2020-2021高三数学下期中第一次模拟试卷(附答案)(14)

合集下载

2020-2021高三数学下期中第一次模拟试卷含答案高考模拟题

2020-2021高三数学下期中第一次模拟试卷含答案高考模拟题

A. 63
B. 61
C. 62
D. 57
3. 正项等比数列
中,
的等比中项为
,令
,则
()
A. 6
B. 16
C. 32
D. 64
4. 在 R 上定义运算 : A B A 1 B ,若不等式 x a
x a 1 对任意的
实数 x R 恒成立,则实数 a 的取值范围是 ( )
A. 1 a 1
B. 0 a 2
1
10.D
解析: D 【解析】
【详解】
试题分析:∵ a3 a5 2 a10 4 ,∴ 2 a4 2a10 4 ,∴ a4 a10 2 ,
∴ S13 13(a1 a13 ) 13(a4 a10 ) 13 ,故选 D.
2
2
考点:等差数列的通项公式、前 n 项和公式 .
11.A
解析: A 【解析】
【分析】 【详解】
x a x a 1 x2 x a2 a
Qxa
x a 1对于任意的实数 x R 恒成立 ,
x2 x a2 a 1 , 即 x2 x a 2 a 1 0 恒成立 ,
12 4 1 a2 a 1 0 ,
1a3
2
2
故选: C
【点睛】
本题考查新定义运算 ,考查一元二次不等式中的恒成立问题 , 当 x R 时 ,利用判别式是解题
3
C.
a
2
2
3
1
D.
a
2
2
5. 我国的《洛书》中记载着世界上最古老的一个幻方:将
1, 2, ... , 9 填入 3 3 的方格
内,使三行、三列、两对角线的三个数之和都等于
15 ( 如图) . 一般地,将连续的正整数

2020-2021高三数学下期中第一次模拟试卷(含答案)(12)

2020-2021高三数学下期中第一次模拟试卷(含答案)(12)

2020-2021高三数学下期中第一次模拟试卷(含答案)(12)一、选择题1.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a ab -的值是 ( ) A .12B .12-C .12或12- D .142.已知数列{}n a 的前n 项和为n S ,点(,3)n n S +*()n N ∈在函数32x y =⨯的图象上,等比数列{}n b 满足1n n n b b a ++=*()n N ∈,其前n 项和为n T ,则下列结论正确的是( )A .2n n S T =B .21n n T b =+C .n n T a >D .1n n T b +<3.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞4.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且()cos 4cos a B c b A =-,则cos2A =( ) A .78B .18C .78-D .18-5.已知01x <<,01y <<,则)AB .CD .6.变量,x y 满足条件1011x y y x -+≤⎧⎪≤⎨⎪>-⎩,则22(2)x y -+的最小值为() A .2B C .5 D .927.在数列{}n a 中,12a =,11ln(1)n n a a n +=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++8.已知数列{a n } 满足a 1=1,且111()(233n n n a a n -=+≥,且n ∈N*),则数列{a n }的通项公式为( )A .32nn a n =+B .23n nn a +=C .a n =n+2D .a n =( n+2)·3n9.在等差数列{}n a 中,如果123440,60a a a a +=+=,那么78a a +=( )A .95B .100C .135D .8010.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( )A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦11.,x y 满足约束条件362000x y x y x y -≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则23a b+的最小值为 ( ) A .256B .25C .253D .512.已知数列{}n a 中,3=2a ,7=1a .若数列1{}na 为等差数列,则9=a ( ) A .12B .54C .45D .45-二、填空题13.等比数列{}n a 的首项为1a ,公比为q ,1lim 2n n S →∞=,则首项1a 的取值范围是____________.14.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .2C A π-=,1sin 3A =,3a =,则b =______.15.在平面直角坐标系中,设点()0,0O ,()3,3A ,点(),P x y 的坐标满足303200x y x y y ⎧-≤⎪-+≥⎨⎪≥⎪⎩,则OA u u u v 在OP uuu v 上的投影的取值范围是__________ 16.已知二次函数f (x )=ax 2+2x+c (x ∈R )的值域为[0,+∞),则11a c c a+++的最小值为_____.17.已知等差数列{}n a 的前n 项和为n S ,且136S =,则91032a a -=__________. 18.已知数列{}n a 满足11a =,111n na a +=-+,*n N ∈,则2019a =__________. 19.设是定义在上恒不为零的函数,对任意,都有,若,,,则数列的前项和的取值范围是__________.20.若已知数列的前四项是2112+、2124+、2136+、2148+,则数列前n 项和为______. 三、解答题21.若0,0a b >>,且11ab a b+= (1)求33+a b 的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由. 22.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且222sin sin sin 3sin sin A C B A C +-=.(1)求角B ;(2)点D 在线段BC 上,满足DA DC =,且11a =,5cos()5A C -=,求线段DC 的长.23.设数列{}n a 的前n 项和n S 满足:2(1)n n S na n n =--,等比数列{}n b 的前n 项和为n T ,公比为1a ,且5352T T b =+.(1)求数列{}n a 的通项公式; (2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n M ,求证:1154nM ≤<. 24.已知等差数列{}n a 满足1359a a a ++=,24612a a a ++=,等比数列{}n b 公比1q >,且2420b b a +=,38b a =.(1)求数列{}n a 、{}n b 的通项公式;(2)若数列{}n c ,满足4nn n c b =-,且数列{}n c 的前n 项和为n B ,求证:数列n n b B ⎧⎫⎨⎬⎩⎭的前n 项和32n T <. 25.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c ,已知cos2A ﹣3cos (B+C )=1. (1)求角A 的大小; (2)若△ABC 的面积S=5,b=5,求sinBsinC 的值.26.已知数列{}n a 的前n 项和()2*,,n S pn qn p q n =+∈∈R N ,且143,24.a S ==(1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d , 则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q , 则4=q 4,解得q 2=2, ∴b 2=q 2=2.则21221122a ab --==. 本题选择A 选项.2.D解析:D 【解析】 【分析】 【详解】由题意可得:332,323n nn n S S +=⨯=⨯- ,由等比数列前n 项和的特点可得数列{}n a 是首项为3,公比为2的等比数列,数列的通项公式:132n n a -=⨯ ,设11n nb b q -= ,则:111132n n n b q b q --+=⨯ ,解得:11,2b q == ,数列{}n b 的通项公式12n nb -= ,由等比数列求和公式有:21nn T =- ,考查所给的选项:13,21,,n n n n n n n n S T T b T a T b +==-<< .本题选择D 选项.3.A解析:A 【解析】分析:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b +++=,可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭,化简整理即可得出. 详解:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b+++=, 可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭, 化为()()2540a b a b +-++≤, 解得14a b ≤+≤, 则+a b 的取值范围是[]1,4. 故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.4.C解析:C 【解析】 【分析】根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sin A ,进而利用二倍角余弦公式得到结果. 【详解】∵()cos 4cos a B c b A =-. ∴sin A cos B =4sin C cos A ﹣sin B cos A 即sin A cos B +sin B cos A =4cos A sin C ∴sin C =4cos A sin C ∵0<C <π,sin C ≠0. ∴1=4cos A ,即cos A 14=, 那么27cos2218A cos A =-=-. 故选C 【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.5.B解析:B 【解析】 【分析】2+≥x y,边分别相加求解。

2020-2021高三数学下期中一模试题及答案(3)

2020-2021高三数学下期中一模试题及答案(3)

2020-2021高三数学下期中一模试题及答案(3)一、选择题1.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,若,1,3A b π==ABC ∆则a 的值为( )A .2BC .2D .12.若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅< ,则使0n S >成立的最大自然数n 是( ) A .198B .199C .200D .2013.ABC ∆中有:①若A B >,则sin sin A>B ;②若22sin A sin B =,则ABC ∆—定为等腰三角形;③若cos acosB b A c -=,则ABC ∆—定为直角三角形.以上结论中正确的个数有( ) A .0B .1C .2D .34.在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,若2b c =,a =7cos 8A =,则ABC ∆的面积为( )A B .3C D .25.若直线()10,0x ya b a b+=>>过点(1,1),则4a b +的最小值为( ) A .6B .8C .9D .106.已知集合2A {t |t 40}=-≤,对于满足集合A 的所有实数t ,使不等式2x tx t 2x 1+->-恒成立的x 的取值范围为( )A .()(),13,∞∞-⋃+B .()(),13,∞∞--⋃+C .(),1∞--D .()3,∞+7.在等差数列{a n }中,1233,a a a ++=282930165a a a ++=,则此数列前30项和等于( ) A .810B .840C .870D .9008.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2B .4C .16D .8 9.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .1310.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744n n +B .2533n n+C .2324n n+D .2n n +11.在ABC ∆中,角,,A B C 的对边分别是,,a b c , 2cos 22A b cc+=,则ABC ∆的形状为 A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形12.若01a <<,1b c >>,则( ) A .()1abc<B .c a cb a b->- C .11a a c b --<D .log log c b a a <二、填空题13.要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则a 的取值范围是__________.14.数列{}21n-的前n 项1,3,7..21n-组成集合{}()*1,3,7,21nn A n N=-∈,从集合nA中任取()1,2,3?··n k k =个数,其所有可能的k 个数的乘积的和为(若只取一个数,规定乘积为此数本身),记12n n S T T T =++⋅⋅⋅+,例如当1n =时,{}1111,1,1===A T S ;当2n =时,{}21221,2,13,13,13137A T T S ==+=⨯=++⨯=,试写出n S =___15.已知数列{}n a 中,45n a n =-+,等比数列{}n b 的公比q 满足1(2)n n q a a n -=-≥,且12b a =,则12n b b b +++=L __________. 16.已知0a >,0b >,且31a b +=,则43a b+的最小值是_______. 17.若直线2y x =上存在点(,)x y 满足约束条件30230x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩,则实数m 的取值范围为_______. 18.在中,若,则__________.19.在平面内,已知直线12l l P ,点A 是12,l l 之间的定点,点A 到12,l l 的距离分别为和,点是2l 上的一个动点,若AC AB ⊥,且AC 与1l 交于点C ,则ABC ∆面积的最小值为____.20.我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:__________日相逢?三、解答题21.若0,0a b >>,且11ab a b+=(1)求33+a b 的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由. 22.如图,在ABC ∆中,45B ︒∠=,10AC =,25cos 5C ∠=点D 是AB 的中点, 求(1)边AB 的长;(2)cos A 的值和中线CD 的长23.在ABC ∆中,,A B C 的对边分别,,a b c ,若()2sin(2)()26f x x f C π=+=-,,7c =sin B =2sin A ,(1)求C (2)求a 的值. 24.在ABC V 中,3B π∠=,7b =,________________,求BC 边上的高.从①21sin 7A =, ②sin 3sin A C =, ③2a c -=这三个条件中任选一个,补充在上面问题中并作答.25.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =.(Ⅰ)求b 和sin A 的值; (Ⅱ)求πsin(2)4A +的值. 26.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,如果A 、B 、C 成等差数列且3b =(1)当4A π=时,求ABC ∆的面积S ;(2)若ABC ∆的面积为S ,求S 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】试题分析:由已知条件及三角形面积计算公式得131sin ,2,23c c π⨯⨯=∴=由余弦定理得考点:考查三角形面积计算公式及余弦定理.2.A解析:A 【解析】 【分析】先根据10a >,991000a a +>,991000a a ⋅<判断出991000,0a a ><;然后再根据等差数列前n 项和公式和等差中项的性质,即可求出结果. 【详解】∵991000a a ⋅<, ∴99a 和100a 异号; ∵1991000,0a a a >+>,991000,0a a ∴><, 有等差数列的性质可知,等差数列{}n a 的公差0d <, 当99,*n n N ≤∈时,0n a >;当100,*n n N ≥∈时,0n a <; 又()()119899100198198198022a a a a S +⨯+⨯==> ,()119919910019919902a a S a+⨯==<,由等差数列的前n 项和的性质可知,使前n 项和0n S >成立的最大自然数n 是198. 故选:A . 【点睛】本题主要考查了等差数列的性质.考查了学生的推理能力和运算能力.3.C解析:C 【解析】 【分析】①根据正弦定理可得到结果;②根据A B =或,2A B π+=可得到结论不正确;③可由余弦定理推得222a b c =+,三角形为直角三角形. 【详解】①根据大角对大边得到a>b,再由正弦定理sin sin a b A B=知sinA sinB >,①正确;②22sin A sin B =,则A B =或,2A B π+=ABC ∆是直角三角形或等腰三角形;所以②错误;③由已知及余弦定理可得22222222a c b b c a a b c ac bc+-+--=,化简得222a b c =+,所以③正确. 故选C. 【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据,解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.4.D解析:D 【解析】 【分析】三角形的面积公式为1sin 2ABC S bc A ∆=,故需要求出边b 与c ,由余弦定理可以解得b 与c . 【详解】解:在ABC ∆中,2227cos 28b c a A bc +-==将2b c =,a =22246748c c c +-=,解得:2c =由7cos 8A =得sin 8A ==所以,11sin 242282ABC S bc A ∆==⨯⨯⨯=故选D. 【点睛】三角形的面积公式常见形式有两种:一是12(底⨯高),二是1sin 2bc A .借助12(底⨯高)时,需要将斜三角形的高与相应的底求出来;借助1sin 2bc A 时,需要求出三角形两边及其夹角的正弦值.5.C解析:C 【解析】【详解】 因为直线()10,0x y a b a b+=>>过点()1,1,所以11+1a b = ,因此114(4)(+)5+59b a a b a b a b +=+≥+= ,当且仅当23b a ==时取等号,所以选C.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.6.B解析:B 【解析】 【分析】由条件求出t 的范围,不等式221x tx t x +->-变形为2210x tx t x +--+>恒成立,即不等式()()110x t x +-->恒成立,再由不等式的左边两个因式同为正或同为负处理. 【详解】由240t -≤得,22t -≤≤,113t ∴-≤-≤不等式221x tx t x +->-恒成立,即不等式2210x tx t x +--+>恒成立,即不等式()()110x t x +-->恒成立,∴只需{1010x t x +->->或{1010x t x +-<-<恒成立, ∴只需{11x tx >->或{11x tx <-<恒成立,113t -≤-≤Q只需3x >或1x <-即可. 故选:B . 【点睛】本题考查了一元二次不等式的解法问题,难度较大,充分利用恒成立的思想解题是关键.7.B解析:B 【解析】数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为10(3165)8402+= ,选B. 8.D解析:D 【解析】 【分析】利用等比数列性质求出a 7,然后利用等差数列的性质求解即可. 【详解】等比数列{a n }中,a 3a 11=4a 7, 可得a 72=4a 7,解得a 7=4,且b 7=a 7, ∴b 7=4,数列{b n }是等差数列,则b 5+b 9=2b 7=8. 故选D . 【点睛】本题考查等差数列以及等比数列的通项公式以及简单性质的应用,考查计算能力.9.D解析:D 【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=,∴1134101313()13()1322a a a a S ++===,故选D. 考点:等差数列的通项公式、前n 项和公式.10.A解析:A 【解析】 【分析】 【详解】 设公差为d 则解得,故选A.11.A解析:A 【解析】 【分析】先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择. 【详解】 因为2cos22A b c c+=,所以1cosA 22b cc++=,()ccosA b,sinCcosA sinB sin A C ,sinAcosC 0===+=,因此cosC 0C 2π==,,选A.【点睛】本题考查二倍角公式以及正弦定理,考查基本分析转化能力,属基础题.12.D解析:D 【解析】 【分析】运用不等式对四个选项逐一分析 【详解】对于A ,1b c >>Q ,1b c ∴>,01a <<Q ,则1ab c ⎛⎫> ⎪⎝⎭,故错误 对于B ,若c a cb a b->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误对于C ,01a <<Q ,10a ∴-<,1b c >>Q ,则11a a c b -->,故错误 对于D ,1b c >>Q ,c b log a log a ∴<,故正确 故选D 【点睛】本题考查了不等式的性质,由未知数的范围确定结果,属于基础题.二、填空题13.【解析】【分析】设要使得关于的方程的一根笔译1大且另一根比1小转化为即可求解【详解】由题意设要使得关于的方程的一根笔译1大且另一根比1小根据二次函数的图象与性质则满足即即解得即实数的取值范围是【点睛 解析:21a -<<【解析】 【分析】设()22(1)2f x x a x a =+-+-,要使得关于x 的方程22(1)20x a x a +-+-=的一根笔译1大且另一根比1小,转化为()10f <,即可求解. 【详解】由题意,设()22(1)2f x x a x a =+-+-,要使得关于x 的方程22(1)20x a x a +-+-=的一根笔译1大且另一根比1小,根据二次函数的图象与性质,则满足()10f <,即220a a +-<, 即(1)(2)0a a -+<,解得21a -<<,即实数a 的取值范围是21a -<<. 【点睛】本题主要考查了一元二次函数的图象与性质的应用问题,其中解答中把关于x 的方程22(1)20x a x a +-+-=的一根笔译1大且另一根比1小,转化为(1)0f <是解得的关键,着重考查了转化思想,以及推理运算能力.14.【解析】【分析】通过计算出并找出的共同表示形式进而利用归纳推理即可猜想结论【详解】当时则由猜想:故答案为:【点睛】本题考查元素与集合关系的判断以及数列前项和的归纳猜想属于中档题 解析:1()221n n +-【解析】 【分析】通过计算出3S ,并找出1S 、2S 、3S 的共同表示形式,进而利用归纳推理即可猜想结论. 【详解】当3n =时,{}31,3,7A =,则113711T =++=,213173731T =⨯+⨯+⨯=,313721T =⨯⨯=,∴312311312163S T T T =++=++=,由1212112121S ⨯==-=-,2332272121S ⨯==-=-, 34623632121S ⨯==-=-,⋯猜想:(1)221n n n S +=-.故答案为:1()221n n +-.【点睛】本题考查元素与集合关系的判断以及数列前n 项和的归纳猜想,属于中档题.15.【解析】【分析】【详解】所以所以故答案为 解析:41n -【解析】 【分析】 【详解】()()145[415]4n n q a a n n -=-=-+---+=-,124253b a ==-⨯+=-,所以()11134n n n b b q --=⋅=-⋅-,()113434n n n b --=-⋅-=⋅,所以211214334343434114n n n n b b b --++⋯+=+⋅+⋅+⋯+⋅=⋅=--,故答案为41n -.16.【解析】【分析】利用1的代换将求式子的最小值等价于求的最小值再利用基本不等式即可求得最小值【详解】因为等号成立当且仅当故答案为:【点睛】本题考查1的代换和基本不等式求最值考查转化与化归思想的运用求解 解析:25【解析】 【分析】利用1的代换,将求式子43a b +的最小值等价于求43()(3)a b a b++的最小值,再利用基本不等式,即可求得最小值. 【详解】因为4343123()(3)491325b a a b a b a b a b +=++=+++≥+, 等号成立当且仅当21,55a b ==. 故答案为:25. 【点睛】本题考查1的代换和基本不等式求最值,考查转化与化归思想的运用,求解时注意一正、二定、三等的运用,特别是验证等号成立这一条件.17.【解析】试题分析:由题意由可求得交点坐标为要使直线上存在点满足约束条件如图所示可得则实数m 的取值范围考点:线性规划 解析:(,1]-∞【解析】试题分析:由题意,由2{30y xx y =+-=,可求得交点坐标为(1,2),要使直线2y x =上存在点(,)x y 满足约束条件30,{230,,x y x y x m +-≤--≤≥,如图所示,可得1m ≤,则实数m 的取值范围(,1]-∞.考点:线性规划.18.2π3【解析】∵由正弦定理可得sinA:sinB:sinC=7:8:13∴a :b :c=7:8:13令a=7kb=8kc=13k (k>0)利用余弦定理有cosC=a2+b2-c22ab=49k2+64 解析:【解析】 ∵由正弦定理可得,∴,令,,(),利用余弦定理有,∵,∴,故答案为.19.6【解析】【分析】【详解】如图所示设由题意知与相似所以所以所以当且仅当即时等号成立所以面积的最小值为6解析:6 【解析】 【分析】 【详解】 如图所示,设BF x =,由题意知3,2AE AF ==ABF ∆与CAE ∆相似,所以AB BF CA AE =,所以3AC AB x=,所以211322ABC S AB AC AB x∆==⨯ 21363(4)622x x x x =⨯⨯+=+≥,当且仅当632xx =,即2x =时,等号成立,所以CAE ∆面积的最小值为6.20.9【解析】解:由题意可知:良马与驽马第天跑的路程都是等差数列设路程为由题意有:故:满足题意时数列的前n 项和为由等差数列前n 项和公式可得:解得:即二马相逢需9日相逢点睛:本题考查数列的实际应用题(1)解析:9 【解析】解:由题意可知:良马与驽马第n 天跑的路程都是等差数列,设路程为{}{},n n a b , 由题意有:()()1111031131390,97197222n n a n n b n n ⎛⎫=+-⨯=+=+-⨯-=-+ ⎪⎝⎭, 故:111871222n n n c a b n =+=+ , 满足题意时,数列{}n c 的前n 项和为112522250n S =⨯= ,由等差数列前n 项和公式可得:11111871218712222222502n n ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⨯= , 解得:9n = .即二马相逢,需9日相逢点睛:本题考查数列的实际应用题. (1)解决数列应用题的基本步骤是:①根据实际问题的要求,识别是等差数列还是等比数列,用数列表示问题的已知; ②根据等差数列和等比数列的知识以及实际问题的要求建立数学模型; ③求出数学模型,根据求解结果对实际问题作出结论. (2)数列应用题常见模型:①等差模型:如果增加(或减少)的量是一个固定量,该模型是等差数列模型,增加(或减少)的量就是公差;②等比模型:如果后一个量与前一个量的比是一个固定的数,该模型是等比数列模型,这个固定的数就是公比;③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n 与a n -1的递推关系,或前n 项和S n 与S n -1之间的递推关系.三、解答题21.(1);(2)不存在.【分析】 (1)由已知11a b+=,利用基本不等式的和积转化可求2ab ≥,利用基本不等式可将33+a b 转化为ab ,由不等式的传递性,可求33+a b 的最小值;(2)由基本不等式可求23a b +的最小值为6>,故不存在. 【详解】 (111a b =+≥,得2ab ≥,且当a b ==故33+ab ≥≥a b ==所以33+a b的最小值为(2)由(1)知,23a b +≥≥由于6>,从而不存在,a b ,使得236a b +=成立. 【考点定位】 基本不等式. 22.(1)2 (2【解析】 【分析】 【详解】((1)由cos 0ACB ∠=>可知,ACB ∠是锐角,所以,sin 5ACB ∠=== 由正弦定理sin sin AC AB B ACB=∠,sin 2sin 5AC AB ACB B =∠== (2)cos cos(18045)cos(135)A C C ︒︒︒=--=-cos sin )C C =-+= 由余弦定理:CD === 考点:1正弦定理;2余弦定理. 23.(1)23C π=;(2)1a =. 【解析】(1)由()2f C =,结合特殊角的三角函数值,求得C .(2)利用正弦定理得到2b a =,利用余弦定理列方程,解方程求得a 的值. 【详解】(1)由()2f C =-,得sin(2)16C π+=-,且(0,)C π∈,所以3262c ππ+=,23C π=- (2)因为sin 2sin B A =,由正弦定理得2b a =又由余弦定理2222cos c a b ab C =+-得:2227422cos,3a a a a π=+-⨯ 解得1a = 【点睛】本小题主要考查特殊角的三角函数值,考查利用正弦定理、余弦定理解三角形,属于基础题.24.选择①,2h =;选择②,2h =;选择③,2h = 【解析】 【分析】 (1)选择①sin 7A =,可由sin sin a b A B =解得2a =,再由2222cos b a c ac B =+-解得3c =,最后由sin h c B =可得解;(2)选择②sin 3sin A C =,由sin sin()3sin A B C C =+=得5sin C C =,结合22sin cos 1C C +=得sin 14C =,最后由sin h b C =可得解. (3)选择③2a c -=,由2222cos b a c ac B =+-可得:227a c ac +-=,结合2a c -=解得1c =,最后由sin h c B =可得解. 【详解】(1)选择①sin A =,解答如下: 在ABC V ,由正弦定理得:sin sin a b A B=,7=2a =, 由余弦定理得2222cos b a c ac B =+-,2212222c c =+-⨯⨯,解得1c =-(舍去)或3c =,则BC边上的高sin h c B =(2)选择②sin 3sin A C =,解答如下:在ABC V 中,[]sin sin ()sin()A B C B C π=-+=+, 由sin 3sin A C =可得:sin()3sin 3C C π+=,整理得5sin C C =┄①, 又22sin cos 1C C +=┄②,由①②得sin 14C =,则BC 边上的高sin h b C ===. (3)选择③2a c -=,解答如下:在ABC V 中,由余弦定理得:2222cos b a c ac B =+-,3B π∠=Q ,b =227a c ac ∴+-=┄①,又2a c -=┄②, 由①②解得1c =,则BC 边上的高sin h c B =. 【点睛】本题考查了正余弦定理解三角形,考查了计算能力,属于中档题.25.(Ⅰ)b =sin A =13.(Ⅱ)26. 【解析】试题分析:利用正弦定理“角转边”得出边的关系2a b =,再根据余弦定理求出cos A , 进而得到sin A ,由2a b =转化为sin 2sin A B =,求出sin B ,进而求出cos B ,从而求出2B 的三角函数值,利用两角差的正弦公式求出结果. 试题解析:(Ⅰ) 解:在ABC V 中,因为a b >,故由3sin 5B =,可得4cos 5B =.由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b =.由正弦定理sin sin a b A B =,得sin sin a B A b ==所以,b sin A .(Ⅱ)解:由(Ⅰ)及a c <,得cos 13A =,所以12sin22sin cos 13A A A ==,25cos212sin 13A A =-=-.故πππsin 2sin2cos cos2sin 444A A A ⎛⎫+=+= ⎪⎝⎭. 考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.26.(12)4. 【解析】 【分析】(1)由A 、B 、C 成等差数列可求得60B =︒,再由正弦定理和余弦定理分别求出a 和c 的值,最后利用三角形面积公式计算即可;(2)由余弦定理可得2222cos b a c ac B =+-,即:2232a c ac ac ac ac =+-≥-=,可求得3ac ≤,进而求得S 的最大值. 【详解】(1)因为A 、B 、C 成等差数列,则:2A+C =B ,又A B C π++=,所以60B =︒,因为:sin sin b aa B A=⇒=2222212cos 32102b a c ac B c c c ∴=+-⇒=+-⨯⇒-=⇒,(负值舍);ABC ∆∴的面积11sin 22S ac B ==; (2)2222cos b a c ac B =+-Q ;即:2232a c ac ac ac ac =+-≥-=,当且仅当a c =时等号成立;1sin 2ABC S ac B ∆∴=≤;即S 的最大值为:4. 【点睛】本题考查正余弦定理的应用,考查三角形面积公式的应用,考查不等式的应用,考查逻辑思维能力和运算能力,属于常考题.。

2020-2021高三数学下期中第一次模拟试题含答案(4)

2020-2021高三数学下期中第一次模拟试题含答案(4)

2020-2021高三数学下期中第一次模拟试题含答案(4)一、选择题1.设,x y 满足约束条件330280440x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则3z x y =+的最大值是( )A .9B .8C .3D .42.已知x ,y 满足2303301x y x y y +-≤⎧⎪+-≥⎨⎪≤⎩,z =2x +y 的最大值为m ,若正数a ,b 满足a +b =m ,则14a b+的最小值为( ) A .3B .32C .2D .523.已知实数x 、y 满足约束条件00134x y x ya a ⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .14.设数列{}n a 是以2为首项,1为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,则1210b b b a a a ++⋯+=( ) A .1033B .1034C .2057D .20585.数列{}{},n n a b 为等差数列,前n 项和分别为,n n S T ,若3n 22n n S T n +=,则77a b =( ) A .4126B .2314C .117 D .1166.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .5057.已知关于x 的不等式()224300x ax a a -+<<的解集为()12,x x ,则1212a x x x x ++的最大值是( ) A .6 B .23C .43D .43-8.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .20479.已知0,0x y >>,且91x y +=,则11x y+的最小值是 A .10B .12?C .14D .1610.关于x 的不等式()210x a x a -++<的解集中,恰有3个整数,则a 的取值范围是( )A .[)(]3,24,5--⋃B .()()3,24,5--⋃C .(]4,5D .(4,5) 11.设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项( )A .B .9C .18D .3612.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --<D .log log c b a a <二、填空题13.已知,x y 满足约束条件420y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值为__________.14.已知等差数列{}n a 的公差为()d d 0≠,前n 项和为n S ,且数列{}n S n +也为公差为d 的等差数列,则d =______.15.若直线1(00)x ya b a b+=>,>过点(1,2),则2a+b 的最小值为______. 16.已知△ABC 中,角A 、B 、C 对应的边分别为a 、b 、c ,且bcosC ﹣ccosB 14=a 2,tanB =3tanC ,则a =_____.17.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=.其中*m N ∈且2m ≥,则m =______.18.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .19.已知数列{}n a 的前n 项和为n S ,且221n S n n n N *=++∈,,求n a =.__________.20.在△ABC 中,2a =,4c =,且3sin 2sin A B =,则cos C =____.三、解答题21.已知000a b c >,>,>,函数().f x a x x b c =-+++ (1)当1a b c ===时,求不等式()3f x >的解集; (2)当()f x 的最小值为3时,求111a b c++的最小值. 22.等差数列{a n }的前n 项和为S n ,且3a =9,S 6=60. (I )求数列{a n }的通项公式;(II )若数列{b n }满足b n+1﹣b n =n a (n∈N +)且b 1=3,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和T n .23.设数列{}n a 的前n 项和为n S .已知233=+nn S .(Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .24.在ABC V 中,3B π∠=,b =,________________,求BC 边上的高.从①sin 7A =, ②sin 3sin A C =, ③2a c -=这三个条件中任选一个,补充在上面问题中并作答.25.设ABC ∆的内角A B C ,,所对的边分别为a b c ,,,已知cos (2)cos a B c b A =-.(Ⅰ)求角A 的大小;(Ⅱ)若4a =,BC 边上的中线AM =ABC ∆的面积. 26.已知等比数列{}n a 的各项均为正数,234848a a a =+=,.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设4log .n n b a =证明:{}n b 为等差数列,并求{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标还是在点()3,2C 处取得最大值,其最大值为max 33329z x y =+=+⨯=.本题选择A 选项.2.B解析:B 【解析】 【分析】作出可行域,求出m ,然后用“1”的代换配凑出基本不等式的定值,从而用基本不等式求得最小值. 【详解】作出可行域,如图ABC ∆内部(含边界),作直线:20l x y +=,平移该直线,当直线l 过点(3,0)A 时,2x y +取得最大值6,所以6m =.1411414143()()(5)(5)6662b a b a a b a b a b a b a b +=++=++≥+⨯=,当且仅当4b a a b =,即12,33a b ==时等号成立,即14a b +的最小值为32. 故选:B. 【点睛】本题考查简单的线性规划,考查用基本不等式求最值,解题关键是用“1”的代换凑配出基本不等式的定值,从而用基本不等式求得最小值.3.D解析:D 【解析】 【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可. 【详解】 目标函数()12123112111x y x y y z x x x ++++++===+⨯+++, 设11y k x +=+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是32, 由3122k +=,得14k =,即k 的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.4.A解析:A 【解析】 【分析】 【详解】首先根据数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,求出等差数列和等比数列的通项公式,然后根据a b1+a b2+…+a b10=1+2+23+25+…+29+10进行求和. 解:∵数列{a n }是以2为首项,1为公差的等差数列, ∴a n =2+(n-1)×1=n+1, ∵{b n }是以1为首项,2为公比的等比数列, ∴b n =1×2n-1, 依题意有:a b1+a b2+…+a b10=1+2+22+23+25+…+29+10=1033, 故选A .5.A解析:A 【解析】依题意,113713113713132412226132a a a S b b b T +⋅===+⋅.6.D【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=Q 阶幻方共有n 行,∴每行的和为()()2221122n n n n n++=,即()()2210110101,50522n n n N N+⨯+=∴==,故选D.7.D解析:D 【解析】:不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),根据韦达定理,可得:2123x x a =,x 1+x 2=4a ,那么:1212a x x x x ++=4a +13a. ∵a <0, ∴-(4a +13a ),即4a +13a ≤故1212a x x x x ++的最大值为. 故选D .点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.8.C解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】因为12n n n a a +=+,所以12nn n a a +-=,因此10981010921198122221102312a a a a a a a a -=-+-++-+=++++==-L L ,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.9.D解析:D【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1, ∴()11119999110216y x y xx y x y x y x y x y ⎛⎫+=+⋅+=+++≥+⋅= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D. 【点睛】本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.10.A解析:A 【解析】 【分析】不等式等价转化为(1)()0x x a --<,当1a >时,得1x a <<,当1a <时,得1<<a x ,由此根据解集中恰有3个整数解,能求出a 的取值范围。

2020-2021高三数学下期中第一次模拟试题(及答案)

2020-2021高三数学下期中第一次模拟试题(及答案)

2020-2021高三数学下期中第一次模拟试题(及答案)一、选择题1.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a ab -的值是 ( ) A .12B .12-C .12或12- D .142.下列结论正确的是( ) A .若a b >,则22ac bc > B .若22a b >,则a b > C .若,0a b c ><,则a c b c +<+D<a b <3.已知等比数列{}n a 的公比为正数,且239522,1a a a a ⋅==,则1a = ( )A .12B .2 CD4.设变量,x y 、满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .95.若a 、b 、c >0且a (a +b +c )+bc =4-,则2a +b +c 的最小值为( ) A.1 B.1 C .+2D .26.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项的和S 18=12,则数列{|a n |}的前18项和T 18的值是 ( ) A .24B .48C .60D .847.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1B .32C .2D .38.设等差数列{a n }的前n 项和为S n ,已知(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016·(a 2 013-1)=-1,则下列结论正确的是( ) A .S 2 016=-2 016,a 2 013>a 4 B .S 2 016=2 016,a 2 013>a 4 C .S 2 016=-2 016,a 2 013<a 4 D .S 2 016=2 016,a 2 013<a 49.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2 B .4C .16D .810.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是( )A .()8,10B .()22,10C .()22,10D .()10,811.已知ABC ∆中,A ,B ,C 的对边分别是a ,b ,c ,且3b =,33c =,30B =︒,则AB 边上的中线的长为( )A .37B .34 C .32或372D .34或37212.已知x ,y 满足条件0{20x y xx y k ≥≤++≤(k 为常数),若目标函数z =x +3y 的最大值为8,则k =( ) A .-16B .-6C .-83D .6二、填空题13.在ABC ∆中,角,,A B C 所对的边为,,a b c ,若23sin c ab C =,则当b aa b+取最大值时,cos C =__________; 14.观察下列的数表: 2 4 68 10 12 1416 18 20 22 24 26 28 30 …… ……设2018是该数表第m 行第n 列的数,则m n ⋅=__________. 15.已知n S 是数列{}n a 的前n 项和,122n n S a +=-,若212a =,则5S =__________. 16.已知n S 为数列{}n a 的前n 项和,且13a =,131n n a S +=+,*n ∈N ,则5S =______. 17.在中,若,则__________.18.如图,无人机在离地面高200m 的A 处,观测到山顶M 处的仰角为15°、山脚C 处的俯角为45°,已知∠MCN=60°,则山的高度MN 为_________m.19.已知实数x y ,满足2,2,03,x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩则2z x y =-的最大值是____.20.设不等式组30,{230,1x y x y x +-<--≤≥表示的平面区域为1Ω,平面区域2Ω与1Ω关于直线20x y +=对称,对于任意的12,C D ∈Ω∈Ω,则CD 的最小值为__________.三、解答题21.某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)m 万件与年促销费用x 万元,满足31km x =-+(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润y (万元)表示为年促销费用x (万元)的函数; (2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大? 22.在等差数列{}n a 中,2723a a +=-,3829a a +=-. (1)求数列{}n a 的通项公式.(2)若数列{}n n a b +的首项为1,公比为q 的等比数列,求{}n b 的前n 项和n S . 23.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,角A 、B 、C 的度数成等差数列,13b =.(1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值.24.已知等比数列{}n a 的各项均为正数,234848a a a =+=,.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设4log .n n b a =证明:{}n b 为等差数列,并求{}n b 的前n 项和n S .25.如图,Rt ABC V 中,,1,32B AB BC π===点,M N 分别在边AB 和AC 上,将AMN V 沿MN 翻折,使AMN V 变为A MN '△,且顶点'A 落在边BC 上,设AMN θ∠=(1)用θ表示线段AM 的长度,并写出θ的取值范围; (2)求线段CN 长度的最大值以及此时A MN '△的面积,26.数列{}n a 中,11a = ,当2n ≥时,其前n 项和n S 满足21()2n n n S a S =⋅-.(1)求n S 的表达式; (2)设n b =21nS n +,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d , 则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q , 则4=q 4,解得q 2=2, ∴b 2=q 2=2. 则21221122a ab --==. 本题选择A 选项.2.D解析:D 【解析】选项A 中,当c=0时不符,所以A 错.选项B 中,当2,1a b =-=-时,符合22a b >,不满足a b >,B 错.选项C 中, a c b c +>+,所以C 错.选项D 中,因为0a ≤<b ,由不等式的平方法则,()()22ab <,即a b <.选D.3.D解析:D 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q=,又因为等比数列{}n a 的公比为正数,所以2q =,故21222a a q ===,故选D. 4.D解析:D 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出满足约束条件236y xx y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.D解析:D 【解析】由a (a +b +c )+bc =4-,得(a +c )·(a +b )=4- ∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c =1)=-2. 故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误6.C解析:C 【解析】试题分析:∵11011101100000a a a d a a ⋅∴>,<,<,>,<, ∴18110111810181060T a a a a S S S =+⋯+--⋯-=--=(),选C . 考点:1.等差数列的求和;2.数列的性质.7.B解析:B 【解析】 【分析】先根据约束条件画出可行域,再利用直线20kx y -+=过定点()0,1,再利用k 的几何意义,只需求出直线10kx y -+=过点()2,4B 时,k 值即可. 【详解】直线20kx y -+=过定点()0,1, 作可行域如图所示,,由5218020x y x y +-=⎧⎨-=⎩,得()2,4B .当定点()0,1和B 点连接时,斜率最大,此时413202k -==-, 则k 的最大值为:32故选:B . 【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.8.D解析:D 【解析】∵(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016(a 2 013-1)=-1, ∴(a 4-1)3+2 016(a 4-1)+(a 2 013-1)3+2 016(a 2 013-1)=0, 设a 4-1=m ,a 2 013-1=n , 则m 3+2 016m +n 3+2 016n =0, 化为(m +n )·(m 2+n 2-mn +2 016)=0, ∵2222132?0162016024m n mn m n n ⎛⎫=-++> ⎪⎝⎭+-+,∴m +n =a 4-1+a 2 013-1=0, ∴a 4+a 2 013=2, ∴()()1201642013201620162016201622a a a a S ++===.很明显a 4-1>0,a 2 013-1<0,∴a 4>1>a 2 013, 本题选择D 选项.9.D解析:D 【解析】【分析】利用等比数列性质求出a 7,然后利用等差数列的性质求解即可. 【详解】等比数列{a n }中,a 3a 11=4a 7, 可得a 72=4a 7,解得a 7=4,且b 7=a 7, ∴b 7=4,数列{b n }是等差数列,则b 5+b 9=2b 7=8. 故选D . 【点睛】本题考查等差数列以及等比数列的通项公式以及简单性质的应用,考查计算能力.10.B解析:B 【解析】 【分析】根据大边对大角定理知边长为1所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出a 的取值范围. 【详解】由题意知,边长为1所对的角不是最大角,则边长为3或a 所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到2222221313a a ⎧+>⎨+>⎩,由于0a >,解得a <<C . 【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:A 为锐角cos 0A ⇔>;A 为直角cos 0A ⇔=;A 为钝角cos 0A ⇔<.11.C 解析:C 【解析】 【分析】由已知利用余弦定理可得29180a a -+=,解得a 值,由已知可求中线12BD c =,在BCD V 中,由余弦定理即可计算AB 边上中线的长. 【详解】解:3,30b c B ===o Q ,∴由余弦定理2222cos b a c ac B =+-,可得29272a a =+-⨯⨯,整理可得:29180a a -+=,∴解得6a =或3.Q 如图,CD 为AB 边上的中线,则13322BD c ==,∴在BCD V 中,由余弦定理2222cos CD a BD a BD B =+-⋅⋅,可得:222333336()26222CD =+-⨯⨯⨯,或222333333()23222CD =+-⨯⨯⨯, ∴解得AB 边上的中线32CD =或372. 故选C .【点睛】本题考查余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.12.B解析:B 【解析】 【分析】 【详解】由z =x +3y 得y =-13x +3z,先作出0{x y x ≥≤的图象,如图所示,因为目标函数z =x +3y 的最大值为8,所以x +3y =8与直线y =x 的交点为C ,解得C (2,2),代入直线2x +y +k =0,得k =-6.二、填空题13.【解析】【分析】由余弦定理得结合条件将式子通分化简得再由辅助角公式得出当时取得最大值从而求出结果【详解】在中由余弦定理可得所以其中当取得最大值时∴故答案为:【点睛】本题考查解三角形及三角函数辅助角公 213【解析】【分析】由余弦定理得2222cos c a b ab C =+-,结合条件23sin c ab C =,将式子b aa b+通分化简得3sin 2cos C C +,再由辅助角公式得出b aa b +()13sin C ϕ=+,当2C πϕ+=时,b aa b +取得最大值,从而求出结果. 【详解】在ABC ∆中由余弦定理可得2222cos c a b ab C =+-,所以2222cos 3sin 2cos 3sin 2cos b a a b c ab C ab C ab C C C a b ab ab ab++++====+()13sin C ϕ=+,其中213sin ϕ=,313cos ϕ=, 当b a a b +132C πϕ+=,∴213cos cos sin 2C πϕϕ⎛⎫=-== ⎪⎝⎭.故答案为:21313. 【点睛】本题考查解三角形及三角函数辅助角公式,考查逻辑思维能力和运算能力,属于常考题.14.4980【解析】【分析】表中第行共有个数字此行数字构成以为首项以2为公差的等差数列根据等差数列求和公式及通项公式确定求解【详解】解:表中第行共有个数字此行数字构成以为首项以2为公差的等差数列排完第行解析:4980 【解析】 【分析】表中第n 行共有12n -个数字,此行数字构成以2n 为首项,以2为公差的等差数列.根据等差数列求和公式及通项公式确定求解. 【详解】解:表中第n 行共有12n -个数字,此行数字构成以2n 为首项,以2为公差的等差数列.排完第k 行,共用去1124221k k -+++⋯+=-个数字, 2018是该表的第1009个数字,由19021100921-<<-,所以2018应排在第10行,此时前9行用去了921511-=个数字, 由1009511498-=可知排在第10行的第498个位置, 即104984980m n =⨯=g, 故答案为:4980 【点睛】此题考查了等比数列求和公式,考查学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求学生要有一定的解题技巧.15.【解析】【分析】由题意首先求得然后结合递推关系求解即可【详解】由题意可知:且:整理可得:由于故【点睛】本题主要考查递推关系的应用前n 项和与通项公式的关系等知识意在考查学生的转化能力和计算求解能力 解析:3116【解析】 【分析】由题意首先求得1S ,然后结合递推关系求解5S 即可. 【详解】由题意可知:12221S a =-=,且:()122n n n S S S +=--,整理可得:()11222n n S S +-=-, 由于121S -=-,故()455113121,21616S S ⎛⎫-=-⨯=-∴= ⎪⎝⎭. 【点睛】本题主要考查递推关系的应用,前n 项和与通项公式的关系等知识,意在考查学生的转化能力和计算求解能力.16.853【解析】【分析】由与的关系可得即进而得到是以为首项为公比的等比数列可得令即可得到的值【详解】由题即则是以为首项为公比的等比数列即当时故答案为:853【点睛】本题考查等比数列通项公式考查由与的关解析:853 【解析】 【分析】由n S 与n a 的关系可得,131n n n S S S +-=+,即141n n S S +=+,进而得到13n S ⎧+⎫⎨⎬⎩⎭是以103为首项,4为公比的等比数列,可得1101433n n S -=⋅-,令5n =,即可得到5S 的值 【详解】由题,1131n n n n a S S S ++=-=+,即141n n S S +=+,则()14n n S S λλ++=+143n n S S λ+∴=+,13λ∴=13a =Q ,111110333S a ∴+=+=,∴13n S ⎧+⎫⎨⎬⎩⎭是以103为首项,4为公比的等比数列,∴1110433n n S -+=⋅,即1101433n n S -=⋅- 当5n =时,51510110142568533333S -=⨯-=⨯-= 故答案为:853 【点睛】本题考查等比数列通项公式,考查由n S 与n a 的关系求n S ,根据1n n S k S b +=⋅+,可构造数列{}n S λ+为等比数列,公比为k17.2π3【解析】∵由正弦定理可得sinA:sinB:sinC=7:8:13∴a:b :c=7:8:13令a=7kb=8kc=13k (k>0)利用余弦定理有cosC=a2+b2-c22ab=49k2+64 解析:【解析】 ∵由正弦定理可得,∴,令,,(),利用余弦定理有,∵,∴,故答案为.18.300【解析】试题分析:由条件所以所以这样在中在中解得中故填:300考点:解斜三角形【思路点睛】考察了解三角形的实际问题属于基础题型首先要弄清楚两个概念仰角和俯角都指视线与水平线的夹角将问题所涉及的解析:300 【解析】试题分析:由条件,,所以,,,所以,,这样在中,,在中,,解得,中,,故填:300.考点:解斜三角形【思路点睛】考察了解三角形的实际问题,属于基础题型,首先要弄清楚两个概念,仰角和俯角,都指视线与水平线的夹角,将问题所涉及的边和角在不同的三角形内转化,最后用正弦定理解决高度.19.7【解析】试题分析:根据约束条件画出可行域得到△ABC及其内部其中A (53)B(﹣13)C(20)然后利用直线平移法可得当x=5y=3时z=2x﹣y有最大值并且可以得到这个最大值详解:根据约束条件画解析:7【解析】试题分析:根据约束条件画出可行域,得到△ABC及其内部,其中A(5,3),B(﹣1,3),C(2,0).然后利用直线平移法,可得当x=5,y=3时,z=2x﹣y有最大值,并且可以得到这个最大值.详解:根据约束条件2,2,03,x yx yy+≥⎧⎪-≤⎨⎪≤≤⎩画出可行域如图,得到△ABC及其内部,其中A(5,3),B(﹣1,3),C(2,0)平移直线l:z=2x﹣y,得当l经过点A(5,3)时,∴Z最大为2×5﹣3=7.故答案为7.点睛:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.20.【解析】作出不等式组所表示的可行域如图阴影部分由三角形ABC构成其中作出直线显然点A到直线的距离最近由其几何意义知区域内的点最短距离为点A到直线的距离的2倍由点到直线的距离公式有:所以区域内的点与区25【解析】作出不等式组所表示的可行域1Ω,如图阴影部分,由三角形ABC构成,其中(11),(30),(12)A B C-,,,,作出直线20x y+=,显然点A到直线20x y+=的距离最近,由其几何意义知,区域12,ΩΩ 内的点最短距离为点A 到直线20x y +=的距离的2倍,由点到直线的距离公式有:2221521d -==+ ,所以区域1Ω 内的点与区域2Ω 内的点之间的最近距离为25,即25CD = .点睛:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题. 巧妙识别目标函数的几何意义是解答本题的关键.三、解答题21.(1)1628(0)1y x x x =--+≥+;(2)厂家2020年的促销费用投入3万元时,厂家的利润最大,为21万元. 【解析】 【分析】(1)由不搞促销活动,则该产品的年销售量只能是1万件,可求k 的值,再求出每件产品销售价格的代数式,则利润y (万元)表示为年促销费用x (万元)的函数可求. (2)由(1)得16281y x x =--++,再根据均值不等式可解.注意取等号. 【详解】(1)由题意知,当0x =时,1,m = 所以213,2,31k k m x =-==-+, 每件产品的销售价格为8161.5mm+⨯元. 所以2020年的利润816161.581628(0)1m y m m x x x m x +=⨯---=--+≥+; (2)由(1)知,161628(1)292111y x x x x =--+=--++≤++,当且仅当16(1)1x x =++,即3x =时取等号, 该厂家2020年的促销费用投入3万元时,厂家的利润最大,为21万元. 【点睛】考查均值不等式的应用以及给定值求函数的参数及解析式.题目较易,考查的均值不等式,要注意取等号.22.(1)32n a n =-+;(2)见解析 【解析】试题分析:(1)设等差数列{}n a 的公差为d .利用通项公式即可得出.(Ⅱ)由数列{}n n a b +是首项为1,公比为q 的等比数列,可得n b .再利用等差数列与等比数列的通项公式与求和公式即可得出. 试题解析:(1)设等差数列{}n a 的公差为d ,∵27382329a a a a +=-⎧⎨+=-⎩,∴1127232929a d a d +=-⎧⎨+=-⎩,解得113a d =-⎧⎨=-⎩,∴数列{}n a 的通项公式为32n a n =-+.(2)由数列{}n n a b +是首项为1,公比为q 的等比数列得1n n n a b q -+=,即132n n n b q --++=,∴132n n b n q -=-+,∴()()21147321n n S n q q q-⎡⎤=++++-+++++⎣⎦L L()()213112n n n q q q --=+++++L .∴当1q =时,()231322n n n n nS n -+=+=; 当1q ≠时,()31121nn n n q S q--=+-. 23.(1)4c =;(2) 【解析】 【分析】 【详解】(1) 由角,,A B C 的度数成等差数列,得2B A C =+. 又,3A B C B ππ++=∴=.由正弦定理,得34c a =,即34c a =. 由余弦定理,得2222cos b a c ac B =+-,即22331132442c c c c ⎛⎫=+-⨯⨯⨯ ⎪⎝⎭,解得4c =. (2)由正弦定理,得,.sin sin sin a c b a A c C A C B ====∴==)()sin sin sin sin sin sin 3a c A C A A B A A π⎤⎛⎫⎤∴+=+=++=++ ⎪⎥⎦⎝⎭⎦3sin sin 26A A A π⎫⎛⎫=+=+⎪ ⎪⎪⎝⎭⎭. 由203A π<<,得5666A πππ<+<. 所以当62A ππ+=,即3A π=时,()max a c +=【方法点睛】解三角形问题基本思想方法:从条件出发,利用正弦定理(或余弦定理)进行代换、转化.逐步化为纯粹的边与边或角与角的关系,即考虑如下两条途径:①统一成角进行判断,常用正弦定理及三角恒等变换;②统一成边进行判断,常用余弦定理、面积公式等. 24.(Ⅰ) 12n n a += (Ⅱ)见解析,234n n+【解析】 【分析】(1)利用2342248a a a q a q +=+=及28a =求得q ,从而得到通项公式.(2)利用定义证明{}n b 等差数列,并利用公式求和. 【详解】(Ⅰ)设等比数列{}n a 的公比为q ,依题意0q >.由2348,48a a a =+=得28848q q +=,解得2q =. 故21822n n n a -+=⨯= . (Ⅱ)证明:由(Ⅰ)得1441log log 22n n n n b a ++===. 故112n n b b --=,所以{}n b 是首项为1,公差为12的等差数列,所以()21131224n n n n nS n -+=⨯+⨯=. 【点睛】一般地,判断一个数列是等差数列,可从两个角度去考虑:(1)证明1n n a a d --=;(2)证明:112n n n a a a -+=+.25.()1212sin 42AM ππθθ⎛⎫=≤≤ ⎪⎝⎭ ()243;=S 【解析】 【分析】(1)在直角A BM '∆中,得出A M '与θ的关系,从而得出AM 与θ的不等式; (2)在AMN ∆中,利用正弦定理求出AN ,得出AN 的最小值,从而得出CN 的最大值. 【详解】(1)设MA MA x '==,则1MB x =-, 在直角A BM '∆中,1cos(1802)xxθ--=o, 解得2111cos 22sin x θθ==-,即212sin AM θ=,因为A '在边BC 上,所以42ππθ≤≤.(2)因为,1,2B AB BC π∠===2AC =,所以60BAC ∠=o ,在AMN ∆中,由AMN θ∠=,可得18060120ANM θθ∠=--=-o o o , 又由212sin MN θ=,根据正弦定理,可得sin sin(120)AN AMθθ=-o , 所以sin 1sin(120)2sin sin(120)AM AN θθθθ⋅==--o o ,令212sin sin(120)2sin (sin )sin cos 22t θθθθθθθθ=-=⋅+=+o1112cos 2sin(230)222θθθ=-=+-o , 因为4590θ<<o o ,所以60230150θ<-<o o o , 当且仅当23090θ-=o o 时,即60θ=o 时,t 有最大值32, 即当60θ=o 时,AN 有最小值23,所以CN 的最大值为43, 当60θ=o 时,AMN ∆为等边三角形,AMN ∆面积为22()439S ==. 【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力. 26.(1)1()21n S n N n =∈-;(2)21n n +。

