高一第十五讲:滑块与滑板模型new

合集下载

高一第十五讲滑块与滑板模型new

高一第十五讲滑块与滑板模型new

第十五讲滑块与滑板模型解题方法(1)搞清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变.考点一:f内+ 外力F(滑板)1.如图所示,A、B两个物块叠放在光滑水平面上,质量分别为2 kg和6 kg,它们之间的动摩擦因数为0.2.设最大静摩擦力等于滑动摩擦力,取g=10 m/s2.现对B施加水平拉力F,要保持A、B相对静止,F不能超过()A.4 N B.8 N C.12 N D.16 N2.如图甲所示,一质量为M的长木板静置于光滑水平面上,其上放置一质量为m小滑块.木板受到随时间t变化的水平拉力F作用时,用传感器测出长木板的加速度a与水平拉力F的关系如图乙所示,取g=10m/s2,则()A.当0<F<6N时,滑块与木板之间的摩擦力随F变化的函数关系f=2/3FB.当F=8N时,滑块的加速度为1m/s2C.滑块与木板之间的滑动摩擦因素为0.2D.力随时间变化的函数关系一定可以表示为F=6t(N)3.如图所示,A、B两物体叠放在光滑水平桌面上,轻质细绳一端连接B,另一端绕过定滑轮连接C物体,已知A和C的质量都是1 kg,B的质量是3 kg,A、B间的动摩擦因数是0.1,其它摩擦不计.由静止释放,C下落一定高度的过程中(未落地,B未撞到滑轮),g=10m/s2下列说法正确的是()A.A、B两物体没有发生相对滑动B.A物体受到的摩擦力大小为2NC.B物体的加速度大小是3m/s2D.细绳的拉力大小等于7.75 N4.如图所示,质量M=4kg的小车长L=1.4 m,静止在光滑水平面上,其上面右端静止一质量m=1kg的小滑块(可看作质点),小车与木板间的动摩擦因数μ=0.4,先用一水平恒力F向右拉小车。

高三物理一轮复习《滑块—滑板模型》 课件

高三物理一轮复习《滑块—滑板模型》 课件

【典例4】如图,两个滑块A和B的质量分别为mA=1kg和 mB=5kg,放在静止于水平地面上的木板的两端,两者与木板 间的动摩擦因数均为μ1=0.5;木板的质量为m=4kg,与地面 间的动摩擦因数为μ2=0.1。某时刻A、B两滑块开始相向滑动, 初速度大小均为v0=3m/s。A、B相遇时,A与木板恰好相对静 止。设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=
0.6,cos37 =0.8,g取10m/s2,则下列判断正确的是( A C )
A.小孩在滑板上下滑的加速度大小为2m/s2 B.小孩和滑板脱离前滑板的加速度大小为0.5m/s2 C.经过 s的时间,小孩离开滑板 D.小孩离开滑板时的速度大小为 m/s
4. 在一块固定的倾角为θ的木板上叠放质量均为m的一本英语词
A.1m B.2.1m C.2.25m D.3.1m
课后练习:
1.如图所示,质量M=8kg的小车静止在光滑水平面上, 在小车右端施加一水平拉力F=8N。当小车速度达到1.5m/s时, 在小车的右端由静止轻放一大小不计、质量m=2kg的物体, 物体与小车间的动摩擦因数μ=0.2,小车足够长。从物体放上 小车开始经t=1.5s的时间,物体相对地面的位移为(g取
D.图甲中英语词典受到的摩擦力大小是μ2mgcos θ
5.质量为m0=20kg、长为L=2m的木板放在水平面上,木板 与水平面间的动摩擦因数为μ1=0.1。将质量m=10kg的小木块 (可视为质点),以v0=4m/s的速度从木板的左端水平抛射到木板 上(如图所示),小木块与木板间的动摩擦因数为μ2=0.4(最大静 摩擦力等于滑动摩擦力,g取10m/s2)。以下说法正确的是( ) A.木板一定静止不动,小木块不能滑出木板 B.木板一定静止不动,小木块能滑出木板 C.木板一定向右滑动,小木块不能滑出木板 D.木板一定向右滑动,小木块能滑出木板

高中物理滑块-板块模型(解析版)

高中物理滑块-板块模型(解析版)

滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。

二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。

滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。

⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。

3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。

【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。

假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。

现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。

下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】 A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。

