热力学第二定律(3)_化学_自然科学_专业资料

合集下载

热力学第二定律

热力学第二定律

热机在最理想的情况下,也不能把所吸收的热全部
转化为功,而有一个限度(极限)。η<1(η≠1)
2、卡诺循环
(1)设想由四个可逆步骤构成。 (汽箱中物质的量为1m膨胀:曲线AB段
从高温热源T2吸 热Q2, 作功W1;
ΔU=0 Q2 = -W1=RT2ln(V2/V1)
结论:热传递的自发过程具有不可逆性。
(2)热功转化的方向性: ① 功可以完全变为热,而不引起其他变化 —自发过程(经验所得);
② 热不可能完全变为功,而不引起其他变化
—非自发过程(经验所得)。
例1 重物推动活塞,活塞带动涡轮转动,活塞和涡轮与
水摩擦生热,功完全变为热;逆过程不可能自动实现。 即热完全变为功而不产生任何影响是不可能的。
2、克劳修斯不等式和熵增原理
(1)不等式:
掌握
卡诺定理
δQ1 / T1 +δQ2 / T2 ≤ 0
熵导出中推广了可逆情况,即∑(δQr / T)= 0 或 ∮(δQr / T)= 0 对任何不可逆过程可同样推广,即 ∑(δQ / T )< 0 或 ∮(δQ / T)< 0
综合得: ∑(δQ / T )≤ 0
(2)证明:见P55
在两个热源之间有卡诺热机R 和任意热机I 设ηI> ηR 则有:W/ > W 据能量守恒定律有:|QI /|< Q1| 从W/中取出W对热机R作功驱 动其反转,从低温热源取出Q1 转入到高温热源
结果是:高温热源没有任何变化;低温热源损失了 |Q1|- | Q1/|热;环境得到W/ –W功。
(见P52 图2.2 卡诺循环 ) ↑

D(T1、V4、P4 )a,r←C(T1、V3、P3 )T,r
(3)结果分析:

物理化学03章_热力学第二定律

物理化学03章_热力学第二定律
Helmholtz自由能 Gibbs自由能
为什么要定义新函数?
热力学第一定律导出了热力学能这个状态函数, 为了处理热化学中的问题,又定义了焓。
热力学第二定律导出了熵这个状态函数,但用熵 作为判据时,系统必须是隔离系统,也就是说必须同 时考虑系统和环境的熵变,这很不方便。
通常反应总是在等温、等压或等温、等容条件下 进行,有必要引入新的热力学函数,利用系统自身状 态函数的变化,来判断自发变化的方向和限度。
§3.8 熵和能量退降
热力学第一定律表明:一个实际过程发生 后,能量总值保持不变。
热力学第二定律表明:在一个不可逆过程 中,系统的熵值增加。
能量总值不变,但由于系统的熵值增加, 说明系统中一部分能量丧失了作功的能力,这 就是能量“退降”。
能量 “退降”的程度,与熵的增加成正比
有三个热源 TA > TB > TC
从高“质量”的能贬值为低“质量”的能 是自发过程。
§3.9 热力学第二定律的本质和熵的统计意义
热力学第二定律的本质
热与功转换的不可逆性 热是分子混乱运动的一种表现,而功是分子 有序运动的结果。 功转变成热是从规则运动转化为不规则运动, 混乱度增加,是自发的过程; 而要将无序运动的热转化为有序运动的功就 不可能自动发生。
热力学第二定律的本质 气体混合过程的不可逆性 将N2和O2放在一盒内隔板的两边,抽去隔板, N2和O2自动混合,直至平衡。 这是混乱度增加的过程,也是熵增加的过程, 是自发的过程,其逆过程决不会自动发生。
热力学第二定律的本质
热传导过程的不可逆性
处于高温时的系统,分布在高能级上的分子 数较集中;
而处于低温时的系统,分子较多地集中在低 能级上。
这与熵的变化方向相同。

热力学第二定律

热力学第二定律

(4) 等容变温过程 S
T2
T1
CV dT T
T2 T2 若CV为常数得 S CV ln nCV,m ln T1 T1
(5) 理想气体的状态改变过程
T2 V2 S nCV ,m ln +nR ln T1 V1 T2 p1 S nC p ,m ln +nR ln T1 p2 S nC p ,m ln V2 p +nCV ,m ln 2 V1 p1
T
值愈大,不可逆程度愈高(若不接受非体积功, 则是一自发过程;否则则为非自发过程)。
=

