离散时间系统的变换时域分析.

合集下载

离散时间系统的时域分析

离散时间系统的时域分析

第六章离散时间系统的时域分析1.离散时间信号、连续时间信号、数字信号和模拟信号相互之间的联系和区别是什么?离散时间信号是指自变量(时间)离散、而函数值(幅度)连续变化的信号;连续时间信号是指自变量(时间)连续的信号;数字信号是指自变量(时间)离散、而函数值(幅度)也离散的信号;模拟信号是指自变量(时间)连续、而函数值(幅度)也连续变化的信号;对模拟信号或连续时间信号进行取样可以得到离散时间信号,而对离散时间信号进行量化则得到数字信号;对离散时间信号进行插值可以恢复连续时间信号。

2.周期离散时间信号的周期如何确定?若离散时间信号是周期的,即[][]x n x n rN=+,其中r是任意整数,N是正整数。

而对于连续时间信号而言,若其是周期的,则有()()x t x t rT=+,其中r是任意整数,T是正实数。

如正弦信号:()sin()x t tωϕ=+,其周期为2Tπω=;而正弦序列:[]sin()x n nϕ=Ω+,其周期有如下形式确定:如果2Nπ=Ω为整数,则其周期就是N;如果2qpπ=Ω,其中,p q是互质的两正整数,即2πΩ是有理数,则其周期为N q=;如果2πΩ是无理数,则正弦序列不是周期序列。

3.单位样值序列、单位阶跃序列之间的关系是什么,将单位阶跃序列推广到一般的序列后,它们之间的关系又怎样?单位样值序列定义为:1 0 []0 otherwisennδ=⎧=⎨⎩单位阶跃序列定义为:1 0 []0 otherwisenu n≥⎧=⎨⎩从而有:0[][] (1)[] (2)m nk u n n m k δδ∞==-∞=-=∑∑ 或 [][][1n u n u n δ=-- (3) 将式(1)推广到任意序列[]x n ,有[][][]m x n x m n m δ∞=-∞=-∑4.序列的移位运算有何特点?序列的差分运算是如何得到的?序列的移位有左移和右移,左移为: []x n m +,其中m 是正整数;右移为: []x n m -,其中m 是正整数;即对于序列来讲,其移位只能是整数大小的移位,不能出现其它任意小数形式的移位。

离散时间系统的时域特性分析

离散时间系统的时域特性分析

数字信号处理实验报告学生姓名:孙奇学生学号:10934212学生班级:10093412所属专业:通信工程实验日期:2012-11-6实验一:离散时间系统的时域特性分析实验目的线性时不变离散时间系统在时域中可以通过常系数线性差分方程来描述冲激响应序列可以刻画其时域特性。

本实验通过使用MATLAB函数研究离散时间系统的时域特性以加深对离散时间系统的差分方程、冲激响应系统的线性和时不特性的理解。

基本原理一个离散时间系统是将输入序列变换成输出序列的一种运算。

离散时间系统离散时间系统最重要的最常用的是“线性时不变系统实验内容程序一clf;n=0:100;x=cos(20*pi*n/256)+cos(200*pi*n/256);subplot(3,1,1);stem(n,x); %输入信号的图形xlabel('时间信号n');ylabel('信号幅度');title('输入信号');den1=[1]; %对应系统一的差分方程系数num1=[0.5 0.27 0.77];den2=[1 -0.53 0.46]; %对应系统二的差分方程系数num2=[0.45 0.5 0.45];y1=filter(num1,den1,x);subplot(3,1,2);stem(n,y1); %系统一输出信号的图形y2=filter(num2,den2,x);subplot(3,1,3);stem(n,y2); %系统二输出信号的图形3程序二n=40; %取冲击响应的前40个样本num1=[0.5 0.27 0.77]; %对应系统一的差分方程系数den1=[1];num2=[0.45 0.5 0.45]; %对应系统二的差分方程系数den2=[1 -0.53 0.46];y1=impz(num1,den1,n); %系统一的冲击响应subplot(2,1,1);stem(y1);y2=impz(num2,den2,n); %系统二的冲击响应subplot(2,1,2);stem(y2);判断是否为线性程序三(1)n=0:40;a=2; %任取两个系数b=3;x1=cos(2*pi*0.3*n);x2=cos(2*pi*0.5*n);x=a*x1+b*x2;num=[0.45 0.5 0.45]; %对应系统二的差分方程系数den=[1 -0.53 0.46];y1=filter(num,den,x1); %计算出y1(n)y2=filter(num,den,x2); %计算出y2(n)y=filter(num,den,x); %计算出y(n)subplot(2,1,1);stem(n,y);ylabel('信号幅度');yt=a*y1+b*y2; %计算出yt(n)=a y1(n)+b y2(n)subplot(2,1,2);stem(n,yt);ylabel('信号幅度');从图中可知,上下两个图完全一样,可知系统二符合叠加原理,即系统二是线性系统。

离散时间信号的时域分析实验报告

离散时间信号的时域分析实验报告

离散时间信号的时域分析实验报告实验报告:离散时间信号的时域分析一、实验目的本实验旨在通过MATLAB软件,对离散时间信号进行时域分析,包括信号的显示、基本运算(如加法、减法、乘法、反转等)、以及频域变换(如傅里叶变换)等,以加深对离散时间信号处理的基本概念和原理的理解。

