2.2.22对数函数的性质(2)
人教版高中数学课件-对数函数及其性质(二)
∴由複合函數的單調性得到函數 f x=log1 (-x2+2x) 在(0,1)上是減函數,
2
在(1,2)上是增函數.
解析答案
類型二 對數型複合函數的奇偶性 2-x
例 2 判断函数 f(x)=ln 2+x的奇偶性.
反思與感悟
解析答案
跟踪训练 2 判断函数 f(x)=lg( 1+x2-x)的奇偶性.
第二章 2.2 對數函數
2.2.2 對數函數及其性質(二)
學習目標
1.掌握對數型複合函數單調區間的求法及單調性的判定方法; 2.掌握對數型複合函數奇偶性的判定方法; 3.會解簡單的對數不等式; 4.瞭解反函數的概念及它們的圖象特點.
問題導學
題型探究
達標檢測
問題導學
新知探究 點點落實
知識點一 y=logaf (x)型函數的單調區間
∴11- -aaxx> <01, -a. 即aaxx< >1a, . ∴0<x<1. ∴不等式的解集為(0,1).
反思與感悟
解析答案
log2x,x>0,
跟踪训练 3
已知函数
f(x)=log
1 2
-x,x<0,
若 f(a)>f(-a),则实数
a 的取值范围是( )
A.(-1,0)∪(0,1)
B.(-∞,-1)∪(1,+∞)
解析答案
類型三 對數不等式 例3 已知函數f(x)=loga(1-ax)(a>0,且a≠1).解關於x的不等式: loga(1-ax)>f(1). 解 ∵f(x)=loga(1-ax),∴f(1)=loga(1-a). ∴1-a>0.∴0<a<1. ∴不等式可化為loga(1-ax)>loga(1-a).
答案
一般地,對於底數a>1的對數函數,在(1,+∞)區間內,底數越大越 靠近x軸;對於底數0<a<1的對數函數,在(1,+∞)區間內,底數越小 越靠近x軸.
高一数学对数函数及其性质2
(
2 x 8)
函数的奇偶性
例3、函数 y log2 (x x2 1)(x R)的奇偶性为
()
A.奇函数而非偶函数 C.非奇非偶函数
B.偶函数而非奇函数 D.既奇且偶函数
二 函数的单调性
例4
1.求函数 y log 2 (x2 2x)
例2 求函数的值域
1 f ( x) log2 x
2 f ( x) loga x
x [1,2]
x [1,2]
3 f ( x) log 2( x2 2)
4 f ( x) log 2(8x x2 7)
5 f
(x)
(log2
x 2 )(log2
x) 4
2.2.2 对数函数及其性质(二)
对数函数y=log a x<1
图
y
y
象
o (1, 0)
(1, 0) xo
x
(1) 定义域: (0,+∞)
性 (2) 值域:R
(3) 过点(1,0), 即x=1 时, y=0
(4) 0<x<1时, y<0;
质 x>1时, y>0
(4) 0<x<1时, y>0; x>1时, y<0
; 宠物DR 宠物DR ;
不少于800字。不得抄袭。 [写作提示]“钥匙”是开锁的工具,它熟悉事物的机理,最了解锁的“心”,所以能够灵活机动,只轻轻一转,就“轻而易举”地打开了锁。对于一般的事物、问题而言,这里的“心”是指事物的关键之处、问题的症结所在;对于人的思想、情感而言,“心” 是指隐秘之处的思想和情感。“铁棒”天生不是开锁的料,只会砸“锁”、撬“锁”。我们可以把它理解为没有抓住事物的关键或问题的症结
高中数学 第二章 基本初等函数 2.2.2 对数函数及其性质(第2课时)对数函数性质的应用课时作业(
第2课时 对数函数性质的应用A 级 基础巩固一、选择题1.(2019·某某某某众兴中学高一期末测试)函数f (x )=3-lg x 的定义域为( A ) A .(0,1 000] B .[3,1 000] C .(0,11 000]D .[11 000,3][解析] 由题意得3-lg x ≥0, ∴lg x ≤3,∴0<x ≤103=1 000, 故选A .2.(2019·某某市南开区高一期末测试)函数f (x )=lg(1-x 2)的单调递减区间为( B )A .(0,+∞)B .(0,1)C .(-∞,0)D .(-1,0)[解析] 由题意得1-x 2>0,∴x 2<1,∴-1<x <1. 令u =1-x 2,函数f (x )的单调递减区间即为u =1-x 2在(-1,1)上单调递减区间, 又u =1-x 2在(0,1)上递减,故选B .3.已知f (x )=log 3x ,则f (14),f (12),f (2)的大小是( B )A .f (14)>f (12)>f (2)B .f (14)<f (12)<f (2)C .f (14)>f (2)>f (12)D .f (2)>f (14)>f (12)[解析] 由函数y =log 3x 的图象知,图象呈上升趋势,即随x 的增大,函数值y 在增大,故f (14)<f (12)<f (2).4.(2019·某某文,5)已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( A )A .c <b <aB .a <b <cC .b <c <aD .c <a <b[解析]a =log 27>log 24=2,log 38<log 39=2,log 38>log 33=1,∴1<b <2,c =0.30.2<0.30=1,∴c <b <a ,故选A .5.(2019·全国卷Ⅱ理,6)若a >b ,则( C ) A .ln(a -b )>0 B .3a <3bC .a 3-b 3>0D .|a |>|b |[解析]∵函数y =x 3在R 上是增函数, ∴若a >b ,则a 3>b 3,∴a 3-b 3>0,故选C .6.(2019·某某泸西一中高一期中测试)函数y =lg|x |x的图象大致是( D )[解析]∵函数y =lg|x |x是奇函数,∴其图象关于原点对称,排除A 、B ;又∵x =1时,y =0,排除C ,故选D .二、填空题7.(2019·某某某某高一期中测试)不等式log 2x <12的解集为__(0,2)__.[解析] 由题意得log 2x <log 2212,∴0<x <212,∴0<x <2,故不等式的解集为(0,2).8.(2019·某某云天化中学高一期末测试)设函数f (x )=⎩⎪⎨⎪⎧2e x -1x <2log 3x 2-1x ≥2,则f [f (2)]=__2__.[解析]∵x ≥2时,f (x )=log 3(x 2-1), ∴f (2)=log 33=1, ∴f [f (2)]=f (1),又∵x <2时,f (x )=2e x -1,∴f (1)=2e 0=2,∴f [f (2)]=f (1)=2. 三、解答题9.已知f (x )=log a (1-x )+log a (x +3),(a >0且a ≠1). (1)求函数f (x )的定义域、值域;(2)若函数f (x )有最小值为-2,求a 的值.[解析] (1)⎩⎪⎨⎪⎧1-x >0x +3>0,∴-3<x <1∴函数f (x )的定义域为{x |-3<x <1}.f (x )=log a (-x 2-2x +3),令t =-x 2-2x +3=-(x +1)2+4,∵x ∈(-3,1),∴t ∈(0,4].∴y =log a t ,t ∈(0,4]. 当0<a <1时,y min =f (4)=log a 4, ∴函数f (x )的值域为[log a 4,+∞).当a >1时,y max =log a 4,∴函数f (x )的值域为(-∞,log a 4].(2)∵函数f (x )有最小值-2,由(1)得⎩⎪⎨⎪⎧0<a <1log a 4=-2,得a =12.B 级 素养提升一、选择题1.已知函数f (x )=log a (x 2+2x -3),若f (2)>0,则此函数的单调递增区间是( D ) A .(-∞,-3) B .(1,+∞)∪(-∞-3) C .(-∞,-1)D .(1,+∞)[解析]∵f (2)=log a 5>0=log a 1,∴a >1.由x 2+2x -3>0,得函数f (x )的定义域为(-∞,-3)∪(1,+∞). 设u =x 2+2x -3,则此函数在(1,+∞)上为增函数. 