A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。

牛顿运动定律巧解滑块-滑板模型

牛顿运动定律巧解滑块-滑板模型

例题三:滑块与滑板在碰撞中的运动
要点一
总结词
要点二
详细描述
碰撞中的滑块-滑板模型需要考虑动量守恒和能量守恒,通 过牛顿运动定律可以求解碰撞后的运动状态。
当滑块与滑板发生碰撞时,根据动量守恒定律,可以求出 碰撞后的速度。根据能量守恒定律,可以判断碰撞是否为 弹性碰撞。根据牛顿第二定律,可以求出碰撞后滑块和滑 板的加速度。通过分析加速度和初速度作用力和反作用力之间的关系,即作用力和反作用力大小相等、方向相反 、作用在同一条直线上。
详细描述
该定律指出,当一个物体对另一个物体施加力时,另一个物体会对施力物体施加 一个大小相等、方向相反的力。这两个力是相互作用的,并且作用在同一条直线 上。
03
CATALOGUE
滑块-滑板模型中的牛顿运动定律
THANKS
感谢观看
滑块与滑板间的相互作用力分析
01
02
03
作用力与反作用力
根据牛顿第三定律,滑块 与滑板间的作用力和反作 用力大小相等、方向相反 。
摩擦力分析
滑动摩擦力的大小与接触 面的粗糙程度和正压力有 关,方向与相对运动方向 相反。
支持力分析
支持力垂直于接触面,指 向被支持的物体,与重力 等其他外力平衡。
滑块与滑板间的动量守恒分析
以判断滑块是否从滑板上滑落。
例题二:滑块与滑板在斜面上的运动
总结词
斜面上的滑块-滑板模型需要考虑重力的影 响,通过牛顿运动定律可以求解滑块和滑板 的运动状态。
详细描述
当滑块放在滑板上,在斜面上运动时,除了 受到重力、支持力和摩擦力的作用外,还需 要考虑重力的分力。根据牛顿第二定律,可 以求出滑块和滑板的加速度。通过分析加速 度和初速度的关系,可以判断滑块是否从滑 板上滑落。

【动力学中的“板块”和“传送带”模型】规律总结

【动力学中的“板块”和“传送带”模型】规律总结

考点二 传送带模型
多维探究
第 1 维度:水平传送带问题
1.情景特点分析
项目
图示
滑块可能的运动情况
情景 1
(1)可能ቤተ መጻሕፍቲ ባይዱ直加速 (2)可能先加速后匀速
情景 2
(1)v0>v 时,可能一直减速,也可能先减速再匀速 (2)v0<v 时,可能一直加速,也可能先加速再匀速
项目 情景 3
图示
滑块可能的运动情况 (1)传送带较短时,滑块一直减速达到左端 (2)传送带较长时,滑块还要被传送带传回右端.其中 v0 >v 返回时速度为 v,当 v0<v 返回时速度为 v0
2.思路方法 解题的关键在于分析清楚物体与传送带的相对运动情况,从而确定物体所受摩擦力 的大小和方向.当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变.
【总结提升】 解答传送带问题应注意的事项 (1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目 的是得到物块的加速度. (2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需 判断 μ 与 tan θ 的关系才能决定物块以后的运动. (3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时有很大作用.
(2) 速度关系 滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方 向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况. (3) 位移关系 滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移 和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到 了,自然也就容易列出所需要的方程了.
考点一 “滑块—滑板”模型
师生互动
1.模型特点
上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.

高中物理模型法解题-滑板-木块模型

高中物理模型法解题-滑板-木块模型

高中物理模型法解题——滑板木块模型【模型概述】滑块-滑板问题往往涉及两个物体,并且常常是叠放在一起的,有时也成为“叠放问题”。

两个物体间由某种力联系在一起,并且存在相对运动,牵涉到摩擦力的分析和突变、极值问题,与运动学、受力分析、动力学、功和能都有密切的联系。

既可单独考其中单个知识点,也可以出综合性的大题。

分析过程复杂,综合性极强,并且需要较强的数学计算能力,是高中物理教学和学习的难点。

鉴于“滑板-滑块模型”的特点,板块问题能够较好的考查学生对知识的掌握程度和学生对问题的分析综合能力,是增强试卷区分度的有力题目。

因此,板块问题不论在平时的大小模考中,还是在高考试卷中都占据着非常重要的地位。

【知识链接】一、滑板-滑块模型1)解题思路:分析滑块和滑板的受力情况——应用牛顿第二定律分别求出速度——对二者进行运动情况分析——找出位移关系或速度关系建立方程并求解。

2)位移关系:滑块从滑板的一端运动到另一端的过程中,若滑块和滑板向同一方向运动,则滑块的位移与滑板的位移之差等于滑板的长度;若滑块和滑板向相反方向运动,则滑块的位移和滑板的位移之差等于滑板的长度。

3)速度关系:当滑块和滑板的速度相同,二者距离往往最大或最小。

4) 何时开始运动:判断两个接触面间摩擦力的大小关系,根据两接触面间摩擦力的大小判断谁先运动。

5) 何时开始相对运动:二者加速度相同是发生相对运动的转折点,隔离法求出该加速度,然后整体法求解外力。

6) 摩擦力做功问题:A )叠放的长方体物块A 、B 在光滑的水平面上匀速运动或在光滑的斜面上自由释放后变速运动的过程中(如下图所示),A 、B 之间无摩擦力作用.B )如图所示,一对滑动摩擦力做的总功一定为负值,其绝对值等于摩擦力乘以相对滑动的总路程或等于摩擦产生的热量,与单个物体的位移无关,即Q 摩=f·s 相.二、 运动学相关知识1) 匀速直线运动:匀速直线运动指速度大小和方向均不变的直线运动叫做匀速直线运动,涉及的公式是 。

