物理化学_热力学第二定律1-10
第三章 热力学第二定律重要公式
第三章 热力学第二定律1. 卡诺定理卡诺热机效率hc h c h 11T T Q Q Q W−=+=−=η 卡诺定理:工作于高温热源T h 与低温热源T c 之间的热机,可逆热机效率最大。
卡诺定理推论:所有工作于高温热源T h 与低温热源T c 之间的可逆热机,其热机效率都相等,与热机的工作物质无关。
卡诺循环中,热温商之和等于零0cch h =+T Q T Q 任意可逆循环热温商之和也等于零,即0R=⎟⎟⎠⎞⎜⎜⎝⎛∑i iiT Q 或 0δR =⎟⎠⎞⎜⎝⎛∫T Q 2. 热力学第二定律的经典表述克劳休斯说法:不可能把热由低温物体传到高温物体, 而不引起其他变化。
开尔文说法:不可能从单一热源吸热使之完全转化为功, 而不发生其他变化。
热力学第二定律的各种说法的实质:断定一切实际过程都是不可逆的。
各种经典表述法是等价的。
3. 熵的定义TQ S revδd =或∫=ΔB ArevδTQ S熵是广度性质,其单位为。
系统状态变化时,要用可逆过程的热温商来衡量熵的变化值。
1K J −⋅4. 克劳修斯不等式T QS δd irrev ≥ 或 ∫≥ΔB A ir rev δT Q S 等号表示可逆,此时环境的温度T 等于系统的温度,为可逆过程中的热量;不等号表示不可逆,此时T 为环境的温度,为不可逆过程中的热量。
Q δQ δ5. 熵增原理0)d (irrev≥绝热S 或0)(irrev≥Δ绝热S 等号表示绝热可逆过程,不等号表示绝热不可逆过程。
在绝热条件下,不可能发生熵减少的过程。
0)d (irrev≥孤立S 或0)(irrev≥Δ孤立S 等号表示可逆过程或达到平衡态,不等号表示自发不可逆过程。
可以将与系统密切相关的环境部分包括在一起,作为一个隔离系统,则有:0irrev sur sys iso ≥Δ+Δ=ΔS S S6. 熵变计算的主要公式计算熵变的基本公式: ∫∫∫−=+=δ=−=Δ2 12 12 1rev12d d d d TpV H T V p UTQ S S S 上式适用于封闭系统,一切非体积功过程。
热力学第二定律
热力学第二定律热力学第二定律是热力学领域中的基本定律之一,它描述了自然界中的物质运动和能量转化的方向性。
本文将详细介绍热力学第二定律的概念、原理及其在热力学系统中的应用。
1. 热力学第二定律的概念热力学第二定律是指在孤立系统中,任何自发过程都会导致熵的增加,而不会导致熵的减少。
其中,孤立系统是指与外界没有物质和能量交换的系统,熵是描述系统无序程度或混乱程度的物理量。
2. 热力学第二定律的原理热力学第二定律有多种表述形式,其中最常用的是凯尔文-普朗克表述和克劳修斯表述。
2.1 凯尔文-普朗克表述凯尔文-普朗克表述认为不可能通过单一热源从热能的完全转化形式(即热量)中提取能量,并将其完全转化为功。
该表述包括两个重要概念:热机和热泵。
热机是指将热能转化为功的设备,而热泵则是将低温热源的热量转移到高温热源的设备。
2.2 克劳修斯表述克劳修斯表述认为不可能存在这样的过程:热量从低温物体自发地传递到高温物体。
这一表述可由热力学第一定律和熵的概念推导得出。
3. 热力学第二定律的应用热力学第二定律在能量转化和机械工程领域具有广泛的应用。
以下将介绍几个实际应用。
3.1 热机效率根据热力学第二定律,热机的效率不可能达到100%,即不可能将一定量的热能完全转化为功。
热机的效率定义为输出功与输入热量之比,常用符号为η。
根据卡诺热机的理论,热机的最高效率与工作温度之差有关。
3.2 热力学循环过程热力学循环过程是指系统在经历一系列状态变化后,最终回到初始状态的过程。
根据热力学第二定律,热力学循环过程中所涉及的热机或热泵的效率不可能大于卡诺循环的效率。
3.3 等温膨胀过程等温膨胀过程是热力学第二定律的应用之一。
在等温膨胀过程中,系统与热源保持恒温接触,通过对外做功来改变系统的状态。
根据热力学第二定律,等温膨胀过程无法实现自发进行,必须进行外界功输入才能实现。
4. 热力学第二定律的发展和突破随着科学技术的发展,人们对热力学第二定律的认识不断深化。
物理化学热力学第二定律quan1
环境是个大热源
克劳修斯表述
不可能将热从低温物体传至高温物体 而不引起其它变化。
空调,制冷
代价:耗功
热量不可能自发地、不付代价地从低 温物体传至高温物体。
§ 卡诺循环与卡诺定理
既然
t =100%不可能
热机能达到的最高效率有多少?
法国工程师卡诺 (S. Carnot), 1824年提出 卡诺循环
效率最高 热二律奠基人
已有知识:质点热运动高温时比低温剧烈;压强↓,气体质点 运动自由度↑;气态物质运动自由度最大;物质混合后体系更 混乱。
说明:体系混乱度越大,体系的熵值越大; S是体系
内部质点混乱度的量度
五、热力学第三定律和标准熵 1、规定熵与热力学第三定律
一般表述: “在 0K 时,排列得很整齐的完美 晶体,其熵值为零”
5619 = =21.4 J· K-1· mol-1 263
-1 -1
Δ S 总=Δ S +Δ S 环
= - 20.6 + 21.4 = 0.8 J·K · mol > 0
为自发不可逆过程
S水> S冰
由以上例题可得:凡是能使无序度增加的因素都会
对系统的熵值有贡献
▲ 同晶型的同种物质——S高温> S低温; ▲ 气态物质——S低压> S高压; ▲ 同种物质——S气> S液> S固; ▲ 物质混合——S混后> S混前;
亚(介)稳态的变化:过冷、过热的液体; 过饱和溶液等
A() 如: A( )
恒 压 △S 1 变 温 恒 压 △S 2 变 温
T , p ,S
S1 S 2
Ttrs
nC p ,m [ A( )]
T
物理化学课后答案 第三章 热力学第二定律
第三章热力学第二定律3.1卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.5高温热源温度,低温热源。
今有120 kJ的热直接从高温热源传给低温热源,龟此过程的。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7已知水的比定压热容。
今有1 kg,10 ︒C的水经下列三种不同过程加热成100 ︒C的水,求过程的。
(1)系统与100 ︒C的热源接触。
(2)系统先与55 ︒C的热源接触至热平衡,再与100 ︒C的热源接触。
(3)系统先与40 ︒C,70 ︒C的热源接触至热平衡,再与100 ︒C的热源接触。
解:熵为状态函数,在三种情况下系统的熵变相同在过程中系统所得到的热为热源所放出的热,因此3.8已知氮(N, g)的摩尔定压热容与温度的函数关系为2(g)置于1000 K的热源中,将始态为300 K,100 kPa下1 mol的N2求下列过程(1)经恒压过程;(2)经恒容过程达到平衡态时的。
解:在恒压的情况下, g)看作理想气在恒容情况下,将氮(N2体将代替上面各式中的,即可求得所需各量3.9始态为,的某双原子理想气体1 mol,经下列不同途径变化到,的末态。
求各步骤及途径的。
(1)恒温可逆膨胀;(2)先恒容冷却至使压力降至100 kPa,再恒压加热至;(3)先绝热可逆膨胀到使压力降至100 kPa,再恒压加热至。
解:(1)对理想气体恒温可逆膨胀, U = 0,因此(2)先计算恒容冷却至使压力降至100 kPa,系统的温度T:(3)同理,先绝热可逆膨胀到使压力降至100 kPa时系统的温度T:根据理想气体绝热过程状态方程,各热力学量计算如下2.12 2 mol双原子理想气体从始态300 K,50 dm3,先恒容加热至400 K,再恒压加热至体积增大到100 dm3,求整个过程的。
热力学第二定律
1.可逆过程的热温商及熵函数的引出
① 从卡诺循环得到的结论
h = -W =
Q2 Q2+Q1 Q2
T1 Q1 =1+ = 1- Q2 T2
QB TB
Q1 T1
+ QB
TB
Q2 T2
= ∑
=0
—— 热温商
卡诺循环中,两个热源的热温商之和等于零。
20
② 任意可逆循环的热温商
任意可逆循环热温商之和等于零?
