《数学分析》(604)考研大纲
2024数学三考研大纲
2024数学三考研大纲第一部分:基本概念和基本规则1.数论基本概念(1)整数、自然数、有理数和无理数的概念和性质;(2)素数、合数、互质数的定义和性质;(3)数论中的基本定理:费马小定理、中国剩余定理等。
2.代数基本概念(1)集合、集合的运算和集合的性质;(2)函数的概念、函数的性质和函数的运算;(3)多项式的概念、多项式的系数与次数、多项式的运算和多项式的因式分解;(4)方程和不等式的基本性质;(5)向量的概念、向量的线性运算和向量的数量积与向量积。
3.几何基本概念(1)点、线、面的性质;(2)平面几何和立体几何的基本概念和性质;(3)圆的基本性质和相关定理;(4)三角形、四边形、多边形的基本性质和相关定理;(5)坐标系和坐标变换的基本概念。
4.微积分基本概念(1)极限的概念和性质;(2)导数的定义、性质和运算法则;(3)不定积分的概念、性质和运算法则;(4)定积分的概念、性质和运算法则;(5)微分方程的基本概念和解法。
第二部分:数理方法和数学应用1.数论方法和应用(1)递推关系与生成函数;(2)整数的分解和数论函数的应用;(3)同余方程和同余定理的应用;(4)素数分布和素数定理。
2.代数方法和应用(1)行列式的性质和应用;(2)矩阵的基本性质和运算法则;(3)线性方程组的解法和相关定理;(4)群、环、域的概念和基本性质;(5)多项式方程的根与系数的关系。
3.几何方法和应用(1)几何图形的对称性和相似性;(2)几何证明的方法和技巧;(3)三角函数和相关三角恒等式的证明和应用;(4)几何体的体积和表面积的计算方法。
4.微积分方法和应用(1)函数的极值和最值的求解;(2)曲线的长度、曲率和弧长的计算方法;(3)定积分在几何、物理、经济等领域的应用。
第三部分:数学理论和数学研究1.数论的理论和研究(1)数论中的经典问题和研究方向;(2)数论在密码学和信息安全中的应用;(3)数论在算法设计和计算复杂性理论中的应用。
《数学分析》考试大纲
《数学分析》考试大纲一、课程名称:数学分析二、适用专业: 数学与应用数学三、考试方法:闭卷考试四、考试时间:100分钟五、试卷结构:总分:100分,选择题15分,填空题15分,计算题40分,证明题30分。
六、参考书目:1、华东师范大学数学系编著,《数学分析》(上、下册),高等教育出版社,2010年第4版。
2、中国科学技术大学常庚哲史济怀编著,《数学分析教程》(上、下册),高等教育出版社,2003年第1版。
七、考试的基本要求:数学分析是数学与应用数学专业专升本入学考试中专业课考试内容,考生应理解和掌握《数学分析》中函数、极限、连续、微分学、积分学和级数的基本概念、基本理论、基本方法。
应具有抽象思维能力、逻辑推理能力、运算能力和空间想象能力,能运用所学知识正确拙推理证明,准确、简捷地计算。
能综合运用数学分析中的基本理论、基本方法分析和解决实际问题。
八、考试范围第一章实数集与函数(一)考核内容实数及其性质,绝对值与不等式。
区间与邻域,有界集与确界原理。
函数概念,函数的表示法。
函数的四则运算,复合函数,反函数,初等函数。
具有某些特性的函数:有界函数、单调函数、奇函数与偶函数、周期函数。
(二)考核知识点1、实数:实数的概念,实数的性质,绝对值与不等式;2、数集、确界原理:区间与邻域,有界集与无界集,上确界与下确界,确界原理;3、函数概念:函数的定义,函数的表示法(解析法、列表法、和图象法),分段函数;4、具有某些特征的函数:有界函数,单调函数,奇函数与偶函数,周期函数。
(三)考核要求1、了解实数域及性质;2、掌握几种不等式及应用;3、熟练掌握数域,上确界,下确界,确界原理;4、牢固掌握函数复合、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。
第二章数列极限(一)考核内容数列。
数列极限的定义,无穷小数列。
收敛数列性质:唯一性、有界性、保号性、不等式性质、迫敛性、四则运算法则。
子列及子列定理。
2024数学三考研大纲
2024数学三考研大纲第一部分:数学分析1.实数与实数的基本性质1.1实数的完备性1.2实数序列的性质1.3实数级数的收敛性与发散性2.极限与连续2.1极限的定义与性质2.2函数的极限与连续2.3一元函数的微分学3.不定积分与定积分3.1不定积分的概念与性质3.2定积分的概念与性质3.3定积分的计算方法4.函数列与函数项级数4.1函数列的收敛性4.2函数项级数的收敛性4.3函数项级数的一致收敛性5.幂级数与傅里叶级数5.1幂级数的收敛半径与收敛域5.2幂级数的常用运算5.3傅里叶级数的性质与应用第二部分:代数与几何1.线性代数1.1实数向量空间与内积空间1.2矩阵与行列式1.3向量空间的基与维数2.线性方程组与矩阵的应用2.1线性方程组的基本概念与解法2.2矩阵的特征值与特征向量2.3矩阵的对角化与相似变换3.多元函数的微分学3.1多元函数的偏导数与全微分3.2多元函数的极值与条件极值3.3隐函数与参数方程的微分4.曲线积分与曲面积分4.1曲线积分的定义与性质4.2曲面积分的定义与性质4.3绿公式与高斯公式5.空间解析几何5.1空间中的直线与平面5.2空间曲线与曲面的方程5.3空间中的向量与坐标系第三部分:概率与统计1.随机事件与概率1.1随机事件的概念与性质1.2概率的基本概念与公理1.3概率的运算与应用2.随机变量与概率分布2.1随机变量的概念与分类2.2离散型随机变量的概率分布2.3连续型随机变量的概率密度函数3.随机变量的特征与分布3.1随机变量的数学期望与方差3.2常见离散型与连续型分布3.3多维随机变量的联合分布与边缘分布4.大数定律与中心极限定理4.1大数定律的概念与证明4.2中心极限定理的概念与应用4.3样本统计量的极限分布5.统计推断与假设检验5.1参数估计与区间估计5.2假设检验的基本原理5.3常用假设检验的方法与步骤第四部分:数学建模与应用1.数学建模的基本概念1.1数学建模的过程与方法1.2数学建模的评价标准与特点1.3数学建模在实际问题中的应用2.线性规划模型2.1线性规划问题的数学描述2.2单纯形法与对偶问题2.3整数线性规划问题与解法3.非线性规划模型3.1非线性规划的基本概念与性质3.2非线性规划的解法与应用3.3动态规划与整数规划问题4.数学建模实例分析4.1数学建模实例的选择与分析4.2实际问题的数学建模过程4.3数学建模结果的解释与应用5.模拟与优化算法5.1随机模拟与蒙特卡洛方法5.2优化算法的基本概念与分类5.3优化算法在数学建模中的应用结语数学三考研大纲是考生备战考研数学的重要参考资料,内容涵盖了数学分析、代数与几何、概率与统计、数学建模与应用等多个领域,全面系统地呈现了数学学科的基本知识与方法。
考研数学一大纲完整版
考研数学一大纲完整版一、线性代数部分1.1 矩阵与行列式•矩阵的定义和基本运算•线性方程组及其求解•行列式及其性质•特征值与特征向量1.2 向量空间•向量空间的概念和性质•子空间及其判定•基与维数1.3 线性变换•线性变换的定义与性质•线性变换的矩阵表示•线性变换的相似性二、概率统计部分2.1 随机事件与概率•随机试验与样本空间•随机事件及其概率•分类求概率法•条件概率与乘法定理2.2 随机变量与分布律•随机变量与分布函数•离散型随机变量及其概率分布•连续型随机变量及其概率密度函数•边缘分布和条件分布2.3 数理统计•抽样与抽样分布•参数估计与点估计•区间估计与假设检验•正态总体的统计推断三、高等代数部分3.1 线性方程组•线性方程组的解的存在唯一性•线性方程组的参数表示与齐次线性方程组•等价方程组与初等变换•向量方程组与矩阵方程3.2 线性空间•线性空间的概念与性质•子空间与线性子空间•基与维数•对偶空间与线性映射3.3 线性变换•线性变换的定义与性质•标准和矩阵表示•相似矩阵与对角化四、高等数学(第一册、第二册)部分4.1 极限与连续•数列极限•函数极限•连续与间断点•无穷小与无穷大4.2 导数与微分•函数的导数及其计算•高阶导数与导数的应用•微分与微分中值定理•函数的连续性4.3 积分与应用•不定积分和定积分•牛顿—莱布尼茨公式•反常积分•定积分的应用五、数学分析部分5.1 实数与数列函数•数列极限和函数极限•函数的连续性•实数的完备性与相关定理•紧致性与连续函数的性质5.2 导数与微分•函数的导数与微分•导数与函数的几何应用•函数的高阶导数•泰勒公式与函数的局部性质5.3 积分与应用•不定积分和定积分•回顾微积分基本公式•牛顿—莱布尼茨公式•表达式与变量替换法以上为考研数学一大纲的完整内容,包括线性代数、概率统计、高等代数、高等数学和数学分析的各个知识点。
