函数与方程根的问题练习题7

合集下载

一元二次方程根的分布例题

一元二次方程根的分布例题

例6.2.已知抛物线y = 2x2-mx+m与直角坐标平面上两点(0,0), (1,1)为端点 的线段(除去两个端点)有公共点,求m的取值范围. 解:以(0,0), (1,1)为端点的线段所在直线为y=x,代入抛物线方程得:
x = 2x2-mx+m 即 2x2-(m+1)x+m=0, ① 由题意,方程①在区间(0, 1)上有实根,令f(x) = 2x2-(m+1)x+m,则 当且仅当 f(0)·f(1)<0或 m<0或 m≤3-2且m≠0. 故m的取值范围为 (-, 0)∪(0, 3-2]. 例6.3.设关于的方程R), (1)若方程有实数解,求实数b的取值范围; (2)当方程有实数解时,讨论方程实根的个数,并求出方程的 解。 分析:可用换元法,设,原方程化为二次方程,但要注意,故原方程有 解并不等价于方程有解,而等价于方程在内有解.另外,方程有解的问 题也可以通过参变分离转化为求值域的问题,它的原理是:若关于的方 程有解,则的值域. 解:(1)原方程为, , 时方程有实数解; (2)①当时,,∴方程有唯一解; ②当时,. 的解为; 令 的解为; 综合①、②,得 1)当时原方程有两解:; 2)当时,原方程有唯一解; 3)当时,原方程无解。 变式:已知方程在上有两个根,求的取值范围. 解:令,当时,. 由于是一一映射的函数,所以在上有两个值,则在上有两个对应的 值.因而方程在(0,2)上有两个不等实根,其充要条件为
例6.2.已知抛物线y = 2x2-mx+m与直角坐Байду номын сангаас平面上两点(0,0), (1,1)为端点 的线段(除去两个端点)有公共点,求m的取值范围.
例6.3.设关于的方程R), (1)若方程有实数解,求实数b的取值范围; (2)当方程有实数解时,讨论方程实根的个数,并求出方程的

考前归纳总结导数中的有关方程根的问题

考前归纳总结导数中的有关方程根的问题

导数中的有关方程根的问题一、常见基本题型:(1) 判断根的个数问题,常常转化为函数图象的交点个数问题,通过构造函数来求解,例1.已知函数221()ln(1),().1f x x g x a x =+=+-求方程()()f x g x =的根的个数. 解: 令221()()()ln(1)1h x f x g x x a x =-=+--- '2222222211()21(1)1(1)x x h x x x x x x ⎡⎤=+=+⎢⎥+-+-⎣⎦当[0,1)(1,)x ∈⋃+∞时,'()0h x ≥当(,1)(1,0)x ∈-∞-⋃-时,'()0h x <因此,()h x 在(,1),(1,0)-∞--时,()h x 单调递减,在(0,1),(1,)+∞时,()h x 单调递增.又()h x 为偶函数,当(1,1)x ∈-时,()h x 极小值为(0)1h a =-当1x -→-时,()h x →-∞, 当1x +→-时,()h x →+∞当x →-∞时,()h x →+∞, 当x →+∞时,()h x →+∞故()()f x g x =的根的情况为:当10a ->时,即1a <时,原方程有2个根;当10a -=时,即1a =时,原方程有3个根;当10a -<时,即1a >时,原方程有4个根(2)已知方程在给定的区间上解的情况,去求参数的取值范围,另外有关方程零点的 个数问题其实质也是方程根的问题。

例1.已知32()(),(,f x ax bx b a x a b =++-是不同时为零的常数),其导函数为()f x ',(1)求证:函数()y f x '=在(1,0)-内至少存在一个零点;(2)若函数()f x 为奇函数,且在1x =处的切线垂直于直线230x y +-=,关于x的方程1()4f x t =-在[1,](1)t t ->-上有且只有一个实数根,求实数t 的取值 范围.解:(1)证明:因为2()32f x ax bx b a '=++-当0a =时,12x =-符合题意; 当0a ≠时,2321b b x x a a ++-,令b t a =,则2321x tx t ++- 令2()321h x x tx t =++-,11()024h -=-<, 当1t >时,(0)10h t =->, ()y h x ∴=在1(,0)2-内有零点;当1t ≤时,(1)210h t -=-≥>,()y h x ∴=在1(1,)2--内有零点.∴当0a ≠时,()y h x =在(1,0)-内至少有一个零点. 综上可知,函数()y f x '=在(1,0)-内至少有一个零点(2) 因为32()()f x ax bx b a x =++-为奇函数,所以0b =,所以3()f x ax ax =-,2()3f x ax a '=-. 又()f x 在1x =处的切线垂直于直线230x y +-=,所以1a =,即3()f x x x =-.()f x ∴在(,),()33-∞-+∞上是单调递增函数,在[上是单调递减函数,由()0f x =解得1x =±,0x =,由1()4f x x =-解之得0x x ==作()y f x =与14y x =-的图知交点横坐标为02x x =±=当383[(0,){}x ∈时,过14y x =-图象上任意一点向左作平行于 x 轴的直线与()y f x =都只有唯一交点,当x 取其它任何值时都有两个或没有交点。

高中数学试卷 代数——函数概念练习题

高中数学试卷 代数——函数概念练习题

高中数学试卷 代数——函数概念练习题一、单选题1.自2019年1月1日起,我国个人所得税税额根据应纳税所得额、税率和速算扣除数确定,计算公式为:个人所得税税额=应纳税所得额×税率-速算扣除数.应纳税所得额的计算公式为:应纳税所得额=综合所得收入额-基本减除费用-专项扣除-专项附加扣除-依法确定的其他扣除.其中,“基本减除费用”(免征额)为每年60000元.部分税率与速算扣除数见下表:若某人全年综合所得收入额为249600元,专项扣除占综合所得收入额的20%,专项附加扣除是52800元,依法确定其他扣除是4560元,则他全年应缴纳的个人所得税应该是( ) A .5712元B .8232元C .11712元D .33000元2.下列函数是奇函数的是( )A .y=x ﹣1B .y=2x 2﹣3C .y=x 3D .y =x(x−1)x−13.已知幂函数 f(x)=x α 的图象经过点 (2,√22) ,则 f(16)= ( )A .4B .-4C .14D .−144.已知幂函数 y =f(x) 的图像经过点 (2,4) ,则 f(√2) 的值为( )A .1B .2C .3D .45.已知 f(x)={x −10(x ≥3)f(x +2)(x <3),则 f(2) 的值为 ()A .-6B .-8C .6D .86.下列函数中,在 (0,+∞) 单调递减,且是偶函数的是( )A .y =2x 2B .y =3xC .y =−2x +1D .y =(12)|x|7.下列函数中与函数 y =x 相等的函数是( )A .y =(√x)2B .y =√x 2C .y =x 2xD .y =(√x 3)38.已知函数f (x )的图象恒过点(1,1),则函数f (x ﹣3)的图象恒过( )A .(4,1)B .(﹣3,1)C .(1,﹣3)D .(1,4)9.f(x)=x1−cosx 的部分图象大致是( )A .B .C .D .10.已知函数 f(x)=x 2−2x 在区间 [−1,t] 上的最大值为3,则实数t 的取值范围是( )A .(1,3]B .[1,3]C .[−1,3]D .(-1,3]11.若函数 f(x)=x 2+2(a −1)x +2 在区间 (−∞,4] 内递减,那么实数 a 的取值范围是( ) A .a ≤−3B .a ≥−3C .a ≤5D .a ≥312.已知符号函数 sgn x ={1,x >0,0,x =0,−1,x <0.f(x) 是 R 上的增函数, g(x)=f(x)−f(ax) (a >1) ,则( ) A .sgn[g(x)]=sgnx B .sgn[g(x)]=−sgnx C .sgn[g(x)]=sgn[f(x)]D .sgn[g(x)]=−sgn[f(x)]13.已知f (x )=x 2e x (e 为自然对数的底),若存在唯一的x 0∈[﹣1,1],使得f (x 0)=m 在m∈[t ﹣2,t]上恒成立,则实数t 的取值范围是( ) A .[1,e] B .(1+ 1e ,e]C .(2,e]D .(2+ 1e,e]14.已知函数 f(x) = √2x −1 ,则g (x )=f (2x-1)+ 1x−2的定义域为( )A .[32,+∞)B .[32,2)∪(2,+∞)C .[34,2)∪(2,+∞)D .(﹣∞,2)∈(2,+∞)15.若a 、b 是方程x +lgx =4,x +10x=4的解,函数f (x )={x 2+(a +b )x +2,x ≤02,x >0,则关于x 的方程f (x )=x 的解的个数是( ) A .1B .2C .3D .416.定义在R 上的函数 f(x) 满足 f(−x)+f(x)=0,f(x)=f(2−x) ;且当 x ∈[0,1] 时,f(x)=x 3−x 2+x .则方程 7f(x)−x +2=0 所有的根之和为( ) A .14B .12C .10D .817.已知函数 f(x) 满足:对任意的 x ∈R ,f(x)+f(5−x)=−1 ,若函数 y =f(x) 与 y =1−x2x−5 图像的交点为 (x i ,y i )(i =1.2,….,n) ,则 ∑(x i +y i )nn=1的值为( ) A .0 B .n C .2n D .3n二、填空题18.已知函数 f(x) 的周期为4,且当 x ∈[−2,2] 时, f(x)=2−x 2 ,则 f(9)= . 19.函数 f(x)=√2−xln(x+1)的定义域为 .20.已知函数 f(x) 满足 f(x +y)=f(x)+f(y)−3 ,且 f(4)=5 ,则 f(2)= . 21.函数y=12x−1的定义域为 . 22.已知f(x +1)=x 2+2x +4,则f(x)的最小值为 . 23.若函数f(x)满足f(x)=2lnx −xf ′(2),则f ′(2)= .24.已知函数 f(x)=3x 2+6x +1 ,且 f ′(x 0)=0 ,则 x 0= . 25.已知 f(x)=e πx sinπx ,则 f ′(12)=26.已知函数 f(x)=|x −1|+|x|+|x +1| ,且 f(a 2−3a +2)=f(a −1) ,则 f(x) 的最小值为 ;满足条件的所有 a 的值为 . 27.若函数 f(x)={2x−1+1,x >11−(12)x−1,x <1, ,则 f(a)+f(2−a)= .28.设函数 f(x)(x ∈R) 满足 f(−x)=f(x),f(x)=f(2−x) ,且当 x ∈[0,1] 时 f(x)=x 3 ,又函数 g(x)=|xcos(πx)| ,则函数 ℎ(x)=g(x)−f(x) 在 [−12,32] 上的零点个数为 .29.函数y =[x]称为高斯函数,[x]表示不超过,x 的最大整数,如[0.9]=0,[ln99]=1.已知数列{a n }满足a 3=3,且a n =n(a n+1−a n ),若b n =[lna n ],则数列{b n }的2022项和为 .30.已知函数f (x )=x 2+2bx ,g (x )=|x ﹣1|,若对任意x 1,x 2∈[0,2],当x 1<x 2时都有f (x 1)﹣f(x 2)<g (x 1)﹣g (x 2),则实数b 的最小值为 .31.已知f (x )是定义域在(0,+∞)上的单调递增函数.且满足f (6)=1.f (x )﹣f (y )=f ( x y )(x >0,y >0).则不等式f (x+3)<f ( 1x )+2的解集是 .32.已知函数 f(x)=1x +1x+1+1x+2 ,由 f(x −1)=1x−1+1x +1x+1是奇函数,可得函数 f(x) 的图象关于点 (−1,0) 对称,类比这一结论,可得函数 g(x)=x+2x+1+x+3x+2+⋯+x+7x+6的图象关于点 对称.33.已知 f(x) 满足 f(x)+1=1f(x+1), 当 x ∈[0,1] 时, f(x)=x. 若函数 g(x)=f(x)−mx −m 在 (−1,1] 内有2个零点,则实数 m 的取值范围是 .34.已知圆O 的方程为x 2+y 2=1,P 是圆C :(x −2)2+y 2=16上一点,过P 作圆O 的两条切线,切点分别为A 、B ,则PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ 的取值范围为 .三、解答题35.已知直线 l 过点 P(−1,2) .(1)若直线 l 在两坐标轴上截距和为零,求 l 方程;(2)设直线 l 的斜率 k >0 ,直线 l 与两坐标轴交点分别为 A 、 B ,求 ΔAOB 面积最小值.36.如图,把长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆的半径为x ,求此框架围成的面积y 与x 的解析式,并写出它的定义域.37.求函数y= lg(x+1)x−1的定义域.38.已知函数 f(x)=√3sin(x +π6)−sin(x −π3) .(∈)求 f(π6) 的值;(∈)若 x ∈[0,2π] ,求 f(x) 的单调递减区间.39.已知f (x )=x 2﹣2x+3,g (x )=log 2(x 2﹣2x+3),且两函数定义域均为[0,3).(1)画函数f (x )在定义域内的图象,并求f (x )值域; (2)求函数g (x )的值域.40.已知函数f (x )=x 2+(a+2)x+b 满足f (﹣1)=﹣2(1)若方程f (x )=2x 有唯一的解;求实数a ,b 的值;(2)若函数f (x )在区间[﹣2,2]上不是单调函数,求实数a 的取值范围.41.设函数f (x )=ln (2x ﹣m )的定义域为集合A ,函数g (x )= √3−x ﹣1√x−1的定义域为集合B .(∈)若B∈A ,求实数m 的取值范围; (∈)若A∩B=∈,求实数m 的取值范围.42.设f (x )=﹣ 1x +ln 1+x 1−x.(1)求函数的定义域;(2)判断函数f (x )的奇偶性; (3)讨论函数f (x )的单调性.43.若函数 f(x) 对定义域中任意x 均满足 f(x)+f(2a −x)=2b ,则称函数 y =f(x) 的图象关于点 (a ,b) 对称.(1)已知函数 f(x)=x 2+mx+m x的图象关于点 (0,1) 对称,求实数m 的值;(2)已知函数 g(x) 在 (−∞,0)∪(0,+∞) 上的图象关于点 (0,1) 对称,且当 x ∈(0,+∞) 时, g(x)=x 2+ax +1 ,求函数 g(x) 在 (−∞,0) 上的解析式;(3)在(1)(2)的条件下,当 t >0 时,若对任意实数 x ∈(−∞,0) ,恒有 g(x)<f(t) 成立,求实数a 的取值范围.44.已知定理:“实数m ,n 为常数,若函数h (x )满足h (m+x )+h (m ﹣x )=2n ,则函数y=h(x )的图象关于点(m ,n )成中心对称”.(1)已知函数f (x )= x 2x−1的图象关于点(1,b )成中心对称,求实数b 的值;(2)已知函数g (x )满足g (2+x )+g (﹣x )=4,当x∈[0,2]时,都有g (x )≤3成立,且当x∈[0,1]时,g (x )=2k (x ﹣1)+1,求实数k 的取值范围.45.已知函数 f(x)=x 2−2ax +2 , x ∈[−2,3] .(1)当 a =−2 时,求函数 f(x) 的最大值和最小值. (2)求 y =f(x) 在区间 [−2,3] 上的最小值.46.如图,已知底角为45°角的等腰梯形ABCD ,底边BC 长为7cm ,腰长为2√2cm ,当一条垂直于底边BC (垂足为F )的直线l 把梯形ABCD 分成两部分,令BF=x ,求左边部分的面积y 关于x 的函数解析式,并画出图象.47.已知函数 f(x) 满足 f(x)=f ′(1)2e 2x−2+x 2−2f(0)x , g(x)=f(x 2)−14x 2+(1−a)x +a , x ∈R .(1)求函数 f(x) 的解析式; (2)求函数 g(x) 的单调区间;(3)当 a ≥2 且 x ≥1 时,求证: |ex −lnx|<|e x−1+a −lnx| . 48.已知 f(x) 是定义在 R 上的奇函数,且当 x ≥0 时, f(x)=x 2e x .(1)求 f(x) 的解析式.(2)证明: f(x) 在 R 上单调递增.(3)若对任意的 x ∈R ,不等式 f(ax 2−3x −1)+f(5−ax)+ax 2−(3+a)x +4>0 恒成立,求实数a 的取值范围.49.已知函数 f(x)=lnx −x 2+ax(a ∈R) .(1)若 f(x)≤0 恒成立,求a 的取值范围;(2)设函数 f(x) 的极值点为 x 0 ,当 a 变化时,点 (x 0,f(x 0)) 构成曲线 M ,证明:过原点的任意直线 y =kx 与曲线M 有且仅有一个公共点.50.已知函数 f(x)=e x +ae −x 是偶函数,其中e 是自然对数的底数.(1)求a 的值;(2)若关于x 的不等式 f(x)+me −x −1−m ⩾0 在 (0,+∞) 上恒成立,求实数m 的取值范围.答案解析部分1.【答案】A【知识点】分段函数的解析式求法及其图象的作法【解析】【解答】由题意可知,应纳税所得额为:249600(1−20%)−52800−60000−4560= 82320元,又82320∈(36000,144000],所以税率为10%,所以个人所得税税额为:82320×10%−2520=5712元,故答案为:A.【分析】先计算全年应纳税所得额,再判断应纳税所得额所发分组,再根据税率计算即可。

中考数学一元二次方程根的判别式真题

中考数学一元二次方程根的判别式真题

中考数学一元二次方程根的判别式真题一元二次方程,就是只有一个未知数且未知数最高次数为2的整式方程,其一般形式为ax2+bx+c=0(a≠0)。

在系数a≠0的情况下,Δ=b2-4ac>0时,方程有2个不相等的实数根;Δ=b2-4ac =0时,方程有两个相等的实数根;Δ=b2-4ac <0时,方程无实数根。

反之,若方程有2个不相等的实数根,则Δ=b2-4ac>0;若方程有两个相等的实数根,则Δ=b2-4ac =0;若无实数根,则Δ=b2-4ac <0。

因此,Δ=b2-4ac称为一元二次方程根的判别式。

根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,解题过程中要注意隐含条件a≠0。

使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。

一元二次方程根的判别式在初中数学中有着广泛的应用,也是中考必考内容,并占有一定的份量。

我们将其应用归纳为直接应用和综合应用两方面,直接应用包括①不解一元二次方程,判断(证明)根的情况、②根据方程根的情况,确定待定系数的取值范围、③限制一元二次方程的根与系数关系的应用;综合应用包括④判断二次三项式是完全平方式时的待定系数、⑤判断双曲线与直线的公共点个数、⑥判断抛物线与直线(含x轴)的公共点个数。

一.不解一元二次方程,判断(证明)根的情况:典型例题:例1:一元二次方程2x2x20的根的情况是【】A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.无实数根【答案】D。

【考点】一元二次方程根的判别式。

【分析】∵2x2x20中,a=1,b=2,c=2,∴△22b4ac=2412=40=--⨯⨯-。

<∴2x2x20无实数根。

故选D。

例2:下列四个结论中,正确的是【】A.方程1x+=2-有两个不相等的实数根xB.方程1有两个不相等的实数根x+=1x有两个不相等的实数根C.方程1x+=2xD.方程1(其中a为常数,且a2>)有两个不相等的实数根x+=ax【答案】D。

高一数学第二章 函数基础练习题 试题

高一数学第二章 函数基础练习题  试题

心尺引州丑巴孔市中潭学校高一数学第二章 函数根底练习题一、知识结构1.映射:设A,B 是两个集合,如果按照某种对应法那么f, ,这样的对应关系叫做从集合A 到集合B 的映射,记作 。

〔答:对于集合A 中的任何一个元素,在集合B 中都有唯一的元素与它对应,f:A →B 〕 2.象和原象:给定一个集合A 到B 的映射,且a ∈A ,b ∈B,如果元素a 和b 对应,那么元素b 叫做元素a 的 ,元素a 叫做元素b 的 。

(答:象,原象)3.一一映射:设A,B 是两个集合,f:A →B 是集合A 到集合B 的映射,如果在这个映射下,满足 那么这个映射叫做A 到B 上的一一映射。

〔答:对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每个元素都有原象,〕 4.函数的三要素:① ,② ,③ 。

〔答:定义域,对应法那么,值域〕5.两个函数当且仅当 和 对应法那么〔即解析式〕都相同时,才称为相同的函数。

〔答:定义域,对应法那么〔即解析式〕〕6.请同学们就以下求函数三要素的方法配上适当的例题:⑴定义域:①根据函数解析式列不等式〔组〕,常从以下几个方面考虑: ⑴分式的分母不等于0;⑵偶次根式被开方式大于等于0;⑶对数式的真数大于0,底数大于0且不等于1; ⑷指数为0时,底数不等于0。

②⑴()f x 的定义域,求[()]f g x 的定义域。

⑵[()]f g x 的定义域,求()f x 的定义域。

⑵值域: ①函数图象法〔阶段所有初等函数极其复合〕;②反函数法;③判别式法;④换元法;⑤不等式法;⑥单调性法;⑦几何构造法。

⑶解析式:①待定系数法〔函数类型求解析式〕;②()f x 求[()]f g x 或[()]f g x 求()f x ;③方程组法;④函数图象四大变换法。

7.假设()f x 的定义域关于原点对称,且满足 〔或 〕,那么函数()f x 叫做奇函数〔或偶函数〕。

(答:()()f x f x -=-,()()f x f x -=)8.①假设()f x 的定义域关于原点对称,且满足()()f x f x -+= ,那么为奇函数。

导数中方程根的问题

导数中方程根的问题

导数四:导数中的有关方程根的问题一、常见基本题型:(1) 判断根的个数问题,常常转化为函数图象的交点个数问题,通过构造函数来求解,例1.已知函数221()ln(1),().1f x x g x a x =+=+- 求方程()()f x g x =的根的个数.解: 令221()()()ln(1)1h x f x g x x a x =-=+--- '2222222211()21(1)1(1)x x h x x x x x x ⎡⎤=+=+⎢⎥+-+-⎣⎦当[0,1)(1,)x ∈⋃+∞时,'()0h x ≥当(,1)(1,0)x ∈-∞-⋃-时,'()0h x <因此,()h x 在(,1),(1,0)-∞--时,()h x 单调递减,在(0,1),(1,)+∞时,()h x 单调递增.又()h x 为偶函数,当(1,1)x ∈-时,()h x 极小值为(0)1h a =- 当1x -→-时,()h x →-∞, 当1x +→-时,()h x →+∞ 当x →-∞时,()h x →+∞, 当x →+∞时,()h x →+∞故()()f x g x =的根的情况为:当10a ->时,即1a <时,原方程有2个根;当10a -=时,即1a =时,原方程有3个根;当10a -<时,即1a >时,原方程有4个根(2)已知方程在给定的区间上解的情况,去求参数的取值范围,另外有关方程零点的个数问题其实质也是方程根的问题。

