直线与圆位置关系主题单元教学设计

合集下载

直线与圆的位置关系教学设计

直线与圆的位置关系教学设计

直线与圆的位置关系教学设计教学设计:直线与圆的位置关系教学目标:1.知识目标:掌握直线与圆的相交情况和位置关系;2.技能目标:能够判断直线与圆的位置关系,并能够解决相关问题;3.情感目标:培养学生的逻辑思维能力和解决问题的能力,增强学生对几何知识的兴趣和学习动力。

教学准备:1.教学工具:黑板、白板、多媒体设备;2.教学资源:直线与圆的相关知识介绍的PPT、练习题。

教学过程:一、导入(10分钟)1.师生共同回顾直线与圆的定义和基本性质;2.出示图片,引发学生对直线与圆的相交情况和位置关系的思考,激发学生的学习兴趣。

二、知识讲解(25分钟)1.根据图片,向学生讲解直线与圆的相交情况和位置关系,包括以下几种情况:a.直线与圆相交于两个不同的点;b.直线与圆相切;c.直线与圆相离;d.直线包含圆。

2.结合具体的例子和图片,详细说明每一种情况下的特点和性质。

三、案例分析与讨论(25分钟)1.提供一些练习题,让学生根据所学知识判断直线与圆的位置关系;2.学生独立完成练习题,然后进行讨论,分析每一道题的解题思路和方法;3.针对一些较难的问题,教师进行讲解和答疑。

四、拓展练习(25分钟)1.提供一些较为复杂的问题,让学生运用所学知识解决;2.学生独立或小组合作完成练习题,然后进行讨论和分享,相互之间交流解题思路;3.教师提供指导和答疑。

五、小结(10分钟)1.对本节课的内容进行总结,巩固学生对直线与圆的位置关系的理解;2.提醒学生注意其中的重点和难点,为之后的学习做好准备。

教学反思:通过本节课的教学,学生能够初步了解直线与圆的位置关系,并能够进行相关的判断和解决问题。

通过案例分析和拓展练习,培养了学生的逻辑思维能力和解决问题的能力。

在教学中,我应重点讲解每一种情况下的特点和性质,帮助学生理解和记忆。

此外,在讲解和讨论环节,我也应注重培养学生的思考和分析能力,引导他们自主学习和发现问题的解决方法。

同时,也要根据学生的学习情况,及时进行指导和答疑,确保每个学生都能够理解掌握所学内容。

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案第一章:引言教学目标:1. 让学生了解直线与圆的位置关系的概念。

2. 引导学生通过观察和思考,探索直线与圆的位置关系。

教学内容:1. 直线与圆的定义。

2. 直线与圆的位置关系的分类。

教学步骤:1. 引入直线和圆的定义,让学生回顾相关概念。

2. 提问:直线和圆有什么关系?它们可以相交、相切还是相离?3. 引导学生观察和思考直线与圆的位置关系,让学生举例说明。

练习题目:a) 直线x=2与圆x^2+y^2=4b) 直线y=3与圆x^2+y^2=9c) 直线x+y=4与圆x^2+y^2=8第二章:直线与圆的相交教学目标:1. 让学生了解直线与圆相交的概念。

2. 引导学生通过观察和思考,探索直线与圆相交的性质。

教学内容:1. 直线与圆相交的定义。

2. 直线与圆相交的性质。

教学步骤:1. 引入直线与圆相交的概念,让学生了解相交的含义。

2. 提问:直线与圆相交时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相交的性质,让学生举例说明。

练习题目:a) 直线y=2x+3与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第三章:直线与圆的相切教学目标:1. 让学生了解直线与圆相切的概念。

2. 引导学生通过观察和思考,探索直线与圆相切的性质。

教学内容:1. 直线与圆相切的定义。

2. 直线与圆相切的性质。

教学步骤:1. 引入直线与圆相切的概念,让学生了解相切的含义。

2. 提问:直线与圆相切时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相切的性质,让学生举例说明。

练习题目:a) 直线y=3x+2与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第四章:直线与圆的相离教学目标:1. 让学生了解直线与圆相离的概念。

2. 引导学生通过观察和思考,探索直线与圆相离的性质。

5.1直线与圆的位置关系 一等奖创新教案_1

5.1直线与圆的位置关系 一等奖创新教案_1

5.1直线与圆的位置关系一等奖创新教案《直线与圆的位置关系》教学设计一、教学目标:1.知识目标:掌握判断直线与圆的位置关系的两种方法;解决与位置关系相关的问题,如,弦长、切线方程等;2.能力目标:能够几何问题代数化,代数问题几何化;3.情感目标:形成“数学是相互联系、统一的整体”的数学观。

二、教学重点、难点:重点:掌握几何法和解析法判断直线与圆的位置关系难点:灵活运用“数形结合”来解决直线与圆的位置关系三、教学方法探究式教学法、讲练结合、情景教学四、学情分析通过初中的学习,直线与圆的位置关系已有感性认识,学生已经知道直线与圆有三种位置关系,并且从直线与圆的直观感受上,学生已经懂得“利用直线与圆的交点的个数及圆心到直线的距离与圆的半径的大小比较”来研究直线与圆的位置关系。

