专题一:特殊三角形的分类讨论
等腰三角形中的分类讨论
等腰三角形中的分类讨论一、等腰三角形的定义等腰三角形是指具有两条边相等的三角形,也就是说,等腰三角形的两条边边长相等,而另一条边则较短。
等腰三角形可以有不同的形状和性质,下面将对等腰三角形进行分类讨论。
二、等腰三角形的分类1. 等腰直角三角形等腰直角三角形是一种特殊的等腰三角形,其中的一个内角为直角(即90度)。
在等腰直角三角形中,另外两个内角相等,均为45度。
根据勾股定理,等腰直角三角形的斜边与两条直角边之间的关系为:斜边的长度等于直角边长度的平方根乘以2。
2. 等腰锐角三角形等腰锐角三角形是指两个等腰三角形的顶点角小于90度的三角形。
在等腰锐角三角形中,两个等腰边的边长相等,而顶点角则小于90度。
等腰锐角三角形的两个等腰边的长度与顶点角之间的关系为:等腰边的长度等于另一条边的长度乘以正弦顶点角的一半。
3. 等腰钝角三角形等腰钝角三角形是指两个等腰三角形的顶点角大于90度的三角形。
在等腰钝角三角形中,两个等腰边的边长相等,而顶点角则大于90度。
等腰钝角三角形的两个等腰边的长度与顶点角之间的关系为:等腰边的长度等于另一条边的长度乘以正弦顶点角的一半。
4. 等腰等边三角形等腰等边三角形是一种特殊的等腰三角形,其中的三个边全都相等。
等腰等边三角形的三个内角均为60度。
等腰等边三角形具有许多特殊性质,例如:它的三条高线、中线、角平分线和垂直平分线都重合于同一个点;它的外接圆和内切圆都与三个顶点相切。
三、等腰三角形是指具有两条边相等的三角形,根据顶点角的大小和不同属性,可以进一步分类为等腰直角三角形、等腰锐角三角形、等腰钝角三角形和等腰等边三角形。
每种分类的等腰三角形都有其特殊的性质和关系,值得我们深入学习和研究。
注意:此文档仅为示例文档,实际写作时请根据需求进行修改和扩展,结合数学知识以及示例文档提供的内容,形成一篇丰富详尽的文档。
分类讨论思想在初中等腰三角形问题中的应用探究
分类讨论思想在初中等腰三角形问题中的应用探究【摘要】本文探讨了分类讨论思想在初中等腰三角形问题中的应用探究。
在我们介绍了研究背景和研究目的。
在我们首先介绍了初中等腰三角形的性质,然后详细探讨了分类讨论思想在这类问题中的作用和具体应用,并通过实际案例加以分析。
我们讨论了分类讨论思想的优势和局限性。
在我们总结了分类讨论思想在初中等腰三角形问题中的应用,并提出了未来的研究方向。
通过本文的研究,我们可以更加深入地理解分类讨论思想在解决等腰三角形问题中的重要性,同时也为未来的研究提供了一定的参考方向。
【关键词】初中等腰三角形、分类讨论思想、性质、作用、具体应用、实际案例、优势、局限性、结论、研究方向。
1. 引言1.1 研究背景在初中数学教学中,等腰三角形是一个重要的几何形状,学生在学习过程中常常会遇到与等腰三角形相关的各种问题。
在解决这些问题时,分类讨论思想被广泛运用,并显示出良好的效果。
研究表明,分类讨论思想在初中等腰三角形问题中的应用可以有效地帮助学生理清问题的结构,找到解决问题的关键点。
通过将问题进行分类和讨论,学生可以更好地把握问题的本质,准确地找到解决问题的方法。
目前对于分类讨论思想在初中等腰三角形问题中的具体应用还存在一些不足之处,比如在教学实践中,学生可能会遇到分类不清晰、讨论不透彻的情况。
有必要对分类讨论思想在初中等腰三角形问题中的应用进行深入研究,以便更好地指导数学教学实践,并提高学生解决问题的能力。
1.2 研究目的研究目的旨在深入探究分类讨论思想在初中等腰三角形问题中的应用,通过对等腰三角形性质的介绍和分类讨论思想的具体应用进行分析,揭示分类讨论思想在解决等腰三角形问题时的优势和局限性。
通过举例分析实际案例,抽丝剥茧地解析分类讨论思想在初中等腰三角形问题中的应用方法,准确把握等腰三角形的性质和特点。
就此,本研究旨在为初中生更好地理解和应用分类讨论思想提供指导,同时为教师在教学中有效运用这一思维方法提供参考。
二次函数特殊三角形存在性问题(等腰三角形、直角三角形)
特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。
2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。
2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。
特殊三角形中的分类讨论.
第6题图
类型二 等腰三角形腰和底不确定而产生的分类讨论 问题:已知点A、B和直线l,在l上求点P,使△PAB为等腰三角形.
分情况:对于等腰三角形的腰和底不确定问题,需分三种情况讨论,即三角形的 三条边两两为腰. 已知△ABP为等腰三角形,则有①AB=AP;②AB=BP;③AP=BP三种情况.
微专题 特殊三角形中的分类讨论
微专题 特殊三角形中的分类讨论
微专题 特殊三角形中的分类讨论
(10年7考,常在几何图形的折叠与动点问题和二次函数压轴题中涉及考查) 类型一 等腰三角形顶角和底角不确定而产生的分类讨论
已知等腰三角形的一个角为α,确定顶角或底角的度数时,分三种情况: ①若α为钝角,则α为顶角,底角的度数为 1 (180°-α);
2 ②若α为直角,则α为顶角,且该三角形为等腰直角三角形,底角为45°; ③若α为锐角,当α为顶角时,底角为 1 (180°-α);当α为底角时,顶角为
2 180°-2α.
满分技分
无论哪种情况,都要注意等腰三角形的三个角
必须满足三角形三个内角之和等于180°.
微专题 特殊三角形中的分类讨论
针对训练 1. 已知等腰三角形中一个角的度数为40°,则底角的度数为_4_0_°__或__7_0_°_.
微专题 特殊三角形中的分类讨论
满分技法 优选几何法去求解要求的量,因为根据勾股定理列式计算时,可能会产生高次 方,导致计算比较复杂,尽量避免.
针对训练 5. 如图,∠AOB=50°,点P是边OB上一个动点(不与点O重合),当∠A的度数 为 90°或40_°_时,△AOP为直角三角形.
人教版八年级上册数学方法技巧专题 等腰三角形的分类讨论思想
【初二数学方法技巧专题】等腰三角形的分类讨论思想等腰三角形是一种特殊而又十分重要的三角形,就是因为这种特殊性,在解有关等腰三角形问题时,当所给的边、角等条件不明确时,常常要进行分类讨论,否则易造成错解.那么在什么情况下应该进行分类讨论呢?下面有4种常考题型,快来和小名老师一起学习一下吧!类型1 : 针对顶角和底角进行分类例1. 若等腰三角形中有一个角等于70°,则这个等腰三角形的顶角的度数是( ) A.70°B.40° C.70°或40°D.70°或55°分析:70°角可能是底角,也可能是顶角.当70°是底角时,则顶角的度数为180°-70°×2=40°;当70°角是顶角时,则顶角的度数就等于70°.所以这个等腰三角形的顶角为30°或75°. 故应选C.变式1、已知一个等腰三角形中有一个角为100°,则这个等腰三角形的顶角为-------- . 方法归纳:对于一个等腰三角形,若条件中并没有确定顶角或底角时,应注意分情况讨论,先确定这个已知角是顶角还是底角,再运用三角形内角和定理求解. 类型2: 针对腰长和底边长进行分类题型1 遇边需讨论例2 已知等腰三角形一边长等于5,另一边长等于9,则它的周长是--------- . 分析:已知条件中并没有指明5和9谁是腰长谁是底边的长,因此需要针对腰长及底边长分别是哪一个进行分类谈论.当5是等腰三角形的腰长时,这个等腰三角形的底边长就是9,则此时等腰三角形的周长等于5+5+9=19;当9是等腰三角形的腰长时,这个等腰三角形的底边长就是5,则此时等腰三角形的周长等于9+9+5=23.故这个等腰三角形的周长等于19或23.方法归纳:在已知条件中没有明确等腰三角形的腰长和底边长时,应分类讨论.分类讨论时,还要判断所给的三边能否构成三角形,避免造成错解.题型2 遇中线需讨论例3 已知等腰△ABC中,一腰AC上的中线BD将三角形的周长分成9 cm和12 cm 两部分,则这个三角形的腰长和底边长分别为---------- .分析:已知条件并没有指明哪一部分是9cm,哪一部分是12cm,因此,应有两种情形:①AB+AD=9,BC+CD=12;②AB+AD=12,BC+CD=9.若设这个等腰三角形的腰长是xcm,底边长为ycm,可得:即当腰长是6 cm时,底边长是9 cm;当腰长是8 cm时,底边长是5 cm.3、变式若等腰三角形一腰上的中线分周长为9cm和15cm两部分,则这个等腰三角形的底和腰的长分别为----------- .易错警示:这里求出来的解验证一下三角形的边满足三角形三边关系定理,如果不满足一定要舍去.类型3:针对三角形的形状进行分类题型1 遇高需讨论例4 已知等腰三角形一腰上的高与另一腰的夹角为36°,求这个等腰三角形的底角的度数.分析:本题中等腰三角形腰上的高可能在三角形内部,也可能在三角形外部,故应分原三角形为锐角三角形和钝角三角形进行分类求解.详解:分两种情况讨论:①若∠A<90°,如图1所示.∵BD⊥AC,∴∠A+∠ABD=90°.∵∠ABD=36°,∴∠A=90°-36°=54°.∵AB=AC,∴∠ABC=∠C=1/2×(180°-54°)=63°.②若∠A>90°,如图2所示.同①可得∠DAB=90°-36°=54°,∵AB=AC,∴∠ABC=∠C=1/2∠DAB=27°.综上所述:等腰三角形底角的度数为63°或27°.题型2:遇中垂线需讨论例5 在ΔABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=____.分析:本题中AB的中垂线与AC直线的交点不确定,交点可能在边AC上,也可能在其延长线上,故需进行分类讨论.详解:按照题意可画出如图1和如图2两种情况的示意图.如图1,当交点在腰AC上时,ΔABC是锐角三角形,此时可求得∠A=40°,所以如图2,当交点在腰CA的延长线上时,ΔABC为钝角三有形,此时可求得∠BAD=40°,所以故这个等腰三角形的底角为70°或20°.易错警示:这里的图2最容易漏掉,求解时一定要认真分析题意,画出所有可能的图形,这样才能正确解题.类型4:找点构造等腰三角形需讨论例6 如图,已知线段AB,在直线l上找一点C,使ΔABC为等腰三角形这样的C 点有------- 个.分析:存在三种情况①AB=AC;②BA=BC;③CA=CB.详解:①当AB=AC时,以点A为圆心,AB长为半径画圆与直线l的交点C3即为所求点;②当BA=BC时,以点B为圆心,AB长为半径画圆与直线l的交点C1,C2即为所求点;③当CA=CB时,做线段AB的垂直平分线与直线l的交点C4即为所要求点.所以使ΔABC为等腰三角形这样的C 点有4个方法指导:等腰三角形的存在性问题方法常用两圆一线。
专题训练等腰三角形中的分类讨论
专题复习——等腰三角形中的分类讨论例1. 已知等腰△ABC中,有一个内角为40o,则另两个内角分别为________________.例2. 在△ABC中,∠A的外角等于110°,△ABC是等腰三角形,那么∠B=。
例3.等腰三角形两内角的度数比为2∶1,则顶角为。
例1.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是例2. 等腰三角形的周长为22 cm,其中一边的长是8 cm,则其余两边长分别为_________.例3. 一等腰三角形的周长是25cm,作某一腰上的中线分得两个三角形的周长一个比另一个长5cm,则腰长是例1. 等腰三角形一腰上的高等于腰长的一半,它的底角为例2. 等腰三角形一腰上的高与另一腰的夹角等于20 ,则等腰三角形的顶角度数为例1. 如图,点B在直线L上,点A在直线L外,在直线L上找点C,使得△ABC为等腰三角形。
(要求保留作图痕迹,写清点C的个数)LB例2.在直角坐标系中,O点为坐标原点,A(2,-4),动点B在坐标轴上。
则满足△OAB为等腰三角形的有B点共有个例3. P为直线1:32l y x A=-上一点,(2,0),求使△PAO为等腰三角形的点P的坐标.等腰三角形中的分类讨论练习姓名:日期:指导老师:侯尧等腰三角形是一种特殊的三角形,它除了具有一般三角形的基本性质以外,还具有许多独特的性质,最主要的体现就是它的两底角相等,两腰相等,正是由于具有这两个相等,所以在解等腰三角形的有关题目时必须全面思考,分类讨论,以防漏解。
下面就常见题型举例说明如下:一、角不确定时需分类讨论1、若等腰三角形的一个角为40°,则其他两个角分别为若等腰三角形的一个角为100°,则其他两个角分别为二、边不确定时需分类讨论2、等腰三角形一边长是10cm,另一边长是6cm,则它的周长是等腰三角形的两边长分别是9cm和4cm,则它的周长是等腰三角形周长是20cm,一边长为8cm,则其他两边长分别是等腰三角形周长是20cm,一边长为4cm,则其他两边长分别是等腰三角形周长是13,其中一边长为3,则该等腰三角形的底边长为三、高不确定时需分类讨论3、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为等腰三角形一腰上的高与底边的夹角为30°,则顶角的度数为等腰三角形一腰上的高与底边的夹角等于顶角的若等腰三角形一腰上的高等于腰长的一半,则底角的度数为四、其它(1)等腰三角形一腰上的中线把该三角形的周长分成12cm和15cm的两部分,求三角形各边的长(2)等腰三角形一腰上的中线把该三角形的周长分成12cm和21cm两部分,求三角形的三边长(3)一等腰三角形的周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,求腰长5、已知点A和点B,以点A和点B为其中两个点作位置不同的等腰三角形,一共可以作个6、有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,求等腰三角形的周长7、如图,在等边ΔABC所在的平面内求一点P,使ΔPAB、ΔPBC、ΔPAC都是等腰三角形,你能找到几个这样的点?画图描述他们的位置。
