})]24(3[2522222b a ab ab b a ab ---- 2
2
22222245)]
243(2[5ab ab ab b a ab ab b a ab =-=+---=
当5.0,3=-=b a 时,原式=35.0)3(42-=⨯-⨯
6、∵)1532()2(22-+--+-+y x bx b y ax x 1
6)3()22(1
5322222++-++-=+-+-+-+=b y x a x b y x bx b y ax x 又)1532()2(22-+--+-+y x bx b y ax x 的值与字母x 的取值无关 ∴⎩⎨⎧=-=∴⎩⎨⎧=+=-1
303022b a a b 体验中招
1、A
2、D。

相关文档
最新文档