2020-2021苏州市高三数学下期中一模试题(含答案)

2020-2021苏州市高三数学下期中一模试题(含答案)

2020-2021苏州市高三数学下期中一模试题(含答案)一、选择题1.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( ) A .2 B .-4 C .2或-4 D .42.若正实数x ,y 满足141x y +=,且234y x a a +>-恒成立,则实数a 的取值范围为( )A .[]1,4-B .()1,4-C .[]4,1-D .()4,1- 3.若直线()100,0ax by a b ++=>>把圆()()224116x y +++=分成面积相等的两部分,则122a b+的最小值为( ) A .10B .8C .5D .4 4.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138 B .135 C .95 D .235.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且()cos 4cos a B c b A =-,则cos2A =( )A .78B .18C .78-D .18- 6.已知变量x , y 满足约束条件13230x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最小值为( )A .1B .2C .3D .67.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩,若Z ax y =+的最大值为29a +,最小值为2a +,则实数a 的取值范围是( ).A .(,7]-∞-B .[3,1]-C .[1,)+∞D .[7,3]--8.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( )A .1B .32C .2D .39.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC=120°,则A 、C 两地的距离为 ( )A .10 kmB .3 kmC .105 kmD .107 km10.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=( ) A .()1614n -- B .()1612n -- C .()32123n -- D .()32143n -- 11.已知4213332,3,25a b c ===,则A .b a c <<B .a b c <<C .b c a <<D .c a b << 12.若ln 2ln 3ln 5,,235a b c ===,则 A .a b c << B .c a b <<C .c b a <<D .b a c << 二、填空题13.已知数列{}n a 的前n 项和为2*()2n S n n n N =+∈,则数列{}n a 的通项公式n a =______.14.已知函数()2xf x =,等差数列{}n a 的公差为2,若()2468104f a a a a a ++++=,则()()()()212310log f a f a f a f a ⋅⋅⋅⋅=⎡⎤⎣⎦L ___________.15.已知n S 是数列{}n a 的前n 项和,122n n S a +=-,若212a =,则5S =__________. 16.已知0,0ab >>,且20a b +=,则lg lg a b +的最大值为_____.17.已知实数x ,y 满足不等式组203026x y x y x y -≤⎧⎪+-≥⎨⎪+≤⎩,则2z x y =-的最小值为__________.18.设0,0,25x y x y >>+=,则xy的最小值为______. 19.在平面内,已知直线12l l P ,点A 是12,l l 之间的定点,点A 到12,l l 的距离分别为和,点是2l 上的一个动点,若AC AB ⊥,且AC 与1l 交于点C ,则ABC ∆面积的最小值为____.20.已知数列{}n a 满足11a =,132n n a a +=+,则数列{}n a 的通项公式为________.三、解答题21.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos 3cos c B b C a B +=.(1)求cos B 的值;(2)若2CA CB -=u u u v u u u v ,ABC ∆的面积为b .22.已知点(1,2)是函数()(0,1)x f x a a a =>≠的图象上一点,数列{}n a 的前n 项和是()1n S f n =-.(1)求数列{}n a 的通项公式;(2)若1log n a n b a +=,求数列{}n n a b •的前n 项和n T23.在△ABC 中,角A B C 、、的对边分别为a b c 、、,已知3cos()16cos cos B C B C --=,(1)求cos A (2)若3a =,△ABC 的面积为求b c 、24.在等差数列{}n a 中,2723a a +=-,3829a a +=-.(1)求数列{}n a 的通项公式;(2)设数列{}n n a b +是首项为1,公比为2的等比数列,求{}n b 的前n 项和n S . 25.设函数1()|(0)f x x x a a a=++- (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.26.已知{a n }是等差数列,{b n }是各项均为正数的等比数列,且b 1=a 1=1,b 3=a 4,b 1+b 2+b 3=a 3+a 4.(1)求数列{a n },{b n }的通项公式;(2)设c n =a n b n ,求数列{c n }的前n 项和T n .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果.【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q q q --+=+--,解得2q =-,∴214a a q ==-,故选B .【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.2.B解析:B【解析】【分析】 根据1444y y x x x y ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合基本不等式可求得44y x +≥,从而得到关于a 的不等式,解不等式求得结果.【详解】 由题意知:1442444y y x y x x x y y x⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭ 0x Q >,0y > 40x y ∴>,04y x >424x y y x ∴+≥=(当且仅当44x y y x =,即4x y =时取等号) 44y x ∴+≥ 234a a ∴-<,解得:()1,4a ∈- 本题正确选项:B【点睛】本题考查利用基本不等式求解和的最小值问题,关键是配凑出符合基本不等式的形式,从而求得最值.3.B解析:B【解析】【分析】由于直线将圆平分,故直线过圆的圆心,将圆心坐标代入直线方程,利用“1”的代换的方法以及基本不等式,求得所求和的最小值.【详解】圆的圆心为()4,1--,由于直线将圆平分,故直线过圆心,即410a b --+=,即41a b +=,故()121284448222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当82b a a b =,即11,82a b ==时,取得最小值为8.故选B. 【点睛】本小题主要考查直线和圆的位置关系,考查利用“1”的代换和基本不等式求解和式的最小值问题.直线能将圆平分成面积相等的两个部分,则这条直线是经过圆心的.要注意的是,圆的标准方程是()()222x a y b r -+-=,圆心是(),a b ,所以本题的圆心是()4,1--,而不是()4,1.4.C解析:C【解析】试题分析:∵24354{10a a a a +=+=,∴1122{35a d a d +=+=,∴14{3a d =-=, ∴1011091040135952S a d ⨯=+⨯=-+=. 考点:等差数列的通项公式和前n 项和公式.5.C解析:C【解析】【分析】根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sin A ,进而利用二倍角余弦公式得到结果.【详解】∵()cos 4cos a B c b A =-.∴sin A cos B =4sin C cos A ﹣sin B cos A即sin A cos B +sin B cos A =4cos A sin C∴sin C =4cos A sin C∵0<C <π,sin C ≠0.∴1=4cos A ,即cos A 14=, 那么27cos2218A cos A =-=-. 故选C【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.6.A解析:A【解析】【分析】画出可行域,平移基准直线20x y +=到可行域边界的点()1,1C -处,由此求得z 的最小值.【详解】画出可行域如下图所示,平移基准直线20x y +=到可行域边界的点()1,1C -处,此时z 取得最小值为()2111⨯+-=.故选:A.【点睛】本小题主要考查线性规划问题,考查数形结合的数学思想方法,属于基础题.7.B解析:B【解析】【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【详解】作出不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩对应的平面区域(如图阴影部分),目标函数z ax y =+的几何意义表示直线的纵截距,即y ax z =-+,(1)当0a <时,直线z ax y =+的斜率为正,要使得z 的最大值、最小值分别在,C A 处取得,则直线z ax y =+的斜率不大于直线310x y --=的斜率,即3a -≤,30a ∴-≤<.(2)当0a >时,直线z ax y =+的斜率为负,易知最小值在A 处取得,要使得z 的最大值在C 处取得,则直线z ax y =+的斜率不小于直线110x y +-=的斜率 1a -≥-,01a ∴<≤.(3)当0a =时,显然满足题意.综上:31a -≤….故选:B .【点睛】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.8.B解析:B【解析】【分析】先根据约束条件画出可行域,再利用直线20kx y -+=过定点()0,1,再利用k 的几何意义,只需求出直线10kx y -+=过点()2,4B 时,k 值即可.【详解】直线20kx y -+=过定点()0,1,作可行域如图所示,,由5218020x y x y +-=⎧⎨-=⎩,得()2,4B . 当定点()0,1和B 点连接时,斜率最大,此时413202k -==-, 则k 的最大值为:32故选:B .【点睛】 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.9.D解析:D【解析】【分析】直接利用余弦定理求出A ,C 两地的距离即可.【详解】因为A ,B 两地的距离为10km ,B ,C 两地的距离为20km ,现测得∠ABC =120°, 则A ,C 两地的距离为:AC 2=AB 2+CB 2﹣2AB •BC cos ∠ABC =102+202﹣2110202⎛⎫⨯⨯⨯-= ⎪⎝⎭700. 所以AC =7km .故选D .【点睛】本题考查余弦定理的实际应用,考查计算能力.10.D解析:D【解析】【分析】 先求出31()2n n a -=,再求出2511()2n n n a a -+=,即得解.【详解】 由题得35211,82a q q a ==∴=. 所以2232112()()22n n n n a a q ---==⨯=, 所以32251111()()()222n n n n n a a ---+=⋅=. 所以1114n n n n a a a a +-=,所以数列1{}n n a a +是一个等比数列. 所以12231n n a a a a a a +++⋅⋅⋅+=18[1()]4114n --=()32143n --. 故选:D【点睛】本题主要考查等比数列通项的求法和前n 项和的计算,意在考查学生对这些知识的理解掌握水平.11.A解析:A【解析】【分析】【详解】 因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小. 12.B解析:B【解析】试题分析:因为ln 2ln 3ln8ln 9ln 2ln 30,23623--=<<,ln 2ln 5ln 32ln 25ln 2ln 50,251025--=>>,故选B. 考点:比较大小.二、填空题13.【解析】【分析】由当n =1时a1=S1=3当n≥2时an =Sn ﹣Sn ﹣1即可得出【详解】当且时又满足此通项公式则数列的通项公式故答案为:【点睛】本题考查求数列通项公式考查了推理能力与计算能力注意检验解析:*2)1(n n N +∈【解析】【分析】由2*2n S n n n N =+∈,,当n =1时,a 1=S 1=3.当n ≥2时,a n =S n ﹣S n ﹣1,即可得出.【详解】当2n ≥,且*n N ∈时,()()()2212121n n n a S S n n n n -⎡⎤=-=+--+-⎣⎦ ()2222122n n n n n =+--++- 21n =+,又211123S a ==+=,满足此通项公式,则数列{}n a 的通项公式()*21n a n n N=+∈. 故答案为:()*21n n N+∈【点睛】 本题考查求数列通项公式,考查了推理能力与计算能力,注意检验n=1是否符合,属于中档题.14.【解析】【分析】根据指数运算出再利用等差中项的性质得出并得出然后再利用等差数列的性质和指数对数的运算法则求出的值【详解】依题意有且则而因此故答案为【点睛】本题考查等差数列基本性质的计算同时也考查了等 解析:6-【解析】【分析】根据指数运算出2468102a a a a a ++++=,再利用等差中项的性质得出625a =,并得出56825a a =-=-,然后再利用等差数列的性质和指数、对数的运算法则求出()()()()212310log f a f a f a f a ⋅⋅⋅⋅⎡⎤⎣⎦L 的值.【详解】依题意有246810625a a a a a a ++++==,625a ∴=,且56282255a a =-=-=-. 则()()()110123101105610825556255a a a a a a a a a a +⎛⎫++++==+=+=⨯-+=- ⎪⎝⎭L , 而()()()()1231061231022a a a a f a f a f a f a ++++-⋅⋅⋅⋅==L L ,因此,()()()()62123102log log 26f a f a f a f a -⋅⋅⋅⋅==-⎡⎤⎣⎦L .故答案为6-.【点睛】 本题考查等差数列基本性质的计算,同时也考查了等差数列的定义以及指数、对数的运算,解题时充分利用等差中项的性质,可简化计算,考查计算能力,属于中等题.15.【解析】【分析】由题意首先求得然后结合递推关系求解即可【详解】由题意可知:且:整理可得:由于故【点睛】本题主要考查递推关系的应用前n 项和与通项公式的关系等知识意在考查学生的转化能力和计算求解能力 解析:3116【解析】【分析】由题意首先求得1S ,然后结合递推关系求解5S 即可.【详解】由题意可知:12221S a =-=,且:()122n n n S S S +=--,整理可得:()11222n n S S +-=-, 由于121S -=-,故()455113121,21616S S ⎛⎫-=-⨯=-∴= ⎪⎝⎭. 【点睛】本题主要考查递推关系的应用,前n 项和与通项公式的关系等知识,意在考查学生的转化能力和计算求解能力.16.【解析】【分析】由为定值运用均值不等式求的最大值即可【详解】当且仅当时等号成立即而当且仅当时等号成立故的最大值为2故答案为:2【点睛】本题主要考查了基本不等值求积的最大值对数的运算属于中档题解析:2【解析】【分析】由0,0a b >>,20a b +=为定值,运用均值不等式求ab 的最大值即可.【详解】0,0a b ∴>>,20a b +=,202a b ab ∴=+≥,当且仅当10a b ==时,等号成立,即100ab ≤,而lg lg lg lg1002a b ab +=≤=,当且仅当10a b ==时,等号成立,故lg lg a b +的最大值为2,故答案为:2【点睛】本题主要考查了基本不等值求积的最大值,对数的运算,属于中档题.17.-6【解析】由题得不等式组对应的平面区域为如图所示的△ABC 当直线经过点A(03)时直线的纵截距最大z 最小所以故填-6解析:-6【解析】由题得不等式组对应的平面区域为如图所示的△ABC,当直线122z y x =-经过点A(0,3)时,直线的纵截距2z -最大,z 最小.所以min 023 6.z =-⨯=-故填-6. 18.【解析】【分析】把分子展开化为再利用基本不等式求最值【详解】当且仅当即时成立故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立解析:3【解析】【分析】把分子展开化为26xy +,再利用基本不等式求最值.【详解】xy xy=Q0,0,25,0,x y x y xy >>+=>∴Q 22343xy xy xy⋅≥=, 当且仅当3xy =,即3,1x y ==时成立, 故所求的最小值为43.【点睛】 使用基本不等式求最值时一定要验证等号是否能够成立. 19.6【解析】【分析】【详解】如图所示设由题意知与相似所以所以所以当且仅当即时等号成立所以面积的最小值为6解析:6【解析】【分析】【详解】如图所示,设BF x =,由题意知3,2AE AF ==ABF ∆与CAE ∆相似,所以AB BF CA AE =,所以3AC AB x =,所以211322ABC S AB AC AB x∆==⨯ 21363(4)622x x x x =⨯⨯+=+≥,当且仅当632x x =,即2x =时,等号成立,所以CAE ∆面积的最小值为6.20.【解析】【分析】待定系数得到得到【详解】因为满足所以即得到所以而故是以为首项为公比的等比数列所以故故答案为:【点睛】本题考查由递推关系求数列通项待定系数法构造新数列求通项属于中档题解析:1231n -⋅-【解析】【分析】待定系数得到()13n n a a λλ++=+,得到λ【详解】因为{}n a 满足132n n a a +=+,所以()13n n a a λλ++=+,即132n n a a λ+=+,得到1λ=,所以()1131n n a a ++=+,而112a +=,故{}1n a +是以2为首项,3为公比的等比数列,所以1123n n a -+=⋅,故1231n n a -=⋅-.故答案为:1231n -⋅-.【点睛】本题考查由递推关系求数列通项,待定系数法构造新数列求通项,属于中档题.三、解答题21.(1)1cos 3B =;(2)3b = 【解析】【分析】(1)直接利用余弦定理的变换求出B 的余弦值.(2)利用(1)的结论首先求出sin B 的值,进一步利用平面向量的模的运算求出c ,再利用三角形的面积公式求出a ,最后利用余弦定理的应用求出结果.【详解】解:在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos 3cos c B b C a B +=. 则:2222222223222a c b a b c a c b c b a ac ab ac+-+-+-+=g g g , 整理得:22223ac a c b =+-, 所以:2221cos 23a cb B ac +-==; (2)由于1cos 3B =,(0,)B π∈,所以:sin B ==在ABC ∆中,由于:||2CA CB -=u u u r u u u r ,则:2BA =u u u r ,即:2c =.由于ABC ∆的面积为所以:1sin 2ac B = 解得:3a =,故:2222cos b a c ac B =+-14922393=+-=g g g , 解得:3b =.【点睛】本题考查的知识要点:平面向量的模的运算的应用,余弦定理和三角形的面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题.22.(1)a n =2n -1;(2)T n =(n -1)2n +1.【解析】【分析】(1)由点(1,2)在()x f x a =图像上求出2a =,再利用n S 法求出n a .(2)利用错位相减法求和,注意相减时项的符号,求和时项数的确定.【详解】(1)把点(1,2)代入函数f (x )=a x 得a =2,所以数列{a n }的前n 项和为S n =f (n )-1=2n -1.当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1,对n =1时也适合, ∴a n =2n -1.(2)由a =2,b n =log a a n +1得b n =n , 所以a n b n =n ·2n -1.T n =1·20+2·21+3·22+…+n ·2n -1,①2T n =1·21+2·22+3·23+…+(n -1)·2n -1+n ·2n .②由①-②得:-T n =20+21+22+…+2n -1-n ·2n ,所以T n =(n -1)2n +1.【点睛】(1)主要考查了n S 法求通项公式,即11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩ (2)用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.23.:(1)1cos 3A =(2)3{2b c ==或23b c =⎧⎨=⎩ 【解析】:(1)由3cos()16cos cos B C B C --=得3(cos cos sin sin )1B C B C -=- 即1cos()3B C +=-从而cos A 1cos()3B C =-+=(2)由于0,A π<<1cos 3A =,所以sin A =又ABC S =V 1sin 2bc A =6bc =由余弦定理2222cos a b c bc A =+-,得2213b c += 解方程组2213{6b c bc +==,得3{2b c ==或23b c =⎧⎨=⎩24.(1)32n a n =-+(2)n S 23212n n n -=+- 【解析】【分析】(1)依题意()()382726a a a a d +-+==-,从而3d =-.由此能求出数列{}n a 的通项公式;(2)由数列{}n n a b +是首项为1,公比为2的等比数列,求出112322n n n n b a n --=-=-+,再分组求和即可.【详解】(1)设等差数列{}n a 的公差是d .由已知()()382726a a a a d +-+==-,∴3d =-,∴2712723a a a d +=+=-,得 11a =-,∴数列{}n a 的通项公式为32n a n =-+.(2)由数列{}n n a b +是首项为1,公比为2的等比数列,∴12n n n a b -+=,∴112322n n n n b a n --=-=-+,∴()()21147321222n n S n -=+++⋅⋅⋅+-++++⋅⋅⋅+⎡⎤⎣⎦()31212n n n -=+-,23212n n n -=+-. 【点睛】 本题考查数列的通项公式和前n 项和公式的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.25.(1)详见解析;(2)15521(,)++. 【解析】试题分析:本题第(1)问,可由绝对值不等式的几何意义得出min ()2f x =,从而得出结论;对第(2)问,由0a >去掉一个绝对值号,然后去掉另一个绝对值号,解出a 的取值范围.试题解析:(1)证明:由绝对值不等式的几何意义可知:min ()f x =12a a+≥,当且仅当1a =时,取等号,所以()2f x ≥. (2)因为(3)5f <,所以1335a a ++-<⇔1335a a ++-<⇔132a a -<-⇔ 11232a a a -<-<-,解得:155212a ++<<. 【易错点】在应用均值不等式时,注意等号成立的条件:一正二定三相等.考点:本小题主要考查不等式的证明、绝对值不等式的几何意义、绝对值不等式的解法、求参数范围等不等式知识,熟练基础知识是解答好本类题目的关键.26.(1)1,2n n n a n b -==;(2)T n =(n -1)·2n +1. 【解析】试题分析:(1)设数列{}n a 的公差为d ,{}n b 的公比为q ,运用等差数列和等比数列的通项公式,可得,d q 的方程组,解方程可得公差和公比,即可得到所求通项公式;(2)求得12n n n n c a b n -==⋅,运用乘公比错位相减法,结合等比数列的求和公式,化简整理即可得到所求的和.试题解析:(1)设数列{a n }的公差为d ,{b n }的公比为q ,依题意得解得d =1,q =2.所以a n =1+(n -1)×1=n ,b n =1×2n -1=2n -1. (2)由(1)知c n =a n b n =n·2n -1,则T n =1·20+2·21+3·22+…+n·2n -1,①2T n =2·20+2·22+…+(n -1)·2n -1+n·2n ,②①-②得:-T n =1+21+22+…+2n -1-n·2n=-n·2n=(1-n)·2n-1,所以T n=(n-1)·2n+1.。