可以发生,且是可逆过程。
此过程不可能发生。
熵增加原理
1. 绝热体系
∆S绝热 ≥ 0 或 dS绝热 ≥ 0
表明:绝热不可逆过程中体系的熵增加,绝热可逆过程
体系的熵不变;绝热体系不可能发生一个熵减小的过程。
这称为绝热过程的熵增加原理,也称热力学第二定律的 熵表述。 >0 时,过程可发生,且是绝热不可逆的 ∆S绝热 (自发,不自发)
热力学第二定律的两种表述
Clausius( 克劳修斯 ) 表述:不能把热从低温物体传到高
温物体而不产生任何其他影响。 Kelvin(开尔文)表述:不可能从单一热源吸收热量使之 完全转化为功,而不引起其他变化。即第二类永动机
是不可能造成的。
第二类永动机:从单一热源吸收热量,并将所吸收的热 全转化为功而无其他影响。
(6) 等温等压下理想气体的混合过程
S Rni ln xi
2.相变过程
(1) 对可逆相变过程
对等温等压下的可逆相变∆S为
QR ΔH (可逆相变潜热) S T T
(2) 对不可逆相变 (举例说明) 设计 始末态相同的可逆过程再计算∆S

第三章 热力学第二定律

第三章 热力学第二定律

第三章热力学第二定律热力学第一定律过程的能量守恒热力学第二定律过程的方向和限度§3.1 热力学第二定律(1)过程的方向和限度自发过程:体系在没有外力作用下自动发生的变化过程,其有方向和限度。

例如:水位差、温度差、压力差等引起的变化过程。

自发过程,有做功能力方向:始态终态反自发过程,需消耗外力平衡状态限度:始态终态无做功能力自发过程的共同特征:不可逆性(2)热力学第二定律的表达式经典表述:人们不能制造一种机器(第二类永动机),这种机器能循环不断地工作,它仅仅从单一热源吸取热量均变为功,而没有任何其它变化。

一般表述:第二类永动机不能实现。

§3.2 卡诺循环1824年,法国工程师卡诺(Carnot)使一个理想热机在两个热源之间,通过一个特殊的可逆循环完成了热→功转换,给出了热机效率表达式。

这个循环称卡诺循环。

(1)卡诺循环过程设热源温度T1 > T2,工作物质为理想气体。

卡诺循环1. 恒温可逆膨胀(A → B ):0U 1=∆ 12111V V lnnRT W Q == 2. 绝热可逆膨胀(B → C ):0q =, )T T (nC U W 21V 22-=∆-=3. 恒温可逆压缩(C → D ):0U 3=∆, 342322V V lnnRT W q Q ==-= 4. 绝热可逆压缩(D → A ):0q =, )T T (nC U W 12V 44-=∆-=整个循环过程的总功为:34212112V 34221V 1214321V Vln nRT V V lnnRT )T T (nC V Vln nRT )T T (nC V V ln nRT W W W W W +=-++-+=+++= 热机循环一周有:0U =∆, W q Q Q Q Q 2121=-=+=热机效率:1213421211V V ln nRT V Vln nRT V V lnnRT Q W+==η对于绝热可逆膨胀:k12312V V T T -⎪⎪⎭⎫ ⎝⎛=对于绝热可逆压缩: k14121V V T T-⎪⎪⎭⎫ ⎝⎛=比较得:1423V V V V =或 4312V V V V = 则: 121121Q Q Q T T T +=-=η η— 卡诺热机效率(2) 卡诺定理卡诺定理:一切工作于高温热源T 1与低温热源T 2之间的热机效率,以可逆热机的效率为最大。

热力学第二定律自由能(3)

热力学第二定律自由能(3)
19
从式(2.45)可得出下列偏微分公式
等容
U ( S )V
T
等熵
U
( V
)S

p
同理,可分别得到:
T

( U S
)V

H ( S ) p
V

(
H p
)S

(
G p
)T
p

( U V
)S

( F V
)T
S

(
F T
)V

(
G T
)
p
20
设某一状态函数 Z f (x, y)
一、热力学第一定律、第二定律的联合表达式 第 九
节 热一律 dU Q W
吉 布 斯
热二律
dS Q
T环
或 T环dS Q

、 亥
联合两定律 T环dS dU W
(2.34)

霍 此式可用于封闭体系的任意过程,式中不等号
兹 能
表示过程不可逆,等号表示过程可逆。
1
二、亥姆霍兹能
T2
1 )
T1
(2.60)
若进行不定积分
G
T


T2 T1
H T2
dT

I
假设ΔH不随 温度而变
如果ΔH随温度而变,则由基尔霍夫定律求ΔH:
H H0 CpdT
再代入(2.59)式进行积分
G

H0

aT
ln
T

b 2
T
2

c 6
T
3

......

