4.根轨迹设计法

合集下载

第4章根轨迹

第4章根轨迹

二.绘制系统§根4轨-1迹根的轨依迹据的基本概念
图示系统的特征方程 1 G(S)H(S) 0 G(S)H (S) ——开环传函
G

H
绘制根轨迹是求解特征方程的根,特征方程可改 写为 G(S)H (S) 1
G(S)H (S)是复变量S的函数,根据上式两边的 幅值和相角分别相等的条件,可以得到

S2


1 2

1 2
1 4K
§当4K=-0时1,根S轨1=迹0,的S基2=-本1 概念
令开环增益K从0变化到∞,用解 析方法求不同K所对应的特征根的值,将 这些值标在S平面上,并连成光滑的粗实 线,这就是该系统的根轨迹。箭头表示随 着K值的增加,根轨迹的变化趋势。
∞ K K=0× -1 K

×
ds
上式的根
s1,2 6
36 24 0.423,1.577 6
因为分离点在0至-1之间,故 s1 0.423
为分离点的坐标,而舍弃 s2 1.577

j2
K1=6
-1 60°-0.423
××
-60° σ
K1=6
j 2
用幅值条件确定分离点的增益:
k1 s 0 s 1 s 2 0.4230.5771.577 0.385

1.25
5.求根轨迹的分离点
系统的特征方程
S(S 3)(S 2 2S 2) K1 0 K1 S(S 3)(S 2 2S 2) (S 4 5S 3 8S 2 6S) dK1 4(S 3 3.75S 2 4S 1.5) 0 ds
70

2×p2
p2

自动控制原理第四章-根轨迹分析法

自动控制原理第四章-根轨迹分析法

×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s

四.根轨迹法

四.根轨迹法

四.根轨迹法反馈系统的稳定性由系统的闭环极点确定。

研究系统参数变化对闭环系统特性的影响,是分析系统和设计控制器的重要内容。

参数变化的作用,体现在对闭环极点的影响上。

对于高阶系统,用解析方法说明这种影响,很困难,且不易理解。

图解法是一种方便的近似方法。

4-1 根轨迹法的基本概念1. 根轨迹概念根轨迹法:根据参数变化∞→0,研究系统闭环极点变化轨迹的一种图解方法。

即在参数变化时图解特征方程。

近似作图;重要区域,如与虚轴的交点与实轴的交点等,根轨迹要准确;依据根轨迹图,可以确定合适的系统参数,为设计控制器提供依据。

例图4-1,研究系统的开环增益K 的变化∞→0, 对闭环极点的影响。

开环传递函数)15.0()(+=s s K s G ,闭环传递函数Ks s K s 222)(2++=Φ, 特征方程0222=++K s s ,根轨迹方程1)2(-=+s s k ,∞→=0,2K k 。

该例的解析分析为2/11)21(1K s -+-=,2/12)21(1K s ---=。

参见图4-2。

开环极点X ,开环零点O ;根轨迹上的箭头表示参数增大的方向。

2. 根轨迹与系统性能以图4-2为例,(1) 稳定性: 根轨迹始终都处于S 平面左半部,则无论参数取多大的值,闭环系统稳定;若在参数的某些取值范围,有根轨迹段(闭环极点)处于S 平面右半部,则闭环系统在该参数范围不稳定。

根轨迹与虚轴的交点出的参数值,为参数临界值。

(2) 稳态性能:在研究开环增益K 对闭环极点作用时,据在原点处的开环极点个数就可以知道系统的误差型别。

(3) 动态性能:从根轨迹上的共轭复数极点,能够知道该振荡模态的阻尼系数,对高阶系统的动态性能有粗略估计。

3. 根轨迹方程根轨迹方程实际上是便于应用规则绘制根轨迹图的标准形式的特征方程。

例 已知负反馈开环传递函数:∏∏==------=++++++++=n i i m j j nn n n m m m m p s z s k a s a s a s b s b s b s b s H s G 111111110)()()()( ;根轨迹方程1)()(11-=--∏∏==n i i m j j p s z s k 。

