人教A版数学必修一1.1集合(2).docx
新人教A版高中数学必修一1.1.2《集合间的基本关系》Word精品教案
课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用V enn 图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2;(3)-1.5 R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B用Venn)(A B B A ⊇⊆或(二)A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=AB B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念⊆若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。
记作:A B (或A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:○1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。
人教A版(老课标)数学必修1--第一章 集合与函数概念2 第2课时 分段函数
第一章 集合与函数概念
(2)由(1)知收费标准为:用户月用电量不超过 100 度时,每度电 0.65 元;超过 100 度时,超出的部分,每度电 0.80 元. (3)当 x=62 时,y=62×0.65=40.3(元); 当 y=105 时, 因为 0.65×100=65<105,故 x>100, 所以 105=0.8x-15,x=150. 即若用户月用电 62 度时,则用户应交费 40.3 元;若用户月交 费 105 元,则该用户该月用了 150 度电.
栏目 导引
第一章 集合与函数概念
(1)分段函数定义域、值域的求法 ①分段函数的定义域是各段函数定义域的并集; ②分段函数的值域是各段函数值域的并集. (2)绝对值函数的定义域、值域通常要转化为分段函数来解决.
栏目 导引
第一章 集合与函数概念
已知函数 f(x)=x12,,x->11或≤xx<≤-11,,则函数的定 义域为________,值域为________. 解析:由已知定义域为[-1,1]∪(1,+∞)∪(-∞,-1)=R, 又 x∈[-1,1]时,x2∈[0,1],故函数的值域为[0,1]. 答案:R [0,1]
栏目 导引
第一章 集合与函数概念
判断正误(正确的打“√”,错误的打“×”)
(1)分段函数由几个函数构成.( )
(2)函数 f(x)=1-,1x,≥x0<,0 是分段函数.(
)
(3)分段函数的定义域是各段上自变量取值的并集.( )
答案:(1)× (2)√ (3)√
栏目 导引
下列给出的式子是分段函数的是(
栏目 导引
第一章 集合与函数概念
1.已知函数 f(x)=xf(-x2-,1x)<2,,x≥2,则 f(2)=(
人教A版高中数学必修一:1.1.1集合的含义与表示第二课时课件(人教A版必修1)(2)
2.用描述法表示下列集合: (1)所有正偶数组成的集合; (2)方程x2+2=0的解的集合; (3)不等式4x-6<5的解集; (4)函数y=2x+3的图象上的点集. 解:(1)文字描述法:{x|x是正偶数}. 符号描述法:{x|x=2n,n∈N*}. (2){x|x2+2=0,x∈R}. (3){x|4x-6<5,x∈R}. (4){(x,y)|y=2x+3,x∈R,y∈R}.
2.用集合所含元素的_共__同__特__征__表示集合的方 法称为描述法.具体的方法是:在花括号内先写上 表示这个集合元素的一般符号及取值(或变化)范围, 再画一条竖线,在竖线后写出这个集合中元素所具 有的共同特征.
自主探究
1.集合{x|x>1}与集合{y|y>1}是否表示同一集合? 答:虽然两个集合的代表元素不同,但实质上它 们均表示大于1的所有实数,故是同一集合. 2.下面三个集合:①{x|y=x2+1};②{y|y=x2+ 1};③{(x,y)|y=x2+1}.它们各自的含义是什么?它 们是不是相同的集合? 答:集合①{x|y=x2+1}的代表元素是x, 满足条件y=x2+1中的x∈R,
(2)元素具有怎样的属性?当题目中用了其他字 母来描述元素所具有的属性时,要去伪存真,而不 能被表面的字母形式所迷惑.
用描述法表示集合时,若需要多层次描述属性 时,可选用逻辑连接词“且”与“或”等连接;若描述 部分出现元素记号以外的字母时,要对新字母说明 其含义或指出其取值范围.
(3)集合语言的转化 集合语言是现代数学的基本语言,也就是用集 合的有关概念和符号来叙述问题的语言.集合语言 与其他语言的关系以及它的构成如下:
3.用列举法表示大于2小于15的偶数全体为 ________.
