平行线的判定教学案 2

合集下载

平行线的判定 教案

平行线的判定 教案

平行线的判定教案教案标题:平行线的判定教案目标:1. 理解平行线的定义和性质。

2. 学会使用不同方法判定平行线。

3. 运用所学知识解决与平行线相关的问题。

教学重点:1. 平行线的定义和性质。

2. 平行线的判定方法。

教学难点:1. 运用所学知识解决与平行线相关的问题。

教学准备:1. 平行线的定义和性质的课件或教材。

2. 平行线判定的示意图或实物。

教学过程:一、导入(5分钟)1. 引入平行线的概念,让学生回顾并复习平行线的定义。

2. 提问:如何判断两条线段是平行的?二、知识讲解(15分钟)1. 讲解平行线的性质:平行线在同一平面内,永不相交,且任意一条直线与平行线的交线与另一条平行线的交线平行。

2. 介绍平行线的判定方法:a. 判定法一:同位角相等法。

当两条直线被一条横截线所切割时,同位角相等,则这两条直线平行。

b. 判定法二:内错角相等法。

当两条直线被一条横截线所切割时,内错角相等,则这两条直线平行。

c. 判定法三:平行线定理。

若两条直线分别与第三条直线相交,且同侧内角或同侧外角相等,则这两条直线平行。

三、示例演练(20分钟)1. 通过示意图或实物展示不同判定方法的应用。

2. 以具体的例题进行练习,引导学生运用不同的判定方法判断线段是否平行。

四、巩固练习(15分钟)1. 分发练习题,让学生独立完成。

2. 针对练习题进行讲解和答疑。

五、拓展延伸(10分钟)1. 提出一些与平行线相关的拓展问题,让学生思考并解答。

2. 鼓励学生探索和发现更多关于平行线的性质和判定方法。

六、总结归纳(5分钟)1. 总结平行线的定义和性质。

2. 归纳不同的平行线判定方法。

教学反思:本节课通过引入平行线的概念,讲解平行线的性质和判定方法,以及示例演练和练习题的训练,使学生能够熟练运用不同的判定方法判断线段是否平行。

同时,通过拓展延伸和总结归纳,培养学生的思维能力和归纳总结能力。

在教学过程中,要注重引导学生思考和解决问题的能力,提高学生的学习兴趣和主动性。

平行线的判定数学教案

平行线的判定数学教案

平行线的判定数学教案一、教学目标:1. 让学生理解平行线的概念,掌握平行线的判定方法。

2. 培养学生运用平行线的知识解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队合作能力。

二、教学内容:1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的判定方法:(1)同位角相等;(2)内错角相等;(3)同旁内角互补。

三、教学重点与难点:1. 教学重点:平行线的定义,平行线的判定方法。

2. 教学难点:平行线的判定方法的运用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究平行线的判定方法。