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

i 1
j 1
开环极点到此被测零点 (终点)的矢量相角
8. 根轨迹的平衡性(根之和) ( n-m 2)
特征方程 Qs KPs 0
sn an1sn1 a1s a0 K sm bm1sm1 b1s b0 0
n
Qs KPs s p j sn cn1sn1 c1s c0 0 j 1
i 1
j1
k 0,1,2,
s zoi i 开环有限零点到s的矢量的相角
s poj j 开环极点到s的矢量的相角
矢量的相角以逆时针方向为正。
幅值条件:
s
m
m
s zoi
li
A s
i 1 n
i 1 n
s poj
Lj
j 1
j1
li αi
-zoi
Lj βj
×
-poj
开 环 有 限 零 点 到s的 矢 量 长 度 之 积 开环极点到s的矢量长度之积
, 2 2
c 2k 11800 2
由此可推理得到出射角:
其余开环极点到被测极 点(起点)的矢量相角
n1
m
c 2k 1180o j i
j 1
i 1
有限零点到被测极点
(起点)的矢量相角
同理入射角:
其余开环有限零点到被测 零点(终点)的矢量相角
m1
n
r 2k 1180o i j
1 GsHs 0
m
GsHs
KPs Qs
K
i 1
n
s
s
zoi
poj
j 1
P s sm bm1sm1 b1s b0
Q s sn an1sn1 a1s a0
于是,特征方程

第四章根轨迹法

第四章根轨迹法

系统得闭环根轨迹图。
j
已知负反馈系统开环零极点 分布如图示。
2 p2
在s平面找一点s1 ,
1
画出各开环零、极点到 z1
s1
1
p1 0
s1点得向量。
3
检验s1就是否满足相角条件: p3
(s1 z1) [(s1 p1) + (s1 p2) + (s1 p3)]
= 1 1 2 3 = (2k+1) ??
点,称为根轨迹得分离点(会合点)。
Kg=0 p1
j
j1
Kg A
Kg z1
0
p2 Kg=0
分离点得性质:
1)分离点就是系统闭环重根; 2)由于根轨迹就是对称得,所以分离点或位于实轴上,或 以共轭形式成对出现在复平面上; 3)实轴上相邻两个开环零(极)点之间(其中之一可为无穷 零(极)点)若为根轨迹,则必有一个分离点;
n
m
(s p j ) K g (s zi ) 0
j 1
i 1
d
ds
n j 1
(s
pj)
Kg
d ds
m
(s zi ) 0
i 1
d n
ds j1
n
(s
pj)
dm
ds i1
m
(s zi )
(s pj ) (s zi )
j 1
i 1
(lnV ) V V
n
m
d ln (s pj ) d ln (s zi )
如果s1点满足相角条件,则就是根轨迹上得一点。寻找
大家学习辛苦了,还是要坚持
继续保持安静
在s 平面内满足相角条件得所有s1 点,将这些点连成光滑曲 线,即就是闭环系统根轨迹。

控制工程基础第4章 根轨迹法

控制工程基础第4章  根轨迹法

n 3, m 0, 故三条根轨迹趋向处。
渐进线与实轴交点的坐标为
[S]
a
0
1
3
2
0
1
渐进线与实轴正向的夹角为
a -2 -1 0
a
2k
1180
3
60 , 180
六、根轨迹的起始角与终止角
起始角:起始于开环极点的根轨迹在起点 处的切线与水平线正方向的夹角。
终止角:终止于开环零点的根轨迹在终点 处的切线与水平线正方向的夹角。
s4
2
1
s3 -2 s20 s1
s3 180 , s3 2 180 s4 1, s4 2 2
若s4位于根轨迹上,则必满足
幅角条件,即1 2 180,
N
s4一定在 2,0的中垂线MN上。
利用幅值条件可算出各根轨迹上的 K 值。

Gs
K
s0.5s 1
2K
ss 2
K
ss 2
终止于 zb 的根轨迹在终点处
的切线与水平正方向的夹角
j 1
i 1
ib
其它零点到 zb 的向量夹角
七、分离点的坐标
几条根轨迹在[S]平面上相遇后又分开的点, 称为根轨迹的分离点(或会合点)。
分离点坐标的求法:
1 d (G(s)H (s)) 0
ds
2 由根轨迹方程
令:dK 0 解出s ds
n
1 180 p1 z p1 p2
180 116.57 90
206.57
由于对称性
2 206.57
会合点 -3
206.57
p1
[S]
z116.57
2.12
-2 -1 0

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)