二、实验原理离散时间信号是在时间轴上离散分布的信号,其数学表示为离散时间函数。

与连续时间信号不同,离散时间信号只能在特定的时间点取值。

离散时间信号的时域分析是研究信号的基本属性,包括幅度、时间、频率等。

通过时域分析,我们可以对信号进行各种基本运算和变换,以提取有用的信息。

三、实验步骤1.信号生成:首先,我们使用MATLAB生成两组简单的离散时间信号,一组为正弦波,另一组为方波。

我们将这些信号存储在数组中,以便后续分析和显示。

2.信号显示:利用MATLAB的绘图功能,将生成的信号在时域中显示出来。

这样,我们可以直观地观察信号的基本属性,包括幅度和时间关系。

3.基本运算:对生成的信号进行基本运算,包括加法、减法、乘法、反转等。

将这些运算的结果存储在新的数组中,并绘制出运算后的信号波形。

4.傅里叶变换:使用MATLAB的FFT(快速傅里叶变换)函数,将信号从时域变换到频域。

我们可以得到信号的频谱,进而分析信号的频率属性。

5.结果分析:对上述步骤得到的结果进行分析,包括比较基本运算前后的信号波形变化,以及傅里叶变换前后的频谱差异等。

四、实验结果1.信号显示:通过绘制图形,我们观察到正弦波和方波在时域中的波形特点。

正弦波呈现周期性的波形,方波则呈现明显的阶跃特性。

2.基本运算:通过对比基本运算前后的信号波形图,我们可以观察到信号经过加法、减法、乘法、反转等运算后,其波形发生相应的变化。

例如,两个信号相加后,其幅度和时间与原信号不同。

反转信号则使得波形在时间轴上反向。

3.傅里叶变换:通过FFT变换,我们将时域中的正弦波和方波转换到频域。

正弦波的频谱显示其频率为单一的直流分量,方波的频谱则显示其主要频率分量是直流分量和若干奇数倍的谐波分量。

实验一离散时间信号的时域分析

实验一离散时间信号的时域分析

实验一离散时间信号的时域分析离散时间信号是一种离散的信号形式,其具有离散的时间间隔。

这种信号在数字信号处理中得到了广泛的应用。

时域分析是分析信号的一种方法,它通常包括分析信号的幅度、相位、频率等参数,并从中获得信号的特征。

在本实验中,我们将探讨离散时间信号的时域分析方法。

1.实验目的• 了解离散时间信号的基本概念和性质。

• 熟悉MATLAB软件的使用,理解信号处理工具箱的使用方法。

2.实验原理离散时间信号是一种在离散时间点上定义的数列。

它通常用序列来表示,序列的元素是按照一定的时间间隔离散采样得到的。

离散时间信号的采样频率通常表示为Fs,单位是赫兹。

离散时间信号可以写成如下的形式:x(n) = [x(0),x(1),x(2),...,x(N-1)]其中,n表示离散时间点的下标,N表示离散时间信号的长度。

• 幅度分析:指分析离散时间信号的振幅大小。

离散时间信号的幅度、相位、频率的分析通常使用傅里叶变换、离散傅里叶变换等变换方法来实现。

3.实验步骤3.1 生成离散时间信号使用MATLAB编写程序,生成一个离散时间信号。

例如,我们可以生成一个正弦信号:t = 0:0.01:1;x = sin(2*pi*100*t);其中,t表示时间向量,x表示正弦信号。

将信号进行离散化,得到离散时间信号:其中,fs表示采样频率,n表示采样时间点,xn表示采样后的信号。

使用MATLAB的plot函数,绘制离散时间信号的时域图像。

figure(1);plot(n, xn);xlabel('Time');ylabel('Amplitude');其中,figure(1)表示创建一个新的窗口,用于显示图像。

xlabel和ylabel用于设置图像的横轴和纵轴标签。

3.3 使用FFT进行幅度分析X = fft(xn);n = length(X);f = (0:n-1)*(fs/n);power = abs(X).^2/n;其中,X表示离散时间信号的傅里叶变换结果,n表示离散时间信号的长度,f表示频率向量,power表示幅度谱。

(信息与通信)第七章离散时间系统的时域分析2

(信息与通信)第七章离散时间系统的时域分析2

稳定性分析的应用
稳定性分析在离散时间系统中的应用非常广 泛。例如,在数字信号处理中,稳定性分析 可以帮助我们判断数字滤波器的性能和稳定 性;在控制系统分析中,稳定性分析是判断 系统能否正常工作的关键;在图像处理中, 稳定性分析可以帮助我们判断图像处理算法 的性能和稳定性。
此外,稳定性分析还可以应用于其他领域, 如金融、交通等。在这些领域中,稳定性分 析可以帮助我们理解和预测系统的行为,从
数字电视、数字广播、卫星通 信、移动通信等。
计算机控制系统
计算机控制的生产线、机器人 、智能家居等。
科学计算
数值计算、模拟仿真等。
02
离散时间系统的时域分析方法
差分法
01
差分法是通过离散时间信号的差分运算来分析系统的
特性。
02
差分方程是描述离散时间系统动态行为的基本工具,
通过求解差分方程可以得到系统的输出响应。
离散时间系统的仿真工具与技术
数学软件仿真
使用数学软件(如MATLAB、Simulink等)进行离散时间系统的建 模和仿真,可以进行系统性能分析和优化。
硬件描述语言仿真
使用硬件描述语言(如Verilog、VHDL等)进行离散时间系统的建 模和仿真,可以模拟硬件实现并进行验证。
模拟器仿真
使用模拟器(如QEMU、ModelSim等)进行离散时间系统的仿真, 可以模拟实际硬件运行环境,进行系统测试和验证。
对比分析
将离散时间系统的性能与其他同类系统进行对比, 以评估其优劣。
性能优化策略
01
算法优化
改进或优化离散时间系统的算法, 以提高其性能。
并行处理
利用并行处理技术,提高离散时间 系统的处理速度和效率。
03