专题1.2 三角形中四类重要的最值模型 专题讲练(原卷版)
专题1.2 三角形中四类重要的最值模型专题讲练三角形中重要的四类最值模型(将军饮马模型、瓜豆模型(动点轨迹)、胡不归模型、费马点模型等)在考试中,无论是解答题,还是选择、填空题,都是学生感觉有困难的地方,也恰是学生能力区分度最重要的地方,主要考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,中考说明中曾多处涉及。
在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换、旋转变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。
特殊三角形中的分类讨论则体现了另一种数学思想,希望通过本专题的讲解让大家对这两类问题有比较清晰的认识。
重要模型模型1:将军饮马模型【模型图示】将军饮马拓展型:1)点P位定点,在直线1l,2l上分别找点M,N,使PMN△周长(即MNPNPM++)最小操作:分别作点P关于直线1l,2l的对称点’P和”P,连结”’PP与直线1l,2l的交点为M,N,()”’最小值△PPCPMN=求”’P P 长度通法:如上图,一般会给一个特殊角(15°,30°,45°,60°,75°)A ,连结’AP ,AP ,”AP ,由对称性可求A AP P ∠=∠2”’也为特殊角(30°,60°,90°,120°,150°),”’AP AP AP ==,可得特殊等腰”’△P AP ,利用三边关系求出”’P P 2)点P ,Q 为定点,直线1l ,2l 上分别找M ,N ,使PQMN 周长(即MN PN PM PQ +++)小操作:分别作点P ,Q 关于直线1l ,2l 的对称点’P 和’Q ,连结’’Q P 与直线1l ,2l 的交点为M ,N ,()’’最小值四边形Q P PQ C PQMN +=例1.(2022·广东·九年级专题练习)已知点(1,1)A ,(3,5)B ,在x 轴上的点C ,使得AC BC +最小,则点C 的横坐标为_______.变式1.(2022·河南南阳·八年级阶段练习)如图,等边ABC D 的边长为4,点E 是AC 边的中点,点P 是ABCD 的中线AD 上的动点,则EP CP +的最小值是_____.例2.(2022·山东潍坊·八年级期末)如图,在平面直角坐标系中,已知()0,1A ,()4,2B ,PQ 是x 轴上的一条动线段,且1PQ =,当AP PQ QB ++取最小值时,点Q 坐标为______.变式2.(2022·成都市·八年级专题练习)如图,四边形ABCD 是平行四边形,4AB =,12BC =,60ABC ∠=°,点E 、F 是AD 边上的动点,且2EF =,则四边形BEFC 周长的最小值为______.例3.(2022·安徽·八年级期末)已知在平面直角坐标系中,点A(-1,-2),点B(4,12),试在x轴上找一点P,使得|PA-PB|的值最大,求P点坐标为_________.变式3.(2022·河南南阳·一模)如图,已知△ABC为等腰直角三角形,AC=BC=6,∠BCD=15°,P为直线CD上的动点,则|PA-PB|的最大值为____.例4.(2022·江苏·无锡市东林中学八年级期末)如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=4,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于4,则α=()A.30°B.45°C.60°D.90°变式4.(2022·安徽·合肥市八年级阶段练习)如图,在平面直角坐标系中,∠AOB=30°,P(5,0),在OB 上找一点M,在OA上找一点N,使△PMN周长最小,则此时△PMN的周长为___.例5.(2022·湖北武汉市·八年级期末)如图,点A在y轴上,G、B两点在x轴上,且G(﹣3,0),B(﹣2,0),HC与GB关于y轴对称,∠GAH=60°,P、Q分别是AG、AH上的动点,则BP+PQ+CQ的最小值是( )A .6B .7C .8D .9变式5.(2022·湖北黄冈·八年级期末)已知,如图,30AOB ∠=°,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ a ∠=,PQN b ∠=,当MP PQ QN ++最小时,则b a -=______.模型2:瓜豆原理 (动点轨迹)【解题技巧】1)动点轨迹为直线时,利用“垂线段最短”求最值。
三角形的分类数学教案设计
三角形的分类數學教案設計
标题:三角形分类数学教案设计
一、课程目标
(1)知识与技能:理解并掌握三角形的定义及各类三角形的特征。
(2)过程与方法:通过观察、比较、归纳等方法,培养学生的逻辑思维能力。
(3)情感态度价值观:激发学生对数学的兴趣,培养学生勇于探索的精神。
二、教学内容
(1)三角形的基本概念
(2)三角形的分类:按照边的关系分为等边三角形、等腰三角形和普通三角形;按照角的关系分为锐角三角形、直角三角形和钝角三角形。
三、教学策略
(1)引入阶段:通过实例或者故事引出三角形的概念,引发学生的兴趣。
(2)新知教授阶段:教师讲解三角形的定义和分类,并通过示例让学生理解和掌握。
(3)实践应用阶段:设计一些练习题,让学生在实践中巩固所学知识。
(4)总结反馈阶段:回顾本节课的内容,对学生的学习情况进行反馈。
四、教学资源
(1)教科书
(2)教学辅助工具(如黑板、粉笔、投影仪等)
(3)自编或选用的习题集
五、教学评价
(1)形成性评价:通过课堂提问、小组讨论等方式,了解学生对知识的理解程度。
(2)终结性评价:通过测试、作业等方式,评价学生的学习成果。
六、教学反思
(1)对教学过程进行反思,分析教学效果,找出问题,提出改进措施。
(2)对学生学习情况进行反思,了解学生的学习困难,为今后的教学提供参考。
以上就是关于三角形分类的数学教案设计的大纲,希望对你有所帮助。
如果你需要更详细的信息,欢迎随时向我提问。
等腰三角形的分类讨论
等腰三角形的分类讨论关键信息项1、等腰三角形的定义和性质定义:至少有两边相等的三角形叫做等腰三角形。
性质:两腰相等;两底角相等;顶角平分线、底边上的中线、底边上的高相互重合。
2、等腰三角形的分类依据边的长度:分为等边三角形(三边相等)和一般等腰三角形(只有两边相等)。
角的大小:锐角等腰三角形、直角等腰三角形、钝角等腰三角形。
3、分类讨论的情况已知三角形的两边长度,求第三边长度时,需分情况讨论。
已知三角形的一个角的度数,求其他角的度数时,需分情况讨论。
已知三角形的周长和边的关系,求边长时,需分情况讨论。
11 等腰三角形的定义和性质的详细说明等腰三角形是一种特殊的三角形,其定义为至少有两边相等的三角形。
这一特征使得等腰三角形具有独特的性质。
首先,两腰长度相等,这是等腰三角形的最基本特征。
其次,两底角(即两腰所对的角)相等。
这一性质在解决与角度相关的问题时经常被用到。
再者,顶角平分线、底边上的中线、底边上的高相互重合,这条性质被称为“三线合一”,它为证明线段相等、角相等以及解决相关几何问题提供了重要的依据。
111 等腰三角形性质的应用在实际解题中,等腰三角形的性质经常被用于构建等式、求解未知量。
例如,已知一个等腰三角形的顶角为 80 度,由于两底角相等,根据三角形内角和为 180 度,可以计算出底角的度数为(180 80)÷ 2 =50 度。
12 等腰三角形的分类依据121 边的长度分类从边的长度来看,等腰三角形可以分为等边三角形和一般等腰三角形。
等边三角形是特殊的等腰三角形,其三条边长度均相等。
一般等腰三角形则只有两条边长度相等。
122 角的大小分类根据角的大小,等腰三角形可分为锐角等腰三角形(三个角均为锐角)、直角等腰三角形(其中一个角为直角)和钝角等腰三角形(其中一个角为钝角)。
13 分类讨论的情况131 已知两边长度求第三边当已知等腰三角形的两边长度时,求第三边的长度需要分情况讨论。
决战中考之三角形专项突破专题01 三角形的基本概念和性质(老师版)
专题01 三角形的基本概念和性质知识对接考点一、三角形的概念及其性质1.三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类(1)按边分类:(2)按角分类:3.三角形的内角和外角(1)三角形的内角和等于180°.(2)三角形的任意一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角.4.三角形三边之间的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.5.三角形内角与对边对应关系在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边.6.三角形具有稳定性.专项训练一、单选题1.(2021·福建九年级其他模拟)如图是由18根完全相同的火柴棒摆成的图形,如果拿掉其中的3根,剩下的图形中恰好有7个三角形,那么拿掉的3根火柴棒可能是()A.GD,EI,MH B.GF,EF,MF C.DE,GH,MI D.AD,AG,GD 【答案】A【分析】根据各选项画出相应图形,再数三角形的个数即可得.【详解】A、拿掉GD,EI,MH后,剩下的图形如下:图形中恰好有7个三角形,此项符合题意;B、拿掉GF,EF,MF后,剩下的图形如下:图形中有4个三角形,此项不符题意;C、拿掉DE,GH,MI后,剩下的图形如下:图形中有6个三角形,此项不符题意; D 、拿掉AD ,AG ,GD 后,剩下的图形如下:图形中有9个三角形,此项不符题意; 故选:A . 【点睛】本题考查了三角形的概念,正确画出剩下的图形是解题关键.2.(2021·黑龙江九年级三模)有长度分别为1,2,3cm cm cm 的小木棒若干,从中任取三根首尾顺次相接组成三角形,则能组成形状不同的三角形( ) A .4种 B .5种C .6种D .7种【答案】B 【分析】根据三角形三边的关系任意两边之和大于第三边与任意两边之差小于第三边进行分类讨论即可. 【详解】 解:∵1+2=3,∵三边长只能组成等边三角形或者等腰三角形,∵长度分别为1,1,1cm cm cm ,2,2,2cm cm cm ,3,3,3m cm cm 组成等边三角形,边长不等,但形状相同,则为一种;∵当两边长相等时有:2,2,1cm cm cm ,3,3,1cm cm cm ,2,2,3cm cm cm ,3,3,2cm cm cm ,4种形状不同的三角形; 因此共有5种,故选:B.【点睛】本题考查了三角形的三边关系,关键在于根据任意两边之和大于第三边与任意两边之差小于第三边进行分析.3.(2021·陕西西安·交大附中分校九年级其他模拟)锐角∵ABC中,∵B=45°,BC则AC的长可以是()A.1B C D【答案】D【分析】作CD∵AB于D,先利用等腰直角三角形的性质和三角函数求出BD=CD=1,然后利用勾股定理进行逐一判断四个选项是否满足题意即可.【详解】解:作CD∵AB于D,如图所示:∵∵B=45°,∵∵BCD是等腰直角三角形,∵BD=CD=sin=1BC B,∵BCD=45°,当AC=1时,点D与A重合,∵ABC是直角三角形,选项A不符合题意;当AC1AD CD==,则∵ACD是等腰直角三角形,∵ACD=45°,∵∵ACB=90°,∵ABC是直角三角形,选项B不符合题意;当AC AC<CD,∵∵ACD>∵A,则∵ABC是钝角三角形,选项C不符合题意;当AC时,12AD CD ==<∵∵ACD<∵A,则∵ABC是锐角三角形;选项D符合题意,故选D.【点睛】本题主要考查了等腰直角三角形的性质,解直角三角形,勾股定理,三角形角与边的关系,解题的关键在于能够熟练掌握相关知识进行求解.4.(2021·连云港市新海实验中学九年级二模)如图,在Rt ABC 中,∵ACB =90°,BC =2,∵BAC =30°,将ABC 绕顶点C 逆时针旋转得到∵A 'B 'C ', M 是BC 的中点,P 是A 'B '的中点, 连接PM ,则线段PM 的最大值是( )A .4B .2C .3D.【答案】C 【分析】连接PC ,分别求出PC ,CM 的长,然后根据PM MC PC ≤+即可得到答案. 【详解】解:如图所示,连接PC , ∵∵ACB =90°,BC =2,∵BAC =30°, ∵AB =2BC =4,由旋转的性质可知:=90A CB ACB ''=∠∠,4A B AB ''==, ∵P 、M 分别是A B ''、BC 的中点, ∵122PC A B ''==,112CM BC ==,∵3PM MC PC ≤+=,∵PM 的最大值为3,且此时P 、C 、M 三点共线, 故选C .【点睛】本题主要考查了旋转的性质,直角三角形斜边的中线,三角形三边的关系,解题的关键在于能够熟练掌握相关知识进行求解.5.(2021·福建省同安第一中学)下列长度的三条线段能组成三角形的是( ) A .3,4,8 B .5,6,11C .4,4,8D .8,8,8【答案】D 【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析. 【详解】解:A 、3+4<8,不能构成三角形; B 、5+6=11,不能构成三角形; C 、4+4=8,不能构成三角形; D 、8+8>8,能构成三角形. 故选:D . 【点睛】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.6.(2021·福建九年级其他模拟)若某三角形的两边长分别为5和9,则该三角形第三边的长可能是( ) A .4 B .5C .14D .15【答案】B 【分析】根据三角形的三边关系即可得. 