2. 利用多媒体课件,直观展示平行线的判定过程。

3. 进行小组讨论,培养学生团队合作精神。

五、教学过程:1. 导入新课:通过生活中的实例,引导学生思考平行线的概念。

2. 讲解平行线的定义,让学生理解平行线的特点。

3. 讲解平行线的判定方法,并结合实例进行演示。

4. 进行小组讨论,让学生运用平行线的判定方法解决实际问题。

六、教学评价:1. 通过课堂提问,检查学生对平行线概念的理解程度。

2. 利用课后作业,评估学生对平行线判定方法的掌握情况。

3. 组织小组讨论,评估学生在实际问题中运用平行线知识的能力。

七、课后作业:1. 请学生绘制一组平行线,并注明判定方法。

2. 选择一道与平行线相关的实际问题,运用所学知识进行解答。

八、教学拓展:1. 探讨平行线的性质,如:平行线之间的距离相等。

2. 介绍平行线的应用领域,如:工程、设计、地理等。

九、教学资源:1. 多媒体课件:用于展示平行线的判定过程。

2. 练习题库:用于巩固学生对平行线知识的掌握。

3. 小组讨论工具:如白板、彩笔等。

十、教学反思:1. 回顾本节课的教学内容,评估学生对新知识的掌握情况。

2. 分析教学方法的有效性,如:问题驱动法、多媒体展示等。

3. 针对学生的反馈,调整后续教学计划,提高教学效果。

重点和难点解析六、教学评价:重点关注学生对平行线概念的理解程度和判定方法的掌握情况。

平行线的判定教案市公开课一等奖教案省赛课金奖教案

平行线的判定教案市公开课一等奖教案省赛课金奖教案

平行线的判定教案一、教学目标1. 知识目标:掌握平行线的判定方法,包括同位角相等、内错角互补、对顶角相等以及平行线的特性,为解决与平行线相关的几何问题打下基础。

2. 技能目标:培养学生观察、分析和推理的能力,提升解决几何问题的能力。

3. 情感目标:通过合作学习和解决实际问题的过程,培养学生的团队合作精神,增强自信心。

二、教学重点和难点1. 教学重点:学习平行线判定的方法和技巧,掌握平行线的基本特性。

2. 教学难点:理解平行线的概念及其判定方法,运用所学知识解决实际问题。

三、教学准备黑板、白板、书籍、平行尺、草纸、教学案例等。

四、教学过程Step 1 引入新知1. 引导学生思考:你们对“平行线”有什么了解?该如何判定两条线是否平行?2. 出示两条线段 AB 和 CD,让学生观察并比较。

引导学生表示平行的概念。

3. 引导学生讨论并总结两条线段平行的条件,如同位角相等、内错角互补、对顶角相等等。

Step 2 学习平行线判定方法1. 同位角相等:绘制两条平行线,引导学生观察同位角的性质和关系,并通过示例教案演示同位角相等的判定方法。

2. 内错角互补:绘制两条交叉的线段,引导学生观察内错角的性质和关系,并通过示例教案演示内错角互补的判定方法。

3. 对顶角相等:绘制两条平行线与第三条交叉线,引导学生观察对顶角的性质和关系,并通过示例教案演示对顶角相等的判定方法。

4. 引导学生总结并记忆平行线的判定方法,培养学生观察、分析和推理的能力。

Step 3 拓展知识与应用1. 引导学生运用所学知识解决实际问题。

例如:已知直线 AB 和直线 CD,点 P 为两直线之间的一个点,如何判定直线 PA 和直线 PB 是否平行?2. 给学生分组讨论并解决教师提供的实际问题,加深对平行线判定方法的理解和掌握。

Step 4 总结归纳1. 通过学生的合作探究和问题解决,教师对平行线的判定方法进行总结,并与学生一起归纳出判定平行线的要点和方法。

七年级数学下册《平行线的判定》教案、教学设计

七年级数学下册《平行线的判定》教案、教学设计
(二)过程与方法
1.提高观察能力,学会从几何图形中发现规律,总结性质。
2.培养逻辑思维能力,学会运用已知条件推导出结论。
3.学会运用画图、列表等方法整理、分析问题,提高解决问题的策略。
4.学会与同学合作交流,分享学习心得,提高合作能力。
(三)情感态度与价值观
1.培养学生严谨、认真的学习态度,对待数学问题要有耐心和毅力。
1.必做题:
a.请从生活中找到三个平行线的例子,并简要说明其应用。
b.根ቤተ መጻሕፍቲ ባይዱ平行线的判定方法,完成以下练习题:
-判断以下直线是否平行,并说明理由:
① a ∥ b, b ∥ c,求证:a ∥ c。
②在ΔABC中,AB ∥ CD,求证:∠BAC = ∠DCE。
-填空题:
①如果两条直线上的同位角相等,那么这两条直线()。
3.作业完成后,请认真检查,确保答案正确,提高作业质量。
4.作业提交时间:下节课前。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握平行线的定义及判定方法,包括同位角相等、内错角相等、同旁内角互补。
2.能够运用直尺、圆规等工具准确画出平行线。
3.熟练运用平行线的性质解决实际问题。
(二)教学难点
1.对平行线判定方法的灵活运用,尤其是同位角、内错角、同旁内角在实际问题中的应用。
2.画平行线时,学生对工具的使用不够熟练,需要加强实践操作。
1.设计具有层次性的练习题,让学生运用平行线的判定方法解题。
2.练习题包括:
a.判断题:判断哪些直线是平行线,并说明理由。
b.填空题:补充完整平行线的判定条件。
c.应用题:运用平行线性质解决实际问题。
3.学生独立完成练习题,教师巡回指导,解答学生疑问。