通过学习这些内容,将有助于考生全面掌握数学知识,提高考试的综合能力。
硕士研究生入学考试大纲-601数学分析
全国硕士研究生入学统一考试数学专业《数学分析》考试大纲I 考查目标全国硕士研究生入学统一考试数学专业《数学分析》考试是为我校招收数学硕士生设置的具有选拔性质的考试科目。
其目的是科学、公平、有效地测试考生是否具备攻读数学专业硕士所必须的基本素质、一般能力和培养潜能,以利于选拔具有发展潜力的优秀人才入学,为数学学科及社会的发展培养具有良好职业道德、法制观念和国际视野、具有较强分析与解决问题能力的高层次、应用型、复合型的数学专业人才。
考试要求是测试考生掌握分析、表达与解决问题的一些基本能力和技能。
具体来说就是:要求考生理解数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
II 考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间180分钟。
二、答题方式答题方式为闭卷、笔试。
不得使用带有公式和文本存储功能的计算器。
三、试卷内容与题型结构一元函数微积分约占 60%,多元函数微积分约占 25%,无穷级数约占 20有以下三种题型:填空题或选择题(20%)、计算题(30%)、综合题(50%)III 考查内容1、极限和函数的连续性(1)熟练掌握数列极限与函数极限的概念;理解无穷小量、无穷大量的概念及基本性质。
(2)掌握极限的性质及四则运算法则,能够熟练运用迫敛性定理和两个重要极限。
(3)熟练掌握:区间套定理,确界存在定理,单调有界原理,聚点定理,有限覆盖定理,Cauchy收敛准则;并理解其相互关系。
(4)熟练掌握函数连续性的概念及相关的不连续点类型。
能够熟练地运用函数连续的四则运算与复合运算性质。
(5)熟练掌握闭区间上连续函数的基本性质:有界性定理、最值定理、介值定理,一致连续性。
(6)熟练掌握实数基本理论和性质,会用实数理论及性质表达和证明相关命题。
2、一元函数微分学(1)理解导数和微分的概念及其相互关系,理解导数的几何意义,理解函数可导性与连续性之间的关系。
考研数学一二三大纲详解教材分析
高等数学考研指定教材:同济大学数学系主编高等数学上下册第六版第一章函数与极限7天考小题学习内容复习知识点与对应习题大纲要求第一节:映射与函数一般章节函数的概念,常见的函数有界函数、奇函数与偶函数、单调函数、周期函数、复合函数、反函数、初等函数具体概念和形式.集合、映射不用看;双曲正弦,双曲余弦,双曲正切不用看习题1-1:4,5,6,7,8,9,13,15,16重点1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极第二节:数列的极限一般章节数列定义,数列极限的性质唯一性、有界性、保号性本节用极限定义证明极限的题目考纲不作要求,可不看,如P26例1,例2,例3,定理1,2,3的证明都不作要求,但要理解;定理4不用看习题1-2:1第三节:函数的极限一般章节函数极限的基本性质不等式性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等 P33例4,例5例7不用做,定理2,3的证明不用看,定理4不用看习题1-3:1,2,3,4第四节:无穷大与无穷小重要无穷小与无穷大的定义,它们之间的关系,以及与极限的关系无穷小重要,无穷大了解例2不用看,定理2不用证明习题1-4:1,6第五节:极限的运算法则掌握极限的运算法则6个定理以及一些推论注意运算法则的前提条件是否各自极限存在定理1,2的证明理解,推论1,2,3,定理6的证明不用看P46例3,例4,P47例6习题1-5:1,2,3,4,5重点第六节:极限存在准则理解两个重要极限重要两个重要极限要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式,要会证明两个重要极限,函数极限的存在问题夹逼定理、单调有界数列必有极限,利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限准则1的证明理解,第一个重要极限的证明一定要会,另一个重要极限的证明不用看,柯西存在准则不用看P51例1习题1-6:1,2,4第七节:无穷小的比较重要无穷小阶的概念同阶无穷小、等价无穷小、高阶无穷小、k阶无穷小,重要的等价无穷小尤其重要,一定要烂熟于心以及它们的重要性质和确定方法定理1,2的证明理解P57例1P58例5习题1-7:全做限.9.理解函数连续性的概念含左连续与右连续,会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质有界性、最大值和最小值定理、介值定理,并会应用这些性质.第八节:函数的连续性与间断点重要,基本必考小题函数的连续性,间断点的定义与分类第一类间断点与第二类间断点,判断函数的连续性连续性的四则运算法则,复合函数的连续性,反函数的连续性和间断点的类型;例1-例5习题1-8:1,2,3,4,5重点第九节:连续函数的运算与初等函数的连续性了解连续函数的运算与初等函数的连续性包括和,差,积,商的连续性,反函数与复合函数的连续性,初等函数的连续性定理3,4的证明不用看例4-例8 习题1-9:1,2,3,4,5,6重点第十节:闭区间上连续函数的性质重要,不单独考大题,但考大题特别是证明题会用到理解闭区间上连续函数的性质:有界性与最大值最小值定理,零点定理与介值定理零点定理对于证明根的存在是非常重要的一种方法.一致连续性不用看例1-例2习题1-10:1,2,3,5要会用5题的结论自我小结总复习题一:除了7,8,9以外均做,3,5,11,14重点本章测试题-检验自己是否对本章的复习合格合格成绩为80分以上,如果合格继续向前复习,如果不合格总结自己的薄弱点还要针对性的对本章的内容进行复习或者到总部答疑;第二章导数与微分6天小题的必考章节学习内容复习知识点与对应习题大纲要求第一节: 导数的概念重要导数的定义、几何意义、物理意义数三不作要求,可不看,数三要知道导数的经济意义:边际与弹性,单侧与双侧可导的关系,可导与连续之间的关系非常重要,经常会出现在选择题中,函数的可导性,导函数,奇偶函数与周期函数的导数的性质,按照定义求导及其适用的情形,利用导数定义求极限. 会求平1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些面曲线的切线方程和法线方程.导数定义年年必考例1-例6习题2-1:3,4,5,6,7,8,11,15,16,17,18,19,重点20物理量,理解函数的可导性与连续性之间的关系.第二节:函数的求导法则考小题复合函数求导法、求初等函数的导数和多层复合函数的导数,由复合函数求导法则导出的微分法则,幂、指数函数求导法,反函数求导法,分段函数求导法基本求导法则与求导公式要非常熟定理1,3的证明不用看,例1,17不用做,定理2的证明理解,例6,7,8重点做习题2-2:除2,3,4,12不用做,其余全做,13,14重点做 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.