答案:{4,6,8,10,12,14} 4.已知集合A={-1,0,1},集合B={y|y=|x|, x∈A},则B=________. 解析:∵|-1|=1,|0|=0,|1|=1,故B={0,1}. 答案:{0,1}
人教A版数学必修一四川省成都七中高一数学复习:§1.1.1(2)集合的含义.docx
高中数学学习材料唐玲出品1.1.2集合的表示一、课标要求(1)理解并会用列举法、描述法表示集合;(2)掌握集合的表示方法、常用数集及其记法,能选择自然语言、图形语言、集合语言描述不同的具体问题,感受集合语言的意义和作用. 二、知识要点(1)表示集合共有哪些方法:______________________________________。
(2)怎样用列举法表示集合:________________________________________。
(3)怎样用描述法表示集合:________________________________________。
【答案】(1)列举法、描述法、自然语言和图示(Venn)法. (2)把集合元素一一列举出来,并用花括号“{ }”括起来. (3)在花括号“{ }”内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中的元素所具有的共同特征.三、典型例题例1、用列举法表示下列集合:(1)已知集合M =⎩⎨⎧⎭⎬⎫x ∈N |61+x ∈Z ,求M ; (2)方程组⎩⎪⎨⎪⎧x +y =2x -y =0的解集;(3)由|a|a +b|b|(a ,b ∈R )所确定的实数集合.解 (1)∵x ∈N ,且61+x∈Z ,∴1+x =1,2,3,6,∴x =0,1,2,5,∴M ={0,1,2,5}.(2)由⎩⎪⎨⎪⎧x +y =2x -y =0得⎩⎪⎨⎪⎧x =1y =1,故方程组的解集为{(1,1)}.(3)要分a>0且b>0,a>0且b<0,a<0且b>0,a<0且b<0四种情况考虑,故用列举法表示为{-2,0,2}. 规律方法:(1)列举法表示集合,元素不重复、不遗漏、不计次序,且元素与元素之间用“,”隔开.(2)列举法适合表示有限集,当集合中元素的个数较少时,用列举法表示集合较为方便,而且一目了然.变式1、用列举法表示下列集合:(1)A ={x||x|≤2,x ∈Z };(2)B ={x|(x -1)2(x -2)=0};(3)M ={(x ,y)|x +y =4,x ∈N *,y ∈N *};(4)已知集合C =⎩⎨⎧⎭⎬⎫61+x ∈Z |x ∈N ,求C. 解 (1)∵|x|≤2,x ∈Z ,∴-2≤x≤2,x ∈Z ,∴x =-2,-1,0,1,2.∴A ={-2,-1,0,1,2}.(2)∵1和2是方程(x -1)2(x -2)=0的根,∴B ={1,2}.(3)∵x +y =4,x ∈N *,y ∈N *,∴⎩⎪⎨⎪⎧x =1,y =3,或⎩⎪⎨⎪⎧x =2,y =2,或⎩⎪⎨⎪⎧x =3,y =1.∴M ={(1,3),(2,2),(3,1)}. (4)结合例1(1)知,61+x=6,3,2,1,∴C ={6,3,2,1}. 例2、用描述法表示下列集合: (1)所有正偶数组成的集合;(2)方程x 2+2=0的解的集合; (3)不等式4x -6<5的解集;(4)函数y =2x +3的图象上的所有点的集合.解 (1)文字描述法:{x|x 是正偶数}.符号描述法:{x|x =2n ,n ∈N *}.(2){x ∈R |x 2+2=0}. (3){x ∈R |4x -6<5}.(4){(x ,y)|y =2x +3,x ∈R ,y ∈R }. 规律方法:用描述法表示集合时,要注意代表元素是什么?同时要注意代表元素所具有的共同属性.变式2、用描述法表示下列集合:(1)二次函数y =ax 2+bx +c 的图象上所有点的集合;(2)一次函数y =x +3与y =-2x +6的图象的交点组成的集合; (3)不等式x -3>2的解集.解 (1){(x ,y)|y =ax 2+bx +c ,x ∈R ,a≠0}.(2)⎩⎨⎧===⎩⎨⎧+-=+=41),{(}623),{(y x y x x y x y y x }.(3){x ∈R |x -3>2}.例3、用适当的方法表示下列集合:(1)比5大3的数;(2)方程x 2+y 2-4x +6y +13=0的解集;(3)二次函数y =x 2-10图象上的所有点组成的集合. 解 (1)比5大3的数显然是8,故可表示为{8}.(2)方程x 2+y 2-4x +6y +13=0可化为(x -2)2+(y +3)2=0,∴⎩⎪⎨⎪⎧x =2y =-3,∴方程的解集为{(2,-3)}.(3)“二次函数y =x 2-10的图象上的点”用描述法表示为{(x ,y)|y =x 2-10}.规律方法:用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合. 变式3、用适当的方法表示下列集合:(1)由所有小于10的既是奇数又是质数(素数)的自然数组成的集合; (2)由所有周长等于10 cm 的三角形组成的集合;(3)从0,1,2中抽出部分或全部数字(没有重复数字)所组成的自然数的集合;(4)二元二次方程组⎩⎨⎧==2x y xy 的解集. 解 (1)列举法:{3,5,7}.(2)描述法:{ x|x 是周长为10 cm 的三角形}.(3)列举法:{0,1,2,10,12,20,21,102,120,201,210}. (4)列举法:{(0,0),(1,1)}. 四、备选例题1、用集合表示图中阴影部分(含边界).【解析】图中阴影部分是由直线2,4x x =-=及1,3y y =-=围成的矩形,设其中任意一点(,)P x y ,则-2≤x ≤4,-1≤y ≤3,故图中阴影部分可用集合表示为{(x ,y)| -2≤x ≤4,-1≤y ≤3}. 2、定义集合运算:A ⊙B={z ︳z= xy(x+y),x ∈A ,y ∈B },设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为( )A 、0B 、6C 、12D 、18 【解析】A ⊙B={z ︳z= xy(x+y),x ∈A ,y ∈B }中,“x ∈A ,y ∈B ”是指x 和y 分别各自独立地遍取集合集合A 与B 中所有元素,再代入z= xy(x+y)就得到集合A ⊙B 的所有元素,共有4种情况:02x y =⎧⎨=⎩,03x y =⎧⎨=⎩,12x y =⎧⎨=⎩,13x y =⎧⎨=⎩, 代入z= xy(x+y)得:A ⊙B={0,6,12},故选D.