热力学第二定律

热力学第二定律
Diagram
Add Your Text
Add Your Text
Add Your Text
Add Your Text
Add Your Text
Add Your Text
Add Your Text
Add Your Text
3-D Pie Chart
第五节 熵方程和熵增原理
图8-10 柴油机理想循环
第一节 自然过程的方向性
图8-1 摩擦耗散
第二节 热 力 循 环
一、热力循环的概念及分类
第二节 热 力 循 环
在工质的热力状态变化过程中,通过工质的体积膨胀可以将热能转化为机械能而做功。但是任何一个热力膨胀过程都不可能一直进行下去,而且连续不断地做功。因为工质的状态将会变化到不适宜继续膨胀做功的情况。例如,通过定温膨胀过程或绝热膨胀过程做功时,工质的压力将降低到不能做功的水平。此外,机器设备的尺寸总是有限的,也不允许工质无限制地膨胀下去。为使连续做功成为可能,工质在膨胀做功后还必须经历某些压缩过程,使它回复到原来的状态,以便重新进行膨胀做功的过程。这种使工质经历一系列的状态变化后,重新回复到原来状态的全部过程称为热力循环。在状态参数平面坐标图上,热力循环的全部过程一定构成一个闭合曲线,整个循环可看作一个闭合过程,所以也称为循环过程。
第二节 热 力 循 环
图8-4 逆向循环的p-v、T-s图
第二节 热 力 循 环
四、可逆循环和不可逆循环 全部由可逆过程组成的循环称为可逆循环,它可以是正向,也可以是逆向的。经过一个正向的可逆循环和一个相应的逆向可逆循环之后,整个系统(包括工质、高温热源和低温热源)都回复到原来状态,而不留下任何改变。
第四节 卡诺循环和卡诺定理
第五节 熵方程和熵增原理

第三章热力学第二定律

第三章热力学第二定律

第三章 热力学第二定律一.基本要求1.了解自发变化的共同特征,熟悉热力学第二定律的文字和数学表述方式。

2.掌握Carnot 循环中,各步骤的功和热的计算,了解如何从Carnot 循环引出熵这个状态函数。

3.理解Clausius 不等式和熵增加原理的重要性,会熟练计算一些常见过程如:等温、等压、等容和,,p V T 都改变过程的熵变,学会将一些简单的不可逆过程设计成始、终态相同的可逆过程。

4.了解熵的本质和热力学第三定律的意义,会使用标准摩尔熵值来计算化学变化的熵变。

5.理解为什么要定义Helmholtz 自由能和Gibbs 自由能,这两个新函数有什么用处?熟练掌握一些简单过程的,,H S A ΔΔΔ和G Δ的计算。

6.掌握常用的三个热力学判据的使用条件,熟练使用热力学数据表来计算化学变化的,和r m H Δr m S Δr m G Δ,理解如何利用熵判据和Gibbs 自由能判据来判断变化的方向和限度。

7.了解热力学的四个基本公式的由来,记住每个热力学函数的特征变量,会利用d 的表示式计算温度和压力对Gibbs 自由能的影响。

G 二.把握学习要点的建议自发过程的共同特征是不可逆性,是单向的。

自发过程一旦发生,就不需要环境帮助,可以自己进行,并能对环境做功。

但是,热力学判据只提供自发变化的趋势,如何将这个趋势变为现实,还需要提供必要的条件。

例如,处于高山上的水有自发向低处流的趋势,但是如果有一个大坝拦住,它还是流不下来。

不过,一旦将大坝的闸门打开,水就会自动一泻千里,人们可以利用这个能量来发电。

又如,氢气和氧气反应生成水是个自发过程,但是,将氢气和氧气封在一个试管内是看不到有水生成的,不过,一旦有一个火星,氢气和氧气的混合物可以在瞬间化合生成水,人们可以利用这个自发反应得到热能或电能。

自发过程不是不能逆向进行,只是它自己不会自动逆向进行,要它逆向进行,环境必须对它做功。

例如,用水泵可以将水从低处打到高处,用电可以将水分解成氢气和氧气。

热力学第二定律

热力学第二定律

第三章热力学第二定律3.1 热力学第二定律的克劳修斯说法和开尔文说法热力学第二定律(second law of thermodynamics)有多种说法,各种说法完全等价的,它是人类经验的总结。