又∵y =log a u (a >1)为增函数,∴函数f (x )的单调递增区间是(1,+∞),故选D .2.(2018·某某文,5)已知a =log 372,b =(14)13 ,c =log 1315,则a ,b ,c 的大小关系为( D )A .a >b >cB .b >a >cC .c >b >aD .c >a >b[解析]∵函数y =log 3x 在(0,+∞)上单调递增, ∴log 1315=log 35>log 372>log 33=1,又(14)13 <(14)0=1,∴c >a >b ,故选D . 3.(2019·某某理,6)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( A )A .a <c <bB .a <b <cC .b <c <aD .c <a <b[解析]a =log 52<log 55=12,b =log 0.50.2>log 0.50.5=1,0.51<0.50.2<0.50,∴12<0.50.2<1,∴12<c <1,∴a <c <b ,故选A . 4.已知函数f (x )=log a (2-ax )在[0,1]上是减函数,则a 的取值X 围为( B ) A .(1,+∞) B .(1,2) C .(2,+∞)D .(0,1)[解析] 由题意得a >0且a ≠1,2-ax >0,∴x <2a ,即函数f (x )的定义域为(-∞,2a ).∵函数在[0,1]上为减函数,∴2a>1,即a <2,∵函数y =log a (2-ax )在(0,1)上是减函数,又t =2-ax 为减函数,∴y =log a t 是增函数,∴a >1,∴1<a <2.二、填空题5.已知f (x )=|log 2x |,若f (a )>f (4),则a 的取值X 围是__(0,14)∪(4,+∞)__.[解析]∵f (4)=|log 24|=2.∴不等式化为f (a )>2,即|log 2a |>2,∴log 2a >2或log 2a <-2,∴a >4或0<a <14.6.若函数f (x )=x ln(x +a +x 2)为偶函数,则a =__1__. [解析]∵f (x )为偶函数,∴f (-1)=f (1),∴-ln(-1+a +1)=ln(1+a +1), ∴ln(1+a +1)+ln(-1+a +1)=0, ∴ln[(a +1)2-1]=0, ∴ln a =0,∴a =1. 三、解答题7.设f (x )为奇函数,且当x >0时,f (x )=log 12x .(1)求当x <0时,f (x )的解析式; (2)解不等式f (x )≤2.[解析] (1)当x <0时,-x >0,则f (-x )=log 12(-x ),又f (x )为奇函数,所以f (x )=-f (-x )=-log 12 (-x ).故当x <0时,f (x )=-log 12(-x ).(2)由题意及(1)知,原不等式等价于⎩⎪⎨⎪⎧x >0log 12x ≤2,或⎩⎪⎨⎪⎧x <0-log 12-x ≤2,解得x ≥14或-4≤x <0.∴不等式的解集{x |x ≥14或-4≤x <0}.8.已知函数f (x )=log a (3+2x ),g (x )=log a (3-2x )(a >0,且a ≠1). (1)求函数f (x )-g (x )的定义域;(2)判断函数f (x )-g (x )的奇偶性,并予以证明; (3)求使f (x )-g (x )>0的x 的取值X 围.[解析] (1)使函数f (x )-g (x )有意义,必须有⎩⎪⎨⎪⎧3+2x >03-2x >0,解得-32<x <32.所以函数f (x )-g (x )的定义域是{x |-32<x <32}.(2)f (x )-g (x )为奇函数.证明:由(1)知函数f (x )-g (x )的定义域关于原点对称.f (-x )-g (-x )=log a (3-2x )-log a (3+2x )=-[log a (3+2x )-log a (3-2x )]=-[f (x )-g (x )],∴函数f (x )-g (x )是奇函数.(3)f (x )-g (x )>0,即log a (3+2x )>log a (3-2x ). 当a >1时,有⎩⎪⎨⎪⎧3+2x >3-2x 3-2x >03+2x >0,解得x 的取值X 围是(0,32).当0<a <1时,有⎩⎪⎨⎪⎧3+2x <3-2x 3-2x >03+2x >0,解得x 的取值X 围是(-32,0).综上所述,当a >1时,x 的取值X 围是(0,32);当0<a <1时,x 的取值X 围是(-32,0).9.(2019·某某宿迁市高一期末测试)已知函数f (x )=ln(1+x )+ln(a -x )为偶函数. (1)某某数a 的值;(2)讨论函数f (x )的单调性. [解析] (1)∵f (x )为偶函数, ∴f (-x )=f (x ),∴ln(1-x )+ln(a +x )=ln(1+x )+ln(a -x ), ∴ln(1-x )-ln(1+x )=ln(a -x )-ln(a +x ), ∴ln 1-x 1+x =ln a -x a +x ,∴1-x 1+x =a -x a +x, 整理得2x (a -1)=0,∵x 不恒为0,∴a -1=0,∴a =1. (2)由(1)知f (x )=ln(1+x )+ln(1-x ),要使函数f (x )有意义,应满足⎩⎪⎨⎪⎧1+x >01-x >0,∴-1<x <1.∴函数f(x)的定义域为(-1,1).设任意x1,x2∈(-1,1),且x1<x2,∴f(x2)-f(x1)=ln(1+x2)+ln(1-x2)-ln(1+x1)-ln(1-x1) =ln(1-x22)-ln(1-x21)当-1<x1<x2<0时,x21>x22,1-x21<1-x22,∴ln(1-x22)>ln(1-x21),∴ln(1-x22)-ln(1-x21)>0,∴f(x2)-f(x1)>0,∴f(x2)>f(x1),∴f(x)在(-1,0)上是增函数,当0≤x1<x2<1时,x21<x22,∴1-x21>1-x22,∴ln(1-x21)>ln(1-x22),∴ln(1-x22)-ln(1-x21)<0,∴f(x2)-f(x1)<0,∴f(x2)<f(x1),∴f(x)在[0,1)上是减函数.综上可知,函数f(x)在(-1,0)上是增函数,在[0,1)上是减函数.。
第二章 2.2.2 第2课时 对数函数及其性质(二)
第2课时 对数函数及其性质(二)学习目标 1.掌握对数型复合函数单调区间的求法及单调性的判定方法.2.会解简单的对数不等式.3.了解反函数的概念及它们的图象特点.知识点一 不同底的对数函数图象的相对位置一般地,对于底数a >1的对数函数,在(1,+∞)区间内,底数越大越靠近x 轴;对于底数0<a <1的对数函数,在(1,+∞)区间内,底数越小越靠近x 轴. 知识点二 反函数的概念一般地,像y =a x 与y =log a x (a >0,且a ≠1)这样的两个函数互为反函数.(1)y =a x 的定义域R 就是y =log a x 的值域;而y =a x 的值域(0,+∞)就是y =log a x 的定义域. (2)互为反函数的两个函数y =a x (a >0,且a ≠1)与y =log a x (a >0,且a ≠1)的图象关于直线y =x 对称.(3)互为反函数的两个函数的单调性相同.但单调区间不一定相同.1.y =log 2x 2在(0,+∞)上为增函数.( √ )2.212log y x 在(0,+∞)上为增函数.( × )3.ln x <1的解集为(-∞,e).( × )4.y =a x 与x =log a y 的图象相同.( √ )题型一 比较大小例1 (1)若a =log 0.23,b =log 0.22.5,c =log 0.20.3,则( ) A.a >b >c B.c >b >a C.a >c >b D.c >a >b答案 B解析 因为0.3<2.5<3,且y =log 0.2x 在(0,+∞)上是减函数,所以c >b >a . (2)比较下列各组数的大小:①log 534与log 543;②1135log 2log 2与;③log 23与log 54.