第4章 根轨迹法

第4章 根轨迹法
,即系统的开环极点。
时,由根轨迹方程知根轨迹的终点为
,即系统的开环零点。
但是,当
时,
条根轨迹趋向于开环零点(称为有限零点),还有
条根轨迹将趋于无穷远处(称为无限零点)。
如果出现
的情况,必有
条根轨迹的起点在无穷远处。
规则2 根轨迹的分支数、对称性和连续性根轨迹的分支 数等于 , 根轨迹对称于实轴并且连续变化。
由根轨迹的对称性和连续性,根轨迹只需作出上半部分,对称画出另一部分,且根轨迹连续变化。
规则3 根轨迹的渐近线 当开环极点数大于开环零点数时,有n-m条根轨迹 趋于无穷远处,无穷远处的渐近线与实轴的交点为 , 渐近线与实轴正方向的夹角(倾角)为
例4-1单位负反馈系统的开环传递函数为
规则10 根之积 根据特征方程根和系数的关系,得
第1章 引 论
例:系统的开环传递函数为
开环极点为
渐近线于实轴的交点为
渐近线的倾角为
与虚轴的交点为
第1章 引 论
根轨迹的分会点:
第1章 引 论
第1章 引 论
第1章 引 论
例:系统的开环传递函数为
开环极点为
渐近线于实轴的交点为
4.6 MATLAB绘制系统的根轨迹 对于比较复杂的系统,人工绘制根轨迹十分复杂和困难,MATLAB绘制系统根轨迹是十分方便的。 通常将系统的开环传递函数写成如下形式
分别为分子和分母多项式。
采用MATLAB命令: pzmap(num,den)可以绘制系统的零、极点图; rlocus(num,den)可以绘制系统的根轨迹图; rlocfind(num,den)可以确定系统根轨迹上某些点的增益。
渐近线的倾角为
与虚轴的交点为

第4章 根轨迹

第4章 根轨迹

m
(s p
j 1
n
1
j
)
因s为复变量,根轨迹方程又可分解为幅值方程和相 角方程。 幅值方程为
K r (s zi )
i 1 m
(s p
j 1
n
1 或
(s z )
i
m
j
)
(s p
j 1
i 1 n
j
)
1 Kr
相角方程为
(s z ) (s p ) (2k 1)
设p3的出射角为θ3,如图所示。
假设s1为根轨迹上的一点,则s1应 满足相角方程
(s
i 1
1
1
z i ) ( s1 p j ) (2k 1)
j 1
4
由此可推得出射角的一般表达式
l ( pl zi ) ( pl p j ) i j
例4-6 已知系统的开环传递函数为
K r (s 1.5)(s 2 4s 5) G( s) H ( s) s(s 2.5)(s 2 s 1.5)
试绘制系统的根轨迹图。
18
7. 根轨迹与虚轴的交点
根轨迹与虚轴的交点是系统稳定与不稳定的分界点,常 常需要求得这一交点和相应的Kr值。 设与虚轴相交的闭环极点为s=jω,代入闭环特征方程得:
根为两个复数根,系统呈欠阻尼 状态,即输出呈衰减振荡形式。 特征根的实部σ为衰减系数,虚 部ω为振荡频率。
4
4.1.2 根轨迹方程
设系统的结构如图所示。 系统的闭环传递函数为
C ( s) G(s) R( s ) 1 G ( s ) H ( s )
开环传递函数的一般表达式为

(完整版)第四章根轨迹法

(完整版)第四章根轨迹法

j
8K * (1 K * )2 j
2
2
(1 K * ) K * 2 1
2
2 8K * (1 K * )2 8(2 1) 4 2 2 4 2
4
4
2 4 4 2 2
( 2)2 2
第四章 根轨迹法
自动控制原理课程的任务与体系结构
时域:微分方程 复域:传递函数 频域:频率特性
描述
控制系统
校正
时域法 复域法 频域法
评价系统的性能指标 稳定性 快速性(动态性能) 准确性(稳态性能)
分析
自动控制原理
§4 根轨迹法
§4.1 根轨迹法的基本概念 §4.2 绘制根轨迹的基本法则 §4.3 广义根轨迹 §4.4 利用根轨迹分析系统性能
• s平面上满足相角条件的点(必定满足模值条件) 一定在根轨迹上。 满足相角条件是s点位于根轨迹上的充分必要条件。
• 根轨迹上某点对应的 K* 值,应由模值条件来确定。
§4.2
m
绘制根轨迹的基本法则(1) G(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
K*
(s zi )
i 1 n
1
(s pj)
— 模值条件
j 1
m
n
G(s)H (s) (s zi ) (s p j ) (2k 1)
i 1
j1
— 相(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
§4 根 轨 迹 法
根轨迹法: 三大分析校正方法之一
特点: (1)图解方法,直观、形象。 (2)适合于研究当系统中某一参数变化时,系统性能的变化