例1.已知32()(),(,f x ax bx b a x a b =++-是不同时为零的常数),其导函数为()f x ',(1)求证:函数()y f x '=在(1,0)-内至少存在一个零点;(2)若函数()f x 为奇函数,且在1x =处的切线垂直于直线230x y +-=,关于x 的方程1()4f x t =-在[1,](1)t t ->-上有且只有一个实数根,求实数t 的取值范围.解:(1)证明:因为2()32f x ax bx b a '=++-当0a =时,12x =-符合题意; 当0a ≠时,2321b b x x a a++-,令b t a =,则2321x tx t ++- 令2()321h x x tx t =++-,11()024h -=-<, 当1t >时,(0)10h t =->, ()y h x ∴=在1(,0)2-内有零点; 当1t ≤时,(1)210h t -=-≥>,()y h x ∴=在1(1,)2--内有零点.∴当0a ≠时,()y h x =在(1,0)-内至少有一个零点.综上可知,函数()y f x '=在(1,0)-内至少有一个零点(2) 因为32()()f x ax bx b a x =++-为奇函数,所以0b =,所以3()f x ax ax =-,2()3f x ax a '=-. 又()f x 在1x =处的切线垂直于直线230x y +-=,所以1a =,即3()f x x x =-.()f x ∴在(,),()33-∞-+∞上是单调递增函数,在[,]33-上是单调递减函数,由()0f x =解得1x =±,0x =,由1()4f x x =-解之得02x x =±=作()y f x =与14y x =-的图知交点横坐标为,02x x =±=当383[(0,){}229x ∈-时,过14y x =-图象上任意一点向左作平行于x 轴的直线与()y f x =都只有唯一交点,当x 取其它任何值时都有两个或没有交点。

函数方程不等式练习题

函数方程不等式练习题

函数方程不等式练习题一、函数部分1. 求函数 $f(x) = 2x^3 3x^2 + 4x 5$ 在区间 $[1, 2]$ 上的最大值和最小值。

2. 判断函数 $f(x) = \frac{1}{x1}$ 的奇偶性。

3. 计算函数 $f(x) = \sqrt{x^2 5x + 6}$ 的定义域。

4. 已知函数 $f(x) = \log_2(x3)$,求 $f^{1}(x)$。

5. 讨论函数 $f(x) = x^2 4x + 3$ 在区间 $(0, +\infty)$ 上的单调性。

二、方程部分1. 解方程 $2x^3 3x^2 + x 1 = 0$。

2. 求方程组 $\begin{cases} 2x + 3y = 7 \\ 4x 5y = 1\end{cases}$ 的解。

3. 解分式方程 $\frac{1}{x1} + \frac{2}{x+2} = 3$。

4. 已知方程 $x^2 (a+2)x + a + 1 = 0$ 有两个实数根,求实数 $a$ 的取值范围。

5. 解方程组 $\begin{cases} x + y = 5 \\ xy = 6\end{cases}$。

三、不等式部分1. 解不等式 $3x 7 > 2x + 1$。

2. 已知不等式 $x^2 4x + 3 > 0$,求 $x$ 的取值范围。

3. 解不等式组 $\begin{cases} 2x 3y > 6 \\ x + 4y \leq 8 \end{cases}$。

4. 讨论不等式 $x^2 (a+2)x + a + 1 > 0$ 在实数集上的解集。

5. 已知不等式 $|x 3| < 2$,求 $x$ 的取值范围。

四、综合应用题1. 已知函数 $f(x) = x^2 2x + 1$,求证:对于任意实数 $x$,都有 $f(x) \geq 0$。

2. 设函数 $g(x) = \frac{1}{x2}$,求解不等式 $g(x) < 0$。

一元二次方程根的情况试题练习题.doc

一元二次方程根的情况试题练习题.doc

一元二次方程根的情况试题练习题一元二次方程根的情况练习题(含答案)一.选择题1.一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.一元二次方程3x2﹣4x+1=0的根的情况为()A.没有实数根 B.只有一个实数根C.两个相等的实数根D.两个不相等的实数根3.一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.不能确定4.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定5.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为06.一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.一元二次方程2x2﹣3x+1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根 B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根9.一元二次方程x2+2x+1=0的根的情况()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根10.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根11.一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根12.一元二次方程4x2+1=4x的根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根13.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根 D.有两个不相等的实数根14.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.两个根都是自然数D.无实数根15.一元二次方程x2+x+=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定根的情况16.一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根17.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有一个实数根C.有两个相等的实数根D.没有实数根18.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.不能确定的19.关于x的一元二次方程x2﹣ax+(a﹣1)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根二.填空题21.若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k的取值范围是.22.关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为.23.如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.24.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.25.若关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则k= .26.若一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是.27.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k 的取值范围是.28.一元二次方程2x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是.29.若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m= .30.已知k>0,且关于x的方程3kx2+12x+k+1=0有两个相等的实数根,那么k 的值等于.31.若关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,则a的取值范围是.32.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是.33.若方程kx2﹣6x+1=0有两个实数根,则k的取值范围是.34.若一元二次方程x2﹣2x+a=0有两个相等的实数根,则a的值是.35.已知关于x的方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是.36.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是.37.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是.一.选择题(共20小题)1.(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.2.(2017•常德)一元二次方程3x2﹣4x+1=0的根的情况为()A.没有实数根 B.只有一个实数根C.两个相等的实数根D.两个不相等的实数根【分析】先计算判别式的意义,然后根据判别式的意义判断根的情况.【解答】解:∵△=(﹣4)2﹣4×3×1=4>0∴方程有两个不相等的实数根.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.(2017•扬州)一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.不能确定【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣7)2﹣4×(﹣2)=57>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.(2016•昆明)一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】将方程的系数代入根的判别式中,得出△=0,由此即可得知该方程有两个相等的实数根.【解答】解:在方程x2﹣4x+4=0中,△=(﹣4)2﹣4×1×4=0,∴该方程有两个相等的实数根.故选B.【点评】本题考查了根的判别式,解题的关键是代入方程的系数求出△=0.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式得正负确定方程解得个数是关键.5.(2016•河北)a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为0【分析】利用完全平方的展开式将(a﹣c)2展开,即可得出ac<0,再结合方程ax2+bx+c=0根的判别式△=b2﹣4ac,即可得出△>0,由此即可得出结论.【解答】解:∵(a﹣c)2=a2+c2﹣2ac>a2+c2,∴ac<0.在方程ax2+bx+c=0中,△=b2﹣4ac≥﹣4ac>0,∴方程ax2+bx+c=0有两个不相等的实数根.故选B.【点评】本题考查了完全平方公式以及根的判别式,解题的关键是找出△=b2﹣4ac>0.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式的符号,得出方程实数根的个数是关键.6.(2016•邵阳)一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【分析】代入数据求出根的判别式△=b2﹣4ac的值,根据△的正负即可得出结论.【解答】解:∵△=b2﹣4ac=(﹣3)2﹣4×2×1=1>0,∴该方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式,解题的关键是求出根的判别式△=1.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式的正负确定根的个数是关键.7.(2016•舟山)一元二次方程2x2﹣3x+1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先求出△的值,再根据△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数;△<0⇔方程没有实数根,进行判断即可.【解答】解:∵a=2,b=﹣3,c=1,∴△=b2﹣4ac=(﹣3)2﹣4×2×1=1>0,∴该方程有两个不相等的实数根,故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.8.(2016•黔南州)y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根 B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根【分析】由一次函数的定义可求得k的取值范围,再根据一元二次方程的判别式可求得答案.【解答】解:∵y=x+1是关于x的一次函数,∴≠0,∴k﹣1>0,解得k>1,又一元二次方程kx2+2x+1=0的判别式△=4﹣4k,∴△<0,∴一元二次方程kx2+2x+1=0无实数根,故选A.【点评】本题主要考查一元二次方程根的判别式,掌握一元二次方程的根与判别式的关系是解题的关键,即①△>0⇔一元二次方程有两个不相等的实数根,②△=0⇔一元二次方程有两个相等的实数根,③△<0⇔一元二次方程无实数根.9.(2016•兰州)一元二次方程x2+2x+1=0的根的情况()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】先求出△的值,再根据△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数;△<0⇔方程没有实数根,进行判断即可.【解答】解:∵△=22﹣4×1×1=0,∴一元二次方程x2+2x+1=0有两个相等的实数根;故选B.【点评】此题主要考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(2016•怀化)一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先求出△的值,再判断出其符号即可.【解答】解:∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程有两个不相等的实数根,故选:A.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.11.(2015•锦州)一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【分析】先计算判别式得到△=(﹣2)2﹣4×(﹣1)=8>0,然后根据判别式的意义判断方程根的情况.【解答】解:根据题意△=(﹣2)2﹣4×(﹣1)=8>0,所以方程有两个不相等的实数根.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12.(2015•滨州)一元二次方程4x2+1=4x的根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【分析】先求出△的值,再判断出其符号即可.【解答】解:原方程可化为:4x2﹣4x+1=0,∵△=42﹣4×4×1=0,∴方程有两个相等的实数根.故选C.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.13.(2015•长春)方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根 D.有两个不相等的实数根【分析】把a=1,b=﹣2,c=3代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣2,c=3,∴△=b2﹣4ac=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.14.(2015•重庆)已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.两个根都是自然数D.无实数根【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=2,b=﹣5,c=3,∴△=b2﹣4ac=(﹣5)2﹣4×2×3=1>0,∴方程有两个不相等的实数根.故选:A.【点评】此题主要考查了一元二次方程根的判别式,掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,是解决问题的关键.15.(2015•珠海)一元二次方程x2+x+=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定根的情况【分析】求出△的值即可判断.【解答】解:一元二次方程x2+x+=0中,∵△=1﹣4×1×=0,∴原方程由两个相等的实数根.故选B.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.16.(2014•自贡)一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】把a=1,b=﹣4,c=5代入△=b2﹣4ac进行计算,根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.17.(2017•思茅区校级一模)一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有一个实数根C.有两个相等的实数根D.没有实数根【分析】要判断方程x2﹣4x+4=0的根的情况就要求出方程的根的判别式,然后根据判别式的正负情况即可作出判断.【解答】解:∵a=1,b=﹣4,c=4,∴△=16﹣16=0,∴方程有两个相等的实数根.故选C.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.(2017•静安区二模)关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.不能确定的【分析】先计算△=(﹣m)2﹣4×1×(﹣1)=m2+4,由于m2为非负数,则m2+4>0,即△>0,根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac 的意义即可判断方程根的情况.【解答】解:△=(﹣m)2﹣4×1×(﹣1)=m2+4,∵m2≥0,∴m2+4>0,即△>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.19.(2017•兴庆区校级二模)关于x的一元二次方程x2﹣ax+(a﹣1)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根【分析】要判断一元二次方程x2﹣ax+(a﹣1)=0的根的情况,就要求出其判别式,然后根据判别式的正负情况即可作出判断.【解答】解:∵△=a2﹣4×1×(a﹣1)=a2﹣4a+4=(a﹣2)2≥0,∴此方程有两个实数根.故选D.【点评】结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S△B′O′B ﹣(S扇形O′OB﹣S△OO′B)=×1×2﹣(﹣×2×)=2﹣.故选C.【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二.填空题(共19小题)21.(2016•河南)若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k的取值范围是k>﹣.【分析】由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:∵关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,∴△=32﹣4×1×(﹣k)=9+4k>0,解得:k>﹣.故答案为:k>﹣.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是根据根的个数结合根的判别式得出关于k的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出方程(不等式或不等式组)是关键.22.(2017•大连)关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为c<1 .【分析】根据方程的系数结合根的判别式,即可得出关于c的一元一次不等式,解之即可得出结论.【解答】解:∵关于x的方程x2+2x+c=0有两个不相等的实数根,∴△=22﹣4c=4﹣4c>0,解得:c<1.故答案为:c<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.23.(2016•上海)如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=(﹣3)2﹣4×1×k=9﹣4k=0,解得:k=.故答案为:.【点评】本题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.本题属于基础题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程(不等式或不等式组)是关键.24.(2016•长春)关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m 的值是 1 .【分析】由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.25.(2016•淮安)若关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则k= 9 .【分析】根据判别式的意义得到△=62﹣4×1×k=0,然后解一次方程即可.【解答】解:∵一元二次方程x2+6x+k=0有两个相等的实数根,∴△=62﹣4×1×k=0,解得:k=9,故答案为:9.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.26.(2016•宿迁)若一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是k<1 .【分析】直接利用根的判别式得出△=b2﹣4ac=4﹣4k>0进而求出答案.【解答】解:∵一元二次方程x2﹣2x+k=0有两个不相等的实数根,∴△=b2﹣4ac=4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为:k<1.【点评】此题主要考查了根的判别式,正确得出△符号是解题关键.27.(2014•上海)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k<1 .【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(﹣2)2﹣4×1×k>0,然后解不等式即可.【解答】解:∵关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4×1×k>0,解得k<1,∴k的取值范围为k<1.故答案为:k<1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.28.(2014•常德)一元二次方程2x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是k<.【分析】根据判别式的意义得到△=(﹣3)2﹣4×2×k>0,然后解不等式即可.【解答】解:根据题意得△=(﹣3)2﹣4×2×k>0,解得k<.故答案为:k<.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.29.(2015•岳阳)若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m= .【分析】根据题意可得△=0,据此求解即可.【解答】解:∵方程x2﹣3x+m=0有两个相等的实数根,∴△=9﹣4m=0,解得:m=.故答案为:.【点评】本题考查了根的判别式,解答本题的关键是掌握当△=0时,方程有两个相等的两个实数根.30.(2015•新疆)已知k>0,且关于x的方程3kx2+12x+k+1=0有两个相等的实数根,那么k的值等于 3 .【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2﹣4ac=0,据此可列出关于k的等量关系式,即可求得k的值.【解答】解:∵关于x的方程3kx2+12x+k+1=0有两个相等的实数根,∴△=b2﹣4ac=144﹣4×3k×(k+1)=0,解得k=﹣4或3,∵k>0,∴k=3.故答案为3.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.31.(2015•漳州)若关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,则a的取值范围是a>﹣且a≠0 .【分析】根据一元二次方程的定义及判别式的意义可得a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,解不等式组即可求出a的取值范围.【解答】解:∵关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,∴a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,解得:a>﹣且a≠0.故答案为:a>﹣且a≠0.【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的定义.32.(2017•罗平县一模)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是k>﹣1且k≠0 .【分析】由关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,即可得判别式△>0且k≠0,则可求得k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=0∴k≠0,∴k的取值范围是:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.【点评】此题考查了一元二次方程根的判别式的应用.此题比较简单,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.33.(2017•凉州区一模)若方程kx2﹣6x+1=0有两个实数根,则k的取值范围是k≤9,且k≠0 .【分析】若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于k的不等式,求出k的取值范围.还要注意二次项系数不为0.【解答】解:∵方程有两个实数根,∴△=b2﹣4ac=36﹣4k≥0,即k≤9,且k≠0【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.34.(2017•绿园区二模)若一元二次方程x2﹣2x+a=0有两个相等的实数根,则a的值是 1 .【分析】根据已知条件“一元二次方程x2﹣2x+a=0有两个相等的实数根”可知根的判别式△=b2﹣4ac=0,据此可以求得a的值.【解答】解:∵一元二次方程x2﹣2x+a=0的二次项系数a=1,一次项系数b=﹣2,常数项c=a,且一元二次方程x2﹣2x+a=0有两个相等的实数根,∴△=b2﹣4ac=0,即△=(﹣2)2﹣4×1×a=0,解得a=1.故答案是:1.【点评】本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.35.(2017•盘锦三模)已知关于x的方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是a<1 .【分析】关于x的方程x2﹣2x+a=0有两个不相等的实数根,即判别式△=b2﹣4ac >0.即可得到关于a的不等式,从而求得a的范围.【解答】解:∵b2﹣4ac=(﹣2)2﹣4×1×a=4﹣4a>0,解得:a<1.∴a的取值范围是a<1.故答案为:a<1.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.36.(2017•抚顺县一模)关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是a≥1且a≠5 .【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2﹣4ac≥0.【解答】解:因为关于x的一元二次方程有实根,所以△=b2﹣4ac=16+4(a﹣5)≥0,解之得a≥1.∵a﹣5≠0∴a≠5∴实数a的取值范围是a≥1且a≠5故答案为a≥1且a≠5.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.37.(2017•河南模拟)关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是m≤3且m≠2 .【分析】若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于m 的不等式,求出m的取值范围.还要注意二次项系数不为0.【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴△=22﹣4×(m﹣2)×1≥0,且m﹣2≠0,解得:m≤3且m≠2,故答案为:m≤3且m≠2.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.38.(2016•河南)如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为﹣.【分析】连接OC、AC,根据题意得到△AOC为等边三角形,∠BOC=30°,分别求出扇形COB的面积、△AOC的面积、扇形AOC的面积,计算即可.【解答】解:连接OC、AC,由题意得,OA=OC=AC=2,∴△AOC为等边三角形,∠BOC=30°,∴扇形COB的面积为:=,△AOC的面积为:×2×=,扇形AOC的面积为:=,则阴影部分的面积为:+﹣=﹣,故答案为:﹣.【点评】本题考查的是扇形面积计算,掌握等边三角形的性质、扇形的面积公式S=是解题的关键.39.(2015•河南)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为+.。