第三节:高阶导数重要,考的可能性很大高阶导数和N阶导数的求法归纳法,分解法,用莱布尼兹法则用泰勒展开式求高阶导例1-例7 习题2-3:5,6,7,11不用做,其余全做,4,12重点做第四节:隐函数及由参数方程所确定的函数的导数考小题由参数方程确定的函数的求导法数三不用看,变限积分的求导法,隐函数的求导法相关变化率不用看例1-例10习题2-4:9,10,11,12均不用做,数三5,6,7,8也可以不做,其余全做,4重点做第五节:函数的微分考小题函数微分的定义,微分运算法则,微分几何意义微分在近似计算中的应用不用看,考纲不作要求例1-例6 习题2-5:5,6,7,8,9,10,11,12均不用做,其余全做自我小结总复习题二:4,10,15,16,17,18均不用做,其余全做,2,3,6,7,14重点做,数三不用做12,13第二章测试题第三章微分中值定理与导数的应用8天考大题难题经典章节学习内容复习知识点与对应习题大纲要求第一节:微分中值定理最重要,与中值定理应用有关的证明题微分中值定理及其应用费马定理及其几何意义,罗尔定理及其几何意义,拉格朗日定理及其几何意义、柯西定理及其几何意义四个定理要会证明,及其重要例1,习题3-1:除了13,15不用做,其余全部重点做1.理解并会用罗尔Rolle定理、拉格朗日Lagrange中值定理和泰勒Taylor定理,了解并会用柯西Cauchy中值定第二节:洛必达法则重要,基本必考洛比达法则及其应用洛比达法则要会证明,重要例1-例10,习题3-2:全做,1,3,4重点做理.2.掌握用洛必达法则求未定式极限的方法.3.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.4.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.5.了解曲率和曲率半径的概念,会计算曲率和曲率半径.第三节:泰勒公式掌握其应用泰勒中值定理,麦克劳林展开式可不看公式的证明例1-例3 习题3-3:8,9不用做,其余全做10123重点做第四节:函数的单调性与曲线的凹凸区间考小题求函数的单调性、凹凸性区间、极值点、拐点、渐近线选择题及大题会用到例1-例12习题3-4:3125,512,812,9135,102不用做,其余全做,3,4,5,6,13,15重点做第五节:函数极值与最大值最小值考小题为主函数的极值一个必要条件,两个充分条件,最大最小值问题.函数性的最值和应用性的最值问题,与最值问题有关的综合题例5,6,7不用看习题3-5:123698,9,10,11,12,13,14,15,16均不用做,其余全做第六节:函数图形的描绘重要简单了解利用导数作函数图形一般出选择题及判断图形题,对其中的渐进线和间断点要熟练掌握,一元函数的最值问题三种情形;例1-例3 习题3-6:2-5第七节:曲率数三不作要求,仅数一、数二要求曲率、曲率的计算公式,与曲率相关的问题弧微分、曲率中心计算公式、渐屈线、渐伸线不用看例1-例3,习题3-7:1-6第八节:方程近似解不用看自我小结总复习题三:数一、数二全做,数三15不用做;其中22,3,7,8,9,10,34,113,12,17,18,20重点做第三章测试题总结第四章不定积分7天重要,本章数二考大题可能性更大学习内容复习知识点与对应习题大纲要求第一节:不定积分的概念与原函数与不定积分的概念与基本性质它们各自的定义,之间的关系,求不定积分与求微分1.理解原函数概念,理解不定积分性质重要或导数的关系,基本的积分公式,原函数的存在性,原函数的几何意义和力学意义数三不作要求例1-例16 习题4-1:1,2,3,4,6的概念.2.掌握不定积分的基本公式,掌握不定积分换元积分法与分部积分法.3.会求有理函数、三角函数有理式及简单无理函数的积分.第二节:换元积分法重要,第二类换元积分法更为重要不定积分的换元积分法,第二类换元法例1-例27习题4-2:1,212389101325均不用做,其余全做第三节:分部积分法考研必考不定积分的分部积分法例1-例10 习题4-3:1-24第四节:有理函数积分重要有理函数积分法,可化为有理函数的积分, 例1-例8 习题4-4:1-24不定积分计算总复习题四:1-40第五节:积分表的使用不用看自我小结总结本章第五章定积分6天重要,考研必考学习内容复习知识点与对应习题大纲要求第一节:定积分的概念与性质理解定积分的概念与性质可积存在定理定积分的7个性质理解及熟练应用,性质7积分中值定理要会证明定积分近似计算不用看习题5-1:1,2,3,6,8,9,10均不用做,其余全做,5,11,12重点做1.理解原函数概念,理解定积分的概念.2.掌握定积分的基本公式,掌握定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式及简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解广义反常积分的概念,会计算广义反常积分.第二节:微积分基本公式重要微积分的基本公式积分上限函数及其导数极其重要,要会证明牛顿-莱布尼兹公式重要,要会证明例5不用做,例6极其重要,记住结论习题5-2:6124567,7,8均不用做,其余全做,2数三不做,92,10,11,12,13重点做第三节:定积分的换元积分法与分部积分法重要,分部积分法更为重要定积分的换元法与分部积分法例1-例10 例5,例6,例7,例12经典例题,记住结论习题5-3:1123612141516,71389不用做,其余全做,重点做147****2526,2,6,77101213第四节:反常积分考小题反常积分无界函数反常积分与无穷限反常积分例1-例5习题:5-4:全做,3题结论记住第五节:反常积分的审敛法不用看总复习题五:13,2345,15,16不用做,其余全做,重点做3,5,7,8,9,101238910,13,14,17自我小结总结本章第六章定积分的应用4天考小题为主学习内容复习知识点与对应习题大纲要求第一节:定积分的元素法理解定积分元素法 1. 掌握用定积分表达和计算一些几何量与物理量平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心等及函数的平均值等.第二节:定积分在几何学上的应用面积最重要一元函数积分学的几何应用求平面曲线的弧长与曲率仅数一看,求平面图形的面积,求旋转体的体积,求平行截面为已知的立体体积数三不作要求,求旋转面的面积定积分的几何应用相关计算定积分应用的一些计算习题6-2:数一全做;数二、数三21-30不用做第三节:定积分在物理学上的应用数三不用看,数一数二了解定积分的物理应用用定积分求引力,用定积分求液体静压力,用定积分求功;综合题目的求解;数三不用看,数一数二了解例1-例5 习题6-3:数一、数二做总复习题六:数一全做;数二6不用做;数三只做3,4,5自我小结总结本章第七章常微分方程 9天本章对数二相对重要,必考章节学习内容复习知识点与对应习题大纲要求第一节:微分方程基本概念了解微分方程及其阶、解、通解、初始条件和特解,例1、2、3、4,例2数三不用看习题7-1:134,224,32,423,51.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量第二节:可分离变量的微分方程理解可分离变量的微分方程的概念及其解法例1、2、3、4,例2,3,4数三不作要求习题7-2:1,2第三节:齐一阶齐次微分方程的形式及其解法次方程理解例2不用看,可化为齐次的方程不用看习题7-3:1,2代换解某些微分方程.4.会用降阶法解下列微分方程:和.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.第四节:一阶线性微分方程重要,熟记公式一阶线性微分方程、伯努利方程仅数一考,记住公式即可,例1,3,4,习题7-4:1,2,3,8仅数一做第五节:可降解的高阶微分方程仅数一、数二考,理解全微分方程会求全微分方程会用降阶法解下列微分方程:和,例1—6习题:7-5:数三不用做、数一数二只做1,2第六节:高阶线性微分方程理解线性微分方程解的结构重要微分方程的特解、通解二阶线性微分方程举例不用看;常数变易法不用看定理1,2,3,4重点看习题7-6:1,3,4第七节:常系数齐次线性微分方程最重要,考大题特征方程,微分方程通解中对应项例1,2,3,6,7例4,5不用做习题7-7:1,2第八节:常系数非齐次线性微分方程最重要,考大题会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程例1-4,例5不用看习题7-8:1,2,6重点做第九节:欧拉方程仅数一考,了解欧拉方程的通解习题7-9:数一只做5,8 第十节不用看自我小结总复习题十二:1124,22,313578,434,5,7,8,10其中8,10仅数一做第八章空间解析几何和向量代数4天仅数一考,考小题,了解学习内容复习知识点与对应习题大纲要求第一节:向量及其向量概念,向量的线性运算,空间直角坐标系,利用坐标作向量的线性运算,向量1.