2020-2021高三数学下期中一模试题附答案(1)

2020-2021高三数学下期中一模试题附答案(1)

2020-2021高三数学下期中一模试题附答案(1)一、选择题1.等比数列{}n a 的前n 项和为n S ,若36=2S =18S ,,则105S S 等于( ) A .-3B .5C .33D .-312.已知实数x 、y 满足约束条件00134x y x ya a ⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .13.已知点(),P x y 是平面区域()4{04y x y x m y ≤-≤≥-内的动点, 点()1,1,A O -为坐标原点, 设()OP OA R λλ-∈u u u r u u u r的最小值为M ,若M ≤恒成立, 则实数m 的取值范围是( )A .11,35⎡⎤-⎢⎥⎣⎦B .11,,35⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭C .1,3⎡⎫-+∞⎪⎢⎣⎭D .1,2⎡⎫-+∞⎪⎢⎣⎭4.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .235.设变量,x y 、满足约束条件236y xx y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .96)63a -≤≤的最大值为( )A .9B .92C.3 D .27.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5B .25CD .8.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .139.若01a <<,1b c >>,则( )A .()1ab c<B .c a cb a b->- C .11a a c b --<D .log log c b a a <10.已知正项数列{}n a*(1)()2n n n N +=∈L ,则数列{}n a 的通项公式为( ) A .n a n =B .2n a n =C .2n na =D .22n n a =11.等差数列{}n a 中,已知611a a =,且公差0d >,则其前n 项和取最小值时的n 的值为( ) A .6B .7C .8D .912.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.已知lg lg 2x y +=,则11x y+的最小值是______. 14.已知变数,x y 满足约束条件340{210,380x y x y x y -+≥+-≥+-≤目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,则a 的取值范围为_____________.15.已知数列{}n a 的首项12a =,且满足()*12n n n a a n N +=∈,则20a =________.16.在钝角ABC V中,已知1AB AC ==,若ABC VBC 的长为______.17.已知等差数列{}n a 的前n 项和为n S ,且136S =,则91032a a -=__________. 18.等差数列{}n a 中,1351,14,a a a =+=其前n 项和100n S =,则n=__19.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________20.已知实数,x y 满足240{220330x y x y x y -+≥+-≥--≤,,,则22x y +的取值范围是 .三、解答题21.解关于x 的不等式()222ax x ax a R -≥-∈.22.已知函数221()cos sin ,(0,)2f x x x x p =-+?. (1)求()f x 的单调递增区间;(2)设ABC V 为锐角三角形,角A 所对边19a =,角B 所对边5b =,若()0f A =,求ABC V 的面积.23.已知等差数列{}n a 的前n 项和为n S ,且24220a a -=,3128S a -=. (1)求数列{}n a 的通项公式;(2)当n 为何值时,数列{}n a 的前n 项和最大?24.各项均为整数的等差数列{}n a ,其前n 项和为n S ,11a =-,2a ,3a ,41S +成等比数列.(1)求{}n a 的通项公式;(2)求数列{(1)}nn a -•的前2n 项和2n T .25.已知在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin cos 0a B b A -=. (1)求角A 的大小:(2)若25a =,2b =.求ABC V 的面积.26.在ΔABC 中,角,,A B C 所对的边分别为,,a b c ,且222sin sin sin sin sin A C B A C +=-.(1)求B 的大小;(2)设BAC ∠的平分线AD 交BC 于,23,1D AD BD ==,求sin BAC ∠的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由等比数列的求和公式结合条件求出公比,再利用等比数列求和公式可求出105S S . 【详解】设等比数列{}n a 的公比为q (公比显然不为1),则()()61636333111119111a q S q q q S qa q q---===+=---,得2q =, 因此,()()101105510555111111233111a q S q q q S q a qq---===+=+=---,故选C. 【点睛】本题考查等比数列基本量计算,利用等比数列求和公式求出其公比,是解本题的关键,一般在求解等比数列问题时,有如下两种方法:(1)基本量法:利用首项和公比列方程组解出这两个基本量,然后利用等比数列的通项公式或求和公式来进行计算;(2)性质法:利用等比数列下标有关的性质进行转化,能起到简化计算的作用.2.D解析:D 【解析】 【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可. 【详解】 目标函数()12123112111x y x y y z x x x ++++++===+⨯+++, 设11y k x +=+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是32, 由3122k +=,得14k =,即k 的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.3.C解析:C 【解析】试题分析:直线()4x m y =-恒过定点(0,4),当0m >时,约束条件()4{04y x y x m y ≤-≤≥-对应的可行域如图,则()OP OA R λλ-∈u u u r u u u r的最小值为0M =,满足2M ≤,当0m =时,直线()4x m y =-与y 轴重合,平面区域()4{04y x y x m y ≤-≤≥-为图中y 轴右侧的阴影区域,则()OP OA R λλ-∈u u u r u u u r的最小值为0M =,满足2M ≤,当0m <时,由约束条件()4{04y x y x m y ≤-≤≥-表示的可行域如图,点P 与点B 重合时,()OP OA R λλ-∈u u u r u u u r的最小值为M OB =u u u r ,联立{(4)y x x m y ==-,解得44(,)11m mB m m --,所以421m OB m =-u u u r ,由4221m m ≤-1135m -≤≤,所以103m -≤≤,综上所述,实数m 的取值范围是1,3⎡⎫-+∞⎪⎢⎣⎭,故选C.考点:简单的线性规划.【方法点晴】本题主要考查了二元一次不等式组所表示的平面区域、简单的线性规划求最值问题,着重考查了数形结合思想方法及分类讨论的数学思想方法的应用,关键是正确的理解题意,作出二元一次不等式组所表示的平面区域,转化为利用线性规划求解目标函数的最值,试题有一定的难度,属于难题.4.C解析:C 【解析】 试题分析:∵24354{10a a a a +=+=,∴1122{35a d a d +=+=,∴14{3a d =-=, ∴1011091040135952S a d ⨯=+⨯=-+=. 考点:等差数列的通项公式和前n 项和公式.5.D解析:D 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B 【解析】 【分析】根据369a a -++=是常数,可利用用均值不等式来求最大值. 【详解】 因为63a -≤≤, 所以30,60a a ->+> 由均值不等式可得:369(3)(6)22a a a a -++-+≤= 当且仅当36a a -=+,即32a =-时,等号成立, 故选B.【点睛】本题主要考查了均值不等式,属于中档题.7.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得c =.由余弦定理可得:5b ===. 8.D解析:D 【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=,∴1134101313()13()1322a a a a S ++===,故选D. 考点:等差数列的通项公式、前n 项和公式.9.D解析:D 【解析】 【分析】运用不等式对四个选项逐一分析 【详解】对于A ,1b c >>Q ,1b c ∴>,01a <<Q ,则1ab c ⎛⎫> ⎪⎝⎭,故错误 对于B ,若c a cb a b->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误对于C ,01a <<Q ,10a ∴-<,1b c >>Q ,则11a a c b -->,故错误 对于D ,1b c >>Q ,c b log a log a ∴<,故正确 故选D 【点睛】本题考查了不等式的性质,由未知数的范围确定结果,属于基础题.10.B解析:B 【解析】 【分析】()()1122n n n n+-=-的表达式,可得出数列{}n a的通项公式.【详解】(1)(1),(2)22n n n nn n+-=-=≥1=,所以2,(1),nn n a n=≥=,选B.【点睛】给出n S与n a的递推关系求n a,常用思路是:一是利用1,2n n na S S n-=-≥转化为na的递推关系,再求其通项公式;二是转化为n S的递推关系,先求出n S与n之间的关系,再求n a. 应用关系式11,1{,2nn nS naS S n-==-≥时,一定要注意分1,2n n=≥两种情况,在求出结果后,看看这两种情况能否整合在一起.11.C解析:C【解析】因为等差数列{}n a中,611a a=,所以6116111150,0,,2a a a a a d=-=-,有2[(8)64]2ndS n=--,所以当8n=时前n项和取最小值.故选C.12.A解析:A【解析】【分析】【详解】因为422233332=4,3,5a b c===,且幂函数23y x=在(0,)+∞上单调递增,所以b<a<c.故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.二、填空题13.【解析】由得:所以当且仅当时取等号故填解析:15【解析】由lg lg 2x y +=得:100xy =,所以11111111()100100505xy x y xy x y x y ⎛⎫+=+=+≥= ⎪⎝⎭,当且仅当10x y ==时,取等号,故填15. 14.【解析】【分析】【详解】试题分析:由题意知满足条件的线性区域如图所示:点而目标函数仅在点处取得最大值所以考点:线性规划最值问题解析:1(,)3+∞【解析】 【分析】 【详解】试题分析:由题意知满足条件的线性区域如图所示:,点(22)A ,,而目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,所以1133AB k a a ->=-∴> 考点:线性规划、最值问题.15.512【解析】【分析】利用已知将n 换为n+1再写一个式子与已知作比得到数列的各个偶数项成等比公比为2再求得最后利用等比数列的通项公式即可得出【详解】∵anan+1=2n ()∴an+1an+2=2n+解析:512 【解析】 【分析】利用已知将n 换为n +1,再写一个式子,与已知作比,得到数列{}n a 的各个偶数项成等比,公比为2,再求得2=1a ,最后利用等比数列的通项公式即可得出. 【详解】∵a n a n +1=2n ,(*n N ∈) ∴a n +1a n +2=2n +2.(*n N ∈)∴22n na a +=,(*n N ∈),∴数列{}n a 的各个奇数项513...a a a ,,成等比,公比为2, 数列{}n a 的各个偶数项246...a a a ,,成等比,公比为2,又∵a n a n +1=2n ,(*n N ∈),∴a 1a 2=2,又12a =,∴2=1a , 可得:当n 为偶数时,1222n n a a -=⋅∴a 20=1•29=512. 故答案为:512. 【点睛】本题考查了等比数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.16.【解析】【分析】利用面积公式可求得再用余弦定理求解即可【详解】由题意得又钝角当为锐角时则即不满足钝角三角形故为钝角此时故即故答案为:【点睛】本题主要考查了解三角形中面积公式与余弦定理的运用属于中等题【解析】 【分析】利用面积公式可求得A ,再用余弦定理求解BC 即可. 【详解】由题意得11sin sin 2A A =⨯⇒=又钝角ABC V ,当A 为锐角时,cos A ==则2717BC =+-=,即BC =.故A 为钝角.此时cos A ==故27110BC =++=.即BC =【点睛】本题主要考查了解三角形中面积公式与余弦定理的运用,属于中等题型.17.【解析】分析:根据等差数列中下标和的性质和前n 项和公式求解详解:∵等差数列中∴∴设等差数列的公差为则点睛:等差数列的项的下标和的性质即若则这个性质经常和前n 项和公式结合在一起应用利用整体代换的方法可解析:613. 【解析】分析:根据等差数列中下标和的性质和前n 项和公式求解. 详解:∵等差数列{}n a 中136S =,∴()11371313132622a a a S +⨯===, ∴7613a =. 设等差数列{}n a 的公差为d ,则()9109109976322213a a a a a a d a -=-+=-==. 点睛:等差数列的项的下标和的性质,即若()*,,,,m n p q m n p q Z+=+∈,则m n p q a a a a +=+,这个性质经常和前n 项和公式()12n n n a a S +=结合在一起应用,利用整体代换的方法可使得运算简单.18.10【解析】【分析】【详解】故则故n=10解析:10 【解析】 【分析】 【详解】1351,14,a a a =+=故126d 14,2a d +=∴=,则()1n 21002n n n S -=+⨯=故n=1019.【解析】【分析】先根据解析式以及偶函数性质确定函数单调性再化简不等式分类讨论分离不等式最后根据函数最值求m 取值范围即得结果【详解】因为当时为单调递减函数又所以函数为偶函数因此不等式恒成立等价于不等式解析:13-【解析】 【分析】先根据解析式以及偶函数性质确定函数单调性,再化简不等式()()1f x f x m -≤+,分类讨论分离不等式,最后根据函数最值求m 取值范围,即得结果. 【详解】因为当0x ≥时 ()21,01,22,1,xx x f x x ⎧-+≤<=⎨-≥⎩为单调递减函数,又()()f x f x -=,所以函数()f x 为偶函数,因此不等式()()1f x f x m -≤+恒成立,等价于不等式()()1f x f x m -≤+恒成立,即1x x m -≥+,平方化简得()2211m x m +≤-,当10m +=时,x R ∈; 当10m +>时,12mx -≤对[],1x m m ∈+恒成立,11111233m m m m -+≤∴≤-∴-<≤-; 当10m +<时,12m x -≥对[],1x m m ∈+恒成立,1123m m m -≥∴≥(舍); 综上113m -≤≤-,因此实数m 的最大值是13-. 【点睛】解函数不等式:首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.20.【解析】【分析】【详解】画出不等式组表示的平面区域由图可知原点到直线距离的平方为的最小值为原点到直线与的交点距离的平方为的最大值为因此的取值范围为【考点】线性规划【名师点睛】线性规划问题首先明确可行 解析:4[,13]5【解析】 【分析】 【详解】画出不等式组表示的平面区域,由图可知原点到直线220x y +-=距离的平方为22xy+的最小值,为2455=,原点到直线24=0x y -+与33=0x y --的交点(2,3)距离的平方为22x y +的最大值为13,因此22xy +的取值范围为4[,13].5【考点】 线性规划 【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线(一般不涉及虚线),其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等,最后结合图形确定目标函数最值或值域范围.三、解答题21.当0a =时,不等式的解集为{}|1x x ≤-; 当0a >时,不等式的解集为2{|x x a≥或1}x ≤-; 当20a -<<时,不等式的解集为2{|1}x x a≤≤-; 当2a =-时,不等式的解集为{}1-; 当2a <-时,不等式的解集为2{|1}x x a-≤≤. 【解析】 【分析】将原不等式因式分解化为()()210ax x -+≥,对参数a 分5种情况讨论:0a =,0a >,20a -<<,2a =-,2a <-,分别解不等式. 【详解】解:原不等式可化为()2220ax a x +--≥,即()()210ax x -+≥,①当0a =时,原不等式化为10x +≤,解得1x ≤-, ②当0a >时,原不等式化为()210x x a ⎛⎫-+≥ ⎪⎝⎭, 解得2x a≥或1x ≤-, ③当0a <时,原不等式化为()210x x a ⎛⎫-+≤ ⎪⎝⎭. 当21a >-,即2a <-时,解得21x a -≤≤; 当21a=-,即2a =-时,解得1x =-满足题意; 当21a<-,即20a -<<时,解得21x a ≤≤-.综上所述,当0a =时,不等式的解集为{}|1x x ≤-; 当0a >时,不等式的解集为2{|x x a≥或1}x ≤-; 当20a -<<时,不等式的解集为2{|1}x x a≤≤-; 当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为2{|1}x x a-≤≤. 【点睛】本题考查含参不等式的求解,求解时注意分类讨论思想的运用,对a 分类时要做到不重不漏的原则,同时最后记得把求得的结果进行综合表述.22.(1),2p p 轹÷ê÷÷êøë;(2)4【解析】 【分析】(1)利用降次公式化简()f x ,然后利用三角函数单调区间的求法,求得()f x 的单调递增区间.(2)由()0f A =求得A ,用余弦定理求得c ,由此求得三角形ABC 的面积. 【详解】(1)依题意()()2211()cos sin cos 20,π22f x x x x x =-+=+?,由2ππ22πk x k -≤≤得πππ2k x k -≤≤,令1k =得ππ2x ≤≤.所以()f x 的单调递增区间,2pp 轹÷ê÷÷êøë. (2)由于a b <,所以A 为锐角,即π0,02π2A A <<<<.由()0f A =,得11cos 20,cos 222A A +==-,所以2ππ2,33A A ==. 由余弦定理得2222cos a b c bc A =+-⋅,2560c c -+=,解得2c =或3c =.当2c =时,222cos 0238a cb B ac +-==-<,则B 为钝角,与已知三角形ABC 为锐角三角形矛盾.所以3c =.所以三角形ABC 的面积为11sin 5322bc A =⨯⨯=【点睛】本小题主要考查二倍角公式,考查三角函数单调性的求法,考查余弦定理解三角形,考查三角形的面积公式,属于基础题.23.(1)203n a n =-;(2)当6n =时,数列{}n a 的前n 项和最大. 【解析】 【分析】(1)设等差数列{}n a 的公差为d ,由24220,a a -=3128S a -=.利用通项公式可得()()112320a d a d +-+=,113328a d a +-=,解方程组即得.(2)令0n a ≥,解得n . 【详解】解:(1)设等差数列{}n a 的公差为d ,24220,a a -=Q 3128S a -=.()()112320,a d a d ∴+-+=113328a d a +-=,联立解得:117,a =3d =-.173(1)203n a n n ∴=--=-.(2)令2030n a n =-≥,解得203n ≤. ∴当6n =时,数列{}n a 的前n 项和最大.【点睛】本题考查等差数列的通项公式,考查等差数列的前n 项和的最值.解题方法是基本量法,对前n 项和的最大值问题,可通过解不等式0n a ≥确定n 值. 24.(1) 23n a n =- (2) 22n T n = 【解析】 【分析】(1)由题意,可知2324(1)a a S =⋅+,解得2d =,即可求解数列的通项公式;(2)由(1),可知12n n a a --=,可得()()()21234212...n n n T a a a a a a -=-++-+++-+,即可求解.【详解】(1)由题意,可知数列{}n a 中,11a =-,2a ,3a ,41S +成等比数列.则2324(1)a a S =⋅+,即()()()212136d d d -+=-+-+,解得2d =,所以数列的通项公式23n a n =-. (2)由(1),可知12n n a a --=,所以()()()21234212...2n n n T a a a a a a n -=-++-+++-+=. 【点睛】本题主要考查了等差数列的通项公式的求解,以及“分组求和”的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确求得等差数列的公差是解答的关键,着重考查了运算与求解能力,属于基础题. 25.(1)4A π=(2)4【解析】分析:(1)利用正弦定理化简已知等式,整理后根据sin 0B ≠求出sin cos 0A A -=,即可确定出A 的度数;(2)利用余弦定理列出关系式,把a ,b ,cosA 的值代入求出c 的值,再由b ,sinA 的值,利用三角形面积公式求出即可.详解:在ABC V 中,由正弦定理得sin sin sin cos 0A B B A -=. 即()sin sin cos 0B A A -=,又角B 为三角形内角,sin 0B ≠, 所以sin cos 0A A -=04A π⎛⎫-= ⎪⎝⎭, 又因为()0,A π∈,所以4A π=.(2)在ABC V 中,由余弦定理得:2222cos a b c bc A =+-⋅,则220442c c ⎛=+-⋅ ⎝⎭.即2160c -=.解得c =-c =所以12422S =⨯⨯=.·点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.26.(1)2π3B =;(2【解析】【试题分析】(1)先正弦定理将已知222sin sin sin sin sin A C B A C +=-化为边的关系,然后运用余弦定理求解;(2)先借助正弦定理求出1sin 4BAD ∠=,然后运用余弦二倍角求出7cos 8BAC ∠=,进而运用平方关系求出sin BAC ∠. 解:(1) 222sin sin sin sin sin A C B A C +=-, 222a c b ac ∴+=-,2221cos 222a cb ac B ac ac +-∴==-=-,()0,πB ∈Q , 2π3B ∴=.(2) 在ABD V 中,由正弦定理:sin sin AD BD B BAD=∠,得1sin 1sin 4BD B BAD AD ⋅∠===, 217cos cos212sin 12168BAC BAD BAD ∴∠=∠=-∠=-⋅=,∴∠===. sin BAC。