八年级数学上册《平行线的判定》教案、教学设计

八年级数学上册《平行线的判定》教案、教学设计
5.教师点评:强调平行线知识在实际生活中的应用,激发学生学习数学的兴趣和热情。
五、作业布置
为了巩固本节课所学内容,培养学生的几何思维和解决问题的能力,特布置以下作业:
1.基础巩固题:完成课本第56页的练习题1、2、3,重点在于运用平行线的判定方法解决问题。
要求:学生在完成作业时,注意理解题意,规范作图,仔细计算,确保答案正确。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平行线的定义及其判定方法,包括同位角相等、内错角相等、同旁内角互补等。
2.难点:理解平行线性质的推理过程,以及在实际问题中的应用。
(二)教学设想
1.采用情境教学法,引入生活中的实际案例,让学生感知平行线在实际中的应用,激发学生学习兴趣。
例:在建筑工地,工人师傅如何保证两条直线平行?引导学生思考平行线在实际生活中的重要性。
二、学情分析
八年级学生已经具备了一定的几何基础,掌握了直线、射线、角等基本概念,能够进行简单的几何推理。在此基础上,学习平行线的判定,对于学生来说是一个新的挑战。他们需要将已知的几何知识进行拓展,运用逻辑推理和空间想象能力来探索平行线的性质和判定方法。考虑到学生的认知发展水平,他们可能在学习过程中遇到以下困难:对平行线性质的理解不够深入,判定方法的选择和应用存在困惑,以及在实际问题中运用平行线知识解决问题的能力不足。因此,在教学过程中,教师应关注学生的个体差异,提供适当的引导和帮助,鼓励学生积极参与讨论,培养他们的几何思维和解决问题的能力。同时,通过实际案例的引入,激发学生的学习兴趣,增强他们对数学知识实用性的认识。
(2)针对学生的疑惑,给予耐心解答,帮助他们克服学习难点。
(3)课后辅导,针对学生的薄弱环节,进行有针对性的辅导。
6.评价方式多样化,关注学生的全面发展。

《平行线的判定教案》教师法师,轻松搞定平行线的讲解

《平行线的判定教案》教师法师,轻松搞定平行线的讲解

《平行线的判定教案》教师法师,轻松搞定平行线的讲解一、教学目标(1)了解平行线的基本定义和性质;(2)掌握平行线的判定方法及实际应用;(3)培养学生的逻辑思维能力和直观理解能力。

二、教学方法(1)导入法:激发学生学习兴趣;(2)适当抽象化方法:强调概念的本质和内涵;(3)实践方法:通过丰富多样的例题,提高学生的实际应用能力。

三、教学步骤1.导入通过以下问题开展导入:平面中,一条直线为什么不能有一个以上的平行线?2.讲解(1)基本定义和性质平行线的定义:在同一个平面内,如果两条直线在平面内无限延长,它们的交点是无限远,那么这两条线就是平行线。

