2014年春季新版新人教版七年级数学下学期5.3、平行线的性质教案1
人教版七年级下册5.3.1平行线的性质教学设计
人教版七年级下册5.3.1平行线的性质教学设计一、教学背景这一章节是初中数学中的重要内容,是初中阶段固有内容之一。
本节内容是平行线的性质,是进一步提高学生的几何学习水平,培养学生学习几何并进行运用的能力,为高中学习打下基础。
二、教学目标1.了解平行线及其性质2.掌握平行线的判定方法3.理解平行线性质在实践中的运用三、教学方法1.启发法。
通过生活实例与学生交流、讨论、分析问题,引导学生主动发现规律,理解和掌握性质。
2.演示法。
通过画图、举例、模拟等方式,使学生清楚而直观地感受到性质的本质和基本概念。
3.交互式教学法。
在课堂授课中,让学生发现问题,教师及时给予引导和反馈,互相探讨,加深印象。
四、教学过程1. 导入1.蓝色背景幻灯片呈现问题:一本书和一支笔在实物上是不可能同时摆放在同一个平面内的。
请用你的观察能力,试着解释一下。
2.学生进行思考和讨论,教师及时引导,引出平行性质,并与上节课内容对接。
2. 深化1.展示两条不相交的直线和一条横截直线的图形,引导学生描绘其几何形状。
2.教师引导学生观察直线和横线的相对位置。
学生回答“这两条直线可能会有什么关系?” 并予以深入探究。
3.教师呈现两条相交的直线的图形。
蓝色背景幻灯片呈现问题:如何判断两条直线平行?4.启发式教学清晰阐明平行性质,加深对平行性质的认识。
学生自主探索得到假设,教师引导得出定义。
5.通过生活实例和多个角度的讲解掌握平行线的判定方法,梳理学习过的知识点,梳理几何优秀思路,解决学生的疑惑与困惑。
3. 总结1.举例,让学生思考这些性质的应用场景和方法。
2.教师引导学生用不同的方法总结、概括平行性质。
4. 课堂作业请学生人自己动手从生活中找出化解问题的方法,更加深入理解平行线性质,提高维度。
五、教学评估通过课堂练习、课堂互动、互相探讨、小组交流以及单独创造等多种评价方式,检验学生学习效果。
教师班长进行作业的检查和评估,判定教学质量和效果。
人教版数学七年级下册5.3.1《平行线的性质》教学设计3
人教版数学七年级下册5.3.1《平行线的性质》教学设计3一. 教材分析《平行线的性质》是人教版数学七年级下册第五章第三节的内容,本节课主要让学生掌握平行线的性质,通过探究同位角、内错角和同旁内角的关系,引导学生理解并证明平行线的性质。
本节课的内容是学生进一步认识直线和圆的基础,对于学生形成完善的空间观念和几何思维具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了直线、射线、线段的概念,以及平行线的概念和判定。
在此基础上,学生需要进一步探究平行线的性质,理解并证明同位角、内错角和同旁内角的关系。
由于本节课的内容较为抽象,学生可能对一些概念和证明过程的理解存在困难,因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,引导学生进行思考和探究。
三. 教学目标1.理解平行线的性质,掌握同位角、内错角和同旁内角的关系。
2.能够运用平行线的性质解决一些实际问题。
3.培养学生的空间观念和几何思维,提高学生的动手操作能力和数学表达能力。
四. 教学重难点1.平行线的性质2.同位角、内错角和同旁内角的关系3.运用平行线的性质解决实际问题五. 教学方法1.引导探究法:教师引导学生通过观察、操作、思考、讨论等方式,自主探究平行线的性质,培养学生的探究能力和合作精神。
2.案例分析法:教师通过列举实例,让学生理解和运用平行线的性质,提高学生的应用能力。
3.讲解法:教师对一些难点和重点内容进行讲解,帮助学生理解和掌握知识。
六. 教学准备1.教学课件:制作课件,展示平行线的性质和相关的实例。
2.教学素材:准备一些与平行线性质相关的习题,用于巩固和拓展学生的知识。
3.板书设计:设计板书,突出本节课的重点内容。
七. 教学过程1.导入(5分钟)教师通过复习直线、射线、线段的概念,以及平行线的概念和判定,为学生引入本节课的内容。
2.呈现(10分钟)教师展示课件,引导学生观察一些图片,如铁路、公路等,让学生找出其中的平行线。
人教版七年级数学下册《5.3.1平行线的性质1》教案
课题 5.3.1平行线的性质1 备课时间序号授课时间主备人授课班级七年级课标要求教学目标知识与技能:1、经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力;2、经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.。