【详解】设该三角形第三边的长为a ,由三角形的三边关系得:9559a -<<+,即414a <<, 观察四个选项可知,只有选项B 符合, 故选:B .【点睛】本题考查了三角形的三边关系,熟练掌握三角形的三边关系是解题关键. 本号资料皆来源于微信公众号:数学第六*感7.(2021·辽宁)如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,则S ∵ABC 的面积为( )A .52B .3C .72D .4【答案】C 【分析】利用割补法求∵ABC 面积等于大正方形面积-三个三角形面积即可. 【详解】解:在网格中添加字母如图, S ∵AEB =1112122AE BE ⋅=⨯⨯=, S ∵AFC =1123322AF FC ⋅=⨯⨯=, S ∵BGC =11313222BG GC ⋅=⨯⨯=,S 正方形=9EF FC ⋅=,∵S ∵ABC = S 正方形- S ∵AEB - S ∵AFC - S ∵BGC =9-1-3-3722=. 故选择C .【点睛】本题考查网格三角形面积,掌握用割补法求网格三角形面积的方法是解题关键. 8.(2021·福建宁德市·)下列长度的三条线段,能组成三角形的是( )A .2,3,4B .2,3,5C .2,2,4D .2,2,5【答案】A 【分析】根据三角形的三边关系进行分析判断. 【详解】解:根据三角形任意两边的和大于第三边,得 A 中,3+2>4,能够组成三角形; 符合题意 B 中,2+3=5,不能组成三角形;不符合题意 C 中,2+2=4,不能组成三角形;不符合题意 D 中,2+2<5,不能组成三角形.不符合题意 故选:A . 【点睛】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.9.(2021·陕西咸阳市·九年级一模)如图,CM 是ABC ∆的中线,BCM 的周长比ACM ∆的周长大3cm ,8cm BC =,则 AC 的长为( )A .3cmB .4cmC .5cmD .6cm【答案】C 【分析】根据三角形中线的特点进行解答即可. 【详解】解:∵CM 为∵ABC 的AB 边上的中线, ∵AM =BM ,∵∵BCM 的周长比∵ACM 的周长大3cm , ∵(BC +BM +CM )-(AC +AM +CM )=3cm , ∵BC -AC =3cm , ∵BC =8cm , ∵AC =5cm , 故选:C .【点睛】本题考查的是三角形的中线,熟知三角形一边的中点与此边所对顶点的连线叫做三角形的中线是此题的关键. 本号资*料皆来源于微信公众号:数学第六感10.(2021·福建省厦门第六中学九年级三模)如图,在ABC 中,BC 边上的高是( )A .CDB .AEC .AFD .AH【答案】C 【分析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,即可得出结论. 【详解】由图可知,过点A 作BC 的垂线段AF , 则ABC 中,BC 边上的高是AF , 故选:C . 【点睛】本题主要考查了三角形高的定义,熟练掌握定义是解题的关键. 二、填空题11.(2021·内蒙古包头市·)在ABC 中,,A B ∠∠都是锐角,且满足2sin cos 0A B ⎫+=⎪⎪⎝⎭,则三角形的形状是__. 【答案】钝角三角形 【分析】根据题意非负数之和为零,只有一种情况,即零加零等于零;利用特殊角锐角三角函数值分别求出,A B ∠∠,再根据三角形内角和定理求得C ∠,判断三角形的形状即可. 【详解】2sin 0cos 0A B ⎫≥≥⎪⎪⎝⎭∴sin0A=cos0B=45,30A B∴∠=︒∠=︒1804530105C∴∠=︒-︒-︒=︒∴ABC是钝角三角形.故答案为:钝角三角形.【点睛】本题考查了特殊角的锐角三角函数值,三角形的分类,绝对值的非负性,实数平方的非负性,熟练特殊角的锐角三角函数值是解题的关键.12.(2021·浙江九年级专题练习)现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.【答案】2 5【分析】求出任取三根木棒的所有情况,再求出能组成三角形的所有情况,利用概率公式直接计算即可.【详解】五根木棒,任意取三根共有10种情况:3、5、83、5、103、5、133、8、103、8、133、10、135、10、135、8、105、8、138、10、13其中能组成三角形的有:∵3、8、10,由于8-3<10<8+3,所以能构成三角形;∵5、10、13,由于10-5<13<10+5,所以能构成三角形;∵5、8、10,由于8-5<10<8+5,所以能构成三角形;∵8、10、13,由于10-8<13<10+8,所以能构成三角形;所以有4种方案符合要求,故能构成三角形的概率是P=410=25,故答案为:2 5 .【点睛】此题考查三角形的三边关系,列举法求事件的概率,列举法求概率的关键是在列举所有情况时考虑要全面,不能重复也不能遗漏.13.(2021·扬州市梅岭中学)判断命题“若ABC的边a、b、c满足22a b ac bc-=-,则ABC 是等腰三角形”的真假,答:_________.(选填“真命题”或“假命题”或“无法判断”)【答案】真命题【分析】根据22a b ac bc-=-变形即可求得,,a b c的关系,再进行判断即可【详解】22a b ac bc-=-()()()a b a b c a b∴+-=-a b c+≠a b∴-=a b∴=∴ABC是等腰三角形故答案为:真命题【点睛】本题考查了命题,因式分解,三角形三边关系,等腰三角形的定义,因式分解后根据三角形三边关系判断是解题的关键.14.(2021·内蒙古包头市·)如图,在边长为4的正方形ABCD中,点E是BC的中点,点F 在CD上,且CF=3DF,AE,BF相交于点G ,则AGF的面积是________.【答案】5611.【分析】延长AG交DC延长线于M,过G作GH∵CD,交AB于N,先证明∵ABE∵∵MCE,由CF=3DF,可求DF =1,CF =3,再证∵ABG ∵∵MFG ,则利用相似比可计算出GN ,再利用两三角形面积差计算S ∵DEG 即可. 【详解】解:延长AG 交DC 延长线于M ,过G 作GH ∵CD ,交AB 于N ,如图, ∵点E 为BC 中点, ∵BE =CE ,在∵ABE 和∵MCE 中, ABE MCE BE CEAEB MEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵∵ABE ∵∵MCE (ASA ), ∵AB =MC =4,∵CF =3DF ,CF +DF =4,∵DF =1,CF =3,FM =FC +CM =3+4=7, ∵AB∥MF ,∵∵ABG =∵MFG ,∵AGB =∵MGF , ∵∵ABG ∵∵MFG , ∵47AB GN MF GH ==, ∵4GN GH +=, ∵1628,1111GN GH ==, S ∵AFG =S ∵AFB -S ∵AGB =1111165644422221111AB HN AB GN ⋅-⋅=⨯⨯-⨯⨯=, 故答案为5611.【点睛】本题考查了正方形的性质,三角形全等判定与性质,三角形相似判定与性质,割补法求三角形面积,掌握正方形的性质,三角形全等判定与性质,三角形相似判定与性质,割补法求三角形面积,熟练运用相似比计算线段的长是解题关键.15.(2021·四川省宜宾市第二中学校九年级三模)如图,在Rt∵ABC中,AB=AC,D、E 是斜边BC上两点,且∵DAE=45°,将∵ADC绕点A顺时针旋转90°后,得到∵AFB,连接EF,下列结论:∵∵AED∵∵AEF;∵AE ADBE CD=;∵∵ABC的面积等于四边形AFBD的面积;∵BE2+DC2=DE2;∵BE=EF﹣DC;其中正确的选项是_____________(填序号)【答案】∵∵∵【分析】∵根据旋转的性质知∵CAD=∵BAF,AD=AF,因为∵BAC=90°,∵DAE=45°,所以∵CAD+∵BAE=45°,可得∵EAF=45°=∵DAE,由此即可证明∵AEF∵∵AED;∵当∵ABE∵∵ACD时,该比例式成立;∵根据旋转的性质,∵ADC∵∵ABF,进而得出∵ABC的面积等于四边形AFBD的面积;∵据∵知BF=CD,EF=DE,∵FBE=90°,根据勾股定理判断.∵根据∵知道∵AEF∵∵AED,得CD=BF,DE=EF;由此即可确定该说法是否正确.【详解】解:∵根据旋转的性质知∵CAD=∵BAF,AD=AF.本号资料皆来源于微@信公众号:数学第*六感∵∵BAC=90°,∵DAE=45°,∵∵CAD+∵BAE=45°,∵∵EAF=45°,∵∵AED∵∵AEF;故本选项正确;∵∵AB=AC,∵∵ABE=∵ACD;∵当∵BAE=∵CAD时,∵ABE∵∵ACD,∵AE AD BE CD=;当∵BAE≠∵CAD时,∵ABE与∵ACD不相似,即AE AD BE CD≠;∵此比例式不一定成立,故本选项错误; ∵根据旋转的性质知∵ADC ∵∵AFB ,∵S ∵ABC =S ∵ABD +S ∵ABF =S 四边形AFBD ,即三角形ABC 的面积等于四边形AFBD 的面积,故本选项正确;∵∵∵FBE =45°+45°=90°, ∵BE 2+BF 2=EF 2.∵∵ADC 绕点A 顺时针旋转90°后,得到∵AFB , ∵∵AFB ∵∵ADC , ∵BF =CD . 又∵EF =DE ,∵BE 2+DC 2=DE 2,故本选项正确;∵根据∵知道∵AEF ∵∵AED ,得CD =BF ,DE =EF ,∵BE +DC =BE +BF >DE =EF ,即BE +DC >FE ,故本选项错误.综上所述:正确的说法是∵∵∵. 本@号资料皆来源于微信公众号:数学@第六#感 故答案为:∵∵∵.【点睛】本题考查了图形的旋转变换以及全等三角形的判定等知识,三角形三边的关系,相似三角形的性质与判定,解题时注意旋转前后对应的相等关系. 三、解答题16.(2021·浙江)如图,在84⨯的正方形网格中,按ABC 的形状要求,分别找出格点C ,且使5BC =,并且直接写出对应三角形的面积.【答案】见解析;10S =;252S =;12S =【分析】根据全等三角形的性质,勾股定理,角的分类去求解即可【详解】解:钝角三角形时,如图,∵BC∵BD,BC=5,∵∵ABC是钝角三角形,根据平行线间的距离处处相等,得BC边上高为BD=4,∵11=45=10 22S BC BD=⨯⨯⨯;直角三角形时,如图,取格点F使得BF=4,FC=3,根据勾股定理,得BC,∵AE=BF=4,EB=FC=3,∵AEB=∵BFC=90°,∵∵AEB∵∵BFC,∵∵EAB=∵FBC,∵∵EAB+∵EBA=90°,∵∵FBC+∵EBA=90°,∵∵ABC =90°,∵∵ABC是直角三角形,根据勾股定理,得AB,∵11=5522S BA BC=⨯⨯⨯252=;锐角三角形时,如图,取格点M使得BM=3,CM=4,根据勾股定理,得BC,根据直角三角形时的作图,知道∵ABN=90°,本号资料皆来源于微信公众号:#数学第六感∵∵ABC<∵ABN,∵∵ABC<90°∵AB=BC,∵∵ABC是等腰三角形,∵∵A=∵C<90°,∵∵ABC是锐角三角形,∵1462S=⨯⨯=12;【点睛】本题考查了网格上的作图,等腰三角形的性质,勾股定理,三角形全等的性质和判定,平行线间的距离处处相等,根据题意,运用所学构造符合题意的格点线段是解题的关键.17.(2021·四川省宜宾市第二中学校九年级一模)如图,分别过点C、B作ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F.(1)求证:BF CE=;(2)若ACE的面积为4,CED的面积为3,求∵ABF的面积.本号资料#皆#来源于微信公众号:数学第*六感【答案】(1)见解析;(2)10【分析】(1)根据垂直,中线的性质,证明∵CDE∵∵BDF即可;(2)根据三角形全等,确定∵BDF和∵CDE的面积相等,根据中线的性质,得∵ABD和∵ACD 的面积相等,计算即可.【详解】(1)证明:∵AD 是BC 边上的中线, ∵BD =CD ,∵CE ∵AF ,BF ∵AF , ∵∵CED =∵F =90°, ∵∵CDE =∵BDF , ∵CED F CDE BDF DC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∵∵CDE ∵∵BDF , ∵CE =BF ;(2)解:∵AD 是BC 边上的中线, ∵BD =CD ,∴ΔΔABD ACD S S =,Δ4ACE S =,3CEDS=∴ΔΔACD ACE CEDS S S =+43=+7=∴7ABDS=由(1)已证:∵CDE ∵∵BDF ,∴ΔΔ3BDF CDE S S == ∴ΔΔΔABF ABD BDF S S S =+73=+10=. 【点睛】本题考查了三角形中线的性质,三角形的全等的判定和性质,三角形的面积,熟练掌握三角形全等的判定方法,灵活运用三角形中线与三角形面积的关系是解题的关键.18.(2021·吉林九年级其他模拟)图∵、图∵、图∵均是33⨯的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB为边画ABC.要求:(1)在图∵中画一个钝角三角形,在图∵中画一个直角三角形,在图∵中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;(3)点C在格点上.【答案】见详解(答案不唯一)【分析】因为点C在格点上,故可将直尺的一角与线段AB点A重合,直尺边长所在直线经过33正方形网格左上角第一个格点,继而以点A为旋转中心,逆时针旋转直尺,当直尺边长所在直线与正方形格点相交时,确定点C的可能位置,顺次连接A、B、C三点,按照题目要求排除不符合条件的C点,作图完毕后可根据三角形面积公式判断其面积是否相等.【详解】经计算可得下图中:图∵面积为12;图∵面积为1;图∵面积为32,面积不等符合题目要求(2),且符合题目要求(1)以及要求(3).