2020-2021高三数学下期中第一次模拟试卷附答案

2020-2021高三数学下期中第一次模拟试卷附答案

2020-2021高三数学下期中第一次模拟试卷附答案一、选择题1.设数列{}n a 的前n 项和为n S ,若2,n S ,3n a 成等差数列,则5S 的值是( )A .243-B .242-C .162-D .2432.若0a b <<,则下列不等式恒成立的是 A .11a b> B .a b -> C .22a b > D .33a b <3.若变量x ,y 满足约束条件1358x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,,,则2yz x =-的取值范围是( ) A .113⎡⎤-⎢⎥⎣⎦,B .11115⎡⎤--⎢⎥⎣⎦,C .111153⎡⎤-⎢⎥⎣⎦, D .3153⎡⎤-⎢⎥⎣⎦,4.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞5.已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈,则5a 等于( )A .16-B .16C .31D .326.已知{}n a 为等差数列,n S 为其前n 项和,若3572a a +=,则13S =( ) A .49B .91C .98D .1827.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( ) A .12B .10C.D.8.若正数,x y 满足20x y xy +-=,则32x y+的最大值为( ) A .13B .38C .37D .19.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23 D .1610.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为( )A .134B .135C .136D .13711.已知数列{}n a 的前n 项和2n S n n =-,数列{}n b 满足1sin2n n n b a π+=,记数列{}n b 的前n 项和为nT,则2017T =( ) A .2016B .2017C .2018D .201912.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.已知变数,x y 满足约束条件340{210,380x y x y x y -+≥+-≥+-≤目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,则a 的取值范围为_____________.14.要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则a 的取值范围是__________.15.已知等差数列{}n a 的公差为()d d 0≠,前n 项和为n S,且数列也为公差为d 的等差数列,则d =______.16.在数列{}n a 中,11a =,且{}n a 是公比为13的等比数列.设13521T n n a a a a L -=++++,则lim n n T →∞=__________.(*n ∈N ) 17.设0,0,25x y x y >>+=______.18.若数列{}n a 通项公式是12,123,3n n n n a n --⎧≤≤=⎨≥⎩,前n 项和为n S ,则lim n n S →∞=______. 19.我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:__________日相逢? 20.已知数列{}n a的通项n a =15项的和等于_______.三、解答题21.设}{n a 是等差数列,公差为d ,前n 项和为n S . (1)设140a =,638a =,求n S 的最大值.(2)设11a =,*2()na nb n N =∈,数列}{n b 的前n 项和为n T ,且对任意的*n N ∈,都有20n T ≤,求d 的取值范围.22.已知函数()()22f x x x a x R =++∈(1)若函数()f x 的值域为[0,)+∞,求实数a 的值;(2)若()0f x >对任意的[1,)x ∈+∞成立,求实数a 的取值范围。

2020-2021高三数学下期中模拟试卷(及答案)

2020-2021高三数学下期中模拟试卷(及答案)

2020-2021高三数学下期中模拟试卷(及答案)一、选择题1.已知等比数列{}n a 的公比为正数,且239522,1a a a a ⋅==,则1a = ( )A .12B .2C .2D .2 2.若0a b <<,则下列不等式恒成立的是 A .11a b> B .a b -> C .22a b > D .33a b <3.在中,,,,则A .B .C .D .4.已知数列{}n a 的前n 项和为n S ,点(,3)n n S +*()n N ∈在函数32xy =⨯的图象上,等比数列{}n b 满足1n n n b b a ++=*()n N ∈,其前n 项和为n T ,则下列结论正确的是( )A .2n n S T =B .21n n T b =+C .n n T a >D .1n n T b +<5.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<< B .02a <<C .1322a -<< D .3122a -<< 6.已知函数223log ,0(){1,0x x f x x x x +>=--≤,则不等式()5f x ≤的解集为 ( )A .[]1,1-B .[]2,4-C .(](),20,4-∞-⋃D .(][],20,4-∞-⋃ 7.已知等差数列{}n a 中,10103a =,20172017S =,则2018S =( ) A .2018B .2018-C .4036-D .40368.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .139.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4 B .4 C .14± D .1410.已知ABC ∆中,A ,B ,C 的对边分别是a ,b ,c ,且3b =,33c =,30B =︒,则AB 边上的中线的长为( )A .372 B .34 C .32或37D .343711.,x y满足约束条件3620x yx yxy-≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数(0,0)z ax by a b=+>>的最大值为12,则23a b+的最小值为 ()A.256B.25C.253D.512.已知等差数列{}n a的前n项和为n S,若341118a a a++=则11S=()A.9B.22C.36D.66二、填空题13.已知变数,x y满足约束条件340{210,380x yx yx y-+≥+-≥+-≤目标函数(0)z x ay a=+≥仅在点(2,2)处取得最大值,则a的取值范围为_____________.14.已知x y、满足约束条件1{1,22x yx yx y+≥-≥--≤若目标函数()0,0z ax by a b=+>>的最大值为7,则34a b+的最小值为_______.15.已知a b c R∈、、,c为实常数,则不等式的性质“a b a c b c>⇐+>+”可以用一个函数在R上的单调性来解析,这个函数的解析式是()f x=_________16.等差数列{}n a前9项的和等于前4项的和.若141,0ka a a=+=,则k= .17.设等差数列{}n a的前n项和为n S,12mS-=-,0mS=,13mS+=.其中*m N∈且2m≥,则m=______.18.已知数列{}n a满足11a=,111nnaa+=-+,*n N∈,则2019a=__________.19.若等比数列{}n a的各项均为正数,且510119122a a a a e+=,则1220ln ln lna a a+++L等于__________.20.如图在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是___________.三、解答题21.已知在等比数列{}n a 中, 11a =,且2a 是1a 和31a -的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()*21n n b n a n N=-+∈,求{}nb 的前n 项和nS.22.已知{}n a 是等差数列,{}n b 是等比数列,且23b =,39b =,11a b =,144a b =. (1)求{}n a 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和. 23.已知{}n a 为等差数列,且36a =-,60a =. (1)求{}n a 的通项公式;(2)若等比数列{}n b 满足18b =-,2123b a a a =++,求数列{}n b 的前n 项和公式. 24.为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD .其中AB =3百米,AD =5百米,且△BCD 是以D 为直角顶点的等腰直角三角形.拟修建两条小路AC ,BD (路的宽度忽略不计),设∠BAD=θ,θ∈(2π,π).(1)当cos θ=5-时,求小路AC 的长度; (2)当草坪ABCD 的面积最大时,求此时小路BD 的长度.25.设数列{}n a 满足12a = ,12nn n a a +-= ;数列{}n b 的前n 项和为n S ,且2132n S n n =-()(1)求数列{}n a 和{}n b 的通项公式;(2)若n n n c a b = ,求数列{}n c 的前n 项和n T .26.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c ,已知cos2A ﹣3cos (B+C )=1. (1)求角A 的大小; (2)若△ABC 的面积S=5,b=5,求sinBsinC 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q=,又因为等比数列{}n a 的公比为正数,所以2q =,故21222a a q ===,故选D. 2.D解析:D 【解析】 ∵0a b << ∴设1,1a b =-= 代入可知,,A B C 均不正确对于D ,根据幂函数的性质即可判断正确 故选D3.D解析:D 【解析】 【分析】根据三角形内角和定理可知,再由正弦定理即可求出AB .【详解】 由内角和定理知,所以,即,故选D. 【点睛】本题主要考查了正弦定理,属于中档题.4.D解析:D 【解析】 【分析】 【详解】由题意可得:332,323n nn n S S +=⨯=⨯- ,由等比数列前n 项和的特点可得数列{}n a 是首项为3,公比为2的等比数列,数列的通项公式:132n n a -=⨯ ,设11n nb b q -= ,则:111132n n n b q b q --+=⨯ ,解得:11,2b q == ,数列{}n b 的通项公式12n nb -= ,由等比数列求和公式有:21nn T =- ,考查所给的选项:13,21,,n n n n n n n n S T T b T a T b +==-<< .本题选择D 选项.5.C解析:C 【解析】 【分析】根据新运算的定义, ()x a -()x a +22x x a a =-++-,即求221x x a a -++-<恒成立,整理后利用判别式求出a 范围即可【详解】Q A()1B A B =-∴()x a -()x a +()()()()22=11x a x a x a x a x x a a --+=--+-=-++-⎡⎤⎣⎦Q ()x a -()1x a +<对于任意的实数x ∈R 恒成立,221x x a a ∴-++-<,即2210x x a a -++--<恒成立,()()2214110a a ∴∆=-⨯-⨯--<,1322a ∴-<<故选:C 【点睛】本题考查新定义运算,考查一元二次不等式中的恒成立问题, 当x ∈R 时,利用判别式是解题关键6.B解析:B 【解析】分析:根据分段函数,分别解不等式,再求出并集即可. 详解:由于()223log ,01,0x x f x x x x +>⎧=⎨--≤⎩, 当x >0时,3+log 2x≤5,即log 2x≤2=log 24,解得0<x≤4, 当x≤0时,x 2﹣x ﹣1≤5,即(x ﹣3)(x+2)≤0,解得﹣2≤x≤0,∴不等式f (x )≤5的解集为[﹣2,4], 故选B .点睛:本题考查了分段函数以及不等式的解法和集合的运算,分段函数的值域是将各段的值域并到一起,分段函数的定义域是将各段的定义域并到一起,分段函数的最值,先取每段的最值,再将两段的最值进行比较,最终取两者较大或者较小的.7.D解析:D 【解析】分析:由题意首先求得10091a =,然后结合等差数列前n 项和公式求解前n 项和即可求得最终结果.详解:由等差数列前n 项和公式结合等差数列的性质可得:120171009201710092201720172017201722a a aS a +=⨯=⨯==, 则10091a =,据此可得:()12018201710091010201810091009440362a a S a a +=⨯=+=⨯=. 本题选择D 选项. 点睛:本题主要考查等差数列的性质,等差数列的前n 项和公式等知识,意在考查学生的转化能力和计算求解能力.8.D解析:D 【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=,∴1134101313()13()1322a a a a S ++===,故选D. 考点:等差数列的通项公式、前n 项和公式.9.A解析:A 【解析】 【分析】利用等比数列{}n a 的性质可得2648a a a = ,即可得出.【详解】设4a 与8a 的等比中项是x .由等比数列{}n a 的性质可得2648a a a =,6x a ∴=± .∴4a 与8a 的等比中项561248x a =±=±⨯=±.【点睛】本题考查了等比中项的求法,属于基础题.10.C解析:C 【解析】 【分析】由已知利用余弦定理可得29180a a -+=,解得a 值,由已知可求中线12BD c =,在BCD V 中,由余弦定理即可计算AB 边上中线的长. 【详解】解:3,33,30b c B ===o Q ,∴由余弦定理2222cos b a c ac B =+-,可得23927233a a =+-⨯⨯⨯,整理可得:29180a a -+=,∴解得6a =或3.Q 如图,CD 为AB 边上的中线,则1332BD c ==,∴在BCD V 中,由余弦定理2222cos CD a BD a BD B =+-⋅⋅,可得:222333336()26CD =+-⨯⨯⨯,或222333333()23CD =+-⨯⨯⨯, ∴解得AB 边上的中线32CD =或37. 故选C .【点睛】本题考查余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.11.A解析:A 【解析】 【分析】先画不等式组表示的平面区域,由图可得目标函数(0,0)z ax by a b =+>>何时取最大值,进而找到a b ,之间的关系式236,a b +=然后可得23123()(23)6a b a b a b+=++,化简变形用基本不等式即可求解。

2020-2021高三数学下期中第一次模拟试卷(及答案)(14)

2020-2021高三数学下期中第一次模拟试卷(及答案)(14)

2020-2021高三数学下期中第一次模拟试卷(及答案)(14) 一、选择题1.已知函数1 ()2xf x⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a->的解集为( )A.(4,1)-B.(1,4)-C.(1,4)D.(0,4)2.已知集合2A{t|t40}=-≤,对于满足集合A的所有实数t,使不等式2x tx t2x1+->-恒成立的x的取值范围为()A.()(),13,∞∞-⋃+B.()(),13,∞∞--⋃+C.(),1∞--D.()3,∞+3.已知等差数列{}n a,前n项和为n S,5628a a+=,则10S=( )A.140B.280C.168D.564.设实数,x y满足242210x yx yx-≤⎧⎪+≤⎨⎪-≥⎩,则1yx+的最大值是()A.-1B.12C.1D.325.已知变量x, y满足约束条件13230xx yx y≥⎧⎪+≤⎨⎪--≤⎩,则2z x y=+的最小值为()A.1B.2C.3D.66.如图,为了测量山坡上灯塔CD的高度,某人从高为=40h的楼AB的底部A处和楼顶B处分别测得仰角为=60βo,=30αo,若山坡高为=35a,则灯塔高度是()A.15B.25C.40D.607.设{}n a是首项为1a,公差为-1的等差数列,n S为其前n项和,若124,,S S S成等比数列,则1a=()A.2B.-2C.12D.12-8.已知等比数列{}n a中,11a=,356a a+=,则57a a+=()A .12B .10C.D.9.设等差数列{}n a 的前n 项和为n S ,且()*11n n nS S n N n +>∈+.若870a a +<,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S10.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=( ) A .()1614n--B .()1612n--C .()32123n -- D .()32143n -- 11.已知等比数列{}n a 的前n 项和为n S ,11a =,且满足21,,n n n S S S ++成等差数列,则3a 等于( ) A .12B .12-C .14D .14-12.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为( ) A .134B .135C .136D .137二、填空题13.等比数列{}n a 的首项为1a ,公比为q ,1lim 2n n S →∞=,则首项1a 的取值范围是____________.14.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .2C A π-=,1sin 3A =,3a =,则b =______.15.已知数列{}n a ,11a =,1(1)1n n na n a +=++,若对于任意的[2,2]a ∈-,*n ∈N ,不等式1321t n a a n +<-⋅+恒成立,则实数t 的取值范围为________ 16.设0a >,若对于任意满足8m n +=的正数m ,n ,都有1141a m n ++≤,则a 的取值范围是______.17.已知数列{}n a 、{}n b 均为等差数列,且前n 项和分别为n S 和n T ,若321n n S n T n +=+,则44a b =_____.18.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.19.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++等于______. 20.已知数列{}n a 满足11a =,132n n a a +=+,则数列{}n a 的通项公式为________.三、解答题21.在()f x 中,角,,A B C 的对边分别为,,a b c ,满足(2)cos cos b c A a C -=. (1)求角A 的大小(2)若3a =,求ABC △的周长最大值.22.已知等差数列{}n a 的所有项和为150,且该数列前10项和为10,最后10项的和为50.(1)求数列{}n a 的项数; (2)求212230a a a ++⋅⋅⋅+的值.23.已知在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,sin tan cos sin tan cos b B C b B a A C a A -=-. (1)求证:A B =;(2)若c =3cos 4C =,求ABC ∆的周长.24.在ABC ∆中,内角、、A B C 的对边分别为a b c ,,,()cos cos 0C a B b A c ++=.(Ⅰ)求角C 的大小;(Ⅱ)若2a b ==,求()sin 2B C -的值.25.若n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,24S =. (1)求数列{}n a 的通项公式;(2)设13,n n n n b T a a +=是数列{}n b 的前n 项和,求使得20n m T <对所有n N +∈都成立的最小正整数m .26.已知数列{}n a 满足111,221n n n a a a a +==+. (1)证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a 的通项公式;(2)若数列{}n b 满足12n n nb a =g ,求数列{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先判断函数1()2xf x ⎛⎫= ⎪⎝⎭的单调性,把()24(3)f a f a ->转化为自变量的不等式求解.【详解】可知函数()f x 为减函数,由2(4)(3)f a f a ->,可得243a a -<,整理得2340a a --<,解得14a -<<,所以不等式的解集为(1,4)-. 故选B. 【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.2.B解析:B 【解析】 【分析】由条件求出t 的范围,不等式221x tx t x +->-变形为2210x tx t x +--+>恒成立,即不等式()()110x t x +-->恒成立,再由不等式的左边两个因式同为正或同为负处理. 【详解】由240t -≤得,22t -≤≤,113t ∴-≤-≤不等式221x tx t x +->-恒成立,即不等式2210x tx t x +--+>恒成立,即不等式()()110x t x +-->恒成立,∴只需{1010x t x +->->或{1010x t x +-<-<恒成立, ∴只需{11x tx >->或{11x tx <-<恒成立,113t -≤-≤Q只需3x >或1x <-即可. 故选:B . 【点睛】本题考查了一元二次不等式的解法问题,难度较大,充分利用恒成立的思想解题是关键.3.A解析:A由等差数列的性质得,5611028a a a a +==+,∴其前10项之和为()11010102814022a a +⨯==,故选A. 4.D解析:D 【解析】 【分析】由约束条件确定可行域,由1y x+的几何意义,即可行域内的动点与定点P (0,-1)连线的斜率求得答案. 【详解】由约束条件242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,作出可行域如图,联立10220x x y -=⎧⎨+-=⎩,解得A (112,),1y x+的几何意义为可行域内的动点与定点P (0,-1)连线的斜率, 由图可知,113212PAk +==最大. 故答案为32. 【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于中档题型.解析:A 【解析】 【分析】画出可行域,平移基准直线20x y +=到可行域边界的点()1,1C -处,由此求得z 的最小值. 【详解】画出可行域如下图所示,平移基准直线20x y +=到可行域边界的点()1,1C -处,此时z 取得最小值为()2111⨯+-=. 故选:A.【点睛】本小题主要考查线性规划问题,考查数形结合的数学思想方法,属于基础题.6.B解析:B 【解析】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,在ABD ∆中由正弦定理求得AD ,在Rt ADF ∆中求得DF ,从而求得灯塔CD 的高度. 【详解】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,如图所示,在ABD ∆中,由正弦定理得,sin sin AB ADADB ABD=∠∠,即sin[90(90)]sin(90)h ADαβα=︒--︒-︒+,cos sin()h AD αβα∴=-,在Rt ADF ∆中,cos sin sin sin()h DF AD αβββα==-,又山高为a ,则灯塔CD 的高度是3340cos sin 22356035251sin()2h CD DF EF a αββα⨯⨯=-=-=-=-=-. 故选B .【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.7.D解析:D 【解析】 【分析】把已知2214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(46).2a a a a -=-=-,故选D. 【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.8.A【解析】由已知24356a a q q +=+=,∴22q =,∴25735()2612a a q a a +=+=⨯=,故选A.9.D解析:D 【解析】 【分析】将所给条件式变形,结合等差数列前n 项和公式即可证明数列的单调性,从而由870a a +<可得7a 和8a 的符号,即可判断n S 的最小值.【详解】由已知,得()11n n n S nS ++<, 所以11n n S S n n +<+, 所以()()()()1111221n n n a a n a a n n ++++<+, 所以1n n a a +<,所以等差数列{}n a 为递增数列. 又870a a +<,即871a a <-, 所以80a >,70a <,即数列{}n a 前7项均小于0,第8项大于零, 所以n S 的最小值为7S , 故选D. 【点睛】本题考查了等差数列前n 项和公式的简单应用,等差数列单调性的证明和应用,前n 项和最值的判断,属于中档题.10.D解析:D 【解析】 【分析】 先求出31()2n n a -=,再求出2511()2n n n a a -+=,即得解.【详解】由题得35211,82a q q a ==∴=.所以2232112()()22n n n n a a q---==⨯=,所以32251111()()()222n n n n n a a ---+=⋅=. 所以1114n n n n a a a a +-=,所以数列1{}n n a a +是一个等比数列. 所以12231n n a a a a a a +++⋅⋅⋅+=18[1()]4114n --=()32143n --. 故选:D 【点睛】本题主要考查等比数列通项的求法和前n 项和的计算,意在考查学生对这些知识的理解掌握水平.11.C解析:C 【解析】试题分析:由21,,n n n S S S ++成等差数列可得,212n n n n S S S S +++-=-,即122n n n a a a ++++=-,也就是2112n n a a ++=-,所以等比数列{}n a 的公比12q =-,从而2231111()24a a q ==⨯-=,故选C.考点:1.等差数列的定义;2.等比数列的通项公式及其前n 项和.12.B解析:B 【解析】 【分析】由题意得出1514n a n =-,求出15142019n a n =-≤,即可得出数列的项数. 【详解】因为能被3除余1且被5除余1的数就是能被15整除余1的数,故1514n a n =-.由15142019n a n =-≤得135n ≤,故此数列的项数为135,故答案为B.【点睛】本题主要考查阅读能力及建模能力、转化与化归思想及等差数列的通项公式及数学的转化与化归思想.属于中等题.二、填空题13.【解析】【分析】由题得利用即可得解【详解】由题意知可得又因为所以可求得故答案为:【点睛】本题考查了等比数列的通项公式其前n 项和公式数列极限的运算法则考查了推理能力与计算能力属于中档题解析:110,,122⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U【解析】 【分析】 由题得11(1)2a q =-,利用(1,0)(0,1)q ∈-⋃即可得解 【详解】 由题意知,1112a q =-,可得11(1)2a q =-,又因为(1,0)(0,1)q ∈-⋃,所以可求得1110,,122a ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭U .故答案为:110,,122⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U【点睛】本题考查了等比数列的通项公式其前n 项和公式、数列极限的运算法则,考查了推理能力与计算能力,属于中档题.14.7【解析】【分析】先求出再利用正弦定理求最后利用余弦定理可求【详解】因为所以故且为锐角则故由正弦定理可得故由余弦定理可得故即或因为为钝角故故故答案为:7【点睛】三角形中共有七个几何量(三边三角以及外解析:7 【解析】 【分析】先求出sin 3C =,再利用正弦定理求c ,最后利用余弦定理可求b . 【详解】 因为2C A π-=,所以2C A π=+,故sin sin cos 2C A A π⎛⎫=+= ⎪⎝⎭, 且A为锐角,则cos 3A =,故sin 3C =. 由正弦定理可得sin sin a c A C =,故3sin 31sin 3a Cc A⨯=== 由余弦定理可得2222cos a b c bc A =+-,故29722b b =+-⨯即7b =或9b =, 因为C 为钝角,故c b >,故7b =.故答案为:7. 【点睛】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量. (1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边); (3)如果知道两角及一边,用正弦定理.15.【解析】【分析】由题意可得运用累加法和裂项相消求和可得再由不等式恒成立问题可得恒成立转化为最值问题可得实数的取值范围【详解】解:由题意数列中即则有则有又对于任意的不等式恒成立即对于任意的恒成立恒成立 解析:(,1]-∞-【解析】 【分析】 由题意可得11111(1)1n n a a n n n n n n +-==-+++,运用累加法和裂项相消求和可得11n an ++,再由不等式恒成立问题可得232t a ≤-⋅恒成立,转化为最值问题可得实数t 的取值范围. 【详解】解:由题意数列{}n a 中,1(1)1n n na n a +=++, 即1(1)1n n na n a +-+= 则有11111(1)1n n a a n n n n n n +-==-+++ 则有11111111n n nn n n a a a a a a n n n n n n ++--⎛⎫⎛⎫⎛=-+-+- ⎪ ⎪ ++--⎝⎭⎝⎭⎝2211122n a a a a n -⎫⎛⎫+⋯+-+ ⎪⎪-⎝⎭⎭(11111111121n n n n n n ⎛⎫⎛⎫⎛⎫=-+-+-+⋯+ ⎪ ⎪ ⎪+---⎝⎭⎝⎭⎝⎭11)12221n -+=-<+ 又对于任意的[2,2]a ∈-,*n ∈N ,不等式1321t n a a n +<-⋅+恒成立, 即232t a ≤-⋅对于任意的[2,2]a ∈-恒成立,21t a ∴⋅≤,[2,2]a ∈-恒成立,∴2211t t ⋅≤⇒≤-, 故答案为:(,1]-∞- 【点睛】本题考查了数列递推公式,涉及数列的求和,注意运用裂项相消求和和不等式恒成立问题的解法,关键是将1(1)1n n na n a +=++变形为11111n n a a n n n n +-=-++. 16.【解析】【分析】由题意结合均值不等式首先求得的最小值然后结合恒成立的条件得到关于a 的不等式求解不等式即可确定实数a 的取值范围【详解】由可得故:当且仅当即时等号成立故只需又则即则的取值范围是【点睛】在 解析:[)1,+∞【解析】 【分析】由题意结合均值不等式首先求得141m n ++的最小值,然后结合恒成立的条件得到关于a 的不等式,求解不等式即可确定实数a 的取值范围. 【详解】由8m n +=可得19m n ++=,故:()1411411411419191n m m n m n m n m n +⎛⎫⎛⎫+=+++=+++ ⎪ ⎪+++⎝⎭⎝⎭11419⎛⨯++= ⎝≥, 当且仅当12141n mn m mn +=⎧⎪+⎨=⎪+⎩,即3m =,5n =时等号成立,故只需11a≤,又0a >,则1a ≥. 即则a 的取值范围是[)1,+∞. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.17.【解析】【分析】根据等差数列中等差中项的性质将所求的再由等差数列的求和公式转化为从而得到答案【详解】因为数列均为等差数列所以【点睛】本题考查等差中项的性质等差数列的求和公式属于中档题 解析:238【解析】 【分析】根据等差数列中等差中项的性质,将所求的174417a a ab b b +=+,再由等差数列的求和公式,转化为77S T ,从而得到答案.【详解】因为数列{}n a 、{}n b 均为等差数列所以7474141422a a b b a a b b ==++ ()()1771777272a a S b b T +==+37223718⨯+==+ 【点睛】本题考查等差中项的性质,等差数列的求和公式,属于中档题.18.【解析】【分析】根据命题否定为真结合二次函数图像列不等式解得结果【详解】因为命题是假命题所以为真所以【点睛】本题考查命题的否定以及一元二次不等式恒成立考查基本分析求解能力属基础题解析:1,2⎛⎫+∞ ⎪⎝⎭【解析】 【分析】根据命题否定为真,结合二次函数图像列不等式,解得结果 【详解】因为命题20001:,02p x R ax x ∃∈++≤是假命题,所以21,02x R ax x ∀∈++>为真 所以011202a a a >⎧∴>⎨-<⎩ 【点睛】本题考查命题的否定以及一元二次不等式恒成立,考查基本分析求解能力,属基础题.19.【解析】【分析】根据等差数列的前项和转化为关于和的数量关系来求解【详解】等差数列的前项和为则有解得故答案为【点睛】本题考查了等差数列前项和的公式运用在解答此类题目时可以将其转换为关于和的数量关系来求解析:【解析】 【分析】根据等差数列的前n 项和转化为关于1a 和d 的数量关系来求解 【详解】Q 等差数列{}n a 的前n 项和为n S ,39S =,636S =,则有()()31613313926616362S a d S a d ⎧⨯-=+=⎪⎪⎨⨯-⎪=+=⎪⎩,解得112a d =⎧⎨=⎩78911116783213121245a a a a d a d a d a d ∴++=+++++=+=⨯+⨯=故答案为45 【点睛】本题考查了等差数列前n 项和的公式运用,在解答此类题目时可以将其转换为关于1a 和d 的数量关系来求解,也可以用等差数列和的性质来求解,较为基础。