高中要求学生能够利用直线与圆的方程,定量来进行判断,解决问题的主要方法是解析法,而解析法的思想方法学生不熟悉。

本节课,学生将进一步挖掘直线与圆的位置关系中的“数”的关系。

五、教学过程1.情景导入借用“大漠孤烟直,长河落日圆”引出日落情景,把太阳比做圆,地平面作为水平线,引出本节课题内容:直线与圆的三种位置关系。

2. 引入课题引导探究:通过几何画图,观察直线与圆的位置关系,进而引出判断直线与圆的位置关系。

(1)直线与圆的位置关系圆与直线的交点个数:几何判定法:(1)直线与圆__相交__,有两个公共点;设r为圆的半径,d为圆心到直线的距离:(2)直线与圆__相切__,只有一个公共点;(1)d>r 圆与直线__相离__;(3)直线与圆__相离__,没有公共点.(2)d=r 圆与直线__相切__;(3)d0 直线与圆__相交__;(2)Δ=0 直线与圆__相切__;(3)Δ。

《直线与圆的位置关系》教学设计

《直线与圆的位置关系》教学设计

《直线与圆的位置关系》教学设计、概述本节是探索直线与圆的位置关系,课本通过操作、观察直线与圆的相对运动,提示直线与圆的三种位置关系,探索直线与圆的位置关系,和圆心到直线的距离与半径之间的大小关系的联系,并突出研究了圆的切线的性质和判定。

在本节的设计中,充分体现了学生已有经验的作用,用运动的观点研究直线与圆的位置关系,使学生明确图形在运动变化中的特点和规律。

二、设计理念帮助学生有意识地积累活动经验,获得成功的体验。

教学中应鼓励学生动手、动口、动脑和交流,充分展示“观察、操作——猜想、探索一一说理(有条理地表达)”的过程,使学生能在直观的基础上学习说理,体现合情推理和演绎推理的融合,促进学生形成科学地、能动地认识世界的良好品质。

三、教学目标:(1)激发学生亲自探索直线和圆的位置关系(2)通过实践让学生理解直线与圆的三种位置关系一一相交、相切、相离的含义(3)探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。

(4)让学生们自主讨论通过学习“直线与圆的位置关系”有哪些收获,在现实生活中有哪些体现。

四、教学重点直线与圆的三种位置关系一一相交、相切、相离从设置情景提出问题,到动手操作、交流,直至归纳得出结论, 整个过程学生不仅得到了直线与圆的位置关系,更重要的是经历了知识过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学、应用数学。

五、教学难点:探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。

六、教学过程:径为r,点P到圆心的面知识,为探究新入新知距离为d如何用d与知识作好准备。

设情景索活动r之间的数量关系表示点P与©O的位置关系?欣赏《海上日出》图片,感受生活中反映直线与圆的位置关系的现象。

对学生分类中出现的问题予以纠正,对学生提出解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。

按照公共点的个数,进行分类(分三议一议:学生分小组进行讨论,可从直线与圆交点的个数考虑,1个交点,2个交点,没有交活动一操作、思考第一层次:动手操作,并在操作中感受直线与圆的位置关系的变化。

数学《直线与圆的位置关系》教案

数学《直线与圆的位置关系》教案

数学《直线与圆的位置关系》教案教学目标:1. 了解直线与圆的位置关系,熟练掌握直线与圆的切线、割线、切点、割点等概念。

2. 掌握直线与圆的位置关系的基础推理方法,能够灵活运用数学知识解决相关的问题。

3. 培养学生观察、分析的能力,增强学生的实际操作能力和动手能力。

教学重难点:1. 直线与圆的切线、割线、切点、割点等概念的理解和掌握。

2. 直线与圆的位置关系的基础推理方法的应用。

教学方法:1. 讲授法和实践法相结合。

2. 采用板书、多媒体等方式进行教学。

3. 鼓励学生积极思考、多动手实践。

教学内容:1. 直线与圆的位置关系的定义。

2. 直线与圆的切线、割线、切点、割点等概念的讲解。

3. 直线与圆的位置关系的基础推理方法的应用。

教学过程:一、引入通过实际例子引出今天的教育内容:小明在修建一条直线公路的时候,发现公路穿过了一块广场,广场的中央是一个圆形花坛。

这时候,我们就需要了解直线与圆的位置关系了。

二、学习内容1. 直线与圆的位置关系的定义2. 直线与圆的切线、割线、切点、割点等概念的讲解3. 直线与圆的位置关系的基础推理方法的应用三、学习方法1. 讲授法和实践法相结合,从例子入手,以实际问题为导向,让学生掌握知识。

