2014人教A版数学必修一23《幂函数》教案
【人教A版高一数学必修1教案】幂函数
1 《幂函数》教案
一、教学目的:
使学生掌握幂函数的概念,会画幂函数的图象,能判定一个幂函数是增函 数还是减函数,能判断一个幂函数的奇偶性。
二、教学重难点:
1.教学重点:幂函数的图象、幂函数的增减性的证明。
2.教学难点:幂函数增减性的证明。
三、教学过程:
(一)新课引入
课本P90,p=w, S=a 2, V=a 3 ,a=S 21,v=t -1,
上述问题中的函数具有什么共同特征?
(二)新课讲授:
上述问题中涉及的函数,都是形如y =x a 的函数。
一般地,函数y =x a 叫做幂函数(power function )。
其中x 是自变量,a 是常数。
当a =1,2,3,2
1,-1时,得到下列的幂函数,画出它们的图象,并观察图象, 将你发现的结论写在下表中:
y =x y =x 2 y =x 3 y =x 2
1
y =x -1 定义域 R R R [0,+∞) (-∞,0)∪(0,+∞) 值域 R [0,+∞) R [0,+∞) (-∞,0)∪(0,+∞) 奇偶性 奇 偶 奇 非奇非偶 奇
单调性 增 [0,+∞)增 增 增 (-∞,0)减
(-∞,0)减 [0,+∞)减
定点 (1,1) (1,1) (1,1) (1,1) (1,1)
例1、证明幂函数f (x )=x 在[0,+∞)上是增函数。
高中数学新人教版A版精品教案《幂函数》
幂函数
一、教材分析:
《幂函数》是普通高中课程标准实验教科书人教A 版数学必修一第二章第三单元的内容从本单元所在教材中的地位来看,它起到了承上启下的作用承上:在本章前两单元学习的指数函数和对数函数为本单元学习铺设了研究方法:例如“数形结合”、“从特殊到一般”、“类比”;同时,初
中学习的正比例函数x y =、反比例函数x
y 1=和二次函数2x y =也为本单元的学习提供了基础启
下:幂函数为学生在选修中学习导数做了铺垫
通过对本单元的学习,学生将建立幂函数这一函数模型,并能用系统的眼光看待已经接触的函数,进一步熟悉研究一个函数的方法因而本单元是对学生研究函数的方法和能力的综合提升
本单元内容安排1课时 二、教学目标:
1通过具体实例,了解幂函数的概念,体会建立一个函数模型的过程
2通过数形结合的研究方法,掌握五个具体幂函数:,,,3
2
x y x y x y ===2
1
x y =,1-=x y 的图象及性质
3经历研究五个具体幂函数的图象及性质的过程,掌握研究一般幂函数的图象及性质的方法,进一步渗透从特殊到一般的思想,培养学生综合归纳、类比的能力 三、教学重点:
1幂函数的概念
2五个幂函数的图象及性质 四、教学难点:
归纳五个幂函数的图象的共同特征,并由此得到对一般幂函数的图象及性质的研究方法 五、教学手段和方式:
本节课主要采用“思考、探究”,问题教学的方式,老师设置问题进行引导,学生自主学习、思考进行概念学习,合作交流、综合归纳进行思想方法的掌握意在充分体现的学生主体地位,教师的主导地位,让学生充分享受学习的兴趣
六、教学过程:
七、板书设计。
人教A版高中数学必修一 2-3 幂函数 教案 精品
2.3 幂函数一、教学目标:知识与能力1、通过实例,了解幂函数的概念;2、会画简单幂函数的图象,并能根据图象得出这些函数的性质;3、能应用幂函数的图像和性质解决有关简单问题。
过程与方法培养学生数形结合能力,合作交流能力,以及应用数学的能力。
情感态度与价值观让学生感受到数学来源于生活,应用于生活,并认识到现代信息技术在人们认识世界过程中的作用,激发学生的学习动力。
二、重点难点重点:从五个具体的幂函数中认识幂函数的一些性质难点:画五个幂函数的图象并由图象概括其性质是教学中可能遇到的困难.三、教学方法通过让学生观察、思考、交流、讨论、发现幂函数的性质.四、教学过程(一)实例观察,引入新课(1)如果张红购买了每千克1元的蔬菜w千克,那么她需要支付P = W元P是W的函数(y=x)(2)如果正方形的边长为a,那么正方形的面积S=a2S是a的函数(y=x2)(3)如果立方体的边长为a,那么立方体的体积V =a3S是a的函数(y=x3)(4)如果一个正方形场地的面积为S,那么正方形的边长a=12S a是S的函数(y=12 x)(5)如果某人t s内骑车行进 1 km,那么他骑车的平均速度v=t-1 V是t的函数(y=x-1)问题一:以上问题中的函数具有什么共同特征?学生反应:底数都是自变量,指数都是常数.【设计意图】引导学生从具体的实例中进行总结,从而自然引出幂函数的一般特征. (二)类比联想,探究新知1.幂函数的定义;一般地,函数y=xɑ叫做幂函数(power function) ,其中x为自变量,ɑ为常数。
注意:幂函数的解析式必须是y = xa 的形式,其特征可归纳为“系数为1,只有1项”.(让学生判断y=2x2y=(x+1)2 y=x2+1 是否为幂函数)【设计意图】加深学生对幂函数定义和呈现形式的理解.2.幂函数的图像与简单性质同前面的指数函数和对数函数一样,先画出函数的图像,再由图像来研究幂函数的相关性质(定义域,值域,单调性,奇偶性,定点)不妨也找出典型的函数作为代表:y=x y=x2y=x3 y=12x y=x-1让学生自主动手,在同一坐标系中画出这5个函数的图像问题三:所有图像都过第几象限,所有图像都不过第几象限,为什么?学生反应:都过第一象限,而都不过第四象限,因为当x>0时所有幂函数都有意义,且函数值都为正.问题四:第一象限内函数图像的变化趋势与指数有什么关系,为什么?学生反应:当指数为正时是增函数,指数为负时是减函数.为什么却讲不清楚.教师讲解:指数为正分为正分数和正整数,正无理数我们高中不做研究,当是正整数时很显然递增,当是正分数时,可以化成根式,很显然当被开方数为正时,被开方数越大,整个根式值越大。
人教版高中必修一《幂函数》教案
人教版高中必修一《幂函数》教案一、教学目标1.了解幂函数的定义和特点;2.学习叠加思想,并掌握简单的幂函数叠加方法;3.能够解决一些实际问题。