过程与方法:回忆平行线的判定方法,通过画图、度量、猜想、推理等实践活动,初步体一会应用数学符号语言的好处,培养简单的推理能力。
情感态度价值观:培养学生的探索精神、归纳能力、师生及生生之间的合作精神教学重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算教学难点能区分平行线的性质和判定,平行线的性质与判定的混合应用教学方法启发式、讲授式教学过程设计师生活动设计意图一、创设情境:平行线的判定方法否有哪些判定方法1 同位角相等,两直线平行判定方法2 内错角相等,两直线平行判定方法3 同旁内角互补,两直线平行三条判定的条件是角之间的关系,结论都是两条直线平行,如果我们把结论和条件交换位置,又能得到什么呢?二、参与实践:教师提问学生回答教师将平行线的判定条件和结论进行互换,引出本节课的主要内容回顾平行线的性质,引出平行线的判定如图,已知直线 a ∥b ,c 是截线两条平行线被第三条直线截得的同位角会具有怎样的数量关系?性质1 两条平行线被第三条直线 所截,同位角相等几何语言∵a ∥b(已知)∴∠1=∠5(两直线平行,同位角相等)两条平行线被第三条直线截得的内错角会具有怎样的数量关系?性质2 两条平行线被第三条直线所截,内错角相等几何语言∵a ∥b(已知)∴∠3=∠5(两直线平行,内错角相等)两条平行线被第三条直线截得的同旁内角会具有怎样的数量关系?性质3 两条平行线被第三条直线 所截,同旁内角互补几何语言∵a ∥b(已知)∴∠4+∠5=180(两直线平行,同旁内角互补)三、评价反馈学生可以用测量的方法验证猜想,学生根据猜想说出平行线的性质1,并用文字尽量叙述标准教师根据学生的回答,板书相应的性质2和3,让学生知道平行线的性质有哪些性质的应用,教师提问,引导学生利用性质来判断,学生回答培养学生猜想、验证、得出结论的过程,加深印象由于有第一个做铺垫,可以让学生自己总结并验证内错角和同旁内角之间有什么关系性质的基本应用,学生要注意学会如何得到的,并口述证明过程 87654321c b a(2)从∠1=110º可以知道∠3是多少度吗?为什么?答:∠3 =110º.因为AB∥CD ,∠1和∠3是同位角,根据两直线平行,同位角相等,得到∠1=∠3.因为∠1=110º,所以∠3 =110º(3)从∠1=110º可以知道∠4是多少度吗?为什么?答:∠4=70º.因为AB∥CD , ∠1和∠4是同旁内角,根据两直线平行,同旁内角互补,得到∠1+∠4=180º.因为∠1=110º所以∠4=70º四、迁移创新教师提问学生回答公路的实际问题,体会平行在现实当中的应用一题多解,让学生自己发掘解题方法基础知识的初步应用,让学生知道怎样在实际问题中书写锻炼学生的思维发散性和解题的多样性,教师要注意评价,并关注学生的书写过程方法一解:∵AB∥CD,∴∠C=∠1.∵ AE∥CF,∴∠A=∠1.∴∠C=∠A.∵∠A= 39º,∴∠C= 39º.方法二解:∵AB∥CD,∴∠C=∠2.∵ AE∥CF,∴∠A=∠2.∴∠C=∠A.∵∠A= 39º,∴∠C= 39º.课堂小结:平行线的性质有哪些?作业设计:学生独立完成并讲解教师巡视指导。
七年级数学下册5.3平行线的性质5.3.1平行线的性质(1)教案(新版)新人教版
∠3=70°,求∠4的度数.
体验
收获
本节课我们学习了哪些?
培养学生的自我总结的意识。
六、
实践
延伸
练习
1.∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2的大小关系是( )
A.∠1=∠2 B.∠1>∠2
C.∠1<∠2 D.无法确定
2.判断题
角
∠1
∠2
∠3
∠4
度数
角
∠5
∠6
∠7
∠8
度数
3.图中哪些角是同位角?它们具有怎样的数量关系?
图中哪些角是内错角?它们具有怎样的数量关系?
图中哪些角是同旁内角?它们具有怎样的数量关系?
4.能否将我们发现的结论给予较为准确的文字表述?几何语言?
讨论这些性质与前面所学的判定有什么不同?
我们能否使用平行线的性质1说出性质2、3成立的道理呢?
(1)两条直线被第三条直线所截,则同旁内角互补( )
(2)两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )
(3)两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.( )
教学
反思
5.3.1平行线的性质
课题
5.3.1平行线的性质(1)
课型
新授
教学目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.
教学重点
探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.
