福建省厦门市2014-2015学年高一上学期期末数学试卷

合集下载

厦门市2014-2015学年第一学期高一质量检测-数学试题参考答案以及评分标准

厦门市2014-2015学年第一学期高一质量检测-数学试题参考答案以及评分标准

厦门市2014-2015学年第一学期高一质量检测数学试题参考答案以及评分标准题号 1 2 3 4 5 6 7 8 9 10 答案ADBCBDDCCB10.解: (1)2f -=28=+--⇔c b a ----①设m c b a m f =++⇔=38)3(----②① +②得:m c b +=+222,又Z c b ∈,,所以m 一定是偶数. 二、填空题11. 36 (题目引导有误,答案46也对) 12.19 13.5614.23π 15.0 16.(2,0)-16.解:如图,根据xy 2=与x y 2log =关于y x =对称,而2+-=x y 与y x =垂直所以,两交点的中点为y x =与2y x =--的交点(-1,-1), 即12-=+qp 所以,函数()()()f x x p x q =++的对称轴为12=+-=qp x 所以2(22)(0)f x x f ++<⇔<++⇔)2()22(2f x x f …⇔02<<-x . 三、解答题17.解:(Ⅰ)}2|{≥=x x B -----------------------------------------------------------------2分{|23}A B x x =≤< ---------------------------------------------------4分()U C A B 3}x 2|{≥<=或x x ---------------------------------------------------6分(Ⅱ)}|{a x x C >= ---------------------------------------------------8分∵B C C =,∴C B ⊆ ---------------------------------------------------10分所以2<a ---------------------------------------------------12分18.解:记甲选动车、汽车、飞机来厦门分别为事件,,A B C .则事件,,A B C 是互斥的.---------------------------------------------------1分(Ⅰ)()()()0.6P A B P A P B +=+= ---------------------------------------------------3分又()0.3P B =∴()0.3P A = ---------------------------------------------------5分 ∴不乘动车来的概率1()0.7P P A =-= ---------------------------------------------------7分 (Ⅱ)又()()()1P A P B P C ++= ---------------------------------------------------9分∴()0.4P C = ---------------------------------------------------11分 所以()(),()()P C P A P C P B >>所以他乘飞机来的可能性最大 ---------------------------------------------------12分19.解:(Ⅰ)分数在[50,60)的频率为0.008100.08⨯=,由茎叶图知:分数在[50,60)之间的频数为4,所以全班人数为4500.08=(人),--2分 则分数落在[80,90)的学生共有50(414204)8-+++=(人), ----------------------3分 所以分数落在[80,90)的频率为80.1650= 答:分数落在[80,90)的频率为0.16. ---------------------------------------------------4分 (Ⅱ)分数在[50,70) 的试卷共有18份,其中[)50,60 的有4份, ------------------6分现需抽取容量为9的样本,根据分层抽样原理,在[)50,60中应抽取的份数为49218⨯= 答:在[)50,60中,应抽取2份; --------------------------------------------------8分 (Ⅲ)分数分布在[]90,100的学生一共有4人,现从中抽取2人,可能的分数的组合为{}{}{}{}{}{}95,96,95,97,95,99,96,97,96,99,97,99故基本事件总数为6n = -------------------------------------------------10分 设事件A 表示“成绩99分的同学被选中”,则事件A 包含的基本事件为{}{}{}95,99,96,99,97,99 ,3A n =-------------------------------------------------11分根据古典概型概率公式有:31()62A n P A n ===. 答:成绩为99分的同学被选中的概率为12-------------------------------------------------12分20.(Ⅰ)证明:连结1EDM 是1DD 的中点,114DD AA ==12BE MD ∴==又1//BE MD ---------------------------------------------2分∴四边形1D MBE 是平行四边形 --------------------------------------------3分1//BM ED ∴-----------------------------4分 又1ED ⊂平面11A EFD ,BM ⊄平面11A EFD ----------------------------------------5分∴BM ∥平面11A EFD -------------6分(Ⅱ)解:依题意,得此多面体11ABEA DCFD -是一个四棱柱, 底面1ABEA 是梯形 ---------------------9分底面积1(24)6182S =+⋅=高4h AD ==118472ABEA V Sh ==⋅=四棱柱 -----------12分21.解:(Ⅰ)依题意,得25(1415%)10⨯-⨯=此人得到的卖车款是10万元 --------------------------------------4分(Ⅱ)421.25,(01)17.5,(12)13.75,(23)10,(34)210(),(410,)3x x x y x x x x N -⎧⎪<≤⎪<≤⎪⎪=<≤⎨⎪<≤⎪⎪⋅<≤∈⎪⎩-------------------------------------9分(Ⅲ)依题意,得4210()43x -⋅≥2344log ()10x ∴-≤ 234lg 4120.31log ()210lg 2lg 30.30.5-⋅-=≈=--6x ∴≤ -------------------------------------12分2014+6=2020因为,超过n 年不到1n +年的按1n +年计算所以,最迟应该在2020年元旦前(或2019年)卖车 --------------------------------14分D 1MA 1EDFC BA22.解:(Ⅰ)函数2()1x nf x x +=+为定义在R 上的奇函数,(0)0f n ∴==--------------2分2(),1x f x x ∴=+22(),11x xf x x x --==-++满足()()0,f x f x +-=故当且仅当0.n =时2()1xf x x =+为奇函数 -------------------------------------3分(Ⅱ)依题意,即满足对任意]1,0[1∈x ,“21()()g x f x >在]1,0[2∈x 上有解”即满足2max 1()()g x f x >在]1,0[1∈x 上恒成立 即满足2max 1max()()g x f x >-------------------------------------5分对于函数2()1xf x x =+, 不妨设1201x x ≤<≤1212211222221212(1)()()()11(1)(1)x x x x x x f x f x x x x x ---=-=++++ ∵1201x x ≤<,210x x ->, ∴12()()0f x f x -<,∴2()1xf x x =+在[0,1]x ∈上单调递增,1max 1()(1)2f x f == ------------------------------------7分对于二次函数2()22g x x x λλ=--,对称轴为x λ= ⑴当12λ≥时,2max ()(0)2g x g λ==- 令122λ->得14λ<-,与12λ≥不合,舍去; ⑵当12λ<时,2max ()(1)14g x g λ==- 令1142λ->得18λ<.综上所述,符合要求的λ范围是18λ<------------------------------------9分(Ⅲ)方程12|()|log ||f x x = 只有1个实数解。

XXX2014-2015学年上学期高一年级期末考试语文试卷后有答案

XXX2014-2015学年上学期高一年级期末考试语文试卷后有答案

XXX2014-2015学年上学期高一年级期末考试语文试卷后有答案XXX2014-2015学年上学期高一年级期末考试语文试卷本试卷满分150分,考试时间150分钟第Ⅰ卷50分一、本大题共6小题,每小题2分,共12分。

1.下列加点字注音全部正确的一项是()A.洞穴(xuâ)吊唁(yàn)自诩(xǔ)一丘之貉(háo)B.熟稔(rěn)盘桓(huán)参与(yù)中流砥柱(dǐ)C.羞赧(nǎn)妊娠(chãn)桎梏(gù)踽踽独行(yǔ)D.瓜蔓(wàn)发酵(xiào)旖旎(yí)雨声淅沥(xī)2.下列词语中没有错别字的一项是()A.富庶贿赂B.作践惺忪C.募集噩耗D.戏谑扭扣3.下列短语归类正确的一项是()A.并列:B.偏正:C.动宾:D.主谓:4.下列句子中加点的成语利用恰当的一项为哪一项()A.南美人对足球的热爱令人由衷佩服,世界杯开赛前,有的阿根廷穷人球迷,甚至一路走一路唱,计日XXX,用自己的乐观和脚步走到了巴西。

....B.在就业压力进一步加大的情况下,专家提示身无长物的大学生,肯定要尽早挖掘自....身优势,不断加强个人综合素质,以提高职场竞争力。

C.晚年的XXX三姐妹一个留在美国,一个留在台湾,一个留在大陆,她们虽然长时间不能见面,但一衣带水的牵挂,使得彼此的思念从未停止。

....D.宽容的处世态度虽然一直被提倡,但令人遗憾的是,我们的社会中,睚眦必报的新魑魅魍魉接踵而来缠绵悱恻匆匆那年智取威虎山一步之遥打老虎行动起来唤醒没落千年的南城霸王别姬入不敷前途透社报导惮精竭虑拾人牙慧革故顶新愤发图强不径而走折冲樽俎引亢高歌蜚声文坛1XXX总是太多,犯而不校的美谈总是太少。

....5.下列有关文学常识的表述,错误的一项是()A.《左传》是我国第一部叙事详细的纪传体著作,既是汗青文献,又是散文著作。

2014-2015学年上期厦门九年级期中联合考试数学试卷

2014-2015学年上期厦门九年级期中联合考试数学试卷

2014-2015学年上期厦门市九年级期中模拟考试(难度:★★★★★)数学试卷(试卷满分:150分考试时间120分钟)一、选择题(本大题有7小题,每小题3分,共21分。

每小题都有四个选项,其中有且只有一个选项是正确的)1.配方:x²-3x+ =(x- )²A. 9,3B. 3,3C. 3322,D.9342,2.下列图案中不是中心对称图形的是()A.B.C.D.3.m是方程x²-2x-3=0的一个根,则代数式21-42m m =()A.1.5B.2C.2.5D.34.如图1,⊙O中,若∠AOC=150°,那么∠ABC=()A.150°B.125°C.105°D.100°A图1 图25.如图2,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A. B. (C.(2,-2)D.(-2,2)6. 函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是( )A. k<3B. k<3且k≠0C. k≤3D. k≤3且k≠07.已知二次函数y=ax2+bx+c (a≠0)的图象如图3所示,有下列结论:①b2-4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0.其中,正确结论的个数是:A.1B.2C.3D.4图3 图4二、填空题(本大题有10小题,每小题4分,共40分)8.等边三角形旋转后能与自身重合的最小旋转角度是9.关于x的一元二次方程ax²-3x+1=0有两个不相等实数根,则a的取值范围是10. 如图4,当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的度数如图所示(单位:cm),那么该圆的半径为cm11. 把小圆形场地的半径增加5米得到大圆形场地,此时大圆形地的面积是小圆形场地面积的4倍。

XXX2014-2015学年上学期高一年级期末考试历史试卷后有答案

XXX2014-2015学年上学期高一年级期末考试历史试卷后有答案

XXX2014-2015学年上学期高一年级期末考试历史试卷后有答案XXX2014-2015学年上学期高一年级期末考试历史试卷满分为100分。

考试时间为60分钟。

第I卷一、单项选择题(共32小题,每小题2分,共64分。

)1.对下图所示书籍的正确评价是A.反映了农民要求土地的迫切愿望B.是中国发展资本主义的最早方案C.具有强烈的反帝爱国色彩D.首倡在中国实行民主革命2.“再现历史场景,弘扬民族精神”是历史影视剧的主题。

若要再现XXX率领中国海军抗击日本侵略者的悲壮场景,应该选择的素材是A.辽东战役B.平壤战役C.黄海战役D.威海卫战役3.中国古代以干支纪年,天干是“甲、乙、丙、丁、丁、戊、己、庚、辛、壬、癸”,地支是“子、丑、寅、卯、辰、巳、午、未、申、酉、戌。

亥”。

甲午战争发生于1894年,八国联军侵华的。

1900年应是A.庚子年B.己亥年C.辛丑年D.壬寅年4.近代中国第一个统一的资产阶级革命政党是A.光复会B.XXXD.XXX5.辛亥革命首先取得成功的是A.武昌B.XXX.上海6.以下图是保存在上海的中国近代史上一次爱国是件的档案材料,其中有“欧战和会,外交失败”、“要除卖国贼,要救北京学生”等文字。

这些档案材料反映的历史是A.虎门销烟B.戊戌变法C.辛亥革命D.五四运动7.“打倒列强,打倒列强,除军阀,除军阀。

努力国民革命,努力国民革命,齐奋斗”这首军歌撒布于A.保路运动期间B.秋收起义期间C.北伐战争期间D.南昌起义期间8.下图中数字符号标明的地点,都是XXX十年对峙时期重大事件的发生地,长征的重要转折点发生在A.①B.②C.③D.④9.1936年三大主力红军胜利会师,标志着长征的胜利。

会师是在A.江西瑞金B.贵州遵义C.陕北吴起镇D.甘肃会宁10.“中国不会亡,你看那民族豪杰谢团长;中国一定强,中国一定强,你看那八百壮士孤军奋守东战场;……”歌词所反映的变乱A.卢沟桥事变B.淞沪会战C.国民革命军北伐D.辽沈战役11.解放战争时期,XXX说:“XXX两个拳头这么一伸,他的胸膛就露出来了。