二、教学重难点1.幂函数的定义及其特点;2.幂函数的叠加思想;3.幂函数的绘图方法;三、教学过程1.引入幂函数的定义:$y=x^p(p\\in \\mathbb{R})$让学生发现x的取值范围对函数图象的影响,并对函数图象进行描述。
2. 概念讲解1.首先讲解幂函数的定义,指出它是一种基本函数;2.介绍幂函数的性质,让学生知道幂函数的图像不可能横切x轴;3.引入幂函数的叠加思想,让学生知道可以将不同的函数图像叠加在一起。
3. 具体例子讲解1.书写公式,说明函数图象的性质;2.给出幂函数的图象,描出函数的图象;3.确定函数图象的性质,让学生明白函数图象的变化。
4. 例题解析1.给出实际问题,提供数据;2.根据实际问题列出函数式,确定函数图象;3.通过实际问题,解释函数图象的意义。
5. 分组讨论1.将学生分成若干小组,每组做一道练习题;2.每组向其他组展示自己的想法、方法及结果;3.学生之间相互交流,共同探讨出最佳答案。
四、教学方法1.板书法:结合具体例子进行讲解;2.案例法:让学生通过实际问题练习解题思路;3.分组讨论法:提高学生探究问题、思考问题和解决问题的能力。
五、教学帮助1.帮助学生理解定义和性质;2.尤其帮助学生掌握幂函数的叠加思想,找出函数图象的变化规律。
六、课堂反馈1.倾听学生提出的疑问和问题;2.鼓励并指导学生提出自己的解决方案;3.搜集学生反馈,及时调整教学进度和方法。
七、课堂作业1.完成教师布置的作业;2.阅读教材给出的例题;3.自己找出一些幂函数的例子进行探究。
人教版高一数学必修一教案:幂函数
2.3.幂函数教学设计【教学分析】幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数.学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成.因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习.本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型,通过研究21132,,,,x y x y x y x y x y =====-等函数的性质和图象,让学生认识到幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数0>α时,幂函数的图象都经过点()0,0和()1,1,且在第一象限内函数单调递增;当幂指数0<α时,幂函数的图象都经过点()1,1,且在第一象限单调递减且以两坐标轴为渐近线.在方法上,我们应注意从特殊到一般地去进行类比研究幂函数的性质,并注意与指数函数进行对比学习.将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质.其中,学生在初中已经学习了12,,-===x y x y x y 等三个简单的幂函数,对它们的图像和性质已经有了一定的感性认识.现在明确提出幂函数的概念,有助于学生形成完整的知识结构.学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法.因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外,应让学生了解利用信息技术来探索函数图象及性质是一个重要途径.学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析. 【课前准备】1.教师准备:PPT 课件,几何画板《幂函数》导学案.2.学生准备:课前预习幂函数定义,完成导学案1,2,并画出12,,x y x y x y ===的图象.【教学目标】 1.知识与技能(1)通过实例,了解幂函数的概念.(2)通过具体实例了解几个常见幂函数的图象和性质,并能进行初步的应用. (3)学会研究函数图象和性质的一般方法和思想.2.过程与方法类比研究指数函数、对数函数学习过程,使学生通过观察函数的图象来总结性质,从而达到掌握研究幂函数性质的一般方法. 3.情感、态度、价值观(1)进一步渗透数形结合的思想方法;(2)通过引导学生主动参与作图,分析图象的过程,培养学生的探索精神,感受数学美. 【教学重点】幂函数的概念、图象和性质.【教学难点】将函数图象的感性认识上升到理性认识,归纳概括成函数的性质.【突破方式】教师引导学生动手作图、媒体演示多个幂函数图象,深化学生对图象的直观认识;观察幂函数图象,归纳幂函数的性质,加强学生对幂函数性质的理解和记忆. 【教学方法】自主探究,合作交流,借助多媒体 【教学基本流程】 【教学过程设计】 一、实例观察,引入新课1.如果张红购买了每千克1元的蔬菜w 千克,那么她需要支付w p =元,p 是w 的函数; (x y =)2.如果正方形的边长为a ,那么正方形的面积2a S =,S 是a 的函数; (2x y =)3.如果立方体的棱长为a ,那么立方体的体积3a V =,V 是a 的函数; (3x y =)4.如果一个正方形场地的面积为S ,那么正方形的边长21s a =, a 是S 的函数; (21x y =)5.如果某人t s 内骑车行进1km,那么他骑车的平均速度1-tv =,v 是t 的函数.(1-=x y ) 问题:以上问题中的函数具有什么共同特征?从实例观察引入课题 构建幂函数的概念探索简单的幂函数性质画出代表性函数图象总结一般性研究方法应用举例和课堂练习小结与作业→→→→→→(右边都是指数式,且底数都是变量)设计意图:引导学生从具体的实例中进行总结,从而自然引出幂函数的一般特征. 二、类比联想,探究新知 1.幂函数的定义一般地,函数αx y =叫做幂函数(power function) ,其中x 为自变量,α为常数. 注意:幂函数的解析式必须是αx y =的形式,其特征可归纳为“系数为1,只有1项”. 