三年中考真题九年级数学上册23.1图形的旋转同步练习(新版)新人教版

合集下载

人教版九年级上23.1图形的旋转同步测试题含答案

人教版九年级上23.1图形的旋转同步测试题含答案

D.4 个
5.如图,该图形围绕点 O 按下列角度旋转后,不能与其自身重合的是( )
A.72°
B.108°
C.144° D.216°
o
二填空题
6.如图,E、F 分别是正方形 ABCD 的边 BC、CD 上的点,BE=CF,连接 AE、BF.将△ABE 绕正
方形的对角线交点 O 按顺时针方向旋转到△BCF,则旋转角是
°,则∠BCA′的度数是(

A.110° B.80°
C.40° D.30°
A
B
B/
A/
C
3.数学课上,老师让同学们观察如图所示的图形,它绕着圆心 O 旋转多少度后和自身重
合?甲、乙、丙、丁四位同学的回答分别是 45°,60°90°,135°,以上四位同学的回
答错误的是( )
A.甲 B.乙
C.丙 D.丁
9.解:(1)∵将△ABC 绕点 B 按顺时针方向旋转 90°得到△A B1C 1, ∴A 1C1=10,∠CBC1 =90°,而△ABC 是等腰直角三角形, ∴∠A B1 C 1=∠ABC=45°,∴∠CBA 1=135°. 证明:(2)∵∠A 1C 1B=∠C1 BC=90°,∴A1C1 ∥BC. 又∵A 1C1=AC=BC,∴四边形 CB1A1 C 是平行四边形.
ቤተ መጻሕፍቲ ባይዱ
.
D
A
E
O
C
B
7.如图,在等边△ABC 中,AB=6,D 是 BC 上一占,且 BC=3BD,△ABD 绕点 A 旋转后得到 △ACE,则 CE 的长度是
A
BD
E C
8.如图,在等边△ABC 中,D 是边 AC 上一点,连接 BD.将△BCD 绕点 B 逆时针旋转 60°得

九年级数学上册 23.1 图形的旋转同步练习1 (新版)新人教版-(新版)新人教版初中九年级上册数学

九年级数学上册 23.1 图形的旋转同步练习1 (新版)新人教版-(新版)新人教版初中九年级上册数学

图形的旋转大学附属中学鲍敬谊一、选择题1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于().A.50° B.210°C .50°或210° D.130°考查目的:正确画出旋转后的图形,对C′点的位置进行分类讨论.答案:C.解析:依据题意正确画出如下两种图形:旋转角∠CAC′=130°+80°=210°或者旋转角∠CAC′′=130°-80°=50°.2.如图,△BCD以点A为旋转中心,逆时针旋转80°后得到△GKH.EF是△ABC的中位线,点E经旋转后的对应点是();如果已知DC=4,则ML=().A.M 2 B.L 2 C.M 4D.H 1考查目的:图形旋转的概念,三角形中位线的性质.解析:连接EA,MA,FA,LA,∠EAM=800 ,∠FAL=800 ,即E与M、F与L是对应点,EF与ML是对应线段.由于EF是△ABC的中位线,EF==2.3.将平面上的阴影区域绕着点P旋转180度后,得到的图形是().考查目的:图形旋转的画法.答案:B.解析:将三角形的三个顶点分别旋转180度后,得到图中网格所示的图形.故正确答案为B.二、填空题4.(2013年某某)如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=°.考查目的:旋转的性质及其简单应用.解析:∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∠AOB=30°,∴△OAB≌△OA1B1,∴∠A1OB=∠AOB=30°.∴∠A1OB=∠A1OA﹣∠AOB=70°.故答案为:70.5.如图,△ABC与△CDE都是等边三角形,图中的三角形__________和三角形_______可以旋转_______度互相得到.考查目的:旋转的性质、三角形全等的判定.答案:△BCE与△ACD绕点C旋转60度可以互相得到.解析:易证△BCE≌△ACD,点B绕点C旋转60度与点A重合,点E绕点C旋转60度与点D 重合,因此△BCE与△ACD绕点C旋转60度可以互相得到.6.(2013年某某试题改编)如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C 按顺时针方向旋转后得到△EDC,此时点D在AB边上,如果旋转角为60°,则α的度数是.考查目的:旋转的性质,等腰三角形的性质,三角形内角和定理.三、解答题7.如图,在7×8的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)做出△ABC绕点D逆时针方向旋转90°后得到的△A1B1C1;(2)在(1)的条件下直接写出点B旋转到B1所经过的路径的长.(结果保留π)考查目的:旋转图形的画法.答案:图略,.解析:点B绕D点旋转90度所经过的路程恰好是圆周长的四分之一,圆的半径BD= .8.如图,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.(1)将△ABD绕A点逆时针旋转90°,可使AB与AC重合,画出旋转后的图形△ACG,在原图中补出旋转后的图形.(2)求∠DAG和∠ECG的度数.考查目的:综合运用旋转的性质及三角形全等的知识解决问题.答案:∠DAG和∠ECG的度数都是90°.解析:∵△ABC中,AB=AC,∠BAC=90°.由于旋转,可知△ABD≌△ACG,∠BAD=∠CAG,∠ACG=∠ABD=450,由∠BAC=90°,AB=AC可知∠ACB=∠ABC=450,∴∠ACB+∠ACG=∠ACB+∠B=90°,即∠ECG=90°.又∵∠DAG=∠DAC+∠CAG=∠DAC+∠BAD=∠BAC=90°.于是∠DAG和∠ECG的度数都是90度.。

九年级数学上册第二十三章旋转23.1图形的旋转同步练习卷新版新人教版(含答案)

九年级数学上册第二十三章旋转23.1图形的旋转同步练习卷新版新人教版(含答案)

九年级数学上册第二十三章旋转:23.1 图形的旋转一、选择题(共5小题)1.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针方向旋转60°后得到△EDC,此时点D在斜边AB上,斜边DE交AC于点F.则图中阴影部分的面积为()A.2 B. C.D.2.如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30° B.35° C.40° D.50°3.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.60° B.75° C.85° D.90°4.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A.B.C.D.5.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A. B.5 C.4 D.二、填空题(共11小题)6.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C 绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为______cm.7.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=______°.8.如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D的长度为______.9.如图,在方格纸中,每个小方格都是边长为1cm的正方形,△ABC的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到△A′B′C′(其中A、B、C的对应点分别为A′,B′,C′,则点B在旋转过程中所经过的路线的长是______cm.(结果保留π)10.如图,是两块完全一样的含30°角的三角板,分别记作△ABC与△A′B′C′,现将两块三角板重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角板ABC,使其直角顶点C恰好落在三角板A′B′C′的斜边A′B′上,当∠A=30°,AC=10时,则此时两直角顶点C、C′间的距离是______.11.如图,正方形ABCD的对角线相交于点O,正三角形OEF绕点O旋转.在旋转过程中,当AE=BF 时,∠AOE的大小是______.12.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件______,使四边形ABCD为矩形.13.如图,将△ABC绕其中一个顶点顺时针连续旋转n′1、n′2、n′3所得到的三角形和△ABC的对称关系是______.14.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为______.15.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为______.16.如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕顶点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为______.三、解答题(共6小题)17.如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.(1)求证:△ADE≌△ABF;(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?18.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心______ 点,按顺时针方向旋转______ 度得到;(3)若BC=8,DE=6,求△AEF的面积.19.如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.20.将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF.(1)如图1,若∠ABC=α=60°,BF=AF.①求证:DA∥BC;②猜想线段DF、AF的数量关系,并证明你的猜想;(2)如图2,若∠ABC<α,BF=mAF(m为常数),求的值(用含m、α的式子表示).21.某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE 按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.22.如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.23.1 图形的旋转参考答案一、选择题(共5小题)1.C;2.C;3.C;4.A;5.B;二、填空题(共11小题)6.;7.70;8.8;9.π;10.5;11.15°或165°;12.∠B=90°;13.关于旋转点成中心对称;14.1.6;15.2a;16.;三、解答题(共6小题)17.18.A;90;19.20.21.22.。