学生动手参与课
人教版数学七年级下册教案5.3.1《 平行线的性质》
人教版数学七年级下册教案5.3.1《平行线的性质》一. 教材分析《平行线的性质》是人教版数学七年级下册第5章第3节的内容,本节课主要让学生掌握平行线的性质。
教材通过实例引入平行线的性质,然后引导学生通过观察、猜想、证明等过程,掌握平行线的性质。
教材内容紧密联系学生的生活实际,激发学生的学习兴趣,培养学生观察、思考、动手操作的能力。
二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段的概念,掌握了直线和射线的性质,能熟练画直线和射线。
但学生对平行线的性质认识不足,需要通过实例来引导他们观察、思考、总结平行线的性质。
三. 教学目标1.知识与技能:让学生掌握平行线的性质,能运用平行线的性质解决实际问题。
2.过程与方法:培养学生观察、思考、动手操作的能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.重点:平行线的性质。
2.难点:如何引导学生观察、思考、总结平行线的性质。
五. 教学方法1.采用问题驱动法,引导学生观察、思考、总结平行线的性质。
2.利用小组合作学习,培养学生团队协作精神,提高学生解决问题的能力。
3.通过实例讲解,使学生能将所学知识应用于实际问题中。
六. 教学准备1.准备相关课件,展示平行线的性质。
2.准备实例,让学生观察、思考、总结平行线的性质。
3.准备练习题,巩固所学知识。
七. 教学过程导入(5分钟)教师通过展示实际生活中的平行线例子,如教室里的黑板、书桌、地板等,引导学生观察并提问:“你们能发现这些平行线有什么特点吗?”学生通过观察,激发学习兴趣,发现问题。
呈现(10分钟)教师展示课件,呈现平行线的性质,引导学生猜想并提问:“你们认为平行线有哪些性质呢?”学生通过观察、思考,提出猜想。
操练(15分钟)教师引导学生进行小组合作学习,让学生通过实际操作,证明平行线的性质。
教师巡回指导,解答学生疑问。
巩固(10分钟)教师呈现练习题,让学生运用所学知识解决问题。
人教版七年级数学下册5.3.1.1《平行线的性质》教学设计
人教版七年级数学下册5.3.1.1《平行线的性质》教学设计一. 教材分析《平行线的性质》是人教版七年级数学下册第五章第三节的第一课时内容。
本节课的主要内容是让学生掌握平行线的性质,包括同位角相等、内错角相等、同旁内角互补等。
这些性质是初中数学中的重要知识点,对于学生来说具有很高的实用价值。
在教材中,这些性质是通过实例和图形来进行说明和论证的,使得学生能够在理解的基础上掌握这些性质。
二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段等基本概念,对于图形的认识和基本的几何知识已经有了一定的基础。
但是,对于平行线的性质,学生可能还比较陌生,需要通过实例和图形来进行理解和掌握。
另外,学生可能对于一些专业术语如“同位角”、“内错角”、“同旁内角”等还不太熟悉,需要在课堂上进行讲解和强化。
三. 教学目标1.知识与技能:让学生掌握平行线的性质,包括同位角相等、内错角相等、同旁内角互补等。
2.过程与方法:通过实例和图形,让学生理解并证明平行线的性质。
3.情感态度与价值观:培养学生的观察能力、思考能力和解决问题的能力,激发学生对数学的兴趣。
四. 教学重难点1.重点:让学生掌握平行线的性质。
2.难点:让学生理解并证明平行线的性质。
五. 教学方法1.情境教学法:通过实例和图形,引导学生观察、思考和解决问题。
2.小组合作学习:让学生在小组内进行讨论和交流,共同解决问题。
3.启发式教学:教师提出问题,引导学生进行思考和回答。
六. 教学准备1.教学课件:制作相关的课件,包括实例、图形、动画等,以便于进行教学展示。
2.教学素材:准备一些相关的实例和图形,以便于进行教学演示。
3.练习题:准备一些练习题,以便于进行课堂巩固和家庭作业的布置。
七. 教学过程1.导入(5分钟)通过一个实际问题引出平行线的性质,激发学生的兴趣。
例如,讲解一个关于道路规划的问题,需要知道两条平行线的性质。
2.呈现(10分钟)通过课件展示平行线的性质,包括同位角相等、内错角相等、同旁内角互补等。
人教版七年级数学下册教案:5.3.1 平行线的性质
《平行线的性质》(第一课时教学设计)教学分析:(一)教学内容:平行线的性质是空间与图形领域的基础知识。
在以后的学习中经常要用到,这部分内容也是后续内容学习的基础,不但为三角形内角和定理的证明提供了转化的方法,而且为今后学习三角形全等、三角形相似等知识内容奠定了理论基础。
同时本节课学习之前,学生已经了解了平行线的概念以及平行线的判定方法,本节内容则是在原有知识的基础上进行进一步的探究,去发现两条平行线被第三条直线所截,截得的同位角、内错角、同旁内角之间存在着怎样的联系。
综合来看,平行线的性质在教学内容中起着承上启下的基础作用。
(二)教学目标:根据数学课程内容标准要求及教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:1、理解平行线的性质,掌握他们的图形语言、文字语言、符号语言,并灵活的进行实际应用。
2、经历观察、实验、猜想、验证等数学活动,培养他们分析问题和解决问题的能力。