物理模型 “滑板—滑块”模型

物理模型 “滑板—滑块”模型

物理模型 “滑板—滑块”模型[模型概述] (1)滑板——滑块模型的特点①滑块未必是光滑的.②板的长度可能是有限的,也可能是足够长的.③板的上、下表面可能都存在摩擦,也可能只有一个面存在摩擦,还可能两个面都不存在摩擦.(2)滑板——滑块模型常用的物理规律匀变速直线运动规律、牛顿运动定律、动能定理、机械能守恒定律、能的转化和守恒定律、功能关系等.[模型指导] (1)两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.(2)解题思路处理滑块—木板模型问题的分析方法(1)动力学分析:分别对滑块和木板进行受力分析,根据牛顿第二定律求出各自的加速度;从放上滑块到二者速度相等,所用时间相等,由t =Δv 2a 2=Δv 1a 1可求出共同速度v 和所用时间t ,然后由位移公式可分别求出二者的位移.(2)功和能分析:对滑块和木板分别运用动能定理,或者对系统运用能量守恒定律,要注意区分三个位移:①求摩擦力对滑块做功时用滑块对地的位移x 滑;②求摩擦力对木板做功时用木板对地的位移x 板;③求摩擦生热时用相对滑动的位移x 相.1.如图所示,光滑水平面上放置着质量分别为m 、2m 的A 、B 两个物体,A 、B 间的最大静摩擦力为μmg ,现用水平拉力F 拉B ,使A 、B 以同一加速度运动,则拉力F 的最大值为A .μmgB .2μmgC .3μmgD .4μmg解析 当A 、B 之间恰好不发生相对滑动时力F 最大,此时,对于A 物体所受的合外力为μmg ,由牛顿第二定律知a A =μmgm =μg ;对于A 、B 整体,加速度a =a A =μg ,由牛顿第二定律得F =3ma =3μmg 。

答案 C2.(2017·广西质检)如图所示,A 、B 两个物体叠放在一起,静止在粗糙水平地面上,物体B 与水平地面间的动摩擦因数μ1=0.1,物体A 与B 之间的动摩擦因数μ2=0.2.已知物体A 的质量m =2 kg ,物体B 的质量M =3 kg ,重力加速度g 取10 m/s 2.现对物体B 施加一个水平向右的恒力F ,为使物体A 与物体B 相对静止,则恒力的最大值是(物体间的最大静摩擦力等于滑动摩擦力)( )A .20 NB .15 NC .10 ND .5 N答案:B 解析:对A 、B 整体,由牛顿第二定律,F max -μ1(m +M )g =(m +M )a ;对物体A ,由牛顿第二定律,μ2mg =ma ;联立解得F max =(m +M )(μ1+μ2)g ,代入相关数据得F max =15 N ,选项B 正确.3.(2017·黄冈质检)如图甲所示,在水平地面上有一长木板B ,其上叠放木块A 。

高中物理三种模型带你解决“滑块滑板”问题

高中物理三种模型带你解决“滑块滑板”问题

高中物理三种模型带你解决“滑块滑板”问题
滑块滑板问题是高考的热点,也是高一上的一个重难点,在高一上的滑块滑板中它主要涉及到受力分析,运动状况分析,以及牛顿运动定律,综合性较强,所以也成为学生学习感到困难的一部分,滑块滑板看似复杂,掌握好受力分析与运动的分析结合牛顿运动定律,再进行分析就比较轻松了。

类型一.“板—块”模型
1.模型特点
上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.
2.两种位移关系
滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题方法
整体法、隔离法.
4.解题思路
(1)分析滑块和滑板的受力情况,根据牛顿第二定律分别求出滑块和滑板的加速度.
(2)对滑块和滑板进行运动情况分析,找出滑块和滑板之间的位移关系或速度关系,建立方程.特别注意滑块和滑板的位移都是相对地的位移.
类型二.水平传送带问题
滑块在水平传送带上运动常见的三个情景
类型三.倾斜传送带问题
滑块在倾斜传送带上运动常见的四个情景
总结:处理滑块与滑板类问题的基本思路
判断滑块与滑板间是否存在相对滑动是思考问题的着眼点.方法有整体法隔离法、假设法等.即先假设滑块与滑板相对静止,然后根据牛顿第二定律求出滑块与滑板之间的摩擦力,再讨论滑块与滑板之间的
摩擦力是不是大于最大静摩擦力.。

高中物理滑块滑板模型教案

高中物理滑块滑板模型教案

高中物理滑块滑板模型教案
一、教学目的:
1. 了解滑块滑板的运动原理;
2. 掌握滑块滑板的相关公式和计算方法;
3. 探讨滑块滑板的设计和优化问题。

二、教学内容:
1. 滑块滑板的基本结构和运动原理;
2. 滑块滑板的动能和势能计算;
3. 滑块滑板的速度和加速度计算;
4. 滑块滑板的设计和优化问题。

三、教学步骤:
1. 引入问题:通过展示滑块滑板的实物模型或视频,引导学生思考滑块滑板的运动规律和设计要素;
2. 讲解理论知识:介绍滑块滑板的基本结构、运动原理以及与滑块滑板运动相关的公式;
3. 解答问题:分组讨论解决滑块滑板的相关问题,如速度、加速度、能量转换等;
4. 实验设计:设计一个关于滑块滑板的实验,通过实验探究滑块滑板的运动特性;
5. 总结讨论:总结本节课的内容,讨论滑块滑板的设计和优化问题。

四、教学评估:
1. 学生课堂表现评价:学生在课堂讨论、实验设计和问题解答中的表现;
2. 作业评价:布置与滑块滑板相关的作业,评价学生对理论知识的掌握和应用能力。