当系统的状态由A变到B时,熵的变化为
S S B S A
B
Qr
T
A
对微小变化,可用微分形式 dS
Qr
Tቤተ መጻሕፍቲ ባይዱ
上述两式由可逆循环导出,Qr为可逆过程的热效 应,因此二式只能在可逆过程中应用。 这几个熵变的计算式习惯上称为熵的定义式,即 24 熵的变化值可用可逆过程的热温商值来衡量。
2. 不可逆过程的热温商
(环境付出了功)
(环境得热) 5
当系统恢复原状,在环境中有 W 的功变成了的
∣Q∣热。要使环境恢复原状,必须将∣Q∣热完全转
换为功。
能否恢复原状(理想气体向真空膨胀能否为可逆
过程),环境得到的热能否全部转化为功而不引起任
何其他变化。经验说明热功转化有方向性,功可自发
全部转变为热,但热不能全部转变为功而不引起任何
ABCD 曲 线 所 围 面 积 为 热 机所作的功。
根据热力学第一定律,整个循环 ∆U = 0
W W1 W2 W3 W4
V2 V4 RT2 ln Cv (T1 T2 ) RT1 ln Cv (T2 T1 ) V1 V3 V2 V4 RT2 ln RT1 ln V1 V3
物理化学课后答案热力学第二定律
第三章 热力学第二定律复习题1指出下列公式的适用范围; 1min ln BB BS Rnx ∆=-∑;212222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; 3dU TdS pdV =-; 4G Vdp ∆=⎰5,,S A G ∆∆∆作为判据时必须满足的条件;解 1封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力;2非等温过程中熵的变化过程,对一定量的理想气体由状态AP 1、V 1、T 1改变到状态AP 2、V 2、T 2时,可由两种可逆过程的加和而求得;3均相单组分或组成一定的多组分封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程;4非体积功为0,组成不变的均相封闭体系的等温过程; 5S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡;A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;2判断下列说法是否正确,并说明原因;1不可逆过程一定是自发的,而自发过程一定是不可逆的; 2凡熵增加过程都是自发过程; 3不可逆过程的熵永不减少;4系统达平衡时,熵值最大,Gibbs 自由能最小;5当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;6某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;7在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;8理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符; 9冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; 10p C 恒大于V C ;答1不正确,因为不可逆过程不一定是自发的例如 可逆压缩就不是自发过程,但自发过程一定是不可逆的;2不正确,因为熵增加过程不一定是自发过程,但自发过程都是熵增加的过程;所以必须在隔离体系中凡熵增加过程都是自发过程;3不正确,因为不可逆过程不一定是自发的,而自发过程的熵永不减少;所以必须在隔离体系中;不可逆过程的熵永不减少4不正确;绝热体系或隔离体系达平衡时熵最大,等温等压不作非体积功的条件下,体系达平衡时Gibbs 自由能最小;5不正确,因为只有当系统的U 和V 恒定非体积功为0时,S ∆<0和S ∆=0的过程不可能发生; 6不正确,根据熵增加原理,绝热不可逆过程的S ∆>0,而绝热可逆过程的S ∆=0,从同一始态出发经历一个绝热不可逆过程的熵值和经历一个绝热可逆过程的熵值永不相等,不可能达到同一终态;7正确,在绝热系统中,发生了一个不可逆过程,从状态1变到了状态2,S ∆>0,S 2>S 1,仍然在绝热系统中,从状态2出发,无论经历什么过程,体系的熵值有增无减,所以永远回不到原来状态了;8不正确,Kelvin 的说法是不可能从单一的热源取出热使之变为功而不留下其它变化;关键是不留下其它变化,理想气体的等温膨胀时热全部变成了功,,体积增大了,环境的体积缩小的,留下了变化,故原来的说法不违反Kelvin 的说法;9不正确,Clausius 的说法是不可能把热从低温热源传到高温热源而不引起其它变化;冷冻机可以从低温热源吸热放给高温热源时环境失去了功,得到了热引起了变化,故原来的说法不违反Clausius 的说法; 10不正确,211p V P T T VV V C C V T V P αακκ∂∂⎛⎫⎛⎫-===- ⎪ ⎪∂∂⎝⎭⎝⎭,,因为P V T ∂⎛⎫ ⎪∂⎝⎭>0,TV P ∂⎛⎫⎪∂⎝⎭<0,即α>0,κ>0,则p V C C ->0,p C 恒大于V C ;但有例外,如对277.15K 的水,PV T ∂⎛⎫⎪∂⎝⎭=0,此时p V C C =;3指出下列各过程中,,,,,,Q W U H S A ∆∆∆∆和G ∆等热力学函数的变量哪些为零,哪些绝对值相等1理想气体真空膨胀; 2理想气体等温可逆膨胀; 3理想气体绝热节流膨胀; 4实际气体绝热可逆膨胀; 5实际气体绝热节流膨胀;62()H g 和2()O g 在绝热钢瓶中发生反应生成水; 72()H g 和2()Cl g 在绝热钢瓶中发生反应生成()HCl g ; 822(,373,101)(,373,101)H O l k kPa H O g k kPa ;9在等温、等压、不作非膨胀功的条件下,下列反应达到平衡2233()()2()H g N g NH g +10绝热、恒压、不作非膨胀功的条件下,发生了一个化学反应; 解10Q W U H ==∆=∆=20R U H Q W G A ∆=∆==∆=∆,,,0S ∆= 30U H Q W ∆=∆=== 40Q S U Q W W =∆=∆=+=, 50V Q U H =∆=∆=60W A G Q =∆=∆== U H ∆=∆ 70W A G Q =∆=∆== U H ∆=∆ 800R G A W U ∆=∆=-∆=∆H =,,; 90G ∆= ;10p 0H Q ∆== U W ∆=4将不可逆过程设计为可逆过程; 1理想气体从压力为p 1向真空膨胀为p 2;2将两块温度分别为T 1,T 2的铁块T 1>T 2相接触,最后终态温度为T 3水真空蒸发为同温、同压的气,设水在该温度时的饱和蒸气压为p , 22(,303,100)(,303,100)H O l K kPa H O g K kPa →4理想气体从111,,p V T 经不可逆过程到达222,,p V T ,可设计几条可逆路线,画出示意图;答1设计等温可逆膨胀2在T 1和T 2之间设置无数个温差为dT 的热源,使铁块T 1和T 1-dT,T 1-2dT,…的无数热源接触,无限缓慢地达到终态温度T,使铁块T 2和T 2-dT,T 2-2dT,…的热源接触,无限缓慢地达到终态温度T;3可以设计两条可逆途径:一是等压可逆,另一条是等温可逆;H 2O (l,303K,P S ) H 2S )H 2O (l,,)H 2H 2O ()H 2逆降温4可设计下列四条途径,从111,,p V T 变化到222,,p V T ; a 等容可逆升压到状态A 后再等温可逆膨胀终态Ⅱ; b 等压可逆膨胀到状态B 后再等温可逆膨胀到终态Ⅱ; c 等温可逆膨胀到状态C 后再等压可逆膨胀到终态Ⅱ; d 等温可逆膨胀到状态D 后再等容可逆升压到终态Ⅱ;5判断下列恒温、恒压过程中,熵值的变化,是大于零,小于零还是等于零,为什么 1将食盐放入水中;2HClg 溶于水中生成盐酸溶液; 343()()()NH Cl s NH g HCl g →+; 42221()()()2H g Og H O l +→;5333221(,)1(,)2(,)dm N g dm Ar g dm N Ar g +→+; 6333221(,)1(,)1(,)dm N g dm Ar g dm N Ar g +→+; 73332221(,)1(,)2(,)dm N g dm N g dm N g +→; 83332221(,)1(,)1(,)dm N g dm N g dm N g +→;解1S ∆<0,因为将食盐放入水中为放热过程,Q <0,QS Tδ∆=,所以S ∆<0;2S ∆<0,同理,HClg 溶于水中Q <0,S ∆<0;3S ∆>0,因为该过程为吸热反应,Q >0,S ∆>0;或因为混乱度增加; 4S ∆<0,因为该过程为放热反应,Q <0,S ∆<0;或因为混乱度减小; 5S ∆>0,根据min ln 2ln 2BB BS Rnx R ∆=-=∑>0,或因为混乱度增加;6S ∆=0,根据min ln 0BB BS Rnx ∆=-=∑;7S ∆=0,根据min ln 0BB BS Rnx ∆=-=∑;8S ∆<0,根据min ln 2ln 2BB BS Rnx R ∆=-=-∑<061在298K 和100kPa 时,反应2221()()()2H O l H g O g →+的r m G ∆>0,说明该反应不能自发进行;但在实验室内常用电解水的方法制备氢气,这两者有无矛盾 2请将Carnot 循环分别表达在以如下坐标表示的图上:,,,,T p T S S V U S T H -----解 1r m G ∆>0的判据是在等温等压非体积功为0的条件下,所以在298K 和100kPa 时,反应2221()()()2H O l H g O g →+的r m G ∆>0,说明该反应在等温等压非体积功为0的条件下不能自发进行;而在实验室内常用电解水的方法制备氢气,是在电功对体系作功,所以并不矛盾; 21234习题01有5mol某双原子理想气体,已知其RCmV5.2,=,从始态400K,200kPa,经绝热可逆压缩至400kPa后,再真空膨胀至200kPa,求整个过程的Q,W,△U,△H和△S.解第一步绝热可逆压缩Q1=0 △S1=04.15.25.2,,,,=+=+==RRRCRCCCrmVmVmVmP根据绝热过程方程CTP rr=-1得KkPakPaKPPTTrr6.4874002004004.14.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=--111,21()5 2.58.314(487.6400)9.1 V mU W nC T T mol J K mol K K kJ--∆==-=⨯⨯⋅⋅-=111,21()5 3.58.314(487.6400)12.75 P mH nC T T mol J K mol K K kJ--∆=-=⨯⨯⋅⋅-=第二步等温向真空膨胀W2=0 △U2=△H2=0 Q2=0111221400ln58.314ln28.8200p kPaS nR mol J K mol J Kp kPa---∆==⨯⋅⋅=⋅所以整个过程的Q=0,W=9.1kJ,△U=9.1kJ,△H=12.75kJ,△S=28.8J•K-12有5molHeg可看作理想气体, 已知其RCmV5.1,=,从始态273K,100kPa,变到终态298K,1000kPa,计算该过程的熵变.解根据理想气体从状态p1,V1,T1到终态p2,V2,T2的熵变公式:1221lnlnTTCppnRSp+=∆得:111110029858.314ln5 2.58.314ln1000273kPa K S mol J K mol mol J K molkPa K----∆=⨯⋅⋅+⨯⨯⋅⋅186.615J K-=-⋅03在绝热容器中,将0.10kg、283K的水与0.20kg、313K的水混合,求混合过程的熵变;设水的平均比热为4.184kJ•K-1•kg-1.