解 ①方法一 对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.方法二 因为log 534<0,log 543>0,所以log 534<log 543.②由于1321log 21log 3=,1521log 21log 5=,又对数函数y =log 2x 在(0,+∞)上是增函数,且0<15<13<1,所以0>log 213>log 215,所以1log 213<1log 215,所以3151l 2log 2og <.③取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54. 反思感悟 比较对数值大小时常用的四种方法 (1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化. (3)底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.跟踪训练1 (1)设a =log 2π,12log πb =,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a 答案 C解析 a =log 2π>1,12log π0b <=,c =π-2∈(0,1),所以a >c >b .(2)比较下列各组值的大小: ①2233log 0.5,log 0.6;②log 1.51.6,log 1.51.4;③log 0.57,log 0.67;④log 3π,log 20.8.解 ①因为函数23log y x =是减函数,且0.5<0.6,所以2233log 0.5log 0.6>.②因为函数y =log 1.5x 是增函数,且1.6>1.4, 所以log 1.51.6>log 1.51.4.③因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5,即log 0.67<log 0.57. ④因为log 3π>log 31=0,log 20.8<log 21=0,所以log 3π>log 20.8. 题型二 对数不等式的解法 例2 (1)7171lo lo g (g 4)x x >- ;(2)log a (2x -5)>log a (x -1). 解 (1)由题意可得⎩⎪⎨⎪⎧x >0,4-x >0,x <4-x ,解得0<x <2.所以原不等式的解集为{x |0<x <2}.(2)当a >1时,原不等式等价于⎩⎪⎨⎪⎧ 2x -5>0,x -1>0,2x -5>x -1.解得x >4.当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1,解得52<x <4.综上所述,当a >1时,原不等式的解集为{x |x >4};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪52<x <4. 反思感悟 对数不等式的三种考查类型及解法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况进行讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式(b =log a a b ),再借助y =log a x 的单调性求解.(3)形如log f (x )a >log g (x )a (f (x ),g (x )>0且不等于1,a >0)的不等式,可利用换底公式化为同底的对数进行求解,或利用函数图象求解.跟踪训练2 (1)求满足不等式log 3x <1的x 的取值集合; (2)若log a 25<1(a >0,且a ≠1),求实数a 的取值范围.解 (1)因为log 3x <1=log 33,所以x 满足的条件为⎩⎪⎨⎪⎧x >0,log 3x <log 33,即0<x <3.所以x 的取值集合为{x |0<x <3}. (2)log a 25<1,即log a 25<log a a .当a >1时,函数y =log a x 在定义域内是增函数, 所以log a 25<log a a 总成立;当0<a <1时,函数y =log a x 在定义域内是减函数, 由log a 25<log a a ,得a <25,即0<a <25.所以实数a 的取值范围为⎝⎛⎭⎫0,25∪(1,+∞).题型三 对数型复合函数的单调性命题角度1 求单调区间例3 求函数212log (1)y x =-的单调区间.解 要使212log (1)y x =-有意义,则1-x 2>0,所以x 2<1,所以-1<x <1, 因此函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,x 增大,t 增大,y =12log t 减小.所以当x ∈(-1,0]时,212log (1)y x =-是减函数;同理可知,当x ∈[0,1)时,212log (1)y x =-是增函数.即函数212log (1)y x =-的单调递减区间是(-1,0],单调递增区间为[0,1).反思感悟 求形如y =log a f (x )的函数的单调区间的步骤 (1)求出函数的定义域.(2)研究函数t =f (x )和函数y =log a t 在定义域上的单调性. (3)判断出函数的增减性求出单调区间.跟踪训练3 求函数f (x )=log 2(1-2x )的单调区间.解 因为1-2x >0,所以x <12.又设u =1-2x ,则y =log 2u 是(0,+∞)上的增函数. 又u =1-2x ,则当x ∈⎝⎛⎭⎫-∞,12时,u (x )是减函数, 所以函数f (x )=log 2(1-2x )的单调递减区间是⎝⎛⎭⎫-∞,12. 命题角度2 已知复合函数单调性求参数范围例4 已知函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,求实数a 的取值范围.考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 令g (x )=x 2-ax +a ,g (x )在⎝⎛⎦⎤-∞,a 2上是减函数,∵0<12<1,∴12log ()y g x =是减函数,而已知复合函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,∴只要g (x )在(-∞,2)上单调递减,且g (x )>0在x ∈(-∞,2)上恒成立, 即⎩⎪⎨⎪⎧2≤a 2,g (2)=(2)2-2a +a ≥0,∴22≤a ≤2(2+1),故所求a 的取值范围是[22,22+2].反思感悟 若a >1,则y =log a f (x )的单调性与y =f (x )的单调性相同,若0<a <1,则y =log a f (x )的单调性与y =f (x )的单调性相反.另外应注意单调区间必须包含于原函数的定义域. 跟踪训练4 若函数f (x )=log a (6-ax )在[0,2]上为减函数,则a 的取值范围是( ) A.(0,1) B.(1,3) C.(1,3] D.[3,+∞) 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围 答案 B解析 函数由y =log a u ,u =6-ax 复合而成,因为a >0,所以u =6-ax 是减函数,那么函数y =log a u 就是增函数,所以a >1,因为[0,2]为定义域的子集,所以当x =2时,u =6-ax 取得最小值,所以6-2a >0,解得a <3,所以1<a <3.故选B.1.不等式log 2(x -1)>-1的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x >23 B.{x |x >2}C.{x |x >1}D.⎩⎨⎧⎭⎬⎫x ⎪⎪x >32 答案 D解析 ∵log 2(x -1)>-1=log 212,∴x -1>12,即x >32.2.