2.幂函数与指数函数有什么区别?设计意图:引导学生分析掌握幂函数的结构,三要素,区分幂函数与指数函数的异同点. (让学生判断xy 2.0= 21x y = 1-=x y x y 5= 5x y =是否为幂函数) 设计意图:加深学生对幂函数定义和呈现形式的理解. 3.幂函数的图象与简单性质我们学习指数、对数函数的性质时,用了什么样的思路?研究幂函数的性质呢? (定义域,值域,单调性,奇偶性,定点) 根据课程标准的要求,我们只讨论以下几种函数x y = 2x y = 3x y = x y = 1-=x y让学生自主动手,在同一坐标系中画出这5个函数的图象(课前已完成3个) 接下来不看图象很快得出5个幂函数的相关性质:为了更好地观察函数图象特征,总结幂函数的性质,我们把5个幂函数的图象画在同一平面直角坐标系中.问题①:所有图象都过第几象限,所有图象都不过第几象限,为什么? 问题②: 第一象限内函数图象的变化趋势与指数有什么关系,为什么? 问题③:所有图象都过哪些点,为什么?问题④:对于原点,什么样的幂函数过,什么样的幂函数不过,为什么?【总结】虽然这5个幂函数图象所分布的象限不同,但是我们还是不难发现它们共同的特征.这5个幂函数在(0,+∞)都有定义,图象都过点(1,1).注意到这5个幂函数在第一象限内的单调性的差异,我们来观察当0>α时的函数图象,很明显,它们的图象除了过点(1,1)外,还过原点,并且在区间),0[+∞上是增函数.(演示几何画板,隐藏0<α时图象)再来观察当0<α时的函数图象,(演示几何画板,显示0<α时图象,隐藏0>α时图象)幂函数在区间),0(+∞上是减函数.在第一象限内,当自变量x 取值从右边趋于0时,图象在y 轴右方无限地靠近y 轴,但不与y 轴相交,当自变量x 取值趋于∞+时,图象在x 轴上方无限地靠近x 轴,但不与x 轴相交.演示画板,观察函数图象的变化趋势,不难发现,所有幂函数在(0,+∞)都有定义,并且图象都过点(1,1);当幂指数0>α时,幂函数都过原点,在),0[+∞上是增函数;当幂指数0<α时,在),0(+∞上是减函数,在第一象限内,当x 从右边趋向于0时,图象在y 轴右方无限地逼近y 轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴.性质总结如下:0>α 0<α在(0,+∞)有定义,图象过点(1,1); 在),0[+∞上是增函数 在),0(+∞上是减函数图象过原点在第一象限内,当x 从右边趋向于0时,图象在y 轴右方无限地逼近y 轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴.设计意图:通过创设问题情境,激发学生的思维,并在新知探究的过程中 自然形成一般方法的呈现,使学生易于领悟和接受. 三、学以致用【例1】证明幂函数x x f =)(在[)+∞,0上是增函数 .【例2】比较下列几组数的大小:0.80.8 5.35.21与)( -1-10.270.262与)( 32.5 1.81.83与)( 0.20.30.30.30.30.24,,)(练习: 如图所示,曲线是幂函数 在第一象限内的图象,已知k 分别 取 四个值,则相应图象依次为:3124,,,c c c c四、课堂小结,归纳提升(1)知识总结:回顾幂函数的定义和一些简单的幂函数性质. (2)思想方法:主要涉及到了数形结合,类比、归纳总结的思想.kx y=11,1,2,2-五、课后作业(1)习题2.3 1,2 题(2)名师一号(3)选作P82 10题教学反思:【设计感想】幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数,课本内容较少,但高考内容不少,我认为应该适当引申,所以设计了一些课本上没有的题目类型,以扩展同学们的视野,强化对知识的理解.2015 年金昌市优质课竞赛活动教案教案题目:幂函数授课班级:高一(10班)姓名:赵培明单位;金昌市第一中学二〇一五年十月二十日。
高中数学幂函数的教案
高中数学幂函数的教案
一、教学目标:
1. 理解幂函数的基本概念和特点;
2. 掌握幂函数的图像特征和性质;
3. 能够解决幂函数相关的问题。
二、教学重点:
1. 幂函数的定义和基本特点;
2. 幂函数的图像性质。
三、教学难点:
1. 幂函数的特殊情况的解决方法;
2. 幂函数的应用问题的解决。
四、教学过程:
1. 导入:通过实际生活中的例子引入幂函数的概念,引发学生的兴趣。
2. 概念讲解:介绍幂函数的定义和基本特点,解释幂函数的图像特征和性质。
3. 实例演练:通过案例分析,让学生运用所学知识解决幂函数相关的问题。
4. 拓展应用:引导学生探讨幂函数在实际问题中的应用,开拓思维。
五、课堂讨论:组织学生讨论幂函数的特殊情况和解决方法,促进学生之间的交流和思考。
六、练习测试:布置与幂函数相关的习题,检验学生对知识的掌握程度。
七、总结反思:引导学生总结本节课的重点知识,反思学习过程中的问题和感悟。
八、课后复习:提醒学生及时复习幂函数相关知识,完成作业,并准备下节课内容。
九、教学手段:采用多媒体教学、案例分析、讨论互动等方式,激发学生学习兴趣。
十、教学评估:根据学生的学习情况和表现,及时调整教学策略,确保教学效果。
十一、教学延伸:鼓励学生主动学习,拓展幂函数相关知识,提高数学思维能力。
以上是高中数学幂函数的教案范本,仅供参考。
祝教学顺利!。
人教版高中数学必修一2、3幂函数教案
《2.3幂函数》教学案例1.教学设计1.1教材的地位和作用《2.3幂函数》是继指数函数和对数函数后学习的另一个基本函数。
幂函数出现在必修一第二章第三节,是基本初等函数之一,是在学生系统学习了函数概念与函数性质之后,进入高中以来遇到的第三种特殊函数,是对函数概念及性质的应用,能培养学生应用性质(定义域,值域,图象,单调性,奇偶性)研究一个函数的意识。