解设混合后的平衡温度为T,则 0.10kg 、283K 的水吸热为Q 1=C P T-T 1=4.184kJ•K -1•kg -1×0.10kg×T-283K 0.20kg 、313K 的水放热为Q 2=C P T 1-T=4.184kJ•K -1•kg -1×0.20kg×313K-T 平衡时Q 1=Q 2得 T=303K111113030.1(4.184)ln 28.57283TP T C KS dT kg kJ K kg J K T K ---∆==⨯⋅⋅⨯=⋅⎰111123030.2(4.184)ln127.17313T P T C KS dT kg kJ K kg J K T K---∆==⨯⋅⋅⨯=-⋅⎰△S=△S 1+△S 2=1.40J •K -104在298K 的等温情况下,在一个中间有导热隔板分开的盒子中,一边放0.2molO 2g,压力为20kPa,另一边放0.8molN 2g,压力为80kPa,抽去隔板使两种气体混合,试求1混合后盒子中的压力;2混合过程的Q,W,△U,△S 和△G ;3如果假设在等温情况下,使混合后的气体再可逆地回到始态,计算该过程的Q 和W 的值;解1混合前O 2g 和N 2g 的体积V 相等,混合后是1mol 气体占全部容积的体积2V;21130.28.31429824.77620O nRT mol J K mol KV dm P kPa--⨯⋅⋅⨯===11318.3142985024.7762nRT mol J K mol K p kPa V dm --⨯⋅⋅⨯===⨯2由于是等温过程 △U=0O 2g 和N 2g 都相当于在等温下从V 膨胀到2V2ln 2.02ln2.02R V VR S O ==∆ 2ln 8.02ln 8.02R VVR S N ==∆221ln 2 5.76O N S S S R J K -∆=∆+∆===⋅J RT p p nRT Vdp G 17192ln ln12-=-===∆⎰ 3因为△U′=0,Qr=-Wr=T △S′所以 Qr=-Wr=T △S′=298K×-5.76J•K -1=-1.716J05有一绝热箱子,中间用绝热隔板把箱子的容积一分为二,一边放1mol 300K,100kPa 的单原子理想气体Arg,另一边放2mol 400K,200kPa 的双原子理想气体N 2g,如果把绝热隔板抽去,让两种气体混合达平衡,求混合过程的熵变;解起初Arg 和N 2g 的体积分别为R p nRT V Ar 3==, R pnRTV N 42== 当混合时对于1molArg 相当于从300K,100kPa 膨胀到T,P,V=7R对于2molN 2g 相当于从400K,200kPa 膨胀到T,P,V=7R 而整个体系的 W=0 Q V =△U=0所以02=∆+∆N Ar U U即 0))(())((22,1,2=-+-T T N C n T T Ar C n m V N m V Ar0)400(252)300(231=-⨯+-⨯K T R mol K T R mol得 T=362.5K⎰+=∆T T m V Ar TnC V VnR S 1,1ln111173362.518.314ln8.314ln32300R Kmol J mol K J mol K R K----=⨯⋅⋅+⨯⋅⋅ =9.4J⎰+=∆T T m V N TnC V VnR S 22,2ln111175362.528.314ln8.314ln42400R Kmol J mol K J mol K R K----=⨯⋅⋅+⨯⋅⋅ =7.26JJ S S S N Ar 66.162=∆+∆=∆06有2mol 理想气体,从始态300K,20dm 3,经下列不同过程等温膨胀至50dm 3,计算各过程的Q,W,△U,△H 和△S;1可逆膨胀; 2真空膨胀;3对抗恒外压100kPa 膨胀;解由于是理想气体的等温过程,所以△U=△H=01可逆膨胀31123150ln 28.314300ln20V dm W nRT mol J K mol K V dm --=-=-⨯⋅⋅⨯⨯ =-4570.8J Q=-W=4570.8J14570.815.24300Q J S J K T K-∆==⋅ 2真空膨胀; W=Q=0S 是状态函数所以△S 的值同1 3对抗恒外压100kPa 膨胀;W=-PV 2-V 1=-100kPa50dm 3-20dm 3=-3.0kJ Q=-W=3.0kJS 是状态函数所以△S 的值同107有1mol 甲苯CH 3C 6H 5l 在其沸点383K 时蒸发为气,计算该过程的Q,W,△U,△H,△S,△A 和△G.已知在该温度下甲苯的汽化热为362kJ•kg -1.解在沸点时蒸发为可逆相变,所以 △G=0 △H=Q=362kJ•kg -1×1mol×0.092kg•mol -1=33.304kJ W =-p V g -V l = -p V g =-nRT=-1mol×8.341J•K -1•mol -1×383K=-3184.26J=-3.184kJ△U=△H-△PV=△H-P △V=△H+W=33.304kJ-3.184kJ=30.12kJ △S=Q/T=33.304kJ/383K=86.96J•K -1 △A=△U-T △S=△U-Q=W=-3.184kJ08在一个绝热容器中,装有298K 的H 2Ol1.0kg,现投入0.15kg 冰H 2Os,计算该过程的熵变.已知H 2Os 的熔化焓为333.4J•g -1. H 2Ol 的平均比热容为4.184J•K -1•g -1.解设计过程如下:1.0kg H 2Ol 放出的热为: Q 放=1.0×103×4.184×298-T0.15kgH 2Os 吸收的热为:Q 吸=0.15×103×4.184×T-273+0.15×103×333.4 根据Q 放=Q 吸 得 T=284.35K321S S S S ∆+∆+∆=∆dT TC T HdT TC K K p KKp ⎰⎰+∆+=35.28427335.284298 27335.284ln184.41015.02731015.04.33329835.284ln 184.4100.1333⨯⨯+⨯⨯+⨯⨯= =12.57J•K -109实验室中有一个大恒温槽的温度为400K,室温为300K,因恒温槽绝热不良而有4.0kJ 的热传给了室内的空气,用计算说明这一过程是否可逆.解该过程是体系放热Q,环境吸热-Q 的过程 △S 体系=Q/T 体系=-4.0kJ/400K=-10J •K -1 △S 环境=-Q/T 环境=4.0kJ/300K=13.33J •K -1△S 隔离=△S 体系+△S 环境=-10J •K -1+13.33J •K -1=3.33J •K -1>0 所以该过程为不可逆过程.10有1mol 过冷水,从始态263K,101kPa 变成同温、同压的冰,求该过程的熵变;并用计算说明这一过程的可逆性.已知水和冰在该温度范围内的平均摩尔定压热容分别为:11,2(,)75.3P m C H O l J K mol --=⋅⋅,11,2(,)37.7P m C H O s J K mol --=⋅⋅;在273K, 101kPa时水的摩尔凝固热为60012(,) 5.90fus m H H O s kJ mol -∆=-⋅;解设计如下过程263K 101kPa H 2O(l)22H 1311121,1273ln175.3ln 2.81263P m T K S nC mol J K mol J K T K---∆==⨯⋅⋅=⋅ 1121( 5.90)21.61273fus mn H mol kJ mol S J K T K--∆⨯-⋅∆===-⋅11123,1263ln137.7ln 1.41273P m T K S nC mol J K mol J K T K---∆==⨯⋅⋅=-⋅ △S=△S 1+△S 2+△S 3=-20.21J•K -1111molN 2g 可作理想气体,从始态298K,100kPa,经如下两个等温过程,分别到达终态压力为600kPa,分别求过程的Q,W,△U,△H,△A,△G,△S,和△S iso .1等温可逆压缩; 2等外压为600kPa 时压缩;解由于都是理想气体的等温过程,所以△U=△H=0 1等温可逆压缩1112100ln18.314298ln 4.439600p kPa W nRT mol J K mol K kJ p kPa--=-=-⨯⋅⋅⨯⨯= Q=-W=-4.439kJ△S =Q/T =-4439J/298K=-14.90J•K -1 △A =△U -T △S =-Q =W =4.439kJ △G =△H -T △S =-Q =W =4.439kJ △S 环境=-Q /T =14.90J•K -1 △S iso =△S 体系+△S 环境=0 2等外压为600kPa 时压缩 W=-P 2V 2-V 1=-nRT1-P 2/P 1=-1mol×8.314J•K -1•mol -1×298K×1-600kPa/100kPa =12.39kJ Q=-W=-12.39kJ△A,△G,△S 都是状态函数的变化,所以值与1相同 △S 环境=-Q /T=12.39kJ/298K=41.58J•K△S iso =△S 体系+△S 环境=-14.90J•K -1+41.58J•K=26.28J•K12将1molO 2g 从298K,100kPa 的始态,绝热可逆压缩到600kPa,试求该过程Q,W,△U,△H,△A,△G,△S,和△S iso .设O 2g为理想气体,已知O 2g的R C m p 5.3,=,112(,)205.14m S O g J K mol θ--=⋅⋅;解由于是绝热可逆压缩 Q=0 △S 体系=04.15.35.3,,,,=-=-==RR RRC C C C r m p m p mV m P根据绝热过程方程C T Pr r=-1得K kPa kPa K P P T T rr 2.4996001002984.14.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=--11,21()1 2.58.314(499.2298) 4.182V m U W nC T T mol J K mol K K kJ--∆==-=⨯⨯⋅⋅-=11,21()1 3.58.314(499.2298) 5.855P m H nC T T mol J K mol K K kJ --∆=-=⨯⨯⋅⋅-=△A =△U - S △T =4182J-205.14J•K -1•mol -1×1mol×499.2K-298K =-37.092kJ △G =△H - S △T =5855J-205.14J•K -1•mol -1×1mol×499.2K-298K=-35.42kJ △S 环境=-Q /T =0 △S iso =△S 体系+△S 环境=013将1mol 双原子理想气体从始态298K,100kPa,绝热可逆压缩到体积为5dm 3,试求终态的温度、压力和过程的Q,W,△U,△H,和△S;解对于双原子理想气体R C m V 5.2,=R C m p 5.3,=4.15.25.3,,===RRC C r mV m P 而 11311118.31429824.78100nRT mol J K mol KV dm P kPa --⨯⋅⋅⨯===根据 C pV r=得:kPa dm dm kPa VV p p r12.940578.241004.1332112=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=322211940.125565.3818.314p V kPa dm T K nR mol J K mol --⨯===⨯⋅⋅因为是绝热可逆,所以Q=0 △S=011,21()1 2.58.314(565.38298) 5.557V m U W nC T T mol J K mol K K kJ--∆==-=⨯⨯⋅⋅-=11,21()1 3.58.314(565.38298)7.78P m H nC T T mol J K mol K K kJ --∆=-=⨯⨯⋅⋅-=14将1mol 苯C 6H 6l 在正常沸点353K 和101.3kPa 压力下,向真空蒸发为同温、同压的蒸气,已知在该条件下,苯的摩尔汽化焓为130.77vap m H kJ mol -∆=⋅,设气体为理想气体;试求1该过程的Q 和W ;2苯的摩尔汽化熵m vap S ∆和摩尔汽化Gibbs 自由能m vap G ∆; 3环境的熵变△S 环;4根据计算结果,判断上述过程的可逆性; 解1向真空蒸发 W=0Q=△U而△U 为状态函数的变化所以当等温等压时相变时:W′=-nRT=-1mol×8.314J•K -1•mol -1×353K=-2.935kJ Q=△H=130.77vap m H kJ mol -∆=⋅ △U=Q+W=30.77kJ-2.935kJ=27.835kJ 所以Q=27.835kJ 211130.7787.167353vap mvap m H kJ mol S J K mol T K---∆⋅∆===⋅⋅0=∆m vap G G 是状态函数,所以△G 与可逆相变时相同 3△S 环境=-Q /T =-27.835kJ/353K=-78.85J•K -14△S iso =△S 体系+△S 环境=87.167J•K -1-78.85J•K -1=8.317J•K -1 即 △S iso >0 可见是不可逆过程.15某一化学反应,在298K 和大气压力下进行,当反应进度为1mol 时,放热40.0kJ,如果使反应通过可逆电池来完成,反应程度相同,则吸热4.0kJ;1计算反应进度为1mol 时的熵变m r S ∆;2当反应不通过可逆电池完成时,求环境的熵变和隔离系统的总熵变,从隔离系统的总熵变值说明了什么问题;3计算系统可能做的最大功的值;解1111400013.42298R r m Q J mol S J K mol T K---⋅∆===⋅⋅211140000134.2298P Q J mol S J K mol T K----⋅∆===⋅⋅环境△S iso =△S 体系+△S 环境=13.4J•K -1•mol -1+134.2J•K -1•mol -1=147.6 J•K -1•mol -1 即 △S iso >0 可见是不可逆过程.3J J J S T G W f 44000)400040000()(max ,=---=∆-∆H -=∆-=16 1mol 单原子理想气体从始态273K,100kPa,分别经下列可逆变化到达各自的终态,试计算各过程的Q,W,△U,△H,△S,△A 和△G;已知该气体在273K,100kPa 的摩尔熵11100m S J K mol --=⋅⋅;1恒温下压力加倍; 2恒压下体积加倍; 3恒容下压力加倍;4绝热可逆膨胀至压力减少一半;5绝热不可逆反抗50kPa 恒外压膨胀至平衡; 解1恒温下压力加倍即等温可逆△U=△H=01112100ln18.314273ln 1.573200p kPa W nRT mol J K mol K kJ p kPa--=-=-⨯⋅⋅⨯⨯= Q=-W=-1.573kJ△S=Q/T=-1.573kJ/273K=-5.76J•K -1 △A =△U -T △S =-Q =W =1.573kJ △G =△H -T △S =-Q =W =1.573kJ 2恒压下体积加倍T 2=2T 1 W=-PV 2-V 1=-P 1V 1=-nRT =-1mol×8.314J•K -1•mol -1×273K =-2.27kJ11,21()1 1.58.314273 3.4V m U nC T T mol J K mol K kJ--∆=-=⨯⨯⋅⋅⨯=11,21()1 2.58.314273 5.67P m H nC T T mol J K mol K kJ --∆=-=⨯⨯⋅⋅⨯= Q=△U-W=3.4kJ+2.27kJ=5.67kJ12ln5.2ln T T R T d C S p ==∆⎰ 1111 2.58.314ln 214.4mol J K mol J K---=⨯⨯⋅⋅⨯=⋅S 2=△S+S 1=14.4J•K -1+100J•K -1=114.4J•K -1 △A =△U -△TS =△U -T 2S 2-T 1S 1=3.4×103J-2×273K×114.4J•K -1-273K×100J•K -1 =-31.76kJ△G =△H -△TS =△H -T 2S 2-T 1S 1=5.67×103J-2×273K×114.4J•K -1-273K×100J•K -1 =-29.49kJ3恒容下压力加倍 T 2=2T 1W=011,21()1 1.58.314273 3.4V m U nC T T mol J K mol K kJ --∆=-=⨯⨯⋅⋅⨯=11,21()1 2.58.314273 5.67P m H nC T T mol J K mol K kJ --∆=-=⨯⨯⋅⋅⨯=Q=△U=3.4kJ12ln5.1ln T T R T d C S V ==∆⎰ 1111 1.58.314ln 28.67mol J K mol J K---=⨯⨯⋅⋅⨯=⋅S 2=△S+S 1=8.67J•K -1+100J•K -1=108.67J•K -1 △A =△U -△TS =△U -T 2S 2-T 1S 1=3.4×103J-2×273K×108.67J•K -1-273K×100J•K -1 =-28.63kJ△G =△H -△TS =△H -T 2S 2-T 1S 1=5.67×103J-2×273K×108.67J•K -1-273K×100J•K -1 =-26.36kJ4绝热可逆膨胀至压力减少一半;Q=0 △S=067.15.15.2,,===RRC C r mV m P 根据绝热过程方程C T Pr r=-1得K kPa kPa K P P T T rr 9.2065010027367.167.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=--)(12,T T nC W U m V -==∆111 1.58.314(206.9273)824.58mol J K mol K K J --=⨯⨯⋅⋅-=-)(12,T T nC H m P -=∆111 2.58.314(206.9273)1374.3mol J K mol K K J --=⨯⨯⋅⋅-=- △A =△U -S △T=-824.58J-100J•K -1•mol -1×1mol×206.9K-273K =-5.787kJ △G =△H -S △T=-1374.3J-100J•K -1•mol -1×1mol×206.9K-273K =-5.33kJ5绝热不可逆反抗50kPa 恒外压膨胀至平衡;Q=0)()(12122T T C V V P W V -=--= 即: )()(1211222T T C P nRT P nRT P V -=-- 代入数据得:T 2=218.4K所以 1121()1 1.58.314(218.4273)V W U C T T mol J K mol K K --=∆=-=⨯⨯⋅⋅⨯- =-680.92J)(12,T T nC H m P -=∆111 2.58.314(218.4273)mol J K mol K K --=⨯⨯⋅⋅-=-1.135kJ⎪⎪⎭⎫⎝⎛+=+=∆122112,21ln 25ln ln lnT T p p nR T TnC p p nR S m p111005218.418.314ln ln502273kPa Kmol J K mol kPa K --⎛⎫=⨯⋅⋅+ ⎪⎝⎭=1.125J•K -1S 2=△S+S 1=1.125J•K -1+100J•K -1=101.125J•K -1 △A =△U -△TS =△U -T 2S 2-T 1S 1=-680.92J-218.4K×101.125J•K -1-273K×100J•K -1 =4.533kJ△G =△H -△TS =△H -T 2S 2-T 1S 1=-1135J-218.4K×101.125J•K -1-273K×100J•K -1 =-26.36kJ =4.08kJ17将1molH 2Og 从373K,100kPa 下,小心等温压缩,在没有灰尘等凝聚中心存在时,得到了373K,200kPa 的介稳水蒸气,但不久介稳水蒸气全变成了液态水,即H 2Og,373K,200kPa→H 2Ol,373K,200kPa求该过程的△H,△G 和△S;已知在该条件下水的摩尔汽化焓为146.02kJ mol -⋅,水的密度为1000kg•m -3.设气体为理想气体,液体体积受压力的影响可忽略不计;解设计可逆过程如下:H 2O(g)H 2O(l)H 2O(g)H 2O(l)373K,200kPa373K,200kPa(2)121lnp p nRT G =∆ =1mol×8.314J•K -1•mol -1×373Kln0.5 =-2.15kJ02=∆G)(12321p p nMVdp G p p -==∆⎰ρ=1mol×0.018kg•mol -1/1000kg•m -3200kPa-100kPa=1.8J△G=△G 1+△G 2+△G 3=-2148.2J11(46.02)46.02r m n mol kJ molkJ θ-∆H =∆H =⨯-⋅=- 146020(2148.2)117.6373G J J S J K T K-∆H -∆---∆===-⋅ 18用合适的判据证明:1在373K 和200kPa 压力下,H 2Ol 比H 2Og 更稳定; 2在263K 和100kPa 压力下,H 2Os 比H 2Ol 更稳定; 解1设计等温可逆过程如下1001200kPal kPaG V dp ∆=⎰20G ∆=等温等压无非体积功的可逆相变过程2003100kPag kPaG V dp ∆=⎰所以 ()20020013100100kPakPag l g kPakPaG G G V V dp V dp ∆=∆+∆=-≈⎰⎰若水蒸气可看作理想气体,则ln 20G RT ∆≈所以,在373K 和200kPa 压力下,H 2Ol 比H 2Og 更稳定; 2设100kPa 压力下设计如下可逆过程如下1mol,H 2O(s),263K21mol,H 2S 1ΔS 2S 3123S S S S ∆=∆+∆+∆,,273273()lnln 263273263fus m p m p mn K KnC nC K K K∆H =++冰(水)>0所以自发变化总是朝熵增加的方向进行,H 2Os 比H 2Ol 更稳定;19在298K 和100kPa 压力下,已知C 金刚石和C 石墨的摩尔熵、摩尔燃烧焓和密度分别为:试求:1在298K 及100kPa 下,C 石墨→C 金刚石的θm trs G ∆; 2在298K 及100kPa 时,哪个晶体更为稳定3增加压力能否使不稳定晶体向稳定晶体转化 如有可能,至少要加多大压力,才能实现这种转化解 1根据△G=△H-T △S),298(),298()298(金刚石石墨K H K H K H m c m c m r θθθ∆-∆=∆=-393.51kJ•mol -1--395.40kJ•mol -1 =1.89kJ•mol -1),298(),298()298(石墨金刚石K S K S K S m m m r -=∆θ=2.45J•K -1•mol -1-5.71J•K -1•mol -1 =-3.26J•K -1•mol -11111.89298( 3.26)trs m r m r m G H T S kJ mol K J K mol θθθ---∆=∆-∆=⋅-⨯-⋅⋅=2.862kJ•mol -12因为298K,100kPa 下,θm trs G ∆>0,说明此反应在该条件下不能自发向右进行,亦即石墨比较稳定.3设298K 下压力为p 2时石墨恰能变成金刚石dp V V p K G p K G p p m m m r m r )(),298(),298(2,2⎰-+∆=∆θθθθ石墨金刚石),298(2p K G m r θ∆>0,解上式得:p 2>1.52×109Pa即需要加压至1.52×109Pa 时,才能在298K 时,使石墨转化为金刚石.20某实际气体的状态方程为p RT pV m α+=,式中α为常数;设有1mol 该气体,在温度为T 的等温条件下,由p 1可逆地变到p 2;试写出:Q,W,△U,△H,△S,△A 及△G 的计算表达式;解:2112ln ln p p RT V V RT dV V RTpdV W m -=---=--=-=⎰⎰ααα因为 p T p T V U V T -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 而 α-=⎪⎭⎫ ⎝⎛∂∂m V V R T p 所以 0=--=⎪⎭⎫⎝⎛∂∂p V R TV U mT α 即该气体的等温过程 △U=0 Q=-W=21lnp p RT α=-=⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂P R TV T V T V P H P T )(12p p dp H -==∆⎰ααP R T V P S PT -=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂12ln p p R dp p RS -=-=∆⎰12lnp p RT S T S T U A =∆-=∆-∆=∆ 1212ln)(p p RT p p S T H G +-=∆-∆=∆α 21在标准压力和298K 时,计算如下反应的)298(K G m r θ∆,从所得数据值判断反应的可能性;1 CH 4g+1/2O 2g →CH 3OHl2 C 石墨+2H 2g+ 1/2O 2g→CH 3OHl 所需数据自己从热力学数据表上查阅;解所查热力学数据如下:1155.115)72.50(27.166)298(-•-=---=∆mol kJ K G m r θ可见θm trs G ∆<0,说明此反应在该条件下能自发向右进行.21(298)166.27r m G K kJ mol θ-∆=-⋅可见θm trs G ∆<0,说明此反应在该条件下能自发向右进行.22计算下述催化加氢反应,在298K 和标准压力下的熵变;C 2 H 2 g + 2H 2 g → C 2 H 6 g已知C 2 H 2 g,H 2 g,C 2 H 6 g 在298K 和标准压力下的标准摩尔熵分别为:200.8J•K -1•mol -1,,130.6J•K -1•mol -1,,229.5J•K -1•mol -1,.