函数f (x )=-2x +5+lg(2-x -1)的定义域为( )A.(-5,+∞)B.[-5,+∞)C.(-5,0)D.(-2,0) 答案 C解析 由⎩⎪⎨⎪⎧x +5>0,2-x -1>0,∴⎩⎪⎨⎪⎧ x >-5,2-x >20,∴⎩⎪⎨⎪⎧x >-5,x <0,∴-5<x <0,故选C.3.如果2121l log og 0x y <<,那么( )A.y <x <1B.x <y <1C.1<x <yD.1<y <x 考点 对数不等式 题点 解对数不等式 答案 D4.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=________. 考点 函数的反函数 题点 求函数的反函数 答案 log 2x5.函数f (x )=ln x 2的单调减区间为____________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (-∞,0)1.与对数函数有关的复合函数的单调区间、奇偶性、不等式问题都要注意定义域的影响.2.y =a x 与x =log a y 的图象是相同的,只是为了适应习惯用x 表示自变量,y 表示因变量,把x =log a y 换成y =log a x ,y =log a x 才与y =a x 关于直线y =x 对称,因为点(a ,b )与点(b ,a )关于直线y =x 对称.一、选择题1.函数y =log 3(2x -1)的定义域为( ) A.[1,+∞) B.(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1考点 对数不等式 题点 解对数不等式 答案 A解析 要使函数有意义,需满足⎩⎪⎨⎪⎧log 3(2x -1)≥0,2x -1>0,∴⎩⎪⎨⎪⎧2x -1≥1,2x -1>0,∴x ≥1, ∴函数y =log 3(2x -1)的定义域为[1,+∞). 2.若log a 2<log b 2<0,则下列结论正确的是( ) A.0<a <b <1 B.0<b <a <1 C.a >b >1 D.b >a >1答案 B解析 因为log a 2<0,log b 2<0, 所以0<a <1,0<b <1, 又log a 2<log b 2, 所以a >b , 故0<b <a <1.3.函数f (x )=12log x 的单调递增区间是( )A.⎝⎛⎦⎤0,12 B.(0,1] C.(0,+∞) D.[1,+∞)答案 D解析 f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.函数y =15log (1-3x )的值域为( )A.RB.(-∞,0)C.(0,+∞)D.(1,+∞) 答案 C解析 因为3x >0,所以-3x <0, 所以1-3x <1.又y =15log t (t =1-3x )是关于t 的减函数,所以y =15log t >15log 1=0.5.已知log a 12<2,那么a 的取值范围是( )A.0<a <22B.a >22C.22<a <1 D.0<a <22或a >1 考点 对数不等式 题点 解对数不等式 答案 D解析 当a >1时,由log a 12<log a a 2得a 2>12,故a >1;当0<a <1时,由log a 12<log a a 2得0<a 2<12,故0<a <22. 综上可知,a 的取值范围是0<a <22或a >1. 6.函数y =13log (-3+4x -x 2)的单调递增区间是( )A.(-∞,2)B.(2,+∞)C.(1,2)D.(2,3) 答案 D解析 由-3+4x -x 2>0,得x 2-4x +3<0,得1<x <3. 设t =-3+4x -x 2,其图象的对称轴为x =2. ∵函数y =13log t 为减函数,∴要求函数y =13log (-3+4x -x 2)的单调递增区间,即求函数t =-3+4x -x 2,1<x <3的单调递减区间, ∵函数t =-3+4x -x 2,1<x <3的单调递减区间是(2,3),∴函数y =13log (-3+4x -x 2)的单调递增区间为(2,3),故选D.7.已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减,则a 的取值范围为( ) A.(-∞,4] B.[4,+∞ ) C.[-4,4] D.(-4,4] 答案 D解析 令g (x )=x 2-ax +3a ,∵f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减, ∴函数g (x )在区间[2,+∞)上单调递增,且恒大于0, ∴12a ≤2且g (2)>0, ∴a ≤4且4+a >0,∴-4<a ≤4, 故选D.8.已知指数函数y =⎝⎛⎭⎫1a x,当x ∈(0,+∞)时,有y >1,则关于x 的不等式log a (x -1)≤log a (6-x )的解集为( ) A.⎣⎡⎭⎫72,+∞ B.⎝⎛⎦⎤-∞,72 C.⎝⎛⎦⎤1,72 D.⎣⎡⎭⎫72,6答案 D解析 ∵y =⎝⎛⎭⎫1a x 在x ∈(0,+∞)时,有y >1, ∴1a>1,∴0<a <1. 于是由log a (x -1)≤log a (6-x ), 得⎩⎪⎨⎪⎧x -1≥6-x ,x -1>0,6-x >0,解得72≤x <6,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪72≤x <6.故选D. 二、填空题9.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点⎝⎛⎭⎫32,23,则a =________. 考点 函数的反函数 题点 反函数的图象与性质 答案2解析 因为点⎝⎛⎭⎫32,23在y =f (x )的图象上,所以点⎝⎛⎭⎫23,32在y =a x 的图象上,则有32=23a , 即a 2=2,又因为a >0,所以a = 2. 10.函数y =log 2(x 2-1)的增区间为________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (1,+∞)解析 由x 2-1>0得函数的定义域为{x |x <-1或x >1},又y =log 2x 在定义域上单调递增,y =x 2-1在(1,+∞)上单调递增,∴函数的增区间为(1,+∞).11.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x -1)<f (2-x )的解集是________. 答案 {x |1<x <2} 解析 ∵f (2)>f (3), ∴f (x )=log a x 是减函数,由f (2x -1)<f (2-x ),得⎩⎪⎨⎪⎧2x -1>0,2-x >0,2x -1>2-x ,∴⎩⎪⎨⎪⎧x >12,x <2,x >1,∴1<x <2. 三、解答题12.已知函数f (x )=log 2(x +1)-2. (1)若f (x )>0,求x 的取值范围; (2)若x ∈(-1,3],求f (x )的值域. 解 (1)函数f (x )=log 2(x +1)-2, ∵f (x )>0,即log 2(x +1)-2>0, ∴log 2(x +1)>2,∴x +1>4,∴x >3. 故x 的取值范围是x >3. (2)∵x ∈(-1,3], ∴x +1∈(0,4],∴log 2(x +1)∈(-∞,2], ∴log 2(x +1)-2∈(-∞,0], 故f (x )的值域为(-∞,0]. 13.已知f (x )=12log (x 2-ax -a ).(1)当a =-1时,求f (x )的单调区间及值域;(2)若f (x )在⎝⎛⎭⎫-∞,-12上为增函数,求实数a 的取值范围. 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 (1)当a =-1时,f (x )=12log (x 2+x +1),∵x 2+x +1=⎝⎛⎭⎫x +122+34≥34, ∴12log (x 2+x +1)≤123log 4=2-log 23, ∴f (x )的值域为(-∞,2-log 23].