五、小结与反思1、在用列举法表示集合时应注意以下四点:(1)元素间用“,”分隔;(2)元素不重复;(3)不考虑元素顺序;(4)对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律显示清楚后方能用省略号.2.使用描述法时应注意以下四点:(1)写清楚该集合中元素的代号(字母或用字母表示的元素符号);(2)说明该集合中元素的特征;(3)不能出现未被说明的字母;(4)用于描述的语句力求简明、确切. 六、练习1、下列说法正确的是( )A 、0与{0}表示同一个集合B 、由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C 、方程(x -1)(x -2)2=0的所有解的集合可表示为{1,2,2} D 、集合{x ∈R|4<x<5}可以用列举法表示 【答案】 B2、下列各组集合中表示同一集合的是( )A 、M ={(3,2)},N ={(2,3)}B 、M ={3,2},N ={2,3}x=4x=-2y=3y=-1yOxC 、M ={1,2},N ={(1,2)}D 、M ={(x ,y)|x +y =1},N ={y|x +y =1} 【答案】 B3、下列集合:①{x =1,y =2};②{1,2};③{(1,2)};④{(x ,y)|x =1或y =2};⑤{(x ,y)|x =1且y =2};⑥{(x ,y)|(x -1)2+(y -2)2=0},其中可以作为方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解集的有( )A 、1个B 、2个C 、3个D 、4个 【答案】C ③⑤⑥4、已知a ∈Z ,A ={(x ,y)|ax -y≤3},且(2,1)∈A ,(1,-4)∉A ,则不.满足条件的a 的值是 ( )A 、0B 、1C 、2D 、3 【答案】D5、已知集合M ={x ∈N|8-x ∈N},则M 中的元素最多有( )A 、7B 、8C 、9D 、10个 【答案】C6、定义集合运算:A*B ={z|z =xy ,x∈A,y∈B}.设A ={1,2},B ={0,2},则集合A*B 的所有元素之和为( )A 、0B 、2C 、3D 、6 【答案】D7、集合{1,3,5,7,9}用描述法表示为_____________________。
新人教A版高中数学【必修1】 1.1.1集合的表示第2课时课时作业练习含答案解析
第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3.将集合表示成列举法,正确的是()A.{2,3} B.{(2,3)}C.{x=2,y=3} D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}5.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈A B.0∈AC.3∈A D.2∈A6.方程组的解集不可表示为()A.B.C.{1,2} D.{(1,2)}二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号)①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是()A.{x|x=1} B.{y|(y-1)2=0}C.{x=1} D.{1}13.已知集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},若x0∈M,则x0与N的关系是()A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时集合的表示知识梳理1.一一列举 2.描述法 {x |x <10} {x ∈Z |x =2k ,k ∈Z }作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}.]2.D [集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎪⎨⎪⎧ x +y =5,2x -y =1.得⎩⎪⎨⎪⎧x =2,y =3. 所以答案为{(2,3)}.]4.B [方程x 2-2x +1=0可化简为(x -1)2=0,∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}.]5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.]7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N , ∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}.8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集.9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1,∴解集为{0,-1};②{x |x =2n +1,且x <1 000,n ∈N };③{x |x >8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下: 集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3,所以B ={y |y ≥3}.集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P 是抛物线y =x 2+3上的点}.12.C [由集合的含义知{x |x =1}={y |(y -1)2=0}={1},而集合{x =1}表示由方程x =1组成的集合,故选C.]13.A [M ={x |x =2k +14,k ∈Z },N ={x |x =k +24,k ∈Z },∵2k +1(k ∈Z )是一个奇数,k +2(k ∈Z )是一个整数,∴x 0∈M 时,一定有x 0∈N ,故选A.]。
22人教A版新教材数学必修第一册课件--集合的表示法
“ | ”将代表元素与其特征分隔开来.一般来说,集合中元素 的取值范
围 需写明确,但若从上下文的关系看, ∈ 是明确的,则 ∈ 可以
省略,只写元素 .