五、拓展延伸:
1. 可以结合工程应用,设计一个优化的滑块滑板模型,并进行模拟仿真;
2. 可以探讨滑块滑板在不同表面摩擦系数下的运动规律并进行实验验证。

以上为高中物理滑块滑板模型教案范本,教师可根据实际情况和学生水平进行适当调整和拓展。

应用动力学方法解决“滑块——滑板”模型问题 讲义

应用动力学方法解决“滑块——滑板”模型问题 讲义

应用动力学方法解决“滑块——滑板”模型问题[核心精讲]滑块——滑板模型是近几年来高考考查的热点,涉及摩擦力的分析判断、牛顿运动定律、匀变速运动等主干知识,能力要求较高,滑块和滑板的位移关系、速度关系是解答滑块——滑板模型的切入点,前一运动阶段的末速度是下一运动阶段的初速度,解题过程中必须以地面为参考系.1.模型特点:滑块(视为质点)置于滑板上,滑块和滑板均相对地面运动,且滑块和滑板在摩擦力的相互作用下发生相对滑动.2.运动学分析:无临界速度时,滑块与滑板分离,确定相等时间内的位移关系解题;有临界速度时,滑块与滑板不分离,假设速度相等后加速度相同,由整体法求解系统的共同加速度,再由隔离法用牛顿第二定律求滑块与滑板间的摩擦力f ,如果该摩擦力不大于最大静摩擦力说明假设成立,则整体列式解题;如果该摩擦力大于最大静摩擦力说明假设不成立,则分别列式;确定相等时间内的位移关系解题.3.动力学分析:判断滑块与滑板是否发生相对滑动是解决这类问题的一个难点,通常采用整体法、隔离法和假设法等.往往先假设两者相对静止,由牛顿第二定律求出它们之间的摩擦力f ,与最大静摩擦力f m 进行比较.若f <f m ,则不会发生相对滑动;反之,将发生相对滑动.从运动学角度看,滑块与滑板的速度和加速度不等,则会发生相对滑动.[范例] (20分)(2015·高考全国卷Ⅰ)一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5 m ,如图甲所示.t =0时刻开始,小物块与木板一起以共同速度向右运动,直至t =1 s 时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1 s 时间内小物块的v -t 图线如图乙所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10 m/s 2.求:(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.[解析] (1)规定向右为正方向.木板与墙壁相碰前,小物块和木板一起向右做匀变速运动,设加速度为a 1,小物块和木板的质量分别为m 和M .由牛顿第二定律得-μ1(m +M )g =(m +M )a 1①(1分)由题图乙可知,木板与墙壁碰撞前瞬间的速度v 1=4 m/s ,由运动学公式得v 1=v 0+ a 1t 1②(1分) x 0=v 0t 1+12a 1t 21③(1分)式中,t 1=1 s ,x 0=4.5 m 是木板碰撞前的位移,v 0是小物块和木板开始运动时的速度.联立①②③式和题给条件得μ1=0.1 ④(1分)在木板与墙壁碰撞后,木板以初速度为-v 1向左做匀变速运动,小物块以初速度v 1向右做匀变速运动.设小物块的加速度为a 2,由牛顿第二定律得-μ2mg =ma 2⑤(1分)由题图乙可得a 2=v 2-v 1t 2-t 1⑥(1分)式中,t 2=2 s ,v 2=0,联立⑤⑥式和题给条件得 μ2=0.4.⑦(1分)(2)设碰撞后木板的加速度为a 3,经过时间Δt ,木板和小物块刚好具有共同速度v 3.由牛顿第二定律及运动学公式得μ2mg +μ1(M +m )g =Ma 3⑧(1分) v 3=-v 1+a 3Δt ⑨(1分) v 3=v 1+a 2Δt⑩(1分)碰撞后至木板和小物块刚好达到共同速度的过程中,木板运动的位移为 x 1=-v 1+v 32Δt⑪(1分) 小物块运动的位移为x 2=v 1+v 32Δt⑫(1分) 小物块相对木板的位移为Δx =x 2-x 1⑬(1分)联立④⑥⑦⑧⑨⑩⑪⑫⑬式,并代入数值得 Δx =6.0 m⑭(1分)因为运动过程中小物块没有脱离木板,所以木板的最小长度应为6.0 m .(1分) (3)在小物块和木板具有共同速度后,两者向左做匀变速运动直至停止,设加速度为a 4,此过程中小物块和木板运动的位移为x 3.由牛顿第二定律及运动学公式得μ1(m +M )g =(m +M )a 4⑮(1分) 0-v 23=2a 4x 3⑯(1分)碰后木板运动的位移为x=x1+x3 ⑰(1分)联立④⑥⑦⑧⑨⑩⑪⑮⑯⑰式,并代入数值得x=-6.5 m(1分)木板右端离墙壁的最终距离为6.5 m.(1分)[答案](1)0.10.4(2)6.0 m(3)6.5 m(1)规范要求书写物理表达式要以课本原始公式为依据,牛顿第二定律的表达式为F合=ma,要分步列式,尽量不要列综合式,否则容易失分;符号使用要规范,与题目提供的符号要一致,再者木板和物块的加速度不同,若都用a表示不加以区分,将不得分.(2)评分细则第(1)问7分,①~⑦式各1分.第(2)问8分,⑧~⑭式各1分.第(3)问5分,⑮~⑰式各1分.题目中给出的符号解析中必须要一致,若μ1、μ2用错,则扣结果分.无单位、单位错误,相应的得分点不给分.(用其他方法求解,正确的,参照上述答案酌情给分)[预测押题]1.如图甲所示,质量为M的长木板,静止放置在粗糙水平地面上,有一个质量为m、可视为质点的物块,以某一水平初速度从左端冲上木板.从物块冲上木板到物块和木板达到共同速度的过程中,物块和木板的v-t图象分别如图乙中的折线acd和bcd所示,a、b、c、d点的坐标分别为a(0,10)、b(0,0)、c(4,4)、d(12,0).根据v-t图象,求:(1)物块冲上木板做匀减速直线运动的加速度大小a1,木板开始做匀加速直线运动的加速度大小a2,达到共同速度后一起做匀减速直线运动的加速度大小a3;(2)物块质量m与长木板质量M之比;(3)物块相对长木板滑行的距离Δx.解析:(1)由v -t 图象可求出物块冲上木板做匀减速直线运动的加速度大小a 1=10-44m/s 2=1.5 m/s 2,木板开始做匀加速直线运动的加速度大小a 2=4-04m/s 2=1 m/s 2,达到共同速度后一起做匀减速直线运动的加速度大小a 3=4-08m/s 2=0.5 m/s 2.(2)对物块冲上木板匀减速阶段:μ1mg =ma 1 对木板向前匀加速阶段:μ1mg -μ2(m +M )g =Ma 2 物块和木板达到共同速度后向前匀减速阶段: μ2(m +M )g =(M +m )a 3 以上三式联立可得m M =32.(3)由v -t 图象可以看出,物块相对于长木板滑行的距离Δx 对应图中△abc 的面积,故Δx =10×4×12m =20 m.答案:(1)1.5 m/s 2 1 m/s 2 0.5 m/s 2 (2)32(3)20 m 2.(2017·湖北七市联考)如图所示,可视为质点的物体A 叠放在长木板B 上,A 、B 的质量分别为m 1=10 kg 、m 2=10 kg ,B 长为L =16 m ,开始时A 在B 的最右端;A 与B 、B 与地之间的动摩擦因数分别为μ1=0.4、μ2=0.4;现将一水平恒力F =200 N 作用在B 上,使A 、B 由静止开始运动,当A 恰好运动到B 的中点时撤去外力F ,g 取10 m/s 2.求:(1)力F 作用的时间及此时B 前进的距离; (2)撤去外力F 后B 还能走多远?解析:(1)力F 开始作用时,设A 、B 的加速度分别为a 1、a 2, 对A :μ1m 1g =m 1a 1,a 1=4 m/s 2 对B :F -μ1m 1g -μ2(m 1+m 2)g =m 2a 2, a 2=8 m/s 2,设力F 作用的时间为t ,对应此时A 、B 的速度为v A 、v B 则有12a 2t 2-12a 1t 2=12L代入数据得,t =2 s ,v A=8 m/s,v B=16 m/s此时B前进的距离为x B=12a2t2=16 m.(2)撤去外力F后,对A有μ1m1g=m1a3,a3=4 m/s2对B有μ1m1g+μ2(m1+m2)g=m2a4,a4=12 m/s2设A、B经过时间t1达到共同速度v1则有v A+a3t1=v B-a4t1解得:t1=0.5 s,v1=10 m/s此过程中B前进的距离为x1=v2B-v212a4=6.5 mA、B共速后一起匀减速的加速度为a5μ2(m1+m2)g=(m1+m2)a5,a5=4 m/s2此时B前进的距离为x2=v 2 12a5=12.5 m 撤去F后B前进的总距离为x=x1+x2=19 m.答案:(1)2 s16 m(2)19 m。