离散时间系统的时域分析

离散时间系统的时域分析

称为混叠。 常称作折叠频率。 2
信号频率
fa nfs fm
fa fs / 2
假频
Fδ(jω)
抽样频率
ω Ω-ωm ωm Ω
例如:当抽样率为5kHz对3kHz的余弦信号 抽样,然后用截止频率为2.5kHz的低通滤波 器进行滤波,输出的频谱只包含2kHz的频率, 这是原信号中所没有的。
对一个低通滤波器的冲激响应进行抽样,抽 样后低频通带将在整个频率轴上周期的重复出现, 这种现象称为“伪门”。在设计数字滤波器时要 适当选择抽样率,使得伪门在干扰频率之外。
H(jω)
ω 0 数字滤波器的伪门
例1:对于频率为150Hz的正弦时间序列,分别以4ms 和8ms采样结果会如何?
100HZ 25HZ
在实际工作中应用抽样定理时,还应考虑下 面两个实际问题:
1、在理论上讲,按照奈奎斯特抽样率抽样, 通过理想低通滤波器以后,就可以恢复原信 号。但理想低通滤波器在物理上是不可实现 的,实际滤波器都存在一个过渡带,为了保 证在滤波器过渡带的频率范围内信号的频谱 为零,必须选择高于2fm的抽样率。
u (n) 0, n 0
...
n -1 0 1 2 3
(n) u(n) u(n) u(n 1)
u(n) (n m) (n) (n 1) (n 2) m0
3.矩形序列 R N (n )
1, R N (n) 0,
0 n N 1 其他n
RN (n) u(n) u(n N )
第五章 离散时间系统 的时域分析
§5.1 离散信号与抽样定理
一、离散信号及其表示
1、离散时间信号是指只在一系列离散的时刻 tk (k = 0,1,2,…)时,信号才有确定值,在其它时 刻,未定义; 2、离散时间信号是离散时间变量 tk 的函数; 3、抽样间隔可以是均匀的,也可以非均匀。

6.离散时间信号与系统的时域分析

6.离散时间信号与系统的时域分析

0, n 1 1 z ( n) x ( n) y ( n) , n 1 2 1 n 1 ( 2 )( n 1)( 2 ) , n 0
6 线性时不变离散系统的时域分析
5. 累加 设某一序列为x(n),则x(n)的累加序列 y(n)定义为
y ( n)
k
x(k ) x(n) * u(n)
n
根据上述性质可以推得以下结论:
f (n n1 ) * (n n2 ) f (n n1 n2 )
6 线性时不变离散系统的时域分析
例 已知 x1 (n) (n) 3 (n 1) 2 (n 2) x2 (n) u(n) u(n 3) 试求信号 x (n) ,它满足 x(n) x1 (n) x2 (n) 解:可利用上面讲述的性质求解。
1 1/ 2 1/4 -2 -1 0 1 1/8 ... 2
n
x(-n) 1 1/2 1/8 1/4 ... -2 -1 0
1
2
n
6 线性时不变离散系统的时域分析
3.序列的加减 两序列的加、减是指同序号(n)的序列值逐项对 应相加得一新序列。
6 线性时不变离散系统的时域分析
例:
x(n) 1 1/2 1/4 -2 -1 0 y(n) 2 1 1/4 1/2 1 2 n …
6 线性时不变离散系统的时域分析
2.单位阶跃序列
u(n)
1, u ( n) 0,
n0 n0
u(n)
...
-1 0 1 2 3 n
(n) u (n) u (n) u (n 1)
m 0
u (n) (n m) (n) (n 1) (n 2)

Z变换及离散时间系统分析

Z变换及离散时间系统分析

Z变换及离散时间系统分析Z变换是一种用于描述离散时间系统的重要数学工具。

离散时间系统是指信号的取样点在时间上离散的系统。

而Z变换可以将离散时间信号从时域(时间域)转换到频域(复频域),并在频域进行分析和处理。

Z变换在数字信号处理、控制系统和通信系统等领域有着广泛的应用。

Z变换的定义为:\[ X(z) = \sum_{n=0}^{+\infty} x(n)z^{-n} \]其中,\(x(n)\)表示离散时间信号,\(X(z)\)表示该信号的Z变换,\(z\)表示复变量。

通过对离散时间系统的输入信号进行Z变换后,可以得到系统的传递函数。

系统的传递函数是指系统的输出与输入之间的关系。

在离散时间系统中,传递函数可以表示为:\[ H(z) = \frac{Y(z)}{X(z)} \]其中,\(Y(z)\)表示系统的输出信号,\(X(z)\)表示系统的输入信号。

通过Z变换可以对离散时间系统进行频域分析。

频域分析可以用来研究离散时间系统的频率特性,比如系统的频率响应、幅频特性、相频特性等。

频域分析可以揭示系统在不同频率下对信号的处理情况,对于设计和优化离散时间系统非常有帮助。

Z变换具有一些重要的性质,可以方便地对离散时间系统进行分析和计算。

其中一些常用的性质包括:1. 线性性质:对于任意常数\(a\)和\(b\),以及信号\(x(n)\)和\(y(n)\),有\(Z(a \cdot x(n) + b \cdot y(n)) = a \cdot X(z) + b \cdot Y(z)\)。