高一数学上学期第一次联考试卷(含解析)-人教版高一全册数学试题

高一数学上学期第一次联考试卷(含解析)-人教版高一全册数学试题

某某省某某市新锐私立学校、水口中学2014-2015学年高一上学期第一次联考数学试卷一.选择题(每题5分,共50分,每题只有一个符合题意的选项)1.(5分)设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(C U S)∩(C U T)等于()A.∅B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8}2.(5分)如果A={x|x>﹣1},那么()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A3.(5分)已知,则f{f}的值为()A.0 B.2 C.4 D.84.(5分)已知f(x﹣1)=x2+4x﹣5,则f(x)的表达式是()A.f(x)=x2+6x B.f(x)=x2+8x+7 C.f(x)=x2+2x﹣3 D.f(x)=x2+6x﹣10 5.(5分)函数的定义域是()A.B.C.D.6.(5分)若函数y=x2+(2a﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a的取值X围是()A.C.7.(5分)下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是()A.f(x)=x﹣1,g(x)=B.f(x)=2x﹣1,g(x)=2x+1C.f(x)=x2,g(x)=D.f(x)=1,g(x)=x08.(5分)下列图象中表示函数图象的是()A.B.C.D.9.(5分)f(x)是定义在(0,+∞)上的增函数,则不等式f(x)>f的解集是()A.(0,+∞)B.(0,2)C.(2,+∞)D.(2,)10.(5分)已知f(x)=ax3+bx﹣4,若f(2)=6,则f(﹣2)=()A.﹣14 B.14 C.﹣6 D.10二.填空题(每题5分,共25分)11.(5分)若A={0,1,2,3},B={x|x=3a,a∈A}则A∩B=.12.(5分)函数y=x2﹣4x+6当x∈时,函数的值域为.13.(5分)已知集合M={(x,y)|x+y=2},N={(x,y)|x﹣y=4},则M∩N等于.14.(5分)已知函数f(x)满足2f(x)+3f(﹣x)=x2+x,则f(x)=.15.(5分)已知集合A={x|ax2+2x+1=0,x∈R}的子集只有两个,则a的值为.三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计80分)16.(10分)设A={x∈Z|﹣6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∩(B∩C);(2)A∩∁A(B∪C)17.(10分)设A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2}(1)求a,b的值及A,B;(2)设全集U=A∪B,求(C U A)∩(C U B).18.(10分)已知f(x)=9x﹣2×3x+4,x∈.(1)设t=3x,x∈,求t的最大值与最小值;(2)求f(x)的最大值与最小值.19.(10分)已知函数f(x)是定义在R上的奇函数,当x≥0,f(x)=x2﹣2x,(1)画出 f(x)图象;(2)求出f(x)的解析式.20.(11分)已知函数f(x)=,x∈,(1)用定义法证明函数f(x)的单调性;(2)求函数f(x)的最小值和最大值.21.(12分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.(12分)已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f (y),f(3)=1(1)求f(9),f(27)的值;(2)若f(3)+f(a﹣8)<2,某某数a的取值X围.某某省某某市新锐私立学校、水口中学2014-2015学年高一上学期第一次联考数学试卷参考答案与试题解析一.选择题(每题5分,共50分,每题只有一个符合题意的选项)1.(5分)设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(C U S)∩(C U T)等于()A.∅B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8}考点:交、并、补集的混合运算.专题:计算题.分析:由全集U,找出不属于集合S的元素,求出S的补集,找出不属于集合T的元素,求出T的补集,找出两补集的公共元素,即可确定出所求的集合.解答:解:∵全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},∴C U S={2,4,6,7,8},C U T={1,2,4,5,7,8},则(C U S)∩(C U T)={2,4,7,8}.故选B点评:此题考查了交、并、补集的混合运算,其中补集即为全集中不属于集合的元素组成的集合,交集即为两集合的公共元素组成的集合,在求补集时注意全集的X围.2.(5分)如果A={x|x>﹣1},那么()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A考点:集合的包含关系判断及应用.专题:探究型.分析:利用元素和集合A的关系,以及集合Φ,{0}中元素与集合A的元素关系进行判断.解答:解:A.0为元素,而A={x|x>﹣1},为集合,元素与集合应为属于关系,∴A错误.B.{0}为集合,集合和集合之间应是包含关系,∴B错误.C.∅为集合,集合和集合之间应是包含关系,∴C错误.D.{0}为集合,且0∈A,∴{0}⊆A成立.故选D.点评:本题考查了元素和集合以及集合与集合之间的关系.元素与集合之间应使用“∈,∉”,而集合和集合之间应使用包含号.3.(5分)已知,则f{f}的值为()A.0 B.2 C.4 D.8考点:函数的值.专题:计算题.分析:欲求f{f}的值应从里向外逐一运算,根据自变量的大小代入相应的解析式进行求解即可.解答:解:∵﹣2<0∴f(﹣2)=0∴f(f(﹣2))=f(0)∵0=0∴f(0)=2即f(f(﹣2))=f(0)=2∵2>0∴f(2)=22=4即f{f}=f(f(0))=f(2)=4故选C.点评:本题主要考查了分段函数求值,同时考查了分类讨论的数学思想和计算能力,属于基础题.4.(5分)已知f(x﹣1)=x2+4x﹣5,则f(x)的表达式是()A.f(x)=x2+6x B.f(x)=x2+8x+7 C.f(x)=x2+2x﹣3 D.f(x)=x2+6x﹣10考点:函数解析式的求解及常用方法.专题:换元法;函数的性质及应用.分析:【方法﹣】用换元法,设t=x﹣1,用t表示x,代入f(x﹣1)即得f(t)的表达式;【方法二】凑元法,把f(x﹣1)的表达式x2+4x﹣5凑成含(x﹣1)的形式即得f(x)的表达式;解答:解:【方法﹣】设t=x﹣1,则x=t+1,∵f(x﹣1)=x2+4x﹣5,∴f(t)=(t+1)2+4(t+1)﹣5=t2+6t,f(x)的表达式是f(x)=x2+6x;【方法二】∵f(x﹣1)=x2+4x﹣5=(x﹣1)2+6(x﹣1),∴f(x)=x2+6x;∴f(x)的表达式是f(x)=x2+6x;故选:A.点评:本题考查了函数解析式的常用求法的问题,是基础题.5.(5分)函数的定义域是()A.B.C.D.考点:函数的定义域及其求法.专题:计算题.分析:函数式由两部分构成,且每一部分都是分式,分母又含有根式,求解时既保证分式有意义,还要保证根式有意义.解答:解:要使原函数有意义,需解得,所以函数的定义域为.故选C.点评:本题考查了函数的定义域及其求法,解答的关键是保证构成函数式的每一部分都要有意义,属基础题.6.(5分)若函数y=x2+(2a﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a的取值X围是()A.C.考点:函数单调性的性质.专题:计算题.分析:由已知中函数的解析式,结合二次函数的图象和性质,可以判断出函数y=x2+(2a ﹣1)x+1图象的形状,分析区间端点与函数图象对称轴的关键,即可得到答案.解答:解:∵函数y=x2+(2a﹣1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又∵函数在区间(﹣∞,2]上是减函数,故2≤解得a≤﹣故选B.点评:本题考查的知识点是函数单调性的性质,其中熟练掌握二次函数的图象和性质是解答本题的关键.7.(5分)下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是()A.f(x)=x﹣1,g(x)=B.f(x)=2x﹣1,g(x)=2x+1C.f(x)=x2,g(x)=D.f(x)=1,g(x)=x0考点:判断两个函数是否为同一函数.专题:函数的性质及应用.分析:分别判断两个函数的定义域和对应法则是否完全相同即可.解答:解:A.函数g(x)的定义域为{x|x≠0},两个函数的定义域不相同,不是同一函数.B.函数f(x)和g(x)的定义域为R,两个函数的定义域相同,但对应法则不相同,不是同一函数.C.函数g(x)=x2,两个函数的定义域相同,对应法则相同,是同一函数.D.函数g(x)的定义域为{x|x≠0},两个函数的定义域不相同,不是同一函数.故选C.点评:本题主要考查判断两个函数是否为同一函数,判断的依据是判断两个函数的定义域和对应法则是否完全相同.8.(5分)下列图象中表示函数图象的是()A.B.C.D.考点:函数的图象;函数的概念及其构成要素.专题:作图题.分析:根据函数的定义,对任意的一个x都存在唯一的y与之对应可求解答:解:根据函数的定义,对任意的一个x都存在唯一的y与之对应而A、B、D都是一对多,只有C是多对一.故选C点评:本题主要考查了函数定义与函数对应的应用,要注意构成函数的要素之一:必须形成一一对应或多对一,但是不能多对一,属于基础试题9.(5分)f(x)是定义在(0,+∞)上的增函数,则不等式f(x)>f的解集是()A.(0,+∞)B.(0,2)C.(2,+∞)D.(2,)考点:函数单调性的性质.专题:常规题型.分析:把函数单调性的定义和定义域相结合即可.解答:解:由f(x)是定义在(0,+∞)上的增函数得,⇒2<x<,故选 D.点评:本题考查了函数的单调性的应用,是基础题,本题易错点是不考虑定义域.10.(5分)已知f(x)=ax3+bx﹣4,若f(2)=6,则f(﹣2)=()A.﹣14 B.14 C.﹣6 D.10考点:函数奇偶性的性质.分析:根据f(x)=ax3+bx﹣4,可得f(x)+f(﹣x)=﹣8,从而根据f(2)=6,可求f (﹣2)的值.解答:解:∵f(x)=ax3+bx﹣4∴f(x)+f(﹣x)=ax3+bx﹣4+a(﹣x)3+b×(﹣x)﹣4=﹣8∴f(x)+f(﹣x)=﹣8∵f(2)=6∴f(﹣2)=﹣14故选A.点评:本题以函数为载体,考查函数的奇偶性,解题的关键是判断f(x)+f(﹣x)=﹣8,以此题解题方法解答此类题,比构造一个奇函数简捷,此法可以推广.二.填空题(每题5分,共25分)11.(5分)若A={0,1,2,3},B={x|x=3a,a∈A}则A∩B={0,3}.考点:交集及其运算.专题:计算题.分析:将A中的元素代入x=3a中计算确定出B,求出两集合的交集即可.解答:解:∵A={0,1,2,3},B={x|x=3a,a∈A}={0,3,6,9},∴A∩B={0,3}.故答案为:{0,3}点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.12.(5分)函数y=x2﹣4x+6当x∈时,函数的值域为.考点:函数的值域;二次函数的性质.专题:计算题.分析:先对二次函数进行配方找出对称轴,利用对称轴相对区间的位置求出最大值及最小值,得函数的值域.解答:解:∵y=x2﹣4x+6=(x﹣2)2+2,x∈∴当x=2时,y min=2;当x=4时,y max=6∴函数的值域为故答案为:点评:本题主要考查二次函数在闭区间上的最值,属于基本试题,关键是对二次函数配方后,确定二次函数的对称轴相对闭区间的位置,以确定取得最大值及最小值的点.13.(5分)已知集合M={(x,y)|x+y=2},N={(x,y)|x﹣y=4},则M∩N等于{(3,﹣1)}.考点:交集及其运算.分析:集合M,N实际上是两条直线,其交集即是两直线的交点.解答:解:联立两方程解得∴M∩N={(3,﹣1)}.故答案为{(3,﹣1)}.点评:本题主要考查了集合的交运算,注意把握好各集合中的元素.14.(5分)已知函数f(x)满足2f(x)+3f(﹣x)=x2+x,则f(x)=.考点:函数解析式的求解及常用方法.专题:计算题;方程思想.分析:由2f(x)+3f(﹣x)=x2+x,用﹣x代入可得2f(﹣x)+3f(x)=x2﹣x,由两式联立解方程组求解.解答:解:∵2f(x)+3f(﹣x)=x2+x,①∴2f(﹣x)+3f(x)=x2﹣x,②得:f(x)=故答案为点评:本题主要考查函数的解析式的解法,主要应用了方程思想求解.15.(5分)已知集合A={x|ax2+2x+1=0,x∈R}的子集只有两个,则a的值为0或1.考点:子集与真子集.专题:探究型.分析:根据集合A的子集只有两个,则说明集合A只有一个元素,进而通过讨论a的取值,求解即可.解答:解:∵集合A={x|ax2+2x+1=0,x∈R}的子集只有两个,∴集合A只有一个元素.若a=0,则方程ax2+2x+1=0,等价为2x+1=0,解得x=﹣,方程只有一解,满足条件.若a≠0,则方程ax2+2x+1=0,对应的判别式△=4﹣4a=0,解得a=1,此时满足条件.故答案为:0或1.点评:本题主要考查利用集合子集个数判断集合元素个数的应用,含有n个元素的集合,其子集个数为2n个,注意对a进行讨论,防止漏解.三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计80分)16.(10分)设A={x∈Z|﹣6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∩(B∩C);(2)A∩∁A(B∪C)考点:交、并、补集的混合运算.专题:集合.分析:(1)由B与C求出B与C的交集,找出A与B月C交集的交集即可;(2)根据全集A求出B与C并集的交集,再求出与A交集即可.解答:解:(1)∵A={x∈Z|﹣6≤x≤6}={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6},B={1,2,3},C={3,4,5,6},∴B∩C={3},则A∩(B∩C)={3};(2)∵A={x∈Z|﹣6≤x≤6}={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6},B={1,2,3},C={3,4,5,6},∴B∪C={1,2,3,4,5,6},∴∁A(B∪C)={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0},则A∩∁A(B∪C)={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0}.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.17.(10分)设A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2}(1)求a,b的值及A,B;(2)设全集U=A∪B,求(C U A)∩(C U B).考点:集合关系中的参数取值问题.专题:计算题.分析:(1)由A∩B={2}可知3分别是方程x2+ax+12=0,x2+3x+2b=0的根,代入可求a,b 及集合A,B(2)由题意可得U=A∪B={﹣5,2,6},结合已知A,B可求解答:解:(1)∵A∩B={2}∴4+2a+12=0即a=﹣84+6+2b=0即b=﹣5 …(4分)∴A={x|x2﹣8x+12=0}={2,6},B={x|x2+3x﹣10=0}={2,﹣5} …(8分)(2)∵U=A∪B={﹣5,2,6}∴C u A={﹣5},C u B={6}∴C u A∪C u B={﹣5,6} …(12分)点评:本题主要考查了集合的交集的基本运算及并集的基本运算,属于基础试题18.(10分)已知f(x)=9x﹣2×3x+4,x∈.(1)设t=3x,x∈,求t的最大值与最小值;(2)求f(x)的最大值与最小值.考点:指数函数综合题.专题:计算题.分析:(1)设t=3x,由 x∈,且函数t=3x在上是增函数,故有≤t≤9,由此求得t 的最大值和最小值.(2)由f(x)=t2﹣2t+4=(t﹣1)2+3,可得此二次函数的对称轴为 t=1,且≤t≤9,由此求得f(x)的最大值与最小值.解答:解:(1)设t=3x,∵x∈,函数t=3x在上是增函数,故有≤t≤9,故t的最大值为9,t的最小值为.(2)由f(x)=9x﹣2×3x+4=t2﹣2t+4=(t﹣1)2+3,可得此二次函数的对称轴为 t=1,且≤t≤9,故当t=1时,函数f(x)有最小值为3,当t=9时,函数f(x)有最大值为 67.点评:本题主要考查指数函数的综合题,求二次函数在闭区间上的最值,属于中档题.19.(10分)已知函数f(x)是定义在R上的奇函数,当x≥0,f(x)=x2﹣2x,(1)画出 f(x)图象;(2)求出f(x)的解析式.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:先求出奇函数的表达式,然后根据表达式作出函数的图象.解答:解:(1)先作出当x≥0,f(x)=x2﹣2x的图象,然后将图象关于原点对称,作出当x<0的图象.如图:(2)设x<0,则﹣x>0,代入f(x)=x2﹣2x得f(﹣x)=(﹣x)2﹣2(﹣x),因为函数f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x),即f(x)=﹣x2﹣2x,所以函数的表达式为:点评:本题的考点是利用函数的奇偶性求函数的解析式.20.(11分)已知函数f(x)=,x∈,(1)用定义法证明函数f(x)的单调性;(2)求函数f(x)的最小值和最大值.考点:函数单调性的判断与证明.专题:计算题;证明题;函数的性质及应用.分析:(1)用定义法证明单调性一般可以分为五步,取值,作差,化简变形,判号,下结论.(2)利用函数的单调性求最值.解答:解(1)证明:任取3≤x1<x2≤5,则,f(x1)﹣f(x2)=﹣=,∵3≤x1<x2≤5,∴x1﹣x2<0,x1+1>0,x2+1>0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴上是增函数,(2)∵上是增函数,∴当x=3时,f(x)有最小值,当x=5时,f(x)有最大值f(5)=.点评:本题考查了函数单调性的证明及函数单调性的应用,证明一般有两种方法,定义法,导数法,可应用于求最值.属于基础题.21.(12分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?考点:根据实际问题选择函数类型;函数的最值及其几何意义.专题:应用题;压轴题.分析:(Ⅰ)严格按照题中月租金的变化对能租出车辆数的影响列式解答即可;(Ⅱ)从月租金与月收益之间的关系列出目标函数,再利用二次函数求最值的知识,要注意函数定义域优先的原则.作为应用题要注意下好结论.解答:解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x元,则租赁公司的月收益为,整理得.所以,当x=4050时,f(x)最大,最大值为f(4050)=307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元.点评:本题以实际背景为出发点,既考查了信息的直接应用,又考查了目标函数法求最值.特别是二次函数的知识得到了充分的考查.在应用问题解答中属于非常常规且非常有代表性的一类问题,非常值得研究.22.(12分)已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f (y),f(3)=1(1)求f(9),f(27)的值;(2)若f(3)+f(a﹣8)<2,某某数a的取值X围.考点:函数单调性的性质;函数的值.专题:函数的性质及应用.分析:(1)由函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f (y),f(3)=1,能求出f(9)和f(27).(2)由f(x)+f(x﹣8)<2,知f(x)+f(x﹣8)=f<f(9),再由函数f(x)在定义域(0,+∞)上为增函数,能求出原不等式的解集.解答:解:(1)由原题条件,可得到f(9)=f(3×3)=f(3)+f(3)=1+1=2,f(27)=f(3×9)=f(3)+f(9)=1+2=3;(2)f(3)+f(a﹣8)=f(3a﹣24),又f(9)=2∴f(3a﹣24)<f(9),函数在定义域上为增函数,即有3a﹣24<9,∴,解得a的取值X围为8<a<11.点评:本题考查抽象函数的函数值的求法,考查不等式的解法,解题时要认真审题,仔细解答,注意合理地进行等价转化.。