人教版初中数学九年级上册《23.1 图形的旋转》同步练习卷(含答案解析

人教版初中数学九年级上册《23.1 图形的旋转》同步练习卷(含答案解析

人教新版九年级上学期《23.1 图形的旋转》同步练习卷一.选择题(共25小题)1.下列运动属于旋转的是()A.滚动过程中的篮球的滚动B.钟表的钟摆的摆动C.气球升空的运动D.一个图形沿某直线对折的过程2.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A.B.C.D.3.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程4.在一些商场、饭店或写字楼中,常常能看到一种三翼式旋转门在圆柱体的空间內旋转.旋转门的三片旋转翼把空间等分成三个部分,下图是从上面俯视旋转门的平面图,两片旋转翼之间的角度是()A.100°B.120°C.135°D.150°5.在俄罗斯方块游戏中,已拼好的图案如图所示,现出现一小方格体正向下运动,你必须进行以下()操作,才能拼成一个完整图案,使所有图案消失.A.顺时针旋转90°,向右平移B.逆时针旋转90°,向右平移C.顺时针旋转90°,向下平移D.逆时针旋转90°,向下平移6.观察下列图案,其中旋转角最大的是()A.B.C.D.7.将数字“6”旋转180°,得到数字“9”;将数字“9”旋转180°,得到数字“6”.现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.998.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°9.如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C的对应点C′落在AB边上,则旋转角为()A.40°B.70°C.80°D.140°10.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68°B.20°C.28°D.22°11.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()A.0个B.1个C.2个D.3个12.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,将△ABP绕点B顺时针旋转60°到△CBQ位置.连接PQ,则以下结论错误的是()A.∠QPB=60°B.∠PQC=90°C.∠APB=150°D.∠APC=135°13.如图,l1与l2交于点P,l2与l3交于点Q,∠l=104°,∠2=87°,要使得l1∥l2,下列操作正确的是()A.将l1绕点P逆时针旋转14°B.将l1绕点P逆时针旋转17°C.将l2绕点Q顒时针旋转11°D.将l2绕点Q顺时针旋转14°14.如图,点P是正方形ABCD内一点,将△ABP绕点B沿顺时针方向旋转后与△CBP1重合,若PB=5,那么PP1=()A.5B.5C.6D.515.如图,要使此图形旋转后与自身重合,至少应将它绕中心旋转的度数为()A.30°B.60°C.120°D.180°16.如图所示的图案,其外轮廓是一个正五边形,绕它的中心旋转一定的角度后能够与自身重合,则这个旋转角可能是()A.90°B.72°C.60°D.36°17.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是()A.60°B.72°C.90°D.120°18.如图,香港特别行政区区徽中的紫荆花图案,该图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为()A.45°B.60°C.72°D.108°19.△ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是()A.45°B.60°C.120°D.135°20.我们知道,国旗上的五角星是旋转对称图形,它旋转与自身重合时,至少需要旋转()A.36°B.60°C.45°D.72°21.某校在暑假放假之前举办了交通安全教育图片展活动.下列四个交通标志图中,旋转对称形是()A.B.C.D.22.在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是()A.(4,﹣4)B.(4,4)C.(﹣4,﹣4)D.(﹣4,4)23.在平面直角坐标系中,点P(1,﹣2)向右平移2个单位长度得到点P1,点P1绕原点逆时针旋转90°得到点P2,则点P2的坐标是()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣2,3)D.(2,3)24.如图,平面直角坐标系中,已知点B(﹣3,2),若将△ABO绕点O沿顺时针方向旋转90°后得到△A1B1O,则点B的对应点B1的坐标是()A.(3,1)B.(3,2)C.(1,3)D.(2,3)25.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6)C.(3.8,2.6)D.(﹣3.8,﹣2.6)二.填空题(共20小题)26.时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了度.27.小明把自己的左手手印和右手手印按在同一张白纸上,左手手印(填“能”或“不能”)通过旋转与右手手印完全重合在一起.28.如图,某游乐场的摩天轮(圆形转盘)上的点距离地面最大高度为160米,转盘直径为153米,旋转一周约需30分钟.某人从该摩天轮上到地面距离最近的点登舱,逆时针旋转20分钟,此时,他离地面的高度是米.29.如图,五角星也可以看作是一个三角形绕中心O旋转次得到的,每次旋转角度是.30.钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了度.31.如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=,则BE的最小值为.32.如图,△ABC中,∠C=30°,将△ABC绕点A顺时针旋转50°得到△ADE,AE 与BC交于F,则∠AFB=°.33.如图,将△ABC绕点A按逆时针方向旋转至△AB′C′(B与B′,C与C′分别是对应顶点),使AB′⊥BC,B′C′分别交AC,BC于点D,E,已知AB=AC=5,BC=6,则DE的长为.34.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△MAB,则点P与点M之间的距离为,∠APB=°.35.如图,△ABC绕C点顺时针旋转37°后得到了△A′B′C,A′B′⊥AC于点D,则∠A=°.36.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为.37.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转度构成的.38.在下列图形:“角、射线、线段、等腰三角形、平行四边形”中,既是轴对称图形又是旋转对称图形的为.39.等边三角形至少旋转度才能与自身重合.40.把一个正六边形绕着其对称中心旋转一定的角度,要使旋转后的图形与原来的图形重合,那么旋转的角度至少是°.41.将点A(3,1)绕原点O逆时针旋转90°到点B,则点B的坐标为.42.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是.43.平面直角坐标系中,A(0,3),B(4,0),C(﹣1,﹣1),点P线段AB上一动点,将线段AB绕原点O旋转一周,点P的对应点为P′,则P′C的最大值为,最小值为.44.如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点A′的坐标为.45.如图,点A的坐标为(3,),点B的坐标为(6,0),将△AOB绕点B按顺时针方向旋转一定的角度后得到△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为.三.解答题(共15小题)46.在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.(1)依题意补全图1;(2)①连接DP,若点P,Q,D恰好在同一条直线上,求证:DP2+DQ2=2AB2;②若点P,Q,C恰好在同一条直线上,则BP与AB的数量关系为:.47.如图,在△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,将△CDB绕点C顺时针旋转到△CEF的位置,点F在AC上.(1)△CDB旋转的度数;(2)连结DE,判断DE与BC的位置关系,并说明理由.48.已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.49.已知如图,△ADC和△BDE均为等腰三角形,∠CAD=∠DBE,AC=AD,BD=BE,连接CE,点G为CE的中点,过点E作AC的平行线与线段AG延长线交于点F.(1)当A,D,B三点在同一直线上时(如图1),求证:G为AF的中点;(2)将图1中△BDE绕点D旋转到图2位置时,点A,D,G,F在同一直线上,点H在线段AF的延长线上,且EF=EH,连接AB,BH,试判断△ABH的形状,并说明理由.50.取一副三角板按如图所示拼接,固定三角板ADC,将三角板ABC绕点A顺时针方向旋转,旋转角度为α(0°<α≤45°),得到△ABC′.①当α为多少度时,AB∥DC?②当旋转到图③所示位置时,α为多少度?③连接BD,当0°<α≤45°时,探求∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.51.如图,正方形ABCD边长为2cm,以各边中心为圆心,1cm为半径依次作圆,将正方形分成四部分.(1)这个图形旋转对称图形(填“是”或“不是”);若是,则旋转中心是点,最小旋转角是度.(2)求图形OBC的周长和面积.52.一个等边三角形绕中心至少旋转度后能与自身重合.53.如图①,将边长为2的正方形OABC如图①放置,O为原点.(Ⅰ)若将正方形OABC绕点O逆时针旋转60°时,如图②,求点A的坐标;(Ⅱ)如图③,若将图①中的正方形OABC绕点O逆时针旋转75°时,求点B的坐标.54.在平面直角坐标系中,O为原点,点A(2,0),点B(0,),把△ABO 绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.如图,若α=90°,求AA′的长.55.在平面直角坐标系中,已知点A的坐标为(﹣2,0),点B在y轴的正半轴上,且OB=2OA,将线段AB绕着A点顺时针旋转90°,点B落在点C处.(1)分别求出点B、点C的坐标.(2)在x轴上有一点D,使得△ACD的面积为3,求:点D的坐标.56.如图,点O为平面直角坐标系的原点,点A在x轴上,△AOC是边长为2的等边三角形.(1)写出△AOC的顶点C的坐标:.(2)将△AOC沿x轴向右平移得到△OBD,则平移的距离是(3)将△AOC绕原点O顺时针旋转得到△OBD,则旋转角可以是度(4)连接AD,交OC于点E,求∠AEO的度数.57.如图,A,B两点的坐标分别为(3,0)、(0,2),将线段AB平移至A1B1,且A1(5,b)、B1(a,3).(1)将线段A1B1绕点A1顺时针旋转60°得线段A1B2,连接B1B2得△A1B1B2,判断△A1B1B2的形状,并说明理由;(2)求线段AB平移到A1B1的距离是多少?58.如图所示,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB 连续作旋转变换可以依次得到三角形(1)、(2)、(3)、(4)、…请你仔细观察图形,并解决以下问题:(1)第(2)个三角形的直角顶点坐标是;(2)第(5)个三角形的直角顶点坐标是;(3)第(2018)个三角形的直角顶点坐标是.59.如图,一次函数y=﹣x+m(m>0)的图象与x轴、y轴分别交于点A、B,点C在线段OA上,点C的横坐标为n,点D在线段AB上,且AD=2BD,将△ACD绕点D旋转180°后得到△A1C1D.(1)若点C1恰好落在y轴上,试求的值;(2)当n=4时,若△A1C1D被y轴分得两部分图形的面积比为3:5,求该一次函数的解析式.60.阅读理解:我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为(,).观察应用:(1)如图,在平面直角坐标系中,若点P1(0,﹣1)、P2(2,3)的对称中心是点A,则点A的坐标为;(2)另取两点B(﹣1.6,2.1)、C(﹣1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A的对称点P5处,…则点P3、P8的坐标分别为、.拓展延伸:(3)求出点P2017的坐标,并直接写出在x轴上与点P2017,点C构成等腰三角形的点的坐标.人教新版九年级上学期《23.1 图形的旋转》同步练习卷参考答案与试题解析一.选择题(共25小题)1.下列运动属于旋转的是()A.滚动过程中的篮球的滚动B.钟表的钟摆的摆动C.气球升空的运动D.一个图形沿某直线对折的过程【分析】根据旋转变换的概念,对选项进行一一分析,排除错误答案.【解答】解:A、滚动过程中的篮球属于滚动,不是绕着某一个固定的点转动,不属旋转;B、钟表的钟摆的摆动,符合旋转变换的定义,属于旋转;C、气球升空的运动是平移,不属于旋转;D、一个图形沿某直线对折的过程是轴对称,不属于旋转.故选:B.【点评】本题考查旋转的概念.旋转变换:一个图形围绕一个定点旋转一定的角度,得到另一个图形,这种变换称为旋转变换.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.2.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A.B.C.D.【分析】此题是一组复合图形,根据平移、旋转的性质解答.【解答】解:A、B、C中只能由旋转得到,不能由平移得到,只有D可经过平移,又可经过旋转得到.故选:D.【点评】本题考查平移、旋转的性质:①平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.②旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.3.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程【分析】根据旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转进行分析即可.【解答】解:A、足球在草地上滚动,不是旋转,故此选项错误;B、火箭升空的运动,是平移,故此选项错误;C、汽车在急刹车时向前滑行,是平移,故此选项错误;D、钟表的钟摆动的过程,是旋转,故此选项正确;故选:D.【点评】此题主要考查了生活中的旋转,关键是掌握旋转定义.4.在一些商场、饭店或写字楼中,常常能看到一种三翼式旋转门在圆柱体的空间內旋转.旋转门的三片旋转翼把空间等分成三个部分,下图是从上面俯视旋转门的平面图,两片旋转翼之间的角度是()A.100°B.120°C.135°D.150°【分析】一个旋转翼可以看成一个基本图形,360度÷3=120度.【解答】解:一个旋转翼可以看成一个基本图形,360度÷3=120度,故选:B.【点评】本题考查了图形的旋转问题,要明确基本旋转图形,难度不大,但易错.5.在俄罗斯方块游戏中,已拼好的图案如图所示,现出现一小方格体正向下运动,你必须进行以下()操作,才能拼成一个完整图案,使所有图案消失.A.顺时针旋转90°,向右平移B.逆时针旋转90°,向右平移C.顺时针旋转90°,向下平移D.逆时针旋转90°,向下平移【分析】在俄罗斯方块游戏中,要使其自动消失,要把三行排满,需要旋转和平移,通过观察即可得到.【解答】解:顺时针旋转90°,向右平移.故选:A.【点评】此题将常见的游戏和旋转平移的知识相结合,有一定的趣味性,要根据平移和旋转的性质进行解答:(1)①经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;②平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形).(2)①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.6.观察下列图案,其中旋转角最大的是()A.B.C.D.【分析】根据定义,一个图形围绕一个定点旋转一定的角度,得到另一个图形叫做旋转.【解答】解:A、旋转角是120°;B、旋转角是90°;C、旋转角是72°;D、旋转角是60°.故选:A.【点评】根据旋转的定义来判断旋转的度数.如果把一个图形绕着某一点旋转180°后能与另一个图形重合,那么我们就说,这两个图形成中心对称.7.将数字“6”旋转180°,得到数字“9”;将数字“9”旋转180°,得到数字“6”.现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.99【分析】直接利用中心对称图形的性质结合69的特点得出答案.【解答】解:现将数字“69”旋转180°,得到的数字是:69.故选:B.【点评】此题主要考查了生活中的旋转现象,正确想象出旋转后图形是解题关键.8.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a旋转的度数.【解答】解:如图.∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是70°﹣50°=20°.故选:B.【点评】本题考查了旋转的性质,平行线的判定,根据同位角相等两直线平行求出旋转后∠2的同位角的度数是解题的关键.9.如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C的对应点C′落在AB边上,则旋转角为()A.40°B.70°C.80°D.140°【分析】根据旋转角的定义,旋转角就是∠ABC,根据等腰三角形的旋转求出∠ABC即可.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣∠A)=×140°=70°,∵△A′BC′是由△ABC旋转得到,∴旋转角为∠ABC=70°.故选:B.【点评】本题考查旋转的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键的理解旋转角的定义,属于中考常考题型.10.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68°B.20°C.28°D.22°【分析】先根据矩形的性质得∠BAD=∠ABC=∠ADC=90°,再根据旋转的性质得∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,然后根据四边形的内角和得到∠3=68°,再利用互余即可得到∠α的大小.【解答】解:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠AD′C′=∠ADC=90°,∵∠2=∠1=112°,而∠ABC=∠D′=90°,∴∠3=180°﹣∠2=68°,∴∠BAB′=90°﹣68°=22°,即∠α=22°.故选:D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()A.0个B.1个C.2个D.3个【分析】由四边形ABCD与四边形CEFG都为正方形,得到四条边相等,四个角为直角,利用SAS得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠1=∠2,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.【解答】解:如图,设BE,DG交于O.∵四边形ABCD和CEFG都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG.在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOG=90°,∴BE⊥DG;故①②正确;连接BD,EG,如图所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=2b2,则DE2+BG2=DO2+BO2+EO2+OG2=2a2+2b2,故③正确.故选:D.【点评】此题考查了旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理,熟练掌握性质与定理是解本题的关键.12.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,将△ABP绕点B顺时针旋转60°到△CBQ位置.连接PQ,则以下结论错误的是()A.∠QPB=60°B.∠PQC=90°C.∠APB=150°D.∠APC=135°【分析】根据等边三角形性质以及勾股定理的逆定理,即可判断B;依据△BPQ 是等边三角形,即可得到∠QPB=∠BPQ=∠BQP=60°,进而得出∠BPA=∠BQC=60°+90°=150°,求出∠APC+∠QPC=150°和PQ≠QC即可判断D选项.【解答】解:∵△ABC是等边三角形,∴∠ABC=60°,∵将△ABP绕点B顺时针旋转60°到△CBQ位置,∴△BQC≌△BPA,∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,∴△BPQ是等边三角形,∴PQ=BP=4,∵PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,即△PQC是直角三角形,故B正确,∵△BPQ是等边三角形,∴∠QPB=∠BPQ=∠BQP=60°,故A正确,∴∠BPA=∠BQC=60°+90°=150°,故C正确,∴∠APC=360°﹣150°﹣60°﹣∠QPC=150°﹣∠QPC,∵∠PQC=90°,PQ≠QC,∴∠QPC≠45°,即∠APC≠135°,故选项D错误.故选:D.【点评】本题考查了等边三角形的性质和判定,勾股定理的逆定理的应用,主要考查学生综合运用定理进行推理的能力.13.如图,l1与l2交于点P,l2与l3交于点Q,∠l=104°,∠2=87°,要使得l1∥l2,下列操作正确的是()A.将l1绕点P逆时针旋转14°B.将l1绕点P逆时针旋转17°C.将l2绕点Q顒时针旋转11°D.将l2绕点Q顺时针旋转14°【分析】根据l1∥l2,可以∠1+76°=180°,或∠2+93°=180°.因此将l1绕点P逆时针旋转11°或将l2绕点Q顺时针旋转11°.【解答】解:∵l1∥l2,∴∠2的对顶角+∠1=180°且∠l=104°,∠2=87°∴∠2多了11°,或∠1多了11°∴将l1绕点P逆时针旋转11°或将l2绕点Q顺时针旋转11°故选:C.【点评】本题考查旋转的性质,平行线的性质,关键是熟练运用旋转的性质.14.如图,点P是正方形ABCD内一点,将△ABP绕点B沿顺时针方向旋转后与△CBP1重合,若PB=5,那么PP1=()A.5B.5C.6D.5【分析】依题意得,旋转中心为点B,旋转角∠PBP1=∠ABC=90°,对应点P、P1到旋转中心的距离相等,即BP=BP1=5,可证△BPP1为等腰直角三角形,由勾股定理求PP1.【解答】解:根据旋转的性质可知,∠PBP1=∠ABC=90°,BP=BP1=5,∴△BPP1为等腰直角三角形,由勾股定理,得PP1==5.故选D.【点评】本题考查了旋转的两个性质:①旋转角相等,②对应点到旋转中心的距离相等.解题时要注意是按顺时针旋转.15.如图,要使此图形旋转后与自身重合,至少应将它绕中心旋转的度数为()A.30°B.60°C.120°D.180°【分析】根据旋转对称图形的旋转角的概念作答.【解答】解:正六边形被平分成六部分,因而每部分被分成的圆心角是60°,因而旋转60度的整数倍,就可以与自身重合.则α最小值为60度.故选:B.【点评】本题考查旋转对称图形的旋转角的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.16.如图所示的图案,其外轮廓是一个正五边形,绕它的中心旋转一定的角度后能够与自身重合,则这个旋转角可能是()A.90°B.72°C.60°D.36°【分析】求出正五边形的中心角即可解决问题;【解答】解:∵正五边形的中心角==72°,∴绕它的中心旋转72°角度后能够与自身重合,故选:B.【点评】本题考查旋转对称图形,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是()A.60°B.72°C.90°D.120°【分析】把此图案绕看作正五边形,然后根据正五边形的性质求解.【解答】解:图形看作正五边形,而正五边的中心角为72°,所以此图案绕旋转中心旋转72°的整数倍时能够与自身重合.故选:B.【点评】本题考查了旋转对称图形:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.18.如图,香港特别行政区区徽中的紫荆花图案,该图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为()A.45°B.60°C.72°D.108°【分析】该图形被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.【解答】解:该图形被平分成五部分,旋转72°的整数倍,就可以与自身重合,故n的最小值为72.故选:C.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.19.△ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是()A.45°B.60°C.120°D.135°【分析】根据旋转的性质及等边三角形的性质求解.【解答】解:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为360°÷3=120°.故选:C.【点评】本题考查旋转的性质:变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.20.我们知道,国旗上的五角星是旋转对称图形,它旋转与自身重合时,至少需要旋转()A.36°B.60°C.45°D.72°【分析】该图形被平分成五部分,因而每部分被分成的圆心角是72°,因而旋转72度的整数倍,就可以与自身重合.【解答】解:根据旋转对称图形的概念可知:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而国旗上的每一个正五角星绕着它的中心至少旋转72度能与自身重合.故选:D.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.21.某校在暑假放假之前举办了交通安全教育图片展活动.下列四个交通标志图中,旋转对称形是()A.B.C.D.【分析】根据旋转对称图形的定义对四个图形进行分析即可.【解答】解:只有选项D旋转120°与原图形重合,故选:D.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.22.在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是()A.(4,﹣4)B.(4,4)C.(﹣4,﹣4)D.(﹣4,4)【分析】首先利用平移的性质得出P1(4,4),再利用旋转变换的性质可得结论;【解答】解:∵P(﹣5,4),点P(﹣5,4)向右平移9个单位得到点P1∴P1(4,4),∴将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是(4,﹣4),故选:A.【点评】本题考查坐标与图形变化﹣旋转以及平移,解题的关键是理解题意,熟练掌握基本知识,属于中考基础题.23.在平面直角坐标系中,点P(1,﹣2)向右平移2个单位长度得到点P1,点P1绕原点逆时针旋转90°得到点P2,则点P2的坐标是()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣2,3)D.(2,3)【分析】直接利用平移的性质得出点P1的坐标,再利用旋转的性质得出点P2的坐标.【解答】解:∵点P(1,﹣2)向右平移2个单位长度得到点P1,∴P1的坐标为:(3,﹣2),∵点P1绕原点逆时针旋转90°得到点P2,∴点P2的坐标是:(2,3).故选:D.【点评】此题主要考查了平移变换以及旋转变换,正确得出对应点坐标是解题关键.24.如图,平面直角坐标系中,已知点B(﹣3,2),若将△ABO绕点O沿顺时针方向旋转90°后得到△A1B1O,则点B的对应点B1的坐标是()A.(3,1)B.(3,2)C.(1,3)D.(2,3)【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B1的坐标即可.【解答】解:△A1B1O如图所示,点B1的坐标是(2,3).。