这个性质说明Z变换对线性系统是可加性的。

2. 移位性质:如果将信号\(x(n)\)向左或向右移动\(k\)个单位,那么它的Z变换\(X(z)\)也将发生相应的移位,即\(Z(x(n-k)) = z^{-k} \cdot X(z)\)。

这个性质说明Z变换对系统的时移(时延)是敏感的。

3. 初值定理:如果离散时间信号\(x(n)\)在n=0处存在有限值,那么在Z变换中,它的初值可以通过计算\(X(z)\)在z=1处的值得到,即\(x(0) = \lim_{z \to 1}X(z)\)。

离散时间系统的时域分析

离散时间系统的时域分析

第七章离散时间系统的时域分析§7-1 概述一、离散时间信号与离散时间系统离散时间信号:只在某些离散的时间点上有值的信号。

离散时间系统:处理离散时间信号的系统。

混合时间系统:既处理离散时间信号,又处理连续时间信号的系统。

二、连续信号与离散信号连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理:三、离散信号的表示方法:1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。

例如:)1.0sin()(k k f =2、 (有序)数列:将离散信号的数值按顺序排列起来。

例如:f(k)={1,0.5,0.25,0.125,……,}时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。

四、典型的离散时间信号1、 单位样值函数:⎩⎨⎧==其它001)(k k δ 下图表示了)(n k −δ的波形。

这个函数与连续时间信号中的冲激函数)(t δ相似,也有着与其相似的性质。

例如:)()0()()(k f k k f δδ=,)()()()(000k k k f k k k f −=−δδ。

2、 单位阶跃函数:⎩⎨⎧≥=其它001)(k k ε这个函数与连续时间信号中的阶跃函数)(t ε相似。

用它可以产生(或表示)单边信号(这里称为单边序列)。

3、 单边指数序列:)(k a k ε比较:单边连续指数信号:)()()(t e t e t a at εε=,其底一定大于零,不会出现负数。

(a) 0.9a = (d) 0.9a =−(b) 1a = (e) 1a =−(c) 1.1a = (f) 1.1a =−4、 单边正弦序列:)()cos(0k k A εφω+双边正弦序列:)cos(0φω+k A五、离散信号的运算1、 加法:)()()(21k f k f k f +=<—相同的k 对应的数相加。

new第三章离散时间系统的时域分析

new第三章离散时间系统的时域分析

3. 举例 • 例1 已知 x(n)=(n),y(-1)=0, 用迭代法解方程:
y(n) ay(n 1) x(n)
• 解:y(0)=ay(-1)+1=1 • y(1)=ay(0)+0=a • y(2)=ay(1)+0=a2 • • y(n)=ay(n-1)+0=an • y(n)=ay(n-1)+0=anu(n)
n y(n) 0.45(0.9) u(n) 0.5u(n) 自由响应 强迫响应
• 零输入响应和零状态响应
用边界条件求系数
C1
5
1
, C2
n

5

1
最终解
1 1 5 1 1 5 y ( n) 5 2 5 2
n
例3 求 y(n)+6y(n-1)+12y(n-2)+8y(n-3)=x(n) 的齐次解 • 解(有重根)
差分方程特解的形式 • • • • • • • • • 激励 x(n) 特解 yp(n)的形式 A(常数) C(常数) An C1n+C2 nk C1 nk+ C2 nk-1++ Ck+1 nkan an(C1 nk+ C2 nk-1++ Ck+1 ) sin(bn)或 C1sin(bn)+C2cos(bn) con(bn) an [sin(bn)或 an[C1sin(bn)+C2cos(bn)] cos(bn)]
– 常系数线性差分方程(递归关系式) – 后向(或右移) 差分方程;前向(或左移) 差分方程
例2 已知离散时间系统如图示,写出 系统的差分方程。

离散时间系统的时域分析

离散时间系统的时域分析

§7.1 引言
离散时间信号通过将连续时间信号进行取样得到
f t 4.2
3.1
采样(sampling)过程就是对模拟信号的 时间取离散的量化值过程——得到离 散信号。
1.5 0.9 2T 3T
o
3
f q t
T
4
t
幅值量化——幅值只能分级变化。
2 1
o
T
2T
3T
t
§7.1 引言
• 经过量化的离散时间信号称 为数字信号(digital signal)
经典法:齐次解 特解 时域分析 零输入响应 零状态响应 变换域分析: 拉氏变换法
离散时间系统——差分方程描述 差分方程的解法与微分方程类似
经典法:齐次解 特解 时域分析 零输入响应 零状态响应 变换域分析: z变换法
§7.2 取样信号与取样定理
• 取样定理(抽样定理)
• 通常将这种方程形式称为前向预测差分方程 (forward difference equation)
§7.3 离散时间系统的描述和模拟
• 差分方程与微分方程相比 在取样间隔Ts足够小时
dy( t ) y[( k 1)Ts ] y( kTs ) 微分方程 dt Ts 也可写做 dy( t ) y( kTs ) y[( k 1)Ts ] dt Ts
x n
3 4 5
1 2
9 10 11 6 7 8
22
n
一个周期
§7.1 引言
信号xn sin0.4n是否为周期信号?
0 0.4

0
5π是无理数 所以为非周期的序列
§7.1 引言
• 离散信号 sin n0与连续信号 sin 0 t 的关系 2 对连续信号 f t sin2πf 0 t sinΩ0 t Ω0 T 离散点(时刻)nT’上的正弦值

实验三 离散时间系统的时域分析(附思考题程序)

实验三 离散时间系统的时域分析(附思考题程序)