2014-2015学年度上学期期末考试高一化学试卷(含答案)

2014-2015学年度上学期期末考试高一化学试卷(含答案)

2014-2015学年度上学期期末考试高一化学试卷(含答案)可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 Al 27 S 32 Cl 35.5K 39 Ca 40 Zn 65 Fe 56 Cu 64注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间100分钟;2.第Ⅰ卷第Ⅱ卷答案用钢笔或签字笔写在答卷正确位置上;第I卷选择题一、选择题(本题包括20小题,每小题2分,共40分。

每小题只有一个选项符合题意。

)1.“化学,让生活更美好”,下列叙述不能直接体现这一主旨的是:A.风力发电,让能源更清洁B.合成光纤,让通讯更快捷C.合成药物,让人类更健康D.环保涂料,让环境更宜居2.下列化学用语正确的是:A.Cl-的结构示意图:B.光导纤维主要成分的化学式:SiIC.质子数为53,中子数为78的碘原子:13153D.H216O、D216O、H218O、D218O互为同位素34.下列操作中,不会发生明显颜色变化的是A.FeSO4溶液中滴入NaOH溶液B.硫酸铁溶液中滴加硫氰化钾溶液C.碳酸氢钠溶液中滴加稀盐酸D.氯化铁溶液中加入还原性铁粉5. 现有三种常见治疗胃病药品的标签:①②③药品中所含的物质均能中和胃里过量的盐酸,下列关于三种药片中和胃酸的能力比较,正确的是()A.③>②>①B.①>②>③C.①=②=③D.②>③>①6.关于NaHCO3与Na2CO3说法正确的是:① NaHCO3固体可以做干粉灭火剂,金属钠起火可以用它来灭火② NaHCO 3粉末中混有Na 2CO 3,可配置成溶液通入过量的CO 2,再低温结晶得到提纯 ③ Ca(HCO 3)2溶解度都比其正盐的溶解度大,因此NaHCO 3的溶解度也比Na 2CO 3大 ④Na 2CO 3固体中混有NaHCO 3,高温灼烧即可⑤区别NaHCO 3与Na 2CO 3溶液,Ca(OH)2溶液和CaCl 2溶液均可用 A .①③ B . ③⑤ C .②④ D . ②⑤ 7.下列关于Na 及其化合物的叙述正确的是:A .将钠投入FeSO 4溶液中,可以得到单质铁B .足量Cl 2、S 分别和二份等质量的Na 反应,前者得到电子多C .Na 2O 与Na 2O 2中阴阳离子的个数比均为1:2D .在2Na 2O 2+2H 2O=4NaOH+O 2反应中,每生成1molO 2,消耗2mol 氧化剂 8. 下列常见金属单质的工业冶炼方法正确的是:A .冶炼钠:电解氯化钠水溶液,同时得到副产品Cl 2、H 2B .冶炼镁:电解熔融MgCl 2.6H 2O ,同时得到副产品Cl 2,H 2OC .冶炼铝:电解熔融冰晶石(Na 3AlF 6),同时得到副产品Al 2O 3D .冶炼铁:高炉中生成CO ,CO 在高温下还原铁矿石,同时得到副产品CaSiO 3 9.设N A 代表阿伏伽德罗常数,下列说法正确的是 A .1mol MgCl 2中含有的离子数为2N AB .标准状况下,11.2L H 2O 中含有的原子数为1.5N AC .标准状况下,22.4L 氦气与22.4L 氯气所含原子数均为2N AD .常温下,2.7g 铝与足量的盐酸反应,失去的电子数为0.3 N A 10. 下列物质中,既能跟稀硫酸反应,又能跟NaOH 溶液反应的是①Al 2O 3;②Mg(OH)2;③Al(OH)3;④(NH 4)2CO 3;⑤NaHCO 3;⑥AlCl 3 A .①③⑤⑥ B .只有①③ C .只有②③ D .①③④⑤ 11.等质量的两根镁条,第一根在足量氧气中加热燃烧,第二根在足量CO 2气体中加热燃烧,则下列说法正确的是:①两根镁条失去电子一样多 ②第一镁根条失去电子多 ③第二根镁失去电子多 ④两根镁的产物质量一样大 ⑤第一根镁的产物质量大 ⑥第二根镁的产物质量大A .①④B . ①⑥C .③⑥D .②⑤12. Fe 和Fe 2O 3 、Fe 3O 4的混合物,加入200mL 5mol·L -1的盐酸,恰好完全溶解,再向其中加入KSCN 溶液,未见血红色,则所得溶液中Fe 2+的物质的量浓度为(假设反应后溶液体积仍为200mL) A 、2.5mol·L -1 B 、lmol·L -1 C 、2mol·L -1 D 、5mol·L -1 13.下列选用的相关仪器符合实验要求的是A .存放液溴B .量取9.50 mL 水C .称量8.55g 氯化钠固体D .配制240 mL0.1mol/L的NaCl溶液14.下列除去杂质(括号内的物质为杂质)的方法中错误..的是A.FeSO4 (CuSO4):加足量铁粉后,过滤B.CO (CO2):用NaOH溶液洗气后干燥C.MnO2 (KCl):加水溶解后,过滤、洗涤、烘干D.CO2 (HCl):用NaOH溶液洗气后干燥15.下列化学反应所对应的离子方程式正确的是:A.氧化铝和过量的氢氧化钠溶液反应:2OH-+Al2O3=2AlO2-+H2B.AlCl3溶液中加过量的氨水:Al3+ + 3NH3·H2O = Al(OH)3↓ + 3NH4+C.明矾溶液中加入过量的Ba(OH)2:Al3+ + SO42— + Ba2+ + 4OH—=BaSO4↓+AlO2—+H2OD.向NaAlO2溶液中通入过量CO2:2AlO2-+CO2+3H2O=2Al(OH)3↓+CO32-16.已知KMnO4与浓HCl在常温下反应就能产生Cl2。

2014—2015学年度高一数学竞赛试题(含答案)

2014—2015学年度高一数学竞赛试题(含答案)

2014—2015学年度高一数学竞赛试题(含答案)2014-2015学年度高一数学竞赛试题一.选择题:本大题共5小题,每小题6分,共30分。

在每个小题给出的四个选项中,只有一个正确的答案。

1.已知集合$M=\{x|x+3<0\}$,$N=\{x|x\leq -3\}$,则集合$M\cap N$=()A。

$\{x|x0\}$ D。

$\{x|x\leq -3\}$2.已知$\alpha+\beta=\frac{\pi}{4}$,则$(1-\tan\alpha)(1-\tan\beta)$等于()A。

2 B。

$-\frac{2}{3}$ C。

1 D。

$-\frac{1}{3}$3.设奇函数$f(x)$在$(0,+\infty)$上为增函数,且$f(1)=0$,则不等式$f(x)-f(-x)<0$的解集为()A。

$(-\infty,-1)\cup (0,1)$ B。

$(-1,0)\cup (1,+\infty)$ C。

$(-\infty,-1)\cup (1,+\infty)$ D。

$(0,1)$4.函数$f(x)=\ln|x-1|-x+3$的零点个数为()A。

3 B。

2 C。

1 D。

05.已知函数$f(x)=\begin{cases}1/x。

& x\geq 4 \\ 2.&x<4\end{cases}$,则$f(\log_2 5)$=()A。

$-\frac{11}{23}$ B。

$\frac{1}{23}$ C。

$\frac{11}{23}$ D。

$\frac{19}{23}$二.填空题:本大题共5小题,每小题6分,共30分。

将正确的答案写在题中横线上。

6.已知$0\leq x\leq \frac{\pi}{2}$,则函数$f(x)=4\sqrt{2}\sin x\cos x+\cos^2 x$的值域是\line(5,0){80}。

7.已知:$a,b,c$都不等于0,且$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$,则$\max\{m,n\}=$\line(5,0){80},$\min\{m,n\}=$\line(5,0){80}。

XXX2014-2015学年下学期高一年级期中数学试卷。后有答案

XXX2014-2015学年下学期高一年级期中数学试卷。后有答案

XXX2014-2015学年下学期高一年级期中数学试卷。

后有答案XXX2014-2015学年下学期高一年级期中数学试卷试卷分为两卷,卷(I)100分,卷(II)50分,共计150分。

考试时间:120分钟。

卷(I)一、选择题:(本大题共10小题,每小题5分,共50分)1.若实数a,b满足a>b,则下列不等式一定成立的是()A。

a^2<b^2B。

1/a<1/bC。

a^2>b^2D。

a^3>b^32.等差数列{an}中,若a2=1,a4=5,则{an}的前5项和S5=()A。

7B。

15C。

20D。

253.不等式(1/x-1)>1的解集为()A。

{x>1}B。

{x<1}C。

{x>2}D。

{x<2}4.△ABC中,三边a,b,c的对角为A,B,C,若B=45°,b=23,c=32,则C=()A。

60°或120°B。

30°或150°C。

60°D。

30°5.已知数列{an}的前n项和为Sn,且Sn=2an-1(n∈N*),则a5=()A。

32B。

31C。

16D。

156.等差数列{an}中,an=6-2n,等比数列{bn}中,b5=a5,b7=a7,则b6=()A。

42B。

-42C。

±42D。

无法确定7.△ABC中,若∠ABC=π/2,AB=2,BC=3,则sin∠BAC=()A。

4/5B。

3/10C。

5/10D。

1/108.计算机是将信息转换成二进制进行处理的,所谓二进制即“逢二进一”,如(1101)2表示二进制的数,将它转换成十进制数的形式是1×23+1×22+0×21+1×2=13,那么将二进制数(11.1)2转换成十进制数是(){共9位}A。

512B。

511C。

256D。

2559.不等式①x2+3>3x;②a2+b2≥2(a-b-1);③ba+≥2,其中恒成立的是()A。

2014-2015学年上学期高一期中测试数学试题(含答案)

2014-2015学年上学期高一期中测试数学试题(含答案)

2014-2015学年上学期高一期中测试数学试题(含答案) 第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的)1.下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )A .3y x =B . 1y x =+C .21y x =-+D . 2x y -=2.在同一坐标系中,表示函数log a y x =与y x a =+的图象正确的是( )A B C D3.若1log 12a<,则a 的取值范围是( ) A .1(0,)(1,)2+∞ B .1(,1)2 C .(1,)+∞ D .1(,1)(1,)2+∞4.已知函数f(x)为定义在R 上的奇函数,当x≥0时, ()22xf x x m =++ (m 为常数),则(1)f -的值为( )A .-3B .-1C .1D .35.设全集U =R ,{}|0P x f x x ==∈R (),,{}|0Q x g x x ==∈R (),,{}|0S x x x ϕ==∈R (),,则方程22f x x x ϕ=()+g ()()的解集为( )A . P Q SB .P QC .P Q S ()D . P Q S u (C )5.设9.0log 5.0=a ,9.0log 1.1=b ,9.01.1=c ,则c b a , ,的大小关系为( )A .c b a <<B .c a b <<C .a c b <<D .b c a <<6.设}3 2, ,21 ,31 ,1{-∈α,若函数αx y =是定义域为R 的奇函数,则α的值为( )A .3 ,31B .3 ,31 ,1- C .3 ,1- D .31,1- 7.已知函数)(x f 是奇函数,当0>x 时,)1 ,0( )(≠>=a a a x f x,且3)4(log 5.0-=f ,则a的值为( )A .3B .3C .9D .238.已知函数⎪⎩⎪⎨⎧>-≤=-)1( )23(log )1( 2)(2x x x x f x ,若4)(=a f ,则实数=a ( ) A .2-或6 B .2-或310 C .2-或2 D .2或3109.方程21231=⎪⎭⎫ ⎝⎛--x x 的解所在的区间为( )A .) 1 ,0 (B .) 2 ,1 (C .) 3 ,2 (D .) 4 ,3 (10.已知函数bx ax y +=2和xb a y =|)| || ,0(b a ab ≠≠在同一直角坐标系中的图象不可能 是( )11.已知函数)3(log 221a ax x y +-=在区间) ,2[∞+上是减函数,则a 的取值范围是( )A .)4 ,(-∞B .]4 ,4[-C .]4 ,4(-D .]4 ,(-∞12.若在直角坐标平面内B A ,两点满足条件:①点B A ,都在函数)(x f y =的图象上;②点B A ,关于原点对称,则称B A ,为函数)(x f y =的一个“黄金点对”.那么函数=)(x f ⎪⎩⎪⎨⎧>≤-+)0( 1)0( 222x x x x x 的“黄金点对”的个数是( )A .0个B .1个C .2个D .3个 第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,共20分.13.已知集合}06|{2=--=x x x M ,}01|{=+=ax x N ,且M N ⊆,则由a 的取值组成的集合是 .14.若x x f =)(log 5,则=-)9log 2(log 255f .15.已知定义在R 上的偶函数)(x f 满足0)1(=-f ,并且)(x f 在)0 ,(-∞上为增函数.若0)( <a f a ,则实数a 的取值范围是 .16.已知函数()x f 的定义域是}0|{≠∈=x R x D ,对任意D x x ∈21 ,都有:=⋅)(21x x f)()(21x f x f +,且当1>x 时,()0>x f .给出结论:①()x f 是偶函数;②()x f 在()∞+ ,0上是减函数.则正确结论的序号是 .三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤。