第四章根轨迹设计

第四章根轨迹设计
例4.24:对系统
Gk ( s) Kg s 2 ( s 10)
增加零点z1对系统的影响
-10<-z1<0 时的根轨迹
原系统
-z1>0时的根 轨迹
4.3 增加超前校正环节对根轨迹的影响
2.串入超前校正: 增加一对实数零、极点,零点更靠近原 点(Zc<Pc),零点起主要作用(K小时效果同PD控制)。
G k(s) K g(s 1) s(s 1)(s2 4s 16)
p 1 0, p 2 1, z 1 1 p 3 , 4 2 j2 3
•飞机纵向运动的传递函数,可见原系统不稳定。
•性能要求:系统稳定。
•方法:引入闭环,合理调节放大系数。
闭环特征方程: s(s 1)(s2 4s 16) K g(s 1) 0
Gc (s) α α R2 R1 R 2 Ts 1 αTs 1 1; T R 1C
4.1 常见校正环节——滞后/积分校正环节
Gc (s) β Ts 1 βTs 1 1 ,T R2 C; R1 R2 R2
极点比零点更靠近原点。 若T足夠大,则为一对靠近原点 的开环偶极子,在不影响远离 偶极子处根轨迹前提下,大大 提高稳态性能。
影响: 1)极点:当kg增大到一定程度, 根轨迹跨入s右半平面,系统不 稳定。 2) 零点: 根轨迹始终在左侧,系 统稳定,随着kg增大,闭环极点 变为共轭复数,再变为实数,相 对稳定性更好。
jw
s -2 -1 0.5 0
-2 -1 0.5 0
s
增加极点-2
增加零点-2
4.2 增加开环零、极点对根轨迹的影响

2.设计方法: 频率响应法 状态空间法 根轨迹法:假定校正后闭环具有一对主导极点, 若原系统性能指标达不到要求,则引入适当校正装 置,利用其零极点去改变原根轨迹,使通过期望主导 极点。

第四章根轨迹分析法

第四章根轨迹分析法

闭环系统的阶次为3 ,有3条根轨迹 。
规则三、
证明:(1)连续性 从代数方程的性质可知,当方程中的系数连续变化 时,方程的根也连续,因此特征方程的根轨迹是连 续的。
证明:(2)对称性 因为特征方程的根或为实数,或为共轭复数,所以 根轨迹对称于实轴。
法则三、渐近线:根轨迹有n-m条渐进线。
渐近线与实轴的夹角为: (2k 1)1800 k 0,1,2,..
nm
n
m
pi z j
渐近线与实轴的交点为: i1
j 1
nm
l 它们是针对n-m条趋向无穷远点的根轨迹而设立的
l 如果知道了渐近线,可以马上画出根轨迹的大致形状
法则四、实轴上的根轨迹:在实轴上某线段右侧的实数 开环零、极点个数之和为奇数,则该线段为根轨迹。
对于例题,在实轴上的根轨迹: G(s)H (s) K*(s 5)
若当根轨迹出现在两相邻开环零点间(包括无穷
远处)时,必有一分离点。 分
离 点
K=∞
K=∞
分 离 点
××
K=0
K=0
它们可以利用代数重根法或极值法求出。(介绍后者)
由求极值的公式求出:
1 H (s)G(s) 1 K * N (s) 0 D(s)
K* D(s) N (s)
在实轴根轨迹上,求使K*达到最大(最小)值的s 值:
令虚轴的交点: s j 代入上式,得
( j)3 3( j)2 2 j K ( j 5) 0 Re 5K 3 2 0 Im (2 K ) 3 0 解得: 0,K 0;
本章主要内容
以K*为变量的常规根轨迹的绘制方法 以其它参数为变量的广义根轨迹的绘制方法 根轨迹分析方法的应用
-利用根轨迹分析和设计控制系统