滑块和滑板模型

滑块和滑板模型

滑块与滑板相互作用模型【模型分析】1、相互作用:滑块之间的摩擦力分析2、相对运动:具有相同的速度时相对静止。

两相互作用的物体在速度相同,但加速度不相同时,两者之间同样有位置的变化,发生相对运动。

3、通常所说物体运动的位移、速度、加速度都是对地而言的。

在相对运动的过程中相互作用的物体之间位移、速度、加速度、时间一定存在关联。

它就是我们解决力和运动突破口。

4、求时间通常会用到牛顿第二定律加运动学公式5、求位移通常会用到牛顿第二定律加运动学公式或动能定理,应用动能定理时研究对象为单个物体或可以看成单个物体的整体。

另外求相对位移时:通常会用到系统能量守恒定律.6、求速度通常会用到牛顿第二定律加运动学公式或动能定理或动量守恒定律:应用动量守恒定律时要特别注意系统的条件和方向。

1、如图所示,在光滑水平面上有一小车A ,其质量为0.2=A m kg ,小车上放一个物体B ,其质量为0.1=B m kg ,如图(1)所示。

给B 一个水平推力F ,当F 增大到稍大于3。

0N 时,A 、B 开始相对滑动。

如果撤去F ,对A 施加一水平推力F ′,如图(2)所示,要使A 、B 不相对滑动,求F ′的最大值m F2.如图所示,质量M=8 kg 的小车放在水平光滑的平面上,在小车左端加一水平推力F=8 N ,当小车向右运动的速度达到1.5 m/s 时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg 的小物块,物块与小车间的动摩擦因数μ=0。