2. 采用板书、多媒体等方式进行教学,以图形为主,直观、形象。

3. 鼓励学生积极思考、多动手实践,参与课堂讨论。

四、学习重点难点1. 直线与圆的切线、割线、切点、割点等概念的理解和掌握。

2. 直线与圆的位置关系的基础推理方法的应用。

五、学习结果1. 了解直线与圆的位置关系。

2. 掌握直线与圆的切线、割线、切点、割点等概念。

3. 熟练应用数学知识解决直线与圆的位置关系相关的问题。

六、作业1. 完成课后习题。

2. 预习下一节课内容。

直线与圆的位置关系 教案

直线与圆的位置关系 教案

直线与圆的位置关系教案教案标题:直线与圆的位置关系教案目标:1. 学生能够理解直线与圆的位置关系的基本概念和特点。

2. 学生能够通过观察、推理和解决问题,运用直线与圆的位置关系进行几何证明。

3. 学生能够应用直线与圆的位置关系解决实际问题。

教学准备:1. 教师准备黑板、白板或投影仪等教学工具。

2. 教师准备直线与圆的相关图形和实例。

3. 学生准备纸笔和直尺。

教学过程:引入:1. 教师通过展示一些直线和圆的图形,引导学生思考直线与圆的位置关系,并激发学生对该主题的兴趣。

2. 教师提出问题:“直线与圆有哪些可能的位置关系?请举例说明。

”探究:1. 教师引导学生观察直线与圆的不同位置关系的图形,并让学生描述和比较它们的特点。

2. 教师提供一些具体实例,让学生通过观察和推理找出直线与圆的位置关系的规律。

3. 学生个体或小组合作,完成一些相关的练习和问题解答,巩固对直线与圆位置关系的理解。

拓展:1. 教师提供更复杂的直线与圆的位置关系的问题,让学生应用所学知识进行解决,并进行相关的几何证明。

2. 学生个体或小组合作,设计一些实际问题,应用直线与圆的位置关系进行解决,并向全班展示解决过程和结果。

总结:1. 教师对本节课的内容进行总结,强调直线与圆的位置关系的重要性和应用。

2. 学生回答教师提出的总结问题,检查对本节课内容的理解和掌握程度。

作业:1. 学生完成课堂上未完成的练习和问题解答。

2. 学生设计一道与直线与圆的位置关系相关的问题,并写出解决过程。

教学反思:1. 教师对本节课的教学效果进行总结和反思,思考下节课的改进措施。

2. 学生对本节课的教学内容进行反馈和评价,提供建议和意见。

直线和圆的位置关系教案

直线和圆的位置关系教案

直线和圆的位置关系教案教学目标:1.能够理解直线和圆的位置关系,并能够准确描述它们之间的相对位置。

2.能够运用几何知识,解决与直线和圆的位置关系相关的问题。

3.培养学生观察和归纳总结的能力,培养学生的几何思维。

教学重难点:1.直线和圆的位置关系。

2.解决与直线和圆的位置关系相关的问题。

教学准备:1.教师准备:教学课件、教学资料。

2.学生准备:几何工具。

教学过程:一、导入(5分钟)教师通过一个小游戏,让学生通过观察几何图形的关系,来引出直线和圆的位置关系。

教师可在黑板上绘制几个形状,要求学生观察并回答以下问题:1.画一个圆和一条直线,它们的位置关系是什么?2.如果直线与圆相交,交点有几个?3.如果直线与圆相切,它们的位置关系又是什么?4.如果直线与圆没有交点或相切,它们的位置关系呢?通过学生的回答,介绍直线和圆的位置关系。

二、讲解(10分钟)1.直线与圆相交的位置关系:教师通过教学课件,向学生展示直线与圆相交的不同情况,并讲解每种情况下的名称和特点。

-直线穿过圆的两个交点,这种情况称为“直线与圆相交”。

-直线经过圆的中心,这种情况称为“直线与圆相交于两个点”,交点分别为A、B。

-直线切圆,这种情况称为“直线与圆相切”。

2.直线与圆相切的位置关系:教师通过教学课件,向学生展示直线与圆相切的情况,并讲解。

-直线与圆相切于一个点,这种情况称为“直线与圆外切”。

-直线经过圆的中心,这种情况称为“直线与圆相切”。

-直线穿过圆,并且在圆的内部,这种情况称为“直线与圆内切”。

三、练习(35分钟)1.教师出示一些练习题,供学生进行个别练习。

学生可以用纸和笔列式解答,并标注出直线与圆的位置关系。

2.在练习过程中,教师根据学生的情况,进行辅导和指导,解答学生的疑惑。

四、归纳总结(10分钟)1.教师可以要求学生归纳总结直线与圆的位置关系,可以通过小组合作让学生共同完成。

2.教师带领学生一起进行讨论,让他们自己总结直线与圆的位置关系,并在黑板上进行记录。

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案一、教学目标知识与技能:1. 让学生掌握直线与圆的位置关系,理解直线与圆相交、相切、相离的概念。

2. 学会运用直线与圆的位置关系解决实际问题。

过程与方法:1. 通过观察、分析、推理等方法,探索直线与圆的位置关系。

2. 培养学生的空间想象能力和逻辑思维能力。

情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探究精神。

2. 培养学生运用数学知识解决实际问题的能力。

二、教学重点与难点重点:1. 直线与圆的位置关系的判定。

2. 直线与圆相交、相切、相离的性质。

难点:1. 直线与圆的位置关系的推理论证。

2. 运用直线与圆的位置关系解决实际问题。

三、教学准备教具:1. 直尺、圆规、铅笔。

2. 直线与圆的位置关系的图片或模型。

学具:1. 直尺、圆规、铅笔。

2. 直线与圆的位置关系的练习题。

四、教学过程1. 导入:1.1 教师出示一些直线与圆的位置关系的图片或模型,让学生观察。

1.2 学生分享观察到的直线与圆的位置关系。

2. 探究:2.1 教师引导学生通过画图、观察、分析、推理等方法,探索直线与圆的位置关系。

3. 讲解:3.1 教师根据学生的探究结果,讲解直线与圆的位置关系的判定方法和性质。

3.2 教师通过例题,讲解如何运用直线与圆的位置关系解决实际问题。

4. 练习:4.1 学生独立完成练习题,巩固所学知识。

4.2 教师选取部分学生的练习题进行点评,解答学生的疑问。

五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对直线与圆的位置关系的理解和运用能力。

关注学生在学习过程中的情感态度,激发学生的学习兴趣,培养学生的探究精神。

六、教学拓展1. 教师引导学生思考:直线与圆的位置关系在实际生活中有哪些应用?2. 学生举例说明直线与圆的位置关系在实际生活中的应用,如自行车轮子与地面的关系、篮球筐与投篮线的关系等。