平行线的性质:平行线之间的距离始终相等,并且不存在交点。

(2)判定方法(A)同位角判定法:在同一直线上有两个与另外一条直线相交的直线,如果同侧内角或同侧外角相等,则这两条直线平行。

(B)平行线判定法:两条直线的任意两个内角的和为180度即为平行线。

(3)实际应用在现实生活中,平行线经常出现在建筑、道路等方面,例如建筑中的梁柱、尺、竖直线、地下管道、电缆等。

因此,学生能够将判定平行线的方法应用于实际生活中,在实际中通过计算距离、建构图形等方式比较容易判定平行线。

3.实践让学生做以下实践例题,加深对平行线判定方法的理解:【例题】如图,已知AB平行COR,OB与CD垂直,求∠AOB和∠COD的大关系。

(1)根据AB平行COR,可以得到∠AOB+∠BOC=180度,因此∠AOB和∠COD的和为180度;(2)根据OB与CD垂直得到∠AOC=90度,因此∠COD-∠AOB=90度;(3)将第(1)步的结果带入第(2)步的公式中,得到∠COD=135度,∠AOB=45度;(4)∠COD大于∠AOB,因此答案为:∠COD>∠AOB。

四、总结通过教学,学生可以掌握平行线的基本定义和性质,掌握平行线的判定方法及实际应用,培养学生的逻辑思维能力和直观理解能力,同时也可以提高他们的数学素养。

初中平行线的判定教案

初中平行线的判定教案

初中平行线的判定教案教学目标:知识与技能目标:理解平行线的定义,掌握平行线的判定方法,能够运用判定定理进行证明。

过程与方法目标:通过观察、操作、交流等活动,培养学生的逻辑思维能力和空间想象能力。

情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

教学重点:平行线的定义,平行线的判定方法。

教学难点:平行线的判定定理的理解和应用。

教学准备:三角板、直尺、橡皮擦、多媒体教学设备。

教学过程:一、导入新课1. 利用多媒体展示生活中含有平行线的图片,如教室的黑板、自行车的轮胎等,引导学生观察并说出平行线的特点。

2. 教师总结平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

二、探究平行线的判定方法1. 教师提出问题:如何判断两条直线是否平行?2. 学生分组讨论,教师巡回指导。

3. 各小组汇报讨论成果,教师总结并给出平行线的判定方法:(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

三、例题讲解1. 教师出示例题,引导学生运用判定方法进行解答。

2. 学生独立思考,教师巡回指导。

3. 学生汇报解题过程,教师点评并总结。

四、练习巩固1. 教师出示练习题,学生独立完成。

2. 教师选取部分学生的作业进行点评,指出错误并讲解。

五、课堂小结1. 教师引导学生总结本节课所学内容,巩固平行线的定义和判定方法。

2. 学生分享学习收获,教师给予鼓励和评价。

六、课后作业1. 完成课后练习题。

2. 观察生活中的平行线,拍摄照片,下节课分享。

教学反思:本节课通过观察生活中的平行线,引导学生发现平行线的特点,从而引入平行线的定义。

在探究平行线的判定方法时,鼓励学生分组讨论,培养学生的合作意识。

在例题讲解和练习巩固环节,注重培养学生的逻辑思维能力和空间想象能力。

通过课堂小结和课后作业,使学生巩固所学知识,提高运用所学知识解决实际问题的能力。

整体来说,本节课教学目标明确,教学方法得当,学生参与度高,达到了预期的教学效果。

平行线的判定优质教学案

平行线的判定优质教学案

平行线的判定优质教学案一、目标:1. 知识与技能:(1)从“旋转木支架摆.放平行线的活动过程中发现”同位角相等,两直线平行;培养学生动手操作,主动探究及合作交流的能力。

(2)会用平行线的判定方法判定两直线平行,初步学会用几何语言进行简单推理和表述。

2.过程与方法:在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己地探索过程和结果,从而进一步加强学生分析,概括、表达能力。

3.情感态度价值观:让学生在活动中体验探索、交流.、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想...、推理的科学态度。