本节课从概念到图象,通过探究归纳出幂函数的性质,让学生再次体会利用信息技术来探索函数的图象和性质,从教材整体安排上来看,学习幂函数是为了让学生进一步了解研究函数的方法,学会利用这种方法去研究其他函数。
因而本节课更是对学生研究函数方法和能力的一个综合提升。
1.2教学目标 1.2.1基础知识目标(1)理解幂函数的概念,会画幂函数21132,,,,x y x y x y x y x y =====-的图象,结合这几个幂函数的图象,掌握幂函数的图象变化和性质; (2)能应用幂函数性质解决简单问题。
1.2.2能力训练目标(1)通过观察总结幂函数性质,培养学生抽象概括、逻辑推理和识图能力; (2)使学生进一步体会数形结合思想。
1.3教学重、难点重点:本节的教学重点是从五个具体幂函数中认识幂函数的一些性质。
难点:画五个幂函数的图象并由图象概括其性质是教学中可能遇到的困难。
突破难点:引导学生观察图象,从图象特点入手,观察单调性奇偶性。
1.4学情分析学生学过了一次函数,二次函数,正、反比例函数,指数函数和对数函数,知道了他们的图象和性质,用性质解决一些简单问题也有了一定的基础,为学习幂函数做好了准备,但由于幂函数性质较复杂,学生需要一定的综合分析能力,所以在教学中重视学生自己动手操作、观察分析发现的过程。
我所教的班级是遵义四中高一(23)班,总体学习程度在中等,根据学生的学情,本节课我重在基础,难度上适当适中。
1.5教学用具本节课使用三角板,PPT ,学生准备白纸,格尺。
人教版A版高中数学必修一教案幂函数
2.3 幂函数布问题⑤:通过对以上五个函数图象的观察,哪个象限一定有幂函数的图象?哪个象限一定没有幂函数的图象?哪个象限可能有幂函数的图象,这时可以通过什么途径来判断?问题⑥:通过对以上五个函数图象的观察和填表,你能类比出一般的幂函数的性质吗?活动:考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经验和基本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的基本内容和方法为暗线,教学过程中同时展开,学生相互讨论,必要时,教师将解析式写成指数幂形式,以启发学生归纳,学生作图,教师巡视,学生小组讨论,得到结论,必要时,教师利用几何画板演示. 讨论结果:①通过观察发现这些函数的变量在底数位置,解析式右边都是幂,因为它们的变量都在底数位置上,不符合指数函数的定义,所以都不是指数函数. ②由于函数的指数是一个常数,底数是变量,类似于我们学过的幂的形式,因此我们称这种类型的函数为幂函数,如果我们用字母α来表示函数的指数,就能得到一般的式子,即幂函数的定义:一般地,形如y=x α(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数. 如y=x 2,y=x 21,y=x 3等都是幂函数,幂函数与指数函数、对数函数一样,都是基本初等函数.③我们研究指对数函数时,根据图象研究函数的性质,由具体到一般;一般要考虑函数的定义域、值域、单调性、奇偶性;有时也通过画函数图象,从图象的变化情况来看函数的定义域、值域、单调性、奇偶性等性质,研究幂函数的性质也应如此.④学生用描点法,也可应用函数的性质,如奇偶性、定义域等,画出函数图象.利用描点法,在同一坐标系中画出函数y=x,y=x 21,y=x 2,y=x 3,y=x -1的图象. 列表:x … -3 -2 -1 0 1 2 3 … y=x … -3 -2 -1 0 1 2 3 … y=x 21 … 0 1 1.41 1.73 … y=x2 … 9 4 1 0 1 4 9 … y=x3 … -27-8 -1 0 1 827… y=x -1…31 -21 -1121 31 …描点、连线.画出以上五个函数的图象如图2-3-1.图2-3-1让学生通过观察图象,分组讨论,探究幂函数的性质和图象的变化规律,教。
2014人教A版数学必修一2.2.3《幂函数》教学设计
云南省德宏州梁河县一中高中数学必修一:2.2.3幂函数设计教学设计一,内容及其解析1.内容: 幂函数的概念.及五种米函数的图象和性质,2.解析: 幂函数的内部规律及本质是学好幂函数的关键所在,学生在学习中需要对幂函的基本概念了解。
然后根据5种常用幂函数了解幂函数的一些基本性质。
这在高考考中是一个重点。
主要题型有根据幂函数性质比较值的大小,以及判断幂函数的增减性.二.考纲要求1.知识与技能 通过具体实例了解幂函数的图象和性质,并能进行简单的应用.2.过程与方法 能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.3.情感、态度、价值观 体会幂函数的变化规律及蕴含其中的对称性.三.问题分析1 . 从五个具体幂函数中认识幂函数的一些性质.2. 画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律 四.教学过程 [一]、实例剖析引例:(1)如果张红购买了每千克1元的蔬菜x 千克,那么她需要支付y = 元; (2)如果正方形的边长为x ,那么正方形的面积y = ; (3)如果立方体的边长为x ,那么立方体的体积y = ;(4)如果一个正方形场地的面积为x ,那么这个正方形的边长为y = ; (5)如果某人x s 内骑车行进了1km ,那么他骑车的平均速度y = km / s 。
问题:以上函数具有什么共同特征?共同特征:函数解析式是幂的形式,且指数是常数,底数是自变量。
[二]、幂函数的图象和性质(一)定义:函数αx y =叫做幂函数。
(其中x 为自变量,α为常数)探究1:你能指几个学过的幂函数的例子吗? 探究2:你能说出幂函数与指数函数的区别吗?探究3:如何判断一个函数是幂函数还是指数函数? 看看自变量x 是指数(指数函数)还是底数(幂函数)。
练习:1、下面几个函数中,哪几个函数是幂函数?结合课本练习2.3.(1)21y x=;(2)22y x =;(3)2y x x =+;(4)y =(5)2x y =。