七、课堂小结八、作业布置1. 完成课后练习题,巩固直线与圆的位置关系的知识。

直线与圆位置关系教案

直线与圆位置关系教案

直线与圆位置关系教案【篇一:直线与圆的位置关系(教案)】《直线与圆的位置关系》的教学设计一、教学课题:人民教育出版社出版的普通高中课程标准实验教科书a版数学②第四章第二节“直线与圆的位置关系”第一课时。

二、设计要点:学生在初中平面几何中已学过直线与圆的三种位置关系,在前面几节课学习了直线与圆的方程,因此,本节课主要以问题为载体,通过教师几个环节的设问,让学生利用已有的知识,自己去探究用坐标法研究直线与圆的位置关系的方法。

用过学生的参与和一个个问题的解决,让学生体验有关的数学思想,提高学生自主学习、分析问题和解决问题的能力,培养学生“用数学”及合作学习的意识。

三、教学目标:1.知识目标:能根据给定直线、圆的方程判断直线与圆的位置关系,并解决相关的问题; 2.能力目标:通过理论联系实际培养学生建模能力,培养学生数形结合思想与方程的思想; 3.情感目标:通过学生的自主探究,培养学生学习的主动性和合作交流的学习习惯。

四、教学重点、难点、关键:(1)重点:用坐标法判断直线与圆的位置关系(2)难点:学生对用方程组的解来判断直线与圆的位置关系方法的理解(3)关键:展现数与形的关系,启发学生思考、探索。

五、教学方法与手段:1.教学方法:探究式教学法2。

教学手段:多媒体、实物投影仪六、教学过程:1.创设情境,提出问题教师利用多媒体展示如下问题:问题:一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西50km处,受到影响的范围是半径长为30km 的圆形区域,已知港口位于台风中心正北50km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?教师提出:利用初中所学的平面几何知识,你能解决这个问题吗?请同学们动手试一下。

设计意图:让学生从数学角度看日常生活中的问题,体验数学与生活的密切联系,激发学生的探索热情。

2.切入主题,提出课题(1)由学生将问题数学建模,展示平面几何解决方法,得出结论。

《直线与圆的位置关系》教学设计与反思

《直线与圆的位置关系》教学设计与反思

《直线与圆的位置关系》教学设计与反思[摘要]着重通过《直线与圆的位置关系》这节课的教学设计来探索如何在课堂中发挥学生的主体性,让学生真正成为学习的主人.同时对每个环节的安排都作了及时的点评和反思,旨在突出自己设计的意图和目的.[关键词]直线圆位置关系合作主动能力一、教学设计思路《直线与圆的位置关系》是九年级下册《圆》这一章的重点内容,是学生在认识了圆、圆的对称性、圆周角等知识的基础上学习的,它在这一章中也是一个难点,同时为后面学习切线、利用直线与圆的位置关系进行证明、计算等打下基础.根据教学内容和学生的实际情况,创造一种现实而富有吸引力的学习环境,以激发学生学习的兴趣与动机,让学生在轻松、自然、融洽而又具有挑战性的情境中,通过动手、动脑或与他人合作去学习数学.用观察、猜测和归纳的方法获取知识,使数学课堂变为学生主动探索、自主参与的一个舞台,从而培养学生获取新知识及与同学交流合作的能力.二、教学目标1.探索和理解直线与圆的三种位置关系:相交、相切、相离.2.会运用圆心到直线的距离与圆的半径之间的数量关系判断直线与圆的位置关系.三、教学过程现以苏教版义务教育课程标准实验教科书九年级上册《5.5 直线与圆的位置关系》(第一课时)为例,进行如下设计.教学片断(一):板书课题出示这节课的学习目标,指导学生自学:看课本P127到P129,练习前面的内容并思考:(1)直线与圆的位置关系有哪几种?(2)如何判断直线与圆的三种位置关系?(6分钟后请学生完成相关的练习)点评:《直线与圆的位置关系》第一课时,学生在已有知识的基础上,有能力自学.为使学生学得紧张,最大化地提高课堂效率,可让学生带着思考题自学,逐步培养学生的自学能力.教学片断(二):完成自学检测一自学检测一的设计构想:主要检测学生自学指导中的问题一.检测方式:口答竞赛,有困难的可以让其他学生补充.教学片断(三):自学检测二自学检测二的设计构想:围绕本节课的第二个目标:“会运用圆心到直线的距离与圆的半径之间的数量关系判断直线与圆的位置关系”而设计的.检测方式:口答竞赛,让学生说出答案的同时,说出依据或方法,若说不完整,由其他学生补充,教师适时点拨.点评:这是一个从自学实践到感知内化的过程,在自学的基础上,学生参与课堂的欲望得以激发.部分学生的回答出错,其他学生帮纠错,及时反馈了学生的自学情况,培养了学生团结合作的精神,使他们真正成为课堂的主角,在课堂这一舞台上充分展示自己.教学片断(四):小试牛刀在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,则以C为圆心、r为半径的圆与AB有怎样的位置关系?(1)r=2cm;(2)r=2.4cm;(3)r=3cm.设计构想:这节课的重点是用圆心到直线的距离与圆的半径之间的数量关系判断直线与圆的位置关系,这道题主要培养学生严谨的解题习惯.检测方式:三位学生到黑板板演,其余学生在作业本上完成.大家都做完后,开展“大家来找茬”的活动,鼓励学生找出板演过程中的问题,积极到黑板上纠错.教师点拨:横向分布点评.先评第一步:要判断直线与圆的位置关系,应比较圆心到直线的距离与圆的半径的数量关系.本题已知圆的半径,由此要求圆心到直线的距离,应过点C作AB的垂线.再评第二步:运用相似法或面积法求出圆心到直线的距离.最后评第三步:位置关系判断正确与否.四、教学反思1.本节课的教学过程,采用“先学后教,当堂训练”的教学模式,根据学生的实际情况设计教学过程.为学生提供展示、交流的学习平台,使学生经历知识的形成过程,提高动手、动脑的能力,让学生通过自己的努力获得成功的喜悦,增强自信心.2.本节课实现了教师角色的转变.这节课教师成为学生学习的组织者、引导者和研究者.组织学生自学,完成自学检测,引导学生归纳、小结,教师成为学生的导师和伙伴.在课堂上教师除了引导学生活动外,更多的关注学生在学习过程中遇到的疑难,适时点拨,帮助学生归纳数学思想方法,形成自己构建知识体系的方法.学生会在教师的指导下自主学习,并能主动参与到教学活动中,使个性得到了张扬.把时间和空间还给了学生,真正使学生走上了课堂的舞台,使他们意识到自己才是学习的主人,变“要我学”为“我要学”.3.课堂检测的完成及纠错、小结都由学生完成,其余学生作出判断和补充,以竞赛的方式组织完成自学检测题.这样不仅调动了学生的学习积极性,而且活跃了课堂气氛,避免了部分学生课堂上开小差的现象,还培养了学生的合作精神,训练了他们边听边思考的能力.。