人教版九年级数学上册23.1.1《图形的旋转》同步练习(含答案)

人教版九年级数学上册23.1.1《图形的旋转》同步练习(含答案)

23.1.1图形的旋转附答案知识点在平面内,把一个图形绕着某______沿着某个方向转动______的图形变换叫做旋转.这个点O叫做______,转动的角叫做______.因此,图形的旋转是由______和_____及_ 决定的.一.选择题1. 下列物体的运动不是旋转的是()A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.在26个英文大写字母中,通过旋转180°后能与原字母重合的有().A.6个B.7个C.8个D.9个3.同学们曾玩过万花筒吗?如图是看到的万花筒的一个图案,图中所有的小三角形均是全等的等边三角形,其中的菱形AEFG可以看成是把菱形ABCD以点A为中心()得到的.A、顺时针旋转60°B、顺时针旋转120°C、逆时针旋转60°D、逆时针旋转120°(第3题) (第4题) (第5题)4. 如图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是()A.900 B.600 C.450 D.3005.如图,图形旋转一定角度后能与自身重合,则旋转的角度可能是( )A、300B、600C、900D、1200二、填空6.如果图形上的点P经过旋转变为点P′,那么这两点叫做这个旋转的______.7.如图,△AOB旋转到△A′OB′的位置.若∠AOA′=90°,则旋转中心是点______.旋转角是______.点A的对应点是______.线段AB的对应线段是______.∠B的对应角是______.∠BOB′=______.A'(第7题) (第8题) (第9题)8.如图,△ABC绕着点O旋转到△DEF的位置,则旋转中心是______.旋转角是______.AO=______,AB=______,∠ACB=∠______.9.如图,正三角形ABC绕其中心O至少旋转______度,可与其自身重合.10.一个平行四边形ABCD,如果绕其对角线的交点O旋转,至少要旋转______度,才可与其自身重合.11.钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了______度.12.如图,把△ABC绕C顺时针旋转350,得到△A'B'C,若∠BCA'=1000,则∠B/CA=_______。

人教版 九年级数学上册 23.1 图形的旋转 同步训练(含答案)

人教版 九年级数学上册 23.1 图形的旋转 同步训练(含答案)

人教版九年级数学上册23.1 图形的旋转同步训练一、选择题(本大题共8道小题)1. 在平面直角坐标系中,点P(-4,2)向右平移7个单位长度得到点P1,点P1绕原点逆时针旋转90°得到点P2,则点P2的坐标是()A.(-2,3) B.(-3,2)C.(2,-3) D.(3,-2)2. 把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°3. 如图所示,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心是()A.点A B.点BC.点C D.点D4. 观察图,其中可以看成是由“基本图案”通过旋转形成的共有()A.1个B.2个C.3个D.4个5. 如图,将线段AB先向右平移5个单位长度,再将所得线段绕原点顺时针旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(-4,1) B.(-1,2)C.(4,-1) D.(1,-2)6. 如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为()A.10 B.2 2C.3 D.2 57. 如图,Rt△OCB的斜边在y轴上,OC=3,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B′,则点B的对应点B′的坐标是()A.(3,-1) B.(1,-3)C.(2,0) D.(3,0)8. 在平面直角坐标系中,点A的坐标为(1,3),以原点为中心,将点A顺时针旋转30°得到点A′,则点A′的坐标为()A.(3,1) B.(3,-1) C.(2,1) D.(0,2)二、填空题(本大题共8道小题)9. 如图所示,△ABC的顶点都在网格线的交点(格点)上,如果将△ABC绕点C 逆时针旋转90°,那么点B的对应点B′的坐标是________.10. 如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=________°.11. 把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为_______.12. 在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A′B′C′,使各顶点仍在格点上,则其旋转角的度数是________.13. 如图,两块完全相同的含30°角的三角尺ABC和A′B′C′重合在一起,将三角尺A′B′C′绕其顶点C′逆时针旋转角α(0°<α≤90°),有以下三个结论:①当α=30°时,A′C与AB的交点恰好为AB的中点;②当α=60°时,A′B′恰好经过点B;③在旋转过程中,始终存在AA′⊥BB′.其中正确结论的序号是__________.14. 如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为________.15. 如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A逆时针旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为________ cm.16. 如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF,若AB=3,AC=2,且α+β=∠B,则EF=________.三、解答题(本大题共4道小题)17. 如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与点A,B不重合),连接CD,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE 交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.18. 如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2;(3)在(2)的条件下,求点A所经过的路径长(结果保留π).19. (1)如图(a),在△ABC中,D是BC边的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①求证:BE+CF>EF;②若∠A=90°,探索线段BE,CF,EF之间的数量关系,并加以证明.(2)如图(b),在四边形ABDC中,∠B+∠C=180°,BD=CD,∠BDC=120°,以D为顶点作一个60°的角,角的两边分别交AB,AC于E,F两点,连接EF,探索线段BE,CF,EF之间的数量关系,并加以证明.20. 已知:如图,在四边形ABCD中,∠ADC=60°,∠ABC=30°,AD=CD. 求证:BD2=AB2+BC2.人教版九年级数学上册23.1 图形的旋转同步训练-答案一、选择题(本大题共8道小题)1. 【答案】A[解析] 点P(-4,2)向右平移7个单位长度得到点P1(3,2),点P1绕原点逆时针旋转90°得到点P2(-2,3).故选A.2. 【答案】C3. 【答案】B[解析] 旋转中心到对应点的距离相等.4. 【答案】D5. 【答案】D6. 【答案】A[解析] ∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=5. ∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1.在Rt△BED中,BD=BE2+DE2=10.故选A.7. 【答案】A8. 【答案】A[解析] 如图,过点A作AE⊥y轴于点E,过点A′作A′F⊥x轴于点F,∴∠AEO=∠A′FO=90°.∵点A的坐标为(1,3),∴AE=1,OE=3,∴OA=2,∠AOE=30°,由旋转可知∠AOA′=30°,OA′=OA=2,∴∠A′OF=90°-30°-30°=30°,∴A′F=12OA′=1,OF=3,∴A′(3,1).故选A.二、填空题(本大题共8道小题)9. 【答案】(1,0)10. 【答案】20[解析] ∵AB=AB′,∠BAB′=40°,∴∠ABB′=70°.∵B′C′⊥AB,∴∠BB′C′=20°.11. 【答案】y=-x2-2x-3[解析] 旋转前二次项的系数a=1,抛物线的顶点坐标是(1,2),旋转后二次项的系数a=-1,抛物线的顶点坐标是(-1,-2),∴新抛物线的解析式为y=-(x+1)2-2,即y=-x2-2x-3.12. 【答案】90°[解析] 找到一组对应点A,A′,并将其与旋转中心连接起来,确定旋转角,进而得到旋转角的度数为90°.13. 【答案】①②③14. 【答案】18[解析] 如图.∵∠BAD=∠BCD=90°,∴∠B+∠ADC=180°.又∵AB=AD,∴将△ABC绕点A逆时针旋转90°后点B与点D重合,点C的对应点E落在CD的延长线上,∴AE=AC=6,∠CAE=90°,∴S四边形ABCD=S△ACE=12AC·AE =12×6×6=18.15. 【答案】(10-26) [解析] 如图,过点A 作AG ⊥DE 于点G .由旋转知,AD=AE ,∠DAE =90°,∠CAE =∠BAD =15°,∴∠AED =∠ADG =45°, ∴∠AFD =∠AED +∠CAE =60°.在Rt △ADG 中,AG =DG =AD2=3 2(cm).在Rt △AFG 中,GF =AG3=6(cm),AF =2FG =2 6(cm), ∴CF =AC -AF =(10-2 6)cm.16. 【答案】13 [解析] ∵α+β=∠B ,∴∠EAF =∠BAC +∠B =90°,∴△AEF是直角三角形,且AE =AB =3,AF =AC =2,∴EF =AE 2+AF 2=13.三、解答题(本大题共4道小题)17. 【答案】解:(1)证明:由题意可知,CD =CE ,∠DCE =90°. ∵∠ACB =90°,∴∠ACB -∠DCB =∠DCE -∠DCB , 即∠ACD =∠BCE.在△ACD 与△BCE 中,⎩⎨⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE(SAS).(2)∵∠ACB =90°,AC =BC ,∴∠A =45°. ∵△ACD ≌△BCE ,∴AD =BE ,∠CBE =∠A =45°. ∵AD =BF ,∴BE =BF , ∴∠BEF =12×(180°-45°)=67.5°.18. 【答案】解:(1)如图.(2)如图.(3)如图,∵AO =A 2O =42+12=17,∠AOA 2=90°,∴点A 所经过的路径长=14×2π17=172π.19. 【答案】解:(1)①证明:如图(a),将△DBE 绕点D 旋转180°得到△DCG ,连接FG ,则△DCG ≌△DBE. ∴DG =DE ,CG =BE. 又∵DE ⊥DF ,∴DF 垂直平分线段EG ,∴FG =EF. ∵在△CFG 中,CG +CF >FG , ∴BE +CF >EF. ②BE 2+CF 2=EF 2.证明:∵∠A =90°,∴∠B +∠ACD =90°.由①得,∠FCG =∠FCD +∠DCG =∠FCD +∠B =90°,∴在Rt △CFG 中,由勾股定理,得CG 2+CF 2=FG 2,∴BE 2+CF 2=EF 2.(2)EF =BE +CF.证明:如图(b).∵CD =BD ,∠BDC =120°, ∴将△CDF 绕点D 逆时针旋转120°得到△BDM , ∴△BDM ≌△CDF ,∴DM =DF ,BM =CF ,∠BDM =∠CDF ,∠DBM =∠C. ∵∠ABD +∠C =180°, ∴∠ABD +∠DBM =180°, ∴点A ,B ,M 共线,∴∠EDM =∠EDB +∠BDM =∠EDB +∠CDF =∠BDC -∠EDF =120°-60°=60°=∠EDF.在△DEM 和△DEF 中,⎩⎨⎧DE =DE ,∠EDM =∠EDF ,DM =DF ,∴△DEM ≌△DEF ,∴EF =EM =BE +BM =BE +CF.20. 【答案】证明:如图,将△ADB 绕点D 顺时针旋转60°,得到△CDE ,连接BE ,则∠ADB =∠CDE ,∠A =∠DCE ,AB =CE ,BD =DE. 又∵∠ADC =60°,∴∠BDE =60°, ∴△DBE 是等边三角形, ∴BD =BE.又∵∠ECB =360°-∠BCD -∠DCE =360°-∠BCD -∠A =360°-(360°-∠ADC -∠ABC)=90°,∴△ECB是直角三角形,∴BE2=CE2+BC2,即BD2=AB2+BC2.。

部编版人教初中数学九年级上册《23.1图形的旋转 中考真题同步练习(含答案)》最新精品优秀

部编版人教初中数学九年级上册《23.1图形的旋转 中考真题同步练习(含答案)》最新精品优秀

前言:该中考真题同步练习由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。

以高质量的中考真题同步练习助力考生查漏补缺,在原有基础上更进一步。

(最新精品中考真题同步练习)23.1图形的旋转一.选择题(共20小题)1.(2018•吉林)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°2.(2018•香坊区模拟)如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.45°B.60°C.70°D.90°3.(2018•大连)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α4.(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6)C.(3.8,2.6)D.(﹣3.8,﹣2.6)5.(2018•乌鲁木齐)在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2)B.(﹣1,2) C.(﹣1,﹣2)D.(1,﹣2)6.(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°7.(2018•青岛)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3) D.(5,﹣1)8.(2018•济宁)如图,在平面直角坐标系中,点A,C在x轴上,点C 的坐标为(﹣1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2) D.(2,﹣1)9.(2018•德州)如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE =S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.410.(2018•宜昌)如图,在平面直角坐标系中,把△ABC绕原点O旋转180°。