故本题答案如下:【点睛】本题考查三角形的分类及其作图,难度较低,按照题目要求作图即可.19.(2021·江苏九年级月考)如图,在Rt ∵ABC 中,∵C =90°,点D 是AB 的中点,AC <BC . (1)试用无刻度的直尺和圆规.........,在BC 上作一点E ,使得直线ED 平分ABC 的周长;(不要求写作法,但要保留作图痕迹).(2)在(1)的条件下,若DE 分Rt ∵ABC 面积为1﹕2两部分,请探究AC 与BC 的数量关系.【答案】(1)作图见解析;(2)BC=3AC 【分析】(1)在BC 上用圆规截取BF=AC ,然后再作FC 的垂直平分线,其与BC 的交点即为E 点,最后连接DE 即可.(2)连接DC ,由点D 是AB 的中点,则S ∵ADC =S ∵BCD ;设S ∵ADC =S ∵BCD =x ,S ∵DEC =y ,则有(x+y ):(x -y )=2:1,解得x=3y ,即E 为BC 的三等分点,即可说明BC=3EC;有EC=EF=BF=AC,即BC=3AC . 【详解】解:(1)如图:DE 即为所求;(2)连接DC ∵点D 是AB 的中点 ∵S ∵ADC =S ∵BCD设S ∵ADC =S ∵BCD =x ,S ∵DEC =y , ∵S ∵BDC :S 四边形CADE =1:2∵(S ∵BDC -S ∵DCE ):( S ∵ADC +S ∵DCE )=1:2, ∵2(x -y )=x+y ,即x=3y∵点E 为BC 的三等分点, 即BC=3EC ∵EC=EF=BF=AC ∵BC=3AC .【点睛】本题考查了尺规作图、三角形中线的性质、三角形n 等分点的性质等知识点,其中根据题意完成(1)是解答本题的关键.20.(2021·广东)若a,b,c 为∵ABC 的三边长 (1)化简:-+2+-||a b c a b c b a c -+---(2)若a,b ()220b -=,且c 是整数,求c 的值. 【答案】(1)2a ;(2)1<c<5. 【分析】(1)由a ,b ,c 为三角形ABC 的三边,利用三角形的两边之和大于第三边列出关系式,判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果. (2)根据非负数的性质列式求出a 、b ,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求解即可. 【详解】(1)∵a ,b ,c 为∵ABC 的三边, ∵a+b>c ,即−a−b+c<0,a+c>b ,即a−b+c>0,b−a−c<0,则|−a−b+c|+2|a−b+c|−|b−a−c|=a+b−c+2(a−b+c)+b−a−c=a+b−c+2a−2b+2c+b−a−c=2a ; (2)由题意得,a−3=0,b−2=0, 解得a=3,b=2, ∵3−2=1,3+2=5, ∵1<c<5. 【点睛】此题考查二次根式的性质,绝对值,三角形三边关系的应用,解题关键在于利用两边之和大于第三边.21.(2021·河南省淮滨县第一中学九年级一模)先阅读下面的内容,再解决问题, 例题:若2222690m mn n n ++-+=,求m 和n 的值. 解:∵2222690m mn n n ++-+=∵2222690m mn n n n +++-+=∵22()(3)0m n n ++-= ∵0,30,m n n +=-=∵3, 3.m n =-=问题(1)若∵ABC 的三边长a b c 、、都是正整数,且满足22661830a b a b c +--++-=,请问∵ABC 是什么形状?说明理由.(2)若224212120x y xy y +-++=,求y x 的值.(3)已知24,6130a b ab c c -=+-+=,则a b c ++= .【答案】(1)∵ABC 是等边三角形,理由见解析;(2)14;(3)3 【分析】(1)先把a 2+b 2-6a -6b +18+|3-c |=0,配方得到(a -3)2+|3-c |=0,根据非负数的性质得到a =b =c =3,得出三角形的形状即可;(2)首先把x 2+4x 2-2xy +12y +12=0,配方得到(x -y )2+3(y +2)2=0,再根据非负数的性质得到x =-2,代入求得值即可;(3)首先根据a -b =8,ab +c 2-16c +80=0,应用因式分解的方法,判断出(a -4)2+(c -8)2=0,求出A 、B 、C 的值各是多少;然后把a 、b 、c 的值求和,求出a +b +c 的值是多少即可.【详解】解:(1)∵ABC 是等边三角形,理由如下:由题意得()()223330a b c -+-+-=∵3a b c ===∵∵ABC 是等边三角形.(2)由题意得()()22320x y y -++=∵2x y ==-. ∵14y x =. (3)∵24,6130a b ab c c -=+-+=,即a =b +4,(b +4)b +c 2 –6c +13=0,∵(b 2+4b +4 )+(c 2 –6c +9)=0,∵b +2=0,c –3=0,∵b = –2,c =3,a =2,∵a +b +c =3.【点睛】此题主要考查了因式分解的应用,要熟练掌握,解答此题的关键是要明确:用因式分解的方法将式子变形时,变形的可以是整个代数式,也可以是其中的一部分.此题还考查了三角形的三条边之间的关系,要熟练掌握,解答此题的关键是要明确:任意两边之和大于弟三边;任意两边之差小于第三边.22.(2021·江西九年级其他模拟)如图,在正方形网格中,ABC的顶点均在格点上,请仅用无刻度直尺完成以下作图.(保留作图痕迹)(1)在图1中,作ABC的高AM;(2)在图2中,作ABC的高AN.(提示:三角形的三条高所在的直线交于一点)【答案】(1)见解析;(2)见解析【分析】(1)格点ABC中AB=AC且垂直,以AB、AC为边作正方形,连接对角线AM即可得到BC的高AM;(2)在正方形网格中,m×n格的对角线与n×m格的对角线互相垂直,AB是1×4格的对角线,那么4×1格的对角线与之垂直,又需过点C,所以如图所示的CF∵AB交AB与点H,同理AC是4×3格的对角线,那么3×4格的对角线与之垂直,又需过点B,所以如图所示的BE∵AC交AC与点D,又三角形的三条高所在的直线交于一点,所以连接AG并延长交BC 与点N,即AN为所求.【详解】(1)如图1,∵格点ABC中AB=AC且垂直,∵以AB、AC为边作正方形,连接对角线AM即AM∵BC(2)如图2,∵AB是1×4格的对角线∵过点C 且是4×1格的对角线即为如图所示的CF ,∵CF ∵AB同理AC 是4×3格的对角线,∵过点B 且是3×4格的对角线即为如图所示的BE∵BE ∵AC∵三角形的三条高所在的直线交于一点∵连接AG 并延长交BC 与点N ,即AN 为所求.【点睛】本题主要考查了求作格点三角形的高线问题,主要方法有:构造特殊形状,如:正方形,菱形,利用对角线垂直的性质作高;正方形网格中,m ×n 格的对角线与n ×m 格的对角线互相垂直;三角形的三条高所在的直线交于一点,掌握以上的作图方法是解题的关键. 23.(2021·福建省福州咨询有限公司九年级其他模拟)如图,在ABC 中,按以下步骤作图:∵以点B 为圆心,任意长为半径作弧,分别交边AB ,BC 于点D ,E ;∵分别以点D ,E 为圆心,大于12DE 的相同长度为半径作弧,两弧交于点F ; ∵作射线BF 交AC 于点G .(1)根据上述步骤补全作图过程(要求:规作图,不写作法,保留作图痕迹); (2)如果8AB =,12BC =,那么ABG 的面积与CBG 的面积的比值是________.【答案】(1)见解析;(2)23【分析】 (1)根据尺规作图要求,按给定的步骤与作法画图即可;(2)根据角分线性质,两三角形的AB 与BC 边上的高相等,可得面积比为底的比即可.【详解】解:(1)根据步骤(1)得弧线交AB ,BC 于点D ,E ,根据步骤(2)得两弧交点F ,根据步骤(3)得射线BG ,根据作图的步骤与图形结合得BG 平分∵ABC ;如图所示,即为所求.(2)过点G 作GH ∵BC 于H ,GM ∵射线AB 于M ,∵BG 平分∵ABC ,∵GM =GH ,S ∵ABG =118422AB GM GM GM ⋅=⨯⨯=, S ∵BCG =1112622BC GH GH GH ⋅=⨯⨯=, S ∵ABG : S ∵BCG =4:64:62:3GM GH GH GH ==,故答案为:23. 【点睛】本题考查尺规作图,角平分线性质,三角形面积,掌握尺规作图步骤与要求,角平分线性质,三角形面积,利用角平分线性质得出两三角。
非学科数学学培训-特殊三角形分类讨论(资料附答案)
自学资料一、等腰三角形【知识探索】1.等腰三角形的性质:(1)等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“等腰三角形的三线合一”);(3)等腰三角形是轴对称图形,它的对称轴是顶角平分线所在的直线.2.等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等,这个三角形是等腰三角形.简称:等角对等边.【错题精练】例1.下面给出几种三角形,其中是等边三角形的个数有()个①有两个内角为60°的三角形②外角都相等的三角形③一边上的高也是这边上中线的三角形④有一个角是60°的三角形.第1页共18页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训A. 4B. 3C. 2D. 1【解答】解:①有两个内角为60°的三角形,由三角形的内角和定理得到第三个角为60°,可得此三角形三内角相等,即三角形为等边三角形,本选项符合题意;②若一个三角形三外角都相等,可得出三内角相等,故此三角形为等边三角形,本选项符合题意;③一边上的高也是这边上中线的三角形为等腰三角形,不一定为等边三角形,本选项不合题意;④有一个角是60°的三角形不一定为等边三角形,例如:Rt△ABC中,∠A=90°,∠B=60°,∠C=30°,则是等边三角形的个数有2个.故选:C.【答案】C例2.问题:探索等腰三角形-腰上的高与底边所成的角与顶角的关系.(1)为了解决这个问题,我们可从特殊情形入手,如图(1),△ABC中,AB=AC,∠A=40°,BD是AC边上的高,则∠DBC=______;(2)猜想,∠A与∠DBC的关系是______;(3)对上述猜想,请利用图(1)给予证明.【解答】解:(1)如图1:△ABC中,AB=AC,BD是边AC上的高.∵∠A=40°,且AB=AC,∴∠ABC=∠C=(180°-40°)÷2=70°;∵在Rt△BDC中,∠BDC=90°,∠C=70°;∴∠DBC=90°-70°=20°.故答案为:20°;(2)根据以上的解答猜想:∠A=2∠DBC.(3)∵在△ABC中,AB=AC,BD是边AC上的高,∴∠ABC=∠ACB=(180°-∠A)÷2=90°-第2页共18页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训2∠A,∴在Rt△BDC中,∠DBC=90°-(90°-12∠A)=12∠A,即∠A=2∠DBC.【答案】20°∠A=2∠DBC例3.如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有______个.【解答】解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个,故答案为:8第3页共18页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训第4页 共18页 自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练 非学科培训【答案】8例4.已知△ABC 的三条边长分别为4,4,6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中有一个边长为4的等腰三角形,则这样的直线最多可画( )条.A. 3B. 4C. 5D. 6【解答】解:如图所示:当AC=CD=4,AB=BG=4,AF=CF ,AE=BE 时,都能得到符合题意的等腰三角形.故选:B .【答案】B例5.等腰三角形的周长是25cm ,一腰上的中线将周长分成的两部分的差为5cm ,则此三角形的底边长为______.【解答】解:设等腰三角形的腰长是x ,底边长是y ,根据题意得{2x +y =25x −y =5或{2x +y =25y −x =5解得{x =10y =5或{x =203y =353, ∵5+10>10,203+203>353, ∴此等腰三角形的底长分别是5或353.故答案是5或353.【答案】5或353例6.等腰三角形一腰上的高等于腰长的一半,则顶角的度数是( )A. 30°B. 60°C. 30°或150°D. 不能确定【解答】解:本题分两种情况讨论:(1)当BD在三角形内部时,AB,∠ADB=90°,∵BD=12∴∠A=30°;(2)当BD在三角形外部时,∵BD=1AB,∠ADB=90°,2∴∠DAB=30°,∠ABC=180°-∠DAB=30°=150°.故选:C.【答案】C例7.等腰三角形一腰上的高与另一腰的夹角为30°,则底角为______.【解答】解:当等腰三角形为锐角三角形时,如图1,由已知可知,∠ABD=30°,又BD⊥AC,∴∠ADB=90°,∴∠A=60°,∴∠ABC=∠C=60°.当等腰三角形为钝角三角形时,如图2,由已知可知,∠ABD=30°,又BD⊥AC,∴∠DAB=60°,∴∠C=∠ABC=30°.故答案为:60°或30°.【答案】60°或30°例8.