《幂函数》教案-公开课-优质课(人教A版必修一精品)
《幂函数》教案教学目标知识与技能 通过具体实例了解幂函数的图象和性质,并能进行简单的应用.过程与方法 能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.情感、态度、价值观 体会幂函数的变化规律及蕴含其中的对称性.教学重点重点 从五个具体幂函数中认识幂函数的一些性质.难点 画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律. 教学程序与环节设计:教学过程环节教学内容设计 师生双边互动创设情境组织探究尝试练习巩固反思作业回馈课外活动问题引入.幂函数的图象和性质.幂函数性质的初步应用.复述幂函数的图象规律及性质.幂函数性质的初步应用.利用图形计算器或计算机探索一般幂函数的图象规律.创设情境阅读教材P90的具体实例(1)~(5),思考下列问题:1.它们的对应法则分别是什么?2.以上问题中的函数有什么共同特征?(答案)1.(1)乘以1;(2)求平方;(3)求立方;(4)开方;(5)取倒数(或求-1次方).2.上述问题中涉及到的函数,都是形如αxy=的函数,其中x是自变量,是α常数.生:独立思考完成引例.师:引导学生分析归纳概括得出结论.师生:共同辨析这种新函数与指数函数的异同.组织探究材料一:幂函数定义及其图象.一般地,形如αxy=)(Ra∈的函数称为幂函数,其中α为常数.下面我们举例学习这类函数的一些性质.作出下列函数的图象:(1)xy=;(2)21xy=;(3)2xy=;(4)1-=xy;(5)3xy=.[解] ○1列表(略)○2图象师:说明:幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”的函数,引导学生注意辨析.生:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律.师:引导学生应用画函数的性质画图象,如:定义域、奇偶性.师生共同分析,强调画图象易犯的错误.环节教学内容设计师生双边互动组织探究材料二:幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于∞+时,图象在x轴上方无限地逼近x轴正半轴.师:引导学生观察图象,归纳概括幂函数的的性质及图象变化规律.生:观察图象,分组讨论,探究幂函数的性质和图象的变化规律,并展示各自的结论进行交流评析,并填表.材料三:观察与思考观察图象,总结填写下表:xy=2xy=3xy=21xy=1-=xy定义域值域奇偶性单调性定点材料五:例题[例1](教材P78例题)[例2]比较下列两个代数值的大小:(1)5.1)1(+a,5.1a(2)322)2(-+a,322-[例3] 讨论函数32xy=的定义域、奇偶性,作师:引导学生回顾讨论函数性质的方法,规范解题格式与步骤.并指出函数单调性是判别大小的重要工具,幂函数的图象可以在单调性、奇偶性基础上较快描出.出它的图象,并根据图象说明函数的单调性.生:独立思考,给出解答,共同讨论、评析.环节呈现教学材料师生互动设计尝试练习1.利用幂函数的性质,比较下列各题中两个幂的值的大小:(1)433.2,434.2;(2)5631.0,5635.0;(3)23)2(-,23)3(-;(4)211.1-,219.0-.2.作出函数23xy=的图象,根据图象讨论这个函数有哪些性质,并给出证明.3.作出函数2-=xy和函数2)3(--=xy的图象,求这两个函数的定义域和单调区间.4.用图象法解方程:(1)1-=xx;(2)323-=xx.探究与发现1.如图所示,曲线是幂函数αxy=在第一象限内的图象,已知α分别取2,21,1,1-四个值,则相应图象依次为:.2.在同一坐标系内,作出下列函数的图象,你能发现什么规律?(1)3-=xy和31-=xy;规律1:在第一象限,作直线)1(>=aax,它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.规律2:幂指数互为倒数的幂函数在第一象限内的图象关于直线xy=对称.(2)45x y =和54x y =.作业回馈1.在函数1,,2,1222=+===y x x y x y x y 中,幂函数的个数为:A .0B .1C .2D .3环节呈现教学材料师生互动设计2.已知幂函数)(x f y =的图象过点)2,2(,试求出这个函数的解析式.3.在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R 与管道半径r 的四次方成正比.(1)写出函数解析式;(2)若气体在半径为3cm 的管道中,流量速率为400cm 3/s ,求该气体通过半径为r 的管道时,其流量速率R 的表达式;(3)已知(2)中的气体通过的管道半径为5cm ,计算该气体的流量速率.4.1992年底世界人口达到54.8亿,若人口的平均增长率为x%,2008年底世界人口数为y (亿),写出:(1)1993年底、1994年底、2000年底的世界人口数;(2)2008年底的世界人口数y 与x 的函数解析式.课 外 活 动利用图形计算器探索一般幂函数αx y =的图象随α的变化规律.收获与体会1.谈谈五个基本幂函数的定义域与对应幂函数的奇偶性、单调性之间的关系?2.幂函数与指数函数的不同点主要表现在哪些方面?。
高中数学人教A版必修1《2.3幂函数》教学案1