2020-2021高三数学下期中第一次模拟试题(及答案)(14)

2020-2021高三数学下期中第一次模拟试题(及答案)(14)

2020-2021高三数学下期中第一次模拟试题(及答案)(14)一、选择题1.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( )A .2B .-4C .2或-4D .42.已知数列{}n a 的前n 项和为n S ,且1142n n a -⎛⎫=+- ⎪⎝⎭,若对任意*N n ∈,都有()143n p S n ≤-≤成立,则实数p 的取值范围是( )A .()2,3B .[]2,3C .92,2⎡⎤⎢⎥⎣⎦D .92,2⎡⎫⎪⎢⎣⎭3.设数列{}n a 的前n 项和为n S ,若2,n S ,3n a 成等差数列,则5S 的值是( ) A .243-B .242-C .162-D .2434.设,x y 满足约束条件3002x y x y x -+≥⎧⎪+≥⎨⎪≤⎩, 则3z x y =+的最小值是 A .5-B .4C .3-D .115.数列{}{},n n a b 为等差数列,前n 项和分别为,n n S T ,若3n 22n n S T n +=,则77a b =( ) A .4126B .2314C .117 D .1166.设,x y 满足约束条件0,20,240,x y x y x y -≥⎧⎪+-≥⎨⎪--≤⎩则2z x y =+的最大值为( )A .2B .3C .12D .137.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( ) A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形8.已知关于x 的不等式()224300x ax a a -+<<的解集为()12,x x ,则1212a x x x x ++的最大值是( ) ABCD. 9.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{}n a ,则()235log a a ⋅的值为( )A .8B .10C .12D .1610.已知0,0x y >>,且91x y +=,则11x y+的最小值是 A .10B .12?C .14D .1611.已知a >0,x ,y 满足约束条件1{3(3)x x y y a x ≥+≤≥-,若z=2x+y 的最小值为1,则a=A .B .C .1D .212.如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +…+7a =( ) A .14B .21C .28D .35二、填空题13.已知数列{}n a 的前n 项和为21nn S =-,则此数列的通项公式为___________.14.已知数列{}n a 中,其中199199a =,11()an n a a -=,那么99100log a =________15.已知n S 为数列{a n }的前n 项和,且22111n n n a a a ++-=-,21313S a =,则{a n }的首项的所有可能值为______16.设n S 是等差数列{}n a 的前n 项和,若510S =,105S =-,则公差d =(___). 17.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .18.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++等于______. 19.设是定义在上恒不为零的函数,对任意,都有,若,,,则数列的前项和的取值范围是__________.20.已知,x y 满足条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若目标函数=+z -ax y 取得最大值的最优解不唯一,则实数a 的值为__________.三、解答题21.已知数列{}n a 中,11a =,121n n a a n +=+-,n n b a n =+. (1)求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .22.已知点(1,2)是函数()(0,1)xf x a a a =>≠的图象上一点,数列{}n a 的前n 项和是()1n S f n =-.(1)求数列{}n a 的通项公式;(2)若1log n a n b a +=,求数列{}n n a b •的前n 项和n T 23.在ABC ∆中,角A ,B 、C 的对边分别为a ,b ,c,且cos sin bA B=. (1)求A ;(2)若2a =,且()cos 2sin sin cos B C B C C -=-,求ABC ∆的面积. 24.在ABC ∆ 中,内角,,A B C 的对边分别为,,a b c .已知cos 2cos 2cos A C c aB b--=(1) 求sin sin CA的值 (2) 若1cos ,24B b == ,求ABC ∆的面积. 25.已知n S 是数列{}n a 的前n 项之和,*111,2,n n a S na n N +==∈. (1)求数列{}n a 的通项公式; (2)设211(1)n n n n a b a a ++=-⋅⋅,数列{}n b 的前n 项和n T ,若112019n T +<,求正整数n 的最小值.26.若数列{}n a 是递增的等差数列,它的前n 项和为n T ,其中39T =,且1a ,2a ,5a 成等比数列.(1)求{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n S ,若对任意*n N ∈,24n S a a ≤-恒成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.2.B解析:B 【解析】11111444222n n S -⎛⎫⎛⎫⎛⎫=+-++-+⋅⋅⋅++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11221244133212nnn n ⎛⎫-- ⎪⎛⎫⎝⎭=+=+-⋅- ⎪⎛⎫⎝⎭-- ⎪⎝⎭()143n p S n ≤-≤Q即22113332n p ⎛⎫⎛⎫≤-⋅-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭对任意*n N ∈都成立, 当1n =时,13p ≤≤ 当2n =时,26p ≤≤当3n =时,443p ≤≤ 归纳得:23p ≤≤故选B点睛:根据已知条件运用分组求和法不难计算出数列{}n a 的前n 项和为n S ,为求p 的取值范围则根据n 为奇数和n 为偶数两种情况进行分类讨论,求得最后的结果3.B解析:B 【解析】 【分析】 【详解】因为2,,3n n S a 成等差数列,所以223n n S a =+,当1n =时,111223,2S a a =+∴=-;当2n ≥时,1113333112222n n n n n n n a S S a a a a ---=-=+--=-,即11322n n a a -=,即()132nn an a -=≥,∴数列{}n a 是首项12a =-,公比3q =的等比数列,()()55151213242113a q S q---∴===---,故选B.4.C解析:C 【解析】画出不等式组表示的可行域如图阴影部分所示.由3z x y =+可得3y x z =-+.平移直线3y x z =-+,结合图形可得,当直线3y x z =-+经过可行域内的点A 时,直线在y 轴上的截距最小,此时z 也取得最小值.由300x y x y -+=⎧⎨+=⎩,解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩,故点A 的坐标为33(,)22-.∴min 333()322z =⨯-+=-.选C . 5.A解析:A 【解析】依题意,113713113713132412226132a a a S b b b T +⋅===+⋅. 6.C解析:C 【解析】 【分析】由约束条件可得可行域,将问题变成1122y x z =-+在y 轴截距最大问题的求解;通过平移直线可确定最大值取得的点,代入可得结果. 【详解】由约束条件可得可行域如下图所示:当2z x y =+取最大值时,1122y x z =-+在y 轴截距最大 平移直线12y x =-,可知当直线1122y x z =-+过图中A 点时,在y 轴截距最大由240y xx y =⎧⎨--=⎩得:()4,4A max 42412z ∴=+⨯=故选:C 【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在y 轴截距最值问题的求解,属于常考题型.7.B解析:B 【解析】 【分析】先由ABC ∆的三个内角, , A B C 成等差数列,得出2,33B AC ππ=+=,又因为sin A 、sin B 、sin C 成等比数列,所以23sin sin sin 4B AC =⋅=,整理计算即可得出答案. 【详解】因为ABC ∆的三个内角, , A B C 成等差数列, 所以2,33B AC ππ=+=, 又因为sin A 、sin B 、sin C 成等比数列, 所以23sin sin sin 4B AC =⋅= 所以222sin sin sin sin cos sin cos333A A A A A πππ⎛⎫⎛⎫⋅-=⋅-⎪ ⎪⎝⎭⎝⎭21111132sin 2cos 2sin 22442344A A A A A π⎛⎫=+=-+=-+= ⎪⎝⎭ 即sin 213A π⎛⎫-= ⎪⎝⎭又因为203A π<< 所以3A π=故选B 【点睛】本题考查数列与三角函数的综合,关键在于求得2,33B AC ππ=+=,再利用三角公式转化,属于中档题.8.D解析:D 【解析】:不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),根据韦达定理,可得:2123x x a =,x 1+x 2=4a ,那么:1212a x x x x ++=4a +13a. ∵a <0, ∴-(4a +13a )=3,即4a +13a ≤-3 故1212a x x x x ++的最大值为3-. 故选D .点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.9.C解析:C 【解析】 【分析】数列{}n a ,是等比数列,公比为2,前7项和为1016,由此可求得首项1a ,得通项公式,从而得结论. 【详解】Q 最下层的“浮雕像”的数量为1a ,依题有:公比()717122,7,101612a q n S -====-,解得18a =,则()12*82217,n n n a n n N -+=⨯=≤≤∈,57352,2a a ∴==,从而()()571212352352222,log log 212a a a a ⋅=⨯=∴⋅==,故选C .【点睛】本题考查等比数列的应用.数列应用题求解时,关键是根据题设抽象出数列的条件,然后利用数列的知识求解.10.D解析:D 【解析】 【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1, ∴()11119999110216y x y xx y x y x y x y x y ⎛⎫+=+⋅+=+++≥+⋅= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D. 【点睛】本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.11.B解析:B 【解析】 【分析】 【详解】画出不等式组表示的平面区域如图所示:当目标函数z=2x+y 表示的直线经过点A 时,z 取得最小值,而点A 的坐标为(1,2a -),所以221a -=,解得12a =,故选B. 【考点定位】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.12.C解析:C 【解析】试题分析:等差数列{}n a 中,34544123124a a a a a ++=⇒=∴=,则()()174127477272822a a a a a a a +⨯+++====L考点:等差数列的前n 项和二、填空题13.【解析】【分析】由数列的前项和为得时得出;验证时是否满足即可【详解】当时当时又所以故答案为:【点睛】本题考查了由数列的前项和公式推导通项公式的计算问题;解题时需验证时是否满足是基础题解析:12n n a -=【解析】 【分析】由数列{}n a 的前n 项和为23nn S =-,得2n >时1123n n S --=-,,得出1n n n a S S -=-;验证1n =时11a S =是否满足n a 即可. 【详解】当1n =时,11211a S ==-=, 当2n ≥时,()11121212nn n n n n a S S ---=-=---=,又1121-=,所以12n n a -=. 故答案为:12n n a -=.【点睛】本题考查了由数列{}n a 的前n 项和公式n S 推导通项公式n a 的计算问题;解题时,需验证1n =时11a S =是否满足n a ,是基础题.14.1【解析】【分析】由已知数列递推式可得数列是以为首项以为公比的等比数列然后利用等比数列的通项公式求解【详解】由得则数列是以为首项以为公比的等比数列故答案为:1【点睛】本题考查数列的递推关系等比数列通解析:1 【解析】【分析】由已知数列递推式可得数列99{log }n a 是以199991991log 9999log a ==为首项,以19999为公比的等比数列,然后利用等比数列的通项公式求解. 【详解】由11()an n a a -=,得991991log log n n a a a -=,∴199991991l 9og log 9n n a a a -==, 则数列99{log }n a 是以199991991log 9999log a ==为首项,以19999为公比的等比数列, ∴19999991001log (99)199a =⋅=. 故答案为:1. 【点睛】本题考查数列的递推关系、等比数列通项公式,考查运算求解能力,特别是对复杂式子的理解.15.【解析】【分析】根据题意化简得利用式相加得到进而得到即可求解结果【详解】因为所以所以将以上各式相加得又所以解得或【点睛】本题主要考查了数列的递推关系式应用其中解答中利用数列的递推关系式得到关于数列首解析:34,- 【解析】 【分析】根据题意,化简得22111n n n a a a ++-=-,利用式相加,得到2213113112S a a a --=-,进而得到211120a a --=,即可求解结果.【详解】因为22111n n n a a a ++-=-,所以22111n n n a a a ++-=-, 所以2222222213321313121,1,,1a a a a a a a a a -=--=--=-L ,将以上各式相加,得2213113112S a a a --=-,又21313S a =,所以211120a a --=,解得13a =-或14a =.【点睛】本题主要考查了数列的递推关系式应用,其中解答中利用数列的递推关系式,得到关于数列首项的方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.16.【解析】【分析】根据两个和的关系得到公差条件解得结果【详解】由题意可知即又两式相减得【点睛】本题考查等差数列和项的性质考查基本分析求解能力属基础题解析:1-【解析】【分析】根据两个和的关系得到公差条件,解得结果.【详解】由题意可知,10551015S S -=--=-,即67891015a a a a a ++++=-,又1234510a a a a a ++++=,两式相减得2525d =-,1d =-.【点睛】本题考查等差数列和项的性质,考查基本分析求解能力,属基础题.17.【解析】【分析】【详解】由题意解得或者而数列是递增的等比数列所以即所以因而数列的前项和故答案为考点:1等比数列的性质;2等比数列的前项和公式解析:21n -【解析】【分析】【详解】由题意,14231498a a a a a a +=⎧⎨⋅=⋅=⎩,解得141,8a a ==或者148,1a a ==, 而数列{}n a 是递增的等比数列,所以141,8a a ==, 即3418a q a ==,所以2q =, 因而数列{}n a 的前n 项和1(1)1221112n nn n a q S q --===---,故答案为21n -. 考点:1.等比数列的性质;2.等比数列的前n 项和公式.18.【解析】【分析】根据等差数列的前项和转化为关于和的数量关系来求解【详解】等差数列的前项和为则有解得故答案为【点睛】本题考查了等差数列前项和的公式运用在解答此类题目时可以将其转换为关于和的数量关系来求 解析:【解析】【分析】根据等差数列的前n 项和转化为关于1a 和d 的数量关系来求解【详解】Q 等差数列{}n a 的前n 项和为n S ,39S =,636S =,则有()()31613313926616362S a d S a d ⎧⨯-=+=⎪⎪⎨⨯-⎪=+=⎪⎩,解得112a d =⎧⎨=⎩78911116783213121245a a a a d a d a d a d ∴++=+++++=+=⨯+⨯=故答案为45【点睛】本题考查了等差数列前n 项和的公式运用,在解答此类题目时可以将其转换为关于1a 和d 的数量关系来求解,也可以用等差数列和的性质来求解,较为基础。

2020-2021高三数学下期中第一次模拟试题(附答案)(2)

2020-2021高三数学下期中第一次模拟试题(附答案)(2)

2020-2021高三数学下期中第一次模拟试题(附答案)(2)一、选择题1.下列结论正确的是( ) A .若a b >,则22ac bc > B .若22a b >,则a b > C .若,0a b c ><,则a c b c +<+ D<a b <2.若0a b <<,则下列不等式恒成立的是 A .11a b> B .a b -> C .22a b > D .33a b <3.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712 B .714 C .74D .784.已知等比数列{}n a 的各项都是正数,且13213,,22a a a 成等差数列,则8967a a a a +=+ A .6B .7C .8D .95.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项的和S 18=12,则数列{|a n |}的前18项和T 18的值是 ( ) A .24B .48C .60D .846.已知变量x , y 满足约束条件13230x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最小值为( )A .1B .2C .3D .67.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是( )A .4B .2C .2-D .4-8.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则313233310log log log log a a a a +++⋅⋅⋅+=( )A .10B .12C .31log 5+D .32log 5+9.若正数,x y 满足20x y xy +-=,则32x y+的最大值为( ) A .13B .38C .37D .110.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<11.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c,若sin 2sin 0b A B +=,3b c =,则ca的值为( )A .1B .3 C .5 D .7712.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9B .22C .36D .66二、填空题13.已知实数,且,则的最小值为____14.在平面直角坐标系中,设点()0,0O ,(3A ,点(),P x y 的坐标满足303200x y x y -≤+≥⎨⎪≥⎪⎩,则OA u u u v 在OP uuu v 上的投影的取值范围是__________ 15.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若三角形的面积2223)4S a b c =+-,则角C =__________. 16.已知等比数列{}n a 的公比为2,前n 项和为n S ,则42S a =______. 17.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知274sincos 222A B C +-=,且5,7a b c +==,则ab 为 .18.已知数列111112123123n+++++++L L L ,,,,,,则其前n 项的和等于______. 19.已知120,0,2a b a b>>+=,2+a b 的最小值为_______________. 20.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T 若对任意自然数n 都有2343n n S n T n -=-,则935784a ab b b b +++的值为_______. 三、解答题21.在等差数列{}n a 中,36a =,且前7项和756T =. (1)求数列{}n a 的通项公式;(2)令3nn n b a =⋅,求数列{}n b 的前n 项和n S .22.如图,在四边形ABCD 中,72,AC CD AD ==2.3ADC π∠=(1)求CAD ∠的正弦值;(2)若2BAC CAD ∠=∠,且△ABC 的面积是△ACD 面积的4倍,求AB 的长. 23.已知{}n a 是递增数列,其前n 项和为n S ,11a >,且10(21)(2)n n n S a a =++,*n ∈N . (Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)是否存在*,,m n k N ∈使得2()m n k a a a +=成立?若存在,写出一组符合条件的,,m n k 的值;若不存在,请说明理由;(Ⅲ)设32n n n b a -=-,若对于任意的*n N ∈,不等式 125111(1)(1)(1)3123n m b b b n ≤++++L m 的最大值. 24.已知数列{}n a 是等差数列,数列{}n b 是公比大于零的等比数列,且112a b ==,338a b ==.(1)求数列{}n a 和{}n b 的通项公式; (2)记n n b c a =,求数列{}n c 的前n 项和n S .25.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==. (I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .26.已知等差数列{}n a 的前n 项和为n S ,且211a =,7161S =. (1)求数列{}n a 的通项公式; (2)若11n n n b a a +=,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】选项A 中,当c=0时不符,所以A 错.选项B 中,当2,1a b =-=-时,符合22a b >,不满足a b >,B 错.选项C 中, a c b c +>+,所以C 错.选项D 中,因为0≤<,由不等式的平方法则,22<,即a b <.选D.2.D解析:D 【解析】 ∵0a b << ∴设1,1a b =-= 代入可知,,A B C 均不正确对于D ,根据幂函数的性质即可判断正确 故选D3.D解析:D 【解析】因为11,8m n m n a a a a +=+=,所以2112,4a a == 42122a a ==,3123,8a a a =+= 73478a a a =+=.选D.4.D解析:D 【解析】 【分析】设各项都是正数的等比数列{a n }的公比为q ,(q >0),由题意可得关于q 的式子,解之可得q ,而所求的式子等于q 2,计算可得. 【详解】设各项都是正数的等比数列{a n }的公比为q ,(q >0)由题意可得31212322a a a ⨯=+, 即q 2-2q-3=0, 解得q=-1(舍去),或q=3,故()26728967679a a qa a q a a a a .++===++ 故选:D . 【点睛】本题考查等差数列和等比数列的通项公式,求出公比是解决问题的关键,属基础题.5.C解析:C 【解析】试题分析:∵11011101100000a a a d a a ⋅∴>,<,<,>,<, ∴18110111810181060T a a a a S S S =+⋯+--⋯-=--=(),选C . 考点:1.等差数列的求和;2.数列的性质.6.A解析:A 【解析】 【分析】画出可行域,平移基准直线20x y +=到可行域边界的点()1,1C -处,由此求得z 的最小值. 【详解】画出可行域如下图所示,平移基准直线20x y +=到可行域边界的点()1,1C -处,此时z 取得最小值为()2111⨯+-=. 故选:A.【点睛】本小题主要考查线性规划问题,考查数形结合的数学思想方法,属于基础题.7.C解析:C 【解析】 【分析】利用n S 先求出n a ,然后计算出结果. 【详解】根据题意,当1n =时,11224S a λ==+,142a λ+∴=, 故当2n ≥时,112n n n n a S S --=-=,Q 数列{}n a 是等比数列,则11a =,故412λ+=, 解得2λ=-,故选C . 【点睛】本题主要考查了等比数列前n 项和n S 的表达形式,只要求出数列中的项即可得到结果,较为基础.8.A解析:A 【解析】 【分析】利用对数运算合并,再利用等比数列{}n a 的性质求解。

2020-2021高三数学下期中第一次模拟试题含答案(14)高考模拟题

2020-2021高三数学下期中第一次模拟试题含答案(14)高考模拟题

1 ,且 10 Sn
(2an 1)(an
2) , n N * .
(Ⅰ )求数列 an 的通项 an ;
(Ⅱ )是否存在 m, n, k N * 使得 2(am an ) ak 成立?若存在,写出一组符合条件的
m, n, k 的值;若不存在,请说明理由;
(Ⅲ )设 bn
an
n3 ,若对于任意的 n
N * ,不等式
11. 已知等比数列 an 的各项均为正数,若 log 3 a1 log 3 a2
log 3 a12 12 ,则 a6a7
=( )
A. 1
B. 3
C. 6
D. 9
12. 在 ABC 中,内角 A, B, C 所对的边分别为 a,b, c ,若 b sin 2 A 3asin B 0 ,
b 3c ,则 c 的值为(
17. 已知数列 1, 1 , 1 ,L ,
1
,L ,则其前 n 项的和等于 ______.
1 21 2 3 1 2 3 L n
18. 已知数列 an 满足 a1 1, an 1 3an 2 ,则数列 an 的通项公式为 ________.
19. 数列 {bn } 中, b1 1,b2 5 且 bn 2 bn 1 bn (n N * ) ,则 b2016 ___________.
用余弦定理构造关于边角关系的方程,从而求得边长
.
3.D
解析: D 【解析】
解:由数列的递推关系可得: an 1 1 2 an 1 , a1 1 2 ,
据此可得:数列 an 1 是首项为 2 ,公比为 2 的等比数列,则: an 1 2 2n 1, an 2n 1 ,
分组求和有: S5
本题选择 D选项 .