第4章 根轨迹分析法

第4章 根轨迹分析法

i 1
其余n m,
m
(s zi )
i 1 n
(s pj )
m
(1
m
i 1
pj
(1 s)
zi
n
s
) (s
p
j
)
1 Kg
j 1
j 1
j m 1
此时s ,即无穷远处
8/63
五.实轴上的根轨迹
在实轴上,右方的实数开环极点和实数开环零 点的总和为奇数时,此为根轨迹上点。
GK (s)
m
n
闭环系统特征方程 或根轨迹方程
4/63
GK (s) GK (s) e jGK (s) 1
幅值条件: GK (s) 1 相角条件: GK (s) 180o (2k 1) k 0,1, 2,
或:
m
(s zi )
充要条
K i1 gn
1

(s pi )
m
n
j 1
s zi s p j 180o (2k 1) k 0,1,2,
当 nm2
n
n
an1 ( pj ) (sj ) s j 为系统的闭环极点
j 1
j 1
随着根轨迹增益的变化,若一些闭环极点向右移动,则另一些
必向左移动
n
(sj )=(-1)n (a0 Kgb0) j 1
22/63
十条法则:
1.连续性 2.对称性 3.分支数 4.起点、终点 5.实轴上的根轨迹 6.渐近线 7.分离点、会合点 8.出射角、入射角 9.虚轴交点 10.闭环极点的和与积
D(s)N(s) N(s)D(s) 0,3s2 6s 2 0
ss21
0.423 1.577

第4章 根轨迹法

第4章  根轨迹法
j 1 i 1 n
(2k 1)180 (2k 1)
k 0, 1, 2,
zj
4.2 绘制根轨迹的基本规则
1.根轨迹的对称性
根轨迹关于实轴对称。因为系统的闭环极 点为实根或复根,复根共轭成对出现且关于 实轴对称,因此系统的根轨迹关于实轴对称。
2.根轨迹的条数(分支数)
zj
[例4-3]
已知单位负反馈系统的开环传递函数为
Kr G(s) H (s) s ( s 2)( s 4)
试概略绘制该系统的根轨迹。
[解] 根据开环传递函数可知,无系统的开环
零点,则m=0;开环极点有3个,即n=3,分别 为 p1 0 、p2 2 和 p3 4 。将开环极点 用“×”在复平面上标出,如图4-4所示。根据 根轨迹绘制规则确定其根轨迹。
p 180 ( p1 z1 ) ( p1 p2 ) 180 90 90 180
1
zp j
l
[例4-4] [解]
p p 180
2 1

×j 2
-2
-1
0 0
σ
j2 ×
图4-5 例4-4系统的根轨迹
4.4 本章小结
第4 章
根轨迹法
根轨迹法的基本概念 绘制根轨迹的基本规则 参量根轨迹的绘制 本章小结
4.1 根轨迹法的基本概念
1948年,伊凡斯(W.R.Evans)提出 了一种简便的求解闭环极点的图解方 法—根轨迹法。
4.1.1 根轨迹
根轨迹定义
根轨迹与系统性能的关系
根轨迹定义
根轨迹:当控制系统的开环传递函数的某个 参数从零变化到无穷大时,闭环极点在s平面上 的变化轨迹称之为根轨迹。 根轨迹法:利用根轨迹进行线性控制系统分 析和设计的方法称为根轨迹法。 [例4-1]单位负反馈控制系统如图4-1所示, 试分析参数K变化对系统性能的影响

自动控制原理(第三版)第4章根轨迹法(4)

自动控制原理(第三版)第4章根轨迹法(4)
由图可见,当开环极点位置不变,而在系统中 附加开环负实数零点时,可使系统根轨迹向s左 半平面方向弯曲,或者说,附加开环负实数零 点将使系统的根轨迹图发生趋向附加零点方向 的变形,而且这种影响将随开环零点接近坐标 原点的程度而加强。
根据图4-29,利用劳斯判据的方法 不难证明,当 z1 2 时,
4.4.1 用根轨迹分析系统的稳定性
闭环系统稳定的充分必要条件是闭环极点必须位于s平面的左 半平面,即根轨迹要全部落于左半S平面系统才稳定。参数在 一定范围内取值才能稳定的系统称为条件稳定系统。对于条件 稳定系统,可由根轨迹图确定使系统稳定的参数取值范围。 例4-11 设某单位反馈系统的开环传递函数如下:
时,闭环系统是稳定。 但是当 14 K * 64 及 K * 195 时,系统不稳定。
用根轨迹分析系统稳定性的方法和步骤:
(1)根据系统的开环传递函数和绘制根轨迹的基本规则 绘制出系统的根轨迹图。
(2)由根轨迹在s平面上的分布情况分析系统的稳定性。
如果全部根轨迹都位于s平面左半部,则说明无论开环根轨迹 增益为何值,系统都是稳定的; 如根轨迹有一条(或一条以上)的分支全部位于s平面的右 半部,则说明无论开环根轨迹增益如何改变,系统都是不稳 定的; 如果有一条(或一条以上)的根轨迹从s平面的左半部穿过虚轴 进入s面的右半部(或反之),而其余的根轨迹分支位于s平面 的左半部,则说明系统是有条件的稳定系统,即当开环根轨迹 增益大于临界值 Kc* 时系统便由稳定变为不稳定(或反之)。 此时,关键是求出开环根轨迹增益的临界值 Kc*
式中, A0 1,A1 0.1,B 0.9,C 0.83 , 于是上式改写为
1 0.1 0.9s 0.83 C (s) s s 2.34 ( s 0.33)2 0.582 1 0.1 ( s 0.33) 0.58 0.9 s s 2.34 ( s 0.33)2 0.582