《直线和圆的位置关系》教学设计

《直线和圆的位置关系》教学设计

《直线和圆的位置关系》教学设计《直线和圆的位置关系》教学设计(精选5篇)教学设计是把教学原理转化为教学材料和教学活动的计划。

教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。

今天应届毕业生店铺为大家编辑整理了《直线和圆的位置关系》教学设计,希望对大家有所帮助。

《直线和圆的位置关系》教学设计篇1一、素质教育目标㈠知识教学点⒈使学生理解直线和圆的位置关系。

⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。

㈡能力训练点⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。

⒉在7.1节我们曾学习了“点和圆”的位置关系。

⑴点P在⊙O上OP=r⑵点P在⊙O内OP<r⑶点P在⊙O外OP>r初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。

㈢德育渗透点在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。

二、教学重点、难点和疑点⒈重点:使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。

⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。

⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。

三、教学过程㈠情境感知⒈欣赏网页flash动画,《海上日出》提问:动画给你形成了怎样的几何图形的印象?⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。

3.6直线与圆的位置关系(教案)

3.6直线与圆的位置关系(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“直线与圆位置关系在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
4.培养学生的数学运算能力,掌握直线与圆位置关系的相关计算方法,并能运用这些方法解决实际问题。
5.培养学生的合作交流能力,通过小组讨论、合作探究直线与圆的位置关系,提高沟通能力和团队协作精神。
三、教学难点与重点
1.教学重点
(1)直线与圆的位置关系:理解并掌握相离、相切和相交三种位置关系的判定方法及其性质。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解直线与圆位置关系的基本概念。直线与圆的位置关系包括相离、相切和相交三种情况。这些关系在几何图形的研究和实际应用中具有非常重要的意义。
2.案例分析:接下来,我们来看一个具体的案例。通过分析圆形花坛周围的道路设计,了解直线与圆在实际中的应用,以及如何帮助我们解决问题。
五、教学反思
在今天的教学中,我发现学生们对直线与圆的位置关系这一章节表现出浓厚的兴趣。通过引入日常生活中的实例,他们能够更好地理解抽象的几何概念。在讲授理论部分时,我注意到有些学生对于切线的判定方法掌握得不够扎实,这需要我在今后的教学中进一步强调和巩固。
在实践活动中,学生们分组讨论和实验操作的过程十分积极,他们能够将所学的理论知识应用到解决实际问题中。不过,我也观察到在小组讨论时,部分学生过于依赖同伴,缺乏独立思考的能力。因此,我会在后续的教学中注重培养学生的独立思考能力,鼓励他们大胆表达自己的观点。

直线和圆的位置关系数学教案

直线和圆的位置关系数学教案

直线和圆的位置关系数学教案
标题:直线与圆的位置关系
一、教学目标
1. 理解并掌握直线与圆的位置关系的概念。

2. 掌握判断直线与圆位置关系的方法。

3. 培养学生的空间想象能力,提高学生解决实际问题的能力。

二、教学重难点
重点:直线与圆的位置关系的理解及应用。

难点:根据条件判断直线与圆的位置关系。

三、教学过程
1. 导入新课:
通过实例引入,如:在日常生活中我们经常会遇到直线与圆的位置关系的问题,比如篮球运动员投篮时,球的运动轨迹就是一个抛物线,而篮球框是一个圆形。