2,小车足够长(取g=l0 m/s 2)。

求: (1)小物块放后,小物块及小车的加速度大小各为多大?(2)经多长时间两者达到相同的速度?(3)从小物块放上小车开始,经过t=1.5 s 小物块通过的位移大小为多少?3.如图所示,一块质量为M ,长为L 的均质板放在很长的光滑水平桌面上,板的左端有一质量为m 的小物体(可视为质点),物体上连接一根很长的细绳,细绳跨过位于桌边的定滑轮.某人以恒定的速率v 向下拉绳,物体最多只能到达板的中点,而板的右端尚未到达桌边定滑轮处.试求: (1)物体刚达板中点时板的位移.(2)若板与桌面之间有摩擦,为使物体能达到板的右端,板与桌面之间的动摩擦因数的范围是多少?FA B图(1)F ′A B 图(2)M m vMm4.如图所示,质量为M ,长度为L 的长木板放在水平桌面上,木板右端放有一质量为m 长度可忽略的小木块,木块与木板之间、木板与桌面之间的动摩擦因数均为μ。

滑块—滑板模型.

滑块—滑板模型.

高三物理专题复习: 滑块—滑板模型典型例题:例1.如图所示,在粗糙水平面上静止放一长L 质量为1的木板B ,一质量为1的物块A 以速度s m v /0.20=滑上长木板B 的左端,物块与木板的摩擦因素μ1=0.1、木板与地面的摩擦因素为μ2=0.1,已知重力加速度为10m 2,求:(假设板的长度足够长)(1)物块A 、木板B 的加速度;(2)物块A 相对木板B 静止时A 运动的位移;(3)物块A 不滑离木板B ,木板B 至少多长?考点: 本题考查牛顿第二定律及运动学规律考查:木板运动情况分析,地面对木板的摩擦力、木板的加速度计算,相对位移计算。

解析:(1)物块A 的摩擦力:N mgf A 11==μ A 的加速度:21/1s m m f a A -=-= 方向向左 木板B 受到地面的摩擦力:Ag m M f f N 2)(2>=+=μ地故木板B 静止,它的加速度02=a(2)物块A 的位移:m a v S 2220=-= (3)木板长度:m S L 2=≥拓展1.在例题1中,在木板的上表面贴上一层布,使得物块与木板的摩擦因素μ3=0.4,其余条件保持不变,(假设木板足够长)求:(1)物块A 与木块B 速度相同时,物块A 的速度多大?(2)通过计算,判断速度相同以后的运动情况;(3)整个运动过程,物块A 与木板B 相互摩擦产生的摩擦热多大?考点:牛顿第二定律、运动学、功能关系考查:木板与地的摩擦力计算、是否共速运动的判断方法、相对位移和摩擦热的计算。

解析:对于物块A:N mg f A 44==μ 1分加速度:,方向向左。

24/0.4s m g m f a A A -=-=-=μ 1分 对于木板:N g m f 2)M 2=+=(地μ 1分加速度:,方向向右。

地2A /0.2s m M f f a C =-= 1分物块A 相对木板B 静止时,有:121-t a v t a C B =解得运动时间:,s t .3/11= s m t a v v B B A /3/21=== 1分(2)假设共速后一起做运动,22/1)()(s m m M g m M a -=++-=μ 物块A 的静摩擦力:A A f N ma f <==1'1分 所以假设成立,共速后一起做匀减速直线运动。