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。

福建省厦门市第一中学2015-2016学年高一上学期期中考试数学试卷+Word版含答案

福建省厦门市第一中学2015-2016学年高一上学期期中考试数学试卷+Word版含答案

四大名补(文灶校区)版权所有@四大名补教育福建省厦门第一中学2015-2016学年度第一学期期中考试高一年数学试卷命题教师吴享平审核教师肖文辉2015.11第Ⅰ卷(满分60分)一.选择题(本小题共12题,每小题5分,共60分)1.已知全集{1,2,3,4,5,6,7},{1,3,5},{2,4,5,7}U A B ===,则集合()U C A B 为A.{1,2,3,4,6,7} B.{1,2,5} C.{3,5,7} D.{6}2.下列函数中,能用二分法求零点的是A.x x f 2log )(= B.2)(xx f -= C.2)(xx f = D.||)(x x f =3.函数x xy -=31的图像关于A.x 轴对称 B.y 轴对称C.坐标原点对称D.直线y x =对称4.函数()ln(4)f x x =+-的定义域是A.(1,)+∞ B.[1,4) C.(1,4]D.(4,)+∞5.已知幂函数)(x f 的图象经过点(9,3),则=)41(f A.1B .21C.41 D.1616.若函数2)()(-=x f x F 在(,0)-∞内有零点,则()y f x =的图像可能是A .B .C .D .7.下列函数中,是偶函数且在(0,)+∞上为减函数的是A.2y x = B.3y x = C.2y x -= D.3y x -=8.某新品牌电视投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销量y 与投放市场的月数x 之间的关系的是A.x y 100=B.10050502+-=x x y C.xy 250⨯= D.100log 1002+=x y 9.计算:2666)3(log )18(log )2(log +⋅的值为A.1B.2C.3D.410.对于实数a 和b,定义运算“*”:22,*,a ab a b a b b ab a b⎧-≤⎪=⎨->⎪⎩ ,设()(21)*(1)f x x x =--,且关于x 的方程()()f x a a R =∈恰有三个互不相等的实数根,则实数a 的取值范围是A.1[0,]4B.1[0,]16 C.1(0,](1,)4+∞U D.1(0,)411.已知函数k x x f +-=||2|log |)(2有四个零点4321,,,x x x x ,则k x x x x ++++4321的取值范围为A.),8(+∞ B.),4(+∞ C.)8,(-∞ D.)4,(-∞12.定义在D 上的函数()f x 若同时满足:①存在0M >,使得对任意的12,x x D ∈,都有12|()()|f x f x M -<;②()f x 的图像存在对称中心。

2014-2015学年度厦门六中高一年级上数学期中试卷及答案人教版

2014-2015学年度厦门六中高一年级上数学期中试卷及答案人教版

2014-2015学年度厦门六中高一年级上学期期中考试数 学 试 题 命题:任春雨 审题:杨福海 2014-11-03一、选择题:本大题共12个小题;每小题5分,共60分.在每小题给出的4个选项中,只有一项符合题目要求。

1.设集合{M m =∈Z |32},m -<<{N n =∈N |13}n -≤≤,则M N =( )A .{0,1}B .{1,0,1}-C .{012},,D .{1012}-,,,2.已知集合{04}P x x =≤≤,集合{02}N y y =≤≤,下列从P 到Q 的各对应关系f 不是函数的是 ( )A .1:2f x y x →=B . 1:3f x y x →=C .2:3f x y x →= D . :f x y →3.已知点M 在幂函数()f x 的图象上,则()f x 的表达式为 ( )A .12()f x x =B .12()f x x-= C .2()f x x = D .2()f x x -=4.设0.3777,log 0.3,0.3a b c ===,则c b a ,,的大小关系是 ( ) A .c b a << B .a c b << C .b a c << D . a b c <<5. 函数()2xf x e x =+-的零点所在的一个区间是 ( ) A .(2,1)-- B . (1,0)- C .(0,1) D .(1,2) 6.函数()34log 21-=x y 的定义域为( )A.3()4+∞,B.[1)+∞, C . )1,43( D . ]1,43( 7.函数()()2212f x x a x =+-+在(]4,∞-上是减函数,则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≥ D .3a ≥8.函数()131xf x =+的值域是 ( ) A. (,1)-∞ B. (0,1) C .(1,)+∞ D. (,1)(1,)-∞⋃+∞9.若函数()log a f x x =在区间[,3]a a 上的最大值是最小值的3倍,则a 的值为( )10.已知函数223y x x =-+在区间[]0,m 上的最大值为3,最小值为2,则m 的取值范围是 ( ) A .[]0,2 B . []1,2 C . (],2-∞ D . [)1,+∞11.函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是 ( )12.已知函数()f x 是定义在R 上的偶函数,且在[0,)+∞上为增函数,若2(log )(1)f x f >,则x 的取值范围A .(2,)+∞B .1(,2)2 C.1(0,)(2,)2⋃+∞ D .(0,1)(2,)⋃+∞ 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡中对应题号后 的横线上。

2014-2015学年度九年级数学(上)期末质量检测试题

2014-2015学年度九年级数学(上)期末质量检测试题

2014-2015学年度(上)期末数学九年级质量检测试题(满分:120分; 时间 90分钟)一、选择题(每小题3分,共30分)1、已知135=a b ,则b a ba +-的值是( )A 、32B 、23C 、49D 、942、关于x 的一元二次方程22(1)10a x x a --+-=的一个根是0,则a 的值为( ) A 、1或-1. B 、-1 C 、1 D 、123、已知x -1x =3,则4-12x 2+32x 的值为( ) A 、1 B 、32 C 、52 D 、724、如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应点A ′在直线y=34x 上,则点B 与其对应点B ′间的距离为( ) A 、94B 、3C 、4D 、55、如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是( ) A 、S 1>S 2>S 3 B 、 S 3>S 2>S 1C 、S 2>S 3>S 1D 、S 1>S 3>S 26、如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴 上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以 A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形 是等腰三角形的概率是( )A 、34B 、13C 、23D 、127、在同一时刻,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为(A 、16mB 、18mC 、20mD 、22m8、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2则S 1+S2的值为( )A 、16 B 、17 C 、18 D 、199、如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 与点D 、F,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF,则四边形BCDE 的面积是( )A 、32B 、33C 、4D 、34第4题图第5题图10、已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k-1=0根的存在情况是()A、没有实数根B、有两个相等的实数根C、有两个不相等的实数根D、无法确定二、填空题(每小题3分,共24分)11、如图,点D,E分别在AB,AC上且∠ABC=∠AED,若DE=4cm,AE=5cm, BC=8cm,则AB的长为 .12、关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1+x2-x1·x2=1-a,则a= .13、如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.14、一水塘里有鲤鱼、鲫鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里大约有鲢鱼 _____尾.15、在平面直角坐标系中,已知A(6,3),B(6,0)两点,以坐标原点为位似中心,位似比为3∶1,把线段AB缩小后得到线段A′B′,则A′B′的长度为 .16、如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.17、在锐角三角形ABC中,已知∠A,∠B满足2sin2A⎛-⎝⎭+tan B|=0,则∠C=______.18、已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD= .三、解答题(本题共八小题,共66分)19、(本题6分)作出如下图所示的三种视图.G第16题图E第18题图第19题第13题图20、(本题6分)已知()()0622222=-+-+b ab a ,求:22b a +的值。

2014厦门中考数学试题(解析版)

2014厦门中考数学试题(解析版)