二、重点:平行线的判定公理和两条判定定理。

三、教学难点:运用平行线的判定方法进行简单的推理四、教学教具:多媒体、三角板、木支架,直木棍五、教学方法:启发式引导式六、教学过程:1:课前下发预习资料,重温.对顶角.,邻补角的知识,认识公理与定理。

2:复习并导入新课:(1)直木棍展示两直线在同一平面内的两种位置关系,相交与平行,相交产生对顶角与邻补角,对顶角相等,邻补角互补。

(2)今天这节课有一个任务,“笔记本中的横隔线”拥有什么样的位置关系?是平行吗?有什么依据? 目测并不科学,需要通过严谨的.验证,通过这节课的学习要来完成这个任务。

(3)板书课题:5.2.2平行线的判定上新课前先认识新朋友,公理与定理,多媒体。

3:(1) 木支架活动,请学生摆.放,有偏差则不会平行,从经验得出上下两线平移会重.合。

这样摆是平行的,这个是基本事实叫公理,是经过实践的考验。

板书:公理:同位角相等,两直线平行。

结合图形,引导学生用符号语言表述平行线判定公理:∵∠1=∠2 (已知)∴a∥b (同位角相等,两直线平行)(2) 揭秘平行线四步画法的原理。

多媒体展示。

(3)例题运用。

例1:如下图,直线AB,CD同时垂直于直线EF,试说明AB∥CD.(4)公理谢幕.,回到木支架.,将卡纸放于内错角,也可以平行?猜测是平行,多媒体辅助,猜测:内错角相等,两直线平行。

数学教案:平行线的判定

数学教案:平行线的判定

数学教案:平行线的判定教学目标:1. 理解平行线的定义及性质;2. 掌握平行线的判定方法;3. 能够运用平行线的判定解决实际问题。

教学内容:一、平行线的定义及性质1. 引入平行线的概念,通过实例演示平行线的特征;2. 讲解平行线的性质,如同位角相等、内错角相等、同旁内角互补等;二、平行线的判定方法1. 引入平行线的判定方法,引导学生思考如何判断两条直线是否平行;2. 讲解平行线的判定方法,如同位角相等、内错角相等、同旁内角互补等;3. 通过实例演示,让学生学会运用平行线的判定方法判断两条直线是否平行。

三、运用平行线的判定解决实际问题1. 给出实际问题,让学生运用平行线的判定方法进行解答;2. 引导学生思考如何将实际问题转化为平行线的问题;四、巩固练习1. 设计练习题,让学生独立完成,巩固对平行线的定义、性质和判定方法的理解;2. 引导学生思考如何运用平行线的判定方法解决实际问题;3. 给予学生反馈,解答学生的疑问。

2. 强调平行线在实际生活中的应用,激发学生学习数学的兴趣;3. 对学生的学习情况进行评价,鼓励学生的进步。

教学资源:1. 教学PPT;2. 实例图形;3. 练习题。

教学建议:1. 在教学过程中,注重引导学生通过观察图形,发现平行线的性质和判定方法;2. 结合实际问题,让学生学会运用平行线的判定方法解决问题;3. 设计适量练习,让学生巩固所学知识,提高解题能力。

六、平行线的判定:利用同位角相等1. 通过图形展示,让学生观察并理解同位角的定义;2. 讲解同位角相等是平行线的判定条件之一;3. 引导学生运用同位角相等的方法判断两直线是否平行。

七、平行线的判定:利用内错角相等1. 介绍内错角的定义,并通过图形演示内错角的特点;2. 讲解内错角相等也是平行线的判定条件之一;3. 让学生练习运用内错角相等的方法判断两直线是否平行。

八、平行线的判定:利用同旁内角互补1. 解释同旁内角互补的概念,并展示图形为例;2. 说明同旁内角互补也是平行线的判定方法之一;3. 学生通过实例练习,掌握运用同旁内角互补判断直线平行的技巧。