∵y =x 2+x +1在⎝⎛⎦⎤-∞,-12上单调递减,在⎝⎛⎭⎫-12,+∞上单调递增,y =12log x 在(0,+∞)上单调递减,∴f (x )的单调增区间为⎝⎛⎦⎤-∞,-12, 单调减区间为⎝⎛⎭⎫-12,+∞. (2)令u (x )=x 2-ax -a =⎝⎛⎭⎫x -a 22-a 24-a , ∵f (x )在⎝⎛⎭⎫-∞,-12上为单调增函数, 又∵y =12log u (x )为单调减函数,∴u (x )在⎝⎛⎭⎫-∞,-12上为单调减函数,且u (x )>0在⎝⎛⎭⎫-∞,-12上恒成立. ⎝⎛⎭⎫提示:⎝⎛⎭⎫-∞,-12⊆⎝⎛⎭⎫-∞,a 2 因此⎩⎨⎧ a 2≥-12,u ⎝⎛⎭⎫-12≥0,即⎩⎪⎨⎪⎧a ≥-1,14+a 2-a ≥0, 解得-1≤a ≤12. 故实数a 的取值范围是⎣⎡⎦⎤-1,12.14.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为________.考点 对数函数的综合问题题点 与单调性有关的对数函数综合问题答案 12解析 当a >1时,y =a x 与y =log a (x +1)在[0,1]上是增函数, ∴f (x )max =a +log a 2,f (x )min =a 0+log a 1=1,∴a +log a 2+1=a ,∴log a 2=-1,a =12(舍去); 当0<a <1时,y =a x 与y =log a (x +1)在[0,1]上是减函数,∴f (x )max =a 0+log a (0+1)=1,f (x )min =a +log a 2,∴a +log a 2+1=a ,∴a =12. 综上所述,a =12. 15.已知函数f (x )=lg(1+x )-lg(1-x ).(1)求函数f (x )的定义域,并证明f (x )是定义域上的奇函数;(2)用定义证明f (x )在定义域上是增函数;(3)求不等式f (2x -5)+f (2-x )<0的解集.(1)解 由对数函数的定义得⎩⎪⎨⎪⎧ 1-x >0,1+x >0,得⎩⎪⎨⎪⎧x <1,x >-1, 即-1<x <1,∴函数f (x )的定义域为(-1,1).∵f (-x )=lg(1-x )-lg(1+x )=-f (x ),∴f (x )是定义域上的奇函数.(2)证明 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=lg(1+x 1)-lg(1-x 1)-lg(1+x 2)+lg(1-x 2)=lg (1+x 1)(1-x 2)(1+x 2)(1-x 1). ∵-1<x 1<x 2<1,∴0<1+x 1<1+x 2,0<1-x 2<1-x 1,于是0<1+x 11+x 2<1,0<1-x 21-x 1<1, 则0<(1+x 1)(1-x 2)(1+x 2)(1-x 1)<1,∴lg (1+x 1)(1-x 2)(1+x 2)(1-x 1)<0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),即函数f (x )是(-1,1)上的增函数.(3)解 ∵f (x )在(-1,1)上是增函数且为奇函数,∴不等式f (2x -5)+f (2-x )<0可转化为f (2x -5)<-f (2-x )=f (x -2),∴⎩⎪⎨⎪⎧ -1<2x -5<1,-1<x -2<1,2x -5<x -2,解得2<x <3.∴不等式的解集为{x |2<x <3}.。
2.2.2 对数函数及其性质
2.2.2 对数函数及其性质教学目标(一)知识目标: 1、通过教学,使学生理解对数函数的概念.2、会画对数函数的图象,掌握对数函数的性质。
(二)能力要求:1、通过例题,使学生掌握利用函数的性质,比较两个数的大小的方法,从而加深学生对对函数性质的理解。
2、掌握对数函数的图象和性质.(三)德育目标:1、.用联系的观点分析问题;2、认识事物之间的互相转化.教学重点:1、对数函数的图象和性质2、对数函数性质的初步应用。
教学难点:难点是底数对对数函数性质的影响.教学方法:联想、类比、发现、探索教学辅助:多媒体(一)复习提问:1、指数函数图像和性质2、指数式与对数式的互化(二)引入课题:材料1:北京青年报曾报道:潮白河底挖出冰冻古树可能是山杨,专家经过检测可推断树的埋藏时间.你知道专家是根据什么推断数的埋藏时间的吗?材料2:湖南长沙马王堆汉墓女尸出土时考古学家推测汉墓女尸保存二千多年,你知道考古学家是怎么计算出这个时间的么?(三)对数函数定义:一般地,我们把函数xyalog=(0>a且1≠a)叫做对数函数,其中x是之变量,函数的定义域是(0,+∞)。
(四)对数函数的图像性质:(课件给出)(五)例题:例1:求下列函数的定义域:例2:比较下列各题中两个值的大小:(六)小结:(七)作业:习题7.2 7、8 ()()x y a -=4log 2()2log 1x y a =5.8log 4.3log 22, )1,0(9.5log 1.5log ≠>a a a a 且,7.2log 8.1log 3.03.0,。
2.2.2 对数函数及其性质
第一课时 对数函数的概念、图象与性质
学习目标
1. 理解对数函数的概念;
2. 掌握对数函数的图象与性质; 3. 对数函数的图象与性质应用.
北京青年报曾报道:潮 白河底挖出冰冻古树可 能是山杨,专家经过检 测可推断树的埋藏时 间.
• 你知道专家是根据什 么推断树的埋藏时间 的吗?
y
描 点
2
1 11
42
0 1 23 4
连 -1
线
-2
2 4 ….. 1 2…
x
作y=log0.5x图像
列
x
1/4 1/2 1 2 4
表 y log 2 x -2 -1 0 1 2
y log 1 x
2
1 0 -1 -2
y
2
描
2
点
1 11
42
0 1 23 4
x 这两个函
连
-1
线
-2
数的图象 有什么关
系呢?
关于x轴对称
(3)根据对称性(关于x轴对称)已知 f (x) log3 x
的图象,你能画出 f (x) log 1 x
3
y
的图象吗?
1
o
1
x
(4)当 0<a<1时与a>1时的图象又怎么画呢?
对数函数y=logax (a>0,且a≠1) 的图象与性质
a>1 图
0<a<1
象
定义域 : 值域:
3.已知对数函数过点(16,4)则函数解析式为—
2. 对数函数:y = loga x (a>0,且a≠ 1)
图象与性质
在同一坐标系中用描点法画出对数函数
y log2 x和y log 1 x 的图象。
高一数学对数函数及其性质2
比较下列各组数的大小:
(1)log2π与log20.9;
(2)log20.3与log0.20.3; (3)3log45与2log23;
(4)log1/30.3,log20.8
【思路点拨】 由题目可获取以下主要信息: (1)中底数相同,真数不同;
(2)中底数不同,真数相同;
(3)(4)中底数与真数各不相同.解答本题可考虑利用对数函数的单 调性或图象求解.
①函数y=loga(2-ax)在[0,1]有意义,
②函数在[0,1]上是减函数. 解决本类问题应注意复合函数单调性的判定方法.
【解析】 设y=f(x)=loga(2-ax),因为f(x)在[0,1]上是减函数,
则f(0)>f(1),即loga2>loga(2-a).
因为 a 为对数的底数,则 a>0,且 a≠1,
(2)若底数为同一字母,则可按对数函数的单调性对底数进行分类讨
论; (3)若底数不同,真数相同,则可利用对数函数的图象或利用换底公
式化为同底,再作比较.
(4)若底数、真数均不相同,则可借助中间值-1,0,1等作比较.
2.复合函数单调区间的求法 关于形如y=logaf(x)(a>0,且a≠1)一类函数的单调性:
而log2u1<log2u2 ∴函数y=log2(3+2x-x2)在(-1,1]上单调递增,
同理在[1,3)上单调递减.