解 ),(2),(),(),298(22262g H S g H C S g H C S p K S m m m m r θθθθθ--=∆=229.5J•K -1•mol -1-200.8J•K -1•mol -1-2×130.6J•K -1•mol -1, =-232.5J•K -1•mol -1 23若令膨胀系数P T V V ⎪⎭⎫ ⎝⎛∂∂=1α,压缩系数TpV V ⎪⎪⎭⎫⎝⎛∂∂-=1κ;试证明: κα2VT C C V P =-证明根据V P C C 和的定义,及H=U+P VV p P V p V P T U T V p T U T U T H C C ⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂=-由dV V U dT T U dU TV ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= 在恒压下对T 求偏导得: pT V p T V V U T U T U ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ p T V P T V p V U C C ⎪⎭⎫ ⎝⎛∂∂⎭⎬⎫⎩⎨⎧+⎪⎭⎫ ⎝⎛∂∂=- 1又因为 pdV TdS dU -=在恒温下对V 求偏导得: p V S T V U TT -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 2 TT T V p p S V S ⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ 将麦克斯韦关系式p TT V p S ⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫⎝⎛∂∂代入上式Tp T V p T V V S ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂ 3将3代入2得: p V p T V T V U Tp T-⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂ 4将4代入1得: Tp V P V p T V T C C ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=-2再将P T V V ⎪⎭⎫ ⎝⎛∂∂=1α, TpV V ⎪⎪⎭⎫⎝⎛∂∂-=1κ代入得: κα2VT C C V P =-24对van der Waals 实际气体,试证明: 2VV U T α=⎪⎭⎫ ⎝⎛∂∂证明: van der Waals 实际气体的状态方程式为()RT b V V a p m m =-⎪⎪⎭⎫ ⎝⎛+2 b V R T p mV -=⎪⎭⎫⎝⎛∂∂ 22m m m m m VT V V b V RT b V RT p b V R Tp T p T V U αα=+---=--=-⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 25对理想气体,试证明:nR S U p H V U VS S -=⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂ 证明 pdV TdS dU -=则 T S U V=⎪⎭⎫ ⎝⎛∂∂ p V U S-=⎪⎭⎫⎝⎛∂∂ 又 Vdp TdS dH +=则 Vp H S=⎪⎪⎭⎫ ⎝⎛∂∂ 那么 nRT pV S U p H V U VSS -=-=⎪⎭⎫⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂ 26在600K,100kPa 压力下,生石膏的脱水反应为42422()()2()CaSO H O s CaSO s H O g ⋅→+试计算:该反应进度为1mol 时的Q,W,△Um,△Hm,△Sm,△Am 及△Gm;已知各物质在298K,100kPa 的热力学数据为:解W=-P △V=-PV 水=-2RT=-2×8.314J•K -1•mol -1×600K=-9.98kJ 在298K,100kPa 时:1(298)241.822(1432.68)(2021.12)104.8r m H K kJ mol θ-∆=-⨯+---=⋅11(298)188.832106.70193.97290.39r m S K J mol K θ--∆=⨯+-=⋅⋅11,33.58299.60186.2019.44r p m C J mol K --∆=⨯+-=-⋅⋅dT C K H K H m T T r m r m r ⎰∆+∆=∆21)298()600(θθ=104.8kJ•mol -1+-19.44J•K -1•mol -1600K-298K =98.93kJ•mol -T d C K S K S m T T r m r m r ln )298()600(21⎰∆+∆=∆θθ=290.39J•K -1•mol -1+-19.44J•K -1•mol -1ln KK298600 =276.79J•K -1•mol -1△Um=△Hm+W=98.93kJ•mol --9.98kJ•mol -=88.95kJ•mol - Q=△U-W=98.93kJ•mol -△Am=△U-T △S=88.95kJ•mol -1-600K×276.79J•K -1•mol -1=-77.124kJ•mol -1△Gm=△H-T △S=98.93kJ•mol -1-600K×276.79J•K -1•mol -1=-67.14kJ•mol -127将1mol 固体碘I 2s 从298K,100kPa 的始态,转变成457K,100kPa 的I 2g,计算在457K 时I 2g 的标准摩尔熵和过程的熵变;已知I 2s 在298K,100kPa 时的标准摩尔熵112(,,298)116.14m S I s K J K mol --=⋅⋅,熔点为387K,标准摩尔熔化焓12(,)15.66fus m H I s kJ mol -∆=⋅;设在298-378K 的温度区间内,固体与液体碘的摩尔比定压热容分别为11,2(,)54.68P m C I s J K mol --=⋅⋅,11,2(,)79.59P m C I g J K mol --=⋅⋅,碘在沸点457K 时的摩尔汽化焓为12(,)25.52vap m H I l kJ mol -∆=⋅;解设计可逆过程如下:I 22(g)100kPa△S=△S 1+△S 2+△S 3+△S 4=vapm vap KKp fusmfus KKP T T d l C T H T d s C H ∆++∆+⎰⎰ln )(ln )(457387387298θ=4571052.25387457ln 68.543871066.15298387ln 68.5433⨯+⨯+⨯+⨯=123.82J•K -1•mol -1又因为 ),(),(22s I S g I S S m m -=∆123.82J•K -1•mol -1=),(2g I S m -116.14 J•K -1•mol -1得: ),(2g I S m =239.96J•K -1•mol -128保持压力为标准压力,计算丙酮蒸气在1000K 时的标准摩尔熵值;已知在298K 时丙酮蒸气的标准摩尔熵值11(298)294.9m S K J K mol θ--=⋅⋅在273-1500K 的温度区间内,丙酮蒸气的定压摩尔热容m P C ,与温度的关系式为:36211,[22.47201.810(/)63.510(/)]P m C T K T K J K mol ----=+⨯-⨯⋅⋅解:由于dT T C S P⎰=故 TC dS P=即⎰⎰=2121T T PS S dT TC S d T T T d C K S K S m K Kr m m ln )298()1000(1000298⎰∆+=θθ=434.8J•K -1•mol -1。
物理化学知识点总结
第一章 热力学第一定律一、基本概念系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。
二、基本定律热力学第一定律:ΔU =Q +W 。
焦耳实验:ΔU =f (T ) ; ΔH =f (T ) 三、基本关系式1、体积功的计算 δW = -p e d V恒外压过程:W = -p e ΔV可逆过程:1221ln ln p p nRT V V nRT W ==2、热效应、焓等容热:Q V =ΔU (封闭系统不作其他功) 等压热:Q p =ΔH (封闭系统不作其他功) 焓的定义:H =U +pV ; d H =d U +d(pV )焓与温度的关系:ΔH =⎰21d p T T T C3、等压热容与等容热容热容定义:V V )(T U C ∂∂=;p p )(T H C ∂∂=定压热容与定容热容的关系:nR C C =-V p 热容与温度的关系:C p =a +bT +c’T 2 四、第一定律的应用1、理想气体状态变化等温过程:ΔU =0 ; ΔH =0 ; W =-Q =⎰-p e d V 等容过程:W =0 ; Q =ΔU =⎰T C d V ; ΔH =⎰T C d p 等压过程:W =-p e ΔV ; Q =ΔH =⎰T C d p ; ΔU =⎰T C d V 可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p不可逆绝热过程:Q =0 ; 利用C V (T 2-T 1)=-p e (V 2-V 1)求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p2、相变化可逆相变化:ΔH =Q =n Δ_H ;W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W3、热化学物质的标准态;热化学方程式;盖斯定律;标准摩尔生成焓。
摩尔反应热的求算:)298,()298(B H H m f B m r θθν∆=∆∑反应热与温度的关系—基尔霍夫定律:)(])([,p B C T H m p BB m r ∑=∂∆∂ν。
物理化学 第三章 热力学第二定律
“>” 号为不可逆过程 “=” 号为可逆过程
克劳修斯不等式引进的不等号,在热力学上可以作 为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
因为隔离体系中一旦发生一个不可逆过程,则一定 是自发过程,不可逆过程的方向就是自发过程的方 向。可逆过程则是处于平衡态的过程。
二、规定熵和标准熵
1. 规定熵 : 在第三定律基础上相对于SB* (0K,完美晶体)= 0 , 求得纯物质B要某一状态的熵.