一元二次方程根与系数的关系基础练习30题含详细答案

一元二次方程根与系数的关系基础练习30题含详细答案

装…………○……_姓名:___________班级:__装…………○……一元二次方程根与系数的关系基础练习30题含详细答案一、单选题1.若12,x x 是一元二次方程²350x x +-=的两根,则12x x +的值是( ) A .3B .3-C .5D .5-2.已知方程22430x x +-=的两根分别为1x 和2x ,则12x x 的值等于( ) A .2B .-1.5C .-2D .43.已知α,β是方程2202010x x ++=的两个根,则(1+2022α+α2)(1+2022β+β2)的值为( ) A .1B .2C .3D .44.如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于A 、B 两点,与y 轴交于点C ,且OC =2OB 则下列结论:① 0abc <;②0a b c ++>;③240ac b -+=;④ cOA OB a⋅=-,其中正确的结论有( )A .1个B .2个C .3个D .4个5.★在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,a ,b 是关于x 的方程x 2-7x +c +7=0的两根,那么AB 边上的中线长是( ) A .32B .52C .5D .2二、解答题6.关于x 的一元二次方程x 2+3x ﹣k =0有两个不相等的实数根. (1)求k 的取值范围.(2)若x 1+2x 2=3,求|x 1﹣x 2|的值.7.已知关于x 的方程x 2+(2m ﹣1)x +m 2=0有实数根. (1)若方程的一个根为1,求m 的值;在,请求出来,若不存在,请说明理由. 8.关于x 的一元二次方程x 2+mx+m ﹣2=0.(1)若﹣2是该方程的一个根,求该方程的另一个根;(2)求证:无论m 取任何实数,此方程总有两个不相等的实数根;(3)设该方程的两个实数根为x 1,x 2,若x 12+x 22+m (x 1+x 2)=m 2+1,求m 的值. 9.已知P 2222225a 3b 8a 1a b b a a b ab+⎛⎫=+÷⎪--+⎝⎭(a≠±b ,ab≠0) (1)化简P ;(2)若a 、b 是方程x 2+(12)x =0的两实根,求P 的值.10.已知关于x 的一元二次方程x 2+2(k ﹣1)x+k 2﹣1=0有两个不相等的实数根. (1)求实数k 的取值范围;(2)若方程的两根x 1,x 2满足x 12+x 22=16,求k 的值.11.已知关于x 的一元二次方程x 2﹣2(m+1)x+m 2+5=0有两个不相等的实数根. (1)求实数m 的最小整数值;(2)在(1)的条件下,若方程的实数根为x 1,x 2,求代数式(x 1﹣1)•(x 2﹣1)的值. 12.关于x 的一元二次方程x 2﹣(2k+1)x+2k =0. (1)求证:无论k 取任何实数,方程总有两个实数根;(2)若该方程的两个根x 1,x 2满足3x 1+3x 2﹣x 1x 2=6,求k 的值.13.阅读下列材料:法国数字家韦达在研究一元二次方程时有一项重大发现: 如果一元二次方程20(0)ax bx c a -+=≠在240b ac -≥的两根分别可表示为1x ,2x =1212,b c x x x x a a +=-⋅=这是一元二次方程根与系数的关系.利用一元二次方程根与系数的关系,回答下列问题:(1)已知方程25790x x +-=的两根分别为1x 、2x ,求12x x +与12x x ⋅的值.(2)已知方程25790x x +-=的两根分别1x 、2x ,若12x x >,求2212x x +与1211x x -的值.(3)已知一元二次方程2350x ax +-=的一根大于2,另一根小于2求a 的取值范围. 14.已知关于x 的方程()222360x m x m +-+-=.(1)求证:无论m 取什么实数,方程总有实数根;(2)如果方程的两个实数根1x 、2x 满足123x x =,求实数m 的值.15.关于x 的一元二次方程x 2+2(m-1)+m 2-1=0有两个不相等的实数根x 1,x 2. (1)求实数m 的取值范围;(2)是否存在实数m ,使得x 12+x 22=16+x 1x 2成立?如果存在,求出m 的值;如果不存在,请说明理由.16.如果1x ,2x 是一元二次方程20ax bx c ++=的两根,那么有12b x x a+=-,12cx x a=.这是一元二次方程根与系数的关系,我们可以利用它来解题,例如:1x ,2x 是方程2630x x +-=的两根,求2212x x +的值. 解法可以这样:因为126x x +=-,123x x =-,所以()()()2222121212262342x x x x x x +=+-=--⨯-=.请你根据以上解法解答下题:设1x ,2x 是方程22150x x --=的两根,求:(1)1211+x x 的值;(2)()212x x -的值.17.关于x 的一元二次方程2x -x +p -1=0有两实数根1x 、2x . (1)求p 的取值范围; (2)若p=0,求1221x x x x +的值; (3)若[2+1x (1-1x )][2+2x (1-2x )]=9,求p 的值.18.关于x 的一元二次方程x 2﹣2x ﹣m +2=0有两个不相等的实数根x 1,x 2. (1)求实数m 的取值范围;(2)若方程两实数根x 1,x 2满足x 12+2x 2=m 2,求m 的值.三、填空题19.已知函数3()()y x m x n =---,并且,a b 是方程3()()0x m x n ---=的两个根,则实数,,,m n a b 的大小关系可能是____. 20.方程220x x +-=的两个根分别为,m n ,则11m n+的值为_________. 21.若x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两个根,则x 1x 2的值=__. 22.已知实数m ,n 满足条件2720m m -+=,2720n n -+=,则n mm n+的值是______. 23.对于任意实数a 、b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)﹣5=0的两根记为m 、n ,则(m +2)(n +2)=_____.24.已知1x 、2x 是方程2210x x --=的两根,则2212x x +=_________.25.已知一周长为11的等腰三角形(非等边三角形)的三边长分别为a 、b 、5,且a 、b 是关于x 的一元二次方程x 2﹣6x +k +2=0的两个根,则k 的值为__. 26.已知二次方程x 2+(2m +1)x +m 2﹣2m +32=0的两个实数根为α和β,若|α|+|β|=4,求m 的值__.27.已知x 2+2x +1=0的两根为x 1和x 2,则x 1•x 2的值为__.28.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____. 29.已知 12,x x 是一元二次方程()23112x -=的两个解,则12x x +=_______. 30.一元二次方程2310x x --=与230x x --=的所有实数根的和等于____.参考答案1.B 【分析】利用根与系数的关系即可得到x 1+x 2的值. 【详解】解:∵x 1、x 2是一元二次方程x 2+3x-5=0的两根, ∴x 1+x 2=-3. 故选:B . 【点睛】此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键. 2.B 【分析】根据一元二次方程的根与系数关系12cx x a=求解即可. 【详解】解:∵方程22430x x +-=的两根分别为1x 和2x ,且a=2,b=4,c=﹣3, ∴12c x x a==32-=﹣1.5, 故选:B . 【点睛】本题考查了一元二次方程的根与系数关系,熟记根与系数关系12cx x a=是解答的关键. 3.D 【分析】根据根与系数的关系及一元二次方程的解可得出:1αβ=,2202010αα++=,2 202010ββ++=,将其代入原式中即可求出结论.【详解】∵α,β是方程2202010x x ++=的两个根,∴1αβ=,220201αα+=-,220201ββ+=-,∴()()221202212022ααββ++++=()()22120202120202αααβββ++++++4αβ==4. 故选:D . 【点睛】本题考查了根与系数的关系以及一元二次方程的解,根据根与系数的关系及一元二次方程的解得出1αβ=,2202010αα++=,2202010ββ++=是解题的关键. 4.C 【分析】①根据抛物线的开口方向向上得a >0、对称轴在y 轴左侧得b >0、与y 轴的交点在y 轴负半轴得c <0,进而可得结论;②当x =1时,不能说明y 的值即a +b +c 是否大于还是小于0,即可判断;③设B 点横坐标为x 2,根据OC =2OB ,用c 表示x 2,再将B 点坐标代入函数解析式即可判断;④根据一元二次方程根与系数的关系即可判断. 【详解】解:①观察图象可知:抛物线的开口方向向上,对称轴在y 轴左侧,与y 轴的交点在y 轴负半轴∴a >0,b >0,c <0, ∴abc <0, 所以①正确;②当x =1时,y =a +b +c ,不能说明y 的值是否大于还是小于0, 所以②错误;③设A (x 1,0)(x 1<0),B (x 2,0)(x 2>0), ∵OC =2OB ,∴﹣2x 2=c , ∴212x c , ∴B (12c -,0)将点B 坐标代入y =ax 2+bx +c 中,211042c a bc c,∵0c ≠∴240ac b -+= 所以③正确;④当y =0时,ax 2+bx +c =0, 方程的两个根为x 1,x 2, 根据根与系数的关系,得12c x x a•=, 即1212•OA OBx x ax c x 所以④正确. 故选:C . 【点睛】本题考查了一元二次方程根与系数的关系,二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x 轴的交点,解决本题的关键是综合运用二次函数的图象和性质. 5.B 【分析】由于a 、b 是关于x 的方程x2−7x +c +7=0的两根,由根与系数的关系可知:a +b =7,ab =c +7;由勾股定理可知:222+=a b c ,则()222a b ab c +-=,即49−2(c +7)=2c ,由此求出c ,再根据直角三角形斜边中线定理即可得中线长. 【详解】解:∵a 、b 是关于x 的方程2x −7x +c +7=0的两根, ∴根与系数的关系可知:a +b =7,ab =c +7; 由直角三角形的三边关系可知:222+=a b c , 则()222a b ab c +-=, 即49−2(c +7)=2c , 解得:c =5或−7(舍去),再根据直角三角形斜边中线定理得:中线长为52.故选:B . 【点睛】本题考查三角形斜边中线长定理及一元二次方程根与系数的关系运用,勾股定理的运用,一元二次方程的解法的运用,解答时运用一元二次方程的根与系数的关系建立方程是关键. 6.(1)94k >-;(2)15. 【分析】(1)由关于x 的一元二次方程230x x k +-=有两个不相等的实数根,可得判别式△0>,则可求得k 的取值范围;(2)利用根与系数的关系可求出1x 、2x 的值,进而可求出求12||x x -的值 【详解】 (1)关于x 的一元二次方程230x x k +-=有两个不相等的实数根,∴△2341()940k k =-⨯⨯-=+>,94k ∴>-,即k 的取值范围为:94k >-; (2)1x 、2x 是一元二次方程230x x k +-=有两个不相等的实数根,123x x ∴+=-, 1223x x +=, 19x ∴=-,26x =,1215x x ∴-=.【点睛】此题考查了根的判别式以及根与系数的关系.注意由关于x 的一元二次方程230x x k +-=有两个不相等的实数根,可得△0>. 7.(1)0或-2;(2)存在,m 的值为-1. 【分析】(1)先根据∆=(2m-1)2-4m 2≥0求出m 的取值范围,把x=1代入原方程可得到关于m 的一元二次方程,然后解此一元二次方程即可;(2)根据根与系数的关系得到α+β=-(2m-1),αβ=m 2,利用α2+β2-αβ=6得到(α+β)2-3αβ=6,则(2m-1)2-3m 2=6,然后解方程后利用(1)中m 的范围确定m 的值. 【详解】解:(1)由题意得∆=(2m-1)2-4m 2≥0, 解得m ≤14. 把x =1代入方程得1+2m ﹣1+m 2=0, 解得m 1=0,m 2=﹣2, 即m 的值为0或﹣2; (3)存在.∵α、β是方程的两个实数根, ∴α+β=﹣(2m ﹣1),αβ=m 2, ∵α2+β2﹣αβ=6, ∴(α+β)2﹣3αβ=6, 即(2m ﹣1)2﹣3m 2=6,整理得m 2﹣4m ﹣5=0,解得m 1=5,m 2=﹣1, ∵m ≤14; ∴m 的值为﹣1. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12bx x a +=-,12c x x a⋅=.也考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式与根的关系.8.(1)方程的另一个根为0;(2)证明见解析;(3)m =﹣3或1 【分析】(1)利用待定系数法解决问题即可; (2)证明判别式大于0即可;(3)利用根与系数的关系,把问题转化为一元二次方程解决问题. 【详解】(1)解:由题意,得:4﹣2m+m ﹣2=0, 解得:m =2,∴方程为x 2+2x =0, 解得:x 1=﹣2,x 2=0, ∴方程的另一个根为0.(2)证明:∵△=m 2﹣4(m ﹣2)=m 2﹣4m+8=(m ﹣2)2+4>0, ∴无论m 取任何实数,此方程总有两个不相等的实数根. (3)由根与系数的关系得:x 1+x 2=﹣m ,x 1x 2=m ﹣2, 由x 12+x 22+m (x 1+x 2)=m 2+1,得:(x 1+x 2)2﹣2x 1x 2+m (x 1+x 2)=m 2+1, ∴m 2﹣2(m ﹣2)﹣m 2=m 2+1, 整理得:m 2+2m ﹣3=0, 解得:m =﹣3或1. 【点睛】本题考查根与系数的关系、根的判别式、解一元二次方程、解一元一次方程等知识,解答的关键是熟练掌握基本知识的联系和运用,属于中考常考题型.9.(1)P =﹣3ab ;(2)P =﹣. 【分析】(1)先把括号里分式变成同分母的运算,再把除法变成乘法,再算乘法即可;(2)根据根与系数的关系得出ab =【详解】 解:(1)P =(22225a 3b 8aa b a b+---)•ab (a+b ) ()()5a 3b 8aa b a b +-=+-•ab (a+b) ()3a b a b--=-•ab=﹣3ab ;(2)∵a 、b 是方程x 2+(12)x =0的两实根,∴ab =∴P =﹣3ab =﹣【点睛】本题考查了分式的混合运算和求值,根与系数的关系等知识点,能正确根据分式的运算法则进行化简是解此题的关键.10.(1)k<1;(2)k=﹣1.【分析】(1)根据方程的系数结合根的判别式∆>0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根与系数的关系及x12+x22=16,即可得出关于k的一元二次方程,解之即可得出k值,再结合(1)的结论即可确定k的值.【详解】解:(1)∵a=1,b=2(k﹣1),c=k2﹣1,∴∆=b2﹣4ac>0,即[2(k﹣1)]2﹣4×1×(k2﹣1)>0,∴k<1.(2)∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0的两根为x1,x2,∴x1+x2=﹣2(k﹣1),x1x2=k2﹣1.∵x12+x22=16,∴(x1+x2)2﹣2x1x2=16,即[﹣2(k﹣1)]2﹣2(k2﹣1)=16,整理,得:k2﹣4k﹣5=0,-+=k k(5)(1)0解得:k1=5,k2=﹣1.又∵k<1,∴k=﹣1.【点睛】本题考查了一元二次方程根与系数的关系、根的判别式等知识,是重要考点,难度较易,掌握相关知识是解题关键.11.(1)实数m的最小整数值是3;(2)(x1﹣1)•(x2﹣1)=7【分析】(1)由方程有两个不相等的实数根结合根的判别式即可得出关于m的一元一次不等式,解之即可得出m的取值范围,从而求得m的最小整数值;(2)根据根与系数的关系即可得出x1+x2=2(m+1)、x1•x2=m2+5,代入整理后的代数式即可得出得出m的值.【详解】解:(1)∵方程x2﹣2(m+1)x+m2+5=0有两个不相等的实数根,∴△=[﹣2(m+1)]2﹣4(m2+5)=8m﹣16>0,解得:m>2,∴实数m的最小整数值是3;(2)∵原方程的两个实数根为x1、x2,m=3,∴x1+x2=2(m+1)=8,x1•x2=m2+5=14,∴(x1﹣1)•(x2﹣1)=x1•x2﹣(x1+x2)+1=14﹣8+1=7.【点睛】本题考查了一元二次方程根与系数的关系、根的判别式、解一元一次不等式、代数式求值,解题的关键是:(1)根据方程有两个不相等的实数根找出△=8m﹣16>0;(2)掌握x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2ba=-,x1x2ca=.12.(1)证明见解析;(2)k3 4 =【分析】(1)计算判别式的值,再利用配方法得到△=(2k+1)2≥0,然后根据一元二次方程根的判别式与根的关系得到结论;(2)根据根与系数的关系得到x1+x2=2k+1,x1•x2=2k,而3(x1+x2)﹣x1•x2=6,所以3(2k+1)﹣2k=6,然后解关于k的方程即可.【详解】(1)证明:∵△=[﹣(2k+1)]2﹣4×1×2k=(2k﹣1)2≥0,∴无论k取何值,所以方程总有两个实数根;(2)解:根据题意得:x1+x2=2k+1,x1•x2=2k,∵3(x1+x2)﹣x1•x2=6,∴3(2k+1)﹣2k=6,∴k34 =.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c =0(a≠0)的两根时,x 1+x 2b a =-,x 1x 2ca=,也考查了根的判别式、配方法、解一元一次方程. 13.(1)1212,9575x x x x +=-⋅=-;(2)2212x x +=13925;1211x x -;(3)72a <- 【分析】(1)根据根与系数的关系即可求出结论;(2)根据完全平方公式的变形和分式减法变形,然后代入求值即可;(3)设一元二次方程2350x ax +-=的两根分别1x 、2x ,根据根与系数的关系可得1212,533x x x a x +=-⋅=-,根据题意可得()()122002x x ⎧⎨--<∆>⎩,代入即可求出a 的取值范围. 【详解】解:(1)∵方程25790x x +-=的两根分别为1x 、2x ∴1212,9575x x x x +=-⋅=-; (2)由(1)知:1212,9575x x x x +=-⋅=- ∴2212x x + =()212122x x x x +-=225579⎛⎫⎛⎫--⨯- ⎪ ⎪⎝⎭⎝⎭=13925∴()2221122122x x x x x x +-=-=25139925⎛⎫⨯- ⎝-⎪⎭=22925∵12x x > ∴210x x -<∴21x x -==∴1211x x - =2112x x x x -=955-; (3)设一元二次方程2350x ax +-=的两根分别1x 、2x , ∴1212,533x x x a x +=-⋅=- 由题意可得()()122002x x ⎧⎨--<∆>⎩∴()21212600240a x x x x +⎧⎪⎨-++<>⎪⎩∴2600335240a a ⎧⎪⎨⎛⎫-⨯+< +>--⎪⎪⎝⎭⎩②① ∵无论a 为何值,260a +恒为正,故①恒成立; 解②,得72a <-; 综上:72a <-. 【点睛】此题考查的是一元二次方程根与系数的关系,掌握根与系数的关系和完全平方公式的变形是解题关键.14.(1)见解析;(2)0或-4. 【分析】(1)证明一元二次方程根的判别式恒大于0,即可解答;(2)根据一元二次方程根与系数的关系x 1+x 2=4x 2=-2(2-m )=2m-4,以及x 1•x 2=3x 22=3-6m 即可求得m 的值. 【详解】解:(1)证明:∵关于x 的方程x 2+2(2-m )x+3-6m=0中,△=4(2-m )2-4(3-6m )=4(m+1)2≥0,∴无论m 取什么实数,方程总有实数根.(2)如果方程的两个实数根x 1,x 2满足x 1=3x 2,则x 1+x 2=4x 2=-2(2-m )=2m-4 ∴x 2=2m-1 ① ∵x 1•x 2=3x 22=3-6m , ∴x 22=1-2m ②,把①代入②得m (m+4)=0, 即m=0,或m=-4. 答:实数m 的值是0或-4 【点睛】解答此题的关键是熟知一元二次方程根的情况与判别式△的关系,及根与系数的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根.(4)若一元二次方程有实数根,则x 1+x 2=-b a ,x 1x 2=c a. 15.(1)m<1;(2)存在,m=-1 【分析】(1)由一元二次方程有两个不相等的实数根列得[]222(1)4(1)0m m --->,解不等式即可;(2)利用根与系数的关系得到122(1)x x m +=--=2-2m ,2121x x m =-,代入x 12+x 22=16+x 1x 2中求出m 的值,根据(1)中m 的取值范围确定m 的值. 【详解】(1)∵一元二次方程x 2+2(m-1)+m 2-1=0有两个不相等的实数根, ∴0∆>,∴[]222(1)4(1)0m m --->, 解得m<1; (2)存在,∵一元二次方程x 2+2(m-1)+m 2-1=0有两个不相等的实数根x 1,x 2,∴122(1)x x m +=--=2-2m ,2121x x m =-,若x 12+x 22=16+x 1x 2,则2121212()216x x x x x x +-=+,∴ 222(22)2(1)161m m m ---=+-,解得m=-1或m=9, ∵m<1, ∴m=9舍去, 即m=-1. 【点睛】此题考查一元二次方程根的判别式,根与系数的关系式,解一元二次方程,正确计算是解题的关键. 16.(1)115-;(2)1214【分析】(1)由根与系数的关系可得x 1+x 2=12,x 1x 2=152-,将其代入到12121211x x x x x x ++= 中,求出结果即可; (2)将x 1+x 2=12,x 1x 2=152-代入到(x 1-x 2)2=(x 1+x 2)2-4x 1x 2即可得. 【详解】(1)根据题意,可得x 1+x 2=12,x 1x 2=152-,∴12121211112=15152x x x x x x ++==--;(2)(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=211511214302244⎛⎫⎛⎫-⨯-=+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查根与系数的关系,解题关键是运用一元二次方程的两根为x 1,x 2,则有x 1+x 2=b a -,x 1•x 2=ca. 17.(1)54p ≤;(2)-3;(3)-4.【分析】(1)一元二次方程有实数根,0∆≥根据判别式的公式代入即可求p 的取值范围; (2)将p=0代入2x -x +p -1=0化简,再根据根与系数的关系得出1x 与2x 之间的关系,进一步可求得2212x x +的值,代入即可求解;(3)将等式变形,结合四个等式:21110x x p -+-=,22210x x p -+-=,代入求p ,结果要根据p 的取值范围进行检验. 【详解】 (1)x 的一元二次方程2x -x +p -1=0有两实数根0∴∆≥即()()2241410b ac p -=---≥ 解得:54p ≤∴p 的取值范围为:54p ≤; (2)将p=0代入2x -x +p -1=0, 即2x -x -1=0121x x ∴+=,121x x ⋅=-()2221212122123x x x x x x ∴+=+-=+=22121221123=31x x x x x x x x +∴+==-⋅- (3)由[2+1x (1-1x )][2+2x (1-2x )]=9,得()()221122229x x xx +-+-=1x 、2x 为一元二次方程2x -x +p -1=0有两实数根21110x x p ∴-+-=,22210x x p -+-= 2211221,1x x p x x p ∴-=--=-()()21219p p ∴+-+-=即()219p +=2p ∴=或4p =-54p ≤4p ∴=- 【点睛】本题考查了一元二次方程的根的判别式的运用,根与系数关系的运用以及等式变形的能力. 18.(1)m >1;(2)m =2. 【分析】(1)若方程有两个不相等的实数根,则根的判别式∆=b 2-4ac >0,建立关于m 的不等式,求出m 的取值范围;(2)根据题意x 12-2x 1-m+2=0,即可得到x 12=2x 1+m-2,代入x 12+2x 2=m 2,可得2x 1+2x 2+m ﹣2=m 2,根据根与系数的关系得到x 1+x 2=2,代入2x 1+2x 2+m ﹣2=m 2,得到关于m 的方程,解方程即可. 【详解】解:(1)∵关于x 的一元二次方程x 2﹣2x ﹣m +2=0有两个不相等的实数根x 1,x 2, ∴∆=(﹣2)2﹣4(﹣m +2)=4m ﹣4>0, ∴m >1;(2)∵x 1+x 2=2,x 12﹣2x 1﹣m +2=0, x 12=2x 1+m ﹣2,∴x 12+2x 2=2x 1+2x 2+m ﹣2=m 2,即2×2+m ﹣2=m 2, 解得:m =﹣1或m=2, ∵m >1, ∴m =2. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2﹣4ac 与根的关系,当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.也考查了一元二次方程根与系数的关系. 19.a m n b <<<,b m n a <<<,a n m b <<<或b n m a <<<. 【分析】首先把方程化为一般形式,由于a ,b 是方程的解,根据根与系数的关系即可得到m ,n ,a ,b 的关系,相互比较即可得出答案. 【详解】由3()()0x m x n ---=变形得:()()3x m x n --=, ∴0x m ->,x n ->0或0x m -<,0x n -<, ∴x m >,x n >或x m <,x n <, ∵a ,b 是方程的解,将a ,b 代入,得:a m >,a n >,b m <,b n <或a m <,a n <,b m >,b n >,综合可得:a m n b <<<,b m n a <<<,a n m b <<<或b n m a <<< 故答案为:a m n b <<<,b m n a <<<,a n m b <<<或b n m a <<<. 【点睛】本题考查了一元二次方程的根与系数的关系,难度较大,关键是m ,n ,a ,b 大小的讨论是此题的难点. 20.12; 【分析】根据根与系数的关系可得出m+n=-1,mn=-2,将其代入11n m m n mn++=中即可求出结论. 【详解】解:∵方程x 2+x ﹣2=0的两个根分别为m ,n , ∴m +n =﹣1,mn =﹣2,111122n m n m m n mn mn mm +-∴+=+===-. 故答案为:12. 【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于ca是解题的关键. 21.-3 【分析】根据根与系数的关系即可求解. 【详解】解:根据题意得x 1x 2=31c a -==﹣3. 故答案为﹣3. 【点睛】此题主要考查一元二次方程根与性质的关系,解题的关键是熟知x 1x 2=ca的运用. 22.2或452【分析】根据题意先将两个未知数理解为一元二次方程的两个根,再利用韦达定理求出两根关系,进而求得原式的答案即可. 【详解】由题意,实数m n ,是一元二次方程2720x x -+=的两个实数根, 此时题目并未告知m n ,是否相等,故作以下讨论: ①若m n =,则112n mm n+=+=; ②若m n ≠,则根据韦达定理,有72m n mn +==,,()222227224522m n mnn m m n m n mnmn+-+-⨯+====,故答案为:2或452. 【点睛】本题考查一元二次方程根的理解及根与系数的关系,灵活解读题意是解题关键.23.-1【分析】根据新定义可得出m 、n 为方程x 2+2x−1=0的两个根,利用根与系数的关系可得出m +n =−2、mn =−1,变形(m +2)(n +2)得到mn +2(m +n )+4然后利用整体代入得方法进行计算.【详解】解:∵(x ◆2)﹣5=x 2+2x +4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m +n =﹣2,mn =﹣1,∴(m +2)(n +2)=mn +2(m +n )+4=﹣1+2×(﹣2)+4=﹣1.故答案为﹣1.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两根为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 24.6【分析】根据根与系数的关系得到x 1+x 2=2,x 1x 2=-1,再把2212x x +变形为21212()2x x x x +-,然后利用整体代入的方法计算出值即可.【详解】解:∵1x 、2x 是方程2210x x --=的两根,∴x 1+x 2=2,x 1x 2=-1,所以,2212x x +=21212()2x x x x +-=222(1)426-⨯-=+=.故答案为:6.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 25.3或7【分析】先根据一元二次方程根的判别式得出k的取值范围,再分5是等腰三角形的腰的长度和底边的长度两种情况,根据等腰三角形的周长得出另外两边的长度,最后利用根与系数的关系得出关于k的方程,解之得出答案.【详解】解:∵关于x的一元二次方程x2﹣6x+k+2=0有两个实数根,∴∆=(﹣6)2﹣4(k+2)≥0,解得k≤7;若5是等腰三角形的腰的长度,则另外两边分别为5、1,此时三角形三边为1、5、5,符合角形三边条件,所以关于x的一元二次方程x2﹣6x+k+2=0的两个根为1、5,则k+2=5,即k=3;若5是等腰三角形的底边长度,则另外两边的长度为3、3,此时三角形三边的长度为3、3、5符合三角形三边条件,则k+2=9,即k=7;综上,k的值为3或7,故答案为:3或7.【点睛】本题主要考查根的判别式、三角形三边关系、根与系数的关系及等腰三角形的定义,解题的关键是根据等腰三角形的性质分类讨论及一元二次方程根与系数的关系.26.3 2【分析】先由根与系数的关系得到2m+1=-(α+β),α•β=m2-2m+32=(m-1)2+12>0,那么α和β同号,再由|α|+|β|=4,分α+β=-4或α+β=4进行讨论即可.【详解】解:∵二次方程x2+(2m+1)x+m2﹣2m+32=0的两个实数根为α和β,∴α+β=﹣(2m+1),α•β=m2﹣2m+32,∴2m+1=﹣(α+β),α•β=m2﹣2m+32=(m﹣1)2+12>0,∴α•β>0,即α和β同号,∴由|α|+|β|=4得:α+β=﹣4或α+β=4.当α+β=﹣4时,2m +1=4,解得m =32; 当α+β=4时,2m +1=﹣4,解得m =﹣52. ∵△=(2m +1)2﹣4(m 2﹣2m +32) =4m 2+4m +1﹣4m 2+8m ﹣6=12m ﹣5≥0,∴m ≥512; ∴m =﹣52不合题意,舍去, 则m =32. 故答案为:32. 【点睛】本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必须满足△≥0的条件.27.1【分析】利用一元二次方程根与系数的关系即可解答.【详解】根据题意得x 1•x 2=1.故答案为1.【点睛】本题考查一元二次方程根与系数的关系“在一元二次方程20ax bx c ++=(0a ≠,a b c 、、都为常数)中,两根1x ,2x 与系数的关系为12b x x a +=-,12c x x a =”. 28.﹣12【分析】由根与系数的关系,即可求出答案.【详解】解:∵一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,∴x 1x 2=﹣12, 故答案为:﹣12. 【点睛】本题考查了根与系数的关系,解题的关键是掌握根与系数的关系进行解题.29.2【分析】先将方程整理为x 2-2x-3=0,再根据根与系数的关系可得出x 1+x 2即可.【详解】解:一元二次方程()23112x -=整理为2230x x --=,∵x 1、x 2是一元二次方程x 2-2x-3=0的两个根,∴x 1+x 2=2.故答案为:2.【点睛】 本题考查了根与系数的关系,牢记两根之和等于b a -是解题的关键. 30.4【分析】利用一元二次方程根于系数的关系式求出根的和即可.【详解】解:∵2310x x --=, ∴123b x x a+=-=, ∵230x x --=, ∴121b x x a +=-=, ∴所有实数根的和等于4.故答案是:4.【点睛】本题考查一元二次方程根于系数的关系,解题的关键是掌握一元二次方程根与系数的关系式.。