实验三 离散时间系统的时域分析1.实验目的(1)理解离散时间信号的系统及其特性。

(2)对简单的离散时间系统进行分析,研究其时域特性。

(3)利用MATLAB 对离散时间系统进行仿真,观察结果,理解其时域特性。

2.实验原理离散时间系统,主要是用于处理离散时间信号的系统,即是将输入信号映射成的输出的某种运算,系统的框图如图所示:][n x ][n y Discrete-timesystme(1)线性系统线性系统就是满足叠加原理的系统。

如果对于一个离散系统输入信号为12(),()x n x n 时,输出信号分别为12(),()y n y n ,即:1122()[()]()[()]y n T x n y n T x n ==。

而且当该系统的输入信号为12()()ax n bx n +时,其中a,b 为任意常数,输出为121212[()()][()][()]()()T ax n bx n aT x n bT x n ay n by n +=+=+,则该系统就是一个线性离散时间系统。

(2)时不变系统如果系统的响应与激励加于系统的时刻无关,则该系统是时不变系统。

对于一个离散时间系统,若输入()x n ,产生输出为()y n ,则输入为()x n k -,产生输出为()y n k -,即:若()[()]y n T x n =,则[()]()T x n k y n k -=-。

通常我们研究的是线性时不变离散系统。

3.实验内容及其步骤(1)复习离散时间系统的主要性质,掌握其原理和意义。

(2)一个简单的非线性离散时间系统的仿真 参考:% Generate a sinusoidal input signalclf; n = 0:200; x = cos(2*pi*0.05*n); % Compute the output signal x1 = [x 0 0]; % x1[n] = x[n+1] x2 = [0 x 0]; % x2[n] = x[n] x3 = [0 0 x];% x3[n] = x[n-1]y = x2.*x2-x1.*x3; y = y(2:202); % Plot the input and output signalssubplot(2,1,1) plot(n, x)xlabel('Time index n'); ylabel('Amplitude'); title('Input Signal')subplot(2,1,2) plot(n,y)xlabel('Time index n'); ylabel('Amplitude');title('Output signal');(3)线性与非线性系统的仿真参考:% Generate the input sequencesclf; n = 0:40; a = 2; b = -3;x1 = cos(2*pi*0.1*n); x2 = cos(2*pi*0.4*n);x = a*x1 + b*x2;num = [2.2403 2.4908 2.2403];den = [1 -0.4 0.75];ic = [0 0]; % Set zero initial conditionsy1 = filter(num,den,x1,ic); % Compute the output y1[n]y2 = filter(num,den,x2,ic); % Compute the output y2[n]y = filter(num,den,x,ic); % Compute the output y[n]yt = a*y1 + b*y2; d = y - yt; % Compute the difference output d[n] % Plot the outputs and the difference signalsubplot(3,1,1) stem(n,y); ylabel('Amplitude');title('Output Due to Weighted Input: a \cdot x_{1}[n] + b \cdot x_{2}[n]');subplot(3,1,2) stem(n,yt); ylabel('Amplitude');title('Weighted Output: a \cdot y_{1}[n] + b \cdot y_{2}[n]');subplot(3,1,3) stem(n,d); xlabel('Time index n'); ylabel('Amplitude');title('Difference Signal');(4)时不变与时变系统的仿真参考:% Generate the input sequencesclf; n = 0:40; D = 10; a = 3.0; b = -2;x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n);xd = [zeros(1,D) x]; num = [2.2403 2.4908 2.2403]; den = [1 -0.4 0.75];ic = [0 0]; % Set initial conditions% Compute the output y[n]y = filter(num,den,x,ic);% Compute the output yd[n]yd = filter(num,den,xd,ic);% Compute the difference output d[n]d = y - yd(1+D:41+D);% Plot the outputssubplot(3,1,1) stem(n,y); ylabel('Amplitude'); title('Output y[n]'); grid;subplot(3,1,2) stem(n,yd(1:41)); ylabel('Amplitude');title(['Output due to Delayed Input x[n - ', num2str(D),']']); grid;subplot(3,1,3) stem(n,d); xlabel('Time index n'); ylabel('Amplitude');title('Difference Signal'); grid;4.实验用MATLAB函数介绍在实验过程中,MATLAB函数命令plot, figure, stem, subplot, axis, grid on, xlabel, ylabel, title, clc等在不同的情况下具体表述也有所不同,应该在实验中仔细体会其不同的含义。