九年级数学上册第二十三章旋转23.1图形的旋转同步测试含解析新版新人教版(含答案)

九年级数学上册第二十三章旋转23.1图形的旋转同步测试含解析新版新人教版(含答案)

九年级数学上册第二十三章旋转:23.1 图形的旋转一、选择题(共18小题)1.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°2.如图,四边形ABDC中,△EDC是由△ABC绕顶点C旋转40°所得,顶点A恰好转到AB上一点E 的位置,则∠1+∠2=()A.90° B.100°C.110°D.120°3.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数是()A.15° B.60° C.45° D.75°4.如图,线段AB放在边长为1个单位的小正方形网格中,点A、B均落在格点上,先将线段AB绕点O逆时针旋转90°得到线段A1B1,再将线段AB向下平移3个单位得到线段A2B2,线段AB,A1B1,A2B2的中点构成三角形面积为()A.B.15 C.3 D.5.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=21°,则∠AOB′的度数是()A.21° B.45° C.42° D.24°6.如图,四边形ABCD是正方形,点E在CB的延长线上,连结AE,将△ABE绕点A逆时针旋转90°,得到△ADF,点E落在DC上的点F处,AF的延长线交BC延长线于点G.若AB=3,AE=,则CG的长是()A.1.5 B.1.6 C.1.8 D.27.如图,△ABC中,∠C=67°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且C′在边BC上,则∠B′C′B的度数为()A.56° B.50° C.46° D.40°8.如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55° B.60° C.65° D.80°9.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B.C. D.π10.如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°11.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB.6πC.3πD.1.5π12.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70° B.65° C.60° D.55°13.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是914.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5 B.1.5 C.D.115.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10° B.20° C.7.5°D.15°16.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30° B.60° C.90° D.150°17.如图,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴正半轴上的A′处,则图中阴影部分面积为()A.π﹣2 B.π C.π D.π﹣218.如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B. +1 C.D.﹣1二、填空题(共6小题)19.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1,将Rt△ABC绕点A逆时针旋转30°后得到△AB′C′,则图中阴影部分的面积是.20.如图,在△ABC中,∠B=50°,在同一平面内,将△ABC绕点A逆时针方向旋转到△AB′C′的位置,使得AB′⊥BC,连接CC′,则∠AC′C=度.21.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为.22.如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是.23.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为.24.如图,在△ABC中,AC=BC=8,∠C=90°,点D为BC中点,将△ABC绕点D逆时针旋转45°,得到△A′B′C′,B′C′与AB交于点E,则S四边形ACDE= .三、解答题(共6小题)25.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.26.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.27.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.28.已知△ABC中,M为BC的中点,直线m绕点A旋转,过B、M、C分别作BD⊥m于D,ME⊥m于E,CF⊥m于F.(1)当直线m经过B点时,如图1,易证EM=CF.(不需证明)(2)当直线m不经过B点,旋转到如图2、图3的位置时,线段BD、ME、CF之间有怎样的数量关系?请直接写出你的猜想,并选择一种情况加以证明.29.在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图③,求证:四边形CDEF是平行四边形.30.两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.2016年人教版九年级数学上册同步测试:23.1 图形的旋转参考答案与试题解析一、选择题(共18小题)1.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°【考点】旋转的性质;平移的性质.【分析】利用旋转和平移的性质得出,∠A′B′C=60°,AB=A′B′=A′C=4,进而得出△A′B′C 是等边三角形,即可得出BB′以及∠B′A′C的度数.【解答】解:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°.故选:B.【点评】此题主要考查了平移和旋转的性质以及等边三角形的判定等知识,得出△A′B′C是等边三角形是解题关键.2.如图,四边形ABDC中,△EDC是由△ABC绕顶点C旋转40°所得,顶点A恰好转到AB上一点E 的位置,则∠1+∠2=()A.90° B.100°C.110°D.120°【考点】旋转的性质.【分析】由旋转的性质可知AC=EC,BC=DC,∠BCD=∠ACE=40°,在△BCD中,由内角和定理求∠1,根据外角定理可求∠2.【解答】解:在△BCD中,∠BCD=∠ACE=40°,BC=CD,∴△BCD为等腰三角形,∴∠1=(180°﹣40°)=70°,∵∠BEC为△ACE的外角,∴∠2+∠DEC=∠ACE+∠A,而∠DEC与∠A为对应角,∴∠2=∠ACE=40°,∴∠1+∠2=70°+40°=110°,故选C.【点评】本题考查了旋转的性质的运用.旋转前后对应边相等,对应点与旋转中心的连线相等,且夹角为旋转角.3.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数是()A.15° B.60° C.45° D.75°【考点】旋转的性质.【分析】根据∠AOD=∠DOB﹣∠AOB求解.【解答】解:∵将△AOB绕点O按逆时针方向旋转60°后得到△COD,∴∠BOD=60°,∵∠AOB=15°,∴∠AOD=∠DOB﹣∠AOB=60°﹣15°=45°.故选:C.【点评】本题考查了图形的旋转的性质,解题的关键是一个旋转图形的对应点的连线所夹的角相等,都等于旋转角.4.如图,线段AB放在边长为1个单位的小正方形网格中,点A、B均落在格点上,先将线段AB绕点O逆时针旋转90°得到线段A1B1,再将线段AB向下平移3个单位得到线段A2B2,线段AB,A1B1,A2B2的中点构成三角形面积为()A.B.15 C.3 D.【考点】旋转的性质;平移的性质.【专题】网格型.【分析】首先作出线段A1B1和A2B2,确定线段AB,A1B1,A2B2的中点,作出三角形,利用三角形的面积公式求解.【解答】解:三角形的面积是:×3×5=.故选A.【点评】本题考查了图形的旋转以及平移作图,以及三角形的面积公式,正确作出线段AB,A1B1,A2B2的中点构成三角形是关键.5.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=21°,则∠AOB′的度数是()A.21° B.45° C.42° D.24°【考点】旋转的性质.【分析】如图,首先运用旋转变换的性质求出∠BOB′的度数,结合∠AOB=21°,即可解决问题.【解答】解:如图,由题意及旋转变换的性质得:∠BOB′=45°,∵∠AOB=21°,∴∠AOB′=45°﹣21°=24°,故选D.【点评】该题主要考查了旋转变换的性质及其应用问题;牢固掌握旋转变换的性质是灵活运用、解题的关键.6.如图,四边形ABCD是正方形,点E在CB的延长线上,连结AE,将△ABE绕点A逆时针旋转90°,得到△ADF,点E落在DC上的点F处,AF的延长线交BC延长线于点G.若AB=3,AE=,则CG的长是()A.1.5 B.1.6 C.1.8 D.2【考点】旋转的性质;勾股定理;相似三角形的判定与性质.【专题】计算题.【分析】先根据正方形的性质得AB=AD=CD=3,再根据旋转的性质得AF=AE=,则可根据勾股定理计算出DF=2,所以CF=CD﹣DF=1,然后证明△CGF∽△DAF,再利用相似比可计算出CG.【解答】解:∵四边形ABCD是正方形,∴AB=AD=CD=3,∵△ABE绕点A逆时针旋转90°,得到△ADF,∴AF=AE=,在Rt△ADF中,∵AD=3,AF=,∴DF==2,∴CF=CD﹣DF=3﹣2=1,∵AD∥CG,∴△CGF∽△DAF,∴=,即=,∴CGF=1.5.故选A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了勾股定理和相似三角形的判定与性质.7.如图,△ABC中,∠C=67°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且C′在边BC上,则∠B′C′B的度数为()A.56° B.50° C.46° D.40°【考点】旋转的性质;等腰三角形的性质.【专题】几何图形问题.【分析】利用旋转的性质以及等腰三角形的性质得出∠AC′C=∠AC′B′=67°,进而得出∠B′C′B 的度数.【解答】解:∵将△ABC绕点A顺时针旋转后,得到△AB′C′,∴AC′=AC,∴∠C=∠AC′C=67°,∴∠AC′B=180°﹣67°=113°,∵∠AC′C=∠AC′B′=67°,∴∠B′C′B=∠AC′B﹣∠AC′B′=113°﹣67°=46°.故选:C.【点评】此题主要考查了旋转的性质以及等腰三角形的性质,得出∠AC′C=∠AC′B′=67°是解题关键.8.如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55° B.60° C.65° D.80°【考点】旋转的性质.【分析】利用直角三角形斜边上的中线等于斜边的一半,进而得出△ABB1是等边三角形,即可得出旋转角度.【解答】解:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=60°,∴旋转的角度等于60°.故选:B.【点评】此题主要考查了旋转的性质以及等边三角形的判定等知识,得出△ABB1是等边三角形是解题关键.9.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B.C. D.π【考点】旋转的性质;弧长的计算.【专题】几何图形问题.【分析】利用锐角三角函数关系得出BC的长,进而利用旋转的性质得出∠BCB′=60°,再利用弧长公式求出即可.【解答】解:∵在△ABC中,∠ACB=90°,∠ABC=30°,AB=2,∴cos30°=,∴BC=ABcos30°=2×=,∵将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,∴∠BCB′=60°,∴点B转过的路径长为: =π.故选:B.【点评】此题主要考查了旋转的性质以及弧长公式应用,得出点B转过的路径形状是解题关键.10.如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°【考点】旋转的性质.【专题】几何图形问题.【分析】因为四边形ABCD为正方形,所以∠COD=∠DOA=90°,OC=OD=OA,则△COD绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,据此可得答案.【解答】解:∵四边形ABCD为正方形,∴∠COD=∠DOA=90°,OC=OD=OA,∴△COD绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,故选:C.【点评】本题考查了旋转的性质,旋转要找出旋转中心、旋转方向、旋转角.11.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB.6πC.3πD.1.5π【考点】旋转的性质;弧长的计算.【专题】计算题.【分析】根据弧长公式列式计算即可得解.【解答】解:的长==1.5π.故选:D.【点评】本题考查了旋转的性质,弧长的计算,熟记弧长公式是解题的关键.12.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70° B.65° C.60° D.55°【考点】旋转的性质.【专题】几何图形问题.【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,由旋转的性质得∠B=∠A′B′C=65°.故选:B.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.13.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是9【考点】旋转的性质;平行线的判定;等边三角形的性质.【专题】几何图形问题.【分析】首先由旋转的性质可知∠EBD=∠ABC=∠C=60°,所以看得AE∥BC,先由△ABC是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=5,由∠EBD=60°,BE=BD即可判断出△BDE是等边三角形,故DE=BD=4,故△AED的周长=AE+AD+DE=AC+BD=9,问题得解.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠C=60°,∵将△BCD绕点B逆时针旋转60°,得到△BAE,∴∠EAB=∠C=∠ABC=60°,∴AE∥BC,故选项A正确;∵△ABC是等边三角形,∴AC=AB=BC=5,∵△BAE△BCD逆时针旋旋转60°得出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=5,∵∠EBD=60°,BE=BD,∴△BDE是等边三角形,故选项C正确;∴DE=BD=4,∴△AED的周长=AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∠ADE=∠BDC,∴结论错误的是B,故选:B.【点评】本题考查的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键.14.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5 B.1.5 C.D.1【考点】旋转的性质.【分析】解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC﹣BD计算即可得解.【解答】解:∵∠B=60°,∴∠C=90°﹣60°=30°,∵AC=,∴AB=AC•tan30°=×=1,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.故选:D.【点评】本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.15.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10° B.20° C.7.5°D.15°【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形.【分析】根据直角三角形两锐角互余求出∠DCE=60°,旋转的性质可得∠BCE1=15°,然后求出∠BCD1=45°,从而得到∠BCD1=∠A,利用“边角边”证明△ABC和△D1CB全等,根据全等三角形对应角相等可得∠BD1C=∠ABC=45°,再根据∠E1D1B=∠BD1C﹣∠CD1E1计算即可得解.【解答】解:∵∠CED=90°,∠D=30°,∴∠DCE=60°,∵△DCE绕点C顺时针旋转15°,∴∠BCE1=15°,∴∠BCD1=60°﹣15°=45°,∴∠BCD1=∠A,在△ABC和△D1CB中,,∴△ABC≌△D1CB(SAS),∴∠BD1C=∠ABC=45°,∴∠E1D1B=∠BD1C﹣∠CD1E1=45°﹣30°=15°.故选:D.【点评】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记性质并求出△ABC和△D1CB全等是解题的关键.16.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30° B.60° C.90° D.150°【考点】旋转的性质.【专题】几何图形问题.【分析】根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.【解答】解:∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选:B.【点评】本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.17.如图,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴正半轴上的A′处,则图中阴影部分面积为()A.π﹣2 B.π C.π D.π﹣2【考点】旋转的性质;扇形面积的计算.【分析】根据等腰直角三角形的性质求出AB,再根据旋转的性质可得A′B=AB,然后求出∠OA′B=30°,再根据直角三角形两锐角互余求出∠A′BA=60°,即旋转角为60°,再根据S阴影=S扇+S△A′BC′﹣S△ABC﹣S扇形CBC′=S扇形ABA′﹣S扇形CBC′,然后利用扇形的面积公式列式计算即可得解.形ABA′【解答】解:∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∴AB=2OA=2OB=AC=2,∵△ABC绕点B顺时针旋转点A在A′处,∴BA′=AB,∴BA′=2OB,∴∠OA′B=30°,∴∠A′BA=60°,即旋转角为60°,S阴影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′,=S扇形ABA′﹣S扇形CBC′,=﹣,=π﹣π,=π.故选C.【点评】本题考查了旋转的性质,等腰直角三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,表示出阴影部分的面积等于两个扇形的面积的差是解题的关键,难点在于求出旋转角的度数.18.如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B. +1 C.D.﹣1【考点】旋转的性质;四点共圆;线段的性质:两点之间线段最短;等边三角形的性质;勾股定理;相似三角形的判定与性质.【专题】压轴题.【分析】取AC的中点O,连接AD、DG、BO、OM,如图,易证△DAG∽△DCF,则有∠DAG=∠DCF,从而可得A、D、C、M四点共圆,根据两点之间线段最短可得BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,只需求出BO、OM的值,就可解决问题.【解答】解:AC的中点O,连接AD、DG、BO、OM,如图.∵△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,∴AD⊥BC,GD⊥EF,DA=DG,DC=DF,∴∠ADG=90°﹣∠CDG=∠FDC, =,∴△DAG∽△DCF,∴∠DAG=∠DCF.∴A、D、C、M四点共圆.根据两点之间线段最短可得:BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,此时,BO===,OM=AC=1,则BM=BO﹣OM=﹣1.故选:D.【点评】本题主要考查了等边三角形的性质、等腰三角形的性质、相似三角形的判定与性质、四点共圆的判定、勾股定理、两点之间线段最短等知识,求出动点M的运动轨迹是解决本题的关键.二、填空题(共6小题)19.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1,将Rt△ABC绕点A逆时针旋转30°后得到△AB′C′,则图中阴影部分的面积是.【考点】旋转的性质;扇形面积的计算.【专题】计算题.【分析】根据含30度的直角三角形三边的关系得到AB=2AC=2,BC=AC=,根据互余得到∠CAB=60°,再根据旋转的性质得到AC′=AC=1,AB′=AB=2,B′C′=BC=,∠B′AB=30°,∠C′AB′=∠CAB=60°,则∠C′AD=∠C′AB′∠BAB′=30°,接着在Rt△AC′D中,利用∠C′AD=30°可得C′D=AC′=,所以B′D=B′C′﹣C′D=,然后根据三角形面积公式、扇形面积公式和图中阴影部分的面积=S扇形BAB′﹣S△ADB′进行计算即可.【解答】解:∵∠C=90°,∠ABC=30°,∴∠CAB=60°,AB=2AC=2,BC=AC=,∵Rt△ABC绕点A逆时针旋转30°后得到△AB′C′,∴AC′=AC=1,AB′=AB=2,B′C′=BC=,∠B′AB=30°,∠C′AB′=∠CAB=60°,∴∠C′AD=∠C′AB′∠BAB′=30°,在Rt△AC′D中,∵∠C′AD=30°,∴C′D=AC′=,∴B′D=B′C′﹣C′D=﹣=,∴图中阴影部分的面积=S扇形BAB′﹣S△ADB′=﹣××1=.故答案为:.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了扇形面积的计算和含30度的直角三角形三边的关系.20.如图,在△ABC中,∠B=50°,在同一平面内,将△ABC绕点A逆时针方向旋转到△AB′C′的位置,使得AB′⊥BC,连接CC′,则∠AC′C=70 度.【考点】旋转的性质.【分析】首先证明∠CAC′=40°然后证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠AC′C=70°即可解决问题.【解答】解:∵∠B=50°,AB′⊥BC,∴∠B′AB=40°,∴旋转角为40°,∴∠CAC′=40°,由题意得:AC=AC′,∴∠ACC′=∠AC′C;∴∠AC′C=70°,故答案为70.【点评】本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.21.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为2﹣.【考点】旋转的性质.【专题】几何图形问题.【分析】利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.【解答】解:由题意可得出:∠BDC=45°,∠DA′E=90°,∴∠DEA′=45°,∴A′D=A′E,∵在正方形ABCD中,AD=1,∴AB=A′B=1,∴BD=,∴A′D=﹣1,∴在Rt△DA′E中,DE==2﹣.故答案为:2﹣.【点评】此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D 的长是解题关键.22.如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是2π.【考点】旋转的性质.【分析】首先计算出圆的面积,根据图示可得阴影部分面积为半圆的面积,进而可得答案.【解答】解:∵AB=4,∴BO=2,∴圆的面积为:π×22=4π,∴阴影部分的面积是:×4π=2π,故答案为:2π.【点评】此题主要考查了旋转的性质,关键是掌握圆的面积公式.23.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为 6 .【考点】旋转的性质;相似三角形的判定与性质.【专题】几何图形问题.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C 是解题关键.24.如图,在△ABC中,AC=BC=8,∠C=90°,点D为BC中点,将△ABC绕点D逆时针旋转45°,得到△A′B′C′,B′C′与AB交于点E,则S四边形ACDE= 28 .【考点】旋转的性质.【专题】几何图形问题.【分析】利用旋转的性质得出∠B=∠BDE=45°,BD=4,进而由S四边形ACDE=S△ACB﹣S△BDE求出即可.【解答】解:由题意可得:∠B=∠BDE=45°,BD=4,则∠DEB=90°,∴BE=DE=2,∴S△BDE=×2×2=4,∵S△ACB=×AC×BC=32,∴S四边形ACDE=S△ACB﹣S△BDE=28.故答案为:28.【点评】此题主要考查了旋转的性质以及三角形面积求法,得出S△BDE是解题关键.三、解答题(共6小题)25.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.【考点】旋转的性质;含30度角的直角三角形;直角三角形斜边上的中线;菱形的判定.【专题】几何图形问题.【分析】(1)利用旋转的性质得出AC=CD,进而得出△ADC是等边三角形,即可得出∠ACD的度数;(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n 度后,得到△DEC,∴AC=DC,∠A=60°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.【点评】此题主要考查了菱形的判定以及旋转的性质和直角三角形斜边上的中线等于斜边的一半等知识,得出△DFC是等边三角形是解题关键.26.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.【考点】旋转的性质;正方形的判定;平移的性质.【专题】几何图形问题.【分析】(1)根据旋转和平移可得∠DEB=∠ACB,∠GFE=∠A,再根据∠ABC=90°可得∠A+∠ACB=90°,进而得到∠DEB+∠GFE=90°,从而得到DE、FG的位置关系是垂直;(2)根据旋转和平移找出对应线段和角,然后再证明是矩形,后根据邻边相等可得四边形CBEG是正方形.【解答】(1)解:FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.【点评】此题主要考查了图形的旋转和平移,关键是掌握新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.27.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.【考点】旋转的性质;相似三角形的判定与性质.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CD=AD=BD=AB,根据等边对等角求出∠ACD=∠A,再求出∠ADC=120°,再根据∠ADE=∠ADC﹣∠EDF计算即可得解;(2)根据同角的余角相等求出∠PDM=∠CDN,再根据然后求出△BCD是等边三角形,根据等边三角形的性质求出∠BCD=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CPD=60°,从而得到∠CPD=∠BCD,再根据两组角对应相等,两三角形相似判断出△DPM和△DCN相似,再根据相似三角形对应边成比例可得=为定值.【解答】解:(1)∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD=AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=,∵=tan∠ACD=tan30°=,∴的值不随着α的变化而变化,是定值.【点评】本题考查了旋转的性质,相似三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并判断出相似三角形是解题的关键,也是本题的难点.28.已知△ABC中,M为BC的中点,直线m绕点A旋转,过B、M、C分别作BD⊥m于D,ME⊥m于E,CF⊥m于F.(1)当直线m经过B点时,如图1,易证EM=CF.(不需证明)(2)当直线m不经过B点,旋转到如图2、图3的位置时,线段BD、ME、CF之间有怎样的数量关系?请直接写出你的猜想,并选择一种情况加以证明.。