必修一3.3 幂函数教案【教学目标】【知识与技能】1.理解幂函数的概念.2.通过具体实例研究幂函数的图象和性质,并初步进行应用.【过程与方法】通过对幂函数的学习,使学生进一步熟练掌握研究函数的一般思想方法.【情感、态度价值观】1.进一步渗透数形结合、分类讨论的思想方法.2.体会幂函数的变化规律及蕴含其中的性质.3.通过引导学生主动参与作图、分析图象,培养学生的探索精神,并在研究函数变化的过程中渗透辩证唯物主义的观点.【重点难点】重点:通过六个具体的幂函数认识概念,研究性质,体会图象的变化规律.难点:画六个幂函数的图象并由图象概括幂函数的一般性质.【突破方式】教师引导学生动手作图、媒体演示多个幂函数图象,深化学生对图象的直观认识;观察幂函数图象,归纳幂函数的性质,加强学生对幂函数性质的理解和记忆.【教学策略】【教学顺序】复习引入,归纳定义,研究图象,归纳性质,应用性质.【教学方法与手段】1.采用师生互动的方式,在教师的引导下,学生通过思考、交流、讨论,理解幂函数的定义和性质,体验自主探索、合作交流的学习方式,充分发挥学生的积极性与主动性.2.利用投影仪及计算机辅助教学.超级链接到课件3.3幂函数(1)(个人独立制作)【教学过程】 创设情境前面我们学习了函数定义,研究了函数的一般性质,并且研究了指数函数和对数函数.函数这个大家庭有很多成员,如一次函数、二次函数、反比例函数、指数函数、对数函数等.它们在数学中的都承担着各自的任务,每个成员又都有它们各自鲜活的个性.今天,我们利用研究指数函数、对数函数的研究方法,再来认识一位新成员.请大家看如下问题.(板书:.,,,,,12132x y x y x y x y x y )抽取这几个解析式结构上的共同特征:我们能够发现它们的右端都是幂的形式,并且底数是自变量x ,幂指数是常数. 也就是说,它们可以写成ax y 的形式,这种形式的函数就是幂函数.(板书课题:幂函数) 探究新知幂函数的定义(形式定义)一般地,形如)(R x y 的函数称为幂函数,其中 是常数.自变量x 是幂的底数,换句话说,幂的底数是单变量x ,幂指数是个常数,幂的系数是1,符合上述形式的函数,就是幂函数.请同学们举出一个具体的幂函数.从引例和同学们刚才举的例子中,我们可以发现,幂指数 可以是正数、负数,也可以是0.幂函数与指数函数,对数函数一样,都是基本初等函数. 课堂练习1.指出下列函数中的幂函数..,,,,5x y x y x y x x y xy 51222探究新知按照从特殊到一般的原则,我们先来研究几个具有代表意义的幂函数..,,,,,212132 x y x y x y x y x y x y请同学们用描点法在平面直角坐标系中画出上述函数的图象.我们在前面的课程中已经研究过了函数y x 与2y x 的性质,它们的图象已经呈现在坐标纸中了,在这里,我们只画出余下四个函数的图象.(时间关系,分四组)根据手里作出的图象,以小组为单位对照函数图象,讨论以下四个问题: 1.描点法画函数图象的步骤;(列表、描点、连线) 2.互相检查函数图象的画法,图象是否一致; 3.讨论在画图象过程中出现的问题;4.探究幂函数图象的变化规律,归纳幂函数的性质.通过刚才观察同学们作图,其中几个同学的图象特别规范,请看. 变化趋势. 首先可以很明显的看到,上述六个幂函数的图象都过同一个定点(1,1). (一边分析函数图象的特征,一边总结函数性质,填写表格.)从这些函数的图象我们可以看到,幂函数随着幂指数的取值不同,它们的性质和图象也存在着差异,请同学们根据这个表格,寻找这6个幂函数的共性?定义域不同,但有公共区间(0,+∞).为了更好地观察函数图象特征,总结幂函数的性质,我们把6个幂函数的图象画在同一平面直角坐标系中.(这是幂函数……的图象……)总结性质虽然这6个幂函数图象所分布的象限不同,但是我们还是不难发现它们共同的特征.这6个幂函数在(0,+∞)都有定义,图象都过点(1,1).注意到这6个幂函数在第一象限内的单调性的差异,我们来观察当0 时的函数图象,(演示几何画板,隐藏0 时图象)很明显,它们的图象除了过点(1,1)外,还过原点,并且在区间),0[ 上是增函数.再来观察当0 时的函数图象,(演示几何画板,显示0 时图象,隐藏0 时图象)幂函数在区间),0( 上是减函数.在第一象限内,当自变量x 取值从右边趋于0时,图象在y 轴右方无限地靠近y 轴,但不与y 轴相交,当自变量x 取值趋于 时,图象在x 轴上方无限地靠近x 轴,但不与x 轴相交.演示画板,改变幂指数的值,观察函数图象的变化趋势,不难发现,所有幂函数在(0,+∞)都有定义,并且图象都过点(1,1);当幂指数0 时,幂函数都过原点,在),0[ 上是增函数;当幂指数0 时,在),0( 上是减函数,在第一象限内,当x 从右边趋向于0时,图象在y 轴右方无限地逼近y 轴,当x 趋于 时,图象在x 轴上方无限地逼近x 轴.性质总结如下:在(0,+∞)有定义,图象过点(1,1); 在),0[ 上是增函数 在),0( 上是减函数图象过原点在第一象限内,当x 从右边趋向于0时,图象在y 轴右方无限地逼近y 轴,当x 趋于 时,图象在x 轴上方无限地逼近x 轴.下面我们应用幂函数的性质来解决问题. 例题解析例1 比较下列两个代数式值的大小:.2,)2)(4(;,)1)(3(;)3(,)2)(2(;4.2,3.2)1(323225.15.123234343a a a分析:观察所给的两个代数式,都是幂的形式.又因为幂指数相同,而底数不同,所以想到要利用幂函数的性质解决此类问题.(1)解:考察幂函数43x y ,因为43x y 在(0,+∞)上单调递增,而且2.3<2.4,所以43434.23.2 .以下各题同理可解:.2)2)(4(;)1)(3(;)3()2)(2(323225.15.12323a a a例2 讨论函数32x y 的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性. 解:要使3232x x y有意义,x 可以取任意实数,故函数定义域为R .∵f (-x )=3232)(x x =f (x ), ∴函数32x y 是偶函数;x 0 1 2 3 4 … y x11.592.082.52…其图象如右图所示.幂函数32x y 在[0,+ )上单调递增,在(-∞,0)上单调递减.思考与讨论幂函数)(R x y,当,5,,3,1 (正奇数)时,函数有哪些性质? (演示画板)定义域为R ,值域为R ,是奇函数,在(-∞,+∞)上是增函数. 