高考综合复习 专题7 函数的概念与性质专题练习

高考综合复习 专题7 函数的概念与性质专题练习

高考综合复习专题七函数的概念与性质专题练习一.选择题1.下列函数既是奇函数,又在区间[-1,1]上单调递减的是()A.f(x)=sinxB.f(x)=-C.f(x)=D.f(x)=2.函数,若f(1)+f(a)=2,则a的所有可能值为()A.1B.-C.1, -D.1,3.若函数f(x)是定义在R上的偶函数,在(-∞,0)上是减函数,且f(2)=0,则使f(x)<0的x的取值范围是()A.(-∞,2)B.(2,+∞)C.(-∞,2)∪(2,+∞)D.(-2,2)4.已知函数y=f(x)的图象关于直线x=-1对称,且当x>0时f(x)= ,则当x<-2时,f(x)=()A.-B.C.-D.-5.已知y=f(x)是R上的减函数,且y=f(x)的图象经过点A(0,1)和点B(3,-1),则不等式<1的解集为()A.(-1,2)B.(0,3)C.(-∞,-2)D.(-∞,3)6.已知f(x)是定义在R上的单调函数,实数≠,≠-1, =,.若,则()A.<0B.=0C.0<<1D.≥17.若函数f(x)=(a>0,a≠1)在区间(-,0)内单调递增,则a的取值范围是()A.[-,1)B.[,1)C.(,+∞)D.(1, )8.已知f(x)是定义在R上的函数,且满足f(x)+f(x-1)=1,当x∈[0,1]时,f(x)=现有4个命题:①f(x)是周期函数,且周期为2;②当x∈[1,2]时,f(x)=2x-;③f(x)为偶函数;④f(-2005.5)= .其中正确命题的个数是()A.1B.2C.3D.4二.填空题.1.若函数f(x)= (a≠0)的图象关于直线x=2对称,则a=.2.已知函数y=f(x)的反函数为y=g(x),若f(3)=-1,则函数y=g(x-1)的图象必经过点.3.定义在R上的函数f(x)对一切实数x都有f[f(x)]=x,则函数f(x)图象的自身关于对称.4.设f(x)是定义在R上的偶函数,且f(x+3)=1-f(x),又当x∈(0,1]时,f(x)=2x,则f(17.5)=.三.解答题.1.设函数f(x)=,求使f(x)≥2的x的取值范围.2.已知函数f(x)= (a,b为常数),且方程f(x)-x+12=0有两个实根为=3,=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x的不等式f(x)< .3.设f(x)是定义在R上的增函数,若不等式f(1-ax-)<f(2-a)对任意x∈[0,1]都成立,求实数a的取值范围.4.已知定义在R上的函数f(x)对任意实数,满足关系f(+)=f()+f()+2.(1)证明:f(x)的图象关于点(0,-2)对称.(2)若x>0,则有f(x)>-2,求证:f(x)在R上为增函数.(3)若数列满足=-,且对任意n∈N﹡有=f(n),试求数列的前n项和.答案与解析:一.选择题.1.选D.分析:这里f(x)为奇函数,由此否定B.C;又f(x)在[-1,1]上单调递减,由此否定A.故应选D.2.选C.分析:注意到这里a的可能取值至多有3个,故运用代值验证的方法.当a=1时,由f(1)+f(a)=2得f(1)=1;由f(x)的表达式得f(1)==1,故a=1是所求的一个解,由此否定B.当a=-时,由f(x)的表达式得f(-)=sin=1,又f(1)=1,故f(1)+f(-)=2,a=-是所求的一个解,由此否定A.D.本题应选C.3.选D.分析:由f(x)在(-∞,0)上是减函数,且f(x)为偶函数得f(x)在(0,+∞)上是增函数,∴f(x)在(-∞,-2]上递减,在[2,+∞)上递增.又∵f(2)=0, ∴f(-2)=0∴f(x)在(-∞,-2]上总有f(x)≥f(-2)=0,①f(x)在[2,+∞)上总有f(x)≥f(2)=0②∴由①②知使f(x)<0的x的取值范围是(-2,2),应选D.4.选C.分析:由f(x)的图象关于直线x=-1对称得f(x)=f(-2-x)①∴当x<-2时, -2-x>0∴再由已知得f(-2-x)= ②于是由①②得当x<-2时f(x)= ,即f(x)= -.应选C.5.选A.分析:由已知条件得f(0)=1,f(3)=-1,∴(※)又f(x)在R上为减函数.∴由(※)得0<x+1<3-1<x<2故应选A.6.选A.分析:注意到直接推理的困难,考虑运用特取——筛选法.在选项中寻觅特殊值.当=0时, =,=,则,由此否定B,当=1时,= ,f()=f(),则,由此否定D;当0<<1时, 是数轴上以分划定点,所成线段的定比分点(内分点),是数轴上以>1分划上述线段的定比分点(内分点),∴此时又f(x)在R上递减,∴由此否定C.因而应选A.7.选B.分析:令u=g(x)= ,y=f(x)则y=由题意知当x∈(-,0)时,u>0注意到g(0),故u=g(x)在(-,0)上为减函数.①又y=f(x)在(-,0)上为增函数,∴y=在u的相应区间上为减函数.∴0<a<1再由①得u'=g'(x)= 在(-,0)上满足u'≤0②而u'=在(-,0)上为减函数,且是R上的连续函数.③∴由②③得u'(-)≤0∴-a≤0,即a≥④于是由①,④得≤a<1应选B.点评:从复合函数的“分解”切入.利用复合函数的单调性与所“分解”出的内层函数与外层函数的单调性之间的联系(同增异减)初步确定a的取值范围0<a<1.但是,由于u=为x的三次函数, u'为x的二次函数.故还要从u'在(-,0)上的符号入手进一步确认a的正确的范围.”粗” 、“细”结合,双方确定所求参数的范围,乃是解决这类问题的基本方略.8.选B.分析:从认知f(x)的性质入手,由f(x)+f(x-1)=1得f(x-1)=1-f(x)(※)∴f(x-2)=1-f(x-1)(※※)∴由(※),(※※)得f(x)=f(x-2)∴f(x)为周期函数,且2是f(x)的一个周期.(1)由上述推理可知①正确.(2)当x∈[1,2]时,有x-1∈[0,1].∴由题设得f(x)=1-f(x-1)=1-(x-1)=2x-x,由此可知②正确(3)由已知条件以及结果①、②得,又f()=,∴f()≠f(-)∴f(x)不是偶函数即③不正确;(4)由已知条件与f(x)的周期性得f(-2005.5)=f(-2005.5+2×1003)= f()=故④不正确.于是由(1)(2)(3)(4)知,本题应选B.二.填空题.1.答案: .分析:由题设知f(0)=f(4)(a≠0),∴(a≠0)0<=1(a≠0)4a-1=1或4a-1=-1(a≠0)a=即所求a=.2.答案: (0,3)分析:f(3)=-1y=f(x)的图象经过点(3,-1)y=g(x)的图象经过点(-1,3)g(-1)=3g(0-1)=3y=g(x)的图象经过点(0,3).3.答案:直线y=x分析:根据函数的定义,设x为f(x)定义域内的任意一个值,则f(x)为其相应的函数值,即为y,即y= f(x),则有x=( y)①又由已知得f[f(x)]=f(y)= x②∴由①②知f(x)与其反函数(x)为同一函数,∴函数f(x)的图象自身关于直线y=x对称.4.答案:1分析: 从认知f(x)的性质切入已知f(x+3)=1-f(x)①以-x代替①中的x得f(-x+3)=1-f(-x)②又f(x)为偶函数∴f(-x)=f(x)③∴由②③得f(-x+3)=1-f(x)④∴由①④得f(3+x)=f(3-x)f(x)图象关于直线x=3对称f(-x)=f(6+x)∴由③得f(x)=f(6+x)即f(x)是周期函数,且6是f(x)的一个周期.⑤于是由③⑤及另一已知条件得f(17.5)=f(17.5-3×6)=f(-0.5)=f(0.5)=2×0.5=1三.解答题.1.分析:注意到f(x)为复合的指数函数,故考虑令u=,而后利用指数函数的性质将所给不等式转化为关于u的不等式解.解:令u=, y=f(x),则y=2为u的指数函数.∴f(x)≥2≥2≥u≥①∴f(x) ≥≥②(1)当x≥1时,不等式②(x+1)-(x-1) ≥2≥成立.(2)当-1≤x<1时,由②得,(x+1)-(1-x) ≥x≥即≤x<1;(3)当x<-1时,由②得-(x+1)-(1-x) ≥即-2≥不成立.于是综合(1)(2)(3)得所求的x的取值范围为[,1]∪[1,+∞),也就是[,+∞)点评:对于复合函数y=f[p(x)],令u=p(x),将其分解为y=f(u),u=p(x).于是所给问题转化为内层函数u=p(x)的问题或转化为外层函数y=f(u)的问题.这种分解----转化的手法,是解决复合指数函数或复合对数函数的基本策略.2.分析:注意到f(x)为分式函数,故相关方程为分式方程,相关不等式为分式不等式,因此,求解此类问题要坚定地立足于求解分式问题的基本程序:移项,通分,分解因式;化“分”为“整”以及验根等等.解:(1)将=3, =4分别代入方程得由此解得∴f(x)= (x≠2).(2)原不等式<-<0<0<0(x-2)(x-1)(x-k)>0注意到这里k>1,(ⅰ)当1<k<2时,原不等式的解集为(1,k)∪(2,+∞);(ⅱ)当k=2时,原不等式(x-2)2(x-1)>0x>1且x≠2.∴原不等式的解集为(1,2)∪(2,+∞);(ⅲ)当k>2时,原不等式的解集为(1,2) ∪(k,+∞);于是综合(ⅰ) (ⅱ) (ⅲ)得当1<k≤2时,原不等式解集为(1,k)∪(2,+∞);当k>2时,原不等式解集为(1,2) ∪(k,+∞);点评:在这里,运用根轴法求解不等式(x-2)(x-1)(x-k)>0快捷准确.此外,在分式不等式转化为高次不等式后,分类讨论时不可忽略对特殊情形:k=2的讨论;综合结论时需要注意相关情况的合并,以最少情形的结论给出最佳答案.3.分析:所给不等式含有抽象的函数符号f,故首先需要“反用”函数的单调性定义脱去“f”,转化为普通的含参不等式的问题.进而,再根据个人的熟重和爱好选择不同解法.解:∵f(x)是R上的增函数.∴不等式f(1-ax-)<f(2-a) 对任意x∈[0,1]都成立.不等式1-ax-<2-a对任意x∈[0,1]都成立+ax-a+1>0对任意x∈[0,1]都成立①解法一: (向最值问题转化,以对称轴的位置为主线展开讨论.)令g(x)= +ax-a+1,则①式g(x)>0对任意x∈[0,1]都成立.g(x)在区间[0,1]上的最小值大于0.②注意到g(x)图象的对称轴为x=-(1)当-≤0即a≥0时,由②得g(0)>0-a+1>0a<1,即0≤a<1;(2)当0<-≤1时,即-2≤a<0时,由②得g(-)>01-a->0+4a-4<0<8当-2≤a<0时,这一不等式也能成立.(3)当->1即a<-2时.由②得g(1)>02>0即当a<-2时,不等式成立.于是综合(1)(2)(3)得所求实数a的取值范围为[0,1)∪[-2,0]∪(-∞,-2), 即(-∞,1).解法二: (以△的取值为主线展开讨论)对于二次三项式g(x)= +ax-a+1,其判别式△=+4(a-1)=+4a-4△<0<8--2<a<-2(1)当△<0时,g(x)>0对任意x∈[0,1]都成立,此时--2<a<-2;(2)当△≥0时,由g(x)>0对任意x∈[0,1]都成立得-2≤a<1或a≤--2.于是由(1)(2)得所求a的取值范围为(--2,-2)∪[-2,1)∪(-∞, --2]即(-∞,1).点评:解法一归统为最值问题,以g(x)图象的对称轴的位置为主线展开讨论;解法二直面g(x)>0在x∈[0,1]上成立,以g(x)的判别式△的取值为主线展开讨论,两种解法各有千秋,都解决这类问题的主要策略.以××为主线展开讨论,这是讨论有理有序,不杂不漏的保障.4.分析:为了认知和利用已知条件,从”特取”切入:在已知恒等式中令==0得f(0)=-2.为利用f(0)=-2,寻觅f(x)的关系式,又在已知恒等式中令=x, =-x得f(0)=f(x)+f(-x)+2故得f(x)+f(-x)=-4证明(1),由此式展开.对于(2)面对抽象的函数f(x),则只能运用定义;对于(3),这里a n=f(n),a n+1=f(n+1),因此,从已知恒等式入手寻觅{a n}的递推式或通项公式,便称为问题突破的关键.解:(1)证明:在已知恒等式中令==0得f(0)=-2①又已知恒等式中令=x, =-x得f(0)=f(x)+f(-x)+2∴f(x)+f(-x)=-4②设M(x,f(x))为y=f(x)的图象上任意一点则由②得③∴由③知点M(x,f(x))与N(-x,f(-x))所成线段MN的中点坐标为(0,-2),∴点M与点N关于定点(0,-2)对称.④注意到点M在y=f(x)图象上的任意性,又点N亦在y=f(x)的图象上,故由④知y=f(x)的图象关于点(0,-2)对称.(2)证明:设,为任意实数,且<,则->0∴由已知得f(-)>-2⑤注意到=(-)+由本题大前提中的恒等式得f()=f[(-)+] =f(-)+ f()+2∴f()-f()=f (-)+2⑥又由⑤知f (-)+2>0,∴由⑥得f()-f()>0,即f()>f().于是由函数的单调性定义知,f(x)在R上为增函数.(3)解:∵a n=f(n),∴a1=f(1)=-,a n+1=f(n+1)又由已知恒等式中令=n, =1得f(n+1)=f(n)+f(1)+2∴a n+1= a n+∴a n+1-a n=(n∈N﹡)由此可知,数列{ a n }是首项为=-,公差为的等差数列.∴=-n+×即=(n2-11n).点评:充分认识与利用已知条件中的恒等式,是本题解题的关键环节. 对于(1)由此导出f(x)+f(-x)=-4;对于(2)由此导出f()=f()+f(-)+2;对于(3)由此导出f(n+1)=f(n)+f(1)+2即a n+1-a n=.。

二次函数与根的情况分类与极值比较练习题

二次函数与根的情况分类与极值比较练习题

二次函数与根的情况分类与极值比较练习题在学习二次函数的过程中,了解二次函数的根以及函数的极值是非常重要的。

本文将提供一些练习题,帮助你掌握二次函数与根的情况分类以及极值的比较。

练习题一:考虑二次函数f(x)=ax²+bx+c,其中a>0。

将以下的函数根据a、b、c的取值情况分类,并讨论函数的极值与根之间的关系。

1. 当a>0,b²-4ac>0时,方程f(x)=0有两个不相等的实根;2. 当a>0,b²-4ac=0时,方程f(x)=0有两个相等的实根;3. 当a>0,b²-4ac<0时,方程f(x)=0没有实根。

练习题二:给定二次函数f(x)=x²-4x+3,求函数的极值点,并比较函数的极值与根之间的关系。

解答:首先,我们需要求出函数f(x)的导数,然后通过求导数为0的点来找到函数的极值点。

对于f(x)=x²-4x+3,求导数得到f'(x)=2x-4。

令f'(x)=0,可得2x-4=0,解得x=2。

因此,函数f(x)的极值点为x=2。

间的关系来比较它们的大小。

将x=2代入函数f(x)得到f(2)=2²-4×2+3=3。

所以,函数f(x)的极小值为3。

综上所述,函数f(x)=x²-4x+3的极小值为3。

练习题三:考虑二次函数f(x)=2x²+4x-2,求函数的根以及函数的极值,然后比较二者之间的关系。

解答:首先,我们需要求出函数f(x)的根。

将函数f(x)=2x²+4x-2置零,得到2x²+4x-2=0。

通过因式分解或者求根公式,我们可以得到方程的解为x=-1-√3和x=-1+√3。

所以,函数f(x)=2x²+4x-2有两个不相等的实根。

接下来,我们需要求出函数f(x)的导数,然后通过求导数为0的点来找到函数的极值点。

对于f(x)=2x²+4x-2,求导数得到f'(x)=4x+4。

一次函数与方程不等式专项练习60题(有答案)

一次函数与方程不等式专项练习60题(有答案)