《平行线的判定》参考教案

《平行线的判定》参考教案

5.2.2 平行线的判定一、教学目标:1.知识与技能:(1)从“用三角尺和直尺画平行线的活动过程中发现”同位角相等,两直线平行;培养学生动手操作,主动探究及合作交流的能力。

(2)会用平行线的判定方法判定两直线平行,初步学会用几何语言进行简单推理和表述。

2.过程与方法:在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己地探索过程和结果,从而进一步加强学生分析,概括、表达能力。

3.情感态度价值观:让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度。

二、教学重点:同位角相等两直线平行三、教学难点:运用平行线的判定方法进行简单的推理四、教学教具:多媒体、三角板、直尺五、教学方法:启发式六、教学过程:(一)复习并导入新课:上一节课我们学习了平行线,平行公理及其推论,如何用平行线的定义及平行公理的推论来说明两直线平行(学生回答),根据学生的回答,教师总结,如果用平行线定义难以说明两条直线没有交点,平行公理的推论对条件要求较强,要有三条平行线,且其中的两条分别与第三条平行。

你能否运用这两种方法来说明下面这两个问题的道理?如果只有a、b两条直线如何判断他们是否平行呢?说明这两个途径都有一ABCDE12定的局限性,那么有没有其他的途径判定两条直线是否平行的方法呢?今天我们一起来探讨平行线的判定方法。

(二)新授1、平行线的判定方法(1)让学生回忆并叙述上节用三角板和直尺过一点P 画已知直线AB 的平行线的过程,你能发现这种画法实际上是画一对什么角相等吗?(让学生观察图形后回答,这两个角是直线AB 、CD 被EF 截得的同位角)。

判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单记为“同位角相等,两直线平行”。

结合图形,引导学生用符号语言表述平行线判定公理: ∵∠1=∠2 (已知)∴a ∥b (同位角相等,两直线平行) 练习:1.已知∠1=54°,当 时, AB ∥CD ?(2)平行线的判定方法2的推导先采用探讨问题的方式,启发学生去思考,能不能从内错角之间的关系或同旁内角之间的关系来判定两条直线平行呢?让学生观察图形分析∠1与∠2在什么条件下满足判定方法1,引导学生分析角之间的关系,发现新结论:判定方法2:两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

最新平行线的判定教学设计一等奖(通用8篇)

最新平行线的判定教学设计一等奖(通用8篇)

最新平行线的判定教学设计一等奖(通用8篇)平行线的判定教学设计一等奖篇一1、对于平行线的判定(2)的引入,在上课时平行线判定(1)的基础上,导入得当,衔接自然,达到预期设想目标。

2、把本课时一分为二,重点在于对例2的讲解上,添加辅助线的.导入也十分顺畅,学生掌握较好。

3、对于少部分同学同位角、内错角是哪两条直线被哪一条直线所截构成的还不是很清楚,要引起足够的重视。

平行线的判定教学设计一等奖篇二《平行线的判定及性质》的复习课是在学习这两部分知识之后,针对学生在平行线的'判定及性质区别上以及几何简单推理表述上仍存在困惑,而精心设计了这一节课的导学案。

1、教学目标和重难点基于学生的学习情况,确定了本节课的教学目标和教学重难点。

教学目标是:使学生了解平行线的判定和性质的区别;掌握平行线的判定及性质,并且会运用它们进行简单推理和计算。

教学重难点是:平行线的判定与性质的区别和简单的几何推理过程的书写。

2、具体内容安排如下:首先安排的是自主学习部分,以填空的形式。

再次让学生认清“角的数量关系”与“线平行”相互转化的几何思想,进一步明确由“角数量关系”得到“线平行”要运用平行线的判定;反过来,由“线平行”得到“角数量关系”要运用平行线的性质;从而让学生进一步体会两者在的“条件”和“结论”恰好相反。