离散时间系统的时域分析

离散时间系统的时域分析

离散时间系统的时域分析离散时间系统是指系统输入和输出信号都是在离散的时间点上进行采样的系统。

时域分析是分析系统在时域上的性质和特征。

在离散时间系统的时域分析中,常用的方法包括冲击响应法、单位样值法和差分方程法等。

冲击响应法是通过对系统施加单个冲击信号,观察系统在输出上的响应来分析系统的时域特征。

冲击响应法的基本思想是将系统的输出表示为输入信号与系统的冲击响应之间的卷积运算。

冲击响应法适用于线性时不变系统,在实际应用中可以使用软件工具进行计算。

单位样值法是通过将系统输入信号取为单位样值序列,观察系统在输出上的响应来分析系统的时域特征。

单位样值法的基本思想是将系统的输出表示为输入信号与系统的单位样值响应之间的卷积运算。

单位样值法适用于线性时不变系统,可以用来计算系统的单位样值响应和单位样值响应序列。

差分方程法是通过建立系统输入和输出之间的差分方程来分析系统的时域特征。

差分方程法的基本思想是根据系统的差分方程,利用系统的初始条件和输入序列,递推计算系统的输出序列。

差分方程法适用于线性时不变系统,可以用来计算系统的单位样值响应和任意输入信号下的输出序列。

以上所述的方法是离散时间系统时域分析中常用的方法,通过这些方法可以获得系统的冲击响应、单位样值响应和任意输入信号下的输出序列,进而分析系统的时域特征和性质。

在实际应用中,根据系统的具体情况和需求,选择合适的方法进行时域分析,能够更好地理解离散时间系统的动态行为和响应特性。

离散时间系统的时域分析是研究系统在离散时间上的动态行为和响应特性的关键方法。

通过分析系统的时域特征,可以深入了解系统的稳定性、响应速度、频率选择性和滤波特性等方面的性能。

冲击响应法是离散时间系统常用的时域分析方法之一。

它通过施加一个单个的冲击信号,即输入信号序列中只有一个非零元素,然后观察系统在输出上的响应。

这样可以得到系统的冲击响应序列,它描述了系统对单位幕函数输入信号的响应情况。

冲击响应法的核心思想是将系统的输出表示为输入信号序列与系统的冲击响应序列之间的卷积运算。

实验二离散时间系统的时域分析实验

实验二离散时间系统的时域分析实验

数字信号处理——实验二武汉工程大学电气信息学院通信工程红烧大白兔一、实验目的1、在时域中仿真离散时间系统,进而理解离散时间系统对输入信号或延时信号进行简单运算处理,生成具有所需特性的输出信号的方法。

2、仿真并理解线性与非线性、时变与时不变等离散时间系统。

3、掌握线性时不变系统的冲激响应的计算并用计算机仿真实现。

4、仿真并理解线性时不变系统的级联、验证线性时不变系统的稳定特性。

二、实验设备计算机,MATLAB语言环境三、实验根底理论1、系统的线性线性性质表现为系统满足线性叠加原理:假设某一输入是由N个信号的加权和组成的,输出就是由系统对这N个信号中每一个的响应的相应加权和组成的。

设x1〔n〕和〔n〕分别作为系统的输入序列,其输出分别用y1(n)和y2(n)表示,即Y1(n)=T[x1(n)],y2(n)=T[x2(n)]假设满足T[a1x1(n)+a2x2(n)]=a1y1(n)+a2y2(n)x2那么那么该系统服从线性叠加原理,或者称为该系统为线性系统。

2、系统的时不变特性假设系统的变换关系不随时间变化而变化,或者说系统的输出随输入的移位而相应移位但形状不变,那么称该系统为时不变系统。

对于时不变系统,假设y(n)=T[x(n)]那么T[x(n-m)]=y(n-m)3、系统的因果性系统的因果性既系统的可实现性。

如果系统n时刻的输出取决于n时刻及n时刻以前的输入,而和以后的输入无关,那么该系统是可实现的,是因果系统。

系统具有因果性的充分必要条件是h(n)=0,n<04、系统的稳定性稳定系统是指有界输入产生有界输出〔BIBO)的系统。

如果对于输入序列x(n),存在一个不变的正有限值M,对于所有n值满足|x(n)|≤M<∞那么称该输入序列是有界的。

稳定性要求对于每个有界输入存在一个不变的正有限值K,对于所有n值,输出序列y(n)满足|y(n)|≤K<∞系统稳定的充分必要条件是系统的单位取样响应绝对可和,用公式表示为|h(n)|n5、系统的冲激响应设系统输入x(n)=δ(n),系统输出y(n)的初始状态为零,这时系统输出用即h(n)=T[δ(n)]那么称h(n)为系统的单位脉冲响应。

离散时间系统的时域特性分析

离散时间系统的时域特性分析

离散时间系统的时域特性分析离散时间系统是指输入和输出均为离散时间信号的系统,如数字滤波器、数字控制系统等。

时域分析是研究系统在时间上的响应特性,包括系统的稳定性、响应速度、能否达到稳态等。

在时域分析中,我们通常关注系统的单位采样响应、阶跃响应和脉冲响应。

1. 单位采样响应单位采样响应是指当输入信号为单位脉冲序列时,系统的输出响应。

在时间域上,单位脉冲序列可以表示为:$$ u[n] = \begin{cases}1 & n=0\\ 0 & n \neq 0\end{cases} $$系统的单位采样响应可以表示为:$$ h[n] = T\{ \delta[n]\} $$其中,$T\{\}$表示系统的传输函数,$\delta[n]$表示单位脉冲序列。

通常情况下,我们可以通过借助系统的差分方程求得系统的单位采样响应。

对于一种具有一阶差分方程的系统,其单位采样响应可以表示为:2. 阶跃响应其中,$\alpha$为系统的传递常数。

3. 脉冲响应脉冲响应是指当输入信号为任意离散时间信号时,系统的输出响应。

其主要思路是通过将任意输入信号拆解成单位脉冲序列的线性组合,进而求得系统的输出响应。

设输入信号为$x[n]$,系统的脉冲响应为$h[n]$,则系统的输出信号$y[n]$可以表示为:$$ y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] $$在实际计算中,通常采用卷积算法实现脉冲响应的计算,即将输入信号和脉冲响应进行卷积运算。

总之,时域特性分析是对离散时间系统进行分析和设计时的基础。

对于实际工程应用中的系统,需要综合考虑其时域和频域特性,进而选择合适的滤波器结构、控制算法等来实现系统的优化设计。

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告1. 引言离散信号与系统是数字信号处理中的重要基础知识,它涉及信号的采样、量化和表示,以及离散系统的描述和分析。