2014年福建省厦门市中考数学试卷一、选择题(本大题共7小题,每小题3分,共21分)1.(3分)(2014年福建厦门)sin30°的值是()A.B. C. D. 1分析:直接根据特殊角的三角函数值进行计算即可.解答:解:sin30°=.故选A.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.2.(3分)(2014年福建厦门)4的算术平方根是()A.16 B. 2 C.﹣2 D.±2考点:算术平方根.分析:根据算术平方根定义求出即可.解答:解:4的算术平方根是2,故选B.点评:本题考查了对算术平方根的定义的应用,主要考查学生的计算能力.3.(3分)(2014年福建厦门)3x2可以表示为()A.9x B.x2•x2•x2C.3x•3x D.x2+x2+x2考点:单项式乘单项式;合并同类项;同底数幂的乘法.专题:计算题.分析:各项计算得到结果,即可做出判断.解答:解:3x2可以表示为x2+x2+x2,故选D点评:此题考查了单项式乘以单项式,合并同类项,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.4.(3分)(2014年福建厦门)已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.考点:垂线.分析:根据题意画出图形即可.解答:解:根据题意可得图形,故选:C.点评:此题主要考查了垂线,关键是掌握垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.5.(3分)(2014年福建厦门)已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.42考点:命题与定理.分析:证明命题为假命题,通常用反例说明,此反例满足命题的题设,但不满足命题的结论.解答:解:42是偶数,但42不是8的倍数.故选D.点评:本题考查了命题:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(3分)(2014年福建厦门)如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF考点:全等三角形的判定与性质.分析:根据全等三角形的判定与性质,可得∠ACB与∠DBE的关系,根据三角形外角的性质,可得答案.解答:解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DEB.∵∠AFB是△BCF的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.点评:本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质.7.(3分)(2014年福建厦门)已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=13考点:中位数;算术平均数.分析:根据平均数的计算公式求出正确的平均数,再与原来的平均数进行比较,得出a的值,根据中位数的定义得出最中间的数还是13岁,从而选出正确答案.解答:解:∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;故选D.点评:此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.二、填空题(本大题共10小题,每小题4分,共40分)8.(4分)(2014年福建厦门)一个圆形转盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,飞镖落在转盘上,则落在黄色区域的概率是.考点:几何概率.分析:根据概率公式,求出红色区域的面积与总面积的比即可解答.解答:解:∵圆形转盘平均分成红、黄、蓝、白4个扇形区域,其中黄色区域占1份,∴飞镖落在黄色区域的概率是;故答案为:.点评:本题考查了几何概率的运用,用到的知识点是概率公式,在解答时根据概率=相应的面积与总面积之比是解答此类问题关键.9.(4分)(2014年福建厦门)若在实数范围内有意义,则x的取值范围是x≥1.考点:二次根式有意义的条件.分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:解:∵在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.10.(4分)(2014年福建厦门)四边形的内角和是360°.考点:多边形内角与外角.专题:计算题.分析:根据n边形的内角和是(n﹣2)•180°,代入公式就可以求出内角和.解答:解:(4﹣2)•180°=360°.故答案为360°.点评:本题主要考查了多边形的内角和公式,是需要识记的内容,比较简单.11.(4分)(2014年福建厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是(3,0),A1的坐标是(4,3).考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:解:∵点O(0,0),A(1,3),线段OA向右平移3个单位,∴点O1的坐标是(3,0),A1的坐标是(4,3).故答案为:(3,0),(4,3).点评:本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12.(4分)(2014年福建厦门)已知一组数据:6,6,6,6,6,6,则这组数据的方差为0.【注:计算方差的公式是S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]】考点:方差.分析:根据题意得出这组数据的平均数是6,再根据方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],列式计算即可.解答:解:∵这组数据的平均数是6,∴这组数据的方差=[6×(6﹣6)2]=0.故答案为:0.点评:本题考查了方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.(4分)(2014年福建厦门)方程x+5=(x+3)的解是x=﹣7.考点:解一元一次方程.专题:计算题.分析:方程去分母,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:2x+10=x+3,解得:x=﹣7.故答案为:x=﹣7点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.14.(4分)(2014年福建厦门)如图,在等腰梯形ABCD中,AD∥BC,若AD=2,BC=8,梯形的高是3,则∠B的度数是45°.考点:等腰梯形的性质.分析:首先过点A作AE⊥BC交BC于E,过点D作DF⊥BC交BC于F,易得四边形AEFD 是长方形,易证得△ABE是等腰直角三角形,即可得∠B的度数.解答:解:过点A作AE⊥BC交BC于E,过点D作DF⊥BC交BC于F,∵AD∥BC,∴四边形AEFD是长方形,∴EF=AD=2,∵四边形ABCD是等腰梯形,∴BE=(8﹣2)÷2=3,∵梯形的高是3,∴△ABE是等腰直角三角形,∴∠B=45°.故答案为:45°.点评:此题考查了等腰梯形的性质以及等腰直角三角形的判定与性质.此题注意掌握辅助线的作法,注意掌握数形结合思想的应用.15.(4分)(2014年福建厦门)设a=192×918,b=8882﹣302,c=10532﹣7472,则数a,b,c 按从小到大的顺序排列,结果是a<c<b.考点:因式分解的应用.分析:运用平方差公式进行变形,把其中一个因数化为918,再比较另一个因数,另一个因数大的这个数就大.解答:解:a=192×918=361×918,b=8882﹣302=(888﹣30)(888+30)=858×918,c=10532﹣7472=(1053+747)(1053﹣747)=1800×306=600×918,所以a<c<b.故答案为:a<c<b.点评:本题主要考查了因式分解的应用,解题的关键是运用平方差公式进行化简得出一个因数为918.16.(4分)(2014年福建厦门)某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产15个零件.考点:分式方程的应用.分析:设一个工人每小时生产零件x个,则机器一个小时生产零件12x个,根据这台机器生产60个零件比8个工人生产这些零件少用2小时,列方程求解,继而可求得机器每小时生产的零件.解答:解:设一个工人每小时生产零件x个,则机器一个小时生产零件12x个,由题意得,﹣=2,解得:x=1.25,经检验:x=1.25是原分式方程的解,且符合题意,则12x=12×1.25=15.即这台机器每小时生产15个零件.故答案为:15.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.17.(4分)(2014年福建厦门)如图,正六边形ABCDEF的边长为2,延长BA,EF交于点O.以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,则直线DF与直线AE的交点坐标是(2,4).考点:正多边形和圆;两条直线相交或平行问题.分析:首先得出△AOF是等边三角形,利用建立的坐标系,得出D,F点坐标,进而求出直线DF的解析式,进而求出横坐标为2时,其纵坐标即可得出答案.解答:解:连接AE,DF,∵正六边形ABCDEF的边长为2,延长BA,EF交于点O,∴可得:△AOF是等边三角形,则AO=FO=FA=2,∵以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,∠EOA=60°,EO=FO+EF=4,∴∠EAO=90°,∠OEA=30°,故AE=4cos30°=6,∴F(,3),D(4,6),设直线DF的解析式为:y=kx+b,则,解得:,故直线DF的解析式为:y=x+2,当x=2时,y=2×+2=4,∴直线DF与直线AE的交点坐标是:(2,4).故答案为:2,4.点评:此题主要考查了正多边形和圆以及待定系数法求一次函数解析式等知识,得出F,D点坐标是解题关键.三、解答题(共13小题,共89分)18.(7分)(2014年福建厦门)计算:(﹣1)×(﹣3)+(﹣)0﹣(8﹣2)考点:实数的运算;零指数幂.分析:先根据0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=3+1﹣6=﹣2.点评:本题考查的是实数的运算,熟知0指数幂的运算法则是解答此题的关键.19.(7分)(2014年福建厦门)在平面直角坐标系中,已知点A(﹣3,1),B(﹣1,0),C(﹣2,﹣1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.考点:作图-轴对称变换.分析:根据关于y轴对称点的性质得出A,B,C关于y轴对称点的坐标,进而得出答案.解答:解:如图所示:△DEF与△ABC关于y轴对称的图形.点评:此题主要考查了轴对称变换,得出对应点坐标是解题关键.20.(7分)(2014年福建厦门)甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有两个小球,分别标有号码1,2;这些球除数字外完全相同,从甲、乙两口袋中分别随机摸出一个小球,求这两个小球的号码都是1的概率.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个小球的号码都是1的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,这两个小球的号码都是1的只有1种情况,∴这两个小球的号码都是1的概率为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(6分)(2014年福建厦门)如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,DE=2,BC=3,求的值.考点:相似三角形的判定与性质.分析:由DE∥BC,可证得△ADE∽△ABC,然后由相似三角形的对应边成比例,求得的值.解答:解:∵DE∥BC,∴△ADE∽△ABC,∵DE=2,BC=3,∴==.点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.22.(6分)(2014年福建厦门)先化简下式,再求值:(﹣x2+3﹣7x)+(5x﹣7+2x2),其中x=+1.考点:二次根式的化简求值;整式的加减.分析:根据去括号、合并同类项,可化简代数式,根据代数式的求值,可得答案.解答:解;原式=x2﹣2x﹣4=(x﹣1)2﹣5,把x=+1代入原式,=(+1﹣1)2﹣5=﹣3.点评:本题考查了二次根式的化简求值,先去括号、合并同类项,再求值.23.(6分)(2014年福建厦门)解方程组.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:①×2﹣②得:4x﹣1=8﹣5x,解得:x=1,将x=1代入①得:y=2,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.(6分)(2014年福建厦门)如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.考点:菱形的判定.专题:证明题.分析:首先证明∠B=∠D,可得四边形ABCD是平行四边形,然后再证明△ABM≌△ADN可得AB=AD,再根据菱形的判定定理可得结论.解答:证明:∵AD∥BC,∴∠B+∠BAD=180°,∠D+∠C=180°,∵∠BAD=∠BCD,∴∠B=∠D,∴四边形ABCD是平行四边形,∵AM⊥BC,AN⊥DC,∴∠AMB=∠AND=90°,在△ABM和△ADN中,,∴△ABM≌△ADN(AAS),∴AB=AD,∴四边形ABCD是菱形.点评:此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.25.(6分)(2014年福建厦门)已知A(x1,y1),B(x2,y2)是反比例函数y=图象上的两点,且x1﹣x2=﹣2,x1•x2=3,y1﹣y2=﹣,当﹣3<x<﹣1时,求y的取值范围.考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征得到y1=,y2=,利用y1﹣y2=﹣,得到﹣=﹣,再通分得•k=﹣,然后把x1﹣x2=﹣2,x1•x2=3代入可计算出k=﹣2,则反比例函数解析式为y=﹣,再分别计算出自变量为﹣3和﹣1所对应的函数值,然后根据反比例函数的性质得到当﹣3<x<﹣1时,y的取值范围.解答:解:把A(x1,y1),B(x2,y2)代入y=得y1=,y2=,∵y1﹣y2=﹣,∴﹣=﹣,∴•k=﹣,∵x1﹣x2=﹣2,x1•x2=3,∴k=﹣,解得k=﹣2,∴反比例函数解析式为y=﹣,当x=﹣3时,y=;当x=﹣1时,y=2,∴当﹣3<x<﹣1时,y的取值范围为<y<2.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.26.(6分)(2014年福建厦门)A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线,小组赛结束后,如果A队没有全胜,那么A队的积分至少要几分才能保证一定出线?请说明理由.[注:单循环比赛就是小组内的每一个队都要和其他队赛一场].考点:推理与论证.分析:根据题意每队都进行3场比赛,本组进行6场比赛,根据规则每场比赛,两队得分的和是3分或2分,据此对A队的胜负情况进行讨论,从而确定.解答:解:每队都进行3场比赛,本组进行6场比赛.若A队两胜一平,则积7分.因此其它队的积分不可能是9分,依据规则,不可能有球队积8分,每场比赛,两队得分的和是3分或2分.6场比赛两队的得分之和最少是12分,最多是18分,∴最多只有两个队得7分.所以积7分保证一定出线.若A队两胜一负,积6分.如表格所示,根据规则,这种情况下,A队不一定出线.同理,当A队积分是5分、4分、3分、2分时不一定出线.总之,至少7分才能保证一定出线.点评:本题考查了正确进行推理论证,在本题中正确确定A队可能的得分情况是关键.27.(6分)(2014年福建厦门)已知锐角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.考点:解直角三角形.分析:首先根据题意画出示意图,根据三角形外角的性质得出∠ACB=∠D+∠CAD,而∠ACB=2∠D,那么∠CAD=∠D,由等角对等边得到CA=CD,再根据等角的余角相等得出∠B=∠BAC,则AC=CB,BD=2AC=2×=3.然后解Rt△ABD,运用勾股定理求出AB==,利用正切函数的定义求出tanD==.解答:解:如图,∵∠ACB=∠D+∠CAD,∠ACB=2∠D,∴∠CAD=∠D,∴CA=CD.∵∠DAB=90°,∴∠B+∠D=90°,∠BAC+∠CAD=90°,∴∠B=∠BAC,∴AC=CB,∴BD=2AC=2×=3.在Rt△ABD中,∵∠DAB=90°,AD=2,∴AB==,∴tanD==.点评:本题考查了三角形外角的性质,等腰三角形的判定,余角的性质,解直角三角形,勾股定理,正切函数的定义,难度适中.求出BD的值是解题的关键.28.(6分)(2014年福建厦门)当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”,已知点A(0,5)与点M都在直线y=﹣x+b上,点B,C是“完美点”,且点B 在线段AM上,若MC=,AM=4,求△MBC的面积.考点:一次函数综合题.分析:由m+n=mn变式为=m﹣1,可知P(m,m﹣1),所以在直线y=x﹣1上,点A(0,5)在直线y=﹣x+b上,求得直线AM:y=﹣x+5,进而求得B(3,2),根据直线平行的性质从而证得直线AM与直线y=x﹣1垂直,然后根据勾股定理求得BC的长,从而求得三角形的面积.解答:解:∵m+n=mn且m,n是正实数,∴+1=m,即=m﹣1,∴P(m,m﹣1),即“完美点”P在直线y=x﹣1上,∵点A(0,5)在直线y=﹣x+b上,∴b=5,∴直线AM:y=﹣x+5,∵“完美点”B在直线AM上,∴由解得,∴B(3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,∴直线AM与直线y=x﹣1垂直,∵点B是直线y=x﹣1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,∴点C在直线y=x﹣1上,∴△MBC是直角三角形,∵B(3,2),A(0,5),∴AB=3,∵AM=4,∴BM=,又∵CM=,∴BC=1,∴S△MBC=BM•BC=.点评:本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.29.(10分)(2014年福建厦门)已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.考点:垂径定理;勾股定理;圆周角定理.分析:(1)根据题意不难证明四边形ABCD是正方形,结论可以得到证明;(2)作直径DE,连接CE、BE.根据直径所对的圆周角是直角,得∠DCE=∠DBE=90°,则BE∥AC,根据平行弦所夹的弧相等,得弧CE=弧AB,则CE=AB.根据勾股定理即可求解.解答:解:(1)∵∠ADC=∠BCD=90°,∴AC、BD是⊙O的直径,∴∠DAB=∠ABC=90°,∴四边形ABCD是矩形,∵AD=CD,∴四边形ABCD是正方形,∴AC⊥BD;(2)作直径DE,连接CE、BE.∵DE是直径,∴∠DCE=∠DBE=90°,∴EB⊥DB,又∵AC⊥BD,∴BE∥AC,∴弧CE=弧AB,∴CE=AB.根据勾股定理,得CE2+DC2=AB2+DC2=DE2=20,∴DE=,∴OD=,即⊙O的半径为.点评:此题综合运用了圆周角定理的推论、垂径定理的推论、等弧对等弦以及勾股定理.学会作辅助线是解题的关键.30.(10分)(2014年福建厦门)如图,已知c<0,抛物线y=x2+bx+c与x轴交于A(x1,0),B(x2,0)两点(x2>x1),与y轴交于点C.(1)若x2=1,BC=,求函数y=x2+bx+c的最小值;(2)过点A作AP⊥BC,垂足为P(点P在线段BC上),AP交y轴于点M.若=2,求抛物线y=x2+bx+c顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.考点:二次函数综合题.分析:(1)根据勾股定理求得C点的坐标,把B、C点坐标代入y=x2+bx+c即可求得解析式,转化成顶点式即可.(2)根据△AOM∽△COB,得到OC=2OB,即:﹣c=2x2;利用x22+bx2+c=0,求得c=2b﹣4;将此关系式代入抛物线的顶点坐标,即可求得所求之关系式.解答:解:(1)∵x2=1,BC=,∴OC==2,∴C(0,﹣2),把B(1,0),C(0,﹣2)代入y=x2+bx+c,得:0=1+b﹣2,解得:b=1,∴抛物线的解析式为:y=x2+x+﹣2.转化为y=(x+)2﹣;∴函数y=x2+bx+c的最小值为﹣.(2)∵∠OAM+∠OBC=90°,∠OCB+∠OBC=90°,∴∠OAM=∠OCB,又∵∠AOM=∠BOC=90°,∴△AOM∽△COB,∴,∴OC=•OB=2OB,∴﹣c=2x2,即x2=﹣.∵x22+bx2+c=0,将x2=﹣代入化简得:c=2b﹣4.抛物线的解析式为:y=x2+bx+c,其顶点坐标为(﹣,).令x=﹣,则b=﹣2x.y==c﹣=2b﹣4﹣=﹣4x﹣4﹣x2,∴顶点的纵坐标随横坐标变化的函数解析式为:y=﹣x2﹣4x﹣4(x>﹣).点评:本题考查了勾股定理、待定系数法求解析式、三角形相似的判定及性质以及抛物线的顶点坐标的求法等.。

2014-2015学年度上学期期末考试高一数学试题

2014-2015学年度上学期期末考试高一数学试题

2014-2015学年度上学期期末考试高一数学试题时间:120分钟 总分:150分一、选择题(请把正确选项填到答题卡对应题号下面。

共12题,每题5分,共60分)1、下列大小关系正确的是A .30.440.43log 0.3<< B.30.440.4log 0.33<<C. 30.44log 0.30.43<<D.0.434log 0.330.4<<2、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为,( ) A.0 B.1 C.2 D.33、函数34x y =的图象是A B C D4、若三点(2,3),(5,0),(0,)(0)A B C b b ≠共线,则b =( )A .2B .3C .5D .1 5对角线长为( )A. B. C .6 D6、已知菱形ABCD 的两个顶点坐标:(2,1),(0,5)A C -,则对角线BD 所在直线方程为( )A .250x y +-=B .250x y +-=C .250x y -+=D .250x y -+=7、圆心为(11),且与直线4x y +=相切的圆的方程是( )A .22(1)(1)2x y -+-=B .22(1)(1)4x y -+-=C .22(1)(1)2x y +++=D .22(1)(1)4x y +++=8、下列函数中,在上为增函数的是( )A 、B 、C 、D 、 9、几何体的三视图如图,则几何体的体积为( )A .3πB .23πC .πD .43π 10、已知α、β是平面,m 、n 是直线,则下命题不正确的是( ).A .若m ∥n , m ⊥α, 则n ⊥α B. 若,m ⊥α, m ⊥β, 则α∥βC.若m ⊥α, m ∥n , n ⊂β, 则α⊥βD. .若m ∥α, α ∩β=n 则m ∥n11、由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为( )A .1B .CD .312、下列四个正方体图形中,A B 、为正方体的两个顶点,M N P 、、分别为其所在棱的中点,能得出 //AB 平面MNP 的图形的序号是( )A. ①、③B. ①、④C. ②、③D. ②、④二、填空题(把答案填在题中横线上。

2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)

2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)