理解空间直角坐标系,理解向量的概念及其表示.线性运算的模、方向、投影例1-例2.掌握向量的运算线性运算、数量积、向量积、混合积,了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系平行、垂直、相交等解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程. 9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.第二节:数量积,向量积,混合积向量的数量积,向量的向量积例1-例7习题7-2:3,4,6,9,10第三节:曲面及其方程曲面方程旋转曲面、柱面、二次曲面;旋转轴为坐标轴的旋转曲面的方程,常用的二次曲面方程及其图形,空间曲线的参数方程和一般方程,空间曲线在坐标面上的投影曲线方程例1-例5 习题7-3:,8,9,10第四节:空间曲线及其方程空间直线及其方程空间直线的对称式方程与参数方程,两直线的夹角,直线与平面的夹角例1-例4 习题7-4:2,3,5,6第五节:平面及其方程平面, 平面方程,两平面之间的夹角例1-例5习题7-5:1,2,3,5,6,9第六节:空间直线及方程直线与直线的夹角以及平行,垂直的条件,点到平面和点到直线的距离,球面,母线平行于坐标轴的柱面例1-例7 习题7-6:1-9,11,12自我小结总复习题七:1,9-21第九章多元函数微分法及其应用 10天考大题的经典章节,但难度一般不大学习内容复习知识点与对应习题大纲要求第一节:多元函数基本概念了解二元函数的极限、连续性、有界性与最大值最小值定理、介值定理例1—8,习题8—1:2,3,4,5,6,81.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续性的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形第二节:偏导数理解偏导数的概念,高阶偏导数的求解重要例1—8,习题8—2:1,2,3,4,6,9第三节:全微分理解全微分的定义,可微分的必要条件和充分条件全微分在近似计算中应用不用看例1,2,3,习题8—3:1,2,3,4第四节:多元复合函数求导,全微分形式的不变性多元复合函数的求导法则理解,重要例1—6,习题8—4:1—12 式的不变性.4.理解方向导数与梯度的概念并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.会用隐函数的求导法则.7.了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.第五节:隐函数的求导公式理解,小题隐函数存在的3个定理方程组的情形不用看例1—4,习题8—5:1—9第六节:多元函数微分学的几何应用仅数一考,考小题了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程一元向量值函数及其导数不用看例2—7,习题8—6: 1—9第七节:方向导数与梯度仅数一考,考小题方向导数与梯度的概念与计算例1—5,习题8—7:1—8,10第八节:多元函数的极值及其求法重要,大题的常考题型多元函数极值与最值的概念,二元函数极值存在的必要条件和充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值例1-9,习题8—8:1—10第九节:二元函数的泰勒公式仅数一考,了解n阶泰勒公式,拉格朗日型余项极值充分条件的证明不用看第十节最小二乘法不用看例1,习题8—9:1,2,3自我小结总复习题八:1—3,5,6,8,11—19本章测试题——检验自己是否对本章的复习合格合格成绩为80分以上,如果合格继续向前复习,如果不合格总结自己的薄弱点还要针对性的对本章的内容进行复习或者到总部答疑;第十章重积分7天重要,数二、数三相对于数一,本章更加重要,数二、数三基本必考大题学习内容复习知识点与对应习题大纲要求第一节:二重积分的概念与性质了解二重积分的定义及6个性质习题9—1:1,4,51. 理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法直角坐标、极坐标,会计算三重积分直角坐标、柱面坐标、球面坐标.3.会用重积分、曲线积分及曲面积分求一些几何量与物理量曲面面积、质量、质心、形心、转动惯量、引力.第二节:二重积分的计算法重要,数二、数三极其重要会利用直角坐标、极坐标计算二重积分二重积分换元法不用看例1-6,习题9—2:1,2,4,6,7,8,12,14,15,16第三节:三重积分仅数一考,理解三重积分的概念,利用直角坐标、柱面坐标、球面坐标计算三重积分的计算三重积分的计算重要例1-4,习题9—3:1,2,4—10第四节:重积分的应用仅数一考,了解曲面的面积、质心、转动惯量、引力第五节含参变量的积分不用看例1—7,习题9—4:2,5,6,8,10,11,14自我小结总复习题九:1,2,3,6,7,8,9,10总结第十一章曲线积分与曲面积分8天仅数一考,数二、数三均不考,数一考大题,考难题的经典章节学习内容复习知识点与对应习题大纲要求第一节:对弧长的曲线积分重要弧长的曲线积分的概念理解,性质了解及计算重要例1、2,习题10—1:1,3,4,51.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.2.掌握计算两类曲线积分的方法.3.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.4.了解两类曲面积分的概第二节:对坐标的曲线积分重要对坐标的曲线积分概念理解、性质了解及计算重要,两类曲线积分的联系了解例1-5,习题10—2:3—8第三节:格林公式及掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数,其应用重要曲线积分的基本定理不用看例1-7,习题10—3:1-6念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,会用高斯公式,斯托克斯公式计算曲面、曲线积分.5.了解散度与旋度的概念,并会计算.6.会用重积分、曲线积分及曲面积分求一些几何量与物理量平面图形的面积、体积、曲面面积、弧长、功及流量等.第四节:对面积的曲面积分重要对面积的曲面积分的概念理解、性质了解与计算重要例1、2,习题10—4:1,4,5,6,7,8第五节:对坐标的曲面积分重要对坐标的曲面积分的概念理解、性质了解及计算重要,两类曲面积分之间的联系了解例1-3,习题10—5:3,4第六节:高斯公式重要、通量不用看与散度了解会用高斯公式计算曲面、曲线积分,散度的概念及计算沿任意闭曲面的曲面积分为零的条件不用看例1-5,习题10—6:1,3第七节:斯托克斯公式重要、环流量不用看与旋度了解会用斯托克斯公式计算曲面、曲线积分,旋度的概念及计算空间曲面积分与路径无关的条件不用看例1-4,习题10—7: 1, 2自我小结总复习题十:1-4,6, 7总结第十二章无穷级数6天数二不考,数一、数三考大题,考难题经典章节学习内容复习知识点与对应习题大纲要求第一节:常数项级数的概念和性质一般考点级数收敛、发散的定义,收敛级数的基本性质考选择题柯西审敛原理不用看例1-3,习题11—1:1—41.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条第二节:常数项级数的审敛法理解正项级数及其审敛法;交错级数及其审敛法、绝对收敛与条件收敛绝对收敛级数的性质不用看例1-10,习题11—2:1—5第三节:幂级数重要函数项级数的概念了解;幂级数及其收敛性最重要;幂级数的运算乘、除不用看。