一次函数与方程、不等式专项练习60题〔有答案〕1.一次函数y=kx+b的图象如下图,那么方程kx+b=0的解为〔〕A .x=2 B.y=2 C.x=﹣1 D.y=﹣12.如图,函数y=2x和y=ax+4的图象相交于点A〔m,3〕,那么不等式2x<ax+4的解集为〔〕A .x<B.x<3 C.x>D.x>33.如图,一次函数y=kx+b的图象与y轴交于点〔0,1〕,那么关于x的不等式kx+b>1的解集是〔〕A .x>0 B.x<0 C.x>1 D.x<14.一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点〔2,0〕,那么关于x的不等式a〔x﹣1〕﹣b >0的解集为〔〕A .x<﹣1 B.x>﹣1 C.x>1 D.x<15.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为〔1,2〕,那么使y1<y2的x的取值范围为〔〕A .x>1 B.x>2 C.x<1 D.x<26.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如下图,那么关于x的不等式k2x<k1x+b的解集为〔〕A .x<﹣1 B.x>﹣1 C.x>2 D.x<27.如图,直线y=kx+b经过点A〔﹣1,﹣2〕和点B〔﹣2,0〕,直线y=2x过点A,那么不等式2x<kx+b<0的解集为〔〕A .x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<08.整数x满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,那么m的最大值是〔〕A .1 B.2 C.24 D.﹣99.如图,直线y1=与y2=﹣x+3相交于点A,假设y1<y2,那么〔〕A .x>2 B.x<2 C.x>1 D.x<110.一次函数y=3x+9的图象经过〔﹣,1〕,那么方程3x+9=1的解为x= _________ .11.如图,直线y=ax+b,那么方程ax+b=1的解x= _________ .12.如图,一次函数y=ax+b的图象经过A,B两点,那么关于x的方程ax+b=0的解是_________ .13.直线与x轴、y轴交于不同的两点A和B,S△AOB≤4,那么b的取值范围是_________ .14.关于x的方程mx+n=0的解是x=﹣2,那么直线y=mx+n与x轴的交点坐标是_________ .15.ax+b=0的解为x=﹣2,那么函数y=ax+b与x轴的交点坐标为_________ .16.一次函数y=kx+b的图象如下图,那么关于x的方程kx+b=0的解为______ ,当x ______ 时,kx+b<0.17.如图,函数y=2x+b和y=ax﹣3的图象交于点P〔﹣2,﹣5〕,根据图象可得方程2x+b=ax﹣3的解是_________ .18.一元一次方程0.5x+1=0的解是一次函数y=0.5x+1的图象与_________ 的横坐标.19.如图,直线y=ax﹣b,那么关于x的方程ax﹣1=b的解x= _________ .20.一次函数y1=kx+b与y2=x+a的图象如图,那么方程kx+b=x+a的解是_________ .21.一次函数y=2x+2的图象如下图,那么由图象可知,方程2x+2=0的解为_________ .22.一次函数y=ax+b的图象过点〔0,﹣2〕和〔3,0〕两点,那么方程ax+b=0的解为_________ .23.方程3x+2=8的解是x= _________ ,那么函数y=3x+2在自变量x等于_________ 时的函数值是8.24.一次函数y=ax+b的图象如下图,那么一元一次方程ax+b=0的解是x= _________ .25.观察下表,估算方程1700+150x=2450的解是_________ .x的值 1 2 3 4 5 6 7 …1700+150x的值1850 2000 2150 2300 2450 2600 2750 …26.y1=3x+1,y2=21-3x,当x取何值时,y1比21y2小2.27.计算:〔4a﹣3b〕•〔a﹣2b〕28.我们知道多项式的乘法可以利用图形的面积进展解释,如〔2a+b〕〔a+b〕=2a2+3ab+b2就能用图1或图2等图形的面积表示:〔1〕请你写出图3所表示的一个等式:_________ .〔2〕试画出一个图形,使它的面积能表示:〔a+b〕〔a+3b〕=a2+4ab+3b2.29.如图,直线l是一次函数y=kx+b的图象,点A、B在直线l上.根据图象答复以下问题:〔1〕写出方程kx+b=0的解;〔2〕写出不等式kx+b>1的解集;〔3〕假设直线l上的点P〔m,n〕在线段AB上移动,那么m、n应如何取值.30.当自变量x的取值满足什么条件时,函数y=﹣2x+7的值为﹣2.31.如图,过A点的一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点B,那么不等式0<2x<kx+b的解集是〔〕A .x<1 B.x<0或x>1 C.0<x<1 D.x>132.关于x的一次函数y=kx+b〔k≠0〕的图象过点〔2,0〕,〔0,﹣1〕,那么不等式kx+b≥0的解集是〔〕A .x≥2B.x≤2C.0≤x≤2D.﹣1≤x≤233.当自变量x的取值满足什么条件时,函数y=3x﹣8的值满足y>0〔〕A .x=B.x≤C.x>D.x≥﹣34.函数y=8x﹣11,要使y>0,那么x应取〔〕A .x>B.x<C.x>0 D.x<035.如图,直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有以下3个结论:①a>0;②b>0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是〔〕A .0 B.1 C.2 D.336.如图,直线y=ax+b经过点〔﹣4,0〕,那么不等式ax+b≥0的解集为_________ .37.如图,直线y=kx+b经过A〔﹣2,﹣1〕和B〔﹣3,0〕两点,那么不等式﹣3≤﹣2x﹣5<kx+b的解集是_________ .38.如下图,函数y=ax+b和a〔x﹣1〕﹣b>0的图象相交于〔﹣1,1〕,〔2,2〕两点.当y1>y2时,x的取值范围是_________ .39.如图,直线y=ax+b与直线y=cx+d相交于点〔2,1〕,直线y=cx+d交y轴于点〔0,2〕,那么不等式组ax+b<cx+d<2的解集为_________ .40.如图,直线y=kx+b经过点〔2,1〕,那么不等式0≤x<2kx+2b的解集为_________ .41.一次函数y=kx+b的图象如下图,由图象可知,当x _________ 时,y值为正数,当x _________ 时,y 为负数.42.如图,直线y=kx+b经过A〔1,2〕,B〔﹣2,﹣1〕两点,那么不等式x<kx+b<2的解集为_________ .43.如果直线y=kx+b经过A〔2,1〕,B〔﹣1,﹣2〕两点,那么不等式x≥kx+b≥﹣2的解集为:_________ .44.如图,直线y=kx+b与x轴交于点〔﹣3,0〕,且过P〔2,﹣3〕,那么2x﹣7<kx+b≤0的解集_________ .45.一次函数y=ax﹣b的图象经过一、二、三象限,且与x轴交于点〔﹣2,0〕,那么不等式ax>b的解集为_________ .46.一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点〔2,O〕,那么关于x的不等式a〔x﹣l〕﹣b>0的解集为_________ .47.如图,直线y=ax+b经过A〔﹣2,﹣5〕、B〔3,0〕两点,那么,不等式组2〔ax+b〕<5x<0的解集是_________ .48.函数y1=2x+b与y2=ax﹣3的图象交于点P〔﹣2,5〕,那么不等式y1>y2的解集是_________ .49.如图,直线y=kx+b经过A〔2,0〕,B〔﹣2,﹣4〕两点,那么不等式y>0的解集为_________ .50.点P〔x,y〕位于第二象限,并且y≤x+4,x、y为整数,符合上述条件的点P共有6个.51.作出函数y=2x﹣4的图象,并根据图象答复以下问题:〔1〕当﹣2≤x≤4时,求函数y的取值范围;〔2〕当x取什么值时,y<0,y=0,y>0;〔3〕当x取何值时,﹣4<y<2.52.画出函数y=2x+1的图象,利用图象求:〔1〕方程2x+1=0的根;〔2〕不等式2x+1≥0的解;〔3〕求图象与坐标轴的两个交点之间的距离.53.用画函数图象的方法解不等式5x+4<2x+10.54.画出函数y=3x+12的图象,并答复以下问题:〔1〕当x为什么值时,y>0;〔2〕如果这个函数y的值满足﹣6≤y≤6,求相应的x的取值范围.55.如图,直线y=x+1和y=﹣3x+b交于点A〔2,m〕.〔1〕求m、b的值;〔2〕在所给的平面直角坐标系中画出直线y=﹣3x+b;〔3〕结合图象写出不等式﹣3x+b<x+1的解集是_________ .56.如图,图中是y=a1x+b1和y=a2x+b2的图象,根据图象填空.的解集是_________ ;的解集是_________ ;的解集是_________ .57.在平面直角坐标系x0y中,直线y=kx+b〔k≠0〕过〔1,3〕和〔3,1〕两点,且与x轴、y轴分别交于A、B 两点,求不等式kx+b≤0的解.58.用图象法解不等式5x﹣1>2x+5.59.〔1〕在同一坐标系中,作出函数y1=﹣x与y2=x﹣2的图象;〔2〕根据图象可知:方程组的解为_________ ;〔3〕当x _________ 时,y2<0.〔4〕当x _________ 时,y2<﹣2〔5〕当x _________ 时,y1>y2.60.做一做,画出函数y=﹣2x+2的图象,结合图象答复以下问题.函数y=﹣2x+2的图象中:〔1〕随着x的增大,y将_________ 填“增大〞或“减小〞〕〔2〕它的图象从左到右_________ 〔填“上升〞或“下降〞〕〔3〕图象与x轴的交点坐标是_________ ,与y轴的交点坐标是_________〔4〕这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?〔5〕当x取何值时,y=0?〔6〕当x取何值时,y>0?一次函数与方程不等式60题参考答案:1.∵一次函数y=kx+b的图象与x轴的交点为〔﹣1,0〕,∴当kx+b=0时,x=﹣1.应选C.2.∵函数y=2x和y=ax+4的图象相交于点A〔m,3〕,∴3=2m,m=,∴点A的坐标是〔,3〕,∴不等式2x<ax+4的解集为x<;应选A3.由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点〔0,1〕,∴当x<0时,关于x的不等式kx+b>1.应选B.4.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把〔2,0〕代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b =﹣2,∵a〔x﹣1〕﹣b>0,∴a〔x﹣1〕>b,∵a<0,∴x﹣1<,∴x<﹣1,应选A5.由图象可知,当x<1时,直线y1落在直线y2的下方,故使y1<y2的x的取值范围是:x<1.应选C.6.两条直线的交点坐标为〔﹣1,2〕,且当x>﹣1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>﹣1.应选B7.不等式2x<kx+b<0表达的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那局部点,显然,这些点在点A与点B之间.应选B8.联立两函数的解析式,得:,解得;即两函数图象交点为〔1,2〕,在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而减小;因此当x=1时,m值最大,即m=2.应选B9.从图象上得出,当y1<y2时,x<2.应选B.10.方程3x+9=1的解,即函数y=3x+9中函数值y=1时,x的值.∵一次函数y=3x+9的图象经过〔﹣,1〕,即函数值是1时,自变量x=﹣.因而方程3x+9=1的解为x=﹣11.根据图形知,当y=1时,x=4,即ax+b=1时,x=4.∴方程ax+b=1的解x=412.由图可知:当x=2时,函数值为0;因此当x=0时,ax+b=0,即方程ax+b=0的解为:x=213.由直线与x轴、y轴交于不同的两点A和B,令x=0,那么y=b,令y=0,那么x=﹣2b,∴S△AOB=×2b2=b2≤4,解得:﹣2≤b≤2且b≠0,故答案为:﹣2≤b≤2且b≠014.∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,那么有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是〔﹣2,0〕15.∵ax+b=0的解为x=﹣2,∴函数y=ax+b与x轴的交点坐标为〔﹣2,0〕,故答案为:〔﹣2,0〕16.从图象上可知那么关于x的方程kx+b=0的解为的解是x=﹣3,当x<﹣3时,kx+b<0.故答案为:x=﹣3,x<﹣317.根据题意,知 点P 〔﹣2,﹣5〕在函数y=2x+b 的图象上,∴﹣5=﹣4+b ,解得,b=﹣1;又点P 〔﹣2,﹣5〕在函数y=ax ﹣3的图象上,∴﹣5=﹣2a ﹣3,解得,a=1;∴由方程2x+b=ax ﹣3,得2x ﹣1=x ﹣3,解得,x=﹣2;故答案是:x=﹣218. ∵0.5x+1=0,∴0.5x=﹣1,∴x=﹣2,∴一次函数y=0.5x+1的图象与x 轴交点的横坐标为:x=﹣2,故答案为:x 轴交点.19.根据图形知,当y=1时,x=4,即ax ﹣b=1时,x=4.故方程ax+b=1的解x=4.故答案为:420.一次函数y 1=kx+b 与y 2=x+a 的图象的交点的横坐标是3,故方程的解是:x=3.故答案是:x=321.由一次函数y=2x+2的图象知:y=2x+2经过点〔﹣1,0〕,∴方程2x+2=0的解为:x=﹣1,故答案为:x=﹣1.22.一次函数y=ax+b 的图象过点〔0,﹣2〕和〔3,0〕两点,∴b=﹣2,3a+b=0,解得:a=,∴方程ax+b=0可化为:x ﹣2=0,∴x=3.23.解方程3x+2=8得到:x=2,函数y=3x+2的函数值是8.即3x+2=8,解得x=2,因而方程3x+2=8的解是x=2 即函数y=3x+2在自变量x 等于2时的函数值是8.故填2、824.∵一次函数y=ax+b 的图象与x 轴交点的横坐标是﹣2,∴一元一次方程ax+b=0的解是:x=﹣2.故填﹣225.设y=1700+150x ,由图中所给的表可知:当x=5时,y=1700+150x=2450,∴方程1700+150x=2450的解是5. 故答案为:526.∵y 1比21 y 2小2.,y 1=3x +1, y 2=21-3x ∴3x +1= 21〔21-3x 〕-2=41-23x-2 两边都乘12得,4x+12=3-18x-24,移项及合并得22x=-33,解得x=-1.5,当x=-1.5时,y 1比21 y 2小2. 27.原式=4a•a﹣8ab ﹣3ab+6b•b=4a 2﹣11ab+6b 228.〔1〕∵长方形的面积=长×宽,∴图3的面积=〔a+2b 〕〔2a+b 〕=2a 2+5ab+2b 2,故图3所表示的一个等式:〔a+2b 〕〔2a+b 〕=2a 2+5ab+2b 2,故答案为:〔a+2b 〕〔2a+b 〕=2a 2+5ab+2b 2;〔2〕∵图形面积为:〔a+b 〕〔a+3b 〕=a 2+4ab+3b 2,∴长方形的面积=长×宽=〔a+b 〕〔a+3b 〕,由此可画出的图形为:29.函数与x 轴的交点A 坐标为〔﹣2,0〕,与y 轴的交点的坐标为〔0,1〕,且y 随x 的增大而增大.〔1〕函数经过点〔﹣2,0〕,那么方程kx+b=0的根是x=﹣2;〔2〕函数经过点〔0,1〕,那么当x >0时,有kx+b >1,即不等式kx+b >1的解集是x >0;〔3〕线段AB 的自变量的取值范围是:﹣2≤x≤2,当﹣2≤m≤2时,函数值y 的范围是0≤y≤2, 那么0≤n≤2.30. 函数y=﹣2x+7中,令y=﹣2,那么﹣2x+7=﹣2,解得:x=4.5.31.一次函数y=kx+b 经过A 、B 两点,∴,解得:k=﹣,b=3.故:y=﹣,∵0<2x<﹣,解得:0<x<1.应选C32.由于x的一次函数y=kx+b〔k≠0〕的图象过点〔2,0〕,且函数值y随x的增大而增大,∴不等式kx+b≥0的解集是x≥2.应选A33.函数y=3x﹣8的值满足y>0,即3x﹣8>0,解得:x>.应选C34.函数y=8x﹣11,要使y>0,那么8x﹣11>0,解得:x>.应选A.35.由图象可知,a>0,故①正确;b>0,故②正确;当x>﹣2是直线y=3x+b在直线y=ax﹣2的上方,即x>﹣2是不等式3x+b>ax﹣2,故③正确.应选D.36.由图象可以看出:当x≥﹣4时,y≥0,∴不等式ax+b≥0的解集为x≥﹣4,故答案为:x≥﹣437.∵直线y=kx+b经过A〔﹣2,﹣1〕和B〔﹣3,0〕两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣138.∵函数y=ax+b和a〔x﹣1〕﹣b>0的图象相交于〔﹣1,1〕,〔2,2〕两点,∴根据图象可以看出,当y1>y2时,x的取值范围是x>2或x<﹣1,故答案为:x<﹣1或x>239. 如图,直线y=ax+b与直线y=cx+d相交于点〔2,1〕,直线y=cx+d交y轴于点〔0,2〕,那么不等式组ax+b<cx+d<2的解集为〔0,2〕.40.由直线y=ax+b与直线y=cx+d相交于点〔2,1〕,直线y=cx+d交y轴于点〔0,2〕,根据图象即可知不等式组ax+b<cx+d<2的解集为〔0,2〕,故答案为:〔0,2〕.41. 一次函数y=kx+b的图象如下图,由图象可知,当x x>﹣3 时,y值为正数,当x x<﹣3 时,y为负数.42.由图形知,一次函数y=kx+b经过点〔﹣3,0〕,〔0,2〕故函数解析式为:y=x+2,令y>0,解得:x>﹣3,令y<0,解得:x<﹣3.故答案为:x>﹣3,x<﹣343.直线y=kx+b经过A〔2,1〕和B〔﹣1,﹣2〕两点,可得:,解得;那么不等式组x≥kx+b≥﹣2可化为x≥x﹣1≥﹣2,解得:﹣1≤x≤244.直线y=kx+b与x轴交于点〔﹣3,0〕,且过P〔2,﹣3〕,∴结合图象得:kx+b≤0的解集是:x≥﹣3,∵2x﹣7<﹣3,∴x<2,∴2x﹣7<kx+b≤0的解集是:﹣3≤x<2,故答案为:﹣3≤x<2 45.如右图所示:不等式ax>b的解集就是求函数y=ax﹣b>0,当y>0时,图象在x轴上方,那么不等式ax>b的解集为x>﹣2.故答案为:x>﹣2.46.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把〔2,0〕代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b,=﹣2,∵a〔x﹣1〕﹣b>0,∴a〔x﹣1〕>b,∵a<0,∴x﹣1<,∴x<﹣147.把A〔﹣2,﹣5〕、B〔3,0〕两点的坐标代入y=ax+b,得﹣2a+b=﹣5,3a+b=0,解得:a=1,b=﹣3.解不等式组:2〔x﹣3〕<5x<0,得:﹣2<x<0.故答案为:﹣2<x<048.由图象可知x>﹣2时,y1>y2;故答案为x>﹣249.∵一次函数y=kx+b的图象经过A、B两点,由图象可知:直线从左往右逐渐上升,即y随x的增大而增大,又A〔2,0〕,所以不等式y>0的解集是x>2.故答案为x>250.∵点P〔x,y〕位于第二象限,∴x<0,y>0,又∵y≤x+4,∴0<y<4,x<0,又∵x、y为整数,∴当y=1时,x可取﹣3,﹣2,﹣1,当y=2时,x可取﹣1,﹣2,当y=3时,x可取﹣1.那么P坐标为〔﹣1,1〕,〔﹣1,2〕,〔﹣1,3〕,〔﹣2,1〕,〔﹣2,2〕,〔﹣3,1〕共6个.故答案为:651.当x=0时,y=﹣4,当y=0时,x=2,即y=2x﹣4过点〔0,﹣4〕和点〔2,0〕,过这两点作直线即为y=2x﹣4的图象,从图象得出函数值随x的增大而增大;〔1〕当x=﹣2时,y=﹣8,当x=4,y=4,∴当﹣2≤x≤4时,函数y的取值范围为:﹣8≤y≤4;〔2〕由于当y=0时,x=2,∴当x<2时,y<0,当x=2时,y=0,当x>2时,y>0;〔3〕∵当y=﹣4时,x=0;当y=2时,x=3,∴当x的取值范围为:0<x<3时,有﹣4<y<2.52.列表:描点,过〔0,1〕和〔﹣,0〕两点作直线即可得函数y=2x+1的图象,如图:〔1〕由图象看出当x=﹣时,y=0,即2x+1=0,所以x=﹣是方程2x+1=0的解;〔2〕不等式2x+1≥0的解应为函数图象上不在x轴下方的点的横坐标,所以x≥﹣是不等式2x+1≥0的解;〔3〕由勾股定理得它们之间的距离为53.令y1=5x+4,y2=2x+10,对于y1=5x+4,当x=0时,y=4;当y=0时,x=﹣,即y1=5x+4过点〔0,4〕和点〔﹣,0〕,过这两点作直线即为y1=5x+4的图象;对于y2=2x+10,当x=0时,y=10;当y=0时,x=﹣5,即y2=2x+10过点〔0,10〕和点〔﹣5,0〕,过这两点作直线即为y2=2x+10的图象.图象如图:由图可知当x<2时,不等式5x+4<2x+10成立.54. 当x=0时,y=12;当y=0时,x=﹣4,即y=3x+12过点〔0,12〕和点〔﹣4,0〕,过这两点作直线即为y=3x+12的图象,从图象得出函数值随x的增大而增大;〔1〕函数图象经过点〔﹣4,0〕,并且函数值y随x的增大而增大,因而当x>﹣4时y>0;〔2〕函数经过点〔﹣6,﹣6〕和点〔﹣2,6〕并且函数值y随x的增大而增大,因而函数y的值满足﹣6≤y≤6时,相应的x的取值范围是:﹣6≤x≤﹣2.55.〔1〕根据题意得:解得:〔2〕画出直线如图:〔3〕自变量的取值范围是:x>2.56.由题意知:由图象知y=a1x+b1>0时有x>﹣3,函数y=a2x+b2>0时有x<1,∴不等式组的解集的解集为:﹣3<x<1;故答案为:﹣3<x<1;由题知:由图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x<1,∴不等式组的解集为:x<﹣3;故答案为:x<﹣3;由题意知:根据函数图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x>1,∴不等式组的解集是空集;故答案为:空集57.∵直线y=kx+b〔k≠0〕过〔1,3〕和〔3,1〕两点,∴,解得:,∴直线AB的解析式为:y=﹣x+4,∵当y=0时,x=4,∴A〔4,0〕,∴不等式kx+b≤0的解集为:x<4.58.5x﹣1>2x+5可变形为x﹣2>0,画一次函数y=x﹣2的图象,如下图:根据图象可得:当y>0时,图象在x轴的上方,故x>2.59.〔1〕解:如下图:.〔2〕解:由图象可知:方程组的解为,故答案为:.〔3〕解:根据题意得:x﹣2<0,解得:x<2,故答案为:<2.〔4〕解:根据题意得:x﹣2<﹣2,解得:x<0,故答案为:<0.〔5〕解:根据题意得:﹣x>x﹣2,解得:x<1,故答案为:x<1.60.函数y=﹣2x+2的图象为:〔1〕由图象知:随着x的增大,y将减小.〔2〕由图象知:图象从左向右下降.〔3〕由图象知:与x轴的交点坐标是〔1,0〕,与y轴的交点坐标是〔0,2〕.〔4〕由图象知:这个函数中,随着x的增大,y将减小,图象从左向右下降.〔5〕由图象知:当x=1时,y=0.〔6〕由图象知:当x<1时,y>0.。