3、体会几何知识来源于实践并反作用于实践,认识事物的规律是从特殊到一般,再从一般到特殊等辩证唯物主义观点。
(三)教学重、难点分析:平行线的性质是后续知识内容学习的基础,让学生通过数学活动来发现结论,经历知识的“再发现”过程,可以增强学生对平行线性质的认识和理解,培养学生多发面的能力。
因此我将本节课的重点确定为:理解并应用平行线的性质。
由于学生刚刚接触平面图形的相关知识,对于数学活动的方法及思路还不够清晰,在探究时容易出现思维混乱,主题不明。
因此我将本节课的难点确定为:探究平行线的性质。
(四)教学辅助手段利用多媒体(几何画板、实物投影)、学案进行辅助教学第二部分:教学设计:下面各小题填空:第三部分:教学评价:本节课通过回忆已学知识,从而引入新课,衔接得当。
再通过在各环节设置一系列问题,让学生能围绕重、难点展开思考、讨论,进行学习。
在设计上,强调自主学习、注重合作交流,让学生与学生间的交流活动在实践探索过程中进行,使他们通过动手实践、观察分析、合理猜想、合作交流解决问题体验并感悟平行线的性质,使他们在探索过程中感受到学习的快乐,真正成为学习的主人,达到突出重点突破难点的目的。
人教版七年级数学下册 教学设计5.3.1 第1课时《平行线的性质》
人教版七年级数学下册教学设计5.3.1 第1课时《平行线的性质》一. 教材分析《平行线的性质》是人教版七年级数学下册第五章第三节的第一课时内容。
本节课主要让学生掌握平行线的性质,包括同位角相等、内错角相等、同旁内角互补。
这些性质是学生进一步学习几何知识的基础,对于培养学生的空间想象力具有重要意义。
教材通过生动的图片和实际的例子,引导学生探索平行线的性质,激发学生的学习兴趣。
二. 学情分析学生在学习本节课之前,已经学习了线段的性质、角的度量等基础知识,对于几何图形的认知和观察能力有所提高。
但七年级的学生在空间想象能力和逻辑推理能力方面仍有待提高。
因此,在教学过程中,教师需要注重引导学生观察、思考、交流,培养学生的主体探究能力。
三. 教学目标1.知识与技能目标:使学生掌握平行线的性质,能够运用性质解决实际问题。
2.过程与方法目标:通过观察、操作、交流、推理等过程,培养学生的空间想象能力和逻辑推理能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 教学重难点1.重点:平行线的性质。
2.难点:同位角、内错角、同旁内角的判定和运用。
五. 教学方法1.引导探究法:教师引导学生观察、思考、交流,激发学生的探究欲望,培养学生的自主学习能力。
2.案例分析法:通过具体的例子,使学生更好地理解平行线的性质。
3.小组讨论法:培养学生团队协作能力,提高学生的沟通能力。
六. 教学准备1.准备相关图片和例子,用于引导学生观察和探究。
2.准备课件,展示平行线的性质及其应用。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示实际生活中的平行线例子,如铁路、街道等,引导学生观察并思考:这些平行线有什么特殊的性质呢?从而引出本节课的主题——平行线的性质。
2.呈现(10分钟)教师通过课件展示平行线的性质,引导学生观察、思考并总结出同位角相等、内错角相等、同旁内角互补这三个性质。
人教版数学七年级下册教案:5.3.1平行线的性质
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用直尺和量角器测量同位角,演示平行线的基本原理。
三、教学难点与重点
1.教学重点
-平行线的定义及性质:理解平行线的概念,掌握平行线的性质,如距离相等、同位角相等、内错角相等、同旁内角互补等。
-性质的运用:学会将平行线的性质应用于解决实际几何问题,如求角度、证明线段平行等。
-性质证明:掌握通过演绎推理证明平行线性质的方法,培养学生的逻辑推理能力。
举例:在讲解平行线的性质时,重点强调同位角相等这一性质,通过多个图形示例让学生加深理解。在解决几何问题时,重点讲解如何运用平行线性质求解角度或证明线段平行。
2.提高学生的逻辑推理和证明能力,引导学生运用已知条件和几何定理,通过演绎推理证明平行线的性质,形成严谨的数学思维。
3.增强学生的问题解决能力,使学生能够将平行线的性质应用于解决复杂几何问题,培养他们分析问题和运用数学知识解决问题的能力。
4.培养学生的数学抽象和数学建模素养,让学生在学习过程中抽象出平行线的关键特征,建立数学模型,为后续几何学习打下坚实基础。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行线的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(如铁轨、桌面边缘等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
人教版七年级数学下册《平行线的性质(第一课时)》教学设计
5.3 平行线的性质(第1课时)(学生独立回忆,思考并回答问题。
)【承上启下。
】2、师:反过来:如果两条直线平行,那么同位角、内错角、同旁内角又各有什么样的关系呢?这就是我们这节课要探究的问题。
二、探究合作交流一1、画两条平行线a//b,然后画一条截线c与a、b相交,标出如图的角. 度量所形成的8个角的度数,把结果填入下表:(学生自学,独立思考并回答问题)角∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数2、观察、猜想两条直线被第三条直线截得的同位角有什么关系?生回答可以用度量的方法或剪切的方法来验证。