S(T ) S(0K ) T,Qr
0K T
Sm (B,T )
T Qr
0K T
2. 标准熵: 在标准状态下温度T 的规定熵又叫 标准熵Sm ⊖(B,相态,T) 。
则:
i
Q1 Q2 Q1
1
Q2 Q1
r
T1 T2 T1
1 T2 T1
根据卡诺定理:
i
r
不可逆 可逆
则
Q1 Q2 0 不可逆
T1 T2
可逆
对于微小循环,有 Q1 Q2 0 不可逆
T1 T2
可逆
推广为与多个热源接触的任意循环过程得:
Q 0
T
不可逆 可逆
自发过程的逆过程都不能自动进行。当借助 外力,体系恢复原状后,会给环境留下不可磨灭 的影响。自发过程是不可逆过程。
自发过程逆过程进行必须环境对系统作功。
例:
1. 传热过程:低温 传冷热冻方机向高温 2. 气体扩散过程: 低压 传压质缩方机向高压 3. 溶质传质过程: 低浓度 浓差传电质池方通向电高浓度 4. 化学反应: Cu ZnSO4 原反电应池方电向解 Zn CuSO4
大学课程《物理化学》第二章(热力学第二定律)知识点汇总
VB ,m
V nB T , p ,n jB
H nB T , p ,n jB G nB T , p ,n jB
U B ,m
U nB T , p ,n jB
S nB T , p ,n jB
T2 p1 dT S S '1 S '2 nR ln C p p2 T1 T
dU TdS pdV
T p V S S V
dH TdS Vdp
( U )V T S
T V p S S p
S系统 S B S A
Qr
T
S孤立=S系统 S环境 0
A
熵变的计算
总则
S环境
Q实际 T环境
理想气体等温过程的熵变
S S B S A
B
Qr
A
Q ( )r T T
Wmax Qr S T T
可逆相变过程的熵变
V2
V1
dG SdT Vdp B dnB
B
dU TdS pdV B dnB
B
U dU TdS pdV dnB nB S ,V ,n j B
B
U H F G nB S ,V ,n j B nB S , p ,n j B nB T ,V ,n j B B nB T , p ,n j B
B
dG SdT Vdp B dnB
B
纯理想气体的化学势
Gm Vm p T p T
热力学第二定律具体内容
热力学第二定律具体内容:热力学第二定律是热力学定律之一,是指热永远都只能由热处转到冷处.热力学第二定律是描述热量的传递方向的分子有规则运动的机械能可以完全转化为分子无规则运动的热能;热能却不能完全转化为机械能.此定律的一种常用的表达方式是,每一个自发的物理或化学过程总是向著熵(entropy)增高的方向发展.熵是一种不能转化为功的热能.熵的改变量等于热量的改变量除以绝对温度.高、低温度各自集中时,熵值很低;温度均匀扩散时,熵值增高.物体有秩序时,熵值低;物体无序时,熵值便增高.现在整个宇宙正在由有序趋于无序,由有规则趋于无规则,宇宙间熵的总量在增加.克劳修斯表述不可能把热量从低温物体传到高温物体而不引起其他变化.开尔文表述不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响.开尔文表述还可以表述成:第二类永动机不可能造成.若要简捷热能不能完全转化为机械能,只能从高温物体传到低温物体。
物理化学知识点总结(热力学第二定律)
热力学第二定律一切涉及热现象的能量传递和转化的过程都具有方向性和可逆性。
从前面的讨论中,我们仅仅知道热力学第一定律是不够的,我们不仅需要了解能量在传递和转化过程的量的问题,还需要知道有关能量在传递和转化过程的方向性和不可逆性的问题,这就需要我们进一步了解热力学第二定律。
克劳修斯说法:不可能把热从低温热源传到高温热源,而不产生其他变化。
(电冰箱的例子)开尔文说法:不能能从单一热源吸热并使之全部变为功,而不产生其他变化。
(热机的例子)一、卡诺循环热机:热机是通过工质的膨胀和压缩来进行循环操作的,它从高温热源T1吸热Q1做功W,将其余的热量放热Q2(由此可知Q2<0)低温热源T2,定义热机效率为η=−WQ1=Q1+Q2Q1=1+Q2Q1为了研究热机的效率,我们首先来分析一种特殊的热机,它是以理想气体按照4个可逆过程,完成一组循环,从而对外界工作的热机,我们把这种循环过程称为卡诺循环,其循环具体可以分为4个步骤(以1mol理想气体为研究对象)第一步:在温度为T1的条件下,等温可逆膨胀,由p1V1→p2V2W1=−RT1ln V2V1=RT1lnV1V2Q1=− W1=RT1ln V2 V1气体对环境做功如曲线AB与坐标轴围成的面积,同时系统从高温热源吸热T1吸热Q1第二步:绝热可逆膨胀,由p2V2T1→p3V3T2W1=ΔU=∫C V dTT2T1Q2=0气体对环境做功如曲线BC与坐标轴围成的面积,由于绝热过程,热交换Q=0第三步:在温度为T2的条件下,等温可逆压缩,由p3V3→p4V4W3=−RT2ln V4V3=RT2lnV3V4Q3=− W3=RT2ln V4 V3环境对气体做功如曲线CD与坐标轴围成的面积,同时系统给低温热源T2放热Q3第四步:绝热可逆压缩,由p4V4T2→p1V1T1W1=ΔU=∫C V dTT1T2Q4=0环境对气体做功如曲线AD与坐标做围成面积,由于绝热,热交换Q=0整个过程:曲线ABCD围成红色部分面积,则是热机对环境所做的净功。
物理化学答案——第二章-热力学第二定律
第二章 热力学第二定律 一、基本公式和基本概念 基本公式1. 热力学第二定律的数学表达式----克劳修斯不等式 ()0A B A B QS Tδ→→∆-≥∑2. 熵函数的定义 ()R QdS Tδ=, ln S k =Ω3. 熵变的计算理想气体单纯,,p V T 变化22,1122,1122,,11ln ln ln ln lnln V m p m p m V m T V S C R T V T p S C R T p V p S C C V p ∆=+∆=-∆=+理想气体定温定压混合过程ln i i iS R n x ∆=-∑封闭系统的定压过程21,d T p m T C S n T T∆=⎰封闭系统定容过程 21,d T V m T C S n T T∆=⎰可逆相变 m n H S T∆∆=标准状态下的化学反应 ,()r m Bm B BS S T θθν∆=∑定压下由1T 温度下的化学反应熵变求2T 温度下的熵变 21,21()()d T p m r m r m T C S T S T T T∆∆=∆+⎰4. 亥姆霍兹函数 A U TS ≡-5. 吉布斯函数 G H TS ≡-6. G ∆和A ∆的计算(A ∆的计算原则与G ∆相同,做相应的变换即可)定温过程G H T S ∆=∆-∆组成不变的均相封闭系统的定温过程 21d p p G V p ∆=⎰理想气体定温过程 21ln p G nRT p ∆= 7. 热力学判据熵判据:,()0U V dS ≥亥姆霍兹函数判据:,,'0(d )0T V W A =≤ 吉布斯函数判据:,,'0(d )0T p W G =≤8. 热力学函数之间的关系组成不变,不做非体积功的封闭系统的基本方程d d d d d d d d d d d d U T S p V H T S V pA S T p V G S T V p=-=+=--=-+麦克斯韦关系S VpS T Vp TT p V S T V p S S p V T S V p T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭9. 吉布斯-亥姆霍兹方程2()pG HT T T ∆⎡⎤∂⎢⎥∆=-⎢⎥∂⎢⎥⎣⎦ 基本概念1. 热力学第二定律在研究化学或物理变化驱动力来源的过程中,人们注意到了热功交换的规律,抓住了事物的共性,提出了具有普遍意义的熵函数。
物理化学热力学第二定律
对微小变化
Qr dS T
上式为熵的定义式。 熵的变化必须由可逆过程的热温商求得。
(2) 不可逆过程的热温商
• 如果热机进行不可逆循环,则其效率必然比卡 诺循环效率小,即 Q1 Q2 T2 T Q2 T2
1
• 其中Q表示不可逆过程的热效应。由上式得
Q1* Q2* 0 T1 T2
• 因此,对一任意不可逆循环来说,必有
Q*
T
0
假定一不可逆循环A→B→A,其中A→B为不可 逆过程(标记ir)、B→A为可逆过程(标记r)。
警告:对不可逆过程 A→B (1→2) 不可颠倒积分限。
2 T T 2 Q 2 Q r ir > 1 T 1 T 2 Q > 不可逆 S 1 T = 可逆 Q > 不可逆 dS T = 可逆 1
①A→B 定温可逆膨胀 ②B→C 绝热可逆膨胀 ③C→D 定温可逆压缩 ④D→A 绝热可逆压缩
• 过程①:定温(T2)可逆膨胀 理想气体Δ U= 0, 故 Q2 = -W1 W1 = -RT2*ln(V2/V1) • 过程② :绝热可逆膨胀 由于绝热 Q= 0, 故ΔU = W2 Δ U= Cv*Δ T = Cv*(T1-T2) • 过程③ :定温(T1)可逆压缩 理想气体ΔU=0,故 Q1 = -W3 W3 = -RT1*ln(V4/V3) • 过程④ :绝热可逆压缩 由于绝热 Q= 0, ΔU = W4 ΔU= Cv* ΔT = Cv*(T2-T1)
卡诺定理: 1. 在两个不同温度的热源之间工作的任意 热机,以卡诺热机的效率为最高。 2. 卡诺热机的效率只与两个热源的温度有 关,而与工作物质(水蒸气或其它气体) 无关。
学习_热力学第二定律01