一个等腰三角形一个内角是另一个内角的2倍,则这个三角形底角为()A. 72°或45°B. 45°或36°C. 36°或45°D. 72°或90°第5页共18页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训【解答】解:①设三角形底角为x,顶角为2x,则x+x+2x=180°,解得:x=45°,②设三角形底角为2x,顶角为x,则2x+2x+x=180°,解得:x=36°,∴2x=72°,综上所述,这个三角形底角为72°或45°,故选:A.【答案】A例9.如图:已知在Rt△ABC中,∠ACB=90°,∠BAC=36°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为______.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=36°,∴当AB=BP1时,∠BAP1=∠BP1A=36°,当AB=AP3时,∠ABP3=∠AP3B=12∠BAC=12×36°=18°,当AB=AP4时,∠ABP4=∠AP4B=12×(180°-36°)=72°,当AP2=BP2时,∠BAP2=∠ABP2,∴∠AP2B=180°-36°×2=108°,∴∠APB的度数为:18°、36°、72°、108°.故答案为:72°或18°或108°或36°【答案】72°或18°或108°或36°例10.如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M.(1)如果AB=AC,求证:△DEF是等边三角形;(2)如果AB≠AC,试猜想△DEF是不是等边三角形?如果△DEF是等边三角形,请加以证明;如果第6页共18页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训△DEF不是等边三角形,请说明理由;(3)如果CM=4,FM=5,求BE的长度.【答案】(1)证明:∵∠A=60°,AB=AC,∴△ABC是等边三角形,∵BE⊥AC,垂足为E,CF⊥AB,垂足为F,∴E、F分别是AC、AB边的中点,又∵点D是BC的中点,EF=12BC,DE=12AB,DF=12AC,∴EF=ED=DF,∴△DEF是等边三角形;(2)解:△DEF是等边三角形.理由如下:∵∠A=60°,BE⊥AC,CF⊥AB,∴∠ABE=∠ACF=90°-60°=30°,在△ABC中,∠BCF+∠CBE=180°-60°-30°×2=60°,∵点D是BC的中点,BE⊥AC,CF⊥AB,∴DE=DF=BD=CD,∴∠BDF=2∠BCF,∠CDE=2∠CBE,∴∠BDF+∠CDE=2(∠BCF+∠CBE)=2×60°=120°,∴∠EDF=60°,第7页共18页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴△DEF是等边三角形;(3)解:∵∠A=60°,BE⊥AC,CF⊥AB,∴∠ABE=∠ACF=90°-60°=30°,∴BM=2FM=2×5=10,ME=12CM=12×4=2,∴BE=BM+ME=10+2=12.例11.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿线段AB向点B运动,且速度为每秒1cm,点Q从点B开始沿折线B-C-A运动,且速度为每秒2cm,当点Q到达点A时,P、Q两点同时停止运动,它们同时出发,设出发的时间为t秒.(1)当点Q在边BC上运动时,出发几秒钟,△PQB能形成等腰三角形?(2)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间(只要直接写出答案).【答案】解:(1)由题意可知AP=t,BQ=2t,∵AB=8,∴BP=AB-AP=8-t,当△PQB为等腰三角形时,则有BP=BQ,,即8-t=2t,解得t=83秒后△PQB能形成等腰三角形;∴出发83(2)在△ABC中,由勾股定理可求得AC=10,当点Q在AC上时,AQ=BC+AC-2t=16-2t,所以CQ=AC-AQ=10-(16-2t)=2t-6,当BQ=BC=6时,如图1,第8页共18页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第9页 共18页 自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌 非学科培训过B 作BD ⊥AC ,则CD=12CQ=t-3,在Rt △ABC 中,可求得BD=245,在Rt △BCD 中,由勾股定理可得BC 2=BD 2+CD 2,即62=(245)2+(t-3)2,解得t=335或t=-35<0(舍去); 当CQ=BC=6时,则2t-6=6,解得t=6,当CQ=BQ 时,则∠C=∠QBC ,∴∠C+∠A=∠CBQ+∠QBA ,∴∠A=∠QBA ,∴QB=QA ,∴CQ=12AC=5,即2t-6=5,解得t=5.5,综上可知当△BCQ 为等腰三角形时,t=335或t=6或t=5.5.【举一反三】1.等腰三角形腰长为2cm ,底边长为2√3cm ,则顶角为______,面积为______.【解答】解:如图,作AD ⊥BC 于D ,∴BD=DC=√3cm ,∴AD=√AB 2−BD 2=√22−(√3)2=1cm ,∴∠B=30°,∴顶角为180°-30°-30°=120°,三角形的面积=12×2√3×1=√3cm 2.故答案为:120°;√3cm 2.【答案】120°√3cm 2.2.如图,下列4个三角形中,均有AB=AC ,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是( )A. ①③B. ①②④C. ①③④D. ①②③④【解答】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故选:C.【答案】C3.如图,在△ABC中,∠A=36°,AB=AC,CD是△ABC的角平分线.若在边AC上截取CE=CB,连接DE,则图中等腰三角形共有()A. 2个B. 3个C. 4个D. 5个【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=1∠ABC=36°,2∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°-∠DBC-∠C=180°-36°-72°=72°,∴∠C=∠BDC=72°,∴BD=BC,第10页共18页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°-36°)÷2=72°,∴∠ADE=∠BED-∠A=72°-36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选:D.【答案】D4.等腰三角形一腰上的高线与底边的夹角等于()A. 顶角B. 底角C. 顶角的一半D. 底角的一半【解答】解:如图,过点A作AE⊥BC,则AE平分∠BAC,∠A,∴∠2=12∵BD⊥AC,∴∠1+∠C=90°,又∠2+∠C=90°,∴∠1=∠2,∠A,∴∠1=12即等腰三角形一腰上的高与底边的夹角等于顶角的一半,故选:C.【答案】C5.等腰三角形的一个内角是50°,则这个三角形的底角的大小是()A. 80°或40°B. 65°或50°C. 80°或65°D. 80°或50°【解答】解:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65度.故选:B.【答案】B6.在△ABC中,AB=AC,BD是高.若∠ABD=40°,则∠C的度数为______.【解答】解:①当为锐角三角形时:∠BAC=90°-40°=50°,(180°-50°)=65°;∴∠ACB=12②当为钝角三角形时:∠BAC=90°+40°=130°,∴∠ACB=1(180°-130°)=25°;2故答案为:65°或25°.【答案】65°或25°7.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒√2cm的速度向终点B运动;同时,动点Q从点B出发,沿BC方向以每秒1cm的速度向终点C运动,当△PQC 为以QC为底边的等腰三角形的时候,时间t的值为多少?【答案】解:过点P作PN⊥BC于点N,PM⊥AC于点M,设Q点运动的时间为t秒,△PQC成为以QC为底边的等腰三角形,则PQ=PC,∴QN=NC,∵点P从点A出发,沿AB方向以每秒√2cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,∴AP=√2t,BQ=t,∵∠BCA=90°,AC=BC=6cm,∴∠B=∠A=45°,∴AM=PM=t,∴BQ=QN=NC=PM=t,∴BC=3t=6,解得:t=2.1.下列能断定△ABC为等腰三角形的是()A. ∠A=30°,∠B=60°B. AB=AC=2,BC=4C. ∠A=50°,∠B=80°D. AB=3、BC=7,周长为13【解答】解:A、∵∠A=30°,∠B=60°,∴∠C=180°-∠A-∠B=90°,即∠A≠∠B≠∠C,∴△ABC不是等腰三角形,故本选项错误;B、∵AB=AC=2,BC=2,∴2+2=4,即三条线段不能组成三角形,故本选项错误;C、∵∠A=50°,∠B=80°,∴∠C=180°-∠A-∠B=50°,即∠A=∠C,∴△ABC是等腰三角形,故本选项正确;D、∵AB=3,BC=7,周长是13,∴AC=13-3-7=3,∵3+3<7,∴三条线段不能组成三角形,故本选项错误;故选:C.【答案】C2.已知△ABC中,AB=AC,∠B=50°,则∠C的度数为()A. 50°B. 65°C. 80°D. 50°或65°【解答】解:∵AB=AC,∴∠C=∠B=50°,故选:A.【答案】A3.等腰三角形的一个角比另一个角的2倍少20°,则这个等腰三角形的顶角度数是______.【解答】解:设另一个角是x,表示出一个角是2x-20°,①x是顶角,2x-20°是底角时,x+2(2x-20°)=180°,解得x=44°,所以,顶角是44°;②x是底角,2x-20°是顶角时,2x+(2x-20°)=180°,解得x=50°,所以,顶角是2×50°-20°=80°;③x与2x-20°都是底角时,x=2x-20°,解得x=20°,所以,顶角是180°-20°×2=140°;综上所述,这个等腰三角形的顶角度数是44°或80°或140°.故答案为:44°或80°或140°.【答案】44°或80°或140°4.如果过等腰三角形的一个顶点的直线将这个等腰三角形分成两个等腰三角形,那么这个等腰三角形的顶角的度数为______度.【解答】解:设该等腰三角形的底角是x;①当过顶角的顶点的直线把它分成了两个等腰三角形,则AC=BC,AD=CD=BD,设∠A=x°,则∠ACD=∠A=x°,∠B=∠A=x°,∴∠BCD=∠B=x°,∵∠A+∠ACB+∠B=180°,∴x+x+x+x=180,解得x=45,则顶角是90°;②如图,AC=BC=BD,AD=CD,设∠B=x°,∵AC=BC,∴∠A=∠B=x°,∵AD=CD,∴∠ACD=∠A=x°,∴∠BDC=∠A+∠ACD=2x°,∵BC=BD,∴∠BCD=∠BDC=2x°,∴∠ACB=3x°,∴x+x+3x=180,x=36°,则顶角是108°.③当过底角的角平分线把它分成了两个等腰三角形,则有AC=BC,AB=AD=CD,设∠C=x°,∵AD=CD,∴∠CAD=∠C=x°,∴∠ADB=∠CAD+∠C=2x°,∵AD=AB,∴∠B=∠ADB=2x°,∵AC=BC,∴∠CAB=∠B=2x°,∵∠CAB+∠B+∠C=180°,∴x+2x+2x=180,x=36°,则顶角是36°.④当∠A=x°,∠ABC=∠ACB=3x°时,也符合,如图AD=BD,BC=DC,∠A=∠ABD=x,∠DBC=∠BDC=2x,则x+3x+3x=180°,x=180°7,因此等腰三角形顶角的度数为36°或90°或108°或180°7.故答案为:36°或90°或108°或180°7.【答案】36°或90°或108°或【答案】180°75.若等腰三角形一腰上的高是腰长的一半,则这个等腰三角形的底角是()A. 75°或15° B. 75° C. 15° D. 75°或30°【解答】解:当等腰三角形是锐角三角形时,如图1所示∵CD⊥AB,CD=12AC,∴sin∠A=CDAD =1 2,∴∠A=30°,∴∠B=∠ACB=75°;当等腰三角形是钝角三角形时,如图2示,∵CD⊥AB,即在直角三角形ACD中,CD=12AC,∴∠CAD=30°,∴∠CAB=150°,∴∠B=∠ACB=15°.故其底角为15°或75°.故选:A.【答案】A6.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)当点M、N运动______秒时,M、N两点重合;(2)当点M、N运动______秒后,M、N与△ABC中的某个顶点可得到等腰三角形.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12,故当点M、N运动12秒时,M、N两点重合;故答案为:12;(2)①当M在AC上,N在AB上时,有AM=AN,△AMN为等边三角形,符合题意,即t=12-2t,解得t=4;有MN=BN,△AMN为等腰三角形,符合题意,即(2t)2=(6-2t)2+[√3(6-t)]2,解得t1=10-2√13,t2=10+2√13(舍去);②当M、N均在AC上时,有BM=BN,△BMN为等腰三角形,符合题意,则CM=AN,即12-t=2t,解得t=8;③当M、N均在BC上时,N点已经追过M点,有AM=AN,△AMN为等腰三角形,符合题意,则CM=BN,即t-12=36-2t,解得t=16.故答案为4,8,16.【答案】124,8,16。
基于结构化整合的教学内容安排——以“特殊三角形”关键知识点教学设计为例
合掌握知识点 .