(多媒体展示)3、如果改变截线的位置,你发现的结论还成立吗?(学生分组讨论,观察、思考问题)4、如果两直线不平行,上述结论还成立吗?变式1:已知条件不变,求∠3,∠4的度数? 变式2:已知∠3 =∠4,∠1=47°,求∠2的度数? 四、走进生活1如图,是一块梯形铁片的残余部分,量∠A =100°, ∠B =115°,梯形的另外两个角分别是多少度? 【让学生独立思考,同时,通过实例,培养学生分 析问题的能力,让学生从具体的实例中发现数学问题 ,使学生懂得数学来源于实际生活,服务于实际生活。
】五、巩固提升 六、总结升华、反思提升1.回顾本节课学习的主要内容,填写下表:2.运用平行线性质的前提条件是什么?3.本节课涉及的数学思想方法有哪些?4.本节课的学习,你还有哪些收获或疑惑? 归纳:性质:线的关系←角的关系判定:角的关系→线的关系【学生对本节课进行知识梳理,巩固教学目标。
】A BCD七、板书设计:5.3平行线的性质(第1课时)。
新人教版七年级下5.3.1平行线的性质(第1课时)教学设计
第1课时平行线的性质【教学过程】一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容.试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等.这个结论是否具有一般性呢?试验2:学生试验(发印制好的平行线纸单). (1)要求学生任意画一条直线c 与直线a 、b 相交; (2)选一对同位角来度量,看看这对同位角是否相等. 学生归纳:两条平行线被第三条直线所截,同位角相等.二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识. 活动1 问题讨论:我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角.我们已经知道“两条平行线被第三条直线所截,同位角相等”.那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答).教师活动设计:引导学生讨论并回答.学生口答,教师板书,并要求学生学习推理的书写格式. 活动2总结平行线的性质.性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.性质3:两条平行直线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补. 活动3如何理解并记忆性质2、3,谈谈你的看法! (1)性质2、3分别已知什么?得出什么? (2)它与前面学习的平行线的判定有什么区别? (3)性质2、3的应用格式. ∵a //b (已知)∴∠3=∠2(两直线平行,内错角相等). ∵ a //b (已知)∴∠2+∠4=180°(两直线平行,同旁内角互补).三、拓展创新、应用提高,引导学生运用知识解决问题,培养学生思维的灵活性和深刻性 活动4 解决问题.问题1:如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A =115°,∠D =100°.请你求出另外两个角的度数.(梯形的两底是互相平行的)ab3 c 124A DB C学生活动设计:学生思考后请学生回答,注意启发学生回答为什么,进一步细化为较为详细的推理,并书写出.〔解答〕因为ABCD是梯形.所以AD//BC.所以∠A+∠B=180°,∠D+∠C=180°.又∠A=115°,∠D=100°.所以∠B=65°,∠C=80°.问题2:如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于142°,第二次拐的角∠C是多少度?为什么?CB学生活动设计:学生根据拐弯前后的两条路互相平行容易得到∠B和∠C相等,于是得到∠C=142°问题3:如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.(1)∠1、∠3的大小有什么关系?∠2与∠4呢?(2)反射光线BC与EF也平行吗?学生活动设计:从图中可以看出:∠1与∠3是同位角,因为AB与DE是平行的,所以∠1=∠3.又因为∠1=∠2,∠3=∠4,所以可得出∠2=∠4.又因为∠2与∠4是同位角,所以BC∥EF.教师活动设计:这个问题是平行线的特征与直线平行的条件的综合应用.由两直线平行,得到角的关系用到的是平行线的特征;反过来,由角的关系得到两直线平行,用到的是直线平行的条件.同学们要弄清这两者的区别.〔解答〕略.问题4:如图,若AB//CD,你能确定∠B、∠D与∠BED的大小关系吗?说说你的看法.FBDCEA学生活动设计:由于有平行线,所以要用平行的知识,而∠B 、∠D 与∠DEB 这三个角不是三类角中的任何一类,因此要考虑构造图形,若过点E 作EF //AB ,则由AB //CD 得到EF //CD ,于是图中出现三条平行线,同时出现了三类角,根据平行线的性质可以得到:∠B =∠BEF 、∠D =∠DEF ,因此∠B +∠D =∠BEF +∠DEF =∠DEB .