第四章 根轨迹法

第四章 根轨迹法

m
(s p )
i i 1
n
1
K*从0 到无穷大变化
由于s为复数,所以根轨迹方程的另一种表示方法:

模值方程:
K
*
sz
i 1 i
m
i
s p
i 1
n
1
相角方程:
(s z ) (s p ) (2k 1) , k 0,1,2
i 1 i i 1 i
m
n
绘制根轨迹利用相角方程,求根轨迹上某 点对应的K*值则用模值方程。
4-2 常规根轨迹的绘制法则
一、绘制根轨迹的基本法则
1.根轨迹的起点与终点 K*=0时对应的根轨迹点称根轨迹的起点, K* =∞时对应的根轨迹点称根轨迹的终点
根轨迹起于开环极点,终于开环零点。若开 环零点数m小于开环极点数n,则有n-m条根 轨迹终于无穷远处(无限零点)。
s 4s 4 K 0
2
s2 2 2 1 - K
由 s1 2 2 1 K s2 2 2 1 - K 可得闭环极点的变化情况:
K=0 0 < K <1 K=1 K=2 1<K<∞ K= ∞ s1=0 s2=-4 s1 s2为不等的负实根 s1=-2 s2=-2 s1=-2+2j s2=-2-2j s1 s2 实部均为-2 s1=-2+j ∞ s2=-2-j ∞
K=0 0 < K <1 K=1 1<K<∞
s1=0 s2=-4 s1 s2为不等的负实根 s1=-2 s2=-2 s1 s2 实部均为-2
由根轨迹可知: 1)当K=0时,s1=0,s2=-1,这两点恰是开环传递 函数的极点,同时也是闭环特征方程的极点. 2)当0<K< 1 时,s1,2都是负实根,随着k的增 长,s1从s平面的原点向左移,s2从-1点向右移。 3) 当K= 1时, s1,2 = -2,两根重合在一起, 此时系统恰好处在临界阻尼状态。 4) 1 <K<∞,s1,2为共轭复根,它们的实部恒等于2,虚部随着K的增大而增大,系统此时为欠阻 尼状态。

[理学]第4章根轨迹法_OK

[理学]第4章根轨迹法_OK

K (s 1) G(s) s(s 4)(s2 2s 2)
四个开环极点:0、-1+j、-1-j、-4 一个开环零点:-1 n-m=4-1=3
渐近线与实轴交点:
n
m
pi zi
a= i1
i1
nm
(0) (1
j) (1 j) (4) (1) 4 1
5 3
渐近线与实轴正方向的夹角:
取k=1 z2=149.5 z2和z3为共轭复数,
根轨迹终止角对称。
z

3
149.5
22
8 、根轨迹与虚轴的交点
根轨迹与虚轴相交闭环特征方程有纯虚根、系统 处于稳定边界。
1)应用劳斯判据求出系统处于稳定边界的临界值K*, 由 K*值求出相应的ω值

2)代数法
s j 代入特征方程 1 G( j)H( j) 0
起始角的一般计算式( 0~360°)
m
n
p

j
(2k
1)+
( pj zi )
( p j pi )
i 1
i 1
i j
终止角一般计算式(0~360° )
n
m
z=jFra bibliotek(2k
1)+
(z j pi )
(z j zi )
i 1
i 1
i j
19
证明