人教版九年级数学上册:23.1 图形的旋转 同步练习(含答案)

人教版九年级数学上册:23.1 图形的旋转  同步练习(含答案)

图形的旋转班级:_____________姓名:__________________组号:_________第三课时一、巩固训练1.如图1,将△ABC 绕点A 旋转后得到△ADE ,则旋转方式是( )A .顺时针旋转90°B .逆时针旋转90°C .顺时针旋转45°D .逆时针旋转45°2.如图2是一个旋转对称图形,要使它旋转后与自身重合,应将它绕中心逆时针方向旋转的度数至少为( )度。

A .30°B .45°C .60°D .90°3.如图3,图形旋转一定角度后能与自身重合,则旋转的角度可能是(A .30°B .60°C .90°D .120°4.如图4,把三角形△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若∠A 'DC=90°,则∠A 的度数是__________。

二、错题再现1.图5有两个边长为4cm 的正方形,其中一个正方形的顶点在另一个正方形的中心上,那么图中阴影部分的面积是( )。

A .4cm 2B .8cm 2C .16cm 2D .无法确定2.如图6,将△ABC 绕点A 旋转一定角度后能与△ADE 重合,如果△ABC 的面积是12cm 2,那么△ADE 的面积是____________。

3.如图7,△ABC 绕点B 逆时针方向旋转到△EBD 的位置,若∠E=21°,∠C=18°,E,图1 图2 图3 图 4完成情况B ,C 在同一直线上,则旋转角的度数是_____。

4.如图8所示,已知正方形ABCD 中的△DCF 可以经过旋转得到△ECB .(1)图中哪一个点是旋转中心?(2)按什么方向旋转了多少度?(3)如果CF=3cm ,求EF 的长。

三、能力提升1.已知:如图,在△ABC 中,AB=AC ,∠BAC=α,且60°<α<120°,P 为△ABC 内部一点,且PC=AC ,∠PCA=120°﹣α。

人教版九年级数学上册《23.1图形的旋转》同步练习题(附答案)

人教版九年级数学上册《23.1图形的旋转》同步练习题(附答案)