2024数学三考研大纲
2024数学三考研大纲第一部分:基本概念数学是一门关于数量、结构、空间和变化等概念的科学。
它涉及到形式逻辑、抽象代数、几何、拓扑、数论、分析、概率论、数理统计等多个领域。
考研数学三科的大纲主要包括以下内容:1.数论2.代数3.几何4.分析5.概率统计第二部分:数论数论是研究整数性质的数学分支,其重要性不言而喻。
数论包括以下几个方面的内容:1.整数性质2.素数3.同余4.数论函数5.数论定理6.数论方法第三部分:代数代数是数学的一个重要分支,研究数、符号和它们的代数结构及代数方程。
代数包括以下内容:1.群、环、域2.线性代数3.线性空间4.向量空间5.矩阵6.线性变换7.代数方程第四部分:几何几何是研究空间和形状的数学分支,包括以下内容:1.解析几何2.向量解析几何3.立体几何4.三角学5.概率统计第五部分:分析分析是研究极限、微积分和级数等概念的数学分支,包括以下内容:1.极限2.微积分3.泛函4.序列5.级数6.偏微分方程7.多元函数第六部分:概率统计概率统计是研究随机现象的概率和统计规律的数学分支,包括以下内容:1.概率2.随机变量3.概率分布4.统计推断5.方差分析6.回归分析7.抽样调查第七部分:考试范围数学三科的考试范围主要包括上述各个分支的知识点,考生需熟练掌握这些知识,并具备一定的解题能力和应用能力。
考试的形式包括选择题、填空题、解答题和证明题等。
考试内容主要测试考生的数学思维能力和解决问题的能力。
第八部分:备考建议备考数学三科需要考生具备扎实的数学基础知识,需要通过大量的练习来提高解题能力,并且需要阅读相关的数学教材和参考书籍来拓展自己的数学知识面。
此外,考生还需要针对性地进行一些重点知识的复习和强化训练,以及针对性地进行一些题型的练习和模拟考试,来提高解题能力和应试能力。
第九部分:总结数学三科的考试大纲内容涉及面广,难度较大,要想在考试中取得好成绩需要付出大量的努力和时间。
考生需要在备考过程中切记不要死记硬背,而应以理解和灵活运用为主,同时要注重知识点之间的联系和整体把握。
数学分析610研究生入学考试大纲
《数学分析》(610)研究生入学考试大纲一、参考书目:1.《数学分析》第四版(上、下册)华东师范大学数学系编(高等教育出版社)。
2.《数学分析》(上、下册)盛炎平等编(机械工业出版社)。
二、考试大纲:(第一章~第二十二章,所有带*号的部分不用看)第一章实数集与函数数集的确界,确界原理.第二章数列极限极限定义,收敛数列性质,单调有界原理,重要极限.第三章函数极限函数极限定义,函数极限性质,两个重要极限,无穷大量与无穷小量,渐近线.第四章函数连续性函数连续概念,间断点分类,连续函数的性质,一致连续的概念.第五章导数与微分导数概念,导数几何意义,求导法则,基本求导公式,参变量函数求导,高阶导数,微分的概念,几何意义.第六章微分中值定理及其应用罗尔定理,拉格朗日定理,函数单调性的判定,柯西中值定理,不定式极限的罗必达法则,泰勒公式,,函数极值的判定,最值问题,函数凹凸性的判定.第七章实数的完备性了解刻画实数完备性定理的内容.第八章不定积分原函数与不定积分概念,基本积分公式,换元法与分部积分法.第九章定积分定积分概念,定积分性质,牛顿-莱布尼兹公式,变限积分和原函数存在定理,积分中值定理,计算积分的换元法与分部积分法.第十章定积分应用计算平面图形面积,立体体积,曲线弧长,旋转曲面面积.第十一章反常积分无穷积分和瑕积分的概念和性质,非负无穷积分和瑕积分的比较判别法,一般无穷积分和瑕积分的狄立克莱判别法和阿贝尔判别法.第十二章数项级数级数收敛的定义,级数的性质,正项级数的比较、根值、比值判别法,一般项级数的阿贝尔判别法和狄立克雷判别法.第十三章函数列与函数项级数函数列的一致收敛性,一致收敛的柯西准则及充要条件,一致收敛函数列的极限函数的性质,函数项级数一致收敛概念,判别法,一致收敛函数项级数的性质.第十四章幂级数幂级数的收敛半径、收敛区间、收敛域,收敛半径的计算,幂级数的性质,泰勒级数,初等函数的幂级数展开.第十五章傅立叶级数三角级数,正交系,收敛定理,周期函数的傅里叶展开,偶函数与奇函数的傅里叶级数与展开.第十六章多元函数的极限与连续二元函数的极限与连续.第十七章多元函数微分学偏导数的概念,全微分的概念,偏导数的几何意义,复合函数的求导法则,方向导数与梯度的概念,多元函数的极值问题.第十八章隐函数定理及其应用了解隐函数定理,会隐函数求导,曲线的切线,曲面的切平面与法线,条件极值问题.第十九章含参积分该章不考察.第二十章曲线积分第一型曲线积分定义与计算,第二型曲线积分的定义与计算,两类积分的联系.第二十一章重积分二重积分的概念、性质,直角坐标计算,极坐标计算,格林公式,曲线积分与路径的无关性,三重积分的定义,性质,利用直角坐标计算,柱坐标计算,球坐标计算.第二十二章曲面积分第一型曲面积分定义与计算,第二型曲面积分的定义与计算,高斯公式与斯托克斯公式三、试卷结构:1.概念简答题;2.计算题;3.证明题.。
2024年全国硕士研究生招生考试大纲 数学二
2024年全国硕士研究生(数学二)招生考试大纲主要包括以下内容:
一、数学分析:
1. 数列的极限及其性质;
2. 函数的极限与连续性;
3. 导数与微分;
4. 高阶微分方程;
5. 定积分与定积分的应用;
6. 二重积分与三重积分;
7. 曲线的切线与法线;
8. 空间曲面的方程与投影;
9. 复数与复变函数。
二、线性代数:
1.向量与空间;
2.行列式;
3.矩阵;
4.线性方程组;
5.二次型与二次齐次式;
6.特征值与特征向量;
7.线性变换;
8.内积与正交补。
三、概率论与数理统计:
1.随机事件与概率;
2.随机变量及其分布;
3.多维随机变量及其分布函数;
4.数字特征;
5.大数定律与中心极限定理;
6.抽样分布;
7.参数估计;
8.假设检验。
请注意,这只是一个大致的框架,具体的内容可能会根据每年的考试大纲有所不同,建议您查阅最新的考研数学二考试指南以获取准确的考试信息。
2024数学三考研大纲
2024数学三考研大纲
一、推理和证明
1.数学基本概念与定义:集合、映射、函数、等价关系、序关系、数论基本概念和基本定理;
2.数学基本方法:数学归纳法、反证法、逆否命题的证明方法及
其应用;
3.常用数学工具:基本运算性质、数学公式及其推导、模运算、
数系的扩张、有理数的完备性;
4.数学基本理论:极限、函数连续性、可导性的定义、性质及其
应用。
二、数学分析
1.实数系:实数的完备性原理、实数的连续性、实数的构造与性质;
2.极限与连续:函数极限与连续性的定义、性质以及其应用;
3.一元微分学:导数的定义、性质、微分中值定理及其应用;
4.一元积分学:不定积分、定积分、积分中值定理、换元积分法、分部积分法、定积分的应用。
三、线性代数
1.矩阵与行列式:矩阵的性质、特征值特征向量、对角化及其应用;
2.线性方程组:矩阵的秩、线性方程组的解的结构、向量空间的
基和维数;
3.向量空间:线性空间的基本概念、子空间的概念与性质、子空
间与基的关系。
四、概率统计
1.基本概率论:事件的概率、条件概率、独立性、全概率公式、
贝叶斯公式;
2.随机变量:随机变量的分布函数、密度函数、分布列;随机变
量的数学期望、方差与协方差;
3.大数定律与中心极限定理:大数定律的详细描述、中心极限定理的应用。
五、微分方程
1.一阶常微分方程:一阶微分方程的解法及其应用;
2.高阶常微分方程:高阶微分方程的解法及其应用;
3.线性微分方程:齐次线性微分方程的解法、非齐次线性微分方程的解法及其应用。
欧阳光中《数学分析》笔记和考研真题详解(极限论及实数理论的补充)【圣才出品】