根轨迹上,靠近起点p1处取一点s1
相角方程
dK * (4s3 24s2 72s 80) 0 ds
b1 2
b2, 3 2 j2.45
p3、p4的连接线上
18
7、根轨迹的起始角和终止角
起始角p :从开环复数极点出发的 一支根轨迹,在该极点处根轨迹

根 轨迹法

根 轨迹法

第三章
(五) 《礼记》中说:“入境而问禁,入国而问
俗,入门而问讳。”俗话说“十里不同风、 百里不同俗”“到什么山唱什么歌”,这 些对劳动人民有益的格言都说明尊重各地 不同风俗与禁忌的重要性。尊重习俗原则
上一页 下一页 返回
第三章
1. 仪表是指人的容貌,是一个人精神面貌的
外观体现。一个人的卫生习惯、服饰与形 成和保持端庄、大方的仪表有着密切的关 系。清洁卫生是仪容美的关键,是礼仪的
上一页 下一页 返回
第三章
3. 放松。女性应两膝并拢;男性膝部可分开 一些,但不要过大,一般不超过肩宽。双 手自然放在膝盖上或椅子扶手上。在正式 场合,入座时要轻柔和缓,起座要端庄稳 重,如古人所言的“坐如钟”。若坚持这 一点,那么不管怎样变换身体的姿态,都 会优美、自然。不可随意拖拉椅凳,从椅 子的左侧入座,沉着安静地坐下。女士着
角均等于π。 四、根轨迹的渐近线 五、根轨迹的分离点
当K*由零至无穷大变化过程中,几条根轨迹在s平面某一点 相遇后立即分开,这一点称为分离点。最常见的分离点出现在 实轴上,实轴上的分离点有两种情况:i)实轴上的根轨迹相向 运动,在某一点相遇后进入复数平面,如图4-7的A点;ⅱ)复数 平面内的一对共轭复数根轨迹在实轴上相遇,然后趋向实轴上
上一页 下一页 返回
第三章
2. 服饰是一种文化,反映一个民族的文化素
养、精神面貌和物质文明发展的程度;着 装是一门艺术,能体现个人良好的精神面 貌、文化修养和审美情趣。既要自然得体, 协调大方,又要遵守某种约定俗成的规范 或原则。不但要与自己的具体条件相适应, 还必须时刻注意客观环境和场合上一,页与下时一页间、返回
上一页 返回
§4-3 根轨及草图绘制举例
例4-7 若开环系统传递函数为

第四章根轨迹法

第四章根轨迹法

模值
i 1
方程
n
1
| s pi |
i 1
(4-14)
m
n
相角
(s zi ) (s pi ) (2k 1)
方程 i1
i 1
k 0, 1, 2,
(4-15)
m
K* | s zi |
模值
i 1
方程
n
1
| s pi |
i 1
(4-14)
Root Locus 6
4
2
Imaginary Axis
0
-2
-4
-6
-10
-8
-6
-4
-2
0
2
Real Axis
以下是几种开环传递函数的根轨迹渐近线
一般,设试验点右侧实轴上有L个开环零点,h个
开环极点,则有关系式
l
h
(s zi ) (s pi ) (l h)
i 1
i 1
•如满足相角条件必有
(l h) (2k 1)
所以,L-h必为奇数,当然L+h也为奇数。
证毕
例4-3
•设一单位负反馈系统的开环传递函数为 G(s)=K(s+1)/[s(0.5s+1)],求 K 0
K=0.5 s1 1, s2 1
K=1 s1 1 j, s2 1 j K=2.5 s1 1 2 j, s2 1 2 j
K=+∞ s1 1 j, s2 1 j
如果把不同K值的 闭环特征根布置在s
平面上,并连成线, 则可以画出如图所示 系统的根轨迹。
返回子目录
4.正确理解闭环零极点分布和阶跃 响应的定性关系,初步掌握运用 根轨迹分析参数对响应的影响。 能熟练运用主导极点、偶极子等 概念,将系统近似为一、二阶系 统给出定量估算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