1. 用描述法表示下列集合:
(1) 被3除余2的正整数组成的集合 ;
解题感悟
用列举法表示集合的步骤
(1)求出集合的元素;
(2)把元素一一列举出来,且相同元素只能列举一次;
(3)用花括号括起来.
注意:二元方程组的解集,函数图象上的点构成的集合都是点的集合,一定
要写成实数对的形式,元素与元素之间用“,”隔开.如 {(2,3), (5, −1)} .
1. 用列举法表示下列集合:
= {| = 2 + 1} ;
= {(, )| = 2 + 1} .
问:
(1) 它们是不是相同的集合?
[答案] 不是.在 、、 三个集合中,虽然代表元素满足的表达式一致,
但代表元素互不相同,所以它们是互不相同的集合.
(2) 它们各自的含义是什么?
[答案] 集合 的代表元素是 , 满足 = 2 + 1,
[答案] 可以表示成 {(, )| ± = 0} .
(4) 正奇数集 .
[答案] 设 ∈ ,故全体奇数可用式子 = 2 + 1 , ∈ 表示,但此题
要求为正奇数,故 ∈ ,所以正奇数集 = {| = 2 + 1, ∈ } .
解题感悟
描述法的一般形式为 { ∈ ∣ ()} ,其中的 表示集合中的代表元素,
9
8
围是 {| ≥ 或 = 0} .
人教高中数学必修一A版《集合的概念》集合与常用逻辑用语教学说课(第二课时集合的表示)
已知集合 A={x|x2+px+q=x},B={x|(x-1)2
+p(x-1)+q=x+3},当 A={2}时,集合 B=( )
A.{1}
B.{1,2}
C.{2,5}
D.{1,5}
解析:选 D.由 A={x|x2+px+q=x}={2}知,22+2p+q=2,且 Δ=(p-1)2-4q=0.计算得出,p=-3,q=4.
栏目 导引
第一章 集合与常用逻辑用语
[注意] (1)花括号“{}”表示“所有”“整体”的含义,如实数 集 R 可以写为{实数},但如果写成{实数集}、{全体实数}、{R} 都是不确切的. (2)用列举法表示集合时,要求元素不重复、不遗漏.
栏目 导引
第一章 集合与常用逻辑用语
用列举法表示下列给定的集合: (1)大于 1 且小于 6 的整数组成的集合 A; (2)方程 x2-9=0 的实数根组成的集合 B; (3)小于 8 的素数组成的集合 C; (4)一次函数 y=x+3 与 y=-2x+6 的图象的交点组成的集合 D. 解:(1)大于 1 且小于 6 的整数包括 2,3,4,5, 所以 A={2,3,4,5}.
栏目 导引
第一章 集合与常用逻辑用语
栏目 导引
第一章 集合与常用逻辑用语
2.描述法 一般地,设 A 是一个集合,我们把集合 A 中所有具有共同特征 P(x)的元素 x 所组成的集合表示为_{_x_∈__A__|P_(_x_)_}_,这种表示集 合的方法称为描述法,有时也用冒号或分号代替竖线,写成 {_x_∈__A__:__P_(_x_) _ }或{_x_∈__A__;__P_(_x_) _ }.
栏目 导引
第一章 集合与常用逻辑用语
用描述法表示集合 用描述法表示下列集合: (1)函数 y=-2x2+x 图象上的所有点组成 的集合; (2)不等式 2x-3<5 的解组成的集合; (3)如图中阴影部分的点(含边界)的集合; (4)3 和 4 的所有正的公倍数构成的集合.