教师活动设计:在学生探索的过程中,特别是构造图形这个环节,适当引导,让学生养成“缺什么补什么”的意识,培养学生的逻辑推理能力.〔解答〕过点E 作EF //AB . 所以∠B =∠BEF . 因为AB //CD . 所以EF //CD . 所以∠D =∠DEF .所以∠B +∠D =∠BEF +∠DEF =∠DEB .即∠B +∠D =∠DEB .变式思考:如图,AB //CD ,探索∠B 、∠D 与∠BED 的大小关系(∠B +∠D +∠DEB =360°).四、小结与作业.小结:1.平行线的三个性质: 两直线平行,同位角相等.EDCB A两直线平行,内错角相等.两直线平行,同旁内角互补.2.平行线的性质与平行线的判定有什么区别?判定:已知角的关系得平行的关系.证平行,用判定.性质:已知平行的关系得角的关系.知平行,用性质.作业:习题5.3.。
人教版七年级下册(新)5.3.1 平行线的性质(第1课时)教学设计
5.3平行线的性质5.3.1平行线的性质第1课时平行线的性质1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)一、情境导入窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:平行线的性质如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.解析:利用“两直线平行,内错角相等,同旁内角互补”的性质可求出结论.解:∵AB∥CD,∴∠BED=∠B=65°.∵BE∥FD,∴∠BED+∠D=180°,∴∠D=180°-∠BED =180°-65°=115°.方法总结:已知平行线求角度,应根据平行线的性质得出同位角相等,内错角相等,同旁内角互补.再结合已知条件进行转化.变式训练:见《学练优》本课时练习“课堂达标训练”第3题探究点二:平行线与角平分线的综合运用如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠P AG=12°,求∠ABD的度数.解析:先利用GF∥CE,易求∠CAG,而∠P AG=12°,可求得∠P AC=48°.由AP是∠BAC的角平分线,可求得∠BAP=48°,从而可求得∠BAG=∠BAP+∠P AG=48°+12°=60°,即可求得∠ABD的度数.解:∵FG∥EC,∴∠CAG=∠ACE=36°.∴∠P AC=∠CAG+∠P AG=36°+12°=48°.∵AP平分∠BAC,∴∠BAP=∠P AC=48°.∵DB∥FG,∴∠ABD=∠BAG=∠BAP+∠P AG=48°+12°=60°.方法总结:(1)利用平行线的性质可以得出角之间的相等或互补关系,利用角平分线的定义,可以得出角之间的倍分关系;(2)求角的度数,可把一个角转化为一个与它相等的角或转化为已知角的和差.变式训练:见《学练优》本课时练习“课后巩固提升”第8题探究点三:平行线性质的探究应用如图,已知∠ABC .请你再画一个∠DEF ,使DE ∥AB ,EF ∥BC ,且DE 交BC 边与点P .探究:∠ABC 与∠DEF 有怎样的数量关系?并说明理由.解析:先根据题意画出图形,再根据平行线的性质进行解答即可.解:∠ABC 与∠DEF 的数量关系是相等或互补.理由如下:如图①,因为DE ∥AB ,所以∠ABC =∠DPC .又因为EF ∥BC ,所以∠DEF =∠DPC ,所以∠ABC =∠DEF .如图②,因为DE ∥AB ,所以∠ABC +∠DPB =180°.又因为EF ∥BC ,所以∠DEF =∠DPB ,所以∠ABC +∠DEF =180°.故∠ABC 与∠DEF 的数量关系是相等或互补.方法总结:画出满足条件的图形时,必须注意分情况讨论,即把所有满足条件的图形都要作出来. 变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计平行线的性质⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补求角的大小或说明角之间的数量关系平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学。
2014年春季新版新人教版七年级数学下学期5.3、平行线的性质课案2
课案(学生用)5.3.1平行线的性质(1)(新授课)【学习目标】1.知识技能(1)掌握平行线的三个性质.(2)会用平行线的性质进行有关的简单推理和计算.(3)通过对比,理解平行线的性质和判定的区别.2.数学思考在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力.3.解决问题通过探究平行线的性质,形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神.4.情感态度在活动中体验探索、交流、成功与提升的喜悦,激发学习数学的兴趣,培养勇于实践,大胆猜想、推理的科学态度.【学习重难点】1.重点:平行线的三个性质和应用.2. 难点:平行线的性质和判定的区别以及应用它们进行有关的推理.课前延伸【知识梳理】(1)反过来说也对吗?①如果两个数的和为0,这两个数互为相反数.反过来,如果这两个数互为相反数,那么这两个数和为0.②对顶角相等.反过来,相等的角是对顶角.