那么如何确定球是否会进入篮筐呢?这就需要我们学习直线与圆的位置关系的知识。

2. 新课讲解:
(1) 直线与圆的位置关系:相交、相切、相离。

(2) 判断方法:利用点到直线的距离公式,比较圆心到直线的距离与半径的大小关系。

3. 练习巩固:
设计一些练习题,让学生自己动手操作,通过实践来理解和掌握直线与圆的位置关系。

4. 小结:
回顾本节课所学的内容,强调重点和难点。

5. 作业:
设计一些相关的题目作为家庭作业,让学生在课后继续复习和巩固所学知识。

四、教学反思
教师要时刻关注学生的学习情况,对教学效果进行反思和调整,以达到最佳的教学效果。

直线和圆的位置关系 优秀教学设计(教案)

直线和圆的位置关系 优秀教学设计(教案)

5.已知⊙O 的半径为3,点 A 在直线 l 上,点 A 到⊙O 的圆心 O 的距离为3,则 l 与⊙O 的位置关 系为 。 A.相离 B.相切 C.相交 D.相交或相切 6.如图:AB=8是大圆⊙O 的弦,大圆半径为 R=5,则 以 O 为圆心,半径为3的小圆与 AB 所在直线的位 置关系是( ) A 相离 B 相切 C 相交 D 都有可能
通过上面问题我们我们容易得到: 直线 l 和⊙O 相交 d<r 直线 l 和⊙O 相切 d=r 直线 l 和⊙O 相离 d>r 总结:判断直线与圆的位置关系有两种方法: 1. 直线与圆公共点的个数; 2. 直线与圆心的距离 d 与半径的大小关系 填表:略 四.随堂练习: 1.圆的直径是13cm ,如果直线与圆心的距离分别 是, (1) 4.5cm ;(2) 6.5cm ; (3) 8cm. 那么直线和圆分别是什么位置关系?有几个公共 点? 2.如图,直线 l 与⊙O 相交与 A,B 两点,点 O 到 直线 l 距离为3,AB=8。 (1)求⊙O 的直径; (2) ⊙O 的半径满足什么条件时,它与直线 l 相离?
此时学生已经 到了疲劳期, 学习情趣减 弱,为了再次 提起学生兴奋 点采用游戏的 形式来巩固检 测知识
3.已知直线 l 与⊙O 相切,若圆心 O 到直线的距 离是5,则⊙O 的半径是_________ 4. 如图:∠AOB = 30°,M 是 OB 上的一点,且 OM =5 cm 以 M 为圆心,以 2.5 cm 为半径的圆与 直线 OA 有怎样的关系?
探究(类比点与圆的位置关系)当公共点个数不 好判断怎么办?直线与圆的位置关系能否像点与 圆的位置关系一样进行数量分析? 如果圆的半径为 r,圆心到直线的距离为 d 二者 满足怎么样关系的时,分别有直线与圆的三种关

直线与圆的位置关系教案

直线与圆的位置关系教案

直线与圆的位置关系教案教学目标:1.知道直线与圆的位置关系有三种情况:相离、相切、相交。

2.掌握判断直线与圆的位置关系的方法。

3.能够综合运用所学知识解决直线与圆的位置关系问题。

教学重点:1.直线与圆的位置关系的判断方法。

2.解决直线与圆的位置关系问题的能力。

教学难点:1.判断直线与圆的位置关系。

2.综合运用所学知识解决直线与圆的位置关系问题。

教学过程:一、导入(5分钟)老师出示一张图片,图片上有一条直线与一个圆相交,并让学生观察并回答:直线与圆的位置关系有哪些可能的情况?二、讲授(15分钟)1.老师引入“直线与圆的位置关系”的概念,并给出三种可能的情况:相离、相切、相交。

2.介绍判断直线与圆的位置关系的方法:a.直线与圆相离的情况下,直线与圆的最短距离大于圆的半径。

b.直线与圆相切的情况下,直线与圆的最短距离等于圆的半径。

c.直线与圆相交的情况下,直线与圆的最短距离小于圆的半径。

3.通过示例讲解判断直线与圆的位置关系的方法。

三、练习(20分钟)1.团队合作练习:将学生分成若干小组,给出不同的直线与圆的示例,让学生判断直线与圆的位置关系,并在白板上写出自己的判断结果。

2.小组讨论与展示:每个小组轮流讲解和展示自己的判断结果,并给出相应的理由。

3.整体讨论与总结:老师引导学生就判断直线与圆的位置关系时遇到的问题进行讨论,并总结判断方法和解决问题的关键。

四、拓展(15分钟)1.引导学生思考更复杂的问题:在平面直角坐标系中,如何判断直线与圆的位置关系?2.给出示例并指导解决问题:通过求直线与圆的方程,将问题转化成代数方程求解。