已知y=loga(2-ax)在[0,1]上是关于x的减函数,则a的取值范围是( )
A.(0,1)
B.(1,2)
C.(0,2) D.(2,+∞) 【思路点拨】 由题目可以获取以下主要信息:
2a>a-1 即 ,解得 a>1.即实数 a 的取值范围是 a-1>0
22对数函数导学案
22对数函数导学案[学习目标]1.理解对数的概念及其运算性质.2.知道用换底公式能将一般对数转化成自然对数或常用对数.3.了解对数的发现历史以及其对简化运算的作用.4.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.5.能借助计算器或计算机画出具体的对数函数的图象,探索并了解对数函数的单调性与特殊点.6.知道对数函数yloga某与指数函数ya某互为反函数(a0,且a1).[学习要求]本节内容是在学习了指数函数之后,通过具体实例了解对数函数模型的实际背景,明确本节课要学习的问题——对数问题.学习对数概念,进而学习一类新的基本初等函数——对数函数.在学习对数定义时,要注意以下几点:一是要弄清楚对数式logaNb(a0,且a1)的含义,明确a,N,b,相对于指数式aN是什么数,并找出它们之间是什么关系.二是要注意对数式logaNb中字母的取值范围,要清楚对数定义中为什么要规定a0,且a1,N0.对数的运算性质是进行对数计算的重要依据,要理解其推导过程.学习过程中应充分发挥对数函数图象的作用,要做到自己动手做出对数函数的图象.会根据图象讨论对数函数的性质.[学习重点]对数函数的概念、图象和性质.[课时安排]6课时b第一课时2.2.1对数与对数运算(1)——对数新课导入回顾2.1.2指数函数一节中的例8,把我国1999年底人口13亿作为基数,如果人口年平均增长率控制在1%,那么经过20年后,我国人口数y最多为多少?我们算出经过年数某与人口数y满足关系y131.01某中,如果问“哪一年的人口数可达到18亿,20亿,30亿”?该如何解决?分析:人口数达到18亿时,是1999年底13亿人口的人口数达到20亿时,是1999年底13亿人口的达到30亿时,是1999年底13亿人口的某181.01某,需要从中求出经过年数某;13201.01某,需要从中求出经过年数某;人口数13301.01某,需要从中求出经过年数某;一般地,需要13从1.01N中求出经过年数某.这是我们这一节将要学习的对数问题.新课进展一、对数1.定义某一般地,如果aN(a0,且a1),那么数某叫做以a为底N的对数(logarithm),记作某logaN,其中a叫做对数的底数,N叫做真数.1818181.01某,其中某就是以1.01为底的对数,记作某log1.01;请同学们写出131********.01某,1.01某中的某.1313问:以4为底16的对数是2,用等式怎么表达?讨论:按照对数的定义,以4为底16的对数是2,可记作log4162;同样从对数的定义出发,可写成416.我们从一般的角度来考虑这个问题,根据对数的定义,可以得到对数和指数间的关系:某某当a0,且a1时,如果aN,那么某logaN;如果某logaN,那么aN.即2a某N等价于某logaN,记作当a0,且a1时,a某N某logaN.当a0,且a1时,计算:loga1,logaa.分析:利用对数和指数间的关系.由于aN0,所以:负数和零没有对数.2.常用对数和自然对数3.课堂例题例1将下列指数式化为对数式,对数式化为指数式:某(1)5625;1(2)2;6464(3)5.73;3(4)log1164;2m(5)lg0.012;(6)ln102.303.例2求下列各式中某的值2(1)log64某;3(2)log某86;(3)lg100某;(4)lne某.24.课堂练习1.把下列指数式写成对数式:(1)28;(1)log22;43(2)232.(2)log34.8452.把下列对数式写成指数式:5.布置作业课本第74页习题2.2.A组1、2.第二课时2.2.1对数与对数运算(2)——对数的运算复习导入通过提问复习上节课主要学习内容.问:你如何理解对数?答:从运算的角度,对数运算可以看成是指数运算的逆运算.因此,对数式和指数式的互化某在对数学习过程中很重要.当a0,且a1时,aN某logaN,即logaa 某某.新课进展通过师生探究,学习本节主要内容问:从指数与对数的关系以及指数运算性质,你能得出相应的对数运算性质吗?回顾指数幂的运算性质:amanamn,amanamn,(am)namn.师生讨论:把指对数互化的式子具体化:设Ma,Na,于是有mnMNamn,Mamn,Mnamn.logaMm,logaNn.N根据对数的定义有:logaamnmn,logaamnmn,logaamnmn.于是有二、对数的运算(1)loga(MN)logaMlogaN;(2)logaMlogaMlogaN;N(3)logaMnnlogaM(nR).课堂例题例1用loga某,logay,logaz表示下列各式:某y(1)loga;z(2)loga某2yz.例2求下列各式的值(1)log2(4725);(2)lg.课堂练习1.用loga某,logay,logaz表示下列各式(1)lg(某yz);某y2(3)lg;z某y2(2)lg;某(4)lg2.yz(2)lg1002;2.求下列各式的值:(1)log3(2792);(3)lg0.00001;(1)log26log23;(4)lne.(2)lg5lg2;(4)log35log315.3.求下列各式的值:1(3)log53log5;3布置作业课本第74页习题2.2A组第3、4、5题.第三课时2.2.1对数与对数运算(3)——对数的换底公式复习导入通过提问复习上节课主要学习内容.问:上节课我们学习了哪些对数的性质?请用文字语言叙述.答:(1)积的对数等于同底对数的和;(2)商的对数等于同底对数的差;(3)n次幂的对数等于同底对数的n倍;即:(1)loga(MN)logaMlogaN;(2)logaMlogaMlogaN;N(3)logaMnnlogaM(nR).新课进展三、对数的换底公式问:前面我们学习了常用对数和自然对数,我们知道任意不等于1的正数都可以作为对数的底,能否将其它底的对数转换为以10或e为底的对数?把问题一般化,能否把以a为底转化为以c为底?师生共同探究:设logabp,则ab,对此等式两边取以c为底的对数,得到:plogcaplogcb,根据对数的性质,有:plogcalogcb,所以plogcb.其中a0,且a1,c0,且c1.logcalogcb称为换底公式.logcalogcb.logca即logab公式logab用换底公式可以很方便地利用计算器进行对数的数值计算.例如,求我国人口达到18亿的年份,就是计算某log1.0118的值,利用换底公式和对数的运算性质,可得:13180.004313lg1.01lg1.01lg课堂例题例1(课本第66页例5)例2(课本第67页例6)本例题根据问题的实际意义可知,对于每一个碳14含量P,通过对应关系tlog57302P,都有唯一确定的年代t与它对应,所以,t是P的函数.课堂练习利用对数的换底公式化简下列各式:(2)log23log34log45log52;(3)(log43log83)(log32log92).布置作业课本第74页习题2.2A组4(1)——(4)、5(1)——(4)、6题.第四课时2.2.2对数函数及其性质(1)情景问题导入1.课堂练习课本第74页习题2.2A组第6题.2.上节课的例题,考古学家通过提取附着在出土文物、古遗址上死亡生物体的残留物测定碳14含量P,估算出土文物或古遗址地年代t,即tlog一、对数函数的定义一般地,我们把函数yloga某(a0,且a1)叫做对数函数(logarithmic57302P.function),其中某是自变量,函数的定义域是(0,+).我们类比指数函数ya某(a0,且a1)图象与性质,来研究对数函数yloga某(a0,且a1)的图象和性质.二、对数函数的图象在同一坐标系中画出对数函数ylog2某和ylog1某的图象(可用描点法,也可借助科学2计算器或计算机).(图及表格见课本第70页)讨论:函数ylog2某和ylog1某的图象之间的关系.2ylog1某log2某,又点(某,y)和点(某,y)关于某轴对称,所以,ylog2某和2ylog1某的图象关于某轴对称.2思考函数yloga某与ylog1某(a0,且a1)的图象有什么关系?a三、对数函数的性质一般地,对数函数yloga某(a0,且a1)的图象和性质如下表所示.课堂例题例1求下列函数的定义域:(1)yloga某2;(2)yloga(4某).例2比较下列各组数中两个值的大小:(1)ylog23.4,ylog28.5;(2)ylog0.31.8,ylog0.32.7;(3)yloga5.1,yloga5.9(a>0,且a≠1).该两例是巩固对数函数的概念,利用单调性比较对数式的大小.