(2)如图,甲乙两人在两条平行的马路a,b上行走,马路c与a,b分别相交成80度角,甲乙都拐弯走到c马路上,且拐弯后方向相同,问:甲乙分别拐了多少度角?课内探究一、课堂探究1(问题探究,自主学习)(1)如果直线a∥b,那么内错角∠2与∠3有什么关系?为什么?(2)如果直线a∥b,那么同旁内角∠2与∠4有什么关系?为什么?二、课堂探究2(分组讨论,合作探究)(1)如图有一块梯形的玻璃,已知量得∠A=115°,∠D=100°,请你想一想,梯形的另外两个角各是多少度.(2)一自行车运动员在一条公路上骑车,两次拐弯后,和原来的方向相同(即拐弯前后的两条路互相平行),若测得第一次拐弯的∠B是142°,则第二次拐弯的∠C应是多少度才合理?为什么?三、反馈训练1.如图所示:∵∠1=∠2()∴AD∥()∴∠BCD+=180°()“ 2.如图,AB ∥CD ∥EF ,那么∠BAC +∠ACE +∠CEF =() A .180° B.270° C.360° D.540°B C D AF E3.如图,已知D 是AB 上一点,E 是AC 上一点,∠ADE =60°,∠B =60°,∠AED =80°.①DE 、BC 平行吗?为什么?②∠C 等于多少度?为什么?课后提升1.如图,BCD 是一条直线,∠A =75°,∠1=53°,∠2=75°,求∠B 的度数.2.如图,在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.∠2,求证:CD平分∠ECB.3.如图,已知:DE∥CB,∠1=4.如图,已知直线a,b,c,d,并且。
人教版初中数学七年级下册5.3.1《平行线的性质1.2.3》教案设计(1)
《5.3平行线的性质》教学分析(一)内容分析平行线性质是证明角相等、研究角的关系的重要依据,是研究几何图形位置关系与数量关系的基础,对今后学习其他图形性质有“示范”作用。
教科书由平行线判定引入平行线性质的研究,渗透了图形的判定和性质之间的互逆关系,又体现了知识的连贯性。
性质1通过操作方式得出的,在性质1的基础上进一步推理,得出性质2和性质3.这一过程体现了由实验几何到论证几何的过渡,渗透了简单推理。
(二)教学对象分析对于刚接触平面几何的七年级学生而言,推理过程从逻辑上叙述清楚存在困难,一些数学符号语言表达不清楚,需要老师加以引导。
(三)教学环境分析:多媒体教室教学目标知识目标:使学生了解平行线的性质和判定的区别.掌握平行线的性质,并且会运用它们进行简单推理和计算。
智能目标:使学生领会数形结合、转化、对比的数学思想和方法,从而提高学生分析问题和解决问题的能力。
情感态度价值观:通过学习平行线的性质与判定的联系与区别,进一步体会数形结合的思想。
教学重难点重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。
难点:能区分平行线的性质和判定,平行线的性质应用。
教具准备:多媒体课件,直尺,三角板,粉笔教学方法及整合点(一)教学方法:直观演示法,引导发现法,充分发挥学生的主体作用。
(二)具体整合点:(1).利用多媒体复习引入,将学生带入新课的研究中。
结合我班实际,首先让学生用白纸、三角尺、量角器、铅笔、直尺,动手操作验证猜想。
让学生动手操作亲身经历探索性质的过程。
(2).教师在多媒体课件中利用软件的测量工具和图形的移动,直观的展示平行线性质1的探索过程验证同学们的结论。
从而形成结论。
教学过程设计一、复习引入(一)上节课,我们学习了三种平行线的判定方法,分别是什么?(二)你认为三种判定方法中条件和结论分别是什么?(三)反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢? [设计意图]:复习上节课所学的平行线的三种判定方法并引入新课,为后面类比研究平行线判定的过程来构建平行线性质的研究过程做铺垫。
人教版数学七年级下册5 平行线的性质(教案与反思)
5.3平行线的性质物以类聚,人以群分。
《易经》原创不容易,【关注】,不迷路!5.3.1平行线的性质【知识与技能】1.掌握平行线的性质定理.2.综合运用平行线的判定及性质进行简单的证明或计算.【过程与方法】1.经历猜想、实践、探究不难得到平行线的性质定理.在此基础上,结合前节的知识,进行简单的证明或计算.2.培养学生逆向思维的能力.【情感态度】培养学生逆向思维的能力.【教学重点】掌握平行线的性质定理,综合运用平行线的判定及性质进行简单的证明或计算.【教学难点】综合运用平行线的判定及性质进行简单的证明或计算.一、情境导入,初步认识问题利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?二、思考探究,获取新知可将上述问题细化:1.如图,直线a∥b,直线a,b被直线c所截.(1)请填表:(2)如果a与b不平行,∠1与∠2还有以上关系吗?(3)通过(1)(2)的探究,你能得到什么结论?2.如图,直线a∥b,则∠3与∠2相等吗?为什么?∠3与∠4互补吗?思考1.你能根据以上探究,归纳出平行线的三个性质定理吗?2.平行线的性质定理与相应的判定定理是怎样的关系?【归纳结论】1.平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.性质3:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.2.