2020-2021高三数学下期中模拟试卷含答案(4)

2020-2021高三数学下期中模拟试卷含答案(4)

2020-2021高三数学下期中模拟试卷含答案(4)一、选择题1.若正实数x ,y 满足141x y +=,且234yx a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-2.在ABC ∆中,2AC =,22BC =,135ACB ∠=o ,过C 作CD AB ⊥交AB 于D ,则CD =( ) A .25B .2C .3D .53.在中,,,,则A .B .C .D .4.已知实数x 、y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .15.已知等差数列{}n a ,前n 项和为n S ,5628a a +=,则10S =( ) A .140B .280C .168D .566.“0x >”是“12x x+≥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.已知函数22()()()n n f n n n 为奇数时为偶数时⎧=⎨-⎩,若()(1)n a f n f n =++,则123100a a a a ++++=LA .0B .100C .100-D .102008.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x x =;④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④9.已知,x y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3x y -的最小值为( )A .4B .8C .12D .1610.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是( )A .()8,10B .()22,10C .()22,10D .()10,811.若ln 2ln 3ln 5,,235a b c ===,则 A .a b c << B .c a b << C .c b a <<D .b a c <<12.已知等比数列{}n a 的前n 项和为n S ,11a =,且满足21,,n n n S S S ++成等差数列,则3a 等于( ) A .12B .12-C .14D .14-二、填空题13.如图,在ABC V 中,,43C BC π==时,点D 在边AC 上, AD DB =,DE AB ⊥,E 为垂足若22DE =,则cos A =__________14.(广东深圳市2017届高三第二次(4月)调研考试数学理试题)我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法---“三斜求积术”,即ABC △的面积222222142a c b S a c ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,其中a b c 、、分别为ABC △内角、、A B C 的对边.若2b =,且3sin tan 13cos BC B=-,则ABC △的面积S 的最大值为__________.15.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是__________. 16.若正数,a b 满足3ab a b =++,则+a b 的取值范围_______________。

2020-2021高三数学下期中第一次模拟试卷带答案

2020-2021高三数学下期中第一次模拟试卷带答案

2020-2021高三数学下期中第一次模拟试卷带答案一、选择题1.设,x y 满足约束条件 202300x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩,则46y x ++的取值范围是A .3[3,]7- B .[3,1]- C .[4,1]-D .(,3][1,)-∞-⋃+∞2.已知数列{}n a 的前n 项和为n S ,点(,3)n n S +*()n N ∈在函数32x y =⨯的图象上,等比数列{}n b 满足1n n n b b a ++=*()n N ∈,其前n 项和为n T ,则下列结论正确的是( )A .2n n S T =B .21n n T b =+C .n n T a >D .1n n T b +<3.设x y ,满足约束条件70310,350x y x y x y +-⎧⎪-+⎨⎪--⎩,,………则2z x y =-的最大值为( ).A .10B .8C .3D .24.在△ABC 中,若1tan 15013A C BC ︒===,,,则△ABC 的面积S 是( ) ABCD5.在等差数列{}n a 中,若1091a a <-,且它的前n 项和n S 有最大值,则使0n S >成立的正整数n 的最大值是( ) A .15B .16C .17D .146.数列{}n a 为等比数列,若11a =,748a a =,数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则5(S = )A .3116B .158C .7D .317.在数列{}n a 中,12a =,11ln(1)n n a a n +=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++8.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是( )A .()8,10B.(C.()D.)9.,x y 满足约束条件362000x y x y x y -≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则23a b+的最小值为 ( ) A .256B .25C .253D .510.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,若(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,则ABC V 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形11.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)- 12.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c,若sin 2sin 0b A B +=,b =,则ca的值为( )A .1B.3CD.7二、填空题13.ABC ∆的内角,,A B C 的对边分别为,,a b c,已知)cos cos ,60a C c A b B -==︒,则A 的大小为__________.14.在等差数列{}n a 中,12a =,3510a a +=,则7a = . 15.设0a >,若对于任意满足8m n +=的正数m ,n ,都有1141a m n ++≤,则a 的取值范围是______.16.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是__________. 17.若数列{}n a 满足11a =,()()11132nn n n a a -+-+=⋅ ()*n N ∈,数列{}n b 的通项公式()()112121n n n n a b ++=-- ,则数列{}n b 的前10项和10S =___________18.在无穷等比数列{}n a中,121a a ==,则()1321lim n n a a a -→∞++⋯+=______. 19.如图所示,位于A 处的信息中心获悉:在其正东方向40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ=______________.20.设等差数列{}na 的前n 项和为n S .若35a =,且1S ,5S ,7S 成等差数列,则数列{}n a 的通项公式n a =____.三、解答题21.设函数()112f x x =++|x |(x ∈R)的最小值为a . (1)求a ;(2)已知两个正数m ,n 满足m 2+n 2=a ,求11m n+的最小值. 22.已知在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,sin tan cos sin tan cos b B C b B a A C a A -=-. (1)求证:A B =;(2)若3c =3cos 4C =,求ABC ∆的周长.23.在ABC △中,内角,,A B C 所对的边分别为,,a b c ,且()sin 2sin 0b A a A C -+=. (1)求角A ;(2)若3a =,ABC △的面积为332,求11b c +的值.24.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T . 25.设各项均为正数的数列{a n }的前n 项和为S n ,满足:对任意的n ∈N *,都有a n +1+S n +1=1,又a 112=. (1)求数列{a n }的通项公式;(2)令b n =log 2a n ,求12231111n n b b b b b b L ++++(n ∈N *) 26.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知0ccosB bsinC -=,2cosA cos A =.()1求C ;()2若2a =,求,ABC V 的面积ABC S V【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】 先作可行域,而46y x ++表示两点P (x,y )与A (-6,-4)连线的斜率,所以46y x ++的取值范围是[,][3,1]AD AC k k =-,选B.点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.2.D解析:D 【解析】 【分析】 【详解】由题意可得:332,323n nn n S S +=⨯=⨯- ,由等比数列前n 项和的特点可得数列{}n a 是首项为3,公比为2的等比数列,数列的通项公式:132n n a -=⨯ ,设11n nb b q -= ,则:111132n n n b q b q --+=⨯ ,解得:11,2b q == ,数列{}n b 的通项公式12n nb -= ,由等比数列求和公式有:21nn T =- ,考查所给的选项:13,21,,n n n n n n n n S T T b T a T b +==-<< .本题选择D 选项.3.B解析:B 【解析】 【分析】作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数即可求解. 【详解】 作出可行域如图:化目标函数为2y x z =-,联立70310x y x y +-=⎧⎨-+=⎩,解得5,2A(). 由图象可知,当直线过点A 时,直线在y 轴上截距最小,z 有最大值25-28⨯=. 【点睛】本题主要考查了简单的线性规划,数形结合的思想,属于中档题.4.A解析:A 【解析】 【分析】由正弦定理求出c , 【详解】A 是三角形内角,1tan 3A =,∴10sin A =由正弦定理sin sin a c A C=得sin sin 10a C c A ===, 又2222cos c a b ab C =+-,即22512cos15012b b b =+-︒=+,2302b +-=,32b =(32b =舍去),∴11sin 122ABC S ab C ∆==⨯︒=. 故选:A . 【点睛】本题考查正弦定理、余弦定理、三角形面积公式,考查同角间的三角函数关系.解三角形中公式较多,解题时需根据已知条件确定先选用哪个公式,再选用哪个公式.要有统筹安排,不致于凌乱.5.C解析:C 【解析】 【分析】由题意可得90a >,100a <,且9100a a +<,由等差数列的性质和求和公式可得结论. 【详解】∵等差数列{}n a 的前n 项和有最大值, ∴等差数列{}n a 为递减数列,又1091a a <-, ∴90a >,100a <, ∴9100a a +<, 又()118181802a a S +=<,()117179171702a a S a +==>,∴0n S >成立的正整数n 的最大值是17, 故选C . 【点睛】本题考查等差数列的性质,涉及等差数列的求和公式,属中档题.6.A解析:A 【解析】 【分析】先求等比数列通项公式,再根据等比数列求和公式求结果.【详解】Q 数列{}n a 为等比数列,11a =,748a a =,638q q ∴=,解得2q =, 1112n n n a a q --∴==, Q 数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S , 55111111131211248161612S ⎛⎫⨯- ⎪⎝⎭∴=++++==-.故选A . 【点睛】本题考查等比数列通项公式与求和公式,考查基本分析求解能力,属基础题.7.A解析:A 【解析】 【分析】 【详解】试题分析:在数列{}n a 中,11ln 1n n a a n +⎛⎫-=+ ⎪⎝⎭112211()()()n n n n n a a a a a a a a ---∴=-+-+⋅⋅⋅⋅⋅⋅+-+12lnln ln 2121n n n n -=++⋅⋅⋅⋅⋅⋅++-- 12ln()2121n n n n -=⋅⋅⋅⋅⋅⋅⋅⋅+-- ln 2n =+ 故选A. 8.B 解析:B 【解析】 【分析】根据大边对大角定理知边长为1所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出a 的取值范围. 【详解】由题意知,边长为1所对的角不是最大角,则边长为3或a 所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到2222221313a a⎧+>⎨+>⎩,由于0a >,解得2210a <<,故选C . 【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:A 为锐角cos 0A ⇔>;A 为直角cos 0A ⇔=;A 为钝角cos 0A ⇔<. 9.A 解析:A 【解析】 【分析】先画不等式组表示的平面区域,由图可得目标函数(0,0)z ax by a b =+>>何时取最大值,进而找到a b ,之间的关系式236,a b +=然后可得23123()(23)6a b a b a b+=++,化简变形用基本不等式即可求解。

2020-2021高三数学下期中第一次模拟试卷及答案

2020-2021高三数学下期中第一次模拟试卷及答案

2020-2021高三数学下期中第一次模拟试卷及答案一、选择题1.已知数列{}n a 的前n 项和2n S n =,()1nn n b a =-则数列{}n b 的前n 项和n T 满足( ) A .()1nn T n =-⨯ B .n T n = C .n T n =-D .,2,.n n n T n n ⎧=⎨-⎩为偶数,为奇数2.若函数y =f (x )满足:集合A ={f (n )|n ∈N *}中至少有三个不同的数成等差数列,则称函数f (x )是“等差源函数”,则下列四个函数中,“等差源函数”的个数是( ) ①y =2x +1;②y =log 2x ;③y =2x +1;④y =sin44x ππ+()A .1B .2C .3D .43.一个递增的等差数列{}n a ,前三项的和12312a a a ++=,且234,,1a a a +成等比数列,则数列{}n a 的公差为 ( ) A .2±B .3C .2D .14.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形5.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞6.设数列{}n a 是等差数列,且26a =-,86a =,n S 是数列{}n a 的前n 项和,则( ). A .45S S <B .45S S =C .65S S <D .65S S =7.朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为1f ,第七个音的频率为2f ,则21f f = A.BCD8.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{}n a ,则()235log a a ⋅的值为( ) A .8B .10C .12D .169.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23 D .1610.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2 B .4 C .16D .8 11.设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项( )A .B .9C .18D .3612.若正数,x y 满足40x y xy +-=,则3x y+的最大值为 A .13B .38C .37D .1二、填空题13.若首项为1a ,公比为q (1q ≠)的等比数列{}n a 满足21123lim()2n n a q a a →∞-=+,则1a 的取值范围是________.14.已知数列{}n a 满足:11a =,{}112,,,n n n a a a a a +-∈⋅⋅⋅()*n ∈N ,记数列{}n a 的前n项和为n S ,若对所有满足条件的{}n a ,10S 的最大值为M 、最小值为m ,则M m +=______.15.计算:23lim 123n n nn→+∞-=++++L ________16.已知0,0x y >>,1221x y +=+,则2x y +的最小值为 . 17.如图,无人机在离地面高200m 的A 处,观测到山顶M 处的仰角为15°、山脚C 处的俯角为45°,已知∠MCN=60°,则山的高度MN 为_________m.18.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++等于______. 19.设数列{a n }的首项a 1=32,前n 项和为S n ,且满足2a n +1+S n =3(n ∈N *),则满足2188177n n S S <<的所有n 的和为________. 20.设2a b +=,0b >,则当a =_____时,1||2||a a b+取得最小值. 三、解答题21.设}{n a 是等差数列,公差为d ,前n 项和为n S . (1)设140a =,638a =,求n S 的最大值.(2)设11a =,*2()na nb n N =∈,数列}{n b 的前n 项和为n T ,且对任意的*n N ∈,都有20n T ≤,求d 的取值范围.22.已知锐角ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且满足22sin sin 1cos A C B =-.(1)若2a =,22c =,求b ; (2)若14sin 4B =,3a =,求b . 23.如图,在ABC ∆中,45B ︒∠=,10AC =,25cos 5C ∠=点D 是AB 的中点, 求(1)边AB 的长;(2)cos A 的值和中线CD 的长24.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==. (I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .25.若数列{}n a 是递增的等差数列,它的前n 项和为n T ,其中39T =,且1a ,2a ,5a 成等比数列.(1)求{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n S ,若对任意*n N ∈,24n S a a ≤-恒成立,求a 的取值范围.26.在ABC ∆角中,角A 、B 、C 的对边分别是a 、b 、c,若asinB =. (1)求角A ;(2)若ABC ∆的面积为5a =,求ABC ∆的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】先根据2n S n =,求出数列{}n a 的通项公式,然后利用错位相减法求出{}n b 的前n 项和n T .【详解】解:∵2n S n =,∴当1n =时,111a S ==;当2n ≥时,()221121n n n a S S n n n -=-=--=-, 又当1n =时,11a =符合上式,∴21n a n =-, ∴()()()1121n nn n b a n =-=--,∴()()()()()123113151121nn T n =⨯-+⨯-+⨯-+⋅⋅⋅+--①,∴()()()()()2341113151121n n T n +-=⨯-+⨯-+⨯-+⋅⋅⋅+--②,①-②,得()()()()()()23412121111211n n n T n +⎡⎤=-+⨯-+-+-+⋅⋅⋅+---⨯-⎣⎦()()()()()()211111122112111n n n n n -+⎡⎤---⎣⎦=-+⨯--⨯-=---,∴()1nn T n =-,∴数列{}n b 的前n 项和()1nn T n =-.故选:A . 【点睛】本题考查了根据数列的前n 项和求通项公式和错位相减法求数列的前n 项和,考查了计算能力,属中档题.2.C解析:C 【解析】①y =2x +1,n ∈N *,是等差源函数;②因为log 21,log 22,log 24构成等差数列,所以y =log 2x 是等差源函数;③y =2x +1不是等差源函数,因为若是,则2(2p +1)=(2m +1)+(2n +1),则2p +1=2m +2n ,所以2p +1-n =2m -n +1,左边是偶数,右边是奇数,故y =2x +1不是等差源函数; ④y =sin 44x ππ⎛⎫+⎪⎝⎭是周期函数,显然是等差源函数.答案:C.3.C解析:C 【解析】 【分析】 【详解】解:∵234,,1a a a +成等比数列, ∴,∵数列{}n a 为递增的等差数列,设公差为d , ∴,即,又数列{}n a 前三项的和,∴,即,即d =2或d =−2(舍去), 则公差d =2. 故选:C .4.C解析:C 【解析】 【分析】由sin :sin :sin 5:11:13A B C =,得出::5:11:13a b c =,可得出角C 为最大角,并利用余弦定理计算出cos C ,根据该余弦值的正负判断出该三角形的形状. 【详解】由sin :sin :sin 5:11:13A B C =,可得出::5:11:13a b c =, 设()50a t t =>,则11b t =,13c t =,则角C 为最大角,由余弦定理得2222222512116923cos 022511110a b c t t t C ab t t +-+-===-<⨯⨯,则角C 为钝角,因此,ABC ∆为钝角三角形,故选C. 【点睛】本题考查利用余弦定理判断三角形的形状,只需得出最大角的属性即可,但需结合大边对大角定理进行判断,考查推理能力与计算能力,属于中等题.5.A解析:A 【解析】分析:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b +++=,可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭,化简整理即可得出. 详解:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b+++=, 可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭, 化为()()2540a b a b +-++≤, 解得14a b ≤+≤, 则+a b 的取值范围是[]1,4. 故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.6.B解析:B 【解析】分析:由等差数列的性质,即2852a a a +=,得5=0a ,又由545S S a =+,得54S S =. 详解:Q 数列{}n a 为等差数列, 2852a a a ∴+=又286,6a a =-=Q ,5=0a ∴由数列前n 项和的定义545S S a =+,54S S ∴= 故选B.点睛:本题考查等差数列的性质与前n 项和计算的应用,解题时要认真审题,注意灵活运用数列的基本概念与性质.7.D解析:D 【解析】 【分析】:先设第一个音的频率为a ,设相邻两个音之间的频率之比为q ,得出通项公式, 根据最后一个音是最初那个音的频率的2倍,得出公比,最后计算第三个音的频率与第七个音的频率的比值。

2020-2021高三数学下期中一模试题(带答案)(4)

2020-2021高三数学下期中一模试题(带答案)(4)