《滑块、滑板模型》图文课件-人教版高中物理必修1

《滑块、滑板模型》图文课件-人教版高中物理必修1
大小,有速度差则产生滑动摩擦力、无速度差则需判断有无静摩擦力。物体 的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。
摩擦力的方向可由其作用效果判断
滑动摩擦力的作用效果:减少乃至消除两物体的速度差 静摩擦力的效果:尽最大力维持两物体速度差为零
•谢 谢
101教育PPT产品介绍
101教育PPT是一款专业服务老师的备授课一体化教学软件,丰富教学 资源、多元教学互动,辅助老师轻松备课、高效授课。 101教育PPT软件内含海量免费PPT课件、学科工具,支持PPT课件制作、 PPT课件下载,帮老师轻松完成课件制作。
滑块、滑板模型
模型特征: 两个相互作用的物体叠放在一起组成的系统
课 件 使 用 1 0 1 教 育 P P T 制 作 ()
情景讨论:
1、无外力作用,A的初速度为v、B静止
若地面光滑,对A、B受力分析: 滑块滑板的运动情景: ①A一直减速、B一直加速,直到A脱离; ②A减速、B加速,最终共速;
更多课件
点击这里
马上安装。
进入官网了解更多详情:源自滑板长mgt/s ②A减速、B不动,最终A停在B上
v /(m / s 1 )
t/s ④A减速、B加速,最终A、B一起减速
v /(m / s 1 )
Mg
t/s
t/s
例题一: 质量为2kg的木板B静止在水平面上,可视为质点的物块A从木板 的左侧沿木板上表面水平冲上木板,如图甲所示。A和B经过1s达到 同一速度,之后共同减速直至静止,A和B的v-t图象如图乙所示,重 力加速度g=10m/s2,求: (1)A与B上表面之间的动摩擦因数μ1; (2)B与水平面间的动摩擦因数μ2; (3)A的质量。
若地面不光滑,对A、B受力分析:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十五讲滑块与滑板模型解题方法(1)搞清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变.考点一:f内+ 外力F(滑板)1.如图所示,A、B两个物块叠放在光滑水平面上,质量分别为2 kg和6 kg,它们之间的动摩擦因数为0.2.设最大静摩擦力等于滑动摩擦力,取g=10 m/s2.现对B施加水平拉力F,要保持A、B相对静止,F不能超过()A.4 N B.8 N C.12 N D.16 N2.如图甲所示,一质量为M的长木板静置于光滑水平面上,其上放置一质量为m小滑块.木板受到随时间t变化的水平拉力F作用时,用传感器测出长木板的加速度a与水平拉力F的关系如图乙所示,取g=10m/s2,则()A.当0<F<6N时,滑块与木板之间的摩擦力随F变化的函数关系f=2/3FB.当F=8N时,滑块的加速度为1m/s2C.滑块与木板之间的滑动摩擦因素为0.2D.力随时间变化的函数关系一定可以表示为F=6t(N)3.如图所示,A、B两物体叠放在光滑水平桌面上,轻质细绳一端连接B,另一端绕过定滑轮连接C物体,已知A和C的质量都是1 kg,B的质量是3 kg,A、B间的动摩擦因数是0.1,其它摩擦不计.由静止释放,C下落一定高度的过程中(未落地,B未撞到滑轮),g=10m/s2下列说法正确的是()A.A、B两物体没有发生相对滑动B.A物体受到的摩擦力大小为2NC.B物体的加速度大小是3m/s2D.细绳的拉力大小等于7.75 N4.如图所示,质量M=4kg的小车长L=1.4 m,静止在光滑水平面上,其上面右端静止一质量m=1kg的小滑块(可看作质点),小车与木板间的动摩擦因数μ=0.4,先用一水平恒力F向右拉小车。

(g=10 m/s2.)(1)若用一水平恒力F=10N,小滑块与小车间的摩擦力为多大?(2)小滑块与小车间不发生相对滑动的水平恒力F大小要满足的条件?(3)若用一水平恒力F=28N向右拉小车,要使滑块从小车上恰好滑下来,力F至少应作用多长时间考点二:f内+ 外力F(滑板)+ f地1.如图所示,长L=1.5 m、质量M=3 kg的木板静止放在水平面上,质量m=1 kg 的小物块(可视为质点)放在木板的右端,木板和物块间的动摩擦因数μ1=0.1,木板与地面间的动摩擦因数μ2=0.2. 现对木板施加一水平向右的恒定拉力F,取g=10 m/s2.(1)求使物块不掉下去的最大拉力F0(物块受到的最大静摩擦力等于滑动摩擦力).(2)如果拉力F=21 N恒定不变,经多长时间物块从板上滑下2.如图甲所示,质量为M=4kg的木板静止在水平面上,质量m=1kg的小滑块静止在木板的右端,可看成质点。

已知木板与水平面间的动摩擦因数为μ1=0.1,小滑块与木板之间的动摩擦因数为μ2=0.4,重力加速度g=10m/s2。

现用力F作用在木板M上,F随时间t变化的关系如图乙所示,求:(1)t=1s时,小滑块和木板的速度大小;(2)为使小滑块不从木板上滑落下来,木板的最小长度。

3.如图甲所示,有一块木板静止在足够长的粗糙水平面上,木板质量为M=4kg,长为L=1.4m;木板右端放着可视为质点的小滑块,小滑块质量为m=1kg,现用水平恒力F 作用于木板的右端,恒力F取不同数值时,小滑块和木板的加速度分别对应不同数值,两者的a-F图象如图乙所示,取g=10m/s2。