一元二次方程根的情况试题练习题

一元二次方程根的情况试题练习题

一元二次方程根的情况练习题(含答案)一.选择题1.一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根2.一元二次方程3x2﹣4x+1=0的根的情况为()A.没有实数根B.只有一个实数根C.两个相等的实数根D.两个不相等的实数根3.一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定5.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为06.一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.一元二次方程2x2﹣3x+1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根8.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根9.一元二次方程x2+2x+1=0的根的情况()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根10.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根11.一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根12.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根13.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根14.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.两个根都是自然数D.无实数根15.一元二次方程x2+x+=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定根的情况16.一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根17.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有一个实数根C.有两个相等的实数根D.没有实数根18.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定的19.关于x的一元二次方程x2﹣ax+(a﹣1)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根二.填空题21.若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k的取值范围是.22.关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为.23.如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.24.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.25.若关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则k=.26.若一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是.27.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k 的取值范围是.28.一元二次方程2x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是.29.若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m=.30.已知k>0,且关于x的方程3kx2+12x+k+1=0有两个相等的实数根,那么k 的值等于.31.若关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,则a的取值范围是.32.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是.33.若方程kx2﹣6x+1=0有两个实数根,则k的取值范围是.34.若一元二次方程x2﹣2x+a=0有两个相等的实数根,则a的值是.35.已知关于x的方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是.36.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是.37.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是.一.选择题(共20小题)1.(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.2.(2017•常德)一元二次方程3x2﹣4x+1=0的根的情况为()A.没有实数根B.只有一个实数根C.两个相等的实数根D.两个不相等的实数根【分析】先计算判别式的意义,然后根据判别式的意义判断根的情况.【解答】解:∵△=(﹣4)2﹣4×3×1=4>0∴方程有两个不相等的实数根.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.(2017•扬州)一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣7)2﹣4×(﹣2)=57>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.(2016•昆明)一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】将方程的系数代入根的判别式中,得出△=0,由此即可得知该方程有两个相等的实数根.【解答】解:在方程x2﹣4x+4=0中,△=(﹣4)2﹣4×1×4=0,∴该方程有两个相等的实数根.故选B.【点评】本题考查了根的判别式,解题的关键是代入方程的系数求出△=0.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式得正负确定方程解得个数是关键.5.(2016•河北)a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为0【分析】利用完全平方的展开式将(a﹣c)2展开,即可得出ac<0,再结合方程ax2+bx+c=0根的判别式△=b2﹣4ac,即可得出△>0,由此即可得出结论.【解答】解:∵(a﹣c)2=a2+c2﹣2ac>a2+c2,∴ac<0.在方程ax2+bx+c=0中,△=b2﹣4ac≥﹣4ac>0,∴方程ax2+bx+c=0有两个不相等的实数根.故选B.【点评】本题考查了完全平方公式以及根的判别式,解题的关键是找出△=b2﹣4ac>0.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式的符号,得出方程实数根的个数是关键.6.(2016•邵阳)一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】代入数据求出根的判别式△=b2﹣4ac的值,根据△的正负即可得出结论.【解答】解:∵△=b2﹣4ac=(﹣3)2﹣4×2×1=1>0,∴该方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式,解题的关键是求出根的判别式△=1.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式的正负确定根的个数是关键.7.(2016•舟山)一元二次方程2x2﹣3x+1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根【分析】先求出△的值,再根据△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数;△<0⇔方程没有实数根,进行判断即可.【解答】解:∵a=2,b=﹣3,c=1,∴△=b2﹣4ac=(﹣3)2﹣4×2×1=1>0,∴该方程有两个不相等的实数根,故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.8.(2016•黔南州)y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根【分析】由一次函数的定义可求得k的取值范围,再根据一元二次方程的判别式可求得答案.【解答】解:∵y=x+1是关于x的一次函数,∴≠0,∴k﹣1>0,解得k>1,又一元二次方程kx2+2x+1=0的判别式△=4﹣4k,∴△<0,∴一元二次方程kx2+2x+1=0无实数根,故选A.【点评】本题主要考查一元二次方程根的判别式,掌握一元二次方程的根与判别式的关系是解题的关键,即①△>0⇔一元二次方程有两个不相等的实数根,②△=0⇔一元二次方程有两个相等的实数根,③△<0⇔一元二次方程无实数根.9.(2016•兰州)一元二次方程x2+2x+1=0的根的情况()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】先求出△的值,再根据△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数;△<0⇔方程没有实数根,进行判断即可.【解答】解:∵△=22﹣4×1×1=0,∴一元二次方程x2+2x+1=0有两个相等的实数根;故选B.【点评】此题主要考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(2016•怀化)一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根【分析】先求出△的值,再判断出其符号即可.【解答】解:∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程有两个不相等的实数根,故选:A.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.11.(2015•锦州)一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】先计算判别式得到△=(﹣2)2﹣4×(﹣1)=8>0,然后根据判别式的意义判断方程根的情况.【解答】解:根据题意△=(﹣2)2﹣4×(﹣1)=8>0,所以方程有两个不相等的实数根.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12.(2015•滨州)一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【分析】先求出△的值,再判断出其符号即可.【解答】解:原方程可化为:4x2﹣4x+1=0,∵△=42﹣4×4×1=0,∴方程有两个相等的实数根.故选C.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.13.(2015•长春)方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根【分析】把a=1,b=﹣2,c=3代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣2,c=3,∴△=b2﹣4ac=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.14.(2015•重庆)已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.两个根都是自然数D.无实数根【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=2,b=﹣5,c=3,∴△=b2﹣4ac=(﹣5)2﹣4×2×3=1>0,∴方程有两个不相等的实数根.故选:A.【点评】此题主要考查了一元二次方程根的判别式,掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,是解决问题的关键.15.(2015•珠海)一元二次方程x2+x+=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定根的情况【分析】求出△的值即可判断.【解答】解:一元二次方程x2+x+=0中,∵△=1﹣4×1×=0,∴原方程由两个相等的实数根.故选B.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.16.(2014•自贡)一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根【分析】把a=1,b=﹣4,c=5代入△=b2﹣4ac进行计算,根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.17.(2017•思茅区校级一模)一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有一个实数根C.有两个相等的实数根D.没有实数根【分析】要判断方程x2﹣4x+4=0的根的情况就要求出方程的根的判别式,然后根据判别式的正负情况即可作出判断.【解答】解:∵a=1,b=﹣4,c=4,∴△=16﹣16=0,∴方程有两个相等的实数根.故选C.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.(2017•静安区二模)关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定的【分析】先计算△=(﹣m)2﹣4×1×(﹣1)=m2+4,由于m2为非负数,则m2+4>0,即△>0,根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac 的意义即可判断方程根的情况.【解答】解:△=(﹣m)2﹣4×1×(﹣1)=m2+4,∵m2≥0,∴m2+4>0,即△>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.19.(2017•兴庆区校级二模)关于x的一元二次方程x2﹣ax+(a﹣1)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根【分析】要判断一元二次方程x2﹣ax+(a﹣1)=0的根的情况,就要求出其判别式,然后根据判别式的正负情况即可作出判断.【解答】解:∵△=a2﹣4×1×(a﹣1)=a2﹣4a+4=(a﹣2)2≥0,∴此方程有两个实数根.故选D.【点评】结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B 是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣. 故选C .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二.填空题(共19小题)21.(2016•河南)若关于x 的一元二次方程x 2+3x ﹣k=0有两个不相等的实数根,则k 的取值范围是 k >﹣ .【分析】由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于k 的一元一次不等式,解不等式即可得出结论.【解答】解:∵关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,∴△=32﹣4×1×(﹣k)=9+4k>0,解得:k>﹣.故答案为:k>﹣.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是根据根的个数结合根的判别式得出关于k的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出方程(不等式或不等式组)是关键.22.(2017•大连)关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为c<1.【分析】根据方程的系数结合根的判别式,即可得出关于c的一元一次不等式,解之即可得出结论.【解答】解:∵关于x的方程x2+2x+c=0有两个不相等的实数根,∴△=22﹣4c=4﹣4c>0,解得:c<1.故答案为:c<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.23.(2016•上海)如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=(﹣3)2﹣4×1×k=9﹣4k=0,解得:k=.故答案为:.【点评】本题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.本题属于基础题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程(不等式或不等式组)是关键.24.(2016•长春)关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m 的值是1.【分析】由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.25.(2016•淮安)若关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则k=9.【分析】根据判别式的意义得到△=62﹣4×1×k=0,然后解一次方程即可.【解答】解:∵一元二次方程x2+6x+k=0有两个相等的实数根,∴△=62﹣4×1×k=0,解得:k=9,故答案为:9.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.26.(2016•宿迁)若一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是k<1.【分析】直接利用根的判别式得出△=b2﹣4ac=4﹣4k>0进而求出答案.【解答】解:∵一元二次方程x2﹣2x+k=0有两个不相等的实数根,∴△=b2﹣4ac=4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为:k<1.【点评】此题主要考查了根的判别式,正确得出△符号是解题关键.27.(2014•上海)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k<1.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(﹣2)2﹣4×1×k>0,然后解不等式即可.【解答】解:∵关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4×1×k>0,解得k<1,∴k的取值范围为k<1.故答案为:k<1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.28.(2014•常德)一元二次方程2x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是k<.【分析】根据判别式的意义得到△=(﹣3)2﹣4×2×k>0,然后解不等式即可.【解答】解:根据题意得△=(﹣3)2﹣4×2×k>0,解得k<.故答案为:k<.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.29.(2015•岳阳)若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m=.【分析】根据题意可得△=0,据此求解即可.【解答】解:∵方程x2﹣3x+m=0有两个相等的实数根,∴△=9﹣4m=0,解得:m=.故答案为:.【点评】本题考查了根的判别式,解答本题的关键是掌握当△=0时,方程有两个相等的两个实数根.30.(2015•新疆)已知k>0,且关于x的方程3kx2+12x+k+1=0有两个相等的实数根,那么k的值等于3.【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2﹣4ac=0,据此可列出关于k的等量关系式,即可求得k的值.【解答】解:∵关于x的方程3kx2+12x+k+1=0有两个相等的实数根,∴△=b2﹣4ac=144﹣4×3k×(k+1)=0,解得k=﹣4或3,∵k>0,∴k=3.故答案为3.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.31.(2015•漳州)若关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,则a的取值范围是a>﹣且a≠0.【分析】根据一元二次方程的定义及判别式的意义可得a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,解不等式组即可求出a的取值范围.【解答】解:∵关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,∴a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,解得:a>﹣且a≠0.故答案为:a>﹣且a≠0.【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的定义.32.(2017•罗平县一模)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是k>﹣1且k≠0.【分析】由关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,即可得判别式△>0且k≠0,则可求得k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=0∴k≠0,∴k的取值范围是:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.【点评】此题考查了一元二次方程根的判别式的应用.此题比较简单,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.33.(2017•凉州区一模)若方程kx2﹣6x+1=0有两个实数根,则k的取值范围是k≤9,且k≠0.【分析】若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于k 的不等式,求出k的取值范围.还要注意二次项系数不为0.【解答】解:∵方程有两个实数根,∴△=b2﹣4ac=36﹣4k≥0,即k≤9,且k≠0【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.34.(2017•绿园区二模)若一元二次方程x2﹣2x+a=0有两个相等的实数根,则a 的值是1.【分析】根据已知条件“一元二次方程x2﹣2x+a=0有两个相等的实数根”可知根的判别式△=b2﹣4ac=0,据此可以求得a的值.【解答】解:∵一元二次方程x2﹣2x+a=0的二次项系数a=1,一次项系数b=﹣2,常数项c=a,且一元二次方程x2﹣2x+a=0有两个相等的实数根,∴△=b2﹣4ac=0,即△=(﹣2)2﹣4×1×a=0,解得a=1.故答案是:1.【点评】本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.35.(2017•盘锦三模)已知关于x的方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是a<1.【分析】关于x的方程x2﹣2x+a=0有两个不相等的实数根,即判别式△=b2﹣4ac>0.即可得到关于a的不等式,从而求得a的范围.【解答】解:∵b2﹣4ac=(﹣2)2﹣4×1×a=4﹣4a>0,解得:a<1.∴a的取值范围是a<1.故答案为:a<1.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.36.(2017•抚顺县一模)关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是a≥1且a≠5.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2﹣4ac≥0.【解答】解:因为关于x的一元二次方程有实根,所以△=b2﹣4ac=16+4(a﹣5)≥0,解之得a≥1.∵a﹣5≠0∴a≠5∴实数a的取值范围是a≥1且a≠5故答案为a≥1且a≠5.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.37.(2017•河南模拟)关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是m≤3且m≠2.【分析】若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为0.【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴△=22﹣4×(m﹣2)×1≥0,且m﹣2≠0,解得:m≤3且m≠2,故答案为:m≤3且m≠2.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.38.(2016•河南)如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为﹣.【分析】连接OC、AC,根据题意得到△AOC为等边三角形,∠BOC=30°,分别求出扇形COB的面积、△AOC的面积、扇形AOC的面积,计算即可.【解答】解:连接OC、AC,由题意得,OA=OC=AC=2,∴△AOC为等边三角形,∠BOC=30°,∴扇形COB的面积为:=,△AOC的面积为:×2×=,扇形AOC的面积为:=,则阴影部分的面积为:+﹣=﹣,故答案为:﹣.【点评】本题考查的是扇形面积计算,掌握等边三角形的性质、扇形的面积公式S=是解题的关键.39.(2015•河南)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为+.【分析】连接OE、AE,根据点C为OC的中点可得∠CEO=30°,继而可得△AEO 为等边三角形,求出扇形AOE的面积,最后用扇形AOB的面积减去扇形COD的面积,再减去S空白AEC即可求出阴影部分的面积.【解答】解:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.【点评】本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:。

2020学年新教材高中数学第三章函数3.2函数与方程、不等式之间的关系练习(含解析)新人教B版必修第一册

2020学年新教材高中数学第三章函数3.2函数与方程、不等式之间的关系练习(含解析)新人教B版必修第一册

3.2 函数与方程、不等式之间的关系最新课程标准:运用函数性质求方程近似解的基本方法(二分法),再结合实例,更深入地理解用函数构建数学模型的基本过程,学习运用模型思想发现和提出问题、分析和解决问题的方法.知识点一函数的零点1.零点的定义一般地,如果函数y=f(x)在实数α处的函数值等于零,即f(α)=0,则称α为函数y =f(x)的零点.2.方程的根与函数零点的关系状元随笔函数的零点不是一个点,而是一个实数,当自变量取该值时,其函数值等于零.知识点二二次函数的零点及其与对应方程、不等式解集之间的关系函数零点存在定理如果函数y =f (x )在区间[a ,b ]上的图像是连续不断的,并且f (a )f (b )<0(即在区间两个端点处的函数值异号),则函数y =f (x )在区间(a ,b )中至少有一个零点,即∃x 0∈[a ,b ],f (x 0)=0.状元随笔 定理要求具备两条:①函数在区间[a ,b]上的图像是连续不断的一条曲线;②f(a)·f(b)<0.[基础自测]1.函数y =3x -2的图像与x 轴的交点坐标及其零点分别是( ) A.23;23 B.⎝ ⎛⎭⎪⎫23,0;23 C .-23;-23 D.⎝ ⎛⎭⎪⎫-23,0;-23 解析:令3x -2=0,则x =23,∴函数y =3x -2的图像与x 轴的交点坐标为⎝ ⎛⎭⎪⎫23,0,函数零点为23.答案:B2.函数f (x )=3x -x 2的定义域为( ) A .[0,3] B .(0,3)C .(-∞,0]∪[3,+∞) D.(-∞,0)∪(3,+∞)解析:要使函数f (x )=3x -x 2有意义,则3x -x 2≥0,即x 2-3x ≤0,解得0≤x ≤3. 答案:A3.函数f (x )=x 3-x 的零点个数是( ) A .0 B .1 C .2 D .3解析:f (x )=x (x -1)(x +1),令x (x -1)(x +1)=0,解得x =0,x =1,x =-1,即函数的零点为-1,0,1,共3个.答案:D4.若函数f (x )=x 2-ax -b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是________.解析:由⎩⎪⎨⎪⎧22-2a -b =0,32-3a -b =0,得⎩⎪⎨⎪⎧a =5,b =-6∴g (x )=-6x 2-5x -1的零点是-12,-13.答案:-12,-13题型一 函数零点的概念及求法例1 (1)下列图像表示的函数中没有零点的是( )(2)不等式-x 2-3x +4>0的解集为________.【解析】 (1)由图观察,A 中图像与x 轴没有交点,所以A 中函数没有零点. (2)由-x 2-3x +4>0得x 2+3x -4<0,解得:-4<x <1, 所以不等式-x 2-3x +4>0的解集为(-4,1). 【答案】 (1)A (2)(-4,1)状元随笔 1.由函数图像判断函数是否有零点是看函数的图像与x 轴是否有交点. 2.求函数对应方程的根即为函数的零点. 方法归纳函数零点的求法求函数y =f (x )的零点通常有两种方法:其一是令f (x )=0,根据解方程f (x )=0的根求得函数的零点;其二是画出函数y =f (x )的图像,图像与x 轴的交点的横坐标即为函数的零点.跟踪训练1 若函数f (x )=x 2+x -a 的一个零点是-3,求实数a 的值,并求函数f (x )其余的零点.解析:由题意知f (-3)=0,即(-3)2-3-a =0,a =6.所以f (x )=x 2+x -6. 解方程x 2+x -6=0,得x =-3或2. 所以函数f (x )其余的零点是2.由函数f(x)的零点是-3,得f(-3)=0,求a. 题型二 确定函数零点的个数[教材P 111例6]例2 求证:函数f(x)=x3-2x+2至少有一个零点.【证明】因为f(0)=2>0,f(-2)=-8+4+2=-2<0,所以f(-2)f(0)<0,因此∃x0∈[-2,0],f(x0)=0,即结论成立.教材反思判断函数零点个数的三种方法(1)方程法:若方程f(x)=0的解可求或能判断解的个数,可通过方程的解来判断函数是否存在零点或判定零点的个数.(2)图像法:由f(x)=g(x)-h(x)=0,得g(x)=h(x),在同一坐标系内作出y1=g(x)和y2=h(x)的图像.根据两个图像交点的个数来判定函数零点的个数.(3)定理法:函数y=f(x)的图像在区间[a,b]上是一条连续不断的曲线,由f(a)·f(b)<0即可判断函数y=f(x)在区间(a,b)内至少有一个零点.若函数y=f(x)在区间(a,b)上是单调函数,则函数f(x)在区间(a,b)内只有一个零点.跟踪训练2 (1)函数f(x)=x-x-2的零点个数为( )A.0 B.1C.2 D.3(2)判断函数f(x)=x-3+ln x的零点个数.解析:(1)令f(x)=0得x-x-2=0,设t=x(t≥0),则t2-t-2=0,解得t=2或t=-1(舍).故x=2即x=4,因此方程f(x)=0有一个根4,所以函数f(x)有一个零点.(2)令f(x)=x-3+ln x=0,则ln x=-x+3,在同一平面直角坐标系内画出函数y=ln x与y=-x+3的图像,如图所示:由图可知函数y=ln x,y=-x+3的图像只有一个交点,即函数f(x)=x-3+ln x只有一个零点.答案:(1)B (2)一个状元随笔思路一:解方程求零点,方程f(x)=0的实数根的个数就是函数f(x)的零点的个数;思路二:画出函数图像,依据图像与x轴的交点的个数来判断函数的零点个数.题型三 判断函数的零点所在的大致区间例3 设x 0是函数f (x )=ln x +x -4的零点,则x 0所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)【解析】 因为f (2)=ln 2+2-4=ln 2-2<0,f (3)=ln 3-1>ln e -1=0,f (2)·f (3)<0.由零点存在性定理,得x 0所在的区间为(2,3).【答案】 C状元随笔 根据零点存在性定理,对照选项,只需验证区间端点函数值的符号,或可借助于图像分析.方法归纳判断函数零点所在区间的三个步骤(1)代入:将区间端点值代入函数求出函数的值. (2)判断:把所得的函数值相乘,并进行符号判断.(3)结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.跟踪训练3 函数f (x )=2x -1+x -5的零点所在的区间为( )A.(0,1) B .(1,2) C .(2,3) D .(3,4) 解析:f (2)=22-1+2-5<0,f (3)=23-1+3-5>0,故f (2)·f (3)<0,又f (x )在定义域内是增函数,则函数f (x )=2x -1+x -5只有一个零点,且零点所在的区间为(2,3).答案:C利用f(a)·f(b)<0求零点区间. 题型四 函数零点的应用[经典例题]例4 已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________. 【解析】 作出f (x )的图像如图所示.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2, ∴要使方程f (x )=b 有三个不同的根,则4m-m2<m,即m2-3m>0.又m>0,解得m>3.【答案】(3,+∞)方法归纳已知函数零点情况求参数的步骤及方法(1)步骤:①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式(组);③解不等式(组),即得参数的取值范围.(2)方法:常利用数形结合法.跟踪训练4 已知关于x的方程|x2-4x+3|-a=0有三个不相等的实数根,则实数a的值是________.解析:如图,由图像知直线y=1与y=|x2-4x+3|的图像有三个交点,则方程|x2-4x+3|=1有三个不相等的实数根,因此a=1.答案:1状元随笔求解这类问题可先将原式变形为f(x)=g(x),则方程f(x)=g(x)的不同解的个数等于函数f(x)与g(x)图像交点的个数,分别画出两个函数的图像,利用数形结合的思想使问题得解.课时作业 19一、选择题1.下列函数不存在零点的是( )A .y =x -1xB .y =2x 2-x -1C .y =⎩⎪⎨⎪⎧x +1 (x ≤0),x -1 (x >0) D .y =⎩⎪⎨⎪⎧x +1 (x ≥0),x -1 (x <0)解析:令y =0,得A 中函数的零点为1,-1;B 中函数的零点为-12,1;C 中函数的零点为1,-1;只有D 中函数无零点.答案:D2.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是( ) A .0,2 B .0,12C .0,-12D .2,-12解析:∵2a +b =0,∴g (x )=-2ax 2-ax =-ax (2x +1). ∴零点为0和-12.答案:C3.用二分法研究函数f (x )=x 5+8x 3-1的零点时,第一次经过计算得f (0)<0,f (0.5)>0,则其中一个零点所在的区间和第二次应计算的函数值分别为( )A .(0,0.5),f (0.125)B .(0.5,1),f (0.875)C .(0.5,1),f (0.75)D .(0,0.5),f (0.25) 解析:∵f (x )=x 5+8x 3-1,f (0)<0,f (0.5)>0, ∴f (0)·f (0.5)<0,∴其中一个零点所在的区间为(0,0.5), 第二次应计算的函数值应为f (0.25),故选D. 答案:D4.已知函数f (x )=|x |+1,g (x )=k (x +2).若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1 C .(1,2) D .(2,+∞)解析:作出f (x ),g (x )图像,如图.因为A (0,1),B (-2,0),k AB =1-00-(-2)=12,要使方程f (x )=g (x )有两个不相等的实根,则函数f (x )与g (x )的图像有两个不同的交点,由图可知,12<k <1.答案:B 二、填空题5.函数f (x )=x 2-3x -18在区间[1,8]上________(填“存在”或“不存在”)零点. 解析:方法一 ∵f (1)=12-3×1-18=-20<0,f (8)=82-3×8-18=22>0,∴f (1)·f (8)<0,又 f (x )=x 2-3x -18在区间[1,8]上的图像是连续的, 故f (x )=x 2-3x -18在区间[1,8]上存在零点. 方法二 令f (x )=0,得x 2-3x -18=0, ∴(x -6)(x +3)=0.∵x =6∈[1,8],x =-3∉[1,8],∴f (x )=x 2-3x -18在区间[1,8]上存在零点. 答案:存在6.函数f (x )=⎩⎪⎨⎪⎧x -1 x >0x 2-x -2 x ≤0的零点为________.解析:f (x )=0,∴⎩⎪⎨⎪⎧x >0x -1=0或⎩⎪⎨⎪⎧x ≤0x 2-x -2=0,∴x =1,x =-1,x =2(舍) 答案:1,-17.已知函数f (x )=x 2+x +a (a <0)在区间(0,1)上有零点,则a 的取值范围为________. 解析:由题意函数f (x )=x 2+x +a 在区间(0,1)上单调递增,函数f (x )在(0,1)上有零点,可得:f (1)·f (0)<0.∴a (2+a )<0.∴-2<a <0. 答案:(-2,0) 三、解答题8.判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=x +3x; (2)f (x )=x 2+2x +4. 解析:(1)令x +3x=0,解得x =-3, 所以函数f (x )=x +3x的零点是-3. (2)令x 2+2x +4=0,由于Δ=22-4×4=-12<0,所以方程x 2+2x +4=0无解,所以函数f (x )=x 2+2x +4不存在零点.9.已知函数f (x )=x 2+3(m +1)x +n 的零点是1和2,求函数y =nx 2+mx +3的零点个数. 解析:由题可知,f (x )=x 2+3(m +1)x +n 的两个零点为1和2. 则1和2是方程x 2+3(m +1)x +n =0的两根.可得⎩⎪⎨⎪⎧1+2=-3(m +1),1×2=n ,解得⎩⎪⎨⎪⎧m =-2,n =2.∴y =2x 2-2x +3∵Δ=4-4×2×3=-20<0 ∴无零点.[尖子生题库]10.已知二次函数f (x )=x 2-2ax +4,在下列条件下,求实数a 的取值范围.(1)零点均大于1;(2)一个零点大于1,一个零点小于1;(3)一个零点在(0,1)内,另一个零点在(6,8)内.解析:(1)因为方程x 2-2ax +4=0的两根均大于1,结合二次函数的单调性与零点存在性定理得⎩⎪⎨⎪⎧(-2a )2-16≥0,f (1)=5-2a >0,a >1,解得2≤a <52.即a 的取值范围为⎣⎢⎡⎭⎪⎫2,52. (2)因为方程x 2-2ax +4=0的一个根大于1,一个根小于1,结合二次函数的单调性与零点存在性定理得f (1)=5-2a <0,解得a >52.即a 的取值范围为⎝ ⎛⎭⎪⎫52,+∞. (3)因为方程x 2-2ax +4=0的一个根在(0,1)内,另一个根在(6,8)内,结合二次函数的单调性与零点存在性定理得⎩⎪⎨⎪⎧f (0)=4>0,f (1)=5-2a <0,f (6)=40-12a <0,f (8)=68-16a >0,解得 103<a <174.即a 的取值范围为⎝ ⎛⎭⎪⎫103,174.。

人教版九年级上册数学二次函数和一元二次方程的关系练习题(含答案)

人教版九年级上册数学二次函数和一元二次方程的关系练习题(含答案)