学习就是对知识进行结构化整合的过程,可 以 帮
助学生形成清晰完整的思维导图,极大地加强了学生对数学本质的把握和理解 .
关键词:结构化;整体;有效
CM ,
AM =AM ,∠B = ∠C,满 足 的
条件 是 “
SSA”,好 像 没 有 办 法 证 明
图7
△ABM ≌△ACM ?
教师 引 导:请 大 家 回 忆 一 下,是 不 是 所 有 满 足
SSA 条件的三角形都不能 判 定 全 等? 其 实 不 是 的,有
些情况特殊的“
所
SSA”也 可 以 判 定 两 个 三 角 形 全 等 .
也符合学生的认识规律 .
学生更加容易自主探索、理 解
和掌握知识点,学习就是对 知 识 进 行 结 构 化 整 合 的 过
程,可以帮助 学 生 形 成 清 晰 完 整 的 思 维 导 图,极 大 地
加强了学生对于数 学 本 质 的 把 握 和 理 解 .
本文中以初
中阶段的“特殊三角形”为 例,针 对 关 键 知 识 点 的 结 构
于点E ,
根据角平分
DF ⊥AC 于点F .
线的性质得到 DE =DF ,又 因 为 AD
例题 2 如 图 13,已 知 △ABC 和 △CDE 都 是 等
边三角形,
B,
C,
D 三 点 共 线,连 接 AD ,
BE 相 交 于 点
K,
AD 交CE 于点 G ,
在
△ABD 和 △ACD 中,AB = AC,
∠BAD = ∠CAD ,AD = AD ,所 以
中考数学专题复习:分类讨论题
中考数学专题复习:分类讨论题中考数学专题复:分类讨论题直线型分类讨论直线型分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题。
这些问题中,等腰三角形顶角度数和三角形高的长度是重要的考点。
例如,对于一个等腰三角形,如果其中一个角度数为50°,则需要分类讨论这个角是顶角还是底角。
如果这个角是顶角,则可以通过求解另外两个角的度数得到顶角的度数;如果这个角是底角,则可以通过计算底角的度数来得到顶角的度数。
因此,顶角可能是50°或80°。
同样地,在解决三角形高的问题时,也需要分类讨论。
例如,如果一个三角形的底边和斜边长度已知,需要求解这个三角形的高的长度,则需要分类讨论这个高是否在三角形内部。
如果高在三角形内部,则可以利用勾股定理和相似三角形的性质求解高的长度;如果高在三角形外部,则可以利用平移和相似三角形的性质求解高的长度。
圆形分类讨论圆形分类讨论主要是解决圆的有关问题。
由于圆是轴对称图形和中心对称图形,因此在解决圆的问题时,需要注意分类讨论,以避免漏解。
例如,对于一个直角三角形,如果以直角为圆心画圆,则这个圆与斜边只有一个公共点。
这个问题可以分类讨论,分别考虑圆与斜边相切和圆与斜边相交的情况,从而得到圆的半径的取值范围。
函数方程分类讨论函数方程分类讨论主要是解决复杂的函数方程和方程组的问题。
在解决这些问题时,需要注意分类讨论,以避免遗漏解或得到错误的解。
例如,对于一个函数方程,如果该方程在某个区间内有多个解,则需要分类讨论这些解的性质,例如它们是否为连续函数、是否为单调函数等等。
从而可以得到方程的解的取值范围。
总之,分类讨论是解决数学问题的重要方法之一,尤其适用于复杂的问题。
在进行分类讨论时,需要认真分析问题,将问题分成若干个互不重叠的情况,并对每种情况进行单独的讨论和求解。
本题涉及到函数的分类讨论和解析式的求解,同时也需要注意特殊点的情况。
特殊三角形复习--分类讨论思想的应用教案
课题:特殊三角形教案——分类讨论思想的应用教学目标:1、通过一个中考题的解决,理解等腰三角形两底角相等;能初步学会用分类思想来完整回答问题的答案。
2、了解分类讨论思想在特殊三角形中的应用,提高数学素养;提高几何分析、画图和综合能力。
3、通过对学生有指导、有交流的课堂活动,使学生能真正动起脑、动起手,让更多的学生在学习中受益。
教学重点:用分类讨论思想来解决特殊三角形中存在的分类问题教学难点:用分类讨论来解决问题时出现的答案不完整的情况教学过程:一、着眼中考(07年杭州)一个等腰三角形的一个外角等于1100,则这个三角形的三个角应该为。
学生做题环节,看谁做的快又对。
(做后提问个别学生)(板书角的分类情况)题目的分析让学生来说,本课初次接触分类讨论思想,并说明要进行分类讨论的原因。
变式题让学生感到分类后要考虑情况存在的正确性。
二、提示课题学生了解分类讨论思想(适当板书)三、复习知识点,巩固思想方法通过一组试一试及相关变式题,让学生在运用分类讨论方法的同时,对所学的等腰三角形及直角三角形的知识进行复习。
1、等腰三角形的二条边长是5和8,那么这个等腰三角形的周长为。
问:为什么要分类讨论?怎么分类?(可一起回答)(板书边的分类情况)变式:等腰三角形的二条边长是4和8,那么这个等腰三角形的周长为。
让学生注意三线段为4、4、8时,不能组成三角形2、直角三角形的二条边分别是3和4 ,那么这个直角三角形的斜边等于。
这个直角三角形的面积等于。
采用类似的问题解决方法,让学生注意情况的不唯一性。
3、等腰三角形一腰上的高与另一腰的夹角为450,则这个等腰三角形的顶角是。
学生明白:顶角可分为锐角或钝角变式:如果等腰三角形腰上的高线等于腰长的一半,那么这个等腰三角形的顶角度数是()A.30°B.75°C.150°D.30°或150°让学生巩固这一类常见题(板书边角的注意情况)考查学生对基础知识的掌握,对问题的完整分类能力,以及画图能力。
三角形的分类
三角形的分类三角形是几何学中最常见和最基本的图形之一。
根据其特性,三角形可以分为不同的类型。
以下是三角形的一些主要分类:1等边三角形:三条边都相等的三角形称为等边三角形。
这种三角形的所有角都是相等的,每个角都是60度。
等边三角形是一种特殊的等腰三角形。
2等腰三角形:有两条边长度相等的三角形称为等腰三角形。
这种三角形的两个底角是相等的,顶角与两个底角的和加起来等于180度。
直角三角形:有一个角是90度的三角形称为直角三角形。
这种三角形的斜边长等于其两条直角边的平方和的平方根。
直角三角形的一个锐角是45度。
钝角三角形:有一个角大于90度的三角形称为钝角三角形。
这种三角形的钝角对应的边比其他两边长。
锐角三角形:所有角都小于90度的三角形称为锐角三角形。
这种三角形的所有边都相等。
斜三角形:三条边长度不相等的三角形称为斜三角形。
斜三角形可以进一步分为钝角斜三角形和锐角斜三角形,取决于其最大的角是钝角还是锐角。
这些分类可以根据三角形的不同特性进行进一步的细分。
例如,等腰三角形可以进一步分为等边等腰三角形和底角与顶角不相等的等腰三角形等。
还有等腰直角三角形等腰钝角三角形等特殊形式。
三角形的分类对于理解几何学中的基本概念和性质非常重要。
通过掌握不同类型的三角形的特性和关系,我们可以更好地理解几何学中的基本原理和应用。
三角形是数学几何中一个非常基础且重要的概念,而三角形的分类也是学生需要掌握的一项重要技能。
根据边长和角的特征,三角形可以分为以下几类:等边三角形等腰三角形、直角三角形和普通三角形。
等边三角形是一种三边长度相等的三角形,其中三个角的大小也相等。
等边三角形的判定方法是:如果一个三角形的三边长度相等,那么这个三角形就是等边三角形。
等边三角形是一个特殊的等腰三角形。
等腰三角形是一种两边长度相等的三角形,其中两个角的大小也相等。
等腰三角形的判定方法是:如果一个三角形有两条边的长度相等,那么这个三角形就是等腰三角形。
钝角三角形分类讨论专题
钝角三角形分类讨论专题介绍本文旨在讨论钝角三角形的分类以及相关特性。
钝角三角形是一种特殊的三角形,其中一个角度大于90度。
在本文中,我们将研究不同类型的钝角三角形,并探讨它们的性质和特点。
钝角三角形的分类根据钝角的大小和其他角度的关系,钝角三角形可以被分为以下几类:1. 钝钝钝三角形(Obtuse-Obtuse-Obtuse Triangle):这是指三个角度都大于90度的钝角三角形。
在这种情况下,三个角度的和超过180度,无法构成一个平面三角形。
因此,钝钝钝三角形在欧几里德几何中不存在。
2. 钝钝锐三角形(Obtuse-Obtuse-Acute Triangle):这种钝角三角形中,两个角度大于90度,一个角度小于90度。
由于一个锐角存在,这种三角形是可能构成的。
然而,钝钝锐三角形的特殊性导致其性质与一般三角形有所不同。
3. 钝锐锐三角形(Obtuse-Acute-Acute Triangle):在这种钝角三角形中,一个角度大于90度,其他两个角度小于90度。
这种三角形也是可构成的,但其性质与普通三角形有所差别。
钝钝锐三角形的性质钝钝锐三角形的特殊性质包括:- 两个钝角的和超过180度,大于一个平面三角形的总角和。
- 边长关系与一般三角形不同,需要通过特殊的几何计算来确定边长关系。
钝锐锐三角形的性质钝锐锐三角形的特点包括:- 存在一个钝角,大于90度,影响三角形的性质和构造。
- 其他两个角度小于90度,继续满足三角形的内角和为180度。
结论钝角三角形是一类特殊的三角形,具有一些与一般三角形不同的性质和特点。
通过对钝钝锐三角形和钝锐锐三角形的讨论,我们可以更深入地了解这些特殊的三角形。
在进一步的研究中,我们可以探索钝角三角形的相关性质和应用。
例谈分类讨论思想在特殊三角形中的应用
例谈分类讨论思想在特殊三角形 中的应用
■浙江省诸暨市暨阳 初中 楼 奕
摘要 :在探究特殊三角形问题时 , 由 于图形的不确定而导致多种答案 , 此类问 题就需要用到分类讨论 思想 .