九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。

2014-2015-1工科高数(2-1)期末考试A卷参考答案

2014-2015-1工科高数(2-1)期末考试A卷参考答案

2014—2015学年第一学期《高等数学(2-1)》期末考试A卷( 工科类 )参考答案及评分标准各章所占分值如下:第一章函数与极限16 %;第二章一元函数的导数与微分16 %;第三章微分中值定理与导数的应用14 %;第四章不定积分15 %;第五章定积分及其应用26 % . 第六章常微分方程13 % .一.(共3小题,每小题4分,共计12 分)判断下列命题是否正确在 题后的括号内打“√”或“⨯” ,如果正确,请给出证明,如果不正确请举一个反例进行说明 .1.极限xx 1sinlim 0→不存在. ( √ )--------------------------------------------------(2分)证 设x x f 1sin )(= ,取πn x n 21=,221ππ+=n y n ,),2,1( =n0lim =∞→n n x ,0lim =∞→n n y ,但)(lim n n x f ∞→n n x 1sin lim ∞→=02sin lim ==∞→πn n ,)(lim n n y f ∞→n n y 1sinlim ∞→=1)22sin(lim =+=∞→ππn n , 由海涅定理,xx 1sin lim 0→不存在. ---------------------------------------------------------------(2分)2.若曲线)(x f y =在))(,(00x f x 点处存在切线,则)(x f 在0x 点必可导. ( ⨯ )--------------------------------------------------------(2分) 例:3x y =在)0,0(点处有切线0=x ,但3x y =在0=x 处不可导.---------------------------------------------------------(2分)3.设函数)(x f 在],[b a 上连续且下凸,在),(b a 内二阶可导,则),(b a x ∈∀有0)(>''x f . (⨯ )----------------------------------------------------------(2分)例:4)(x x f =在]3,2[-上连续且下凸,但 0)0(=''f .. ---------------------------------------------------------(2分)二.(共3小题,每小题6分,共计18分) 1. 求极限)!sin()11(lim n nnn ⋅-∞→ .解 ,0)11(lim =-∞→nn n,1)!s i n (≤n ------------------------------------------------------(3分).0)!sin()11(lim =⋅-∴∞→n nn n ----------------------------------------------------------------(3分)2.求极限44)1(limxdte t x x t x ⎰-+∞→+.解 44)1(l i mx dtet x xt x ⎰-+∞→+⎪⎭⎫⎝⎛∞∞+=⎰+∞→xx t x e x dt e t 404)1(lim----------------------------(2分)xxx e x x e x )4()1(lim434++=+∞→---------------------------------------------------------------------(2分).141lim 434=++=+∞→x x x x --------------------------------------------------------------------(2分)3.求极限)21(lim 222222nn nn n n n n ++++++∞→ . 解 )21(lim 222222n n nn n n n n ++++++∞→ ∑=∞→⋅⎪⎭⎫⎝⎛+=ni n n n i 12111lim ------------------------------------------------------------------(2分) ⎰+=1021x dx ---------------------------------------------------------------------(2分) 4arctan 10π==x. ----------------------------------------------------------------(2分)1.求函数()xx eex f 11211++=的间断点并判断其类型.解 0=x 是)(x f 的间断点,---------------------------------------------------------------------(3分)又 )(lim 0x f x +→21211lim 11=++=+→xx x ee,)(lim 0x f x -→1211lim 110=++=-→xxx e e , 0=∴x 是)(x f 的跳跃间断点. ---------------------------------------------------------------(3分)2.设⎪⎩⎪⎨⎧=≠-=0,00,1)(2x x x e x f x ,求 .)(x f '解 当0≠x 时,2)1(2)(22x e x x e x f x x --⋅='21222x e e x x --=----------------- (3分 ) 当0=x 时,0)0()(lim )0(0--='→x f x f f x xx e x x 1lim 20-=→201lim2x e x x -=→122lim 20==→x xe xx ,⎪⎩⎪⎨⎧=≠--='∴.0,1,0,12)(222x x x e e x f x x ------------------------------------------------ ( 3分 )3.设方程ln(sin )cos sin x t y t t t =⎧⎨=+⎩确定y 为x 的函数,求dy dx 与22d ydx . 解()sin ()dy y t t t dx x t '==' , --------------------------------------------------------------------(3分)22d y d dy dx dx dx ⎛⎫= ⎪⎝⎭()sin dt t dx =()sin d dt t t dt dx =⋅sin cos ()t t t x t +='sin tan sin t t t t =+. -----------------------------------------------------------------------(3分)1.求不定积分⎰+dx e xx ln 2.解 ⎰+dx e xxln 2⎰⋅=dx e e x x ln 2⎰=dx x e x 2-----------------------------------------------(3分))(2122⎰=x d e x -------------------------------------------------------------------------(2分) .212C e x += ----------------------------------------------------------------------(1分)2.求不定积分⎰dx x x 2cos .解⎰dx x x 2cos ⎰+=dx xx 22cos 1 -------------------------------------------------------(2分) ⎰+=)2(sin 41412x xd x ---------------------------------------------------(2分) ⎰-+=dx x x x x 2sin 412sin 41412 C x x x x +++=2cos 812sin 41412.------------------------------------(2分)3.设)(x f 在]1,1[-上连续,求定积分dx x x x f x f }1sin )]()([{211-+-+⎰-.解1dx x x x f x f }1sin )]()([{211-+-+⎰- dx x x f x f sin )]()([11-+=⎰-dx x 2111-+⎰-------------------------------(2分)dx x 210120-+=⎰(上半单位圆的面积)-----------------------------------(3分)242ππ=⋅=.------------------------------------------------------------------------------(1分)解2dx x x x f x f }1sin )]()([{211-+-+⎰- dx x x f x f sin )]()([11-+=⎰-dx x 2111-+⎰-----------------------------(2分)+=0dx x 2111-+⎰-(上半单位圆的面积)-------------------------------(3分)2π=.-------------------------------------------------------------------------------------(1分)五.(本题8分)设由曲线 x y ln = 与直线 0=-ey x 及 x 轴 所围平面图形为 D (1) 求D 的面积S ;(4分)(2) 求D 绕直线e x =旋转所得旋转体的体积 V .(4分)解 曲线x y ln =与直线 0=-ey x 的交点为)1,(e ----------------------(1分).12-=e------------------------------------------(3分) (2) ⎰⎰---=-=1210221)()(dy e e dy ey e V V V y ππ------------------------------(2分)⎰⎰+---=1221022)2()1(dy e ee e dy y e y y ππ.)3125(6)2212(3222+-=---=e e e e e πππ----------------------(2分)xx ⎰-=1)()1(dyy e e S y 12]2[e ye y -=六.(共2小题,每小题6分,共计12分)1.设有半径为R 的半球形蓄水池中已盛满水 (水的密度为ρ), 求将池中水全部抽出所做的功.解 过球心的纵截面建立坐标系如图,则半圆方程为222x y R +=. --------------------------------------------------(1分).44gR ρπ=---------------------------------------------------------------------------(2分)2.设有质量为m 的降落伞以初速度0v 开始降落,若空气的阻力与速度成正比(比例系数为0>k ),求降落伞下降的速度与时间的函数关系.解 设降落伞下降的速度为)(t v ,则根据牛顿第二运动定律,有 kv mg dtdvm-=,其中g 为重力加速度,-------------------------------------------(2分) 分离变量,得m dtkv mg dv =- , 两端积分 ⎰⎰=-m dtkv mg dv , 1ln 1C m t kv mg k +=-- , 1ln kC t mkkv mg --=-, t mk Cekv mg -=- (其中1kC eC -=,0>-kv mg )---------------------------------(2分)由已知0)0(v v =,代入上式,得0kv mg C -=,故 .)(0tm ke kmg v k mg v --+=------------------------------------------------------------(2分)y,],0[R x ∈∀所做功的微元:取],[dx x x +(其中g x dx x R g dW ⋅-=)(22πρ分)(3)(32dx x x R g -=πρ23()RW g R x x dxρπ=-⎰故七.(本题6分)求微分方程2106652+-=+'-''x x y y y 的通解.解 特征方程为:,0652=+-r r 特征根:.3,221==r r对应齐次方程的通解为:.3221x x e C e C y +=----------------------------------------(3分) 而0不是特征根,可设非齐次方程的特解为C Bx Ax y ++=21,----------------(1分)B Ax y +='21,A y 21='',代入原方程得, 2106)(6)2(5222+-=++++-x x C Bx Ax B Ax A , 2106652)106(622+-=+-+-+x x C B A x A B Ax ,比较同次幂的系数,得⎪⎩⎪⎨⎧=+--=-=.2652,10106,66C B A A B A解之得,.0,0,1===C B A .21x y =∴故所要求的通解为.23221x e C e C y x x ++=---------------------------------------------(2分)八.(本题8分)设L 是一条平面曲线,其上任意一点)0(),(>x y x 到坐标原点的距离恒等于该点处的切线在y 轴上的截距且L 经过点)0,21(. (1)试求曲线L 的方程;(2)求L 位于第一象限的一条切线,使该切线与L 以及两坐标轴所围图形的面积最小. 解(1)过曲线L 上点),(y x 处的切线方程为:)(x X y y Y -'=-, 令0=X ,得切线在y 轴上的截距:y x y Y '-=,由题意,得y x y y x '-=+22,即dx dy x y x y -=⎪⎭⎫⎝⎛+21,)0(>x ------------(2分)令u x y =,则,12x dx u du -=+)0(>x ,12⎰⎰-=+⇒x dxudu )0(>xC x u u ln ln )1ln(2+-=++⇒,C u u x =++⇒)1(2,将xyu =代入并化简,得 C y x y =++22,由L 经过点)0,21(,令21=x ,0=y ,得21=C ,故曲线L 的方程为:,2122=++y x y 即 241x y -=.----------------------------------(2分)(2)曲线L :241x y -=在点),(y x 处的切线方程为:)(x X y y Y -'=-,即)(2)41(2x X x x Y --=--,亦即 )210(4122≤<++-=x x X x Y , 切线与x 轴及y 轴的交点分别为:)0,241(2xx +,).41,0(2+x -----------------------(2分)所求面积⎰--+⋅=210222)41(2)41(21)(dx x xx x S ,)0(>x)413)(41(41)41(2)41(441)(22222222-+=+-+⋅='x x x x x x x x S ,)0(>x 令0)(='x S ,得)(x S 符合实际意义唯一驻点:63=x , 即63=x 为)(x S 在)21,0(内的最小值点, 故所求切线方程为: 41363632++⋅-=X Y ,即.3133+-=X Y ---------------------------------------------(2分)。