二次函数与一元二次方程的关系知识点回顾一、二次函数与一元二次方程的关系1.二次函数图象与x 轴的交点情况决定一元二次方程根的情况求二次函数2y ax bx c =++(a ≠0)的图象与x 轴的交点坐标,就是令y =0,求20ax bx c ++=中x 的值的问题.此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与x 轴的交点的个数,它们的关系如下表:要点诠释:二次函数图象与x 轴的交点的个数由ac b 42-=∆的值来确定的.(1)当二次函数的图象与x 轴有两个交点时,042>-=∆ac b ,方程有两个不相等的实根;(2)当二次函数的图象与x 轴有且只有一个交点时042=-=∆ac b 方程有两个相等的实根; (3)当二次函数的图象与x 轴没有交点时,042<-=∆ac b ,方程没有实根. 2.抛物线与直线的交点问题抛物线与x 轴的两个交点的问题实质就是抛物线与直线的交点问题.我们把它延伸到求抛物线2y ax bx c =++(a ≠0)与y 轴交点和二次函数与一次函数1y kx b =+(0)k ≠的交点问题.抛物线2y ax bx c =++(a ≠0)与y 轴的交点是(0,c ).抛物线2y ax bx c =++(a ≠0)与一次函数1y kx b =+(k ≠0)的交点个数由方程组12,y kx b y ax bx c=+⎧⎨=++⎩的解的个数决定. 当方程组有两组不同的解时⇔两函数图象有两个交点; 当方程组有两组相同的解时⇔两函数图象只有一个交点; 当方程组无解时⇔两函数图象没有交点.总之,探究直线与抛物线的交点的问题,最终是讨论方程(组)的解的问题. 要点诠释:求两函数图象交点的问题主要运用转化思想,即将函数的交点问题转化为求方程组解的问题或者将求方程组的解的问题转化为求抛物线与直线的交点问题. 课后作业 ●基础训练1.已知二次函数y=ax 2-5x+c 的图象如图所示,请根据图象回答下列问题: (1)a=_______,c=______.(2)函数图象的对称轴是_________,顶点坐标P__________. (3)该函数有最______值,当x=______时,y 最值=________.(4)当x_____时,y 随x 的增大而减小.当x_____时,y 随x 的增大而增大.(5)抛物线与x 轴交点坐标A_______,B________;与y 轴交点C 的坐标为_______;ABC S ∆=_________,ABP S ∆=________.(6)当y>0时,x 的取值范围是_________;当y<0时,x 的取值范围是_________. (7)方程ax 2-5x+c=0中△的符号为________.方程ax 2-5x+c=0的两根分别为_____,____. (8)当x=6时,y______0;当x=-2时,y______0. 2.已知下表:(1)求a 、b 、c 的值,并在表内空格处填入正确的数; (2)请你根据上面的结果判断:①是否存在实数x,使二次三项式ax 2+bx+c 的值为0?若存在,求出这个实数值;若不存在,请说明理由.②画出函数y=ax2+bx+c的图象示意图,由图象确定,当x取什么实数时,ax2+ bx+c>0?3.请画出适当的函数图象,求方程x2=12x+3的解.4.若二次函数y=-12x2+bx+c的图象与x轴相交于A(-5,0),B(-1,0).(1)求这个二次函数的关系式;(2)如果要通过适当的平移,使得这个函数的图象与x轴只有一个交点,那么应该怎样平移?向右还是向左?或者是向上还是向下?应该平移向个单位?5.已知某型汽车在干燥的路面上, 汽车停止行驶所需的刹车距离与刹车时的车速之间有下表所示的对应关系.(1)请你以汽车刹车时的车速V为自变量,刹车距离s为函数, 在图所示的坐标系中描点连线,画出函数的图象;(2)观察所画的函数的图象,你发现了什么?(3)若把这个函数的图象看成是一条抛物线,请根据表中所给的数据,选择三对,求出它的函数关系式;(4)用你留下的两对数据,验证一个你所得到的结论是否正确.●能力提升6.如图所示,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x 轴上,点C 在直线y=x-2上.(1)求矩形各顶点坐标;(2)若直线y=x-2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式;(3)判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由.7.已知一条抛物线经过A(0,3),B(4,6)两点,对称轴是x=5 3 .(1)求这条抛物线的关系式.CBA x ODyE(2)证明:这条抛物线与x 轴的两个交点中,必存在点C,使得对x 轴上任意点D 都有AC+BC≤AD+BD.8.如图所示,一位篮球运动员在离篮圈水平距离为4m 处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m 时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面距离为3.05m.(1)建立如图所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m 处出手.问:球出手时,他跳离地面多高?9.某工厂生产A 产品x 吨所需费用为P 元,而卖出x 吨这种产品的售价为每吨Q 元, 已知P=110x 2+5x+1000,Q=-30x+45. 3.05m4m2.5mxOy(1)该厂生产并售出x 吨,写出这种产品所获利润W(元)关于x(吨)的函数关系式;(2)当生产多少吨这种产品,并全部售出时,获利最多?这时获利多少元? 这时每吨的价格又是多少元?10.已知抛物线y=2x 2-kx -1与x 轴两交点的横坐标,一个大于2,另一个小于2,试求k 的取值范围.11.如图,在Rt △ABC 中,∠ACB=90°,BC>AC,以斜边AB 所在直线为x 轴,以斜边AB 上的高所在直线为y 轴,建立直角坐标系,若OA 2+OB 2= 17, 且线段OA 、OB 的长度是关于x 的一元二次方程x 2-mx+2(m -3)=0的两个根. (1)求C 点的坐标;(2)以斜边AB 为直径作圆与y 轴交于另一点E,求过A 、B 、E 三点的抛物线的关系式,并画出此抛物线的草图.(3)在抛物线上是否存在点P ,使△ABP 与△ABC 全等?若存在,求出符合条件的P 点的坐标;若不存在,说明理由.C BAxOy●综合探究12.已知抛物线L;y=ax2+bx+c(其中a、b、c都不等于0), 它的顶点P的坐标是24,24b ac ba a⎛⎫-- ⎪⎝⎭,与y轴的交点是M(0,c)我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的关系式:伴随抛物线的关系式_________________伴随直线的关系式___________________(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3, 则这条抛物线的关系是___________:(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0) 的伴随抛物线和伴随直线的关系式;(4)若抛物线L与x轴交于A(x1,0),B(x2,0)两点x2>x1>0,它的伴随抛物线与x 轴交于C,D两点,且AB=CD,请求出a、b、c应满足的条件.答案:1.(1)a=1;c=4 (2)直线x=52,59,24⎛⎫-⎪⎝⎭(3)小;52;94-(4)55;22≤≥(5)(1,0);(4,0);(0,4); 6; 278; (6)x<1或x>4;1<x<4 (7)正号;x1=1;x2=4 (8)>;>2.(1)由表知,当x=0时,ax 2+bx+c=3;当x=1时,ax 2=1;当x=2时,ax 2+bx+c=3.∴31423c a a b c =⎧⎪=⎨⎪++=⎩,∴123a b c =⎧⎪=-⎨⎪=⎩, ∴a=1,b=-2,c=3,空格内分别应填入0,4,2. (2)①在x 2-2x+3=0中,∵△=(-2)2-4×1×3=-8<0, ∴不存在实数x 能使ax 2+bx+c=0.②函数y=x 2-2x+3的图象示意图如答图所示, 观察图象得出,无论x 取什么实数总有ax 2+bx+c>0.3.:在同一坐标系中如答图所示, 画出函数y=x 2的图象,画出函数y=12x+3 的图象, 这两个图象的交点为A,B,交点A,B 的横坐标32-和2就是方程x 2=12x+3的解. 4.:(1)∵y=12-x 2+bx+c,把A(-5,0),B(-1,0)代入上式,得∴()221(5)5021(1)(1)02b c b c ⎧⎛⎫-⨯-+⨯-+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪-⨯-+⨯-+= ⎪⎪⎝⎭⎩,352a b =-⎧⎪⎨=-⎪⎩,∴y=215322x x ---.632BAxyO(2)∵y=215322x x ---=21(3)22x -++ ∴顶点坐标为(-3,2),∴欲使函数的图象与x 轴只有一个交点,应向下平移2个单位. 5.:(1)函数的图象如答图所示.(2)图象可看成是一条抛物线这个函数可看作二次函数. (3)设所求函数关系式为:s=av 2+bv+c,把v=48,s=22.5;v=64,s=36;v=96,s=72分别代入s=av 2+bv+c,得222484822.5646436969672a b c a b c a b c ⎧++=⎪++=⎨⎪++=⎩, 解得35123160a b c ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩.∴23351216s v v =+ (4)当v=80时,223333808052.55121651216v v +=⨯+⨯= ∵s=52.5, ∴23351216s v v =+ 当v=112时,22333311211294.55121651216v v +=⨯+⨯= ∵s=94.5,∴23351216s v v =+ 经检验,所得结论是正确的. 6.:(1)如答图所示.∵y=x -2,AD=BC=2,设C 点坐标为(m,2), 把C(m,2)代入y=x -2,2=m -2.∴m=4.∴C(4,2),∴OB=4,AB=3.∴OA=4-3=1, ∴A(1,0),B(4,0),C(4,2),D(1,2).(2)∵y=x -2,∴令x=0,得y=-2,∴E(0,-2).设经过E(0,-2),A(1,0),B(4,0) 三点的抛物线关系式为y=ax 2+bx+c,∴201640c a b c a b c =-⎧⎪++=⎨⎪++=⎩, 解得12522a b c ⎧=-⎪⎪⎪=⎨⎪=-⎪⎪⎩∴y=215222x x -+-. (3)抛物线顶点在矩形ABCD 内部.∵y=215222x x -+-, ∴顶点为59,28⎛⎫ ⎪⎝⎭. ∵5142<<, ∴顶点59,28⎛⎫⎪⎝⎭在矩形ABCD 内部. 7.(1)解:设所求抛物线的关系式为y=ax 2+bx+c, ∵A(0,3),B(4,6),对称轴是直线x=53. ∴31646523c a b c b a ⎧⎪=⎪++=⎨⎪⎪-=⎩, 解得981543a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴y=2915384x x -+. (2)证明:令y=0,得2915384x x -+=0, ∴ 124,23x x ==∵A(0,3),取A点关于x轴的对称点E,∴E(0,-3).设直线BE的关系式为y=kx-3,把B(4,6)代入上式,得6=4k-3,∴k=94,∴y=94x-3 .由94x-3=0,得x=43.故C为4,03⎛⎫⎪⎝⎭,C点与抛物线在x轴上的一个交点重合,在x轴上任取一点D,在△BED中,BE< BD+DE.又∵BE=EC+BC,EC=AC,ED=AD,∴AC+BC<AD+BD.若D与C重合,则AC+BC=AD+BD. ∴AC+BC≤AD+BD. 8:(1)图中各点字母表示如答图所示.∵OA=2.5,AB=4,∴OB=4-2.5=1.5.∴点D坐标为(1.5,3.05).∵抛物线顶点坐标(0,3.5),∴设所求抛物线的关系式为y=ax2+3.5,把D(1.5, 3.05)代入上式,得3.05=a×1.52+3.5,∴a=-0.2,∴y=-0.2x2+3.5(2)∵OA=2.5,∴设C点坐标为(2.5,m),∴把C(2.5,m)代入y=-0.2x2+3.5,得m=- 0.2×2.52+3.5=2.25.∴该运动员跳离地面高度h=m-(1.8+0.25)=2.25-(1.8+0.25)=0.2(m).3.05m4m2.5m xOyBDA9:(1)∵P=110x 2+5x+1000,Q=-30x+45. ∴W=Qx -P=(-30x+45)-(110x 2+5x+1000)= 224010015x x -+-.(2)∵W=224010015x x -+-=-215(x -150)2+2000. ∵-215<0,∴W 有最大值. 当x=150吨时,利润最多,最大利润2000元. 当x=150吨,Q=-30x+45=40(元). 10:∵y=2x 2-kx -1,∴△=(-k)2-4×2×(-1)=k 2+8>0,∴无论k 为何实数, 抛物线y=2x 2-kx -1与x 轴恒有两个交点. 设y=2x 2-kx -1与x 轴两交点的横坐标分别为x 1,x 2,且规定x 1<2,x 2> 2, ∴x 1-2<0,x 2-2>0.∴(x 1-2)(x 2-2)<0,∴x 1x 2-2(x 1+x 2)+4<0.∵x 1,x 2亦是方程2x 2-kx -1=0的两个根,∴x 1+x 2=2k ,x 1·x 2=-12,∴124022k --⨯+<,∴k>72. ∴k 的取值范围为k>72. 法二:∵抛物线y=2x 2-kx -1与x 轴两交点横坐标一个大于2,另一个小于2,∴此函数的图象大致位置如答图所示. 由图象知:当x=2时,y<0. 即y=2×22-2k -1<0,∴k>72.∴k 的取值范围为k>72.11:(1)线段OA,OB 的长度是关于x 的一元二次方程x 2-mx+2(m -3)=0 的两个根,∴(1)2(3)(2)OA OB m OA OB m +=⎧⎨=-⎩L g L又∵OA 2+OB 2=17,∴(OA+OB)2-2·OA ·OB=17.③把①,②代入③,得m 2-4(m -3) =17,∴m 2-4m -5=0.解之,得m=-1或m=5. 又知OA+OB=m>0,∴m=-1应舍去.∴当m=5时,得方程:x 2-5x+4=0,解之,得x=1或x=4. ∵BC>AC,∴OB>OA,∴OA=1,OB=4,在Rt △ABC 中,∠ACB=90°,CO ⊥AB, ∴OC 2=OA ·OB=1×4=4.∴OC=2,∴C(0,2) (2)∵OA=1,OB=4,C,E 两点关于x 轴对称, ∴A(-1,0),B(4,0),E(0,-2).设经过A,B,E 三点的抛物线的关系式为y=ax 2+bx+c,则016402a b c a b c c -+=⎧⎪++=⎨⎪=-⎩ ,解之,得12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩∴所求抛物线关系式为y=213222x x --. (3)存在.∵点E 是抛物线与圆的交点. ∴Rt △ACB ≌Rt △AEB,∴E(0,-2)符合条件. ∵圆心的坐标(32,0 )在抛物线的对称轴上. ∴这个圆和这条抛物线均关于抛物线的对称轴对称.∴点E 关于抛物线对称轴的对称点E′也符合题意. ∴可求得E′(3,-2).∴抛物线上存在点P 符合题意,它们的坐标是(0,-2)和(3,-2) 12.(1)y=-2x 2+1,y=-2x+1. (2)y=x 2-2x -3(3)∵伴随抛物线的顶点是(0,c), ∴设它的解析式为y=m(x -0)2+c(m≠0).∴设抛物线过P 24,24b ac b aa ⎛⎫-- ⎪⎝⎭, ∴22442ac b b m c a a -⎛⎫=-+ ⎪⎝⎭g 解得m=-a,∴伴随抛物线关系式为y=-ax 2+c. 设伴随直线关系式为y=kx+c(k≠0).∵P 24,24b ac b a a ⎛⎫-- ⎪⎝⎭在此直线上,∴2442ac b b k c a a -⎛⎫=-+ ⎪⎝⎭g , ∴k=2b . ∴伴随直线关系式为y=2bx+c (4)∵抛物线L 与x 轴有两交点,∴△1=b 2-4ac>0,∴b 2<4ac.∵x 2>x 1>0,∴x 1+ x 2= -b a >0,x 1x 2=ca>0,∴ab<0,ac>0.对于伴随抛物线y=-ax 2+c,有△2=02-(-4ac)=4ac>0.由-ax 2+c=0,得x=∴,C D ⎛⎫⎫ ⎪⎪ ⎪⎪⎝⎭⎭,∴又AB=x2-x1=.由AB=CD,得整理得b2=8ac,综合b2>4ac,ab<0,ac>0,b2=8ac,得a,b,c满足的条件为b2=8ac且ab<0,(或b2=8ac且bc<0).。