本实验通过对离散信号在时域下的分析,旨在加深对离散信号与系统的理解。

在实验中,我们将学习如何采样和显示离散信号,并通过时域分析方法分析信号的特性。

2. 实验步骤2.1 信号的采样与显示首先,我们需要准备一个模拟信号源,例如函数发生器,来产生一个连续时间域的模拟信号。

通过设置函数发生器的频率和振幅,我们可以产生不同的信号。

接下来,我们需要使用一个采样器来对模拟信号进行采样,将其转化为离散时间域的信号。

使用合适的采样率,我们可以准确地获取模拟信号的离散样本。

最后,我们将采样后的信号通过合适的显示设备进行显示,以便观察和分析。

2.2 信号的观察与分析在实验中,我们可以选择不同类型的模拟信号,例如正弦波、方波或脉冲信号。

通过观察采样后的离散信号,我们可以观察到信号的周期性、频率、振幅等特性。

通过对不同频率和振幅的信号进行采样,我们可以进一步研究信号与采样率之间的关系,例如采样定理等。

2.3 信号的变换与滤波在实验中,我们可以尝试对采样后的离散信号进行变换和滤波。

例如,在频域下对信号进行离散傅里叶变换(DFT),我们可以将时域信号转换为频域信号,以便观察信号的频谱特性。

通过对频谱进行分析,我们可以观察到信号的频率成分和能量分布情况。

此外,我们还可以尝试使用不同的数字滤波器对离散信号进行滤波,以提取感兴趣的频率成分或去除噪声等。

3. 实验结果与分析通过实验,我们可以得到许多有关离散信号与系统的有趣结果。

例如,在观察信号的采样过程中,我们可以发现信号频率大于采样率的一半时,会发生混叠现象,即信号的频谱会发生重叠,导致采样后的信号失真。

而当信号频率小于采样率的一半时,可以还原原始信号。

此外,我们还可以观察到在频域下,正弦波信号为离散频谱,而方波信号则有更多的频率成分。

4. 结论通过本实验,我们对离散信号与系统的时域分析有了更深入的理解。

第八章z变换离散时间系统的时域分析

第八章z变换离散时间系统的时域分析

3.左边序列的收敛
x(n) anu n 1 n 1
1
X(z) anzn
n
令m n
X(z) amzm amzm a0z0 1 amzm
m1
m0
m0
1
m0
z a
m
1
lim
m
1
z a
m
1
1 z a
当 z 1,即z a时收敛
X
a
z
1
1
1
第八章 Z变换、离散时间系统的Z域 分析
§8.1 引言
一.引言
•求解差分方程的工具,类似于拉普拉斯变换; •z变换的历史可是追溯到18世纪; •20世纪50~60年代抽样数据控制系统和数字计算机的 研究和实践,推动了z变换的发展; •70年代引入大学课程; •今后主要应用于DSP分析与设计,如语音信号处理等 问题。 本章主要讨论: •拉氏变换的定义、收敛域、性质,与傅氏变换和拉氏 变换的关系;利用z变换解差分方程; •利用z平面零极点的分布研究系统的特性。
z
z
a
a n u( n) anu(n
1)
za za
因果序列 右边序列 收敛域 z R,包括z
为了保证 z 处收敛,其分子多项式的阶次不能大
于分母多项式的阶次,即必须满足k r 。
2.求逆z变换的步骤
• 提出一个z
• xz为真分式
z • 再部分分式展开
• xz z
z • 查反变换表
将X z 以z的升幂排列
1
X (z) x(n)z n x(1)z1 x(2)z 2 x(3)z 3 n
三.围线积分法求z反变换
1.z逆变换的围线积分表示
已知z变换