人教版九年级数学上册《23.1图形的旋转》同步练习题(附答案)考试时间:60分钟;总分:100分一.选择题(共8小题,满分32分,每小题4分)1.如图,点A,B,C,D,O都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.135°B.90°C.60°D.45°2.下列运动属于旋转的是()A.篮球的滚动过程B.转动的方向盘C.气球升空的运动D.一个图形沿某直线对折的过程3.如图,把△ABC绕点C顺时针旋转某个角度a得到△A'B'C,∠A=30°,∠1=50°,则旋转角a等于()A.110°B.70°C.40°D.20°4.如图,教室内地面有个倾斜的畚箕,箕面AB与水平地面的夹角∠CAB为61°,小明将它扶起(将畚箕绕点A顺时针旋转)后平放在地面,箕面AB绕点A旋转的度数为()A.119°B.120°C.61°D.121°5.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°6.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=DE7.如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是()A.(5,0)B.(8,0)C.(0,5)D.(0,8)8.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C,连接AA',若∠1=25°.则∠BAA'的度数是()A.55°B.60°C.65°D.70°二.填空题(共4小题,满分16分,每小题4分)9.如图,四边形EFGH是由四边形ABCD经过旋转得到的,如果用有序数对(2,1)表示方格纸上点A 的位置,用(1,2)表示点B的位置,那四边形ABCD旋转得到四边形EFGH时的旋转中心用有序数对表示是.10.如图,图形是由一个菱形经过次旋转得到,每次旋转了度.11.如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.12.如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为.三.解答题(共4题,满分52分,每小题13分)13.(13分)如图,作出△ABC绕点O顺时针旋转60°之后的三角形.(保留作图痕迹)14.(13分)如图,已知正方形ABCD,点E在AB边上,点F在BC边的延长线上,且CF=AE.以图中某一点为旋转中心,将△DAE按逆时针方向旋转一定角度后恰好与△DCF重合.(1)旋转中心是点,旋转角的度数为°.(2)判断△DFE的形状并说明理由.15.(13分)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度;(2)连接AD,交OC于点E,求∠AEO的度数.16.(13分)如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α,将△AOC绕顶点C按顺时针方向旋转90°得△BDC,连接OD(1)当α=95°时,是判断△BOD的形状,并说明理由;(2)若OC=1,OA=2,OB=,求∠BOC的度数;(3)当α等于多少度时,△BOD是等腰三角形?参考答案与试题解析一.选择题(共25小题,满分100分,每小题4分)1.如图,点A,B,C,D,O都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.B.90°C.60°D.45°解:∵△AOB绕点O按逆时针方向旋转到△COD的位置∴对应边OB、OD的夹角∠BOD即为旋转角而∠DOB=90°.∴旋转的角度为90°.故选:B.2.下列运动属于旋转的是()A.篮球的滚动过程B.转动的方向盘C.气球升空的运动D.一个图形沿某直线对折的过程解:A、篮球的滚动不一定是旋转;B、转动的方向盘,属于旋转;C、气球升空的运动是平移,不属于旋转;D、一个图形沿某直线对折的过程是轴对称,不属于旋转.故选:B.3.如图,把△ABC绕点C顺时针旋转某个角度a得到△A'B'C,∠A=30°,∠1=50°,则旋转角a等于()A.110°B.70°C.40°D.20°解:∵△ABC绕点C顺时针旋转某个角度α得到△A′B′C∴∠A=∠A′=30°又∵∠1=∠A′+∠ACA′=50°∴∠BCB′=∠ACA′=20°故选:D.4.如图,教室内地面有个倾斜的畚箕,箕面AB与水平地面的夹角∠CAB为61°,小明将它扶起(将畚箕绕点A顺时针旋转)后平放在地面,箕面AB绕点A旋转的度数为()A.119°B.120°C.61°D.121°解:∵AB与地面的夹角∠CAB为61°∴∠BAB'=180°﹣∠CAB=180°﹣61°=119°即旋转角为119°∴箕面AB绕点A旋转的度数为119°.故选:A.5.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′∠AOA′即为旋转角∴旋转角为90°故选:C.6.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=DE解:∵点E在AB的延长线上∴A、B、E三点在同一条直线上∴∠ABD和∠CBE分别是△DBE和△ABC的外角∴∠ABD>∠E,∠CBE>∠C故A错误、B错误;由旋转得BD=BA,∠ABD=∠CBE=60°∴△ABD是等边三角形∵∠ADB=60°,∠CBD=180°﹣∠ABD﹣∠CBE=60°∴∠ADB=∠CBD∴AD∥BC故C正确;∵∠DAE=∠ABD=60°,∠E<∠ABD∴∠E<60°∴∠DAE≠∠E若AD=DE,则∠DAE=∠E,显然与已知条件相矛盾∴AD≠DE故D错误故选:C.7.如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是()A.(5,0)B.(8,0)C.(0,5)D.(0,8)解:∵A(3,0),B(0,4)∴AO=3,BO=4∴AB==5∴AB=AB′=5,故OB′=8∴点B′的坐标是(8,0).故选:B.8.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C,连接AA',若∠1=25°.则∠BAA'的度数是()A.55°B.60°C.65°D.70°解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C∴AC=A′C∴△ACA′是等腰直角三角形∴∠CA′A=∠A′AC=45°∴∠CA′B′=∠CA′A﹣∠1=45°﹣25°=20°=∠BAC∴∠BAA′=∠BAC+∠A′AC=20°+45°=65°故选:C.二.填空题(共11小题,满分44分,每小题4分)9.如图,四边形EFGH是由四边形ABCD经过旋转得到的,如果用有序数对(2,1)表示方格纸上点A 的位置,用(1,2)表示点B的位置,那四边形ABCD旋转得到四边形EFGH时的旋转中心用有序数对表示是(5,2).解:如图,连接AE、DH作AE、DH的垂线,相交于点P,则点P即为旋转中心∵A(2,1),B(1,2)∴P(5,2).故答案为:(5,2).10.如图,图形是由一个菱形经过六次旋转得到,每次旋转了60度.解:图形是由一个菱形经过六次旋转得到,每次旋转了360°÷6=60度.故答案为:六;60.11.如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为17°.解:∵∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′∴∠B'AC'=33°,∠BAB'=50°∴∠B′AC的度数=50°﹣33°=17°.故答案为:17°.12.如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为30°.解:∵将△ABC绕点C顺时针旋转∴BC=CD,∠BCD=∠ACE∴∠B=∠BDC=50°∴∠BCD=80°=∠ACE∵∠ACE=∠B+∠A∴∠A=80°﹣50°=30°故答案为:30°.三.解答题(共11小题,满分143分,每小题13分)13.(13分)如图,作出△ABC绕点O顺时针旋转60°之后的三角形.(保留作图痕迹)解:如图所示,△A′B′C′即为所求作的三角形.14.(13分)如图,已知正方形ABCD,点E在AB边上,点F在BC边的延长线上,且CF=AE.以图中某一点为旋转中心,将△DAE按逆时针方向旋转一定角度后恰好与△DCF重合.(1)旋转中心是点D,旋转角的度数为90°.(2)判断△DFE的形状并说明理由.解:(1)∵将△DAE按逆时针方向旋转一定角度后恰好与△DCF重合∴∠ADC=∠EDF=90°,DE=DF∴旋转中心是点D,旋转角的度数为90°故答案为:D,90;(2)△DEF是等腰直角三角形理由如下:∵将△DAE按逆时针方向旋转一定角度后恰好与△DCF重合∴∠ADC=∠EDF=90°,DE=DF∴△DEF是等腰直角三角形.15.(13分)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是2个单位长度;△AOC与△BOD关于直线对称,则对称轴是y轴;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是120度;(2)连接AD,交OC于点E,求∠AEO的度数.解:(1)∵点A的坐标为(﹣2,0)∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形∴∠AOC=∠BOD=60°∴∠AOD=120°∴△AOC绕原点O顺时针旋转120°得到△DOB.(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB∴OA=OD∵∠AOC=∠BOD=60°∴∠DOC=60°即OE为等腰△AOD的顶角的平分线∴OE垂直平分AD∴∠AEO=90°.故答案为2;y轴;120.16.(13分)如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α,将△AOC绕顶点C按顺时针方向旋转90°得△BDC,连接OD(1)当α=95°时,是判断△BOD的形状,并说明理由;(2)若OC=1,OA=2,OB=,求∠BOC的度数;(3)当α等于多少度时,△BOD是等腰三角形?解:(1)△BOD为等腰三角形.理由如下:∵△AOC绕直角顶点C按顺时针方向旋转90°得△BDC∴∠OCD=90°,CO=CD,∠CDB=∠COA=α∴△COD是等腰直角三角形;∴∠COD=∠CDO=45°∵∠BOD=360°﹣∠AOB﹣∠AOC﹣∠COD=360°﹣140°﹣95°﹣45°=80°而∠BDO=∠CDB﹣∠CDO=95°﹣45°=50°∴∠DBO=180°﹣∠BDO﹣∠BOD=50°∴∠DBO=∠BDO∴△BOD为等腰三角形;(2)∵△COD是等腰直角三角形∴OD=OC=而BD=OA=2,OB=∴OB2+OD2=BD2∴△BOD为等腰直角三角形∠BOD=90°;(3)∠BOD=360°﹣∠AOB﹣∠AOC﹣∠COD=360°﹣140°﹣α﹣45°=175°﹣α∠BDO=∠CDB﹣∠CDO=α﹣45°∠OBD=180°﹣∠BDO﹣∠BOD=180°﹣α+45°﹣175°+α=50°当BD=OD时,∠OBD=∠BOD,即175°﹣α=50°,解得α=125°;当OB=OD时,∠OBD=∠BDO,即α﹣45°=50°,解得α=95°;当DB=DO时,∠BOD=∠DBO,即175°﹣α=α﹣45°,解得α=110°即当α等于125°或95°或110°时,△BOD是等腰三角形.。

九年级数学上册第二十三章旋转23.1图形的旋转(拓展提高)同步检测(含解析)(新版)新人教版

九年级数学上册第二十三章旋转23.1图形的旋转(拓展提高)同步检测(含解析)(新版)新人教版

23.1 图形的旋转基础闯关全练拓展训练1.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是( )A.0B.1C.2D.32.如图,△ABC绕着点O按顺时针方向旋转90°后到达了△CDE的位置,下列说法中不正确的是( )A.线段AB与线段CD互相垂直B.线段AC与线段CE互相垂直C.点A与点E是两个三角形的对应点D.线段BC与线段DE互相垂直3.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB'C',过点B'作B'D⊥CA,交CA的延长线于点D,若AC=6,则AD的长为( )A.2B.3C.2D.34.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA',则点A'的坐标是.能力提升全练拓展训练1.如图,△ABD是等边三角形,以AD为边向外作△ADE,使∠AED=30°,且AE=3,DE=2,连接BE,则BE的长为( )A.4B.C.5D.2.(2016安徽合肥模拟)如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC',连接BC',E为BC'的中点,连接CE,则CE的最大值为( )A. B.+1 C.+1 D.+13.(2018江西南昌东湖期中)如图,∠AOB=30°,P点在∠AOB内部,M点在射线OA上,将线段PM绕P点逆时针旋转90°,M点恰好落在OB上的N点(OM>ON),若PM=,ON=8,则OM= .4.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动过程中,DF的最小值是.三年模拟全练拓展训练1.(2017福建厦门同安六校联考期中,8,★★☆)如图,在正方形ABCD中,△ABE经旋转,可与△CBF重合,AE的延长线交FC于点M,以下结论正确的是( )A.BE=CEB.FM=MCC.AM⊥FCD.BF⊥CF2.(2017山东枣庄薛城期中,12,★★☆)如图,P是等边三角形ABC内一点,将线段AP绕点A 顺时针旋转60°得到线段AQ,连接BQ,若PA=6,PB=8,PC=10,则四边形APBQ的面积为( )A.24B.12+6C.24+9D.12+93.(2017天津滨海新区期中,16,★★☆)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC 的中点,将△ADE绕点E旋转180°得到△CFE,则DF与AC的数量关系是.4.(2018广西柳州期中,18,★★☆)在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列四个结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△AED的周长是9.其中正确的结论是(把你认为正确结论的序号都填上).五年中考全练拓展训练1.(2016江苏无锡中考,10,★★☆)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是( )A. B.2 C.3 D.22.(2017广西贺州中考,18,★★☆)如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF 交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为.3.如图,在△ABC中,AC=BC=8,∠C=90°,点D为BC的中点,将△ABC绕点D逆时针旋转45°,得到△A'B'C',B'C'与AB交于点E,则S四边形ACDE= .4.(2017四川南充中考,16,★★☆)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2.其中正确的结论是(填序号).核心素养全练拓展训练1.如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P 旋转至点P',且AP'=3,则∠BP'C的度数为( )A.105°B.112.5°C.120°D.135°2.(2016山东德州庆云期中)如图1,将三角板ABC与三角板ADE摆放在一起;如图2,固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).当△ADE的一边与△ABC的某一边平行(不共线)时,旋转角α的所有可能的度数为.23.1 图形的旋转基础闯关全练拓展训练1.答案 D ∵等边△ABC绕点C顺时针旋转120°得到△EDC,2.∴AC=BC=DC=EC,∠BCD=120°,∵∠ACB=60°,∴∠ACD=60°,∴△ACD为等边三角形,∴AC=AD,∴①正确;∵A B=AC=EC=ED=AD,∴四边形ACED是菱形,∴③正确;由AB=BC,得B在AC的垂直平分线上,由AD=CD,得D在AC的垂直平分线上,∴BD垂直平分AC,∴②正确.2.答案 C 由于△ABC绕着点O按顺时针方向旋转90°后到达了△CDE的位置,则线段AB 与CD垂直,线段AC与CE垂直,点A与点C为对应点,线段BC与DE垂直.故选C.3.答案D在等腰直角△ABC中,AB===6,由旋转的性质知AB'=AB=6,∠BAB'=75°.在直角△B'AD中,∠B'AD=180°-∠BA C-∠BAB'=180°-45°-75°=60°,则AD=6×=3.故选D.4.答案(-4,3)解析如图,过点A作AB⊥x轴于点B,过点A'作A'B'⊥x轴于点B',由题意知OA=OA',∠AOA'=90°,∴∠A'OB'+∠AOB=90°,∵∠AOB+∠OAB=90°,∴∠OAB=∠A'OB',在△AOB和△OA'B'中,∴△AOB≌△OA'B'(AAS),∴OB'=AB=4,A'B'=OB=3,∴点A'的坐标为(-4,3).能力提升全练拓展训练1.答案 B 如图,作EF⊥AE,且EF=DE,连接AF、DF,因为∠AEF=90°,所以∠DEF=90°-30°=60°,又因为DE=EF,所以△DEF是等边三角形,所以∠EDF=60°,∠ADF=∠BDE,又因为AD=BD,DE=DF,所以△BDE≌△ADF,所以BE=AF==.故选B.2.答案 B 取AB的中点M,连接CM,EM,∴当CE=CM+EM时,CE的值最大,∵将直角边AC绕A 点逆时针旋转至AC',∴AC'=AC=2.∵E为BC'的中点,∴EM=AC'=1,∵∠ACB=90°,AC=BC=2,∴AB=2,∴CM=AB=,∴CE的取大值为CM+EM=+1.故选B.3.答案4+2解析如图,连接MN,过N作NH⊥OA于H,∵线段PM绕P点逆时针旋转90°,M点恰好落在OB上的N点,∴∠MPN=90°,PN=PM=,∴△PMN为等腰直角三角形,∴MN===2,在Rt△OHN 中,∵∠NOH=30°,ON=8,∴NH=ON=4,OH===4.在Rt△MNH中,∵NH=4,MN=2,∴MH==2,∴OM=OH+MH=4+2.4.答案 1.5解析如图,取AC的中点G,连接EG,∵旋转角为60°,∴∠ECD+∠DCF=60°.又∵∠ECD+∠GCE=∠ACB=60°,∴∠DCF=∠GCE.∵AD是等边△ABC的对称轴,∴CD=BC,∴CD=CG.又∵CE旋转到CF,∴CE=CF,∴△DCF≌△GCE,∴DF=EG,根据垂线段最短知EG⊥AD时,EG最短,即DF最短,此时,∵∠CAD=×60°=30°,AG=AC=×6=3,∴EG=AG=×3=1.5,∴DF=1.5.三年模拟全练拓展训练1.答案 C 因为E不一定是BC的中点,故A错误;根据旋转的性质可得△ABE≌△CBF,则∠AEB=∠F,又∵直角△ABE中,∠BAE+∠AEB=90°,∴∠BAE+∠F=90°,∴∠AMF=90°,∴AM⊥FC,故C正确;连接AC,因为E是BC上任意一点,BF=BE,所以AC和AF不一定相等,则M不一定是FC的中点,故B错误;∵BF⊥BC,∴BF⊥CF 一定错误,故D错误.故选C.2.答案 C 如图,连接PQ,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A 顺时针旋转60°得到线段AQ,∴AP=AQ=6,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=6.∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ.在△APC和△AQB中,AC=AB,∠CAP=∠BAQ,AP=AQ,∴△APC≌△AQB(SAS),∴PC=QB=10.在△BPQ中,∵PB2=82=64,PQ2=62=36,BQ2=102=100,又64+36=100,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=×6×8+×62=24+9.故选C.3.答案DF=AC解析∵AC=BC,点D、E分别是边AB、AC的中点,∴DE=BC,AE=AC,∵AC=BC,∴AE=DE.∵将△ADE绕点E旋转180°得△CFE,∴△ADE≌△CFE,∴AE=CE,DE=FE,∴AE=CE=DE=FE,∴DF=AC.4.答案①③④解析∵△ABC为等边三角形,∴BA=BC=AC,∠ABC=∠C=∠BAC=60°,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴∠BAE=∠C=60°,∴∠BAE=∠ABC,∴AE∥BC,故①正确;∵△BCD绕点B 逆时针旋转60°,得到△BAE,∴BD=BE,∠DBE=60°,∴△BDE是等边三角形,故③正确;∵∠BDE=60°,又∠BDC=∠BAC+∠ABD>60°,∴∠ADE<60°,∴∠ADE≠∠BDC,故②错误;∵△BDE是等边三角形,∴DE=BD=4,而△BCD绕点B逆时针旋转60°,得到△BAE,∴AE=CD,∴△AED的周长=AE+AD+DE=CD+AD+DE=AC+4=5+4=9,故④正确.故答案为①③④.五年中考全练拓展训练1.答案 A ∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°-∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等边三角形,∴AA1=AC=CA1=2,∴BA1=AA1=2.易知∠BCB1=∠ACA1=60°.∵CB=CB1,∴△BCB1是等边三角形,∴BB1=2,∠A1BB1=90°,∵D为BB1的中点,∴BD=DB1=,∴A1D==.故选A.2.答案 6解析由旋转的性质可知AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠BAG+∠BAE=45°,∴∠GAE=∠FAE.在△GAE和△FAE中,AG=AF,∠GAE=∠FAE,AE=AE,∴△GAE≌△FAE.∵AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x-2,FC=x-3.在Rt△EFC中,由勾股定理得EF2=EC2+FC2,即(x-2)2+(x-3)2=25.解得x=6(x=-1舍),∴AB=6,∴AH=6.3.答案28解析∵在△ABC中,AC=BC=8,∠C=90°,∴∠B=45°.∵旋转角是45°,即∠BDE=45°,∴∠BED=90°,∴△BDE是等腰直角三角形.∵D是BC的中点,∴BD=BC=4.根据勾股定理可得BE=DE=2,∴S四边形ACDE=AC·BC-BE·DE=×8×8-×2×2=28.4.答案①②③解析设BE,DG交于点O,BE,CD交于点H,∵四边形ABCD和CEFG都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.在△BCE和△DCG中,BC=DC,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG(SAS),∴BE=DG,∠CBE=∠CDG,∵∠CHB=∠DHE,∠CBE+∠CHB=90°,∴∠CDG+∠DHE=90°,∴∠BOD=90°,∴BE⊥DG,故①②正确.连接BD,EG,如图所示,易知DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=2b2,∴DE2+BG2=DO2+EO2+BO2+OG2=2a2+2b2,故③正确.故答案为①②③.核心素养全练拓展训练1.答案 D 连接PP',如图,∵四边形ABCD为正方形,∴∠ABC=90°,BA=BC,∴△ABP绕点B顺时针旋转90°得到△CBP',∴BP=BP',∠BPA=∠BP'C,∴∠PBP'=90°,∴△PBP'为等腰直角三角形,∴∠BPP'=45°,PP'=PB=2.在△APP'中,∵PA=1,PP'=2,AP'=3,∴PA2+PP'2=AP'2,∴△APP'为直角三角形,∠APP'=90°,∴∠BPA=∠BPP'+∠APP'=45°+90°=135°,∴∠BP'C=135°.故选D.2.答案15°,45°,105°,135°,150°解析当△ADE的一边与△ABC的某一边平行(不共线)时,旋转角α的所有可能的情况如下图所示:图1①如图1,当AD∥BC时,α=15°;②如图2,当DE∥AB时,α=45°;③如图3,当DE∥BC 时,α=105°;④如图4,当DE∥AC时,α=135°;⑤如图5,当AE∥BC时,α=150°.。