下面介绍两种经典说法。

克劳修斯(R. Clausius)说法:热从低温物体传给高温物体而不产生其它变化是不可能的。

开尔文(L. Kelvin)说法:从一个热源吸热,使之完全转化为功而不产生其它变化是不可能的,或第二类永动机是不可能造成的。

注意的是并非热不能从低温物体传给高温物体,而是不产生其它变化,如致冷机需要消耗电能。

另外也不能简单理解开尔文说法为,如理想气体等温膨胀, U = 0 -Q = W,即热全部变为功,但气体体积变大了。

所以是不引起其它变化的条件下,热不能全部转化为功。

所谓第二类永动机乃是一种能够从单一热源吸热,并将所吸收的热全部变为功而无其它影响的机器,那是不可能造成的。

认识热力学第二定律,首先从热、功转化规律开始,所以首先介绍卡诺定理3.2 卡诺定理3.2.1 热机效率如图3.2-1所示,热机从高温热源吸热Q1,对环境作功 -W,同时向低温热源放热Q2,完成一个循环。

图3.2-1 热转化为功热机效率(efficiency of the heat engine)...... (3.2-1)3.2.2 可逆热机效率可逆过程系统做功最大,热机效率也最大。

1. 卡诺循环卡诺(S. Carnot)设想一部理想热机,由理想气体经四个可逆过程来完成一个循环,如图3-2,称卡诺循环。

过程如下:(1)→(2) 恒温可逆膨胀:(2)→(3) 绝热可逆膨胀:即(3)→(4)恒温可逆压缩:(4)→(1) 绝热可逆压缩:即得经一循环 DU = 0,热机所作的净功热机效率......(3.2-2)即结论:卡诺热机(可逆热机)效率的大小与两个热源的温差有关。

不可逆热机效率没有这种关系。

从(3.2-2)式还可以得到 ......(3.2-3)结论:卡诺循环(可逆过程)中热温商(Q/T)之和为零。

物理化学第3章热力学第二定律

物理化学第3章热力学第二定律
它们的逆过程都不能自动进行。当借助外力,系统 恢复原状后,会给环境留下不可磨灭的影响。 自发变化的共同特征:自发变化是热力学不可逆过程.
§3.2 热力学第二定律
事实证明: 功可自发地全部地转化为热,而热不可能全部
转化为功而不引起任何其它变化。 自发过程的不可逆性可归结为热功转化的不可逆性
总结出:可用某种不可逆过程概括其它不可逆过程
T I ,AB
(3.12)

B Q
SAB (
A
T )I 0
(3.13)
Q是实际过程的热效应,T是环境温度。若是不
可逆过程,用“>”号,可逆过程用“=”号,
这时环境与系统温度相同。
可见:不可逆过程的热温商小于系统的熵变
对第二定律的理解: 12、、“第热二不类可永能动全机部不转违化反为热功力”学是第指一在定律不引起其 它
变化情况下 理想气体等温膨胀,△T=0 , △U=0 , Q = -W, 但是 △V>0 , △P<0
3、可用第二定律判断过程的方向和限度
关键:寻找简易、普遍适用的方法——判据
§3.3 卡诺定理
R
Th Tc Th
1 Tc Th
根据卡诺定理: R > I

Qc Qh 0
Tc Th
推广为与多个热源接触的任意不可逆循环得:
n ( Q i )
T i1
ii
<0
(3.11)
不可逆过程的热温商与熵变的关系:
可推导出:
S (SB SA ) >
i
( Q )
3.14 热力学第三定律与规定熵
§3.1 自发变化的共同特征-不可逆性
自发变化 无需借助外力,任其自然,可以自动发生的 变化称为自发变化。 任何自发变化的逆过程是不能自动进行的。例如:

热力学第二定律(3)