不论参与卡诺循环的工作物质是什么,只要是 可逆机,在两个温度相同的低温热源和高温热源之间 工作时,热机效率都相等,在上述证明中,并不涉及 工作物质的本性,因而与工作物质的本性无关。因此 我们就可以引用理想气体卡诺循环的结果了。
2019/10/16
2.5 熵的概念
•从卡诺循环得到的结论 •任意可逆循环的热温商 •熵的引出 •熵的定义
2019/10/16
2.3 卡诺循环
•卡诺循环 •热机效率
2019/10/16
2.3 卡诺循环
热机(heat engine)
在T1, T2两热源之间工作,将热转化为功的机 器。
如蒸汽机、内燃机。高温热 源T吸2 热Q2
热机 做功W
放热Q1 低温热
源T1
2019/10/16
卡诺循环(Carnot cycle)
对于卡诺热
机
W
R(T2
T1 )
ln
V1 V2
T2 T1 1 T1
Q2
RT2
ln
V2 V1
T2
T2
此式说明:
(适用可逆热机)
可逆热机的效率只与两热源的温度有关。 T2-T1= 0,即等温循环过程中,热机效率等于
零。 T1= 0K时,热机效率可达到100%。
2019/10/16
2.4 卡诺定理
卡诺定理:所有工作于同温热源和同温冷源之 间的热机,其效率都不能超过可逆机,即可逆 卡机诺的定效理率推最论大:。所有工作于同温热源与同温冷 源之间的可逆机,其热机效率都相等,即与热 机的工作物质无关。 卡 诺 定 理 的 意 义 : ( 1 ) 引 入 了 一 个I不等R 号 ,原则上解决了化学反应的方向问题;(2)解 决了热机效率的极限值问题。
第二章:热力学第二定律(物理化学)
精选可编辑ppt
31
克劳修斯不等式的意义
克劳修斯不等式引进的不等号,在热力学上可以
作为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
I < 20% 1度电/1000g煤
高煤耗、高污染(S、N氧化物、粉尘和热污染)
精选可编辑ppt
16
火力发电厂的能量利用
400℃
550℃
ThTC67330055%
Th
673
I < 40% 1度电/500g煤
ThTC82330063%
Th
823
精选可编辑ppt
17
火力发电厂的改造利用
精选可编辑ppt
十九世纪,汤姆荪(Thomsom)和贝塞罗特(Berthlot) 就曾经企图用△H的符号作为化学反应方向的判据。他们认 为自发化学反应的方向总是与放热的方向一致,而吸热反应 是不能自动进行的。虽然这能符合一部分反应,但后来人们 发现有不少吸热反应也能自动进行,如众所周知的水煤气反 应就是一例。这就宣告了此结论的失败。可见,要判断化学 反应的方向,必须另外寻找新的判据。
精选可编辑ppt
4
2.2 自发变化不可逆症结
T1高温热源 Q1
M
W
Q2
T2低温热源
精选可编辑ppt
5
2.3 热力学第二定律(The Second Law of Thermodynamics)
开尔文(Kelvin) :“不可能从单一热源取出热使之完全 变为功,而不发生其它的变化。”
物理化学
热力学第一定律1、热力学第一定律:△U=Q+W2、体积功:(1)气体向真空膨胀:W=0(2)气体恒外压膨胀:W=—P外*△V(3)外压比内压差无限小膨胀:W=—∫p*dV 若气体为理想气体时,W=—nRTln(p1/p2)=—nRTln(v2/v1)(4)可逆相变的体积功:W=—nRT3、定容及定压下的热:(焓)△H=△U+△(PV)4、定压下:Q=△H=nCp,m*△T定容下:Q=△U=nCv,m*△T (Cp,m=Cv,m+R)5、理想气体的绝热过程:pV^γ=常数(γ=Cp,m/Cv,m)6、实际气体的节流膨胀(等焓膨胀)△H=07、定容与定压反应热:△H=△U+RT△n (Qp=Qv+RT△n)8、反应进度ζ:ζ=(n2-n1)/v9、任意一反应的反应焓等于产物生成焓之和减去反应物生成焓之和任意一反应的反应焓等于反应物燃烧焓之和减去产物燃烧焓之和10、反应焓与温度的关系(基尔霍夫方程):△H2-△H1=△Cp(T2-T1)热力学第二定律1、克劳休斯不等式:△S>=Q/T2、卡诺热机的效率:η=(T2-T1)/T23、定温过程的熵变:△S=nRln(p1/p2)4、定压熵变:△S=nCp,m*ln(T2/T1)5、定容熵变:△S=nCv,m*ln(T2/T1)6、绝热可逆过程为等熵过程(△S=0)7、定温定容系统:亥姆霍兹函数A=U—TS8、定温定压系统:吉布斯函数G=H—TS=A+pV (可逆相变:△G=0)9、热力学函数之间的关系:dU=TdS-p*dVdH=TdS+VdpdA=-SdT-p*dVdG=-SdT+Vdp10、吉布斯-亥姆霍兹公式:(△G/T2)-(△G/T1)=△H(1/T2-1/T1)。
物理化学_热力学第二定律1-10
T-S图 及其应用
图中ABCDA表示任一 可逆循环。 ABC是吸热过程,所吸 之热等于ABC曲线下的面积 CDA是放热过程,所放之 热等于CDA曲线下的面积 循环热机所做的功W为闭合 曲线ABCDA所围的面积。
ABCDA的面积 循环热机的效率 ABC曲线下的面积
T-S图 及其应用
所以一切自发过程都是不可逆的。
自发过程的方向性归结为热功转换的方向性。 1.理想气体自由膨胀: Q=W=U=H=0, V>0 要使系统恢复原状,可经定温压缩过程 U=0, H=0, Q = W, 2.热由高温物体传向低温物体: 冷冻机做功后,系统恢复原状,… 3.化学反应: Cd(s)+PbCl2(aq)=CdCl2(aq)+Pb(s) 电解使反应逆向进行,系统恢复原状,…
§3.4 熵的概念
从Carnot循环得到的结论: 即Carnot循环中,热效应与温度商值的加和等于零。
Qc Qh 0 Tc Th
对于任意的可逆循环,都可以分解为若干个 小Carnot循环。
先以P,Q两点为例
证明如下: (1)在任意可逆循环的曲 线上取很靠近的PQ过程
(2)通过P,Q点分别做RS和 TU两条绝热可逆膨胀线
1.关于“不能从单一热源吸热变为功,而没有任何 其它变化”这句话必须完整理解,否则就不符合事实。 例如理想气体定温膨胀U=0, Q=W,就是从环境中吸 热全部变为力学第二定律
Clausius 的说法: “不可能把热从低温物体传到高温物体,而不 引起其他变化。”(热传导的不可逆性) Kelvin 的说法: “不可能从单一热源取出热使之完全变为功,而 不发生其他的变化。”(功变热的不可逆性) 后来被Ostward表述为:“第二类永动机是不可 能造成的。” 第二类永动机:从单一热源吸热使之完全变为功而 不留下任何影响。
物理化学 第二章 热力学第二定律
卡诺定理的意义:
(1)引入了一个不等号 i r ,原则上解决了热机 效率的极限值问题。 (2)证实了热不能完全转化为功,因为T1 /T2 = 0 是 不可能的。
卡诺定理(1)的证明: i r 证明:反证法 假设: i 热机效率大于 r :
高温 T2
Q’2 Q2
i
W Q
' 2
r
上式的意义:系统由状态 A 到状态 B,S有唯一的值, 等于从 A 到B 可逆过程的热温商之和。
熵的特别提醒:
(1)熵(S)是状态函数;热温商(Qr/T)是与途径 相关的概念; (2)可逆过程热温商(Qr/T)不是熵(S) ;它只 是过程熵变(ΔS)的一种量度,一种测定方法; (3)熵(S)是广度性质,具有加和性;但 Sm 是强 度性质。
这个设计就相当于热从低温热源传到高温热源而 没有发生其它变化 ---违背热力学第二定律
因此 B A
卡诺定理(2)的证明:
2. 如果A带动B,使B倒转:
高温 T2
Q’2
Q2
假设A可逆热机效率大于B
A
W
Q
' 2
B
W
Q2
A®
W W
' Q2 Q2
B®
Q2 W
Q ’2 W
卡诺定理(2)的证明:
证明: 1. 如果B带动A,使A倒转:
高温T2
Q’2
Q2
假设B可逆热机效率大于A
B
W Q
' 2
A
W Q2
B®
W W
' Q2 Q2
A®
Q2 W
Q ’2 W
低温T1
循环净结果为: 1. 两热机均恢复原态 2. 高温热源得热: Q2 Q2 3. 低温热源失热:
物理化学第二章 热力学第二定律
第四节
卡诺定理
一、卡诺定理:所有工作于同温热源和同温冷源之间 的热机,以可逆机的效率最大。 证明:(1)设 I 热机效率大于R,以I 带动 R 倒转: 设I>R ,W1=W2=W
则 Q‘h < Qh
循环一周,热机恢复原态。
低温热源失热: (Qh-W)- (Q'h-W)=Qh- Q'h> 0 高温热源得热: (Qh- Q‘h) > 0 违反Clausius说法,说明假设I>R不成立。
Q1
T1
(
Q2
T2
Ti
Q3
T3
Q4
T4
... 0
Qi
)r 0
( T
Q
)r 0
结论:任意可逆 循环过程的热温 商之和等于零
如图任意可逆循环。在曲线上任意取A,B两点,把 循环分成AB和BA两个可逆过程。根据任意可逆 循环热温商的公式:
( T
B
Q
T2
Q2
2、开不成立克也不成立
T2
Q1 Q2
Q2
A
Q1
W
B
Q1
W
Q1
T1
热机吸热Q2,做功W,放 给低温热源Q1, Q2-Q1=W 若Q1可自动地由低到高温 热源,相当于从单一高温热源 吸热Q2 -Q1全部用来做功W。
T1
热机A吸热Q2,全部做功 W, Q2=W 带动另一可逆机由低热源 吸热Q1,放热 Q1+Q2 ,相当 于Q1自动从低传至高温热源。
第一节