五、讲评(10分钟)1.对学生在练习环节中的表现给予评价和点评。

2.解答学生提出的疑问,帮助学生理解和掌握直线与圆的位置关系。

六、小结(5分钟)老师对本节课的内容进行小结,并指导学生合理复习巩固相关知识。

教学反思:本节课通过引入问题、讲解相关概念、示例分析和练习等环节,使学生逐步理解和掌握直线与圆的位置关系的判断方法。

“直线和圆的位置关系”教学设计

“直线和圆的位置关系”教学设计

“直线和圆的位置关系”教学设计“直线和圆的位置关系”教学设计篇一:“直线和圆位置关系”教学设计一、教学内容人教版义务教育课程标准实验教科书九年级上册第二十四章24.2.2直线和圆的位置关系(第一课时)二、教学目标1.知识与技能目标使学生理解直线和圆相交、相切、相离的概念,掌握直线和圆的位置关系的性质和判定。

2.过程与方法目标经历观察、操作、了解直线和圆位置关系的过程,理解分类、数形结合,培养观察、分析和概括的能力。

3.情感与能力目标通过直线和圆的相对运动,揭示直线和圆的位置关系,培养学生运动变化的辩证唯物主义观点,增强学生应用数学的意识。

三、重点与难点重点是掌握直线和圆的三种位置关系的性质与判定。

难点是如何引导学生发现隐含在图形中的两个数量d和r并加以比较。

四、教学方法运用自主交流、引导发现、练习提高等方法。

五、教学设计1.结合实际,情境导入篇二:《圆和圆的位置关系》教学设计表第四届全国中小学新媒体新技术教学应用研讨会暨基于交互技术的教学观摩活动教学设计表注:此模板可另附纸,字数1500-2000字,为教学案例和教学论文的发表奠定基础。

篇三:圆与圆位置关系教学设计24.2.3圆与圆的位置关系教材依据“圆与圆的位置关系”是义务教育课程标准实验教科书《数学》人教版九年级上册,第二十四章第24.2.3节。

设计思路(1)指导思想:以培养学生的自主学习、创新能力以及“数形结合”思想和“类比讨论”思想。

(2)设计理念:学生的发展是新课程标准实施的出发点和归宿,课程改革的重点是面向全体学生,以学生的发展为主体,转变学生的学习方式。

“圆与圆的位置关系”这一课题,以全新的自主的学习方式让学生接受问题挑战,充分展示自己的观点和见解,给学生创设一种宽松、愉快、和谐、民主的科研氛围,让学生感受“两圆位置关系”的探究发现过程,体验成功的快乐,为终身学习与发展打下基础。

(3)教材分析:《圆与圆的位置关系》是本章的第2.3节,是学生在学习了圆的主要性质和点与圆、直线与圆的位置关系后再进行较复杂的图形位置关系的学习。

《直线与圆、圆与圆的位置关系》大单元教学设计方案【高中数学】

《直线与圆、圆与圆的位置关系》大单元教学设计方案【高中数学】

直线与圆、圆与圆的位置关系大单元教学
设计
用几何方法和代数方法,这种综合是充分借助图形的几何性质,一定程度上简化代数运算,最后得到图形之间的位置关系的方法.利用直线与圆的位置关系解决实际问题,是初中平面几何的综合运用,是在学习了点和圆的位置关系的基础上进行的,又为后面学习圆与圆的位置关系作了铺垫,对解题及几何证明将起到重要的作用.
本单元综合运用直线和圆的方程研究直线与圆、圆与圆的位置关系, 以及一些简单的数学问题和实际问题. 直线与圆的教学在平面解析几何乃至整个中学数学中都占有重要的地位, 直线和圆的位置关系应用也比较广泛、图形之间的位置关系, 既可以直观定性描述, 也可以严格定量刻画.定量刻画的方法既可以是完全运用代数的方法, 通过运算求解, 得到图形之间的位置关系, 也可以综合运用几何方法和代数方法, 这种综合是充分借助图形的几何性质, 一定程度上简化代数运算, 最后得到图形之间的位置关系的方法.利用直线与圆的位置关系解决实际问题, 是初中平面几何的综合运用, 是在学习了点和圆的位置关系的基础上进行的, 又为后面学习圆与圆的位置关系作了铺垫, 对解题及几何证明将起到重要的作用.
本单元综合运用直线和圆的方程研究直线与圆、圆与圆的位置关系,以及一些简单的数学问题和实际问题. 直线与圆的教学在平面解析几何乃至整个中学数学中都占有重要的地位,直线和圆的位置关系应用也比较广泛、图形之间的位置关系,既可以直观定性描述,也可以严格定量刻画.定量刻画的方法既可以是完全运用代数的方法,通过运算求解,得到图形之间的位置关系,也可以综合运用几何方法和代数方法,这种综合是充分借助图形的几何性质,一定程度上简化代数运算,最后得到图形之间的位置关系的方法.利用直线与圆的位置关系解决实际问题,是初中平面几何的综合运用,是在学习了点和圆的位置关系的基础上进行的,又为后面学习。

《直线和圆的位置关系》优秀教学设计精选全文

《直线和圆的位置关系》优秀教学设计精选全文

可编辑修改精选全文完整版《直线和圆的位置关系》优秀教学设计《直线和圆的位置关系》优秀教学设计作为一名为他人授业解惑的教育工作者,时常需要用到教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。