高一数学上学期第一次质检试卷(a卷)(含解析)-人教版高一全册数学试题

高一数学上学期第一次质检试卷(a卷)(含解析)-人教版高一全册数学试题

2014-2015学年某某省某某市龙河中学高一(上)第一次质检数学试卷(A卷)一、选择题(本大题共12小题,每小题5分,共60分)1.设集合A={x∈Q|x>﹣1},则()A.∅∈A B. C. D.⊈A2.已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则(∁U M)∩N=()A. {2,3,4} B. {3} C. {2} D. {0,1,2,3,4}3.50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人,2项测验成绩均不及格的有4人,2项测验成绩都及格的人数是()A. 35 B. 25 C. 28 D. 154.如图所示的韦恩图中A,B是非空集合,定义集合A*B为阴影部分表示的集合,则 A*B ()A.∁U(A∪B) B. A∪(∁U B) C.(∁U A)∪(∁U B) D.(A∪B)∩∁U(A∩B)5.下列函数中,在区间(0,2)上为增函数的是()A. y=3﹣x B. y=x2+1 C. D. y=﹣|x|6.已知函数f(x)的定义域为(3﹣2a,a+1),且f(x+1)为偶函数,则实数a的值可以是()A. B. 2 C. 4 D. 67.已知函数y=f(x+1)定义域是[﹣2,3],则y=f(x﹣1)的定义域是()A. [0,5] B. [﹣1,4] C. [﹣3,2] D. [﹣2,3]8.若函数f(x)为奇函数,且当x>0时,f(x)=x﹣1,则当x<0时,有()A. f(x)>0 B. f(x)<0 C. f(x)f(﹣x)≤0 D. f(x)﹣f(﹣x)>0 9.函数f(x)的定义域为R+,若f(x+y)=f(x)+f(y),f(8)=3,则f(2)=() A. B. C. D.10.下列所给四个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再去上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.A.①②④ B.④②③ C.①②③ D.④①②11.函数y=f(x)是R上的偶函数,且在(﹣∞,0]上是增函数,若f(a)≤f(2),则实数a的取值X围是()A. a≤2 B. a≥﹣2 C.﹣2≤a≤2 D. a≤﹣2或a≥212.已知函数f(x)=4x2﹣mx+5在区间[﹣2,+∞)上是增函数,则f(1)的X围是() A. f(1)≥25 B. f(1)=25 C. f(1)≤25 D. f(1)>25二、填空题(本大题共4小题,每小题5分,共20分)13.函数y=+的定义域是.14.设函数f(x)=则f[f(﹣1)]的值为.15.已知A有限集合,x∉A,B=A∪{x},若A,B的子集个数分别为a,b,且b=ka,则k=.16.函数f(x)=2x2﹣3|x|的单调减区间是.三、解答题(本大题共6小题,满分70分)17.已知集合A={x|3≤x<10},集合B={x|2x﹣8≥0}.(1)求A∪B;(2)求∁R(A∩B).18.设集合A={a,a2,b+1},B={0,|a|,b}且A=B.(1)求a,b的值;(2)判断函数在[1,+∞)的单调性,并用定义加以证明.19.已知f(x)=x2013+ax3﹣﹣8,f(﹣2)=10,求f(2).20.已知函数f(x)=,x∈[1,+∞).(1)当a=时,判断并证明f(x)的单调性;(2)当a=﹣1时,求函数f(x)的最小值.21.定义在实数R上的函数y=f(x)是偶函数,当x≥0时,f(x)=﹣4x2+8x﹣3.(Ⅰ)求f(x)在R上的表达式;(Ⅱ)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明).22.已知函数f(x)的定义域为R,对于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,若f(﹣1)=2.(1)求证:f(x)为奇函数;(2)求证:f(x)是R上的减函数;(3)求函数f(x)在区间[﹣2,4]上的值域.2014-2015学年某某省某某市龙河中学高一(上)第一次质检数学试卷(A卷)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.设集合A={x∈Q|x>﹣1},则()A.∅∈A B. C. D.⊈A考点:元素与集合关系的判断.专题:计算题.分析:先从已知的集合中看出集合中元素的本质属性,再结合元素与集合关系及集合与集合关系对选项进行判断即可.解答:解:∵集合A={x∈Q|x>﹣1},∴集合A中的元素是大于﹣1的有理数,对于A,符号:“∈”只用于元素与集合间的关系,故错;对于B、C、D,因不是有理数,故B对,C、D不对;故选B.点评:本小题主要考查元素与集合关系的判断、常用数集的表示等基础知识,考查符号的运算求解能力.属于基础题.2.已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则(∁U M)∩N=()A. {2,3,4} B. {3} C. {2} D. {0,1,2,3,4}考点:交、并、补集的混合运算.专题:计算题.分析:利用全集求出M的补集,然后求出与N的交集.解答:解:全集U={0,1,2,3,4},M={0,1,2},N={2,3},则C U M={3,4},所以(C U M)∩N={3}.故选B.点评:本题考查交、并、补集的混合运算,常考题型,基础题.3.50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人,2项测验成绩均不及格的有4人,2项测验成绩都及格的人数是()A. 35 B. 25 C. 28 D. 15考点:集合中元素个数的最值.专题:计算题.分析:设两项测验成绩都及格的人数为x人,我们可以求出仅跳远及格的人数;仅铅球及格的人数;既2项测验成绩均不及格的人数;结合全班有50名同学参加跳远和铅球测验,构造方程,可得答案.解答:解:全班分4类人:设两项测验成绩都及格的人数为x人;由跳远及格40人,可得仅跳远及格的人数为40﹣x人;由铅球及格31人,可得仅铅球及格的人数为31﹣x人;2项测验成绩均不及格的有4人∴40﹣x+31﹣x+x+4=50,∴x=25故选B点评:本题考查的知识点是集合中元素个数的最值,其中根据已知对参加测试的学生分为四类,是解答本题的关键.4.如图所示的韦恩图中A,B是非空集合,定义集合A*B为阴影部分表示的集合,则 A*B ()A.∁U(A∪B) B. A∪(∁U B) C.(∁U A)∪(∁U B) D.(A∪B)∩∁U(A∩B)考点: Venn图表达集合的关系及运算.专题:规律型.分析:先判断阴影部分表示元素的性质,再根据交集、并集与补集的意义判定即可.解答:解:∵图中阴影部分表示属于集合A或集合B,且不同时属于A又属于B的元素组成的集合,即表示属于集合(A∪B),且不属于集合(A∩B)的元素组成的集合,故选D.点评:本题考查Venn图表示集合的关系及运算.5.下列函数中,在区间(0,2)上为增函数的是()A. y=3﹣x B. y=x2+1 C. D. y=﹣|x|考点:函数单调性的判断与证明.专题:计算题.分析:根据增函数的定义对A、B、C、D四个选项进行一一判断;解答:解:A、y=3﹣x=﹣x+3,是减函数,故A错误;B、∵y=x2+1,y为偶函数,图象开口向上,关于y轴对称,当x>0,y为增函数,故B正确;C、∵y=,当x>0,为减函数,故C错误;D、当x>0,y=﹣|x|=﹣x,为减函数,故D错误;故选B.点评:此题主要考查函数的单调性的判断与证明,此题考查的函数都比较简单,是一道基础题.6.已知函数f(x)的定义域为(3﹣2a,a+1),且f(x+1)为偶函数,则实数a的值可以是()A. B. 2 C. 4 D. 6考点:函数奇偶性的性质.专题:函数的性质及应用.分析:函数f(x+1)为偶函数,说明其定义域关于“0”对称,函数f(x)的图象是把函数f(x+1)的图象向右平移1个单位得到的,说明f(x)的定义域(3﹣2a,a+1)关于“1”对称,由中点坐标公式列式可求a的值.解答:解:因为函数f(x+1)为偶函数,则其图象关于y轴对称,而函数f(x)的图象是把函数f(x+1)的图象向右平移1个单位得到的,所以函数f(x)的图象关于直线x=1对称.又函数f(x)的定义域为(3﹣2a, a+1),所以(3﹣2a)+(a+1)=2,解得:a=2.故选B.点评:本题考查了函数图象的平移,考查了函数奇偶性的性质,函数的图象关于y轴轴对称是函数为偶函数的充要条件,此题是基础题.7.已知函数y=f(x+1)定义域是[﹣2,3],则y=f(x﹣1)的定义域是()A. [0,5] B. [﹣1,4] C. [﹣3,2] D. [﹣2,3]考点:函数的定义域及其求法.专题:函数的性质及应用.分析:先由函数y=f(x+1)定义域求出函数f(x)的定义域,然后由x﹣1在f(x)的定义域内求函数y=f(x﹣1)的定义域.解答:解:因为y=f(x+1)定义域是[﹣2,3],即x∈[﹣2,3],所以x+1∈[﹣1,4],所以函数f(x)的定义域为[﹣1,4],由﹣1≤x﹣1≤4,得:0≤x≤5,所以函数y=f(x﹣1)的定义域是[0,5].故选A.点评:本题考查了函数定义域及其求法,给出了函数f(x)的定义域为[a,b],求函数f[g (x)]的定义域,让a≤g(x)≤b求解x的X围即可,此题是基础题.8.若函数f(x)为奇函数,且当x>0时,f(x)=x﹣1,则当x<0时,有()A. f(x)>0 B. f(x)<0 C. f(x)f(﹣x)≤0 D. f(x)﹣f(﹣x)>0考点:函数奇偶性的性质.专题:函数的性质及应用.分析:借助于函数为奇函数,当x>0时,f(x)=x﹣1,求解当x<0时,函数解析式,然后,代入各个选项,从而得到正确答案.解答:解:∵函数为奇函数,令x<0,则﹣x>0,∴f(﹣x)=﹣x﹣1,∵f(﹣x)=﹣f(x),∴f(x)=x+1,∴当x<0时,f(x)=x+1,此时,f(x)=x+1的函数值符合不定,因此排除选项A、B,∵f(x)f(﹣x)=﹣(x+1)2≤0成立,∴选项C符合题意,故选:C.点评:本题重点考查函数为奇函数的性质,注意函数的性质的灵活运用,属于中档题.9.函数f(x)的定义域为R+,若f(x+y)=f(x)+f(y),f(8)=3,则f(2)=() A. B. C. D.考点:抽象函数及其应用.专题:计算题.分析:函数f(x)的定义域为R+,若f(x+y)=f(x)+f(y),f(8)=3,令x=y=4,x=y=2,即可求得f(2)的值.解答:解:∵f(x+y)=f(x)+f(y),f(8)=3,∴令x=y=4,则f(8)=2f(4)=3,∴f(4)=,令x=y=2,f(4)=2f(2)=,∴f(2)=.故选B.点评:考查抽象函数及其应用,求抽象函数的有关命题,常采用赋值法求解,属基础题.10.下列所给四个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再去上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.A.①②④ B.④②③ C.①②③ D.④①②考点:函数的图象.专题:数形结合.分析:根据回家后,离家的距离又变为0,可判断(1)的图象开始后不久又回归为0;由途中遇到一次交通堵塞,可判断中间有一段函数值没有发生变化;由为了赶时间开始加速,可判断函数的图象上升速度越来越快.解答:解:离家不久发现自己作业本忘记在家里,回到家里,这时离家的距离为0,故应先选图象④;回校途中有一段时间交通堵塞,则这段时间与家的距离必为一定值,故应选图象①;最后加速向学校,其距离与时间的关系为二次函数,故应选图象②.故选D.点评:本题考查的知识点是函数的图象,我们分析实际情况中离家距离随时间变化的趋势,找出关键的图象特征,对四个图象进行分析,即可得到答案.11.函数y=f(x)是R上的偶函数,且在(﹣∞,0]上是增函数,若f(a)≤f(2),则实数a的取值X围是()A. a≤2 B. a≥﹣2 C.﹣2≤a≤2 D. a≤﹣2或a≥2考点:奇偶性与单调性的综合.专题:计算题.分析:由已知中函数f(x)是定义在实数集R上的偶函数,根据偶函数在对称区间上单调性相反,结合f(x)上在(﹣∞,0]为单调增函数,易判断f(x)在](0,+∞)上的单调性,根据单调性的定义即可求得.解答:解:由题意,f(x)在(0,+∞)上为单调减函数,从而有或,解得a≤﹣2或a≥2,故选D.点评:本题考查的知识点是函数单调性的应用,其中利用偶函数在对称区间上单调性相反,判断f(x)在(0,+∞)上的单调性是解答本题的关键.12.已知函数f(x)=4x2﹣mx+5在区间[﹣2,+∞)上是增函数,则f(1)的X围是() A. f(1)≥25 B. f(1)=25 C. f(1)≤25 D. f(1)>25考点:函数单调性的性质.专题:计算题.分析:由二次函数图象的特征得出函数f(x)=4x2﹣mx+5在定义域上的单调区间,由函数f(x)=4x2﹣mx+5在区间[﹣2,+∞)上是增函数,可以得出[﹣2,+∞)一定在对称轴的右侧,故可以得出参数m的取值X围,把f(1)表示成参数m的函数,求其值域即可.解答:解:由y=f(x)的对称轴是x=,可知f(x)在[,+∞)上递增,由题设只需≤﹣2⇒m≤﹣16,∴f(1)=9﹣m≥25.应选A.点评:本小题的考点是考查二次函数的图象与二次函数的单调性,由此得出m的取值X围再,再求以m为自变量的函数的值域.二、填空题(本大题共4小题,每小题5分,共20分)13.函数y=+的定义域是{x|x≥﹣1,且x≠2} .考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据使函数y=+的解析式有意义的原则,构造不等式组,解不等式组可得函数的定义域.解答:解:要使函数y=+的解析式有意义自变量x须满足:解得x≥﹣1,且x≠2故函数y=+的定义域是{x|x≥﹣1,且x≠2}故答案为:{x|x≥﹣1,且x≠2}点评:本题考查的知识点是函数的定义或及其求法,其中根据使函数y=+的解析式有意义的原则,构造不等式组,是解答的关键.14.设函数f(x)=则f[f(﹣1)]的值为 4 .考点:函数的值.专题:计算题.分析:由函数f(x)=,知f(﹣1)=(﹣1)2+1=2,所以f[f(﹣1)]=f (2),由此能求出结果.解答:解:∵函数f(x)=,∴f(﹣1)=(﹣1)2+1=2,∴f[f(﹣1)]=f(2)=22+2﹣2=4,故答案为:4.点评:本题考查分段函数的函数值的求法,是基础题.解题时要认真审题,仔细解答.15.已知A有限集合,x∉A,B=A∪{x},若A,B的子集个数分别为a,b,且b=ka,则k= 2 .考点:并集及其运算.专题:计算题.分析:设A中元素有m个,根据A有限集合,x∉A,B=A∪{x},得到B中元素有(m+1)个,分别表示出子集的个数,即可确定出k的值.解答:解:设集合A中元素为m个,∵A有限集合,x∉A,B=A∪{x},∴B中元素有(m+1)个,∴a=2m,b=2m+1,即b=2a,则k=2.故答案为:2点评:此题考查了并集及其运算,以及子集,弄清题意是解本题的关键.16.函数f(x)=2x2﹣3|x|的单调减区间是(﹣∞,﹣]和[0,] .考点:函数的单调性及单调区间.专题:函数的性质及应用.分析:首先根据题中的已知条件把自变量进行分类,得出分段函数的解析式,进一步画出函数的图象,然后得出单调区间.解答:解:函数f(x)=2x2﹣3|x|=图象如下图所示f(x)减区间为(﹣∞,﹣]和[0,].故答案为:(﹣∞,﹣]和[0,].点评:本题考查的知识点:分段函数的解析式,二次函数的图象以及单调区间的确定,三、解答题(本大题共6小题,满分70分)17.已知集合A={x|3≤x<10},集合B={x|2x﹣8≥0}.(1)求A∪B;(2)求∁R(A∩B).考点:交、并、补集的混合运算.专题:计算题.分析:(1)求解一次不等式化简集合B,然后直接进行并集运算;(2)首先进行交集运算,然后进行补集运算.解答:解:(1)由A={x|3≤x<10},B={x|2x﹣8≥0}={x|x≥4}.∴A∪B={x|3≤x<10}∪{x|x≥4}={x|x≥3}.(2)A∩B={x|3≤x<10}∩{x|x≥4}={x|4≤x<10}.∴∁R(A∩B)={x|x<4或x≥10}.点评:本题考查了交、并、补集的混合运算,是基础的会考题型.18.设集合A={a,a2,b+1},B={0,|a|,b}且A=B.(1)求a,b的值;(2)判断函数在[1,+∞)的单调性,并用定义加以证明.考点:函数单调性的判断与证明;集合的相等.专题:计算题.分析:(1)求,b的值,由于两集合相等,观察发现其对应特征,建立方程求出a,b的值(2)将a,b的值代入,先判断单调性,再用定义法证明即可.解答:解:(1)两集合相等,观察发现a不能为O,故只有b+1=0,得b=﹣1,故b与a对应,所以a=﹣1,故a=﹣1,b=﹣1(2)由(1)得,在[1,+∞)是增函数任取x1,x2∈[1,+∞)令x1<x2,f(x1)﹣f(x2)=﹣=(x1﹣x2)(1﹣)∵1≤x1<x2,∴x1﹣x2<0,又x1x2>1,故1﹣>0∴f(x1)﹣f(x2)=(x1﹣x2)(1﹣)<0∴f(x1)<f(x2)故,在[1,+∞)是增函数点评:本题考查集合相等的概念以及函数单调性的证明方法﹣﹣定义法,解答第二小问时要注意步骤,先判断再证明,注意格式.19.已知f(x)=x2013+ax3﹣﹣8,f(﹣2)=10,求f(2).考点:基本不等式.专题:不等式的解法及应用.分析:利用g(x)=x2013+ax3﹣为奇函数即可得出.解答:解:已知g(x)=x2013+ax3﹣为奇函数,即对g(x)=x2013+ax3﹣有g(﹣x)=﹣g(x),也即g(﹣2)=﹣g(2),f(﹣2)=g(﹣2)﹣8=﹣g(2)﹣8=10,得g(2)=﹣18,∴f(2)=g(2)﹣8=﹣26.点评:本题考查了奇函数的性质,属于基础题.20.已知函数f(x)=,x∈[1,+∞).(1)当a=时,判断并证明f(x)的单调性;(2)当a=﹣1时,求函数f(x)的最小值.考点:函数单调性的性质;函数的最值及其几何意义.专题:函数的性质及应用.分析:(1)当a=时,f(x)==x+2+=x++2.任取x1,x2是[1,+∞)上的任意两个实数,且x1<x2,利用做差法,可判断函数f(x)在[1,+∞)上是增函数.(2)当a=﹣1时,f(x)=x﹣+2.由函数y1=x和y2=﹣在[1,+∞)上都是增函数,可得f(x)=x﹣+2在[1,+∞)上是增函数,故当x=1时,f(x)取得最小值.解答:解:(1)当a=时,f(x)==x+2+=x++2.设x1,x2是[1,+∞)上的任意两个实数,且x1<x2,则f(x1)﹣f(x2)=(x1+)﹣(x2+)=(x1﹣x2)+(﹣)=(x1﹣x2)+=(x1﹣x2)(1﹣)=(x1﹣x2)•.因为1≤x1<x2,所以x1﹣x2<0,x1•x2>0,x1x2﹣>0,所以f(x1)﹣f(x2)<0,即f(x1)<f(x2).所以函数f(x)在[1,+∞)上是增函数.(2)当a=﹣1时,f(x)=x﹣+2.因为函数y1=x和y2=﹣在[1,+∞)上都是增函数,所以f(x)=x﹣+2在[1,+∞)上是增函数.当x=1时,f(x)取得最小值f(1)=1﹣+2=2,即函数f(x)的最小值为2.点评:本题考查的知识点是函数单调性的性质,函数的最值及其几何意义,函数的单调性的证明,是函数单调性与最值的综合应用,难度中档.21.定义在实数R上的函数y=f(x)是偶函数,当x≥0时,f(x)=﹣4x2+8x﹣3.(Ⅰ)求f(x)在R上的表达式;(Ⅱ)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明).考点:函数奇偶性的性质;二次函数的性质.专题:计算题.分析:(Ⅰ)先根据函数的奇偶性以及x≥0的解析式求出x<0的解析式,因为函数定义在R上,所以函数是分段函数,写出各段的解析式,用大括号连接即可.(Ⅱ)先根据(Ⅰ)中所求函数解析式,求出函数在每段上的最大值,其中最大的就是函数f(x)的最大值,再由函数两段上的图象都是开口向下的抛物线,结合对称轴就可求出函数的单调区间.解答:解:(Ⅰ)设x<0,则﹣x>0,∴f(﹣x)=﹣4(﹣x)2﹣8x﹣3=﹣4x2﹣8x﹣3.又∵f(x)是偶函数,∴f(x)=f(﹣x)=﹣4x2﹣8x﹣3.∴f(x)=(Ⅱ)当x≥0时,f(x)=﹣4x2+8x﹣3,图象为对称轴是x=1,开口向下的抛物线,当x=1时f(x)有最大值为1当x<0时,f(x)=﹣4x2﹣8x﹣3,图象为对称轴是x=﹣1,开口向下的抛物线,当x=﹣1时f(x)有最大值为1∴f(x)的最大值是1.函数单调增区间为(﹣∞,﹣1],和[0,1],单调减区间为[﹣1,0],和[1,+∞)点评:本题主要考查利用函数的奇偶性求分段函数的解析式,以及分段函数的最值,单调区间的求法.22.已知函数f(x)的定义域为R,对于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,若f(﹣1)=2.(1)求证:f(x)为奇函数;(2)求证:f(x)是R上的减函数;(3)求函数f(x)在区间[﹣2,4]上的值域.考点:抽象函数及其应用;函数奇偶性的性质.专题:函数的性质及应用.分析:(1)先利用特殊值法,求证f(0)=0,令y=﹣x即可求证;(2)由(1)得f(x)为奇函数,f(﹣x)=﹣f(x),利用定义法进行证明;(3)由函数为减函数,求出f(﹣2)和f(4)继而求出函数的值域,解答:解:(1)证明:∵f(x)的定义域为R,令x=y=0,则f(0+0)=f(0)+f(0)=2f (0),∴f(0)=0.令y=﹣x,则f(x﹣x)=f(x)+f(﹣x),即f(0)=f(x)+f(﹣x)=0.∴f(﹣x)=﹣f(x),故f(x)为奇函数.(2)证明:任取x1,x2∈R,且x1<x2,则f(x2)﹣f(x1)=f(x2)+f(﹣x1)=f(x2﹣x1).又∵x2﹣x1>0,∴f(x2﹣x1)<0,∴f(x2)﹣f(x1)<0,即f(x1)>f(x2).故f(x)是R上的减函数.(3)∵f(﹣1)=2,∴f(﹣2)=f(﹣1)+f(﹣1)=4.又f(x)为奇函数,∴f(2)=﹣f(﹣2)=﹣4,∴f(4)=f(2)+f(2)=﹣8.由(2)知f(x)是R上的减函数,所以当x=﹣2时,f(x)取得最大值,最大值为f(﹣2)=4;当x=4时,f(x)取得最小值,最小值为f(4)=﹣8.所以函数f(x)在区间[﹣2,4]上的值域为[﹣8,4].点评:本题主要考查了抽象函数及其应用,以及利用函数单调性的定义判断函数的单调性,并根据函数的单调性解函数值不等式,体现了转化的思想,在转化过程中一定注意函数的定义域.。