人教版九年级数学上册 23.1 图形的旋转 同步练习

人教版九年级数学上册 23.1 图形的旋转  同步练习

23.1 图形的旋转一.选择题1.在下列现象中:①时针转动,②电风扇叶片的转动,③转呼啦圈,④传送带上的电视机,其中是旋转的有()个.A.1B.2C.3D.42.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上的点G处,连接CE,则点B到CE的距离是()A.B.C.D.3.如图,将△ABC绕点B按逆时针方向旋转40°到△DBE(其中点D与点A对应,点E 与点C对应),连接AD,若AD∥BC,则∠ABE的度数为()A.25°B.30°C.35°D.40°4.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD =2,BD=3,则CD的长为()A.B.4C.D.5.如图,将△ABC绕点A逆时针旋转100°,得到△ADE,若点D在线段BC的延长线上,则∠ADE的大小为()A.60°B.50°C.45°D.40°6.如图,等边三角形ABC与等边三角形EFB共端点B,BC=2,BF=,△EFB绕点B 旋转,∠BCF的最大度数()A.30°B.45°C.60°D.90°7.如图,将△ABC绕顶点A顺时针旋转一个角度后,恰好AB′∥BC,若∠B=30°,则△ABC旋转了()A.10°B.20°C.30°D.35°8.在△ABC中,∠ACB=90°,∠B=65°.在同一平面内,将△ABC绕点C旋转到△A'B'C,若B'恰好落在线段AB上,连接AA',则下列结论中错误的是()A.∠B'A'C=25°B.AC=AA'C.∠ACA'=50°D.AB⊥AA'9.如图,△ABC中,∠ACB=90°,AC=3.将△ABC绕点B逆时针旋转得到△A'BC′,点C的对应点C'落在AB边上,A'B=5,连接AA′.则AA'长为()A.2B.C.3D.410.如图所示的是正十二角形体,因为其独特的对称美,所以2019年在英国举办的第60界国际数学奥林匹克的会标,就选用了正十二角形体,若将它绕自身中心旋转一定角度后能与原图重合,则这个角度不可能是()A.60°B.90°C.120°D.180°11.将图绕其中心旋转某一角度后会与原图形重合,这个角不能是()A.90°B.120°C.180°D.270°12.以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q的坐标为()A.(﹣4,5)B.(4,﹣5)C.(﹣5,4)D.(5,﹣4)13.如图,将等边三角形OAB放在平面直角坐标系中,A点坐标(1,0),将△OAB绕点O 逆时针旋转60°,则旋转后点B的对应点B′的坐标为()A.(﹣,)B.(﹣1,)C.(﹣,)D.(﹣,)14.在直角坐标系中,点O为坐标原点,点A(3,4),把线段OA绕点O顺时针旋转90°得到线段OA',则点A'的坐标为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(3,﹣4)15.在平面直角坐标系中,点A的坐标为(﹣1,﹣2),将OA绕原点O逆时针旋转90°得到OA′,点A′的坐标为(a,b),则a+b等于()A.1B.﹣1C.3D.﹣3二.填空题16.时钟从上午8时到中午12时,时针沿顺时针方向旋转了度.17.在正方形ABCD中,AB=6,点P为边AB上的一动点,连接PC,以PC为边向下作等边△PCQ,连接BQ,则BQ的最小值是.18.如图,在正方形ABCD中,点E在边DC上,DE=5,EC=3,把线段AE绕点A旋转后使点E落在直线BC上的点F处,则F、C两点的距离为.19.如图,在△ABC中,AB=AC=5,BC=8,将△ABC绕着点B旋转得△A′BC′,点A 的对应点为点A′,点C的对应点为点C′.当点A,B,C′三点共线时,点C和点C′之间的距离为.20.如图,已知∠EAD=34°,△ADE绕着点A旋转50°后能与△ABC重合,则∠BAE=度.21.如图,O是等边△ABC内一点,OA=1,OB=,OC=2,将线段BO绕点B逆时针旋转60°得到线段BO′,连接AO'①点O与O′的距离为2;②∠AOB=135°;③四边形AOBO′的面积为;④△ABC的边长为;其中正确的结论为.(填正确的番号)22.正方形绕着它的中心至少旋转度可以与它自身重合;五角星的最小旋转角是度.23.如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴上,点B(﹣1,2),第一次将矩形OABC绕右下角顶点O顺时针旋转90°得到矩形O1A1B1C1;第二次再将矩形O1A1B1C1绕右下角顶点C1顺时针旋转90°得到矩形O2A2B2C2,……按此规律,经过第五次旋转得到的点A5坐标为.24.在平面直角坐标系中,将点P(﹣3,2)绕点Q(﹣1,0)顺时针旋转90°,所得到的对应点P′的坐标为.25.如图,在平面直角坐标系中,有Rt△AOB,∠AOB=30°,∠OBA=90°,OA边在x 轴正半轴,且A(,0),现将其中的OB边绕原点O每次按逆时针方向旋转30°,并且每旋转一次长度增加一倍,点B对应点依次为B1、B2、B3、…,按照此规律,点B100的坐标为.三.解答题26.已知△ABC为等边三角形.(1)如图,P为△ABC外一点,∠BPC=120°,连接P A,PB,PC,求证:PB+PC=P A;(2)如图,P为△ABC内一点,若P A=12,PB=5,PC=13,求∠APB的度数.27.如图,图1等腰△BAC与等腰△DEC,共点于C,且∠BCA=∠ECD,连结BE、AD,若BC=AC、EC=DC.(1)求证:BE=AD;(2)若将等腰△DEC绕点C旋转至图2、3、4情况时,其余条件不变,BE与AD还相等吗?为什么?(请你用图2证明你的猜想)28.如图,△ABD是等边三角形,以AD为边向外作△ADE,使∠AED=30°,且AE=3,DE=2,连接BE,求BE的长.29.如图,边长为1的方格纸中建立直角坐标系,△OAB旋转得到△OA'B′,观察图形并回答问题:(1)请将作图过程补充完整;并说明△OAB是如何旋转得到△OA'B'.(2)填空:△OAA′的形状是.30.如图,在平面直角坐标系中,有Rt△ABC,∠ACB=90°,∠BAC=30°,点A、B均在x轴上,边AC与y轴交于点D,连接BD,且BD是∠ABC的角平分线,若点B的坐标为(,0).(1)如图1,求点C的横坐标;(2)如图2,将Rt△ABC绕点A逆时针旋转一个角度α(0°≤α≤180°)得到Rt△AB'C',直线AC'交直线BD于点P,直线AB'交y轴于点Q,是否存在点P、Q,使△APQ为等腰三角形?若存在,直接写出∠APQ的度数;若不存在,请说明理由.参考答案一.选择题1.C.2.A.3.B.4.A.5.D.6.C.7.C.8.B.9.B.10.B.11.B.12.C.13.A.14.B.15.C.二.填空题16.120°.17.3.18.3或13.19.或.20.16.21.③④.22.90,72.23.(9,2).24.(1,2).25.(﹣299•,299).三.解答题26.证明:(1)如图1,延长BP至点E,使得PE=PC,连接CE,∵∠BPC=120°,PE=PC,∴∠CPE=60°,∴△CPE为等边三角形,∴CP=PE=CE,∠PCE=60°,∵△ABC是等边三角形,∴AC=BC,∠BCA=60°,∴∠ACB=∠ECP,∴∠ACB+∠BCP=∠ECP+∠BCP,即:∠ACP=∠BCE,在△ACP和△BCE中,,∴△ACP≌△BCE(SAS),∴AP=BE,∵BE=BP+PE=BP+PC,∴PB+PC=P A;(2)如图2,将△ABP绕点B顺时针方向旋转60°,得到△CBP',连接PP',由旋转知,△APB≌△CP′B,∴∠BP A=∠BP′C,P′B=PB=5,P′C=P A=12,∠PBP'=∠ABC=60°,又∵P′B=PB=5,∴△PBP′是等边三角形,∴∠PP′B=60°,PP′=5,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2,即∠PP′C=90°,∴∠APB=∠BP′C=60°+90°=150°.27.(1)证明:∵∠BCA=∠ECD,∴∠BCA﹣∠ECA=∠ECD﹣∠ECA,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴BE=AD;(2)解:图2、图3、图4中,BE=AD,理由如下:∵∠BCA=∠ECD,∴∠BCA﹣∠ECA=∠ECD﹣∠ECA,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴BE=AD.28.解:将DE绕点E逆时针旋转60°得到EF,连接AF、DF,如图所示:则∠AEF=∠DEF+∠AED=60°+30°=90°,由旋转的性质得:DE=EF,∴△DEF是等边三角形,∴DF=DE,∠EDF=60°,∵△ABD是等边三角形,∴AD=BD,∠ADB=60°,∴∠ADF=∠BDE,在Rt△AEF中,由勾股定理得:AF===,在△ADF和△BDE中,,∴△ADF≌△BDE(SAS),∴BE=AF=.29.解:(1)如图,△OA'B'即为所求.(2)△AOA′是等腰直角三角形.理由:∵OA=OA′=5,AA′=5,∴AO2+OA′2=AA′2,∴∠AOA′=90°,∴△AOA′是等腰直角三角形.故答案为:等腰直角三角形.30.解:(1)如图1中,过点C作CH⊥AB于H.∵∠ABC=90°,∠CAB=30°,∴∠ABC=90°﹣30°=60°,∵BD平分∠ABC,∴∠ABD=∠ABC=30°,∴∠DAB=∠DBA=30°,∴DA=DB,∵DO⊥AB,∴OA=OB,∵B(,0),∴OA=OB=,∴AB=2,∴BC=AB=,∵CH⊥AB,∴∠CHB=90°,∴BH=BC=,CH=BH=,∴OH=OB﹣BH=,∴C(,).(2)①当旋转角小于90°时,P在y轴左侧,Q在y轴正半轴上,对应∠APQ=75°和120°的情况.②当旋转角度大于90°小于120°时,P在y轴左侧,Q在y轴负半轴上,此时∠P AQ =150°,此时要形成等腰三角形∠APQ=15°.③当旋转角度大于120°小于180°时,P在y轴右侧,Q在y轴负半轴上,对应∠APQ =30°的情况.所以总共有四个情况,15°、30°、75°、120°.综上所述,满足条件的∠APQ的值为15°或30°或75°或120°.。