平行线的性质定理与相应的判定定理的已知部分和结论部分正好相反,它们是互逆关系.三、运用新知,深化理解1.如图,已知AB∥CD,AD∥BC,∠A与∠C有怎样的大小关系,为什么?2.已知AB∥CD,直线EF分别交AB,CD于M,N,MP平分∠EMA,NQ平分∠MNC,那么MP∥NQ,为什么?3.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=_____.第3题图第4题图4.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠CD=_____.5.(江西中考)一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=_____度.【教学说明】题1、2可让学生独立思考完成.题3、4可让同学们分组讨论、交流,有困难时,教师给予提示指导,如何作辅助线.题5与生活实际联系,让学生拓展思维.【答案】1.解:∠A=∠C,理由如下:AB∥CD,∠A与∠D为同旁内角,即∠A+∠D=180°;AD∥BC,∠D与∠C为同旁内角,即∠D+∠C=180°.所以∠A+∠D=∠D+∠C,即∠A∠C.2.解:AB∥CD,∠EMA与∠MNC为同位角,即∠EMA=∠MNC.MP平分∠EMA,NQ平分∠MNC,则∠EMP=12∠EMA,∠MNQ=12∠MNC.所以∠EMP=∠MNQ,则MP∥NQ.3.90°解析:如图,经点F作AB的平行线,则∠1与∠3,∠2与∠4为内错角.据平行线的性质得∠1=∠3,∠2=∠4,所以∠1+∠2=∠3+∠4=∠EFH=90°.4.40°解析:如图,过点作GH∥DE.所以∠DCH+∠CDE=180°(两直线平行,同旁内角互补).因为∠CDE=140°(已知),所以∠DCH=180°-∠CDE=40°.又因为AB∥DE(已知),所以AB∥GH(如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以∠ABC=∠CH(两直线平行,内错角相等).因为∠ABC=80°(已知),所以∠BCH=80°(等量代换).所以∠BCD=∠BCH-∠DCH=40°.5.270解析:如图,过B作BG∥CD,则∠CBG+∠BCD=180°,∠ABG=90°,于是可得∠ABC+∠BCD=90°+180°=270°.四、师生互动,课堂小结平行线的性质:1.两直线平行,同角相等.2.两直线平行,内错角相等.3.两直线平行,同旁内角互补.在有关图形的计算和推理中,常见一类“折线”“拐角”型问题,解决这类问题的方法是:经过拐点作平行线,沟通已知角和未知角的联系,从而化“未知”为“可知”,这种方法应熟练掌握,如“”“”“”型要引起注意.1.布置作业:从教材“习题5.3”中选取.2.完成练习册中本课时的练习.这节课比较成功的地方是:①对教学的方式进行了一定的尝试,注重学生的分析能力,启发学生用不同方法解决问题.②尽量锻炼学生使用规范性的几何语言.不足的是师生之间的互动配合和默契程度有待加强.【素材积累】指豁出性命,进行激烈的搏斗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3平行线性质(二)
[教学目标]
1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力
2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论
3.能够综合运用平行线性质和判定解题
[教学重点与难点]
重点:平行线性质和判定综合应用,两条平行线的距离,命题等概念
难点:平行线性质和判定灵活运用
[教学设计]
一.复习引入
1.平行线的判定方法有哪些?
2.平行线的性质有哪些?
3.完成下面填空
已知:BE 是AB 的延长线,AD//BC ,AB//CD ,若
100=∠D 则EBC A C ∠∠∠,,
4.b c b a ⊥⊥,那么a ,c 的位置关系如何?
二.新课
1.例1,已知a//c,,b a ⊥直线b 与c 垂直吗?为什么?
例2如图是一块梯形铁片的残余部分,量得 115,100=∠=∠B A ,梯形另外两个角分别是多少度?
2.实践 与探究
(1)学生操作:用三角尺和直尺画平行线,做成一张55⨯ 个格子的方格纸。
观察并思考:做出的方格纸的一部分,
线段2211,C B C B …55C B 都与两条平行线5251,C A B A 垂直 吗?它们的长度相等吗?
教师给出两条平行线的距离定义:同时垂直于两条平行线,
并且夹在这两条平行线间的线段长度叫做两条平行线的距离。
问题:AB//CD ,在CD 上任取一点E ,作,AB EF 垂足F ,问EF 是否垂直DC ?垂线段EF 是平行线AB 、CD 的距离吗?
结论:两条平行线的距离处处相等,而不随垂线段的位置而改变
3.命题和它的构成
下列语句,分析语句的特点
(1)如果两条直线都与第三条直线平行,那么这两条直线也平行。
(2)对顶角相等
(3)等式两边同加上同一个数,结果仍是等式
(4)如果两条直线不平行,那么同位角不相等
这些句子都是对某一件事情作出“是”或“不是”的判断 命题:判断一件事情的句子,叫做命题
(1)命题的组成:命题由题设和结论两部分组成,题设是已知项,结论是由已知项推出的事项 (2)形式:通常写成“如果…,那么…”的形式,
四.作业
课本P25。