离散时间系统的时域分析

离散时间系统的时域分析
1
O
1
5
10 n
1
0:正 弦 序 列,序 的列 频值 率依 次 周 的期 速性 率 当0=2 1π0, 则 序 列 10 个 每重 复 一 次 正 数弦 值包 。
离散正弦序列 x(n) sin(0n)是周期序列应满足 x (n +N )x (n )
N称为序列的周期,为任意正整数。
正弦序列周期性的判别
O 1n
注意: (t)用 面 (强)积 表 度 (t示 0 , , 幅 );度 (n )在 n0取 有 (不 限 是 )。 值 面 积
利用单位样值信号表示任意序列
x(n)x(m)(nm) m f (n)
1.5 2
1 o 1
34 n
3
f (n) 1,1.5,0,3,0,0, ( n + 1 ) + 1 . 5 ( n ) 3 ( n 2 )
E
y(n1)
z1
单位延时实际是一个移位寄存器,把前一个离 散值顶出来,递补。
框图例如5图-3,-1写出差分方程
x(n)
y(n) x(n)
1 E
y(n)
a
a
1
E
解:
y (n ) x (n )+ a (n y 1 ) y (n + 1 ) x (n )+ a (n )y
一阶后向差分方程
或 y(n)1y(n+1)x(n)
y ( 1 ) 0 , y y ( (0 1 )) y y ( (1 0 ) ) y (y n (n )1 ) a
说y (n 明 )是一a 的 个几 公 ,所 何 比 以 级 为 y(n)Cna
①s2πi0 n 0(Nn,+N N是)正整s数i n0正n弦+序2π0列是周s期i( n 的0n+2π )si( n0n)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上式称为序列f (k)的双边z变换
若f (k)为因果序列,则F (z) f (k)zk k
称为序列f (k)的单边z变换,以后我们的
讨论将限于单边z变换,记做F (z) L[ f (k)]
2、s平面和z平面的对应关系
z e st e( j)T eT e jT z e j
z eT
例1、求单位序列(n)的z变换
解:Z[(n)] (n)zn (0)z0 1 n0
即(n) 1 收敛域为全z平面
例2、求单位阶跃序列(n)的z变换
解:Z[(n)] (n)zn 1 z1 z2 n0
当上式的公比q z1 1,即( z 1)时,级数
收敛。根据等比级数求和公式,得
离散时间系统的变换时域分析
Chapter8
本章要点
F Z变换及其性质 F 反Z变换 F 离散时间系统的Z变换分析法
8.1 引言
与连续系统类似,离散系统也可用变换域法 进行分析。
Z变换 差分方程
代数方程
8.2 Z变换及其性质
一 Z变换的定义
1、 由抽样信号的拉氏变换引出z变换定义。
f (t)
T(t ) (t kT )
(1)
k
0
t
0 T 2T
t
f (t)
0
t
fs(t ) f (t ) T(t ) f (t )(t kT ) k
Fs( j)
f (t )(t kT )estdt
f (kT )e skT
k
引入一个新的复变量z,令z esT或s 1 ln z T
则上式变为Z[ f (k)] F (z) f (k)zk k
为有限项之和,最小收敛域为0 z 若k1 0, k 2 0则存在负幂项,z 0 若k1 0, k2 0则只有正幂项,z 0,不含z ,0 z
4、右边序列(有始序列)的收敛
F (z) f (k)zk k 0
由根值法:如果lim k f (k)zk 1 k
即 z lim k f (k )zk Rx1 k
z
解:
kak(k)
(z
a 1)2
az (z a)2
a
4、序列线性加权 若f (k) F (z) 则kf (k) z d F (z)
dz
例4、若已知z[(k)] z ,求斜边序列k(k)的z变换 z 1
解:Z[k(k
)]
z
d dz
[
(
z
z 1)2
]
(z
z 1)2
5、卷积定理 若f1(k) F1(z) f2(k) F2(z) 则f1(k) f2(k) F1(z)F2(z)
if f1(k) F1(z) f2 (k) F2 (z)
then af1(k) bf2 (k) aF1(z) bF2 (z)
例1、求序列cos k(k )的z变换。
解:由于cos k(k )
1[ 2z
z e j
z
z e j
]
z(z cos) z2 2z cos 1
式中a1, a2为任意 常数。叠加后新 的z变换的收敛区 是原两个z变换收 敛区的重叠部分
而 lim ak 1 k ak
当 1时,级数收敛, 1时,级数发散, 1不定
②根植判别法:lim k ak k
当 1时,级数收敛, 1时,级数发散, 1不定
3、有限长序列的收敛域
f (k) k1 k k2
f (k) 0
其它
k2
F (z) f (k)zk k k1
的圆内部分。
f (k) f (k)(k 1) 称为左边序列
z平面
Rx 2
6、双边序列
1
F (z) f (k)zk f (k)zk f (k)zk
k
k 0
k
故只有Rx1 Rx2时两个收敛域才有重叠,z变换存在
收敛域为Rx1 z Rx2
z平面
Rx1 Rx 2
(1) 三、常用序列的z变换
f (k n)(k) znF (z) zn f (k)zk kn
若f (k)是因果序列,其单边z变换为
f (k-n)(k) znF (z)
n1
f (k n)(k) znF (z) zn f (k)zk k 0
f (k 1)(k) zF (z) zf (0)
f (k 2)(k) z2F(z) z2 f (0) zf (1)
Z[(n)]
1 1 z 1
z
z 1
即(n) z z 1 z 1
z 1
例3、求指数序列a k (k )的z变换
解:Z[ak(k )] ak zk ( a )k
k 0
k0 z
当 a 1即 z a时,有 z
Z[ak(k)] 1 z 1 a z a z
即ak(k) z za
四、z变换的性质 1、线性性质
则z变化存在(收敛) 可见右边序列的收敛域是半径为Rx1 的圆外部分。
Im[z]
Rx1
Re[z]
5、左边序列的收敛域
1
F (z) f (k)zk f (k)zk
k
k 1
由根值法:若满足lim k f (k)zk 1 k
即z
1
Rx2
lim k f (k)zk
k
故 左边 序列 的收 敛域 是半 径为Rx 2
例2、求序列f (k) (k) (k 4)的z变换。
(k) z z 1
1 (k 4) z3(z 1)
f
(k)
1 (z z 1
1 z3
)
F 3、z域尺度变换
若f (k) F(z) 则ak f (k) F ( z )
a
例3、已知Z[k(k )]
(z
z 1)2
, 求序列ka k (k )的z变换
2、移位特性 (1)双边z变换 若f (k)是双边序Βιβλιοθήκη ,其双边z变换为 f (k) F(z)
则f (k n) znF (z) f (k n) znF(z)
(2)单边z变换 若f (k)是双边序列,其单边z变换为 f (k)(k) F (z)
n1
则左移后f (k n)(k) znF (z) zn f (k)zk k 0 1
6、初值定理f (0) lim F (z) z
j
T
s平面
Im[z] z平面
Re[z]
二、z变换的收敛域
z变换是z的幂级数,F (z) f (k)zk k
z变换存在的充要条件是
f (k)zk 绝对可和条件
k
1、z变换的收敛域:使F(z) f (k)zk收敛 k
的z取值范围,称为收敛域。
2、判别级数收敛的两种方法
①比值判据:若有 ak 级数通项 k
相关文档
最新文档