人教新版九年级数学上 23.1 图形的旋转 同步练习卷 包含答案

人教新版九年级数学上  23.1 图形的旋转  同步练习卷  包含答案

23.1 图形的旋转一.选择题(共11小题)1.观察下列图案,能通过例图顺时针旋转90°得到的()(例图)A.B.C.D.2.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A.B.C.D.3.如图,小明坐在秋千上,秋千旋转了76°,小明的位置也从A点运动到了A′点,则∠OAA′的度数为()A.28°B.52°C.74°D.76°4.如图所示的图形都可以通过将其部分图形旋转而得到,其中旋转角最小的是()A.B.C.D.5.在俄罗斯方块游戏中,已拼好的图案如图所示,现出现一小方格体正向下运动,你必须进行以下()操作,才能拼成一个完整图案,使所有图案消失.A.顺时针旋转90°,向右平移B.逆时针旋转90°,向右平移C.顺时针旋转90°,向下平移D.逆时针旋转90°,向下平移6.如图,在△AOB中,∠B=30°,将△AOB绕点O顺时针旋转52°得到△A′OB′,边A′B′与OB交于点C(A′不在OB上),则∠A′CO的度数为()A.22°B.52°C.60°D.82°7.如图,在△ABC中,AB=4,AC=3,∠BAC=30°,将△ABC绕点A按逆时针旋转60°得到△A1B1C1连接BC1,则BC1的长为()A.3 B.4 C.5 D.68.如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30o后得到△A1BC1,则图中阴影部分的面积为()A.3 B.6 C.9 D.129.如图,在Rt△ABC中,∠ACB=90°,∠ABC=31°,将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A'B'C,使得点A'恰好落在AB边上,则α等于()A.149°B.69°C.62°D.31°10.如图,在△ABC中,∠ACB=90°,BC=AC=2,M为AB中点,D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED、ME,点D在运动过程中ME的最小值为()A.1 B.C.﹣1 D.+111.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到B位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…按此规律继续旋转,直到点P2018为止,则AP2018等于()A.2016+673B.2017+673C.2018+673D.2019+673二.填空题(共5小题)12.下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第个箭头方向相同(填序号).13.如图,△ABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到△A′B′C′,且点A在A′B′上,则旋转角为.14.钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了度.15.如图,将三条线段CD,EF,GN分别绕点O旋转,不能与线段AB重合的线段是.16.如图,已知△ABC是等腰三角形,AB=AC,∠BAC=45°,点D在AC边上,将△ABD绕点A逆时针旋转45°得到△ACD′,且点D′、D、B三点在同一条直线上,则∠ABD的度数是.三.解答题(共4小题)17.如图,△AOC逆时针旋转到△BOD,其中∠AOC=120°,点A、O、D在同一直线上.(1)旋转中心是哪一点?(2)旋转了多少度?(3)指出对应线段、对应角及对应点.18.如图,P为等边三角形ABC内一点,∠BPC等于150°,PC=5,PB=12,求PA的长.19.如图,在Rt△ABC中,∠BAC=90°,∠B=70°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到的(点B′与点B是对应点,点C′与点C是对应点),连接CC′,求∠CC′B′的度数.20.将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?参考答案一.选择题(共11小题)1.解:根据旋转的意义,图片按顺时针方向旋转90度,大拇指指向右边,其余4个手指指向下边,从而可确定为A图.故选:A.2.解:A、B、C中只能由旋转得到,不能由平移得到,只有D可经过平移,又可经过旋转得到.故选:D.3.解:根据题意知OA=OA′,∵∠AOA′=76°,∴∠OAA′==52°,故选:B.4.解:A、将一个基本图形旋转120°,可以通过将其部分图形旋转而得到;B、将一个基本图形旋转60°,可以通过将其部分图形旋转而得到;C、将一个基本图形旋转90°,可以通过将其部分图形旋转而得到;D、将一个基本图形旋转45°,可以通过将其部分图形旋转而得到.故选:D.5.解:顺时针旋转90°,向右平移.故选:A.6.解:∵将△AOB绕点O顺时针旋转52°得到△A′OB′,∴∠B=∠B'=30°,∠B'OB=52°,∵∠A'CO=∠B'+∠B'OB∴∠A'CO=82°,故选:D.7.解:根据旋转的定义和性质可得AC1=AC=3,∠B1AC1=∠BAC=30°,∠BAB1=60°.所以∠BAC1=90°.所以在Rt△BAC1中,利用勾股定理可得BC1==5.故选:C.8.解:∵在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=6,∴△A1BA是等腰三角形,∠A1BA=30°,∴S△A1BA=×6×3=9,又∵S阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=9.故选:C.9.解:∵∠ACB=90°,∴∠A=90°﹣∠B=59°,∵CA=CA′,∴∠A=∠CA′A=59°,∴α=∠ACA′=180°﹣2×59°=62°,故选:C.10.解:连接EB,过点M作MG⊥EB于点G,过点A作AK⊥AB交BD的延长线于点K,则△AKB是等腰直角三角形.在△ADK与△ABE中,∴△ADK≌△ABE(SAS),∴∠ABE=∠K=45°,∴△BMG是等腰直角三角形,∵BC=2,∴AB=2,∵M为AB中点,∴BM=,∴MG=1,∵∠MGB=90°∴EM≥MG,∴当ME=MG时,ME的值最小,∴ME=MG=1故选:A.11.解:∵∠ACB=90°,∠B=30°,AC=1,∴AB=2,BC=,∴将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2,将位置①的三角形绕点P1顺时针旋转到位置②可得到点P2,此时AP2=2+,将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+,…∵2018÷3=672…2,∴AP2018=672(3+)+2+=2018+673,故选:C.二.填空题(共5小题)12.解:2019÷4=504…3,故第2019个图案中的指针指向与第3个图案相同,故答案为:313.解:∵将△ACB绕点C顺时针旋转得到△A′B′C′,∴△ACB≌△A′B′C′,∴∠A'=∠BAC,AC=CA',∴∠BAC=∠CAA',∵△ACB中,∠ACB=90°,∠ABC=25°,∴∠BAC=90°﹣∠ABC=65°,∴∠BAC=∠CAA'=65°,∴∠B'AB=180°﹣65°﹣65°=50°,∴∠ACB'=180°﹣25°﹣50°﹣65°=40°,∴∠B'CB=90°﹣40°=50°.故答案为:50°.14.解:∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么45分钟,分针旋转了45×6°=270°.故答案为:270.15.解:连结OA、OC、ON、OF、OB、OD、OG、OE,设小方格正方形的边长为1,如图,∵OA=ON=OF=2,而OC=,OB=OG=OE=3,而OD=,∴线段EF,GN分别绕点O旋转,能与线段AB重合,而线段CD绕点O旋转,不能与线段AB重合.故答案为线段CD.16.解:∵将△ABD绕点A逆时针旋转45°得到△ACD′,∴∠BAC=∠CAD'=45°,AD=AD'∴∠AD'D=67.5°,∠D'AB=90°∴∠ABD=22.5°故答案为:22.5°三.解答题(共4小题)17.解:(1)由已知可得旋转中心为点O(2)∵点A、O、D在同一直线上,∠AOC=120°∴∠COD=60°∴旋转了60°(3)∵△AOC绕点O逆时针旋转60°得到△BOD∴对应线段为:AO=BO,OC=OD,AC=BD对应角:∠A=∠B,∠C=∠D,∠AOC=∠BOD对应点:点A与点B,点C与点D,点O与点O18.解:如图1,连接PP′,将△BPC绕C点顺时针旋转60°到△AP′C的位置,由旋转的性质,得CP=CP′,∴△PP′C为等边三角形,由旋转的性质可知∠AP′C=∠BPC=150°,∴∠AP′P=150°﹣60°=90°,又∵PP′=PC=5,AP′=BP=12,∴在Rt△APP′中,由勾股定理,得PA==13.故PA═13.19.解:∵由题意可知,△AB′C′≌△ABC,∴∠AB′C′=∠B=70°,AC=AC′,在Rt△AB′C′中,∠AC′B′=90°﹣∠A B′C′=20°,在Rt△ACC′中,AC=AC′,∴∠ACC′=∠AC′C=45°,∴∠CC′B′=∠AC′C﹣∠AC′B=45°﹣20°=25°.20.(1)证明:∵△A1CB1≌△ACB,∴CA1=CA,∵图①中的△A1B1C顺时针旋转45°得图②,∴∠B1CB=∠A1CA=45°,∴∠BCA1=45°在△CQA1和△CP1A中,人教新版九年级数学上 23.1 图形的旋转 同步练习卷 包含答案11 / 11 ,∴△CQA 1≌△CP 1A ,∴CP 1=CQ ;(2)解:过点P 1作P 1P ⊥AC 于点P ,如图②,在Rt △AP 1P 中,∵∠A =30°,∴P 1P =AP 1=×2=1,在Rt △CP 1P 中,∵∠P 1CP =45°,∴CP =P 1P =1,∴CP 1=PP 1=,∴CQ =CP 1=.。

九年级数学上册23.1图形的旋转同步练习(新版)新人教版

九年级数学上册23.1图形的旋转同步练习(新版)新人教版

23.1 图形的旋转同步练习一、选择题1.如图,在中,,将绕点A逆时针旋转,得到,点D恰好落在BC的延长线上,则旋转角的度数为A. B. C. D.2.如图,将绕点C顺时针旋转,使点B落在AB边上点处,此时,点A的对应点恰好落在BC边的延长线上,下列结论错误的是A. B.C. D. 平分3.将正方形ABCD绕点A按逆时针方向旋转,得正方形,交CD于点E,,则四边形的内切圆半径为A.B.C.D.4.如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转后,得到的图形为A. B. C. D.5.如图,在矩形ABCD中,已知,,矩形在直线l上绕其右下角的顶点B向右旋转至图位置,再绕右下角的顶点继续旋转至图位置,依此类推,这样连续旋转99次后顶点A在整个旋转过程中所经过的路程之和是A. B. C. D.6.下列图形中,绕某个点旋转后能与自身重合的有正方形;矩形;等边三角形;线段;角;平行四边形.A. 5个B. 2个C. 3个D. 4个7.如图,在正方形网格中,线段是线段AB绕某点逆时针旋转角得到的,点与A对应,则角的大小为A.B.C.D.8.如图,在等边三角形ABC中,,D是BC上一点,且,绕点A旋转后得到,则CE的长度为A. 6B. 5C. 3D. 29.如图,小林坐在秋千上,秋千旋转了,小林的位置也从A点运动到了点,则的度数为A. B. C. D.10.如图,中,,,,绕点C顺时针旋转得,当落在AB边上时,连接,取的中点D,连接,则的长度是A. B.C. 3D.二、填空题11.如图,中,,,将绕点B顺时针旋转得到,点D的对应点落在边BC上已知,,则BC的长为______.12.如图,C为半圆内一点,O为圆心,直径AB长为2cm,,,将绕圆心O逆时针旋转至,点在OA上,则边BC扫过区域图中阴影部分的面积为______.13.如图,点P是等边三角形ABC内的一点,连结PB、将绕点B逆时针旋转到的位置,则的度数是______ .14.如图,在矩形ABCD中,将绕点A按逆时针方向旋转一定角度后,BC的对应边交CD边于点连接、若,,,则结果保留根号.15.图甲所示的四张牌,若只将其中一张牌旋转后得到图乙,则旋转的牌是______ .三、计算题16.如图,在边长为1个单位长度的小正方形组成的网格中,的位置如图所示顶点是网格线的交点请画出向右平移2单位再向下平移3个单位的格点;画出绕点O逆时针方向旋转得到的并求出旋转过程中点B到所经过的路径长.17.P为等边内的一点,,,,将绕点B顺时针旋转到位置.判断的形状,并说明理由;求的度数.18.在中,,D,E是AC边上的两点,且满足.如图1,以点B为旋转中心,将按逆时针方向旋转,得到点C与点A重合,点E到点处,连接求证:;如图2,若,,,求DE的长.【答案】1. D2. C3. B4. A5. C6. D7. C8. D9. B10. A11.12.13.14.15. 方块516. 解:如图;如图;旋转过程中,点B到所经过的路径长为以OB为半径,为圆心角的弧长,17. 解:是等边三角形;理由如下:绕点B顺时针旋转到位置,,,,是等边三角形;是等边三角形,,,,,是直角三角形,,.18. 证明:以点B为旋转中心,将按逆时针方向旋转,得到点C与点A重合,点E到点处,,,,,,即,在和中,,≌,解:以点B为旋转中心,将按逆时针方向旋转得到点C与点A重合,点E到点处,如图2,,,,按顺时针方向旋转得到,,,,在中,,,由的结论得.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23.1图形的旋转
一.选择题(共20小题)
1.(2018•吉林)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()
A.10° B.20° C.50° D.70°
2.(2018•香坊区模拟)如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()
A.45° B.60° C.70° D.90°
3.(2018•大连)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()
A.90°﹣α B.αC.180°﹣αD.2α
4.(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()
A.(2.8,3.6) B.(﹣2.8,﹣3.6) C.(3.8,2.6) D.(﹣3.8,﹣2.6)5.(2018•乌鲁木齐)在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是()
A.(1,2) B.(﹣1,2)C.(﹣1,﹣2) D.(1,﹣2)
6.(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()
A.55° B.60° C.65° D.70°
7.(2018•青岛)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()
A.(﹣1,3)B.(4,0) C.(3,﹣3)D.(5,﹣1)
8.(2018•济宁)如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),
AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()
A.(2,2) B.(1,2) C.(﹣1,2)D.(2,﹣1)
9.(2018•德州)如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;
②S△ODE=S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个数是()
A.1 B.2 C.3 D.4
10.(2018•宜昌)如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()
A.(2,2) B.(2,﹣2)C.(2,5) D.(﹣2,5)
11.(2018•阜新)如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A
的坐标为(1,0),那么点B2018的坐标为()
A.(1,1) B.(0,)C.() D.(﹣1,1)
12.(2017•孝感)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()
A.(0,﹣2)B.(1,﹣) C.(2,0) D.(,﹣1)
13.(2017•菏泽)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()
A.55° B.60° C.65° D.70°
14.(2017•青海)如图,正方形ABCD的对角线相交于点O,Rt△OEF绕点O旋转,在旋转过程中,两个图形重叠部分的面积是正方形面积的()
A.B.C.D.
15.(2017•聊城)如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,
点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是()
A.∠BCB′=∠ACA′B.∠ACB=2∠B
C.∠B′CA=∠B′AC D.B′C平分∠BB′A′
16.(2017•娄底)如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是()
A.(5,0) B.(8,0) C.(0,5) D.(0,8)
17.(2016•贺州)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()
A.(2,5) B.(5,2) C.(2,﹣5)D.(5,﹣2)
18.(2016•临沂)如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:
①AC=AD;②BD⊥AC;③四边形ACED是菱形.
其中正确的个数是()。

相关文档
最新文档