关键词 : 分 类讨论 等腰 三 角 形 直
例 2 等腰三角形一腰上的高 与另一 边也可 以是两 条直 角边 ,此 时斜边 长是
帮助 他 计 算 这 个 图 形 的 面积 .
.
.
②当顶角是钝角时, 如图2 ,
・ ・
.
厶4 肋 =3 0 o, 厶4 D B=9 0  ̄, M D= 6 0  ̄,
・
.
.
幽 3
嘲 4
分析 : 对 于没有图示的几何 问题 , 往往 需要先根据题意画出图形 ,结合已知条件 对图形分析、 求解. 在教学 中我首先要求学 生按条件 用比例尺 画出图 3与图 4 , 并深入
维能力 , 分 类讨论 问题充满了数学辨证 思 是腰 长 , 角是底角还 是顶 角 , 有时要考 虑 想, 它是逻辑 划分 思想 在解决数学问题时 腰 与底谁较 大 ,有 时要讨论 高在三 角形 的具体 运用. 内部还 是外 部.从 以上 的例 子可以看 出 :
思考 . 本 题 的正 确答 案是 8 4 c m 或2 4 c m .
三、 三角形综合题 中的分类讨论 例 5 张 大 爷 家 的 耕 地 为 四 边 形
C D, B A D 一1 0 5 0, A B = 2 0 m ,若张 大 分 类讨论 涉及全部 初 中数学 的知识 有 关等腰三 角形 的题 目,很 多条件 下都 AB 爷 沿对角线 AC把地分给两 个儿子 , 其 中 点 ,八 年级学 生在探 究特殊 三角形 问题 会 有两解 , 但要注 意 , 解 出的两解必须 都 耕地 AAB C恰好为等边三角形 , 另一块 耕 时 ,由于图形的不确定而 导致 多种 答案 , 满足 “ 三角 形 的 内角和 等 于 1 8 0 。” 和 地 AA D C恰好 为等 腰 三 角形 ,求耕 地 此类问题就需要 用到分类讨论思想 , 在这 “ 三角形 两 边 的和 大于 第 三边 ”这两 个 AA D C的面积. 里对特殊三角形的几种情况进行 归纳. 条件 , 否则只有一解. 分析 :本题 的关键 是要学 生掌握 从 等 腰三角形 中的分类讨论 二、 直 角 三 角 形 中 的分 类讨 论 A A DC为等腰三角形这一条件出发 ,可得 例 1 有 三根 木棒 其 中两 根 的长分 在学 习直 角三角形 时 , 有时会遇到 多 AC = A D C = C D . AD = C D这三种情况 ( 如 别是 5 c m, 1 3 c m,已知这三根木棒首尾相 种 情况 ,稍 不留神就会 丢解或造成错 解 , 下图) , 由LB A D= 1 0 5 。可得 / _ C A D: 4 5 。 , 连, 能 组成一个等 腰三 角形 , 则第 三根木 这就需要 我们利 用分类讨 论思想 对各种 所以后两种图形都是等腰直角三角形 , 因 棒长为 情况加 以分 类 , 并逐类 求解 , 然后 综合得 此我要求学生画图时尽量标准 ,这样 , 在 分 析 :本例仅 涉及等腰 三 角形的定 解. 现 将勾股定理 中需用到分类的 问题举 解题过程 中才能避免失误 . 本题 的正确答 义, 有些学生往往 因审题不仔细而混淆概 例 浅 析 :
等腰三角形中的分类讨论问题归类
等腰三角形中的分类讨论问题归类等腰三角形是高中几何学中的重要概念之一,它具有一些特殊的性质和分类方法。
本文将对等腰三角形进行分类讨论,并归类相关问题。
通过对等腰三角形的深入了解,我们能够更全面地掌握它的性质和应用。
一、定义与性质等腰三角形是指具有两边长度相等的三角形。
根据这个定义,我们可以推导出等腰三角形的一些性质。
首先,等腰三角形的底角(底边所对的角)是两条边所对应的顶角的一半。
其次,等腰三角形的高线(从顶点到底边之间的线段)也是它的中线和中线所在的高线相等。
此外,等腰三角形的角平分线也是高线和中线。
这些性质在解决等腰三角形相关问题时非常有用。
二、基于边长的分类根据等腰三角形底边和两边的长度关系,我们可以将等腰三角形分为以下几种情况。
1. 等腰锐角三角形:当两边的长度小于底边时,所形成的等腰三角形是一个锐角三角形。
在这种情况下,底边所对应的顶角是一个锐角。
2. 等腰直角三角形:当两边的长度等于底边时,所形成的等腰三角形是一个直角三角形。
在这种情况下,底边所对应的顶角是一个直角。
3. 等腰钝角三角形:当两边的长度大于底边时,所形成的等腰三角形是一个钝角三角形。
在这种情况下,底边所对应的顶角是一个钝角。
三、基于角度的分类根据等腰三角形底边所对应的顶角的大小,我们可以将等腰三角形分为以下几种情况。
1. 等腰锐角三角形:当底角小于90度时,所形成的等腰三角形是一个锐角三角形。
在这种情况下,底边所对应的顶角是一个锐角。
2. 等腰直角三角形:当底角等于90度时,所形成的等腰三角形是一个直角三角形。
在这种情况下,底边所对应的顶角是一个直角。
3. 等腰钝角三角形:当底角大于90度时,所形成的等腰三角形是一个钝角三角形。
在这种情况下,底边所对应的顶角是一个钝角。
四、应用与推广了解等腰三角形的分类讨论有助于我们在解决相关几何问题时快速准确地判断和运用。
例如,当我们需要证明一个三角形是等腰三角形时,可以根据其边长关系或角度关系进行分类讨论。
特殊三角形中的分类讨论模型—2024年中考数学常见几何模型全归纳之模型解读(全国通用)(解析版)
三角形中的重要模型-特殊三角形中的分类讨论模型 模型1、等腰三角形中的分类讨论模型【知识储备】凡是涉及等腰三角形边、角、周长、面积等问题,优先考虑分类讨论,再利用等腰三角形的性质与三角形三边关系解题即可。
1)无图需分类讨论①已知边长度无法确定是底边还是腰时要分类讨论;②已知角度数无法确定是顶角还是底角时要分类讨论; ③遇高线需分高在△内和△外两类讨论;④中线把等腰△周长分成两部分需分类讨论。
2)“两定一动”等腰三角形存在性问题:即:如图:已知A ,B 两点是定点,找一点C 构成等腰ABC △方法:两圆一线具体图解:①当AC AB =时,以点A 为圆心,AB 长为半径作⊙A ,点C 在⊙A 上(B ,C 除外)②当BC AB =时,以点B 为圆心,AB 长为半径作⊙B ,点C 在⊙B 上(A ,E 除外)③当BC AC =时,作AB 的中垂线,点C 在该中垂线上(D 除外)【答案】C【分析】由已知等式,结合非负数的性质求m 、n 的值,再根据m 、n 分别作为等腰三角形的腰,分类求解.【详解】解:()2350m n −+−=,30m −≥,()250n −≥,30m ∴−=,50n −=,解得:3m =,5n =,当3m =作腰时,三边为3,3,5,符合三边关系定理,周长为:33511++=,当5n =作腰时,三边为3,5,5,符合三边关系定理,周长为:35513++=,故选:C .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,非负数的性质,关键是根据非负数的性质求m 、n 的值,再根据m 或n 作为腰,分类求解. 例2.(2023春·黑龙江佳木斯·八年级校考期中)一个等腰三角形的周长为18cm ,且一边长是4cm ,则它的腰长为( )A .4cmB .7cmC .4cm 或7cmD .全不对【答案】B【分析】根据等腰三角形的定义,两腰相等,结合三角形的三边关系,进行求解即可.【详解】解:当4cm 为腰长时,则底边长为182410−⨯=cm ,∵4410+<,不符合题意;∴4cm 为底边长,∴等腰三角形的腰长为:()11847cm 2⨯−=;故选B . 【点睛】本题考查等腰三角形的定义,三角形的三边关系.解题的关键是掌握等腰三角形的两腰相等,注意讨论时要根据三角形的三边关系,判断能否构成三角形.例3.(2023春·四川达州·八年级校考阶段练习)等腰三角形的一个角是80︒,则它顶角的度数是( )A .80︒B .80︒或20︒C .80︒或30︒D .20︒【答案】B【分析】根据三角形的内角和为180︒,进行分类讨论即可【详解】解:①当底角为80︒时,顶角18080220=︒−︒⨯=︒,②当顶角为80︒时,顶角度数80=︒,综上:顶角度数为80︒或20︒;故选:B .【点睛】本题考查了三角形的内角和为180︒,等腰三角形两底角相等,解题的关键是书熟练掌握相关内容. 例3.(2023·四川广安·八年级校考期中)等腰三角形的一个外角为100︒,则它的底角为( )A .55︒B .80︒C .55︒或80︒D .以上都不是 【答案】D【分析】等腰三角形的一个外角等于100︒,则等腰三角形的一个内角为80︒,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.【详解】∵等腰三角形的一个外角等于100︒,∴等腰三角形的一个内角为80︒,①当80︒为顶角时,其他两角都为50︒、50︒,②当80︒为底角时,其他两角为80︒、20︒,所以等腰三角形的底角可以是50︒,也可以是80︒.故选:D .【点睛】本题考查了等腰三角形的性质和三角形的内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错. 例4.(2023·四川绵阳·八年级校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为70︒,则等腰三角形的顶角度数为 .【答案】20︒或160︒【分析】要注意分类讨论,等腰三角形可能是锐角三角形也可能是钝角三角形,然后根据三角形的内角和以及三角形的外角的性质即可求解.【详解】解:若三角形为锐角三角形时,如图,AB AC =,70ACD ∠=︒,CD 为高,即90ADC ∠=︒,此时180A ACD ADC ∠+∠+∠=︒,∴180907020A =︒−︒−︒=︒,若三角形为钝角三角形时,如图,AB AC =,70ACD ∠=︒,CD 为高,即90ADC ∠=︒,此时9070160BAC D ACD ∠=∠+∠=︒+︒=︒,综上,等腰三角形的顶角的度数为20︒或160︒.故答案为:20︒或160︒. 【点睛】本题主要考查了等腰三角形的性质,三角形外角的性质,三角形内角和定理,解题的关键是根据题意画出图形,并注意分类讨论. 例5.(2023·山东滨州·八年级校考期末)我们称网格线的交点为格点.如图,在6行5⨯列的长方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得ABC 是等腰直角三角形,则满足条件的格点C 的个数是( )A .3B .4C .5D .6【答案】C 【分析】根据题意,结合图形,分两种情况讨论:①AB 为等腰直角ABC 底边;②AB 为等腰直角ABC 其中的一条腰.【详解】如图:分情况讨论:①AB 为等腰直角ABC 底边时,符合条件的格点C 点有2个;②AB 为等腰直角ABC 其中的一条腰时,符合条件的格点C 点有3个.故共有5个点,故选:C .【点睛】本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.例6.(2023·北京·八年级期中)Rt △ABC 中,∠BAC =90°,AB =AC =2,以AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段BD 的长为____.【答案】4或【分析】根据题意分类讨论,①90CAD ∠=︒,②90ACD ∠=︒,③90ADC ∠=︒,分别作出图形,再结合已知条件勾股定理求解即可.【详解】解:①如图,当90CAD ∠=︒时,902BAC AB AC ∠=︒==,,ACD △是等腰直角三角形,2AC AD AB ∴===,180BAD BAC CAD ∠=∠+∠=︒,224BD AB AD ∴=+=+=;②如图,当90ACD ∠=︒时,过点D 作DE BC ⊥,交BC 的延长线于点E ,902BAC AB AC ∠=︒==,,ACD △,ABC 是等腰直角三角形,2CD AC AB ∴===,18045DCE ACD ACB ∠=︒−∠−∠=︒, 又DE BC ⊥,∴DEC 是等腰直角三角形,DE CE ∴=,在Rt DEC △中,22222DC CE DE DE =+=,∴2DE DC ==在Rt ABC 中,BC 在Rt BDE 中,BD =③如图,当90ADC ∠=︒时,902BAC AB AC ∠=︒==,ACD △,ABC 是等腰直角三角形, 2CD AD AC ∴===在Rt ABC 中,BC ==Rt BDC 中,BD =综上所述,BD 的长为:4或4或.