闭环传递函数是:
因而闭环系统的闭环极点的极点是s使得 =0的值。

如果我们写成,这方程有这种形式:
令n= 的阶,m=的阶(阶位多项式的s的最高幂)。

我们考虑所有K的正直,当K的极限趋于零时,系统的极点为=0的值或者为
的极点。

当K的极限趋于无穷时,闭环系统的极点为=0或者的零点。

无论我们选K是什么值,闭环系统必须有n的极点,n为的极点个数。

根轨迹必须有n个分支,每个分支开始于的极点终止于的零点。

如果的极点数多于
零点数(大多数情况),,我们说有零点在无穷大。

在这种情况下,当s趋于无穷大的时候的极限是零。

在无穷大的零点个数是n-m个,即极点个数减去零点个数,是根轨迹
的分支趋向无穷大的个数。

由于根轨迹实际上是所有可能的闭环极点的位置,我们可以选择增益,使得我们的闭
环系统将执行我们想要的方式。

如果任何选定的极点都在右半平面,则闭环系统将不稳定。

最接近于虚轴的极点对闭环响应的影响最大,因此,即使该系统具有三个或四个极点,它
可能仍像一个二阶系统甚至一阶系统取决于主导极点为位置。

绘制传递函数的根轨迹
考虑一个开环系统我们可以得到一个传递函数
如何用根轨迹的方法设计一个反馈控制器?我们的标准是5%的超调量和一秒的上升
时间。

新建一个m文件命名为r1.m。

输入传递函数,和命令绘制根轨迹:
关于上面的图,在约45度角的两条虚线表示与 =0.7极点位置,在这些线之间,极点将有 >0.7和线以<0.7。

半圆表示极点位置固有频率=1.8;圈子里面 <1.8和圈外 >1.8。

回到我们的问题,以超调量小于5%,则极有可能处于两种白色虚线之间,并且使上升时间少于一秒,极点必须是白色虚线半圆的外。

所以,现在我们知道的轨迹只有部分的半圆之外,介于两行线间的是可以接受的。

所有极点的位置是在左半平面,因此闭环系统将是稳定的。

从上述曲线图,我们看到,根轨迹的一部分有在所需的区域内。

所以在这种情况下,我们只需要一个比例控制器来移动极点所需的区域。

您可以使用rlocfind命令在MATLAB 中选择的轨迹所需的的极点:
点击图上你想要的闭环极点是点。

你可能要选择满足设计标准所指示的点。

sys_cl =
350 s + 2450
--------------------------------------
s^4 + 40 s^3 + 475 s^2 + 1850 s + 2450
Continuous-time transfer function.
feedback函数的两个参数是开环系统的分子和分母。

需要包括您所选择的比例增益。

假设单位反馈。

如果不是单位反馈的情况,查看feenback函数的帮助文件,你能找到闭环传递函数反馈环节带增益的情况。

查看闭环传递函数的阶跃响应:
正如我们预期的,响应的超调量小于5%,上升时间小于1秒。

使用SISOTOOL根轨
完成上面所做的另一种方式是用MATLAB GUI称作 sisotool。

用上面同样的模型,首先定义。

以同样的方式,选择Analysis Plots。

这个窗口中,对于Plot1,选择step。

在Contents of Plots的字窗口中,为Plot 1选择Closed Loop r to y。

如果窗口没有自动弹出,点击Show Analysis Plot 按钮。

下面要为根轨迹的绘制添加设计要求。

直接在图上单机右键,选择Design Requirements,New。

Design requirements 可以设置调节时间,超调量,阻尼比,自然频率,或者一个约束区域。

这里没有上升时间的设置,但是可以通过自然频率设置。

我们设置阻尼比和自然频率的值像上面用sgrid的设置一样,, =1.8。

在design requirements中设置这些。

在图中,任意白色的区域为极点可行的区域。

在坐标轴上单击既根轨迹图中的右键,选择属性,然后选择Limits。

把实轴变为-25到25,虚轴变为-2.5到2.5。

同样,我们可以在响应中看到的一些关键参数的当前值。

在阶跃响应,在途中单击右
键选择Characteristics,然后选择Response。

同样的方法选择Rise Time。

现在屏幕上应该
显示这些参数的两个大点的位置。

点击这些点获得屏幕上的信息。

两个图如下:
阶跃响应显示的特性,超调量可以,但是上升时间慢太多。

为了修正,我应该选择一个K的增益。

类似于rlocfind命令,增援控制可以直接改变根轨迹的图。

点击并拖动粉色的点到可行域内,极点将会有虚数部分,如下所示。

在图的底部,可以看到开环增益已经变为了360。

在阶跃响应中,两个值都满足我们
的要求了。

版权所有 ©。

相关文档
最新文档