当,6,,4,2 (正偶数)时,这类幂函数的性质和特点,留做同学们课下讨论. 课堂练习2.幂函数43x y 的单调递增区间是________.答案: ,0 3.2121211.1,9.0,2.1 c b a 的大小关系是________.答案a >b >c归纳小结本节课我们学习了幂函数的定义,通过作出6个具有代表意义的幂函数的图象,归纳总结幂函数的共同性质,这也是我们研究函数的一般思想方法. 布置作业作出函数23x y 的图象,根据图象讨论这个函数有哪些性质,并给出证明.通过本节课的学习,相信幂函数已经在大家的头脑中留下十分深刻的印象.最后,让我们在悠扬的音乐声中给大家展示一个数学公式,这是作为基本初等函数的幂函数在高等数学中的应用,用含有阶乘的幂指数是正整数的幂函数形式来表示xe ——泰勒公式.)(!!3!2132R x n x x x x e nx。
人教A版高中数学必修一幂函数教案(1)(2)
《§2.3幂函数》第二课时
一、教学目标:
知识与技能:通过具体实例了解幂函数的图象和性质,并能进行简单的应用。
过程与方法:能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质。
情感、价值观:体会幂函数的变化规律及蕴含其中的对称性。
二、教学重点:
重点:从五个具体幂函数中认识幂函数的一些性质。
难点:画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律。
三、教学程序与环节设计:
创设情境问题引入。
高中数学23幂函数教案新人教A版必修1教案
高中数学23幂函数教案新人教A版必修1教案教学目标:1.知识与技能:掌握基本的幂函数的概念及性质,能够灵活运用幂函数的性质解决相关问题。
2.过程与方法:培养学生分析问题、解决问题的能力,提高数学建模能力。
教学重点:1.掌握幂函数的定义及性质。
2.能够用幂函数的性质解决相关问题。
教学难点:1.理解幂函数的定义及性质。
2.运用幂函数的性质解决实际问题。
教学过程:一、导入(15分钟)1.师生互动,引导学生回顾指数函数的知识,了解指数函数的特点和性质。
2.引入幂函数的概念,与指数函数进行比较说明幂函数的特点和指数函数的区别。
二、概念与性质讲解(30分钟)1.定义幂函数,给出幂函数的一般形式y=x^a,解释其中x为底数,a为指数。
2.介绍幂函数的图像特点,分析指数a的正负和大小对图像的影响。
3.阐述幂函数的性质:增减性、奇偶性、单调性、最值等。
三、例题解析(45分钟)1.给出几个幂函数的例题,详细解析如何根据函数的性质来解决问题。
2.强调灵活运用函数性质,化简、转化问题,引导学生分析问题的关键点和解题方法。
3.鼓励学生通过数学建模的方式解决一些实际问题。
四、练习与巩固(30分钟)1.分发练习题,让学生独立完成,回顾巩固课上所学内容。
2.对学生的答题情况进行点评和解析,帮助学生梳理知识点。
五、拓展与应用(20分钟)1.分组合作,给学生出一道幂函数的实际问题,要求学生用数学建模的方法解决。
2.学生展示解题过程及答案,互相学习和讨论,培养学生的创新和合作能力。
六、总结归纳(10分钟)1.让学生总结本节课的重点和难点,回答出关键的知识点。
2.引导学生对幂函数的概念和性质进行思考和总结。
板书设计:幂函数的定义及性质1.定义:幂函数y=x^a2.性质:-增减性:当a>0时,函数递增;当a<0时,函数递减。
-奇偶性:当a为奇数时,函数为奇函数;当a为偶数时,函数为偶函数。
-单调性:当a>0时,函数单调递增;当a<0时,函数单调递减。
高中数学23二次函数与幂函数教案新人教A版必修1教案
高中数学23二次函数与幂函数教案新人教A版必修1教案教学目标:1.理解二次函数和幂函数的概念,能够区分它们的特点;2.掌握二次函数和幂函数的图像特征和性质;3.能够解决与二次函数和幂函数相关的实际问题;4.发展学生的逻辑思维和问题解决能力。
教学重点:1.二次函数和幂函数的概念和特点;2.二次函数和幂函数的图像特征和性质;3.二次函数和幂函数的实际问题应用。
教学难点:1.二次函数和幂函数的图像特征和性质;2.二次函数和幂函数的实际问题应用。
教学准备:1.教材《新人教A版必修1》;2.教学PPT;3.小黑板和粉笔;4.教学实例。
教学过程:Step 1 引入新知识(15分钟)1.教师简要介绍二次函数和幂函数的概念,并与学生共同讨论它们的特点。
2.教师通过例题或问题引导学生思考,并找到答案。
Step 2 二次函数的图像特征和性质(35分钟)1.教师给出一些二次函数的图像,引导学生观察并总结二次函数的图像特征和性质。
2.教师通过公式展示二次函数的一般式和顶点式,并解释其含义。
3.教师指导学生练习绘制二次函数的图像,并分析其特点和性质。
Step 3 幂函数的图像特征和性质(35分钟)1.教师给出一些幂函数的图像,引导学生观察并总结幂函数的图像特征和性质。
2.教师通过公式展示幂函数的一般式和指数函数,并解释其含义。
3.教师指导学生练习绘制幂函数的图像,并分析其特点和性质。
Step 4 二次函数和幂函数的实际问题应用(35分钟)1.教师给出一些与二次函数和幂函数相关的实际问题,引导学生分析问题,并运用所学知识解决问题。
2.教师指导学生进行实际问题的讨论和解答,鼓励学生发表观点和提出解决方案。
Step 5 小结与拓展(20分钟)1.教师对本节课所学内容进行小结,并强调重点和难点。
2.教师提供一些拓展问题,帮助学生拓展思路和应用所学知识解决更复杂的问题。
3.学生进行自主学习和思考,教师及时给予指导和帮助。
Step 6 课堂反馈(10分钟)1.教师布置课后作业,巩固所学知识。
新课标高中数学人教A版必修一全册教案23幂函数
x 2 , y = 1 = x0 为幂函数,而如
y = 2x2,y = (x –1)3 等都不是幂函数 .