【点睛】本题考查了勾股定理,等腰三角形的性质,分类讨论是解题的关键. 例7.(2023·福建南平·八年级校考期中)已知△ABC 中,如果过顶点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC 的关于点B 的二分割线.如图1,Rt △ABC 中,显然直线BD 是△ABC 的关于点B 的二分割线.在图2的△ABC 中,∠ABC =110°,若直线BD 是△ABC 的关于点B 的二分割线,则∠CDB 的度数是 .【答案】40°或90°或140°【分析】分三种情况讨论,由等腰三角形的性质和直角三角形的性质可求解.【详解】解:①如图,当∠DBC=90°,AD=BD 时,直线BD 是△ABC 的关于点B 的二分割线,∵∠ABC=110°,∠DBC=90°,∴∠ABD=20°,∵AD=BD ,∴∠A=∠ABD=20°,∴∠CDB=∠A+∠ABD=40°;②如图,当∠BDC=90°,AD=BD 时,直线BD 是△ABC 的关于点B 的二分割线,或当∠BDC=90°,CD=BD 时,直线BD 是△ABC 的关于点B 的二分割线,;③如图,当∠ABD=90°,CD=BD 时,直线BD 是△ABC 的关于点B 的二分割线,∵∠ABC=110°,∠ABD=90°,∴∠DBC=20°,∵CD=BD ,∴∠C=∠DBC=20°,∴∠BDC=140°.综上所述:当∠BDC 的度数是40°或90°或140°时,直线BD 是△ABC 的关于点B 的二分割线.【点睛】本题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,理解二分割线是本题关键. 且ABP 为等腰三角形,则点【答案】(2,0)或(2,0)−或(64+或(6−【分析】根据等腰三角形的判定,分①AB=BP ;②AB=AP ;③AP=BP 三种情况求解即可.【详解】∵ABP 为等腰三角形,①当AB BP =时,如图①,∵AB ==∴BP =∵(6,0)B ,∴(6P +或(6P −;②当AB AP =时,如图② 作AC BP ⊥于C 点,则(2,0)C ,∵AB AP =,∴BC CP =,∵624BC =−=,∴4CP =,∴(2,0)P −.③当AP BP =时,如图③,作AP BP ⊥,∴4AP BP ==,∴(2,0)P .综上所述:点P 的坐标为(2,0)或(2,0)−或(6+或(6−,故答案为:(2,0)或(2,0)−或(6+或(6−.【点睛】本题考查了等腰三角形的判定与性质、勾股定理、坐标与图形,熟练掌握等腰三角形的判定与性质,灵活运用分类讨论的思想解决问题是解答的关键. 八年级校考期中)如图,ABC 中,A 【答案】(1)16(2)6或2(3)4或2或95或3【分析】(1)设cm PB PA x ==,则()4cm PC x =−,利用勾股定理求出3cm AC =,在Rt ACP 中,依据222AC PC AP +=,列方程求解即可得到t 的值.(2)如图所示,当点P 在AC 上时,过P 作PD AB ⊥于D ,设cm PD PC y ==,则()3cm AP y =−,在Rt ADP 中,依据222AD PD AP +=,列方程求解即可得到t 的值.当点P 与点B 重合时,点P 也在ABC ∠的角平分线上,此时,522AB t ==.(3)分四种情况:当P 在AB 上且AP CP =时,当P 在AB 上且3cm AP CA ==时,当P 在AB 上且AC PC =时,当P 在BC 上且3cm AC PC ==时,分别依据等腰三角形的性质即可得到t 的值.【详解】(1)解:如图,设cm PB PA x ==,则()4cm PC x =−,90ACB ∠=︒,5cm AB =,4cm BC =,3cm AC ∴,在Rt ACP 中,由勾股定理得222AC PC AP +=,()22234x x ∴+−=,解得258x =,258BP ∴=,2556582216AB BP t ++∴===;(2)解:如图所示,当点P 在AC 上时,过P 作PD AB ⊥于D ,BP 平分ABC ∠,90C ∠=︒,PD AB ⊥PD PC ∴=,DBP CBP ∠=∠,在BCP 与BDP △中,BDP BCP DBP CBP BP BP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AAS BDP BCP ∴≌4cm BC BD ∴==,541cm AD ∴=−=,设cm PD PC y ==,则()3cm AP y =−,在Rt ADP 中,由勾股定理得222AD PD AP +=,()22213y y ∴+=−,解得43y =,43CP \=,454313226AB BC CP t ++++∴===,当点P 与点B 重合时,点P 也在ABC ∠的角平分线上,此时,522AB t ==. 综上所述,点P 恰好在ABC ∠的角平分线上,t 的值为316或52.(3)解:分四种情况:①如图,当P 在AB 上且AP CP =时,∴A ACP ∠=∠,∵A B ∠∠=︒+90,90ACP BCP ∠+∠=︒,B BCP ∴∠=∠,CP BP AP ∴==,P ∴是AB 的中点,即15cm 22AP AB ==,524AP t ∴==. ②如图,当P 在AB 上且3cm AP CA ==时,∴322AP t ==. ③如图,当P 在AB 上且AC PC =时,过C 作CD AB ⊥于D , ∵1122ABC S AC BC AB CD =⋅=⋅,∴12cm 5AC BC CD AB ⋅==,在Rt ACD △中,由勾股定理得9cm 5AD =,182cm 5AP AD ∴==,925AP t ∴==. ④如图,当P 在BC 上且3cm AC PC ==时,则431cm BP =−=,6322AB BP t +∴===. 综上所述,当t 的值为54或32或95或3时,ACP △为等腰三角形.【点睛】本题属于三角形综合题,考查了角平分线的性质,等腰三角形的性质以及勾股定理的综合运用.画出图形,利用分类讨论的思想是解第(3)题的关键. 例10.(2022春·四川成都·八年级校考期中)如图,在平面直角坐标系内,点O 为坐标原点,经过()26A−,的直线交x 轴正半轴于点B ,交y 轴于点C OB OC =,,直线AD 交x 轴负半轴于点D ,若ABD △的面积为27(1)求直线AB 的表达式和点D 的坐标;(2)横坐标为m 的点P 在线段AB 上(不与点A B 、重合),过点P 作x 轴的平行线交AD 于点E ,设PE 的长为()0y y ≠,求y 与m 之间的函数关系式并直接写出相应的m 取值范围;(3)在(2)的条件下,在x 轴上是否存在点F ,使PEF !为等腰直角三角形?若存在求出点F 的坐标;若不存在,请说明理由.【答案】(1)()450y x D =−+−,,(2)()33242y m m =+−<<,(3)存在,点F 的坐标为2,05⎛⎫ ⎪⎝⎭或16,05⎛⎫− ⎪⎝⎭或8,07⎛⎫− ⎪⎝⎭ 【分析】(1)据直线AB 交x 轴正半轴于点B ,交y 轴于点C ,OB OC =,设直线AB 解析式为y x n =−+,把A 的坐标代入求得n 的值,从而求得B 的坐标,再根据三角形的面积建立方程求出BD 的值,求出OD 的值,从而求出D 点的坐标; (2)直接根据待定系数法求出AD 的解析式,先根据B A 、的坐标求出直线AB 的解析式,将P 点的横坐标代入直线AB 的解析式,求出P 的纵坐标,将P 的纵坐标代入直线AD 的解析式就可以求出E 的横坐标,根据线段的和差关系就可以求出结论;(3)要使PEF !为等腰直角三角形,分三种情况分别以点P E F 、、为直角顶点,据等腰直角三角形的性质求出(2)中m 的值,就可以求出F 点的坐标.【详解】(1)解:OB OC =,∴设直线AB 的解析式为y x n =−+,∵直线AB 经过()26A −,,26n ∴+=,4n ∴=,∴直线AB 的解析式为4y x =−+,()40B ∴,,4OB ∴=,ABD 的面积为()2726A −,,,16272ABD S BD =⨯⨯=,9BD ∴=,5OD ∴=,()50D ∴−,,∴直线AB 的解析式为()450y x D =−+−,,(2)解:设直线AD 的解析式为y ax b =+,()26A −,,()50D −,∴2650a b a b −+=⎧⎨−+=⎩,解得210a b =⎧⎨=⎩.∴直线AD 的解析式为210y x =+;∵点P 在AB 上,且横坐标为m ,()4P m m ∴−+,,PE x ∥轴,∴E 的纵坐标为4m −+,代入210y x =+得,4=210m x −++,解得62m x −−=,6,42m E m −−⎛⎫∴−+ ⎪⎝⎭, PE ∴的长63322m m y m −−=−=+;即332y m =+,()24m −<<;(3)解:在x 轴上存在点F ,使PEF !为等腰直角三角形,①当90FPE ∠=︒时,如图①,有PF PE =,4PF m =−+,332PE m =+,3432m m ∴−+=+,解得25m =,此时2,05F ⎛⎫ ⎪⎝⎭; ②当90PEF ∠=︒时,如图②,有EP EF =,EF 的长等于点E 的纵坐标,4EF m ∴=−+,3432m m ∴−+=+,解得:25m =, ∴点E 的横坐标为61625m x −−==−,∴16,05F ⎛⎫− ⎪⎝⎭;③当90PFE ∠=︒时,如图③,有FP FE =,FPE FEP ∴∠=∠.180FPE EFP FEP ∠+∠+∠=︒,45FPE FEP ∴∠=∠=︒.作FR PE ⊥,点R 为垂足,18045PFR FPE PRF ∴∠=︒−∠−∠=︒,=PFR RPF ∴∠∠,=FR PR ∴.同理=FR ER ,12FR PE ∴=.∵点R 与点E 的纵坐标相同,4FR m ∴=−+,∴134322m m ⎛⎫−+=+ ⎪⎝⎭,解得:107m =, 10184477PR FR m ∴==−+=−+=,∴点F 的横坐标为10188777−=−,8,07F ⎛⎫∴− ⎪⎝⎭. 综上,在x 轴上存在点F 使PEF !为等腰直角三角形,点F 的坐标为2,05⎛⎫ ⎪⎝⎭或16,05⎛⎫− ⎪⎝⎭或8,07⎛⎫− ⎪⎝⎭.【点睛】本题考查了等腰直角三角形的性质,三角形的面积公式的运用,待定系数法求一次函数的解析式 模型2、直角三角形中的分类讨论模型【知识储备】凡是涉及直角三角形问题,优先考虑直角顶点(或斜边)分类讨论,再利用直角三角形的性质或勾股定理解题即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学 高频易错题
参考答案 1.50°或 80° 2.130° 3.50°或 80°或 65° 4.7 或 29
3
5.40°或 140°
6.4 或 4 3 或4 3
3
7.30°或 150°或 90° 8.126 或 66 9. 10或3 10或8
八年级上册数学 高频易错题
专题一:特殊三角形的分类讨论 编辑 初数高锦师 审核 初数陈颖哲
1. 在等腰△ABC 中,一个角的外角是 130°,则顶角度数为 2. 在等腰△ABC 中,一个外角为 50°,则顶角为 3. 在等腰△ABC 中,一个内角为 50°,则∠B 为 4. 等腰三角形的周长为 25,一腰上的中线把三角形的周长分成 差为 2 的两部分,则底边长为 5. 已知等腰三角形一腰上的高与另一腰的夹角等于 50°,则顶 角度数为 6. 在等腰三角形 ABC 中。∠A=30°,AB=8,则 AB 边上的高 CD 等 于 7. 已知等腰三角形 BC 边上的高是 BC 的一半, 则顶角度数为 8. 在三角形 ABC 中,AB=13,AC=20,BC 边上的高为 12,则△ABC 的面积为 9. 等腰三角形中,一腰长为 5,一边上的高为 3, 则底边长为