热力学第二定律(3)
第二章 热力学第二定律
§ 2.1 自发过程的共同特征 § 2.2 热力学第二定律的各种经典表述及其等效性 § 2.3 卡诺循环和卡诺定理 § 2.4 熵的概念—第二定律的数学表达式和熵判据 § 2.5 熵变的计算及熵判据的应用 § 2.6 熵的物理意义及规定熵 § 2.7 Helmholtz自由能A和Gibbs自由能G § 2.8 五个状态函数及它们的一些重要关系式 § 2.9 G的计算及G与温度的关系
用热力学第二定律的说法证明卡诺定理:
热源 T2
可逆热机R: Q1’
逆Q1
Q1
从热源吸热Q1
作功WI,放出
U=0
W
R
U=0
W
(Q1-W)的热
量给冷Q源1’-W
逆 Q1-W
(Q1-W)
热机效率ηR=W/Q1 冷源 T1
任意热机Ⅰ:
反证法:若ηⅠ>ηR, 即(W/ Q1′)>(W/ Q1) ∵W相同,∴ Q1′< Q1
第②步B→C T2V2r-1=T1V3r-1 第④步A←D T2V1r-1=T1V4r-1
相除V2/V1=V3/V4
10
∴W=RT2lnV2/V1–RT1lnV2/V1=R(T2–T1)lnV2/V1 Q = Q1+ Q2
此时的热机效率
W
RT2
T1 ln
V2 V1
T2 T1
Q2
RT2
ln
V2 V1
①1850年clausius说法:热量不能自动地从低温 物体流向高温物体 — 热传递的不可逆性
②1851年kelvin说法:功可以完全变为热,但热不 能完全变为功而不引起其他变化——第二类永动 机是不可能的。
热力学第二定律的各种说法是相通的等效的。

第三章 热力学第二定律

第三章  热力学第二定律

IR
WIR QIR
(Q1)IR (Q2 )IR (Q1 ) IR
T1 T2 T1
1 (Q2 )IR 1 T2
(Q1 ) IR
T1
(Q1)IR (Q2 )IR 0 用(b)中相同(T的1)环方法(,T2 )对环 任意的变温不可逆循环,也可
以用无限个微小过程代替,得到
任意不可逆循环热温商之和小于零。
BQI
A
T环
不可逆 可逆
,或
dS QI TSU
不可逆 可逆
• 若系统经绝热过程 QI 0

S绝 0
不可逆 ,或
可逆
dS绝 0
不可逆 可逆
• 若在隔离系统中发生的过程 QI 0
不可逆
S隔 0 可逆 ,或
不可逆
dS隔 0 可逆
此二式就是熵增加原理的数学表达式。它表示:在绝
热或隔离系统中进行不可逆过程(实际可发生的过
低温物体(T(不2)可逆)
由上分析看见:无论是功→热的转化,还是 传热过程都 有明确的方向。这些实际发生的过 程都不能简单逆转,其共性——都是不可逆的
9
3.2 熵,熵增原理···················
1. 卡诺定理
(i)工作于两个一定温度间的所有卡诺循环都有相同 的
效率
R
T1 T2 T1
若V1 V2
S
CV
为常数
,m
nCV ,m
ln
T2
T1
由此二式可知,当T2>T1,ΔS>0,即定压(或定容) 下,S高温>S低温。
21
(3)系统经绝热可逆过程 (QR )S 0 , (QR )S 0
S
QR
T
0

热力学第二定律

热力学第二定律

1、 气、液、固体的定p或定V的变T 过程
定压变温过程:由δQp=dH=nCp,mdT
得:S= 2 Qr T2 nC p,m dT ;
1T
T1 T
视C
为常
p,m

S

nC
p ,m n
T2 T1
(2-4-1)
定容变温过程:由δQV=dU=nCV,mdT
同理得:S

nCV ,mn
自发
S孤立 0 或 dS孤立 0平衡
(2-3-4) (2-3-5)
熵增加原理:系统经绝热过程由一状态到达另一状态, 熵值不减少;自发变化的结果,必使孤立系统的熵增加 (孤立系统中可以发生的实际过程都是自发过程)。
方向:孤立系统的熵增加
限度:孤立系统熵值达到最大——平衡态。
二、 熵增原理及平衡的熵判据

mix
S
SA nARn
S 1 yA
BnBnRARnny1VB AVAVnBRBnByRBnnyVBAV(B2V-4B-6)
∵yB < 1,∴ΔmixS > 0
结论:定T定p理气混 合过程系统熵增加
nA, V + nB, V 定温定容 nA+nB, V
AT
BT
BQir BQr S
AT
AT
得:S BQ
AT

dS

Q
T
不可逆 可逆
(2-3-3)
——热力学第二定律的数学表达式 依具体情况方向判据的形式
二、 熵增原理及平衡的熵判据
绝热过程,δQ=0,则有
S绝热 0