课堂练习1.画出函数ylog3某及ylog1某的图象,3并且说明这两个函数的相同点和不同点.;log2某2.求下列函数的定义域(1)ylog5(1某);(2)y(3)ylog;713某(4)ylog3某.3.比较下列各题中两个值的大小:(1)log106,log108;(3)log20.5,log20.6;33(2)log0.56,log0.54.(4)log1.51.6,log1.51.4.布置作业课本第74页习题2.2A组第7、8、9题.第五课时2.2.2对数函数及其性质(2)复习导入通过提问复习上节课主要学习内容.问:我们是怎样研究对数函数的?投影出一般的对数函数的特征图象,总结其单调性和特殊点.新课进展四、对数函数的应用课堂例题例1(课本第72页例9)利用对数函数,解决溶液酸碱度pH值得测量问题,体会对数函数的应用价值.例2(课本第75页习题2.2A组第12题)学习用数学的观点处理现实问题的方法,进一步引导学生体会对数函数的应用价值.例3(课本第75页习题2.2B组第3题)体会对数函数应用的广泛性.课堂练习课本第75页习题2.2A组第12题.布置作业课本第82页复习参考题A组第9题.课本第83页复习参考题B组第5题.第六课时2.2.2对数函数及其性质(3)——对数函数与指数函数的关系问题导入问:在指数函数y2中,某为自变量,y为因变量.如果把y当成自变量,某当成因变量,那么某是y的函数吗?如果是,那么对应关系是什么?如果不是,请说明理由.通过对问题的讨论,形成反函数的概念.通过摄氏温度与华氏温度的换算,进一步明确反函数的概念.在指数函数y2中,某是自变量,定义域是某R,y是某的函数,且值域y(0,+).根据指数与对数的关系,由指数式y2某可得到对数式某log2y,这样,对于任意一个某某y(0,+),通过式子某log2y,某在R中都有唯一确定的值和它对应.我们可以把y作为某自变量,某作为y的函数,这时,我们就把某log2y(y(0,+))称为函数y2(某R)的反函数(inverefunction).在函数某log2y中,y是自变量,某是y的函数.但习惯上,我们通常用某表示自变量,y表示函数.为此,我们把函数某log2y中的字母某,y交换,把它写成ylog2某,这样,对数某函数ylog2某(某(0,+))是指数函数y2某R的反函数.课堂讨论1.如何说明指数函数ya某(a0,且a1)与对数函数yloga某(a0,且a1)互为反函数.2.互为反函数的这两个函数的定义域和值域有什么关系?3.互为反函数的这两个函数的图象有什么关系?答案提示:1.在指数函数ya某中,某是自变量,定义域是某R,y是某的函数,且值域y(0,+).根据指数与对数的关系,由指数式ya某可得到对数式某logay,这样,对于任意一个y(0,+),通过式子某logay,某在R中都有唯一确定的值和它对应.我们可以把y作为自变量,某作为y的函数,这时,某logay(y(0,+))就为指数函数ya某的反函数,把自变量用某表示,因变量用y表示,则对数函数yloga某就是指数函数ya某的反函数(a0,且a1).反之,也可类似说明对数函数yloga某(a0,且a1)是指数函数ya某(a0,且a1)的反函数.2.互为反函数的这两个函数的定义域和值域恰好互换,例如y2的定义域为实数集R,值域为(0,),y2的反函数的定义域为(0,),值域为实数集R.3.在同一个直角坐标系中,互为反函数的函数图象关于直线y某对称.说明:作为探究与发现,教材只要求学生了解指数函数ya和对数函数某某某yloga某(a0,且a1)互为反函数.对反函数的一般概念、判断一个函数是否存在反函数以及求函数的反函数等均不作要求.课堂例题例1求下列函数的反函数:(1)y();(2)ylog5某.13某解:(1)y()的反函数为ylog1某,某(0,).33某(2)函数ylog5某的反函数为y5某,某R.课堂练习写出下列函数的反函数:(1)ylog4某;(2)ylog1某.4本课小结1.对数函数yloga某(a0,且a1)与同底的指数函数ya某互为反函数.2.对数函数yloga某与同底的指数函数ya某的性质相互对应.布置作业1.根据对数函数yloga某(a0,且a1)与同底的指数函数ya某互为反函数的关系,列出指数函数与对数函数的对照表.2.课本第82页复习参考题A组第8题.。
2019A新高中数学必修第一册:2.2.2 对数函数及其性质(第2课时)
(1) 根据对数函数性质及上述 pH 的计算公式, 说明溶液酸
碱度与溶液中氢离子的浓度之间的变化关系;
(2) 已知纯净水中氢离子的浓度为 [H+]=10-7摩尔/升, 计算
纯净水的 pH.
解:
(1)
公式化为
pH
=
lg[H+]-1 =
lg
1 [H
, ]
此对数函数是 (0, ∞) 上的增函数,
当[H+]增大时,
当 I=10-12 W/m2 时,
LI =10lg(1100--1122 ) =10lg1 =0.
∴人听觉的声强级范围是 0 到 120 dB.
3. 声强级 LI (单位: dB) 由公式 LI =10lg(10I-12 )
给出, 其中 I 为声强 (单位: W/m2).
(1) 一般正常人听觉能忍受的最高声强为 1 W/m2, 能
y = logax (a>0, a≠1). 即 指数函数与对数函数互为反函数.
一般地, 求一个函数的反函数, 就是将函数中 的自变量 x 表示成 y 的函数, 其定义域是原函数的 值域.
由于习惯用 x 表示自变量, 所以将变换后函数 中的字母 x, y 相交换.
如: y=log3x,
用 y 表示 x: x=3y,
5. (1) 试着举几个满足 “对定义域内任意实数 a、 b, 都有 f(a·b)=f(a)f(b)” 的函数例子, 你能说出这些 函数具有哪些共同性质吗?
(2) 试着举几个满足 “对定义域内任意实数 a、b, 都有 f(ab)=f(a)·f(b)” 的函数例子, 你能说出这些函 数具有哪些共同性质吗?
函数中的字母 x, y 相交换得
y=g(x), 指数函数与对数函数互为反函数. 如果两函数互为反函数, 则它们的图象关 于直线 y=x 即称.
对数函数的性质PPT课件
y
思考1:函数的定义域、值
域、单调性、函数值分布
分别如何?
01
x
思考2:若0 b a 1, y
则函数 y loga x与
y logb x的图象的相 0 1
对位置关系如何?
x
y logb x y loga x
思考3:对数函数具有奇偶性吗?
思考4:对数函数存在最大值和最小值 吗?
思考5:设a 0, a 1,若 loga m loga n,则 m与n的大小关系如何?若loga m loga n , 则m与n的大小关系如何?
例3 溶液酸碱度的测量: 溶液酸碱度是通过pH刻画的. pH
的计算公式为pH=-lg[H+],其中[H+] 表示溶液中氢离子的浓度,单位是摩 尔/升. (1)根据对数函数性质及上述pH的计 算公式,说明溶液酸碱度与溶液中氢 离子的浓度之间的变化关系; (2)已知纯净水中氢离子的浓度为[H+ =10-7摩尔/升,计算纯净水的pH.
水2H的2O光解色:光素 O2+4H++4eNADPH的形成:
CO2的固定: CO2+C5
C3的还原:2C3
酶
酶
2C3
(CH2O)
NADP++2e+H+ 酶 NADPH
ATP的形成:
ADP+Pi + 电能
酶
ATP
光能转换成电能
NADPH 、ATP ADP+Pi
C5的再生:
酶
2C3
NADPH
、 ATP
一般生活在缺氧的 环境中,通过无氧 呼吸分解自身成分 获得能量。有氧时, 生命活动将受到抑 制
相同 点
§2.2.2对数函数及其性质(2)
例.阅读课本P72例9及P73.
【例题探究】 例2.求下列函数的定义域与值域: (1)y=log2(x2+2x+5); (2)y=log1/2(4x-x2); (3) y (log x )2 2log x 3
§2.2.2对数函数 及其性质(2)
1.对数函数的图象与性质 a>1 0<a<1y 1 o y Nhomakorabeax
o
1
x
定义域:(0,+∞) ,值域:R 过定点(1,0),即x=1时,y=0 在(0,+∞)上递增 在(0,+∞)上递减
2.重要结论 同 正 异 负
a 1 0 a 1 loga x 0 或 x 1 0 x 1 a 1 0 a 1 loga x 0 或 0 x 1 x 1
【练习一】 2.求满足下列不等关系的x的范围. (1) log2(x+1)>log2(1-x); (0,1) (2) log1/3x2>log1/34 (-2, 0)∪(0, 2) (2) log3(2x-1)<1; (0, 2) (3) log1/2(3-2x)>0. (1, 3/2)
探究 观察下图所示函数 y=log2x,y=log0.5x,y=log10x,y =log0.1x 图象,你能得出什么结论?