欧阳光中《数学分析》笔记和考研真题详解第11章极限论及实数理论的补充11.1复习笔记一、Cauchy收敛准则及迭代法1.基本数列(1)基本数列的定义若,即对每个,都能找到一个自然数N,对一切n,m≥N成立不等式称{x n}为(Cauchy)基本数列.(2)引理1若{x n}收敛,则{x n}必是基本数列.2.数列极限的Cauchy收敛准则(1)引理2基本数列必有界.(2)Cauchy收敛准则是基本数列.3.实数系的完备性由实数所组成的基本数列{x n}必存在实数极限,这个性质称为实数系的完备性.注意:有理数域不具有完备性.4.函数极限的Cauchy收敛准则Cauchy收敛准则的两种叙述(1)设f在点a某个去心邻域有定义,则极限存在且为有限(2)ε-σ定义设f在点a某个去心邻域有定义,,当时,5.压缩映射原理(1)不动点的定义设是定义在[a,b]上的一个函数,方程的解称为的不动点.(2)不动点的存在性①不动点存在的必要条件取,递推式为,设一切,如果是连续函数且存在且为有限,则在式子两边令,可得.从而知是的一个不动点.②不动点存在的充分条件a.压缩映射的定义如果存在一个常数k,满足,使得对一切成立不等式则称是[a,b]上的一个压缩映射,显然,压缩映射必连续.b.压缩映射原理设是[a,b]上的压缩映射且由递推公式定义的[a,b],n=0,1,2,…,则在[a,b]上存在惟一的不动点,且.(3)不动点的惟一性设是[a,b]上的压缩映射且,则在[a,b]上存在惟一的不动点.6.牛顿迭代法(1)牛顿迭代公式设y=f(x)于[a,b]上可微,f'(x)≠0且f(a)f(b)<0,则f(x)在[a,b]上存在一实根,记为.同时,设x是根的一个近似值,x n下一步的近似值x n+1,则这个求近似值的迭代公式称为牛顿迭代公式.(2)压缩映射原理的推论若①f(x)于[a,b]两次可微且f'(x)≠0;②存在一个数,对一切,成立③存在,使得一切则f(x)在[a,b]上存在惟一实根,且二、上极限和下极限1.上(下)极限的定义若数列{x}的极限不存在且存在子列,其中a是有限数或或}的一个极限点.数列{x n}的最大(最小)极(不包括不定号无穷大),则称为a数列{x限点如果存在,则称为该数列的上(下)极限,并记为2.上(下)极限的存在性每个数列{x}的上极限和下极限必存在且惟一(有限或或),且3.上(下)极限和极限的关系(1)根据上(下)极限的定义,有}存在极限(包括或{x n}的上极限和下极限相同,即极限(2)定理{x点惟一,当条件满足时,三、实数系基本定理1.有限开覆盖定理(1)覆盖的定义[a,b]是一个给定的有界闭区间,{Oα}是一族开区间,若则称开区间族{Oα}覆盖了[a,b].(2)有限开覆盖定理若开区间族{Oα}覆盖了有界闭区间[a,b],则从{Oα}必可挑出有限个开区间Oα1,…,Oαn同样覆盖了[a,b]:2.实数系基本定理小结(1)确界存在定理;(2)单调有界数列极限存在定理;(3)闭区间套定理;(4)Bolzano-Weierstrass定理;(5)Cauchy收敛准则;(6)有限开覆盖定理.以上这些定理是相互等价的.3.实数系的一种引进法(1)QD10函数在有理数集Q上定义的、值域为1,0两值的单调减少函数称为QD10函数,用R表示所有QD10函数所组成的集合,该集合中每个元素就是一个QD10函数.譬如,对每个有理数r,函数注意:①R中的元素可分两部分一类元素(见上)及余下其他元素;②在R中引进与函数相等概念稍不同的等于“=”概念:,称α=β,若函数α+(t)=β+(t),,显然这等价于α-(t)=β-(t),在这种等于的概念下,r+=r-(称为有理数),它们可与有理数r等同起来.③引进“≤”概念:若α+(t)≤β+(t),(等价于α-(t)≤β-(t),,则称是指且.显然关系式α<β,α=β,α>β有且仅有一个成立.(2)确界存在定理R中非空、上有界集A必存在上确界supA.11.2名校考研真题详解1.设为[0,1]上的一个连续函数列,若对任意的是有界数列.用闭区间套定理证明存在[0,1]的一个长度不为0的子区间及常数C,使得[南京理工大学2006研]证明:反证法假设在任何(非空)子区间上都不一致有界,则存在及的某个闭子区间上,恒使得又因连续,根据保号性,在含x有在上仍不一致有界,所以存在及,使得.根据连续保号性,存在闭子区间使得上恒有如此继续下去,便得一串闭区间在上恒有.利用闭区间套定理知,存在从而所以在处无界,与已知条件矛盾,结论得证.2.用有限覆盖定理证明有界性定理:闭区间上的连续函数必有界.[天津工业大学2006研]证明:设函数f(x)在闭区间[a,b]上连续,要证明f(x)在[a,b]上有界.由连续函数的局部有界性,对每一点都存在邻域及正数使得考虑开区间集。
欧阳光中《数学分析》笔记和考研真题详解(连续函数和单调函数)【圣才出品】
欧阳光中《数学分析》笔记和考研真题详解第5章连续函数和单调函数5.1复习笔记一、区间上的连续函数1.某点处连续和单侧连续(1)函数在一点的连续的定义函数f在点x0连续是指且f在x0和x0的某个邻域δ(x0)内有定义.(2)单侧连续的定义如果f(x)在x的某个右邻域0<x-x0<δ,左邻域(-δ<x-x0<0)中有定义,且,则称f在点x0右(左)连续.(3)单侧连续和某点处连续的关系若f在点x0连续.即:f在点x0连续在点x0既左连续又右连续.2.区间上的连续性(1)开区间上连续性的定义当a<b时,f(x)在(a,b)上每点都连续,则f(x)在开区间(a,b)上连续.(2)闭区间上连续性的定义f(x)在(a,b)连续且在点a右连续,在点b左连续,则f在闭区间[a,b]上连续.(3)连续函数类用记号C(I)表示由区间I上所有的连续函数所组成的集合.3.连续函数的四则运算(1)定理若是常数,则(分母g(x)≠0,)及也都属于C(I).(2)推论1若f∈C(I),则,并且有(n是自然数).(3)推论2多项式函数.4.连续函数的复合运算(1)定理连续,f(x)在点连续,则f(g(x))在点x0也连续.即设y=g(x)在点x连续函数的复合函数也连续.(2)推论仅单侧连续,f(x)在点连续,则f(g(x))于点①如果g(x)在点xx0也为相同的单侧连续.②初等函数都是连续函数。
5.不连续点(1)不连续点的定义设f(x)于x0的某个去心邻域中有定义.如果在点x0不满足连续性条件,则x0称为f(x)的不连续点(亦称间断点).(2)f(x)的间断点及其分类①第一类间断点f(x0+)和f(x0-)均存在且有限.a.可去间断点:b.跳跃间断点:②第二类间断点和至少有一个不存在.(无穷大属于不存在之列)(3)连续延拓原理设x0是f(x)的可去间断点,记其中,则于点x0连续.称为f(x)的连续延拓.二、区间上连续函数的基本性质1.零点存在定理(1)连续函数零点存在定理若且,则f(x)在[a,b]中至少存在一个零点.(2)定理的几何解释零点存在定理是说连续函数的图形穿过x轴时必与x轴有交点,这个交点的横坐标就是f(x)的零点.2.值域定理(1)值域定理有界闭区间上的连续函数的值域也必是有界闭区间.即,若[a,b]是有界闭区间,f∈C[a,b],则(2)推论①(连续有界定理)有界闭区间上的连续函数必有界;②(最值定理)有界闭区间上的连续函数必存在最大值与最小值;③(介值定理)对一切μ∈[m,M],必存在使得注意:如果f在[a,b]有一点不连续,那么f(x)的有界性、最值存在性均可能不成立.3.一致连续性(1)一致连续的定义①设f在〈a,b〉≡I上有定义,如果极限则称f(x)在区间I上一致连续.②设f在〈a,b〉≡I上有定义,若对,满足时,有注意:若f在(a,b)上一致连续,则f必在(a,b)连续.(2)不一致连续定义①f在(a,b)上不一致连续,使得②f(x)于(a,b)上不一致连续及数列,满足,使得注意:连续性一般推不出一致连续性.(3)Cantor定理有界闭区间上的连续函数必一致连续.三、单调函数的性质1.不连续点的性质(1)性质1在区间(a,b)上定义的单调函数f于(a,b)的不连续点必是第一类不连续点.(2)性质2单调函数的不连续点至多为可列个.2.值域性质性质3如果f在〈a,b〉上单调,则3.反函数存在定理性质4(严格单调连续函数的反函数存在定理)设y=f(x)在〈a,b〉上连续且严格单调增加,则值域是区间,反函数是区间I上的连续且严格单调增加函数.4.有界变差函数(1)有界变差函数的定义设g和h是有界闭区间上的两个单调增加函数,则称上的有界变差函数.上的有界变差函数的全体记为显然,上的单调函数必定是有界变差函数.(2)性质5有界变差函数f的内部不连续点必定是第一类不连续点.(3)性质6①若f在区间和上分别为有界变差函数,则f在上也为有界变差函数.②若可分成有限个子区间,在每个子区间上f(x)是单调的,则f必定是上的有界变差函数.(4)性质7若,则这里α是数.5.2名校考研真题详解1.设f(x)在[a,b]上连续,对任意的x∈[a,b],存在y∈[a,b],使,证明:存在,使得。