2014-2015学年上学期期末考试高一数学试题

2014-2015学年上学期期末考试高一数学试题

2014-2015学年上学期期末考试一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={2,3},B={2,3,4},C={2,4,5}则()A B C ⋂⋃=( ) A .{2,3,4} B .{2,3,5} C .{3,4,5}D .{2,3,4,5} 2.下列函数是奇函数的是( )A .B .C .D .3.已知f(x)= ,则在下列区间中,y=f (x )一定有零点的是( ) A .(-3,-2) B .(-1,0) C .(2, 3) D .(4,5)4.圆C 1:x 2+y 2+4x -4y +4=0与圆C 2:x 2+y 2-4x -10y +13=0的公切线有 ( ).A .1条B .2条C .3条D .4条5.三个数231.0=a ,31.0log 2=b ,31.02=c 之间的大小关系为( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a6.函数y =lg(x +1)的图象大致是( ).7.一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积为( ). A .12π B .18πC .24π D .36π8. 已知函数2log (0)()3(0)x x x f x x >⎧=⎨≤⎩,那么)]41([f f 的值为 ( A ) A .91 B . 9 C .91- D .9-x y =322-=x y 21x y =]1,0[,2∈=x x y 22x x-二、填空题:本大题共7小题,每小题解5分,共3 5分,把答案填在答题卡中对应题号后的横线上.9.已知1()2x >1,则x 的取值范围为________.10.函数lg y x =+的定义域为 .11.直线l 的方程为y -a =(a -1)(x +2),若直线l 在y 轴上的截距为6,则a =________.12.在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 、H 分别为AA 1、AB 、BB 1、B 1C 1的中点,则异面直线EF 与GH 所成的角等于________.13.已知过A (-2,m )和B (m,4)的直线与斜率为-2的直线平行,则m 的值是 14、棱长为1的正方体的外接球的表面积为 ;15设点P (x ,y )是圆x 2+(y +4)2=4上任意一点,则(x -1)2+(y -1)2的最大值为________.三、解答题 (本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)计算:(1⨯; (2)3991log log 4log 32+-. 17.(本小题满分12分)已知两直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,当m 为何值时,直线l 1与l 2:(1)平行;(2)垂直.18. (本小题满分12分) 如图,在棱长为1的正方体ABCD-A 1B 1C 1D 1中.(1)求证:11C A ∥平面C AB 1.(2)求证:AC ⊥平面B 1 BDD 1 .19、(本小题满分13分) 有一批某家用电器原销售价为每台800元,在甲、乙两家家电商场均有销售。

2023-2024学年福建省厦门市高一(下)期末数学试卷+答案解析

2023-2024学年福建省厦门市高一(下)期末数学试卷+答案解析

2023-2024学年福建省厦门市高一(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若,则()A.B.C.D.2.为了解某校高一年级学生体育锻炼情况,用比例分配的分层随机抽样方法抽取50人作为样本,其中男生20人.已知该校高一年级女生240人,则高一年级学生总数为()A.600B.480C.400D.3603.在梯形ABCD 中,,,,以AD 所在直线为旋转轴,其余各边旋转一周形成的面所围成的几何体的体积为()A.B.C.D.4.甲、乙两人参加某项活动,甲获奖的概率为,乙获奖的概率为,甲、乙两人同时获奖的概率为,则甲、乙两人恰有一人获奖的概率为()A.B.C.D.5.如图,甲在M 处观测到河对岸的某建筑物在北偏东方向,顶部P 的仰角为,往正东方向前进150m 到达N 处,测得该建筑物在北偏西方向.底部Q 和M ,N 在同一水平面内,则该建筑物的高PQ 为()A.B.C.D.6.已知,,是三个不重合的平面,,,则()A.若,则B.若,则C.若,,则D.若,,则7.若,则()A.1B.C. D.28.向量满足,则的最大值为()A.B.C.D.二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得2分,有选错的得0分。

9.某学校开展消防安全知识培训,对甲、乙两班学员进行消防安全知识测试,绘制测试成绩的频率分布直方图,如图所示()A.甲班成绩的平均数<甲班成绩的中位数B.乙班成绩的平均数<乙班成绩的中位数C.甲班成绩的平均数<乙班成绩的平均数D.乙班成绩的中位数<甲班成绩的中位数10.在梯形ABCD中,,则()A. B.C. D.在上的投影向量为11.在长方体中,,动点P满足,则()A.当时,B.当时,AC与DP是异面直线C.当时,三棱锥的外接球体积的最大值为D.当时,存在点P,使得平面三、填空题:本题共3小题,每小题5分,共15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省厦门市2014-2015学年高一上学期期末数学试卷
一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个答案中有且只有一个答案是正确的)
1.(5分)计算机执行如图的程序段后,输出的结果是()
A.1B.2 C.3 D.﹣2
2.(5分)气象台预报“厦门市明天降雨的概率是80%”,下列理解正确的是()
A.厦门市明天将有80%的地区降雨
B.厦门市明天将有80%的时间降雨
C.明天出行不带雨具肯定要淋雨
D.明天出行不带雨具淋雨的可能性很大
3.(5分)如图,在一个边长为2的正方形中有一封闭的“★”型阴影区域,向正方形中随机撒入200粒豆子,若恰有40粒落在阴影区域内,则该阴影部分的面积约为()
A.B.C.D.
4.(5分)如图,样本A和B分别来自两个不同的总体,它们的样本平均数分别为和,样本标准差分别为S A和S B,则下列结论正确的是()
A.>,S A>S B
B.>,S
A<S B
C.<,S
A>S B
D.<,S
A<S B
5.(5分)执行如图所示的程序框图,则输出的S为()
A.3
B.7
C.10
D.16
6.(5分)已知α,β是两个不同平面,m,n是两条不同直线,
则以下命题正确的是()
A.若m∥n,n⊂α,则m∥αB.若m∥α,m∥β,则α∥β
C.若m∥α,n∥α,则m∥n D.若m∥α,m⊂β,α∩β=n,则m∥n 7.(5分)函数f(x)=x2ln|x|的图象大致是()
A.B.C.D.
8.(5分)某产品的广告费用x(万元)与销售额y(万元)的统计数据如下表(一个数据上有污渍):
已知该公司根据原有统计数据(没有污渍前)得线性回归方程=9.4x+9.1,则污渍部分的数
据是()
A.50 B.52 C.54 D.58 9.(5分)已知f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(log23),c=f(0.20.6),则a,b,c的大小关系是()
A.c<b<a B.b<c<a C.b<a<c D.a<b<c 10.(5分)已知函数f(x)=a(x﹣1)3+bx+c(a∈R,b,c∈Z),对于取定的一组a,b,c 的值,若计算得到f(﹣1)=2,则f(3)的值一定不能等于()
A.4B.3C.2D.0
二、填空题(共6小题,每小题4分,满分24分)
11.(4分)某商场对新进300袋奶粉采用系统抽样的方法,从中抽取20袋进行检查,先将所有奶粉从1~300编号,按编号顺序平均分成15组(1~20号,21~40号,…,281~300号),若第1组抽出的号码是6,则第3组抽出的号码为.
12.(4分)将二进制数10011(2)化为十进制数等于.
13.(4分)投掷一颗质地均匀的骰子两次,记向上一面的
点数分别为a,b,则事件“a+b>4”发生的概率为.
14.(4分)某几何体的三视图如图所示,则该几何体的
体积为..
15.(4分)已知函数f(x)=,如果f(a)+f(1)=0,则实数a的值等于.
16.(4分)设方程2x+x+2=0和log2x+x+2=0的根分别为p和q,凼数f(x)=(x+p)(x+q),则关于x的不等式f(x2+2x+2)<f(0)的解集是.
三、解答题(本大题共6小题,共76分,解答时应写出必要文字说明、证明过程或演算步骤)
17.(12分)实数R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥0}.
(Ⅰ)求∁R(A∩B);
(Ⅱ)若集合C={x|y=log2(x﹣a)},且满足B∪C=C,求实数a的取值范围.
18.(12分)某甲计划到厦门探亲访友,有三种方式(动车、汽车、飞机)直达厦门,已知甲选择乘坐动车或汽车到厦门的概率为0.6,选择乘坐汽车到厦门的概率为0.3.
(Ⅰ)求甲不选择乘坐动车的概率;
(Ⅱ)甲选择哪种方式到厦门的可能性最大?写出理由.
19.(12分)某校2014-2015学年高一(1)班的一次数学考试成绩(满分为100分)的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图,解答下列问题:
(Ⅰ)求分数在[80,90)的频率;
(Ⅱ)若用分层抽样的方法从分数在[50,70)的试卷中任取9份分析无谓失分情况,求在[50,60)中应抽取多少份?
(Ⅲ)从分数在[90,100)的学生中选2名同学作经验介绍,请列出所有基本事件,并求成绩为99分的同学被选中的概率.
20.(12分)如图是一个长方体ABCD﹣A1B1C1D1被一个平面截去一部分后,所得多面体的直观图,已知AB=6,AD=AA1=4,BE=CF=2.
(Ⅰ)若点M的棱DD1的中点,求证:BM∥平面A1EFD;
(Ⅱ)求此多面体的体积.
21.(14分)某地区二手车的收购市场只收购使用10年(含)以内的车,且二手车的收购价计算方式如下:前四年每年递减新车购买总价的15%;从第五年开始,每年的收购价是
上一年收购价的(超过n年不到n+1年的按n+1年计算,0<n<10,n∈N),某人在2014
年元旦以25万元的总价购买了一辆新车.
(Ⅰ)若此人在2017年5月卖车,则此人得到的卖车款是多少万元?
(Ⅱ)写出卖车款y(万元)关于新车购买后x(年)的函数关系;
(Ⅲ)若此人想得到不低于4万元的卖车款,则最迟应该在哪年卖车?
(参考公式:log a b=,其中a>0且a≠1,c>0,且c≠1,b>0;参考数据lg2≈0.3,lg3≈0.5)
22.(14分)已知定义在R上的函数f(x)=为奇函数.
(Ⅰ)求实数n的值;
(Ⅱ)设函数g(x)=x2﹣2λx﹣2λ,若对于任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)>f(x1)成立,求实数λ的取值范围;
(Ⅲ)请指出方程|f(x)|=log|x|有几个实数解,并说明理由.。

相关文档
最新文档