例 2 比例下列各组数的大小 .
7
7
( 1) 8 8 和 ( 1) 8 ;
9
( 2)( –2) –3 和 (–2.5)–3;
( 3)(1.1) –0.1 和(1.2) –0.1;
2
2
3
( 4) (4.1) 5 , (3.8) 3 和 ( 1.9) 5 .
例 1 分析:解决有关函数求定义域
掌握
出其奇偶性、单调性 .
的问题时,可以从以下几个方面来考
幂函
举例
2
3
( 1) y=x 5 ;( 2) y=x
4
;(
3)
y=
-
x
2.
虑,列出相应不等式(组) ,解不等式
数知
(组)即可得到所求函数的定义域 .
识的
①若函数解析式中含有分母,分母
应用 .
不能为 0;
②若函数解析式中含有根号,要注
1x 1); ( 2) x > 0 时,幂函数的图象都通过
原点,并且在 [0,+∞]上,是增函数(从左 往右看,函数图象逐渐上升) .
特别地,当 x > 1, x > 1 时, x ∈(0, 1), y x2 的图象都在 y x 图象的下方,
形状向下凸越大,下凸的程度越大(你能
找出原因吗?)
当 0<α< 1 时, x ∈( 0,1), y x 的 图象都在 y x 的图象上方,形状向上凸,
调递减,且 7 < 2 < 1.21, 10 2
∴( 7 ) 10
2 3
>(
2
2) 3 2
幂函数人教版 高中数学幂函数教案
幂函数人教版高中数学幂函数教案教案标题:幂函数教学目标:1. 理解幂函数的定义和性质;2. 掌握幂函数的图像和一般式的确定方法;3. 能够应用幂函数进行实际问题的求解。
教学重点:1. 幂函数的定义和性质;2. 幂函数图像的确定;3. 幂函数的一般式求解。
教学难点:1. 幂函数图像的确定;2. 幂函数的一般式求解。
教学准备:课件、教科书、练习题、学生练习册等教学资源。
教学过程:Step 1:引入幂函数的概念1. 提问:你们知道什么是幂函数吗?幂函数有什么特点?2. 学生回答并讨论。
3. 教师解释幂函数的定义,并给出一些幂函数的例子。
Step 2:幂函数的性质1. 教师引导学生回顾指数函数的性质,并与幂函数进行比较。
2. 教师讲解幂函数的性质,包括定义域、值域、奇偶性、增减性等。
Step 3:幂函数的图像1. 教师引导学生思考幂函数图像的特点。
2. 教师讲解如何用平移和伸缩法确定幂函数的图像,并结合具体例子进行讲解。
Step 4:幂函数的一般式求解1. 教师讲解幂函数的一般式及其推导方法。
2. 教师给出一些带有参数的幂函数的例子,并引导学生通过一般式求解。
Step 5:应用幂函数解决实际问题1. 教师引入一些与幂函数有关的实际问题,如物体自由落体问题、人口增长问题等。
2. 学生分组进行讨论和解答,教师进行辅导和点评。
Step 6:总结与拓展1. 教师总结本节课的重点和难点。
2. 鼓励学生思考其他与幂函数相关的问题,并拓展知识。
Step 7:作业布置布置练习题和思考题,巩固所学知识。
教学反思:在教学过程中,我对幂函数的定义和性质进行了详细地讲解,通过图像确定和一般式求解等方法,帮助学生理解幂函数的特点和求解方法。
在实际问题的应用中,让学生运用所学知识解决问题,培养了学生的实际应用能力。
此外,通过拓展问题,激发了学生进一步思考和学习的兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省芷江县第一中学高中数学新课标A版必修一2 3 幂函数教案
教学目标:
知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用.
过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.
情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.
教学重点:
重点从五个具体幂函数中认识幂函数的一些性质.
难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.
教学程序与环节设计:
问题引入.
教学过程与操作设计:
的函数称为幂函数,其中
;
图象易犯的错误.
师生双
概括幂函数的
轴右方无限地逼近轴正半轴,当
正半轴.。