2020-2021高三数学下期中一模试题(带答案)(4)一、选择题1.等差数列{}n a 中,已知70a >,390a a +<,则{}n a 的前n 项和n S 的最小值为( ) A .4SB .5SC .6SD .7S2.若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅< ,则使0n S >成立的最大自然数n 是( ) A .198B .199C .200D .2013.已知实数,x y 满足0{20x y x y -≥+-≤则2y x -的最大值是( )A .-2B .-1C .1D .2 4.已知函数223log ,0(){1,0x x f x x x x +>=--≤,则不等式()5f x ≤的解集为 ( )A .[]1,1-B .[]2,4-C .(](),20,4-∞-⋃D .(][],20,4-∞-⋃ 5.在ABC ∆中,角,,A B C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A =6.已知x ,y 均为正实数,且111226x y +=++,则x y +的最小值为( ) A .20B .24C .28D .327.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b +=+( )A .49B .378C .7914D .149248)63a -≤≤的最大值为( )A .9B .92C .3 D 9.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( ) A .12B.10C .D .10.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .1311.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( )A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦12.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .(][),42,-∞-+∞U C .()2,4-D .(][),24,-∞-⋃+∞二、填空题13.若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.14.若首项为1a ,公比为q (1q ≠)的等比数列{}n a 满足21123lim()2n n a q a a →∞-=+,则1a 的取值范围是________.15.已知0a >,0b >,当()214a b ab++取得最小值时,b =__________. 16.等差数列{}n a 前9项的和等于前4项的和.若141,0k a a a =+=,则k = .17.设0x >,则231x x x +++的最小值为______.18.已知数列的前项和,则_______.19.已知等比数列{}n a 的首项为2,公比为2,则112n na a a a a a a a +=⋅⋅⋅L _______________.20.若两个正实数,x y 满足141x y +=,且不等式234yx m m +<-有解,则实数m 的取值范围是____________ .三、解答题21.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值.22.已知锐角ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且满足22sin 1cos A C B =-.(1)若2a =,22c =b ; (2)若14sin 4B =,3a =b .23.在公差不为0的等差数列{}n a 中,1a ,3a ,9a 成公比为3a 的等比数列,又数列{}n b 满足*2,21,()2,2,n a n n k b k N n n k ⎧=-=∈⎨=⎩. (1)求数列{}n a 的通项公式; (2)求数列{}n b 的前2n 项和2n T .24.在△ABC 中,a , b , c 分别为内角A , B , C 的对边,且2sin (2)sin (2)sin .a A b c B c b C =+++(Ⅰ)求A 的大小; (Ⅱ)求sin sin B C +的最大值. 25.设数列的前项和为,且.(1)求数列的通项公式; (2)设,求数列的前项和.26.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知0ccosB bsinC -=,2cosA cos A =.()1求C ;()2若2a =,求,ABC V 的面积ABC S V【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】先通过数列性质判断60a <,再通过数列的正负判断n S 的最小值. 【详解】∵等差数列{}n a 中,390a a +<,∴39620a a a +=<,即60a <.又70a >,∴{}n a 的前n 项和n S 的最小值为6S . 故答案选C 【点睛】本题考查了数列和的最小值,将n S 的最小值转化为{}n a 的正负关系是解题的关键.2.A解析:A【解析】 【分析】先根据10a >,991000a a +>,991000a a ⋅<判断出991000,0a a ><;然后再根据等差数列前n 项和公式和等差中项的性质,即可求出结果. 【详解】∵991000a a ⋅<, ∴99a 和100a 异号; ∵1991000,0a a a >+>,991000,0a a ∴><, 有等差数列的性质可知,等差数列{}n a 的公差0d <, 当99,*n n N ≤∈时,0n a >;当100,*n n N ≥∈时,0n a <; 又()()119899100198198198022a a a a S +⨯+⨯==> ,()119919910019919902a a S a+⨯==<,由等差数列的前n 项和的性质可知,使前n 项和0n S >成立的最大自然数n 是198. 故选:A . 【点睛】本题主要考查了等差数列的性质.考查了学生的推理能力和运算能力.3.C解析:C 【解析】作出可行域,如图BAC ∠内部(含两边),作直线:20l y x -=,向上平移直线l ,2z y x =-增加,当l 过点(1,1)A 时,2111z =⨯-=是最大值.故选C .4.B解析:B 【解析】分析:根据分段函数,分别解不等式,再求出并集即可.详解:由于()223log ,01,0x x f x x x x +>⎧=⎨--≤⎩,当x >0时,3+log 2x≤5,即log 2x≤2=log 24,解得0<x≤4, 当x≤0时,x 2﹣x ﹣1≤5,即(x ﹣3)(x+2)≤0,解得﹣2≤x≤0, ∴不等式f (x )≤5的解集为[﹣2,4], 故选B .点睛:本题考查了分段函数以及不等式的解法和集合的运算,分段函数的值域是将各段的值域并到一起,分段函数的定义域是将各段的定义域并到一起,分段函数的最值,先取每段的最值,再将两段的最值进行比较,最终取两者较大或者较小的.5.A解析:A 【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.6.A解析:A 【解析】分析:由已知条件构造基本不等式模型()()224x y x y +=+++-即可得出. 详解:,x y Q 均为正实数,且111226x y +=++,则116122x y ⎛⎫+= ⎪++⎝⎭(2)(2)4x y x y ∴+=+++-116()[(2)(2)]422x y x y =++++-++226(2)46(242022y x x y ++=++-≥+-=++ 当且仅当10x y ==时取等号.x y ∴+的最小值为20. 故选A.点睛:本题考查了基本不等式的性质,“一正、二定、三相等”.7.D解析:D 【解析】 【分析】根据等差数列的性质前n 项和的性质进行求解即可.【详解】因为等差数列{}n a 和{}n b ,所以2201111715111122a a a a b b b b +==+,又211121S a =,211121T b =, 故令21n =有2121721214921324S T ⨯+==+,即1111211492124a b =,所以111114924a b = 故选:D. 【点睛】本题主要考查等差数列的等和性质:若{}n a 是等差数列,且(,,,*)m n p q m n p q N +=+∈,则m n p q a a a a +=+ 与等差数列{}n a 前n 项和n S 的性质*21(21),()n n S n a n N -=-∈8.B解析:B 【解析】 【分析】根据369a a -++=是常数,可利用用均值不等式来求最大值. 【详解】 因为63a -≤≤, 所以30,60a a ->+> 由均值不等式可得:36922a a -++≤= 当且仅当36a a -=+,即32a =-时,等号成立, 故选B. 【点睛】本题主要考查了均值不等式,属于中档题.9.A解析:A 【解析】由已知24356a a q q +=+=,∴22q =,∴25735()2612a a q a a +=+=⨯=,故选A.10.D解析:D 【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=, ∴1134101313()13()1322a a a a S ++===,故选D.考点:等差数列的通项公式、前n 项和公式.11.A解析:A 【解析】 【分析】利用分离常数法得出不等式2a x x >-在[]15x ∈,上成立,根据函数()2f x x x=-在[]15x ∈,上的单调性,求出a 的取值范围【详解】关于x 的不等式220x ax +->在区间[]1,5上有解22ax x ∴>-在[]15x ∈,上有解 即2a x x>-在[]15x ∈,上成立,设函数数()2f x x x=-,[]15x ∈,()2210f x x ∴'=--<恒成立 ()f x ∴在[]15x ∈,上是单调减函数且()f x 的值域为2315⎡⎤-⎢⎥⎣⎦, 要2a x x >-在[]15x ∈,上有解,则235a >- 即a 的取值范围是23,5⎛⎫-+∞ ⎪⎝⎭故选A 【点睛】本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.12.A解析:A 【解析】 【分析】若222x y m m +>+恒成立,则2x y +的最小值大于22m m +,利用均值定理及“1”的代换求得2x y +的最小值,进而求解即可. 【详解】 由题,因为211x y+=,0x >,0y >,所以()2142224448x y x y x y y x ⎛⎫++=+++≥+=+= ⎪⎝⎭,当且仅当4x y y x =,即4x =,2y =时等号成立,因为222x y m m +>+恒成立,则228m m +<,即2280m m +-<,解得42m -<<, 故选:A 【点睛】本题考查均值不等式中“1”的代换的应用,考查利用均值定理求最值,考查不等式恒成立问题.二、填空题13.4【解析】(前一个等号成立条件是后一个等号成立的条件是两个等号可以同时取得则当且仅当时取等号)【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式(1)当且仅当时取等号;(2)当且仅解析:4 【解析】44224141144a b a b ab ab ab ab +++≥=+≥= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当22a b ==时取等号). 【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;(2),a b R +∈,a b +≥ ,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.14.【解析】【分析】由题意可得且即且化简可得由不等式的性质可得的取值范围【详解】解:故有且化简可得且即故答案为:【点睛】本题考查数列极限以及不等式的性质属于中档题解析:33(0,)(,3)22U【解析】 【分析】由题意可得1q <且0q ≠,即11q -<<且0q ≠,211232a a a =+,化简可得13322a q =+由不等式的性质可得1a 的取值范围. 【详解】解:21123lim()2n n a q a a →∞-=+Q 21123lim 2n a a a →∞∴=+,lim 0nn q →∞= 故有11q -<<且0q ≠,211232a a a =+ 化简可得13322a q =+ 103a ∴<<且132a ≠即133(0,)(,3)22a ∈U 故答案为:33(0,)(,3)22U 【点睛】本题考查数列极限以及不等式的性质,属于中档题.15.【解析】【分析】根据均值不等式知即再由即可求解注意等号成立的条件【详解】(当且仅当等号成立)(当且仅当等号成立)(当且仅当等号成立)故答案为【点睛】本题主要考查了均值不等式不等式等号成立的条件属于中 解析:14【解析】 【分析】根据均值不等式知,4a b +≥=()2416a b ab +≥,再由41684ab a b +≥=⋅即可求解,注意等号成立的条件. 【详解】4a b +≥=Q (当且仅当4a b =等号成立),()2416a b ab ∴+≥(当且仅当4a b =等号成立), ()2444a b a b ∴++≥⋅8=(当且仅当4a b =等号成立), ()224281a a a ∴+=⇒=. 故答案为14b =. 【点睛】本题主要考查了均值不等式,不等式等号成立的条件,属于中档题.16.10【解析】【分析】根据等差数列的前n 项和公式可得结合等差数列的性质即可求得k 的值【详解】因为且所以由等差数列性质可知因为所以则根据等差数列性质可知可得【点睛】本题考查了等差数列的前n 项和公式等差数解析:10 【解析】 【分析】根据等差数列的前n 项和公式可得70a =,结合等差数列的性质即可求得k 的值. 【详解】因为91239S a a a a =+++⋅⋅⋅ 41234S a a a a =+++,且94S S =所以567890a a a a a ++++= 由等差数列性质可知70a = 因为40k a a += 所以4770k a a a a +=+=则根据等差数列性质可知477k +=+ 可得10k = 【点睛】本题考查了等差数列的前n 项和公式,等差数列性质的应用,属于基础题.17.【解析】【分析】利用换元法令将所给的代数式进行变形然后利用均值不等式即可求得最小值【详解】由可得可令即则当且仅当时等号成立故答案为:【点睛】本题主要考查基本不等式求最值的方法换元法及其应用等知识意在解析:1【解析】 【分析】利用换元法,令1t x =+将所给的代数式进行变形,然后利用均值不等式即可求得最小值. 【详解】由0x >,可得11x +>.可令()11t x t =+>,即1x t =-,则()()22113331111t t x x t x t t -+-+++==+-=+≥,当且仅当t =1x =时,等号成立.故答案为:1. 【点睛】本题主要考查基本不等式求最值的方法,换元法及其应用等知识,意在考查学生的转化能力和计算求解能力.18.2【解析】【分析】【详解】由Sn =n2+n (n ∈n*)当n =1a1=S1=1+1=2当n≥2时an =Sn ﹣Sn ﹣1=n2+n ﹣(n ﹣1)2-(n ﹣1)=2n 当n =1时a1=2×1=2成立∵an =2n解析:2 【解析】 【分析】 【详解】由S n =n 2+n (n ∈n *), 当n =1,a 1=S 1=1+1=2,当n ≥2时,a n =S n ﹣S n ﹣1=n 2+n ﹣(n ﹣1)2-(n ﹣1)=2n , 当n =1时,a 1=2×1=2,成立, ∵a n =2n (n ∈n *), ∴22,∴2,故答案为2.19.【解析】【分析】根据等比数列通项公式求出计算即可得解【详解】由题故答案为:4【点睛】此题考查等比数列通项公式的应用涉及等比数列求和关键在于熟练掌握等比数列的通项公式和求和公式准确进行指数幂的运算化简解析:【解析】 【分析】根据等比数列通项公式,求出()()12112122212n n n n aa a a ++--++=--+=L ,计算()22111111222222n n n n nn a a a a a a a a a a a a a a a a +++-+++==⋅⋅⋅⋅⋅⋅L L L 即可得解.【详解】由题2nn a =, ()()12112122212n n n n a a a a ++--++=--+=L()22111111222222n n n n nn a a a a a a a a a a a a a a a a +++-+++==⋅⋅⋅⋅⋅⋅L L L ()2112224n n aa a a +-+++===L .故答案为:4 【点睛】此题考查等比数列通项公式的应用,涉及等比数列求和,关键在于熟练掌握等比数列的通项公式和求和公式,准确进行指数幂的运算化简.20.【解析】试题分析:因为不等式有解所以因为且所以当且仅当即时等号是成立的所以所以即解得或考点:不等式的有解问题和基本不等式的求最值【方法点晴】本题主要考查了基本不等式在最值中的应用不等式的有解问题在应 解析:()(),14,-∞-⋃+∞【解析】试题分析:因为不等式234y x m m +<-有解,所以2min ()34yx m m +<-,因为0,0x y >>,且141x y+=,所以144()()224444y y x y x x x y y x +=++=++≥=,当且仅当44x y y x =,即2,8x y ==时,等号是成立的,所以min ()44yx +=,所以234m m ->,即(1)(4)0m m +->,解得1m <-或4m >.考点:不等式的有解问题和基本不等式的求最值.【方法点晴】本题主要考查了基本不等式在最值中的应用,不等式的有解问题,在应用基本不等式求解最值时,呀注意“一正、二定、三相等”的判断,运用基本不等式解题的关键是寻找和为定值或是积为定值,难点在于如何合理正确的构造出定值,对于不等式的有解问题一般选用参数分离法,转化为函数的最值或借助数形结合法求解,属于中档试题.三、解答题21.(1)3π;(2 【解析】 【分析】(1)利用正弦定理边角互化思想得出sin cos 6B B π⎛⎫=-⎪⎝⎭,再利用两角差的余弦公式可得出tan B 的值,结合角B 的范围可得出角B 的大小;(2)由中线向量得出2BD BA BC =+uu u r uu r uu u r,将等式两边平方,利用平面向量数量积的运算律和定义,并结合基本不等式得出ac 的最大值,再利用三角形的面积公式可得出ABC ∆面积的最大值. 【详解】(1)由正弦定理及sin cos 6b A a B π⎛⎫=- ⎪⎝⎭得sin sin sin cos 6B A A B π⎛⎫=-⎪⎝⎭, 由()0,A π∈知sin 0A >,则31sin cos cos sin 62B B B B π⎛⎫=-=+ ⎪⎝⎭,化简得sin 3cos B B =,tan 3B ∴=. 又()0,B π∈,因此,3B π=;(2)如下图,由13sin 24ABC S ac B ac ∆==,又D 为AC 的中点,则2BD BA BC =+uu u r uu r uu u r,等式两边平方得22242BD BC BC BA BA =+⋅+u u u r u u u r u u u r u u r u u r ,所以2222423a c BA BC a c ac ac =++⋅=++≥u u u r u u u r ,则43ac ≤,当且仅当a c =时取等号,因此,ABC ∆的面积最大值为343433⨯=. 【点睛】本题考查正弦定理边角互化思想的应用,同时也考查了三角形的中线问题以及三角形面积的最值问题,对于三角形的中线计算,可以利用中线向量进行计算,考查分析问题和解决问题的能力,属于中等题.22.(1)2b =2)6b =3【解析】 【分析】(122ac b =,根据已知可求b 的值.(2)利用同角三角函数基本关系式可求cos B ,由余弦定理可得222224ac a c ac =+-g,根据已知可求c ,进而可求b 的值. 【详解】 (1)Q222sin 1cos sin A C B B =-=.∴22ac b =,2a =Q ,22c =22b ∴=(2)14sin 4B =Q ,2cos 4B ∴=, ∴由余弦定理2222cos b a c ac B =+-222224ac a c ac =+-⋅,又a =c =b ∴=经检验,b 【点睛】本题考查正弦定理,同角三角函数基本关系式,余弦定理在解三角形中的综合应用,考查计算能力和转化思想,属于基础题.23.(1)n a n =;(2)22(41)2(1)3n n T n n -=++ 【解析】 【分析】(1)根据条件列方程组解得公差与首项,即得数列{}n a 的通项公式;(2)根据分组求和法得结果. 【详解】(1)公差d 不为0的等差数列{}n a 中,1a ,3a ,9a 成公比为3a 的等比数列,可得2319a a a =,313a a a =,可得2111(2)(8)a d a a d +=+,11a =,化简可得11a d ==,即有n a n =;(2)由(1)可得2,212,2n n n k b n n k ⎧=-=⎨=⎩,*k N ∈;前2n 项和212(28322)(48124)n n T n -=+++⋯+++++⋯+2(14)12(41)(44)2(1)1423n n n n n n --=++=++-. 【点睛】本题考查等差数列通项公式以及分组求和法求和,考查基本分析求解能力,属中档题. 24.(Ⅰ)120°;(Ⅱ)1. 【解析】 【分析】(Ⅰ)由题意利用正弦定理角化边,然后结合余弦定理可得∠A 的大小; (Ⅱ)由题意结合(Ⅰ)的结论和三角函数的性质可得sin sin B C +的最大值. 【详解】(Ⅰ)()()2sin 2sin 2sin a A b c B c b C =+++Q ,()()2222a b c b c b c ∴=+++,即222a b c bc =++.2221cos 22b c a A bc +-=-∴=,120A ∴=︒.(Ⅱ)sin sin sin sin(60)B C B B +=+︒-()1sin sin 6022B B B =+=︒+,060B ︒<<︒Q ,∴当6090B ︒+=︒即30B =︒时,sin sin B C +取得最大值1. 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围. 25.(1);(2).【解析】 试题分析:(1)由题意结合通项公式与前n 项和的关系可得;(2)结合(1)中求得的通项公式和所给数列通项公式的特点错位相减可得数列的前项和.(3) 试题解析:(Ⅰ)由2S n =3a n -1 ① 2S n -1=3a n -1-1 ② ②-①得2a n =3a n -3a n -1,∴=3,()又当n =1时,2S 1=3a 1-1,即a 1=1,(符合题意) ∴{a n }是首项为1,公比为3的等比数列,∴a n =3n -1. (Ⅱ)由(Ⅰ)得:b n =∴T n =+++…+,…………………③ T n =++…++,………④ ③-④得:T n =+++…+-=-=-∴T n =-.26.(1) 12π.(2)333-. 【解析】 【分析】()1由已知利用正弦定理,同角三角函数基本关系式可求1tanB =,结合范围()0,B π∈,可求4B π=,由已知利用二倍角的余弦函数公式可得2210cos A cosA --=,结合范围()0,A π∈,可求A ,根据三角形的内角和定理即可解得C 的值.()2由()1及正弦定理可得b 的值,根据两角和的正弦函数公式可求sinC 的值,进而根据三角形的面积公式即可求解. 【详解】() 1Q 由已知可得ccosB bsinC =,又由正弦定理b csinB sinC=,可得ccosB csinB =,即1tanB =, ()0,B π∈Q ,4B π∴=,2221cosA cos A cos A ==-Q ,即2210cos A cosA --=,又()0,A π∈,12cosA ∴=-,或1(舍去),可得23A π=,12C A B ππ∴=--=.()223A π=Q ,4B π=,2a =, ∴由正弦定理a bsinA sinB=,可得2a sinB b sinA ⋅===,()1sin 222sinC A B sinAcosB cosAsinB ⎛⎫=+=+=+-⨯=⎪⎝⎭Q113222343ABC S absinC -∴==⨯⨯⨯=V . 【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,二倍角的余弦函数公式,三角形的内角和定理,两角和的正弦函数公式,三角形的面积公式等知识在解三角形中的应用,考查了计算能力和转化思想,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 4


b a
1 1
的取值范围为
,
9 4
3 4
,
,故④正确.
∴正确命题的个数是 2 个. 故选 B. 点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜
截式比较截距,要注意 z 前面的系数为负时,截距越大, z 值越小;②分式型,其几何意
义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应
项和
Sn
.
24.已知函数 f x 3 sin x cos x .
(1)求函数
f
x

x
2
,
的值域;
(2)在 ABC 中,内角 A 、 B 、 C 的对边分别是 a 、 b 、 c ,若
f
A
7 6
f
B
6
8 3
,求 a b
的取值范围.
25.如图,游客从某旅游景区的景点 A 处下上至 C 处有两种路径.一种是从 A 沿直线步行
所以 Sn Sn1 , n n1
所以
na1
2n
an
n
1a1 an1 2n 1

所以 an an1 ,
所以等差数列 an 为递增数列.
又 a8
a7
0 ,即
a8 a7
1 ,
所以 a8 0 , a7 0 ,
即数列an前 7 项均小于 0,第 8 项大于零,
所以 Sn 的最小值为 S7 ,
故选 D. 【点睛】
详解:由于
f
x
3x2loxg2 x1,,
x x
0 0

当 x>0 时,3+log2x≤5,即 log2x≤2=log24,解得 0<x≤4, 当 x≤0 时,x2﹣x﹣1≤5,即(x﹣3)(x+2)≤0,解得﹣2≤x≤0,
∴不等式 f(x)≤5 的解集为[﹣2,4],
故选 B.
点睛:本题考查了分段函数以及不等式的解法和集合的运算,分段函数的值域是将各段的
1 q a1(1 q3)
1 q6 1 q3
1 q3
3,
1 q
∴ q3 2 ,

S9 S6
1 q9 1 q6
1 23 1 22
7. 3
故选:B.
【点睛】
本题考查等比数列前 n 项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理
能力、运算求解能力,求解时也可以利用连续等长片断的和序列仍然成等比数列,进行求
值域并到一起,分段函数的定义域是将各段的定义域并到一起,分段函数的最值,先取每
段的最值,再将两段的最值进行比较,最终取两者较大或者较小的.
7.D
解析:D
【解析】
【分析】
【详解】
A1B1C1 的三个内角的余弦值均大于 0,则 A1B1C1 是锐角三角形,若 A2B2C2 是锐角三角
形,由
A2
2
A1
,得{B2
1,且
1 an1
1 an
3(n N ) ,则 a10
__________.(用数字
作答)
19.设等差数列an,bn的前 n 项和分别为 Sn ,Tn 若对任意自然数 n 都有
Sn Tn
2n 3
,则
a9
4n 3 b5 b7
a3 b8 b4
的值为_______.
20.设 a R,若 x>0 时均有[(a-1)x-1]( x 2-ax-1)≥0,则 a=__________.
a2 12 32 角为锐角即可,则这两个角的余弦值为正数,于此得到 12 32 a2 ,
x, 1,
x x
0 0
,则不等式
f
(x)
5 的解集为
()
A. 1,1
B. 2, 4
C. ,20,4 D.,20,4
7.如果 A1B1C1 的三个内角的余弦值分别等于 A2B2C2 的三个内角的正弦值,则
A. A1B1C1 和 A2B2C2 都是锐角三角形
B. A1B1C1 和 A2B2C2 都是钝角三角形
满足的递推关系分别为:①
a2 n 1
an2
1
1

an 1
1 an
1
③ an1
an an2 1

a2 n1
2an
1 ,则
D 型数列
an
的序号为_______.
17.已知命题
p
:
x0
R,
ax02
x0
1 2
0
,若命题
p
是假命题,则实数
a
的取值范围是
________.
18.已知数列
an
中, a1
C. A1B1C1 是钝角三角形, A2B2C2 是锐角三角形
D. A1B1C1 是锐角三角形, A2B2C2 是钝角三角形
8.设等差数列
an
的前 n
项和为 Sn
,且
nSn1 n 1
Sn
n N*
.若 a8 a7 0 ,则(

A. Sn 的最大值是 S8
B. Sn 的最小值是 S8
C. Sn 的最大值是 S7
该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.
2.B
解析:B 【解析】
Sn
4
1 2
0
4
Hale Waihona Puke 1 1 2 41 2
n1
4n
1
1 2
n
1
1 2
4n
2 3
2 3
1 2
n
1 pSn 4n 3
即1
p
2 3
2 3
1 2
n
3
对任意 n N* 都成立,
当 n 1时,1 p 3
x 4 y 4 0
A.9
B.8
C.3
D.4
4.设等比数列{an}的前 n 项和为 Sn ,若
S6 S3
3,则
S9 S6


A. 2
B. 7 3
C. 8 3
D. 3
5.已知实数
x,
y
x 满足{
y
0
则 2y x 的最大值是(
)
x y20
A.-2
B.-1
C.1
D.2
6.已知函数
f
(x)
{3x2 loxg2
解.
5.C
解析:C
【解析】
作出可行域,如图 BAC 内部(含两边),作直线 l : 2 y x 0 ,向上平移直线 l , z 2 y x 增加,当 l 过点 A(1,1) 时, z 2111是最大值.故选 C.
6.B
解析:B 【解析】 分析:根据分段函数,分别解不等式,再求出并集即可.
A. 3 7 2
B. 3 4
C. 3 或 3 7 22
D. 3 或 3 7 42
x0
11.已知 x,y 满足条件{y x
(k 为常数),若目标函数 z=x+3y 的最大值为 8,
2x y k 0
则 k=( )
A.-16
B.-6
C.- 8 3
D.6
12.已知数列 {an }
中,
a3
=2

a7
=1
D. Sn 的最小值是 S7
9.已知锐角三角形的边长分别为 1,3, a ,则 a 的取值范围是( )
A. 8,10
B. 2 2, 10
C. 2 2,10
D. 10,8
10.已知 ABC 中, A , B , C 的对边分别是 a , b , c ,且 b 3 , c 3 3 ,
B 30 ,则 AB 边上的中线的长为( )
130m / min ,山路 AC 长为 1260 m ,经测量 cos A 12 , cosC 3 .
13
5
(1)求索道 AB 的长; (2)问:乙出发多少 min 后,乙在缆车上与甲的距离最短? (3)为使两位游客在 C 处互相等待的时间不超过 3min ,乙步行的速度应控制在什么范围
内?
(2sin2(
),-1),
.
(1)求角 B 的大小;
(2)若 a= ,b=1,求 c 的值.
23.在等比数列 an 中, a1 1,且 a2 是 a1 与 a3 1的等差中项.
(1)求数列 an 的通项公式;
(2)若数列bn满足 bn
n(n 1)an 1 n(n 1)
( n N*
),求数列bn的前 n
2
B1
,那么,
A2
B2
C2
2
,矛
C2 2 C1
盾,所以 A2B2C2 是钝角三角形,故选 D. 8.D
解析:D 【解析】
【分析】
将所给条件式变形,结合等差数列前 n 项和公式即可证明数列的单调性,从而由
a8 a7 0 可得 a7 和 a8 的符号,即可判断 Sn 的最小值.
【详解】
由已知,得 n 1 Sn nSn1 ,
不等式 an1 3 a 2t 恒成立,则实数 t 的取值范围为________ n 1
2x y 2 0, 15.设 x , y 满足则 x 2 y 2 0, 则 z x 3y 的最小值是______.
x y 2 0,
16.若正项数列an满足 an1 an 1,则称数列an为 D 型数列,以下 4 个正项数列an
到 C ,另一种是先从 A 沿索道乘缆车到 B ,然后从 B 沿直线步行到 C .现有甲、乙两位游
客从 A 处下山,甲沿 AC 匀速步行,速度为 50m / min .在甲出发 2min 后,乙从 A 乘缆
相关文档
最新文档