人教A版必修1 数学:1.1.1 集合的含义与表示 学案2
集合的含义与表示【学习目标】一、知识与技能:(1)初步理解集合的含义,知道常用的数集及其记法。
(2)初步了解“属于”关系的意义。
(3)初步了解有限集、无限集、空集的意义。
二、过程与方法:(1)通过实例,初步体会元素与集合的“属于”关系,从观察分析集合的元素入手,正确地理解集合。
(2)观察关于集合的几组实例,并举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义。
(3)学会借助实例分析,探究数学问题(如集合中元素的确定性、互异性和无序性)。
三、情感、态度与价值观:(1)在学习运用集合语言过程中,增强认识事件的能力,初步培养实事求是,扎实严谨的科学态度。
(2)探索利用直观图示理解抽象概念,体会数形结合的思想。
【学习重难点】1.学习重点:集合的含义与表示方法,用集合语言表达数学对象或数学内容。
2.学习难点:区别元素与集合等概念及其符号表示。
【学习过程】一、集合的概念一般地,把一些__________不同的对象看成一个整体,就说这个__________是由这些对象的全体构成的集合。
1.集合是现代数学中不加定义的基本概念,学习这个概念应注意以下两点:(1)集合是一个“整体”(2)构成集合的对象必须是“确定”的且“不同”的。
“确定”是指构成集合的对象具有非常明确的特征,这个特征不是模棱两可的。
一般地,判定一组对象a1,a2,a3,…,an能否构成集合,就是要看判定的对象a1,a2,a3,…,an是否具有一个确定的特性,如果有,能构成集合;如果没有,就不能构成集合。
“不同”是指构成集合的各个对象互不相同,即相同的对象归入一个集合时,该对象只能出现一次。
例1:下列各组对象中,哪些能组成集合?哪些不能组成集合? (1)参加2010年全国高考的山东考生。
(2)所有数学难题。
(3)数组2,2,4,6.(4)参加2010年广州亚运会的运动员。
(5)全国所有大湖。
2.元素的概念构成集合的每个对象叫做这个集合的元素。
1.1 集合的概念(共2课时)-2024-2025学年高一数学课件(人教A版2019必修第一册)
所以
1 a 1 2
反思感悟
(1)判断是否能够构成集合,关注能否满足确定性、互异性、无序性; (2)若两个集合相等,则这两个集合的元素相同,但是要注意其中的元素 不一定按顺序对应相等.
跟踪训练2 (1)下列结论中,不正确的是
√A.若a∈N,则-a∉N
B.若a∈Z,则a2∈Z C.若a∈Q,则|a|∈Q D.若a∈R,则a3∈R
a,
b a
,1
a2,a b,0
a2023 b2024
∵
a,
b a
,1
a
2
,
a
b,
0,显然a≠0,
∴
b a
=0,∴b=0
∴ a,0,1 a2, a,0
∵a≠1,
∴a2 1 ∴ a2023 =b-12024
反思感悟
(1)判断是否能够构成集合,关注能否满足确定性、互异性、无序性; (2)若两个集合相等,则这两个集合的元素相同,但是要注意其中的元素 不一定按顺序对应相等.
新知讲解
一般地,设A是一个集合,我们把集合A中所有具有共同特征P(x)的元素x 所组成的集合表示为_{_x_∈__A_|_P_(x_)_}_,这种表示集合的方法称为描述法. 注意点: (1)写清该集合中元素的代表符号,如{x|x>1}不能写成{x>1}. (2)语言简明、准确,不能出现未被说明的字母,如{x∈Z|x=2m}中m未 被说明,故此集合中的元素是不确定的. (3)所有描述的内容都要写在花括号内,如“{x∈Z|x=2m},m∈N*”不 符合要求,应将“m∈N*”写进“{ }”中,即{x∈Z|x=2m,m∈N*}.
例2 (1)用符号“∈”或“∉”填空:
1__∈__ N*;-2__∉__N;0.4__∉__Z;
人教A版高中数学必修1第一章1.1集合的概念与运算课件
人教A版高中数学必修1第一章1.1集合 的概念 与运算 课件
5.集合分类:
按集合中元素个数的多少可分为:有限集和无限集. 含有有限个元素的集合叫做有限集. 含有无限个元素的集合叫做无限集. 若按集合中元素属性来分:数集,点集 高中数学主要研究数集和点集.
人教A版高中数学必修1第一章1.1集合 的概念 与运算 课件
列举法:把集合中的元素一一列举出来,并用 花括号{ }括起来表示集合的方法叫做列举法.
注意:对含有较多元素的集合,如果构成该集 合的元素具有明显的规律,可用列举法表 示,但是必须把元素间的规律显示清楚后, 才能用省略号表示.
x2 x
人教A版高中数学必修1第一章1.1集合 的概念 与运算 课件
人教A版高中数学必修1第一章1.1集合 的概念 与运算 课件
P4 思考?
人教A版高中数学必修1第一章1.1集合 的概念 与运算 课件
人教A版高中数学必修1第一章1.1集合 的概念 与运算 课件
描述法:用集合所含元素的共同特征
表示集合的方法称为描述法.