2 2
【作业】1.P75 B组 3、4 2.求函数
f ( x) log1 ( x 2x 3) 1
2 2
第二章 2.2.2对数函数及其性质(2)
答案:A
返回
3.不等式 log 1 (2x+1)>log 1 (3-x)的解集为_____________.
2 2
2x+1>0, 解析:由题意3-x>0, 2x+1<3-x 1 2 ⇒-2<x<3.
1 2 答案:{x|-2<x<3}
1 x>-2, ⇒x<3, 2 x< 3
-
1 3
.
返回
取得最小值时 x= 2
1 - 3 - 2 3
= 2<2,
这时 x [2,8],舍去. 32 1 1 若2loga8+2 -8=1, 1 则 a=2,此时取得最小值时
1- 3 x=2 2 =2
2∈[2,8]符合题意,
1 ∴a=2.
=(log2x-1)(log2x-2)
返回
=(log2x)2-3log2x+2,(6 分) 令 t=log2x. ∵x∈[ 2,8],
1 ∴t∈2,3,(8
分)
利用换元法解决问题时, 一定要求出换元后的变 量的取值范围,即新 函数的定义域.
求此类函数的最值,应 借助函数的图象求解, 此处极易将两端点处的 函数值作为最值,从 而导致解题错误.
返回
[随堂即时演练]
1.设 a=log54,b=log53,c=log45,则 A.a<c<b C.a<b<c B.b<c<a D.b<a<c ( )
解析:由于 b=log53<a=log54<1<log45=c,故 b< a<c.
答案:D
返回
2.函数
f(x)=lg
1 的奇偶性是 2 x +1+x
高中数学 2.2.2 对数函数及其性质 第2课时 对数函数性质的应用课件 新人教A版必修1
x∈(0,1)⇒y∈_(_-__∞_,__0_) ; x∈(0,1)⇒y∈_(_0_,__+__∞_);
x∈[1,+∞)
x∈[1,+∞)
⇒y∈__[_0,__+__∞_)__
⇒y∈__(_-__∞_,__0_]_
第九页,共48页。
新知导学 1.对数复合函数的单调性 复合函数y=f[g(x)]是由y=f(x)与y=g(x)复合而成,若f(x) 与g(x)的单调性相同,则其复合函数f[g(x)]为_增__函__数___;若f(x) 与g(x)的单调性相反,则其复合函数f[g(x减)]为函数__(_h_á_n_sh_ù_). 对于对数型复合函数y=logaf(x)来说,函数y=logaf(x)可看 成是y=logau与u=f(x)两个简单函数复合而成的,由复合函数单 调性“同增异减”的规律即可判断(pànduàn).另外,在求复合 函数的单调性时,首先要考虑函数的定义域.
第二十八页,共48页。
(2)设 u=3+2x-x2,
则 u=-(x-1)2+4≤4.
∵u>0,∴0<u≤4.
又 y=log1 u 在(0,+∞)上是减函数,
2
∴log1 u≥log1 4=-2,
2
2
∴y=log1 (3+2x-x2)的值域为{y|y≥-2}.
2
第二十九页,共48页。
规律总结(zǒngjié):求复合函数y =f[g(x)]值域的方法设y=f(t),t=g(x),先求t=g(x)的值域再求 y=f(x)的值域.
第二十页,共48页。
③因为 0>log0.23>log0.24,所以log10.23<log10.24,即 log30.2 <log40.2.
④因为函数 y=log3x 是增函数,且 π>3,所以 log3π>log33 =1.
2.2.2_对数函数及其性质(2)_课件(人教A版必修1)
• (1)若y=f(u),u=g(x)在给定区间上的单调性相同, 则函数y=f[g(x)]是增函数;
• (2)若y=f(u),u=g(x)在给定区间上的单调性相反, 则函数y=f[g(x)]是减函数.
[解] 由 3x2-2x-1>0 得函数定义域为{x|x>1 或 x<-13}.
• 解:(1)当a>1时,原不等式等价于
a2a+1<3a,解得a 2a+1>0
(2)当 0<a<1 时,
原不等式等价于20a<+a 1>3a, 3a>0
解得 0<a<1. 综上所述,a 的范围是 0<a<1 或 a>1.
• 类型二 对数型函数的单调性问题
• [例2] 讨论函数f(x)=loga(3x2-2x-1)的单调性. • [分析] 本题考查复合函数单调性的判定方法.一般
若 a∈(1,+∞),当 x∈[0,1]时,u 是 x 的减函数, 函数 y=logau 是 u 的增函数,那么函数 y=loga(2-ax) 在[0,1]上是减函数,且 2-ax>0;当 x∈[0,1]时必须恒
2.2 对数函数
2.2.2 对数函数及其性质
第2课时 对数函数的性质应用
目标了然于胸,让讲台见证您的高瞻远瞩
1.要借助函数图象掌握对数函数的性质,这是本节 内容的重点.
2.要会利用对数函数的性质解决相关问题,这也 是本节的一个难点内容.
3.理解指数函数和对数函数的互为反函数的关系.
研习新知
• 新知视界
解:先求函数的定义域 2-ax>0,有 ax<2. ∵a 是对数的底数,故有 a>0, ∴函数的定义域为{a|x<a}. 设 u=2-ax,若 a∈(0,1),当 x∈[0,1]时,u 是 x 的减函数,而 y=logau 是 u 的减函数,那么函数 y=loga(2-ax)在[0,1]上是增函数,不合题意;
必修1《2_2_2对数函数及其性质》
必修1《2.2.2 对数函数及其性质》一、教材分析本小节选自《普通高中课程标准数学教科书-数学必修(一)》第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。
对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有很多类似之处。
与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,水平要求也更高。
学习对数函数是对指数函数知识和方法的巩固、深化和提升,也为解决函数综合问题及其在实际上的应用奠定良好的基础。
二、学生学习情况分析刚从初中升入高一的学生,仍保留着初中生很多学习特点,水平发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。
因为函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算水平有所下降,这双重问题增加了对数函数教学的难度。
教师必须理解到这个点,教学中要控制要求的拔高,注重学习过程。
三、设计理念本节课以建构主义基本理论为指导,以新课标基本理念为依据实行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。
四、教学目标1.通过具体实例,直观理解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2.能借助计算器或计算机画出具体对数函数的图象,探索并理解对数函数的单调性与特殊点;3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生使用函数的观点解决实际问题。
五、教学重点与难点重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.六、教学过程设计教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结(一)熟悉背景、引入课题1.让学生看材料:如图1材料(多媒体):某种细胞分裂时,由1个分裂成2个,2个分裂成4个……,假设要求这种细胞经过多少次分裂,大约能够得到细胞1万个,10万个……,不难发现:分裂次数y就是要得到的细胞个数x的函数,即;图12.引导学生观察这个函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:①对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:,都不是对数函数.②对数函数对底数的限制:,且.3.根据对数函数定义填空;例1 (1)函数y=log a x2的定义域是___________ (其中a>0,a≠1)(2) 函数y=log a(4-x) 的定义域是___________ (其中a>0,a≠1)说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理解,所以把教材中的解答题改为填空题,节省时间,点到为止。