高中数学高考总复习函数与方程及应用题习题及详解

高中数学高考总复习函数与方程及应用题习题及详解

高中数学高考总复习函数与方程及应用题习题及详解一、选择题1.(文)(2010·北京市延庆县)函数f (x )=ln x -2x 的零点所在的区间是( )A .(1,2)B .(2,e )C .(e,3)D .(3,4)[答案] B[解析] ∵f (2)=ln2-1<0,f (e )=1-2e>0,故选B.(理)(2010·北京东城区)若f (x )=(m -2)x 2+mx +(2m +1)=0的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是( )A.⎝⎛⎭⎫-12,14B.⎝⎛⎭⎫-14,12C.⎝⎛⎭⎫14,12D.⎣⎡⎦⎤14,12[答案] C[解析] 由题意知,f (-1)·f (0)=(2m -1)·(2m +1)=4m 2-1<0,∴-12<m <12,又f (1)·f (2)=(4m -1)(8m -7)<0,∴14<m <78,∴14<m <12.2.(2010·四川)函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是( ) A .m =-2 B .m =2 C .m =-1D .m =1[答案] A[解析] 由-m2=1得,m =-2.3.(文)(2010·福建理,4)函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x >0的零点个数为( )A .0B .1C .2D .3[答案] C[解析] 令x 2+2x -3=0得,x =-3或1 ∵x ≤0,∴x =-3,令-2+ln x =0得,ln x =2 ∴x =e 2>0,故函数f (x )有两个零点.(理)(2010·福建省福州市)已知三个函数f (x )=2x +x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a 、b 、c ,则( )A .a <b <cB .a <c <bC .b <a <cD .c <a <b[答案] B[解析] 由于f (-1)=12-1=-12<0,f (0)=1>0,故f (x )=2x +x 的零点a ∈(-1,0);∵g (2)=0,故g (x )的零点b =2;h ⎝⎛⎭⎫12=-1+12=-12<0,h (1)=1>0,故h (x )的零点c ∈⎝⎛⎭⎫12,1,因此,a <c <b .[点评] 求函数f (x )的零点可直接令f (x )=0解方程;若f (x )为分段函数,则要注意每段上自变量的允许取值范围;若是讨论零点个数或比较零点的大小,常用单调性和图象辅助讨论.请再练习下列两题:①(2010·合肥市)函数f (x )=⎩⎪⎨⎪⎧ln x +2x -6 (x >0)-x (x +1) (x ≤0)的零点个数是( )A .0B .1C .2D .3 [答案] D[解析] 令-x (x +1)=0得x =0或-1,满足x ≤0; 当x >0时,∵ln x 与2x -6都是增函数, ∴f (x )=ln x +2x -6(x >0)为增函数, ∵f (1)=-4<0,f (3)=ln3>0,∴f (x )在(0,+∞)上有且仅有一个零点, 故f (x )共有3个零点.②(2010·吉林市质检)函数f (x )=⎝⎛⎭⎫12x-sin x 在区间[0,2π]上的零点个数为( ) A .1个 B .2个 C .3个 D .4个 [答案] B[解析] 在同一坐标系中作出函数y =⎝⎛⎭⎫12x 与y =sin x 的图象,易知两函数图象在[0,2π]内有两个交点.4.(2010·安徽江南十校联考)某流程图如图所示,现输入如下四个函数,则可以输出的函数是( )A .f (x )=|x |xB .f (x )=12x -1+12C .f (x )=e x -e -xe x +e -xD .f (x )=lgsin x[答案] C[解析] 根据程序框图知输出的函数为奇函数,并且此函数存在零点.经验证:f (x )=|x |x不存在零点;f (x )=12x -1+12不存在零点;f (x )=e x -e -x e x +e -x 的定义域为全体实数,且f (-x )=e -x -e x e -x +e x =-f (x ),故此函数为奇函数,且令f (x )=e x -e -xe x +e-x =0,得x =0,函数f (x )存在零点;f (x )=lgsin x 不具有奇偶性.5.(文)(2010·福州市质检)已知函数f (x )是(-∞,+∞)上的偶函数,若对于任意x ≥0,都有f (x +2)=-f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (2009)+f (-2010)的值为( )A .-2B .-1C .1D .2[答案] C[解析] 依题意得,x ≥0时,有f (x +4)=-f (x +2)=f (x ),即x ≥0时,f (x )是以4为周期的函数.因此,f (2009)+f (-2010)=f (2009)+f (2010)=f (1)+f (2),而f (2)=-f (0)=-log 2(0+1)=0,f (1)=log 2(1+1)=1,故f (2009)+f (-2010)=1,故选C.(理)(2010·安徽合肥质检)已知函数f (x )=⎩⎪⎨⎪⎧2x-1 (x ≤0)f (x -1)+1 (x >0),把函数g (x )=f (x )-x 的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为( )A .a n =n (n -1)2(n ∈N *)B .a n =n (n -1)(n ∈N *)C .a n =n -1(n ∈N *)D .a n =2n -2(n ∈N *) [答案] C[解析] 当x ≤0时,f (x )=2x -1;当0<x ≤1时,f (x )=f (x -1)+1=2x -1-1+1=2x -1;当1<x ≤2时,f (x )=f (x -1)+1=f (x -2)+2=2x -2-1+2=2x -2+1;…∴当x ≤0时,g (x )的零点为x =0;当0<x ≤1时,g (x )的零点为x =1;当1<x ≤2时,g (x )的零点为x =2;…当n -1<x ≤n (n ∈N *)时,g (x )的零点为n , 故a 1=0,a 2=1,a 3=2,…,a n =n -1.6.(文)(2010·山东临沂)若a ,b 在区间[0,3]上取值,则函数f (x )=ax 3+bx 2+ax 在R 上有两个相异极值点的概率是( )A.12B.33C.36D .1-36[答案] C[分析] ①f (x )在R 上有两个相异极值点,即f (x )在R 上的变化规律为增→减→增(或减→增→减).又f (x )为三次函数,故其导函数f ′(x )为二次函数,f ′(x )=0应有两不等实根,∴Δ>0.②凡涉及两个变量在实数区间内取值的概率问题,一般都可以通过把这两个变量看作坐标平面内点的坐标转化为平面上的区域问题求解.[解析] 易得f ′(x )=3ax 2+2bx +a ,函数f (x )=ax 3+bx 2+ax 在R 上有两个相异极值点的充要条件是a ≠0且其导函数的判别式大于0,即a ≠0且4b 2-12a 2>0,又a ,b 在区间[0,3]上取值,则a >0,b >3a ,点(a ,b )满足的区域如图中阴影部分所示,其中正方形区域的面积为3,阴影部分的面积为32,故所求的概率是36. (理)设a ∈{1,2,3,4},b ∈{2,4,8,12},则函数f (x )=x 3+ax -b 在区间[1,2]上有零点的概率为( )A.12B.58C.1116D.34[答案] C[解析] 因为f (x )=x 3+ax -b ,所以f ′(x )=3x 2+a .因为a ∈{1,2,3,4},因此f ′(x )>0,所以函数f (x )在区间[1,2]上为增函数.若存在零点,则⎩⎪⎨⎪⎧f (1)=1+a -b ≤0f (2)=8+2a -b ≥0,解得a +1≤b ≤8+2a .因此能使函数在区间[1,2]上有零点的有:a =1,2≤b ≤10,故b =2,b =4,b =8.a =2,3≤b ≤12,故b =4,b =8,b =12.a =3,4≤b ≤14,故b=4,b=8,b=12.a=4,5≤b≤16,故b=8,b=12.根据古典概型可得有零点的概率为1116.7.(文)(2010·济南一中)如图,A、B、C、D是四个采矿点,图中的直线和线段均表示公路,四边形ABQP、BCRQ、CDSR近似于正方形,A、B、C、D四个采矿点的采矿量之比为6 2 3 4,且运矿费用与路程和采矿量的乘积成正比.现从P、Q、R、S中选一个中转站,要使中转费用最少,则应选()A.P点B.Q点C.R点D.S点[答案] B[解析]设图中每个小正方形的边长均为1,A、B、C、D四个采矿点的采矿量分别为6a,2a,3a,4a(a>0),设s i(i=1,2,3,4)表示运矿费用的总和,则只需比较中转站在不同位置时s i(i =1,2,3,4)的大小.如果选在P点,s1=6a+2a×2+3a×3+4a×4=35a,如果选在Q点,s2=6a×2+2a+3a×2+4a×3=32a,如果选在R处,s3=6a×4+2a×3+3a+4a×2=33a,如果选在S处,s4=6a×4+2a×3+3a×2+4a=40a,显然,中转站选在Q点时,中转费用最少.(理)(2010·北京西城区抽检)某航空公司经营A、B、C、D这四个城市之间的客运业务.它的部分机票价格如下:A—B为2000元;A—C为1600元;A—D为2500元;B—C为1200元;C—D为900元.若这家公司规定的机票价格与往返城市间的直线距离成正比,则B—D 的机票价格为()(注:计算时视A、B、C、D四城市位于同一平面内)A.1000元B.1200元C.1400元D.1500元[答案] D[解析]注意观察各地价格可以发现:A、C、D三点共线,A、C、B构成以C为顶点的直角三角形,如图可知BD=5×300=1500.[点评]观察、分析、联想是重要的数学能力,要在学习过程中加强培养.8.定义域为D的函数f(x)同时满足条件:①常数a,b满足a<b,区间[a,b]⊆D,②使f(x)在[a,b]上的值域为[ka,kb](k∈N*),那么我们把f(x)叫做[a,b]上的“k级矩形”函数.函数f (x )=x 3是[a ,b ]上的“1级矩形”函数,则满足条件的常数对(a ,b )共有( )A .1对B .2对C .3对D .4对[答案] C[分析] 由“k 级矩形”函数的定义可知,f (x )=x 3的定义区间为[a ,b ]时,值域为[a ,b ],可考虑应用f (x )的单调性解决.[解析] ∵f (x )=x 3在[a ,b ]上单调递增, ∴f (x )的值域为[a 3,b 3].又∵f (x )=x 3在[a ,b ]上为“1级矩形”函数,∴⎩⎪⎨⎪⎧ a 3=a b 3=b ,解得⎩⎪⎨⎪⎧ a =-1b =0或⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =-1b =1, 故满足条件的常数对共有3对.[点评] 自定义题是近年来备受命题者青睐的题型,它能较好地考查学生对新知识的阅读理解能力,而这恰是学生后续学习必须具备的能力,解决这类问题的关键是先仔细审题,弄清“定义”的含义,把“定义”翻译为我们已掌握的数学知识.然后加以解决.9.(文)(2010·江苏南通九校)若a >1,设函数f (x )=a x +x -4的零点为m ,g (x )=log a x +x -4的零点为n ,则1m +1n的取值范围是( )A .(3.5,+∞)B .(1,+∞)C .(4,+∞)D .(4.5,+∞)[答案] B[分析] 欲求1m +1n 的取值范围,很容易联想到基本不等式,于是需探讨m 、n 之间的关系,观察f (x )与g (x )的表达式,根据函数零点的意义,可以把题目中两个函数的零点和转化为指数函数y =a x 和对数函数y =log a x 与直线y =-x +4的交点的横坐标,因为指数函数y =a x 和对数函数y =log a x 互为反函数,故其图象关于直线y =x 对称,又因直线y =-x +4垂直于直线y =x ,指数函数y =a x 和对数函数y =log a x 与直线y =-x +4的交点的横坐标之和是直线y =x 与y =-x +4的交点的横坐标的2倍,这样即可建立起m ,n 的数量关系式,进而利用基本不等式求解即可.[解析] 令a x +x -4=0得a x =-x +4,令log a x +x -4=0得log a x =-x +4, 在同一坐标系中画出函数y =a x ,y =log a x ,y =-x +4的图象,结合图形可知,n +m为直线y =x 与y =-x +4的交点的横坐标的2倍,由⎩⎪⎨⎪⎧y =xy =-x +4,解得x =2,所以n +m=4,因为(n +m )⎝⎛⎭⎫1n +1m =1+1+m n +n m ≥4,又n ≠m ,故(n +m )⎝⎛⎭⎫1n +1m >4,则1n +1m >1. (理)函数f (x )=x 2-ax +2b 的零点有两个,一个在区间(0,1)上,另一个在区间(1,2)上,则2a +3b 的取值范围是( )A .(2,9)B .(2,4)C .(4,9)D .(4,17)[答案] A[解析] f (x )=x 2-ax +2b ,由题意知,⎩⎪⎨⎪⎧ f (0)>0f (1)<0f (2)>0,∴⎩⎪⎨⎪⎧b >0a -2b -1>0a -b -2<0,二元一次不等式组表示的可行域如图中阴影部分所示(不包括边界),由⎩⎪⎨⎪⎧a -2b -1=0a -b -2=0,解得A (3,1), 由⎩⎪⎨⎪⎧a -2b -1=0b =0,解得B (1,0). 令z =2a +3b ,则当直线2a +3b =z 经过可行域内点A 时,z max =2×3+3×1=9,经过可行域内点B (1,0)时,z min =2×1-3×0=2,故z ∈(2,9),选A.10.如图所示,为了测量该工件上面凹槽的圆弧半径R ,由于没有直接的测量工具,工人用三个半径均为r (r 相对R 较小)的圆柱棒O 1、O 2、O 3放在如图与工件圆弧相切的位置上,通过深度卡尺测出卡尺水平面到中间量棒O 2顶侧面的垂直深度h ,若r =10mm ,h =4mm ,则R 的值为( )A .25mmB .5mmC .50mmD .15mm[答案] C[解析] 如图所示,在△O 1O 2H 中,O 1O 2=20, O 2H =(r +h )-r =4.∵O 1H 2=O 1O 22-O 2H 2=OO 12-OH 2 ∴202-42=R 2-(R -4)2,∴R =50(mm).[点评] 致力于数学应用是新课标的重要指导思想,近几年高考在命题形式上与生活联系更加密切,贴近实际.像函数模型、正余弦定理、导数(理:定积分)都会成为高考的重要出题点,要加强复习.二、填空题11.(文)(2010·辽宁锦州)用二分法求方程x 3-2x -5=0在区间[2,3]上的近似解,取区间中点x 0=2.5,那么下一个有解区间为________.[答案] [2,2.5][解析] 令f (x )=x 3-2x -5,∵f (2)=-1<0,f (2.5)=458>0,∴f (x )在区间[2,2.5]内有零点.(理)设函数f (x )=|x |x +bx +c ,给出下列4个命题: ①b =0,c >0时,方程f (x )=0只有一个实数根; ②c =0时,y =f (x )是奇函数; ③y =f (x )的图象关于点(0,c )对称;④函数f (x )至多有2个零点.上述命题中的所有正确命题的序号是________. [答案] ①②③[解析] 当b =0时,f (x )=x |x |+c =0,结合图形知f (x )=0只有一个实数根,故①正确;当c =0时,f (x )=x |x |+bx ,f (-x )=-f (x ),故y =f (x )是奇函数,故②正确;y =f (x )的图象可由奇函数f (x )=x |x |+bx 向上或向下平移|c |而得到,y =f (x )的图象与y 轴交点为(0,c ),故函数y =f (x )的图象关于点(0,c )对称,故③正确;方程|x |x -5x +6=0有三个解-6、2、3,即三个零点,故④错误.12.(文)2005年底,某地区经济调查队对本地区居民收入情况进行抽样调查,抽取1000户,按本地区确定的标准,情况如表:2010年要实现一个美好的愿景由右边圆图显示,则中等收入家庭的数量在原有的基础要增加的百分比和低收入家庭的数量在原有的基础要降低的百分比分别为________.[答案] 62.5% 57.9%[解析] 中等收入原有400户,2010年要变为650户,提高650-400400=0.625,低收入原有475户,2010年要变为1000×20%=200户,需降低475-200475≈0.579.(理)(2010·揭阳市模拟)某农场,可以全部种植水果、蔬菜、稻米、甘蔗等农作物,且产品全部供应距农场d (km)(d <200km)的中心城市,其产销资料如表:当距离d 达到n (km)以上时,四种农作物中以全部种植稻米的经济效益最高.(经济效益=市场销售价值-生产成本-运输成本),则n 的值为________.[答案] [解析] 设单位面积全部种植水果、蔬菜、稻米、甘蔗的经济效益分别为y 1、y 2、y 3、y 4,则y 1=50-0.6d ,y 2=15-0.3d ,y 3=40-0.4d ,y 4=18-0.3d ,由⎩⎪⎨⎪⎧y 3≥y 1y 3≥y 2y 3≥y 4d <200⇒50≤d <200,故n =50.13.(文)(2010·上海市嘉定区模考)已知函数y =f (x )的定义域和值域都是[-1,1](其图象如下图所示),函数g (x )=sin x ,x ∈[-π,π].定义:当f (x 1)=0(x 1∈[-1,1])且g (x 2)=x 1(x 2∈[-π,π])时,称x 2是方程f (g (x ))=0的一个实数根.则方程f (g (x ))=0的所有不同实数根的个数是________.[答案] 8[解析] 由图知f (x )在[-1,1]上有4个零点,分别位于区间⎝⎛⎭⎫-1,-12,⎝⎛⎭⎫-12,0,⎝⎛⎭⎫0,12和12,1内,当f (x 1)=0,x 1∈⎝⎛⎭⎫-1,-12时,存在两个值x 2∈[-π,π],使g (x 2)=sin x 2=x 1,同理在其它区间上也都有两个这样的x 2,故在[-π,π]上共有8个x 2,使f [g (x 2)]=0成立.(理)对于函数f (x )=x -1x +1,设f 1(x )=f (x ),f 2(x )=f [f 1(x )],f 3(x )=f [f 2(x )],…,f n +1(x )=f [f n (x )](n∈N *,且n ≥2),若x ∈C (C 为复数集),则方程f 2010(x )=x 的解集是________.[答案] {i ,-i }[解析] f 1(x )=1-2x +1,f 2(x )=1-2f 1(x )+1=1-22-2x +1=-1x ,f 3(x )=1+x 1-x ,f 4(x )=x ,f 5(x )=x -1x +1=f (x ). 故{f n (x )}是周期为4的函数列. ∴f 2010(x )=f 2(x )=-1x,故方程f 2010(x )=x 化为-1x=x ,∴x =±i .14.(2010·浙江金华十校联考)有一批材料可以建成200m 长的围墙,如果用此批材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的矩形(如图所示),则围成场地的最大面积为________(围墙的厚度不计).[答案] 2500m 2[解析] 设所围场地的长为x ,则宽为200-x 4,其中0<x <200,场地的面积为x ×200-x 4≤14⎝⎛⎭⎫x +200-x 22=2500m 2,等号当且仅当x =100时成立. 三、解答题15.(2010·山东烟台)设某市现有从事第二产业人员100万人,平均每人每年创造产值a 万元(a 为正常数),现在决定从中分流x 万人去加强第三产业.分流后,继续从事第二产业的人员平均每人每年创造产值可增加2x %(0<x <100).而分流出的从事第三产业的人员,平均每人每年可创造产值1.2a 万元.(1)若要保证第二产业的产值不减少,求x 的取值范围;(2)在(1)的条件下,问应分流出多少人,才能使该市第二、三产业的总产值增加最多?[解析] (1)由题意得,⎩⎪⎨⎪⎧ 0<x <100(100-x )(1+2x %)a ≥100a , ∴⎩⎪⎨⎪⎧0<x <100x 2-50x ≤0,∴0<x ≤50. (2)设该市第二、三产业的总产值增加f (x )(0<x ≤50)万元,则f (x )=(100-x )(1+2x %)a -100a +1.2ax=-a 50(x 2-110x )=-a 50[(x -55)2-3025] ∵x ∈(0,50]时,f (x )单调递增,∴x =50时,f (x )max =60a即应分流出50万人才能使该市第二、三产业的总产值增加最多.16.(2010·济南一中)2009年,浙江吉利与褔特就收购福特旗下的沃尔沃达成初步协议,吉利计划投资20亿美元来发展该品牌.据专家预测,从2009年起,沃尔沃汽车的销售量每年比上一年增加10000辆(2009年销售量为20000辆),销售利润每辆每年比上一年减少10%(2009年销售利润为2万美元/辆).(1)第n 年的销售利润为多少?(2)求到2013年年底,浙江吉利能否实现盈利(即销售利润超过总投资,0.95≈0.59).[解析] (1)∵沃尔沃汽车的销售量每年比上一年增加10000辆,∴沃尔沃汽车的销售量构成了首项为20000,公差为10000的等差数列{a n }.∴a n =10000+10000n .∵沃尔沃汽车的销售利润按照每辆每年比上一年减少10%,因此每辆汽车的销售利润构成了首项为2,公比为1-10%的等比数列{b n }.∴b n =2×0.9n -1. 第n 年的销售利润记为c n ,则c n =a n ·b n =(10000+10000n )×2×0.9n -1. (2)设到2013年年底,浙江吉利盈利为S ,则S =20000×2+30000×2×0.9+40000×2×0.92+50000×2×0.93+60000×2×0.94① 0.9S =20000×2×0.9+30000×2×0.92+40000×2×0.93+50000×2×0.94+60000×2×0.95②①-②得,0.1S =20000×2+20000×(0.9+0.92+0.93+0.94)-60000×2×0.95,解得S =10×(220000-320000×0.95)≈31.2×104>(20+1.5)×104.所以到2013年年底,浙江吉利能实现盈利.17.(文)甲方是一农场,乙方是一工厂,由于乙方生产须占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付的情况下,乙方的年利润x (元)与年产量t (吨)满足函数关系:x =2000t .若乙方每生产一吨产品必须赔付甲方s 元(以下称s 为赔付价格).(1)将乙方的年利润w (元)表示为年产量t (吨)的函数,并求出乙方获得最大利润的年产量;(2)在乙方年产量为t 吨时,甲方每年受乙方生产影响的经济损失金额y =0.002t 2(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s 是多少?[解析] (1)因为赔付价格为s 元/吨,所以乙方的实际年利润为:w =2000t -st (t ≥0)因为w =2000t -st =-s (t -1000s )2+10002s, 所以当t =⎝⎛⎭⎫1000s 2时,w 取得最大值.所以乙方取得最大利润的年产量t =⎝⎛⎭⎫1000s 2吨(2)设甲方净收入为v 元,则v =st -0.002t 2,将t =⎝⎛⎭⎫1000s 2代入上式,得到甲方纯收入v 与赔付价格s 之间的函数关系式:v =10002s -2×10003s 4, 又v ′=-10002s 2+8×10003s 5=10002(8000-s 3)s 5,令v ′=0得s =20.当s <20时,v ′>0;当s >20时,v ′<0.所以s =20时,v 取得最大值.因此甲方向乙方要求赔付价格s =20(元/吨)时,获最大纯收入.(理)某乡镇为了盘活资本,优化组合,决定引进资本拯救出现严重亏损的企业.长年在外经商的王先生为了回报家乡,决定投资线路板厂和机械加工厂.王先生经过预算,如果引进新技术在优化管理的情况下,线路板厂和机械加工厂可能的最大盈利率分别为95%和80%,可能的最大亏损率分别为30%和10%。

高中数学高考总复习----函数与方程的思想巩固练习题(含答案解析)

高中数学高考总复习----函数与方程的思想巩固练习题(含答案解析)
高中数学高考总复习----函数与方程的思想巩固
练习题(含答案解析)
【巩固练习】
1.已知 f (x) 是定义在 R 上的偶函数,且以 2 为周期,则“ f (x) 为[0,1] 上的增函数”是“ f (x) 为[3,4] 上
的减函数”的( ) (A)既不充分也不必要的条件 (C)必要而不充分的条件
(B)充分而不必要的条件 (D)充要条件
2
3.【答案】B 【命题意图】本试题主要考查了函数与方程思想,函数的零点的概念,零点存在定理以及作图与用图的数 学能力.
【 解 析 】 解 法 1 : 因 为 函 数 f (x) 2x x3 2 的 导 数 为 f '(x) 2x ln 2 3x2 0 , 所 以 函 数
f (x) 2x x3 2 单调递增,又 f (0)=1+0 2= 1, f (1)=2+23 2=8,即 f (0) f (1)<0 且函数 f (x)
1 a0
x2 是原方程的解当且仅当 x2
,即 a 1.
于是满足题意的 a 1, 2 . 综上, a 的取值范围为 1, 2 3, 4 .
(3)当 0
x1
x2
时,
1 x1
a
1 x2
a
log2

1 x1
a
log2
1 x2
a

所以 f x 在 0, 上单调递减.
函数 f x 在区间t,t 1 上的最大值与最小值分别为 f t , f t 1 .
(A)x<y<z (B)z<x<y (C)z<y<x
(D)y<z<x
5. (2016
上海高考)已知无穷等比数列{an}的公比为
q,前
n

渝北区八中九年级数学下册第二章二次函数5二次函数与一元二次方程第1课时二次函数与一元二次方程根的关系

渝北区八中九年级数学下册第二章二次函数5二次函数与一元二次方程第1课时二次函数与一元二次方程根的关系

A.(-1 , 0)
B.(4 , 0)
C.(5 , 0)
D.(-6 , 0)
7.(2018·孝感)如下图 , 抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(-2 , 4) , B(1 , 1) , 那么方程ax2=bx+c的x解1=是-__2__,__x_2_=__1__.
8.二次函数y=x2+ax+a与x轴的交点分别是A(x1 , 0) , B(x2 , 0) , 且x1+x2=-10 , 那么a的值是10____.
A
B
C
不在同一直线上的三点确定一个圆
已知 : 不在同一直线上的三点A、B、C 求作 : ⊙O使它经过点A、B、C
A
NFBiblioteka BEOC M
作法 : 1、连结AB , 作线段AB的垂直平分 线MN ; 2、连接AC , 作线段AC的垂直平分 线EF , 交MN于点O ; 3、以O为圆心 , OB为半径作圆。
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油!奥利给~
第24章
三点确定圆2
生活生产中的启示
问题 : 车间工人要将一个如下图的破损的圆
盘复原 , 你有办法吗 ?
知识回顾
1、过一点可以作几条直线 ? 2、过几点可确定一条直线 ?
2.二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点有三种情况两个: 交__点______一__个、交点 ________、无_交__点_____________.
(1)当二次函数的图象与x轴有_两__个__交__点___ , 这时b2-4ac>0 , 那么方程有两个不相等的实 一个数交根点 ;

高中 函数与方程知识点+例题+练习 含答案

高中 函数与方程知识点+例题+练习 含答案

教学过程(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.【训练1】(1)(2014·合肥模拟)函数f(x)=-1x+log2x的一个零点落在区间________.①(0,1);②(1,2);③(2,3);④(3,4).(2)(2012·北京卷改编)函数f(x)=-⎝⎛⎭⎪⎫12x的零点个数为________.考点二根据函数零点的存在情况,求参数的值【例2】已知函数f(x)=-x2+2e x+m-1,g(x)=x+e2x(x>0).(1)若y=g(x)-m有零点,求m的取值范围;(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.教学效果分析教学过程1.函数零点的判定常用的方法有:(1)零点存在性定理;(2)数形结合;(3)解方程f(x)=0.2.研究方程f(x)=g(x)的解,实质就是研究G(x)=f(x)-g(x)的零点.3.转化思想:方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.创新突破2——函数的零点与函数极值点的交汇【典例】(2013·安徽卷改编)已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2.若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为________.[反思感悟] (1)强化函数零点的求法,函数与方程的转化技巧,本题的突破点是方程3(f(x))2+2af(x)+b=0的不同实根个数转化为f(x)=x1与f(x)=x2的根的个数之和.(2)本题把函数的零点与函数的极值点交汇在一起考查,体现了新课标高考的指导思想.【自主体验】(2014·广州测试)已知e是自然对数的底数,函数f(x)=e x+x-2的零点为a,函数g(x)=ln x+x-2的零点为b,则f(a),f(1),f(b)的大小关系为________.教学效果分析能力提升题组一、填空题1.(2014·烟台模拟)如图是函数f (x )=x 2+ax +b 的图象,则函数g (x )=ln x +f ′(x )的零点所在区间是________. ①⎝ ⎛⎭⎪⎫14,12; ②(1,2) ③⎝ ⎛⎭⎪⎫12,1; ④(2,3). 2.(2013·连云港检测)已知函数y =f (x )(x ∈R )满足f (x +1)=-f (x ),且当x ∈[-1,1]时,f (x )=|x |,函数g (x )=⎩⎪⎨⎪⎧sin (πx ),x >0,-1x,x <0,则函数h (x )=f (x )-g (x )在区间[-5,5]上的零点的个数为________. 3.(2013·天津卷改编)设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则g (a ),0,f (b )的大小关系为________. 二、解答题4.(2014·深圳调研)已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }. (1)求函数f (x )的解析式;(2)求函数g (x )=f (x )x -4ln x 的零点个数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程根的问题练习题7
1、已知函数()f x 是定义在R 上的奇函数,当0x >时,|1|12,02,()1(2),2,2
x x f x f x x --⎧<≤⎪=⎨->⎪⎩则函数()g x =()1xf x -在[6,)-+∞上的所有零点之和为( B )
(A )7 (B )8 (C )9 (D )10
解析 本题可以考虑先将函数g (x )的零点问题转化为方程xf (x )-1=0的根的问题,再转化为函数h (x )=1x 与函数
y =f (x )的图象的交点问题进行求解.因为函数h (x )=1x 与函数y =f (x )都是奇函数,所以两函数图象在区间[-6,6]
上的交点的横坐标之和为0,故原问题转化为求在区间(6,+∞)上两函数图象的交点的横坐标的和的问题.由条
件易知,函数y =f (x )在区间(0,2]上的值域为[0,1],f (x )在区间(2n,2n +2](n ∈N *)上的值域为⎝⎛⎦
⎤0,12n .因为f (8)=12f (6)=⎝⎛⎭⎫122·f (4)=⎝⎛⎭⎫123f (2)=18,且h (8)=18,所以两函数图象有一个交点⎝⎛⎭⎫8,18.结合图象易知在区间(8,+∞)上,函
数y =f (x )与函数h (x )=1x 的图象没有交点,故函数g (x )在区间 [-6,+∞)上的所有零点之和为8.
2、定义函数348122()1()222
x x f x x f x ⎧--≤≤⎪⎪=⎨⎪>⎪⎩,则函数()()6g x x f x =-在区间[]8,1内的所有零点的和
为 .21/2
3、 定义函数348,12,2()1(), 2.22
x x f x x f x ⎧--⎪⎪=⎨⎪>⎪⎩≤≤,则函数()()6g x xf x =-在区间[]1,64(n *)∈N 内的所有零点的和为
( ) A .192 B .189 C .
1894 D .1892
4、定义函数()f x =3481221222
() x x x f x ⎧--≤≤⎪⎪⎨⎪>⎪⎩则函数6()()g x xf x =-在区间12,n ⎡⎤⎣⎦内的所有零点的和为( D )
A .n
B .2n
C .3214()n -
D .3212
()n -
5、设定义域为R 的函数f (x ),若关于x 的方程2f 2(x )+2bf (x )+1=0有8个不同的实数根,则b 的取值范围是 ﹣1.5<b <﹣ .
解:根据题意作出f (x )的简图:
由图象可得当f (x )∈(0,1)时,有四个不同的x 与f (x )对应.再结合题中“方程2f 2(x )+2bf (x )+1=0
有8个不同实数解“,可以分解为形如关于K 的方程2k 2+2bK+1=0有两个不同的实数根K 1、K 2,且K 1和K 2均为大
于0且小于1的实数. 列式如下:,即,可得﹣1.5<b <﹣ 故:﹣1.5<b <﹣
6、已知函数⎩⎨⎧≥+-<-=,0,46
,
0|,)lg(|)(3x x x x x x f 若关于x 的函数1)()(2+-=x bf x f y 有8个不同的零点, 则实数b 的取值范围是 (D )
(A)),2(+∞ (B)),2[+∞ (C))417
,2( (D)]417
,2(。

相关文档
最新文档