可分为:
(1)文字描述法——用文字把元素所具有的属性 描述出来,如﹛自然数﹜
(2)符号描述法——用符号把元素所具有 的属性 描述出来,即{x| P(x)} 或{x∈A| P(x)},{(x,y)|f(x,y)=0}等。
其中能构成集合的有: (1) 不能构成集合的有: (2)(3)(4)
人教A版高中数学必修1第一章1.1集合 的概念 与运算 课件
人教A版高中数学必修1第一章1.1集合 的概念 与运算 课件
在我们要了解集合的特征前,先看看这 些具有代表性的问题。 (1)A={1,3},问3,5哪个是A的元素? (2)A={素质好的人}能否表示成集合? (3)A={2,2,4 }表示是否正确? (4)A={太平洋,大西洋},
人教A版高中数学必修一1.1 集合的概念专练(含解析)(2)
1.1 集合的概念一、单选题1.已知集合{0,2}A =,则下列关系表示错误的是( ). A .0A ∈ B .{2}A ∈C .A ∅⊆D .{0,2}A ⊆2.方程组221x y x y +=⎧⎨-=-⎩的解集是( )A .{}1,1x y ==B .{}1C .()1,1D .(){},1,1x y x y ==3.已知2{1,0,}x x ∈,则实数x 的值为( ) A .0B .1C .1-D .±14.已知集合{}1,2,3A =,集合(){},,B x y x A x y A =∈-∈,则符合条件的集合B 的子集个数为( ) A .3B .4C .8D .105.若{}2213,1,1a a a -∈---,则a=( )A .1-B .0C .1D .0或16.已知x 、y 、z 为非零实数,代数式||||||||xyzxyz x y z xyz+++的值所组成的集合是M ,则下列判断正确的是( ) A .0M ∉B .2M ∈C .4M -∉D .4M7.对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x R ∀∈且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是A .若12(),()f x M g x M αα∈∈,则12()()f x g x M αα++∈B .若12(),()f x M g x M αα∈∈且12αα>,则12()()f x g x M αα--∈C .若12(),()f x M g x M αα∈∈,则12()()f x g x M αα⋅⋅∈D .若12(),()f x M g x M αα∈∈且()0g x ≠,则12()()f x M g x αα∈ 8.集合(x ,y )|y =3x 2-11x}表示( ) A .方程y =3x 2-11x B .(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =3x 2-11x 图象上的所有点组成的集合9{}0x x >,0.2Q ∉,3N -∈,0∈∅,其中正确的个数A .4个B .3个C .2个D .1个 10.若集合{}|1A x x =≤,则满足A B A =的集合B 可以是( )A .{}|0x x ≤B .{}2|x x ≤C .{}|0x x ≥D .{}|2x x ≥二、填空题 1.方程组240x y x +=⎧⎨-=⎩的解组成的集合为_________. 2.实数系的结构图如图所示,其中1,2,3三个方格中的内容依次是________,________,________.3.集合A=x|x=2k ,k∈Z},B=x|x=2k+1,k∈Z} ,C=x|x=4k-1,k∈Z},若m∈A, n∈B,则m+n∈ ___________(选填A 、B 、C )。
(完整word版)人教A版高中数学必修1课后习题及答案(全部三章)
高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ;(3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C .1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩, 即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =;(3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B I U .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==I I ,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==U U .2.设22{|450},{|1}A x x x B x x =--===,求,A B A B I U .2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-I U .3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B I U .3.解:{|}A B x x =I 是等腰直角三角形,{|}A B x x =U 是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==,求(),()()U U U A B A B I I 痧?.4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U A B =I ð,()(){6}U U A B =I 痧.1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N . 1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R是实数;(5Z 3=是个整数; (6)2N ∈ 25=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合; (2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集. 4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x=的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B U I .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥U ,{|34}A B x x =≤<I .7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B I ,A C I ,()ABC I U ,()A B C U I .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}A B =I ,{3,4,5,6}A C =I ,而{1,2,3,4,5,6}B C =U ,{3}B C =I ,则(){1,2,3,4,5,6}A B C =I U ,(){1,2,3,4,5,6,7,8}A B C =U I .8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B U ;(2)A C I .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()A B C =∅I I .(1){|}A B x x =U 是参加一百米跑或参加二百米跑的同学;(2){|}A C x x =I 是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形, {|}C x x =是矩形,求B C I ,A B ð,S A ð.9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =I 是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即{|}A B x x =是邻边不相等的平行四边形ð,{|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R A B U ð,()R A B I ð,()R A B I ð,()R A B U ð.10.解:{|210}A B x x =<<U ,{|37}A B x x =≤<I ,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð,得(){|2,10}R A B x x x =≤≥U 或ð,(){|3,7}R A B x x x =<≥I 或ð,(){|23,710}R A B x x x =<<≤<I 或ð,(){|2,3710}R A B x x x x =≤≤<≥U 或或ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =U ,则集合B 有 个.1.4 集合B 满足A B A =U ,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B U I .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅U I ;当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==U I ;当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==U I ;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅U I .4.