求:(1)小滑块与木板间的动摩擦因数μ1以及木板与地面间的动摩擦因数μ2。

(2)若水平恒力F=27.8N,且始终作用在木板上,当小滑块从木板上滑落时,经历的时间为多少?4.如图所示,物体A放在足够长的木板B上,木板B静止于水平面上.已知A的质量m A和B的质量m B均为2.0 kg,A、B之间的动摩擦因数μ1=0.2,B与水平面之间的动摩擦;因数μ2=0.1,最大静摩擦力与滑动摩擦力大小视为相等,重力加速度g取10 m/s2.若从t=0开始,木板B受F1=16 N的水平恒力作用,t=1 s时F1改为F2=4 N,方向不变,t=3 s 时撤去F2.(1)木板B受F1=16 N的水平恒力作用时,A、B的加速度a A、a B各为多少?(2)从t=0开始,到A、B相对静止,A在B上相对B滑行的时间为多少?(3)请以纵坐标表示A受到B的摩擦力F f A,横坐标表示运动时间t(从t=0开始,到A、B都静止),取运动方向为正方向,在图中画出F f A-t的关系图线(以图线评分,不必写出分析和计算过程).5.如图所示,小木块质量m=1kg,长木桉质量M=10kg,木板与地面以及木块间的动摩擦因数均为μ=0.5.当木板从静止开始受水平向右的恒力F=90 N作用时,木块以初速v0=4 m/s向左滑上木板的右端.则为使木块不滑离木板,木板的长度L至少要多长?考点三:f内+ 外力F(滑块)1.图所示,在光滑的水平地面上有一个长为L,质量为M=4kg的木板A,在木板的左端有一个质量为m=2kg的小物体B,A、B之间的动摩擦因数为μ=0.2,当对B施加水平向右的力F作用时(设A、B间的最大静摩擦力大小与滑动摩擦力大小相等),(1)若F=5N,则A、B 加速度分别为多大?(2)若F=10N,则A、B 加速度分别为多大?(3)在(2)的条件下,若力F作用时间t=3s,B刚好到达木板A的右端,则木板长L应为多少?2.如图所示,物体A放在物体B上,物体B放在光滑的水平面上,已知m A=6 kg,m B=2 kg. A、B间动摩擦因数μ=0.2. A物体上系一细线,细线能承受的最大拉力是20 N,水平向右拉细线,下述中正确的是(g取10 m/s2)( )A.当拉力0<F<12 N时,A静止不动B.当拉力F>12 N时,A相对B滑动C.当拉力F=16 N时,B受到A的摩擦力等于4 ND.在细线可以承受的范围内,无论拉力F多大,A相对B始终静止考点四:f 内 + 外力F (滑块)+ f 地1.如图所示,物块A 质量为2kg ,和长木板B 质量为3kg ,A 与B 之间、B 与地面之间动摩擦因数分别为0.5和0.1,开始时A 静止在B 左端,B 停在水平地面上.某时刻起给A 施加一水平拉力F ,求(g 取10m /s 2)(1) F =4N 时,小滑块和木板的速度大小及他们之间的摩擦力的大小; (2) F =10N 时,小滑块和木板的速度大小及他们之间的摩擦力的大小; (3) F =16N 时,小滑块和木板的速度大小及他们之间的摩擦力的大小;2.如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g. 现对A 施加一水平拉力F ,则( )A .当F<2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μgC .当F>3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg3.如图所示,质量为M 的木板A 静止在水平地面上,在木板A 的左端放置一个质量为m 的铁块B ,铁块与木板间的动摩擦因数μ1,木板与地面之间的动摩擦因数为μ2,现给铁块施加一由零开始逐渐变大的水平作用力F ,下列判断正确的是( )A .若μ1>μ2,则一定是木板A 先相对地发生滑动,然后B 相对A 发生滑动 B .若μ1mg>μ2Mg ,则一定是木板A 先相对地发生滑动,然后B 相对A 发生滑动C .若铁块B 先相对A 发生滑动,则当A 、B 刚发生相对滑动时,F 的大小为μ1mgD .若木板A 先相对地发生滑动,则当A 、B 刚发生相对滑动时,F 的大小为2μ1mg考点五:滑块滑板共速问题1.如图所示,质量为M的长木板,静止放置在粗糙水平地面上,有一个质量为m、可视为质点的物块,以某一水平初速度从左端冲上木板.从物块冲上木板到物块和木板达到共同速度的过程中,物块和木板的v-t图象分别如图中的折线acd和bcd所示,a、b、c、d 点的坐标为a(0,10)、b(0,0)、c(4,4)、d(12,0).根据v-t图象,求:(1)物块冲上木板做匀减速直线运动的加速度大小a1,木板开始做匀加速直线运动的加速度大小为a2,达相同速度后一起匀减速直线运动的加速度大小为a3;(2)物块质量m与长木板质量M之比;2.如图,质量m1=lkg的长木板在水平恒力F=l0 N的作用下沿光滑的水平面运动,当木板速度为v=2m/s时,在木板右端无初速轻放一质量为m2=1.5kg的小物块,此后木板运动S0=1.5m时撤去力F,已知物块与木板间动摩擦因素μ=0.4,木板长L=1.3m,g取10m/s2.求(1)求撤去水平力F时木板的速度大小;(2)通过计算分析物块是否滑离木板;若滑离木板,计算物块在木板上的运动时间;若未滑离木板,计算物块和木板的共同速度大小3.如图所示,在光滑的桌面上叠放着一质量为m A=2kg的薄木板A和质量为m B=3kg 的金属块B,A的长度l=2m,B上有轻线绕过定滑轮与质量为m C=1kg的物块C相连。

B 与A之间的滑动摩擦因数μ=0.1,最大静摩擦力可视为等于滑动摩擦力,忽略滑轮质量及与轴间的摩擦。

起始时令各物体都处于静止状态,绳被拉直,B位于A的左端(如图),然后放手,求金属块B从A的右端脱离所经历的时间t (设A的右端距滑轮足够远)(取g=10m/s2)。

4.如图所示,物块A和长木板B的质量均为lkg,A与B之间、B与地面之间的动摩擦因数分别为0.5和0.2,开始时A静止在B的左端,B停在水平地面上.某时刻起给A施加一大小为l0N,方向与水平成θ=37°斜向上的拉力F,0.5s后撤去F,最终A恰好停在B 的右端.(=0.6,=0.8,g取10m/s2)(1)通过计算说明前0.5s内木板B是否运动.(2) 0.5s末物块A的速度.(3)木板B的长度.考点六:三滑块问题1.如图,两个滑块A和B的质量分别为m A=1kg和m B=5kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4kg,与地面间的动摩擦因数为μ2=0.1。

某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3m/s. A、B相遇时,A与木板恰好相对静止。

设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10m/s2。

相关文档
最新文档