自发过程的特征
一、自发过程(spontaneous process) 任其自然、无需施加任何外力,就能自动发生 的过程。 例如:水:(地势)高低,气体:(压力)大 小,热:(温度):高低,…… 二、自发过程的共同特征(spontaneous process) 1、自发过程具有方向性和限度;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.关于“不能从单一热源吸热变为功,而没有任何 其它变化”这句话必须完整理解,否则就不符合事实。 例如理想气体定温膨胀U=0, Q=W,就是从环境中吸 热全部变为功,但体积变大了,留下了其它变化。
§3.2
热力学第二定律
Clausius 的说法: “不可能把热从低温物体传到高温物体,而不 引起其他变化。”(热传导的不可逆性) Kelvin 的说法: “不可能从单一热源取出热使之完全变为功,而 不发生其他的变化。”(功变热的不可逆性) 后来被Ostward表述为:“第二类永动机是不可 能造成的。” 第二类永动机:从单一热源吸热使之完全变为功而 不留下任何影响。
用相同的方法把任意可逆循环分成许多首尾连
接的小卡诺循环
前一循环的绝热可逆膨
胀线就是下一循环的绝热可
逆压缩线(如图所示的虚线
部分),这样两个绝热过程 的功恰好抵消。
O
从而使众多小Carnot循环的总效应与任意可逆 循环的封闭曲线相当。 所以任意可逆循环的热温商的加和等于零,或
它的环程积分等于零。
任意可逆循环分为小Carnot循环
§3.10 §3.11 §3.12 §3.13 §3.14 Helmholtz和Gibbs自由能 变化的方向与平衡条件
G 的计算示例
几个热力学函数间的关系 热力学第三定律及规定熵
从热力学看人生——不可逆过程
§3.1
自发变化的共同特征——不可逆性
自发变化 某种变化有自动发生的趋势,一旦发生就 无需借助外力,可自动进行,这种变化称为自发变化。 自发变化的共同特征——不可逆性 任何自发变化的 逆过程都是不能自动进行的。例如: (1) 焦耳热功当量中功自动转变成热; (2) 气体向真空膨胀; (3) 热量从高温物体传入低温物体; (4) 浓度不等的溶液混合均匀; (5) 锌片与硫酸铜的置换反应等,
p
P
R V
T
O
Q W
X
M
N O'
Y
S
U
(3)在P,Q之间通过O点做 O 任意可逆循环 等温可逆膨胀线VW 使两个三角形PVO和OWQ的面积相等, 这样使PQ过程与PVOWQ过程所做的功相同。
V
同理,对MN过程作相同处理,使MXO’YN折线所经 过程做功与MN过程相同。 VWYX就构成了一个Carnot循环。
T-S图 及其应用
图中ABCDA表示任一 可逆循环。 ABC是吸热过程,所吸 之热等于ABC曲线下的面积 CDA是放热过程,所放之 热等于CDA曲线下的面积 循环热机所做的功W为闭合 曲线ABCDA所围的面积。
ABCDA的面积 循环热机的效率 ABC曲线下的面积
T-S图 及其应用
如AB为可逆过程 Q S A B T i R,A B 将两式合并得 Clausius 不等式:
S A B Q ( ) A B T i
Q Q 0 或 dS 对于微小变化: dS T T 若是不可逆过程,用“>”号,可逆过程用“=”号,
B
或
Q S B S A S ( ) R A T Qi Q S ( )R 对微小变化 dS ( ) R Ti T i
这些是熵的定义式,熵的变化值可用可逆过程 的热温商之和来衡量。 可逆过程的热温商之和等于熵变,可逆循环过 程的热温商之和等于0。不可逆过程?
§3.5 Clausius 不等式与熵增加原理
第三章 热力学第二定律
§3.1 自发变化的共同特征
§3.2 §3.3
§3.4 §3.5 §3.6
热力学第二定律 Carnot定理
熵的概念 Clausius不等式与熵增加原理 热力学基本方程与T-S图
§3.7 §3.8 §3.9
熵变的计算 熵和能量退降 热力学第二定律的本质和熵的统计意义
第三章 热力学第二定律
它们的逆过程都不能自动进行。当借助外力,系统 恢复原状后,会给环境留下不可磨灭的影响。
一切自发过程都是不可逆的。 不过要注意自发过程并非不可逆转,但必须外力帮助 (外界对之做功)。 例如: •用制冷机可以将热由低温物体转移到高温物体; •用压缩机可将气体由低压容器抽出,压入高压
容器;
•用水泵可以将水从低处打到高处。 但这一切外界必须付出代价,做出相应的功,而不是 自发逆转。也就是说自发过程进行后,虽然可以逆转,使 系统回复到原状,但环境必须消耗功。系统复原,但环境 不能复原。
所以一切自发过程都是不可逆的。
自发过程的方向性归结为热功转换的方向性。 1.理想气体自由膨胀: Q=W=U=H=0, V>0 要使系统恢复原状,可经定温压缩过程 U=0, H=0, Q = W, 2.热由高温物体传向低温物体: 冷冻机做功后,系统恢复原状,… 3.化学反应: Cd(s)+PbCl2(aq)=CdCl2(aq)+Pb(s) 电解使反应逆向进行,系统恢复原状,…
§3.4 熵的概念
从Carnot循环得到的结论: 即Carnot循环中,热效应与温度商值的加和等于零。Biblioteka Qc Qh 0 Tc Th
对于任意的可逆循环,都可以分解为若干个 小Carnot循环。
先以P,Q两点为例
证明如下: (1)在任意可逆循环的曲 线上取很靠近的PQ过程
(2)通过P,Q点分别做RS和 TU两条绝热可逆膨胀线
iso sys sur
“>” 号为自发过程,“=” 号为可逆过程
思考:自发过程都是不可逆的,那么不可逆过程 都是自发的吗?
熵的特点
(1)熵是系统的状态函数,是容量性质。 (2)可以用Clausius不等式来判别过程的可逆性。 (3)在绝热过程中,若过程是可逆的,则系统的 熵不变。若过程是不可逆的,则系统的熵增加。 绝热不可逆过程向熵增加的方向进行,当达到平 衡时,熵达到最大值。 (4)在任何一个隔离系统中,若进行了不可逆过
dU δQ pdV δQR δQR TdS 由热力学第二定律,可逆过程中 dS T 所以有 dU TdS pdV TdS dU pdV
若不考虑非膨胀功
这是热力学第一与第二定律的联合公式,也 称为热力学基本方程。
思考:热力学基本方程只有在可逆条件下才能用吗?
TdS dU pdV
Q S i T I
B
Q )R T
,所以只有可逆过程才有
熵变;而
,所以不可逆过程只有热温商,
但是没有熵变。
7. 物质的量一定的双原子气体,经节流膨胀后温度 下降,体积变大,此过程中 H 0,S 0,J-T 0(填 >、< 或=)。 8. 对于O2和N2混合气体的可逆绝热压缩过程( ) (A)△U=0 (B)△A=0 (C)△S=0 (D)△G=0
Q Q <0 T i I, AB i T R, B A
Q S A SB T i R, B A
Q SB S A i T I, AB
B Q 或 S AB A T I 不可逆过程的热温商之和小于熵变。
p S = V U T
或
T-S图 及其应用
什么是T-S图? 以T为纵坐标、S为横坐标所作的表示热力学过 程的图称为T-S图,或称为温-熵图。 根据热力学第二定律
δQR dS T
QR TdS
系统从状态A到状态B, 在T-S图上曲线AB下的面积 就等于系统在该过程中的热 效应。
R
则
Qc Q h 0 Tc Th
推广为与n个热源接触的任意不可逆循环过程,得: n Qi 0 i Ti I 不可逆循环过程的热温商之和小于0,不可逆过程?
Clausius 不等式
设有一个循环, A B 为不可逆过程, BA 为可逆过程,整个循环为不可逆循环。 则有
熵是热力学能和体积的函数,即
S S (U ,V )
S S dS dU dV U V V U
热力学基本方程可表示为
1 p dS dU dV T T
所以有
1 S U V T
或
U T S V S p T V U
Clausius 不等式—— 热力学第二定律的数学表达式 熵增加原理
Clausius 不等式
设温度相同的两个高、低温热源间有一个可逆 热机和一个不可逆热机。 Th Tc Tc Q Q Q h c c 则: I R 1 1 Th Th Qh Qh
I 根据Carnot定理:
Q2
T2
Q1
T1
0
Q4
T4
Q3
T3
0
Q6
T6
T1
i
Q5
T5
T2
i
0
Q3
T3
Q1 Q2
Q4
T4
0
( T
Qi
)R 0
δQ 0 T R
在任意可逆循环过程中,工作物质在各温度所 吸收的热与该温度之比的总和等于零。
9.在101.325 kPa下,385 K的水变为同温下的水 蒸气,对该变化过程,下列各式中哪个正确? ( ) (A)ΔS(体)+ΔS(环)>0 (B)ΔS(体)+ΔS(环)<0 (C)ΔS(体)+ΔS(环)=0 (D)ΔS(体)+ΔS(环)不能确定
§3.6 热力学基本方程与T-S图
热力学的基本方程—— 第一定律与第二定律的联合公式 根据热力学第一定律 dU δQ δW
§ 3.3
Carnot定理:
Carnot定理
所有工作于同温热源和同温冷源之间的热机,其 效率都不能超过可逆机,即可逆机的效率最大。
Carnot定理推论: 所有工作于同温热源与同温冷源之间的可逆热机, 其热机效率都相等,即与热机的工作物质无关。 Carnot定理的意义: (1)引入了一个不等号 I R ,原则上解决了 化学反应的方向问题; (2)原则上解决了热机效率的极限值问题。