已知全集{|010}U A B x N x ==∈≤≤U ,(){1,3,5,7}U A B =I ð,试求集合B . 4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U A B =U ,得U B A ⊆ð,即()U U A B B =I 痧,而(){1,3,5,7}U A B =I ð, 得{1,3,5,7}U B =ð,而()U U B B =痧,即{0,2,4,6,8.9,10}B =. 第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =. 1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤.2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值;(2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-;(2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm ,面积为2ycm ,把y 表示为x 的函数.1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数|2|y x =-的图象.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,4.设中元素60o 相对应与A 的B 中的元素是什么?与B 中的元素2相对应的A 中元素是什么?4.解:因为3sin 60=o ,所以与A 中元素60o 相对应的B 中的元素是3; 因为2sin 45=o,所以与B 中的元素2相对应的A 中元素是45o . O 离开家的距离 时间 (A ) O 离开家的距离 时间 (B ) O 离开家的距离 时间 (C ) O 离开家的距离时间(D )1.2函数及其表示习题1.2(第23页)1.求下列函数的定义域:(1)3()4x f x x =-; (2)()f x =(3)26()32f x x x =-+; (4)()f x =. 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x =.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(32x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域.(1)3y x =; (2)8y x =; (3)45y x =-+; (4)267y x x =-+. 3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞U ,值域是(,0)(0,)-∞+∞U ;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(2)f -,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+, 即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+.5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗?(2)当4x =时,求()f x 的值;(3)当()2f x =时,求x 的值.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--,即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-,即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.画出下列函数的图象:(1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>, 由对角线为d,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域.9.解:依题意,有2()2dx vt π=,即24v x t d π=, 显然0x h ≤≤,即240v t h d π≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个?并将它们分别表示出来.10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示.(1)函数()r f p =的定义域是什么?(2)函数()r f p =的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应?1.解:(1)函数()r f p =的定义域是[5,0][2,6)-U ;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=.当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h)表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数.(2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x x t +-=+,(012)x ≤≤, 即24125x x t +-=+,(012)x ≤≤. (2)当4x =时,2441242583()55t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8:0012:00):天气越来越暖,中午时分(12:0013:00):一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00:期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 .5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =- (3)21()x f x x+=; (4)2()1f x x =+. 1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数; (3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞U ,因为对定义域内 每一个x 都有22()11()()x x f x f x x x-++-==-=--, 所以函数21()x f x x+=为奇函数; (4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间 上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-.1.解:(1)5(,)2-∞上递减;函数在5[,)2+∞上递增; 函数在(2)函数在(,0)-∞上递增;函数在[0,)+∞上递减. 2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数; (2)函数1()1f x x=-在(,0)-∞上是增函数. 2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次 慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图). 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x 的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-, 得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值. 1.解:(1)二次函数2()2f x x x =-的对称轴为1x =, 则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.用列举法表示下列集合: (1)2{|9}A x x ==; (2){|12}B x N x =∈≤≤; (3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.设P 表示平面内的动点,属于下列集合的点组成什么图形? (1){|}P PA PB =(,)A B 是两个定点; (2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC ==I 的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==I 的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值. 4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求A B I ,A C I ,()()AB BC I U I .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭I ,即{(0,0)}A B =I ;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭I ,即A C =∅I ;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭I ; 则39()(){(0,0),(,)}55A B B C =-I U I . 6.求下列函数的定义域:(1)y =(2)||5y x =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞U . 7.已知函数1()1xf x x-=+,求: (1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.7.解:(1)因为1()1xf x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++,即(1)2af a a +=-+. 8.设221()1x f x x +=-,求证:(1)()()f x f x -=; (2)1()()f f x x=-.8.证明:(1)因为221()1x f x x+=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围. 9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数? (2)它的图象具有怎样的对称性? (3)它在(0,)+∞上是增函数还是减函数? (4)它在(,0)-∞上是增函数还是减函数? 10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人? 1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =, 只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}U A B =U ð,(){2,4}U A B =I ð,求集合B . 3.解:由(){1,3}U A B =U ð,得{2,4,5,6,7,8,9}A B =U , 集合A B U 里除去()U A B I ð,得集合B , 所以集合{5,6,7,8,9}B =. 4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=; (1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++,所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.(1)已知奇函数()f x 在[,]a b 上是减函数,试问:它在[,]b a --上是增函数还是减函数? (2)已知偶函数()g x 在[,]a b 上是增函数,试问:它在[,]b a --上是增函数还是减函数? 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数; (2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算: 某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少?7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤,25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623ba ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462rts -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ; (6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R . (3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5. (4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n . (2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n . 点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的. B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35.点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ), 2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=- 2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =;(2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x ==,所以3x =; (4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z=-=++=++; (3)33311lg()lg lg lg lg 3lg lg 22xy z x y z x y z z=-=+-=+-; (4)22211lglg()lg (lg lg )lg 2lg lg 22x x y z x y z x y z y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====; (3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-.4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞U ; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x =(5) 100.3x = (6) xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=-5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <; (2) m n <; (3) m n >; (4)m n >. 9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s. 10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯=。
1.1+集合的概念(共2课时)高一数学同步教材精品课件(人教A版2019必修第一册)
∈
-3____N
0.5____Z
____Z
2
1 ∈
____Q
3
∈
π ____R
2.集合A中的元素x满足
−
∈ , ∈ , 则集合A中的元素为(0,1,2
)
04
集合概念的应用
概念讲解
1. 已知0∈A,1∈A,a∈A, a2∈A,且A是包含三个元素的集合,求实数a
的值.
①接近于0的数的全体;
②比较小的正整数全体;
×
×
③平面上到点O的距离等于1的点的全体;
④正三角形的全体;
⑤ π的近似值的全体.
√
×
√
03
元素与集合的关系
概念讲解
探究3:
已知下面的两个实例,并回答下列问题:
(1)用A表示高一(3)班全体学生组成的集合.
(2)用c表示高一(3)班的一位同学,b表示高一(4) 班的一位同学.
∴A={ | = − 1}={ | ≥ 1}
B={ | = − 1}表示的是 = − 1中函数值的取值范围,
∴B={ | = − 1}={ |y ∈ R}
C={ (, ) | = − 1}表示的是 = − 1图象上所有点。
归纳小结
思考:你能说出列举法和描述法的优缺点吗?
义
集合
把一些元素组成的总体叫做集合,简称集。通常用大写拉丁字母
A,B,C…表示集合。
概念讲解
探究2:集合中的元素特征
1.所有的“个子高的男生”能否构成一个集合?由此说明什么?
2.由1,2,-3,5,︱-2︳这些数组成的一个集合中有5 个元素,这种说法正确吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
& 鑫达捷致力于精品文档 精心制作仅供参考 &
鑫达捷 002 测标题 §1.1 集 合( 2 )
一.选择题
1.已知集合M=}1,0,1{-,则集合M 的子集的个数共有 ( )
A.5
B.6
C.7
D.8 2.设集合M={x|x 2+2x-3=0},N={x|x 2-x+1=0},则M 、N 的关系是 ( )
A.M=N
B.M ⊆N
C.N ⊂≠M
D. N ∈M
3.满足下列关系式{1,2,3}⊂≠
M ⊆{1,2,3,4,5,6}的集合M 的个数是 ( )
A.4
B.5
C.6
D.7
4.已知集合A={x|x 2+x -2=0},若B={x|x<a},且A ⊂≠
B,则a 的取值范围是 ( ) A.a>1 B.a ≤1
C.a ≥-2
D.a ≤-2 5.若集合M={x ∈Z|-1≤x ≤1},P={y|y=x 2,x ∈M},则集合M 与P 的关系是 ( )
A.M=P
B.M ⊂≠P
C.P ⊂≠M
D.M ∈P
二.填空题
6.当集合{a,0,-1}={c,1b
,1}时,a =_______,b =______,c =________. 7.已知A={x|x<-1或x>2},B={x|4x-p<0},当A ⊇B 时,实数p 的取值范围是_______.
8.已知非空集合A 满足:①A ⊆{1,2,3,4};②若x ∈A,则5-x ∈A ,则满足上述要求的集合A 的个数是______.
三.解答题
9.判断如下集合A 与B 之间有怎样的包含或相等关系:
A={y|y=x 2+1,x ∈R};B={y|y=x 2+4x+5,x ∈R}.
10.设A={x|x 2-8x+15=0},B={x|ax -1=0, a 为常数,且a ∈R },若B ⊂≠
A,求a 的值. 答案:1—5DCDAC 6.1,-1,0 7. p ≤-4 8.3 9. A=B 10. a=0或a=13或a=15。