2024考研数一 大纲
2024考研数一大纲2024年考研数学一专业的大纲如下:一、高等数学1. 极限与连续- 极限的概念与性质- 无穷小量与无穷大量的比较- 函数的连续性与间断点- 闭区间上连续函数的性质- 导数的概念与性质- 微分中值定理及其应用2. 一元函数微积分- 微积分基本定理与不定积分- 函数的定积分与不定积分的关系- 一元函数的积分学- 定积分的计算与应用3. 多元函数微积分- 多元函数的极限与连续- 偏导数与全微分- 多元函数的求导法则- 多元函数的极值与条件极值- 重积分的概念与计算4. 常微分方程- 常微分方程的基本概念与初值问题- 一阶常微分方程的解法与应用- 高阶常微分方程的一般理论- 常系数线性微分方程5. 线性代数- 行列式的定义与性质- 矩阵的基本概念与运算- 线性方程组的解法与应用- 矩阵的特征值与特征向量- 正交变换与对称矩阵的对角化二、概率论与数理统计1. 随机变量及其分布- 随机变量的概念与分布函数- 常见离散型分布与连续型分布- 二维随机变量及其分布- 边缘分布与条件分布2. 随机变量的数字特征- 数学期望与方差- 矩母函数与特征函数- 大数定律与中心极限定理3. 多维随机变量及其分布- 二维随机变量的分布函数与密度函数- 边缘分布与条件分布- 相互独立与不相关4. 参数估计- 点估计与区间估计- 常见参数估计方法- 最小二乘估计与极大似然估计5. 假设检验与方差分析- 假设检验的基本原理- 单侧与双侧假设检验- 方差分析与卡方检验- 相关分析与回归分析以上就是2024年考研数学一专业的大纲,考生可以根据大纲内容有针对性地进行复习和准备。
2024年考研数学一考试大纲
2024年考研数学一考试大纲一、考试性质考研数学一考试大纲是针对全国硕士研究生招生考试的数学科目一制定的考试规范,旨在评估考生对高等数学、线性代数、概率论与数理统计等学科基础知识的掌握程度和运用能力。
二、考试目标通过本考试,考生应具备以下能力:1. 掌握高等数学、线性代数、概率论与数理统计的基本概念、原理和方法,具备扎实的数学基础。
2. 具备运用所学知识分析问题、解决问题的能力,以及灵活运用所学知识解决实际问题的能力。
3. 具备良好的数学思维能力和创新意识,能够独立研究、思考和解决问题。
三、考试内容1. 高等数学:包括极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、无穷级数等内容。
2. 线性代数:包括矩阵与行列式、向量空间与线性方程组、特征值与特征向量、二次型等内容。
3. 概率论与数理统计:包括概率的基本概念、随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理、样本与抽样分布、参数估计等内容。
四、考试形式与试卷结构1. 考试形式:闭卷,笔试。
2. 试卷满分及考试时间:试卷满分为100分,考试时间为180分钟。
3. 试卷内容结构:各部分内容所占分值将根据学科要求进行分配。
高等数学占50%,线性代数占20%,概率论与数理统计占30%。
4. 题型结构:包括单项选择题、多项选择题、填空题和解答题等。
其中,选择题占60%,填空题占10%,解答题占30%。
五、考试要求1. 考生应掌握各学科的基本概念、原理和方法,能够运用所学知识分析问题、解决问题。
2. 考生应具备良好的数学思维能力和创新意识,能够独立思考和解决问题。
3. 考生应具备灵活运用所学知识解决实际问题的能力,能够将理论知识与实践相结合。
2020年湖南师范大学604高等数学考研专业课考试大纲(含参考书目)
a: 简答题,约 30 分
b: 解答题(包括证明题),约 120 分
4)内容结构
微积分 约 70% 线性代数 约 30%
二、考试内容与考试要求
(一) 微积分
1、函数、极限、连续
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、
反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关
2、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性 之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的 导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导 数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单 调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径 考试要求
系的建立
数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量
和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则
运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
lim sin x = 1 x→0 x
lim
x→∞
1
+
1 x
x
= e
1/10
2020考研湖南师范大学硕士研究生入学考试大纲(含参考书目清单)
2/10
2020考研湖南师范大学硕士研究生入学考试大纲(含参考书目清单)
(1)理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意 义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述 一些物理量,理解函数的可导性与连续性之间的关系.
考研《数学分析》(学术学位)考试大纲
(1)数项级数
掌握级数、正项级数、交错级数的概念和收敛判别法,明确级数和数列的关系。
(2)函数列与函数项级数
掌握函数列与函数项级数一致收敛的概念、判别法、性质, 和函数的连续性,级数的逐项可导、逐项可积性。
(3)幂级数
掌握幂级数收敛半径、收敛区间的求法,熟练掌握函数的泰勒级数展开法,注意利用逐项求导和逐项积分的展开方法。
(3)函数极限
熟悉各种极限定义,可用 语言证明函数极限的存在性,熟悉函数极限的性质和存在条件,明确无穷小量和无穷大量阶的比较,会求给定函数的极限。
(4)实数集和实数完备性
掌握实数集上下确界概念。熟悉实数完备性的几个基本定理,掌握其证明和应用。
(5)函数的连续性
熟悉函数连续的定义,函数间断点的分类,掌握连续函数的性质。掌握一致连续的概念,能够证明和函数连续性有关的命题。
2、《数学分析》(第一版)欧阳光中、姚允龙、周渊编著 复旦大学出版社 2003 或之后版本
会用定积分求平面图形的面积、已知截面面积的立体体积、曲线的弧长、曲率。熟悉微元法。
4、多元函数及其微分学
(1)多元函数的极限与连续
掌握重极限与累次极限的定义、联系与区别,能熟练讨论极限的存在性,会求极限值。
(2)偏导、微分和方向导数
掌握偏导、微分和方向导数的概念、求法,特别是复合函数高阶偏导的求法,隐函数偏导的求法。熟悉可微性条件、几何意义与应用。能熟练讨论多元函数连续、可微、偏导连续之间的关系,能举出具有其中几种性质而不具有其余性质的多元函数例子。