不可逆
dS绝热 0 可逆

第二章 热力学第二定律

第二章 热力学第二定律
对环境作功W(<0) 向低温热源(温度T2)放热Q2(<0), 完成一个循环
高温热源
Q1>0
(T1)
W<0
Q2<0 低温热源 (T2)
U= Q1 +W+ Q2 =0
def W Q1 Q2 Q1 Q1
图 热转化为功的限度
问题:能否 Q2 =0,– W = Q1 ,
=100 ?
2、卡诺循环 卡诺(Carnot)循环是一个特殊的循环过程,它是以理想气体为
§3—1 热力学第二定律
1、自发过程 系统中无需环境施加影响就可以自动进
行的过程称为自发过程(spontaneous process) 。 自发过程的共同特征:不可逆性 例如:热传递过程; 气体的膨胀过程; 化学反应过程; 水从高处流向低处; 溶液从高浓度向低浓度扩散。
• 在绝热条件下系统发生一个变化后系统
的熵值永不会减小,这个结论叫做熵增 原理(principle of entropy increasing)。 • 在绝热过程或孤立系统中熵永不减少。
根据熵增原理,对于绝热过程可以利用系统本
身熵变值的符号来判别过程的可逆性; 在孤立系统中可以用熵的增量来判断过程的自 发和平衡。
S
2
Q r
T
1

2
1
T2 C p , m dH dT T1 T T
S nC p , m ln
T2 T1
S (3 29.1 ln
300 )J K 1 25.1J K 1 400
• 由于等压热δQp与焓变dH相等,而dH与等压过程是否
可逆无关,即有δQp=dH=δQr, • 上式对理想气体的等压可逆过程和不可逆过程都是适 用的。

热力学第二定律

热力学第二定律

第2章 热力学第二定律2.1 重要概念和方法1.过程的方向和限度热力学第二定律的主要任务之一是判断一个过程的方向和限度。

自然界的过程干差万别,但都有各自固定的方向,例如化学反应()()()()aq O H aq NaCl aq NaOH g HCl 2+=+人们认为反应方向是向右,即反应是向着酸和碱中和生成盐和水的方向进行。

在一定环境条件下,人们把不需环境做非体积功(即不耗电、光等)就能在系统中自动发生的过程称为自发过程。

相反只有通过耗电、耗光等形式的非体积功才能发生的过程称非自发过程。

通常人们所说的过程方向和限度实际上是指自发过程的方向和限度。

例如在上例中,并不能说反应不可能向左方进行。

因为在氯碱车间里就是将食盐水放入电解槽中,经电解在阳极得到C12(g),在阴极获得H 2(g)和NaOH(aq),然后将C12(g)与H 2(g)混合反应得到HCl(g),即该车间里的过程是盐水变成酸和碱的过程。

但这是在给电解槽通电条件下进行的,所以是不自发过程。

可逆过程意味着平衡,因此可逆就是过程的限度。

2.Gibbs(吉布斯)函数变(∆G)和Helmholtz(亥姆霍兹)函数变(∆A)的物理意义:在等温等压条件下,-∆G代表系统做非体积功的本领(可逆非体积功),即-∆G=W ’T,p,r ;在等温条件下,一∆A代表系统的做功本领(可逆功),即一∆A=W T,r 。

上述结论十分重要,它能帮助我们分析思考问题,又有利于计算∆G和∆A。

3。

计算∆S 和∆G(包括∆U 和∆H)时应注意的问题(1)若给定过程没有公式可直接套用,则需在初末态之间设计新的途径。

设计途径的原则是确保其中的每个步骤都有公式或结论可用。

尤其在设计可逆途径时,不仅要求读者记牢公式,更重要的对几种典型可逆过程(可逆膨胀或压缩、可逆传热、可逆相变和可逆化学反应)理解深刻。

(2)对于较复杂的系统(例如多相系统),要注意利用S,G,U 和H 等容量性质,用“分割法”将系统划分成多个简单部分,分别计算各部分的∆S,∆G,∆U 和∆H 只,然后得出总和。

第三章 热力学第二定律

第三章 热力学第二定律

物理化学The Second Law of Thermodynamics 版权所有:武汉科技大学化学工程与技术学院Copyright © 2015 WUST. All rights reserved.•掌握热机效率的表达、卡诺循环及其重要结论;•掌握热力学第二定律以及由第二定律导出卡诺定理的方法,卡诺定理的推论;•掌握克劳修斯等式和状态函数-熵,克劳修斯不等式和熵增原理,熵判据;•掌握系统熵变(简单pVT变化、相变过程、化学变化)及环境熵变的计算;•掌握热力学第三定律的普朗克表述及熵的物理意义,理解规定摩尔熵、标准摩尔熵、标准摩尔反应熵及能斯特热定理。