那么你有了解过教学设计吗?下面是小编精心整理的《直线和圆的位置关系》优秀教学设计,仅供参考,欢迎大家阅读。

《直线和圆的位置关系》优秀教学设计1教学目标:(一)教学知识点:1.了解直线与圆的三种位置关系。

2.了解圆的切线的概念。

3.掌握直线与圆位置关系的性质。

(二)过程目标:1.通过多媒体让学生可以更直观地理解直线与圆的位置关系。

2.通过让学生发现与探究来使学生更加深刻地理解知识。

(三)感情目标:1.通过图形可以增强学生的感观能力。

2.让学生说出解题思路提高学生的语言表达能力。

教学重点:直线与圆的位置关系的性质及判定。

教学难点:有无进入暗礁区这题要求学生将实际问题转化为直线与圆的位置关系的判定,有一定难度,是难点。

教学过程:一、创设情境,引入新课请同学们看一看,想一想日出是怎么样的?屏幕上出现动态地模拟日出的情形。

(把太阳看做圆,把海平线看做直线。

)师:你发现了什么?(希望学生说出直线与圆有三种不同的位置关系,如果学生没有说到这里,我可以直接问学生,你觉得直线与圆有几种不同的位置关系。

)让学生在本子上画出直线与圆三种不同的位置图。

(如图)师:你又发现了什么?(希望学生回答出有第一个图直线与圆没有公共点,第二个图有一个公共点,而第三个有两个公共点,如果没有学生没有发现到这里,我可以引导学生做答)二、讨论知识,得出性质请同学们想一想:如果已知直线l与圆的位置关系分别是相离、相切、相交时,圆心O到直线l的距离d与圆的半径r有什么关系设圆心到直线的距离为d,圆的半径为r让学生讨论之后再与学生一起总结出:当直线与圆的位置关系是相离时,dr当直线与圆的位置关系是相切时,d=r当直线与圆的位置关系是相交时,d知识梳理:直线与圆的位置关系图形公共点d与r的大小关系相离没有r相切一个d=r相交两个d三、做做练习,巩固知识抢答,我能行活动:1、已知圆的`直径为13cm,如果直线和圆心的距离分别为(1)d=4.5cm(2)d=6.5cm(3)d=8cm,那么直线和圆有几个公共点?为什么?(让个别学生答题)师:第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?请大家思考后作答:2、已知圆心和直线的距离为4cm,如果圆和直线的关系分别为以下情况,那么圆的半径应分别取怎样的值?(1)相交;(2)相切;(3)相离。

直线和圆的位置关系教学设计

直线和圆的位置关系教学设计

直线和圆的位置关系教学设计引言直线和圆是几何学中基本的图形,它们在我们的日常生活中随处可见。

理解直线和圆的位置关系对于我们建立几何图形的概念和解决实际问题非常重要。

本文将介绍一个教学设计,帮助学生掌握直线和圆的基本位置关系。

教学目标通过本教学设计,学生将能够:•理解直线和圆的定义;•识别直线和圆的基本特征;•掌握直线和圆的五种位置关系;•能够应用这些知识解决实际问题。

教学准备为了实施这个教学设计,教师需要准备以下材料:•打印好的教学材料:包括直线和圆的定义、直线和圆的位置关系;•黑板或白板及相应的书写工具。

教学步骤步骤1:引入直线和圆的概念教师首先引入直线和圆的概念,向学生解释它们的定义和基本特征。

可以在黑板上绘制直线和圆的示意图,并指出它们的特点。

步骤2:介绍直线和圆的五种位置关系教师向学生介绍直线和圆的五种基本位置关系:相离、相切、相交、相包、相重。

在黑板上绘制示例图,并为每种关系提供简短的定义和示例。

•相离:直线和圆之间没有交点,它们是分开的。

•相切:直线与圆仅有一个交点,这个交点是切点。

•相交:直线与圆有两个交点。

•相包:直线包围了整个圆。

•相重:直线与圆重合。

步骤3:示范和练习教师通过示范和练习来帮助学生巩固所学内容。

可以选择一些简单的直线和圆的位置关系问题,要求学生判断并在纸上标出相应的位置关系。

教师可以给予学生适当的提示和指导,以确保他们能够正确理解和应用所学知识。

步骤4:解决实际问题教师提供一些实际问题,要求学生运用所学知识解决问题。

例如,给定一个圆和一条直线,学生需要确定直线与圆的位置关系,并给出解释。

这些问题可以与学生日常生活中的场景相关,以增加问题的实际意义。

教学扩展为了进一步巩固和扩展学生对直线和圆位置关系的理解,教师可以引入以下内容:•直线和圆在三维空间中的位置关系;•直线和圆的位置关系与其他几何图形的关系;•应用直线和圆的位置关系解决更复杂的问题。

结论通过这个教学设计,学生将能够掌握直线和圆的基本位置关系,培养他们的几何思维和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《直线与圆的位置关系》主题单元教学设计
详细学习活动过程1、判断直线与圆相切有哪些方法?
(1) 、利用切线的定义;(2)、利用圆心到直线的距离等于圆的半径;(3)、利用切线的判定定理。

2、合作学习:
(1)如图,直线AP与⊙O相切于点 A ,连结OA,∠OAP等于多少度?在⊙O上再任意取一些点,过这些点作⊙O的切线,连结圆心和切点,半径与切线所成的角为多少度?有此你发现了什么?
(2)任意画一个圆,作这个圆的一条切线,过切点作切线的垂线,你发现了什么?你的发现与你的同伴的发现相同吗?
教学评价评选推理能人、课中(后)检测。

相关文档
最新文档