(4)傅里叶级数
熟悉傅里叶级数的收敛定理,掌握函数展开成傅里叶级数的条件与方法。
二、考试要求(包括考试时间、总分、考试方式、题型、分总分:150分
《数学分析》研究生考试大纲
硕士《数学分析》考试大纲课程名称:数学分析科目代码:661适用专业:数学与应用数学专业参考书目:1、《数学分析》(上下册)第一版,陈纪修,於崇华,金路;高等教育出版社1999.92、《数学分析》(上下册)第二版,陈纪修,於崇华,金路;高等教育出版社2004.103、《数学分析》(上下册),卓里奇;高等教育出版社2006.124、《数学分析》(上下册),华东师范大学,高等教育出版社2010.7一、数列极限1、充分认识实数系的连续性;理解并掌握确界存在定理及相关知识。
2、充分理解数列极限的定义,熟练掌握用数列极限的定义证明有关极限问题,以及数列极限的各种性质及其运算。
3、掌握无穷大量的概念及其相关知识;熟练掌握Stolz定理的内容及其结论及应用。
4、理解单调有界数列收敛定理的内容及其结论,并能熟练解决相关的极限问题。
5、充分理解区间套定理、致密性定理、完备性定理各自的内容和结论;进一步认识实数系的连续性与实数系的完备性的关系;明确有关收敛准则中的各定理之间逻辑关系。
二、函数极限与连续函数1、充分理解函数极限的定义,熟练掌握用函数极限的定义证明有关极限问题;以及函数极限的各种性质及其运算。
2、明确数列极限与函数极限的关系;熟练掌握单侧极限以及各种极限过程的极限。
3、充分理解连续函数的概念,熟练掌握用连续函数的定义和运算解决有关函数连续性问题。
明确不连续点的类型;掌握反函数、复合函数的连续性。
4、熟练掌握无穷小(大)量的概念以及自身的比较,并能熟练应用于极限问题当中。
5、充分掌握闭区间上连续函数的各种性质;充分理解函数的一致连续性及相关定理。
三、微分1、充分理解微分的概念、导数的概念,以及可微、可导、连续三者的关系。
2、熟练掌握导数的运算、反函数、复合函数的求导法则,做到得心应手。
3、理解高阶导数和高阶微分的概念,熟练掌握高阶导数的运算法则。
四、微分中值定理及其应用1、充分理解以Lagrange中值定理为核心的各微分中值定理的内容和结论;掌握应用微分中值定理揭示函数自身的特征和函数之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学分析》(604)考研大纲
(一)实数与函数
考试内容
绝对值与不等式,确界原理,函数及性质。
考试要求
理解和掌握邻域,有界集,上、下确界,函数,复合函数,反函数,有界函数,单调函数,奇、偶函数,周期函数等概念。
(二)极限与连续
考试内容
数列极限定义,收敛数列的性质,单调有界原理,柯西准则,函数极限定义(趋于无穷大时的极限,趋于某一定数时的极限),函数极限性质,归结原理,柯西准则,两个重要极限,无穷小量,无穷大量概念,无穷小量阶的比较,连续性概念,连续函数的局部性质,闭区间上连续函数的性质,反函数连续函数,一致连续性,指数函数的连续性,初等函数连续性,实数完备性定理:区间套定理,柯西准则,聚点定理,有限覆盖定理等。
考试要求
理解和掌握:数列极限的定义及计算,数列极限性质的原理及推导,单调有界原理,柯西准则及应用,函数极限的定义及计算,函数极限存在的归结原理,两个重要极限的计算,无穷小量,无穷大量概念,无穷小量阶的比较及应用,一致连续性及应用,连续性的定义及其证明,间断点及其分类,连续函数的局部性质,闭区间上连续函数的性质,区间套定理,柯西准则,聚点定理,有限覆盖定理原理及证明,闭区间上的连续函数性质的原理及证明及应用。
(三)导数与微分
考试内容
导数概念,导函数,导数的四则运算,反函数的导数,复合函数的导数,求导法则与公式,微分概念,微分的运算法则,高阶导数与高阶微分,参数方程的一阶及二阶导数。
考试要求
理解和掌握:导数概念,导数的四则运算,反函数的导数,复合函数的导数,求导法则与公式,微分概念,微分的运算法则,高阶导数与高阶微分,参数方程的一阶及二阶导数。
(四)微积分基本定理,不定式极限,导数研究函数
考试内容
中值定理,洛必达法则,不定式极限,泰勒公式,皮亚诺余项泰勒公式,函数的单调性与极值,函数的凸性,拐点,函数的图象讨论渐进线,作图。
考试要求
理解和掌握:费马定理,中值定理的原理及应用。
熟练计算不定式极限,熟练掌握泰勒公式,皮亚诺余项泰勒公式原理及应用,函数的单调性与极值,函数的凸性,拐点。
(五)积分
考试内容
原函数,不定积分及其运算法则,换元积分及分部积分法,有理函数的积分,三角函数的积分,定积分的定义,可积必要及充分条件,可积函数类,定积分的性质原理,微积分基本定理,换元积分法,分部积分法,非正常积分的定义和性质,平面图形的面积,由截面面积求立体体积,弧长的定义与弧长计算公式,旋转曲面的面积,定积分在物理上的应用:压力、功和重心。
考试要求
理解和掌握:不定积分的运算法则,换元积分,分部积分法,有理函数的积分,三角函数的积分,定积分的定义,可积必要及充分条件,可积函数类,熟练掌握定积分的性质原理,微积分基本定理,换元积分法,分部积分法,掌握非正常积分的定义,性质。
(六)级数
考试内容
级数的收敛性及发散,正项级数,一般判别原则,比较及根式判别方法,积分判别方法,一般项级数(如交错级数),绝对收敛,阿贝尔判别法,一致收敛性,函数列与一致收敛性,函数项级数函数项级数,函数项级数的一致收敛性判别法,一致收敛性函数列及函数项级数分析性质原理,幂级数及其收敛区间,幂级数的性质与运算,函数的幂级数展开。
考试要求
理解和掌握:级数一般判别原则,比较及根式判别方法,积分判别方法原理及使用,绝对收敛,阿尔判别法和狄里克里判别法,函数列的一致收敛性,函数项级数的一致收敛性判别法原理及应用,一致收敛性函数列及函数项级数分析性质原理及应用。
(七)傅里叶级数
考试内容
三角函数系,正交函数系,傅里叶级数及其收敛定理,傅里叶级数展开,偶函数与奇函数的傅里叶级数。
考试要求
理解和掌握:傅里叶级数展开,偶函数与奇函数的傅里叶级数展开。
(八)多元函数的极限与连续
考试内容
平面点集,完备性定理,函数概念,二元函数的极限,累次极限,连续性概念,闭域连续性的性质。
考试要求
理解和掌握:平面点集,多元函数概念,完备性定理,二元函数的极限和累次极限的计算,连续性概念,闭域上连续函数的性质。
(九)多元函数的微分学
考试内容
可微性,全微分,偏导数,可微性条件,复合函数的求导法则,复合函数的全微分,方向导数与梯度,泰勒公式与极值,中值定理和泰勒公式,极值问题,隐函数定理,隐函数组定理,隐函数求导,曲线切线,曲面的法平面。
考试要求
理解和掌握:可微性,全微分,偏导数,可微性条件概念,复合函数的求导法则,复合函数的全微分,理解方向导数与梯度概念,高阶偏导数,极值的充分及必要条件原理及应用,熟练掌握隐函数,隐函数组的求导原理及应用。
(十)重积分、参变量非正常积分、曲线积分与曲面积分
考试内容
二重与三重积分概念,重积分可积条件,累次积分,换元积分,参量积分求导,曲面面积,重心,转动惯量,引力,含参变量非正常积分判别方法,分析性质,欧拉积分概念及性质,第一型曲线积分与第一型曲面积分概念,计算公式,第二型曲线积分概念,计算公式,格林公式,曲线积分与路径无关,第二型曲面的侧的概念,计算公式,高斯公式及原理,斯托克斯公式及原理。
考试要求
理解和掌握:二重与三重积分概念与计算,曲面面积,重心,转动惯量,引力,第一型曲线积分与第一型曲面积分概念及其计算公式,第二型曲线积分与第二型曲面积分概念及其计算公式,含参量非正常积分概念,欧拉积分概念及性质,格林公式,路径无关定理,高斯公式及原理,斯托克斯公式及原理。
《数学分析》(604)考研题型
填空题、解答题、证明题和综合题
《数学分析》(604)参考书
1、数学分析(上、下册)第四版华东师范大学数学教研室编高等教育出版社
2、数学分析(上、下册)第五版东北师大高等教育出版社
3、数学分析习题解(相关教材配套课后习题解答,版本不限)
4、数学分析习题集吉米多维奇山东科学技术出版社。