•掌握亥姆霍兹自由能和吉布斯自由能定义、亥姆霍兹自由能判据、吉布斯自由能判据,理解亥姆霍兹自由能变和吉布斯自由能变的物理意义及计算,理解可逆与平衡、不可逆与自发的关系;•理解热力学基本方程和热力学关系式(麦克斯韦关系、对应系数关系,其它重要关系);•掌握热力学第二定律应用实例——克拉佩龙方程、克劳修斯-克拉佩龙方程。

本章主要内容§3.1 卡诺循环§3.2 热力学第二定律§3.3 熵增原理§3.4 单纯pVT变化熵变的计算§3.5 相变过程熵变的计算§3.6 热力学第三定律和化学变化过程熵变计算§3.7 亥姆霍兹函数和吉布斯函数§3.8 热力学基本方程§3.9 克拉佩龙方程§3.10 吉布斯-亥姆霍兹方程和麦克斯韦关系式§3.1 热力学第二定律•自发过程举例•自发过程逆向进行必须消耗功•自发过程的共同特征•热力学第二定律出现问题1.符号:宏观量与微观量2.单位:3.公式4.解题过程:d d δ δU H W Q U H W Q ∆∆d d W Q W Q U H∆∆不带单位计算;单位混用;简写Rδd amb W p V =- () =W pV W pV W pV H U W==-=∆∆∆-缺少必要说明、过程错结果正确amb d W p V=-,m 21amb 21()()V nC T T p V V -=--222p V nRT =由于绝热Q = 0,故∆U =W)1(22)1(11γγγγ--=p T p T W = ∆U = n C V , m (T 2-T 1)2211d d V V amb V V nRT W p V V V=-=-⎰⎰W = -p amb ∆V(1)(2)(3)(4)1. 自发过程举例自发变化某种变化有自动发生的趋势,一旦发生就无需借助外力,可以自动进行,这种变化称为自发变化。

第三章_热力学第二定律

第三章_热力学第二定律

deS—外熵变 diS—内熵变
当diS>0时, dS>0 为不可逆过程 当diS=0时, dS=0 为可逆过程 diS≥0 体系内的熵产生永远不能为负值
39
§3-7 非平衡体系的热力学
孤立体系:
S
U ,V
0
处理方法: ①用距离非平衡态最近的平衡态描述。
②把非平衡态分割成无数小的平衡态, 然后将其加和起来描述非平衡态的性 质。
H1 H2 H3 Tsur
37
3. 恒温非恒压不可逆相变
例: H2O(l)
向真空
100℃,pθ T环=100℃
[ T ]可逆
S H相变 T
Ssur
Qsur Tsur
Q Tsur
U T
H2O(g) 100℃,pθ
( pV ) H pVg H
T
TT
38
§3-6 熵产生原理
任意体系: dSsys=deS+diS 孤立体系: deS=0
40
§3-8 自由能
8-1 目的 用自由能判别任一过程的方向和限度
8-2 Helmholtz 自由能 A (or F 功函)
一、定义
封闭体系
Q
S Tsur
dS Q
Tsur
温度恒定时: d S Q
T
d(TS) Q
Q Q dU W d(TS) dU W
判别过程的方向和限度 5.发展史: 热机Carnot热机卡诺定理 经典
第二定律表述 熵函数 S=klnΩ 熵产生
2
§3-2 Carnot定理
2-1 热机 1. 热机:将热量转化为机械功的装置 2. 热机过程 工作物质: 水
①恒温气化 ②绝热膨胀做功 ③恒温液化 ④绝热压缩

第三章热力学第二定律

第三章热力学第二定律

第三章 热力学第二定律一、本章小结热力学第二定律揭示了在不违背热力学第一定律的前提下实际过程进行的方向和限度。

第二定律抓住了事物的共性,推导、定义了状态函数—熵,根据熵导出并定义了亥姆霍兹函数和吉布斯函数,根据三个状态函数的变化可以判断任意或特定条件下实际过程进行的方向和限度。

通过本章的学习,应该着重掌握熵、亥姆霍兹函数和吉布斯函数的概念、计算及其在判断过程方向和限度上的应用。

同时,进一步加深对可逆和不可逆概念的认识。

自然界一切自发发生的实际宏观过程均为热力学不可逆过程。

而在没有外界影响的条件下,不可逆变化总是单向地趋于平衡态。

主要定律、定义及公式:1. 热力学第二定律克劳修斯说法:“不可能把热从低温物体传到高温物体而不产生其它影响。

” 开尔文说法:“不可能从单一热源吸取热量使之完全转化为功而不产生其它影响。

” 2. 热力学第三定律: 0 K 时纯物质完美晶体的熵等于零。

()*m 0lim ,0T S T →=完美晶体 或 ()*m0K 0S =完美晶体,。

3. 三个新函数的定义式r δd Q S T =或 2r1δΔQ S T=⎰A U TSG H TS=-=-物理意义:恒温过程 r dA W δ=恒温恒压过程 'r dG W δ=4. 定理卡诺定理:在T 1与T 2两热源之间工作的所有热机中,卡诺热机的效率最高。

12121T T Q Q T Q ⎧-+≥⎨⎩>不可逆循环=可逆循环 12120,0,Q Q T T <⎧+⎨=⎩不可逆循环可逆循环克劳修斯不等式:2121δ,Δδ,Q T S Q T⎧>⎪⎪⎨⎪=⎪⎩⎰⎰不可逆过程可逆过程熵增原理:0,Δ0,S >⎧⎨=⎩绝热不可逆过程绝热可逆过程5. 过程判据熵判据:适用于任何过程;iso sysamb ΔΔΔS S S =+ 000>⎧⎪=⎨⎪<⎩,不可逆,可逆,不可能发生的过程亥姆霍兹(函数)判据:适用于恒温恒容,W '=0的过程;,0,d 00T VA <⎧⎪⎨⎪>⎩自发=,平衡,反向自发 吉布斯(函数)判据:适用于恒温恒压,W '=0;,0,d 00T p G <⎧⎪⎨⎪>⎩自发=,平衡,反向自发 6. 熵变计算公式最基本计算公式:2r1δΔQ S T=⎰次基本计算公式:21d d ΔU p VS T+=⎰(δW '= 0 ) 理想气体pVT 变化熵变计算公式:22,m 11Δln ln V T V S nC nR T V =+ 21,m 12Δlnln p T p S nC nR T p =+ 22,m ,m 11Δlnln V p p V S nC nC p V =+ 请读者自己从次基本计算公式推出以上三式,再由以上三式分别推导出理想气体恒温、恒压、恒容熵变计算公式。

第3章热力学第二定律

第3章热力学第二定律

P199复习题1、指出下列公式的适用范围:(1)∑-=∆BB B mix x n R S ln :理想气体或理想溶液的等温、等压混合过程。

(2)22,,121121ln ln T T p m V mT T nC nC p V S nR dT nR dT p T V T ⎛⎫⎛⎫∆=+=+ ⎪ ⎪⎝⎭⎝⎭⎰⎰:理想气体的物质的量一定从T 1,p 1,V 1到T 2,p 2,V 2的过程。

(3)dU=TdS -pdV :单组分均相封闭系统只做体积功的过程。

(4)G Vdp ∆=⎰:单组分均相封闭系统只做体积功的等温过程。

(5)S ∆、A ∆、G ∆作为判据时必须满足的条件:熵判据:用于隔离系统或绝热系统:dS U ,V ,Wf =0≥0。

亥姆霍兹自由能判据:在等温容下不作其它功的条件下,过程总是沿着A 降低的方向进行,直到A 不再改变,即dA =0时便达到该条件下的平衡态。

吉布斯自由能判据:等温等压下不作其它功的条件下,过程总是沿着G 降低的方向进行,直到G 不再改变,即dG =0时便达到该条件下的平衡态。

2、判断下列说法是否正确,并说明原因:(1)不可逆过程一定是自发的,而自发过程一定是不可逆的。

答:前半句错。

自发过程一定是不可逆的,而并不是所有的不可逆过程都是自发的。

对有些不可逆过程通过对其做功,可使它自发进行。

(2)凡是熵增加的过程都是自发过程。

答:错。

熵判据用于隔离系统或绝热系统:dS U ,V ,Wf =0≥0。

(3)不可逆过程的熵永不减少。

答:错。

对于隔离系统或绝热系统中发生的不可逆过程的熵永不减少。

(4)系统达到平衡时,熵值最大,Gibbs 自由能最小。

答:错。

在隔离系统或绝热系统中,系统达到平衡时,熵值最大。

在等温等压下不作其它功的系统中,系统达到平衡时,Gibbs 自由能最小。

(5)当某系统的热力学能和体积恒定时,0S ∆<的过程不可能发生。

答:错。

对于隔离系统或绝热系统热力学能和体积恒定时,0S ∆<的过程不可能发生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档