接着安排的是巩固提高练习。

在学生明确判定和性质内容和区别之后,让学生试着书写几何推理过程。

该部分的题难度逐步提升,并且设计了一题多解的类型,开动学生脑筋,激发学习兴趣。

进一步提高分析问题、解决问题的能力,以便于能够灵活地将图形语言、符号语言和文字语言进行简单的转化。

再者安排了提高练习,目的是照顾中等生,让他们通过本节课也有一定的提高。

最后是测评反馈,目的是通过本节课学习,了解学生对该部分知识的掌握情况。

1、导学案内容设计上,测评反馈较简单,起不到测评效果;3、小组讨论过程中,学生不懂得如何进行讨论,讨论的作用起不到;4、解决问题的方法总结上不到位;5、驾驭课堂能力差,学生学习热情不能很好地调动;6、教学语言不够简练,教学心理紧张。

平行线的判定(2)优秀教案

平行线的判定(2)优秀教案
3/3
a
a
b
1
1
c 2
c 2b
若∠1=∠2 则b c
若a⊥b,b⊥c 则a c
A1 B2
D
若∠1=∠2 则 ∥ 3 若 = 则AB ∥DC C
【活动 4】例题讲解
例 已知直线 l1,l2 被 l3 所截,如图,∠1=45°, ∠2=135°,试判断 l1 与
l2 是否平行.并说明理由.
解:l1 ∥ l2
理由如下: ∵ ∠2+∠3=180°,∠2=135° ∴∠3=180°-∠2=180°-135°=45° ∵∠1=45°
10.2 平行线的判定(2)
【教学目标】
1、理解平行线的判定方法 1:同位角相等,两直线平行; 2、学会用“同位角相等,两直线平行”进行简单的几何推理; 3、体会用实验的方法得出几何性质(规律)的重要性与合理性. 【教学重点与难点】
教学重点:是“同位角相等,两直线平行”的判定方法. 教学难点:是例 1 的推理过程的正确表达. 【教学预设】
l3
2
1
3 l1
l2
∴∠1=∠3
∴l1∥l2(同位角相等,两直线平行)
思路:(1)判定平行线方法.
(2)图中有无同位角(注∠3 位置)
(3)能说明∠3=∠1 吗?
(4)结论.
(5)∠3 还可以是其它位置吗?你能说明 l1∥l2 吗?
【活动 5】练习:课本 P126 页 1、2
2/3
【活动 6】小结与反思: (1) 你学到了什么? (2) 你认为还有什么不懂的? (3) 你有什么经验与收获让同学们共享呢? 【活动 7】布置作业. P126 页 3 题 【教学反思】
∵∠1=∠2
∴l1∥l2
(?)

平行线的判定教案人教版

平行线的判定教案人教版

平行线的判定教案人教版教学主题:平行线的判定教学目标:1.知识目标:了解平行线的概念和性质,掌握平行线的判定方法。

2.能力目标:能够运用所学知识判断线段是否平行。

3.情感目标:培养学生的逻辑思维能力和问题解决能力。

教学重点:1.平行线的概念和性质。

2.平行线的判定方法。

教学准备:白板、黑板笔、几何工具、教学PPT等。

教学过程:一、导入新知(10分钟)1.让学生回顾前一节课所学的基本线段相关知识。

2.引入新知,通过提问引导学生思考:“如果有两条线段,它们在同一个平面内,你能想到什么方法判断它们是否平行吗?”二、学习新知(30分钟)1.展示PPT,介绍平行线的定义和性质。

与学生一起讨论并总结平行线的性质,如同平行线与一条横切线所成角的关系等。

2.介绍平行线的判定方法:a.垂线判定法:若两条直线相交而且交角为90度,则这两条直线是平行线。

b.同位角判定法:若两条直线被一条直线所切,所成的内错角相等,则这两条直线是平行线。

c.内错角判定法:若两条直线所成内错角相等,则这两条直线是平行线。

d.一组对顶角相等判定法:若两条直线被两条交线所切,且交线互相垂直,则这两条直线是平行线。

e.两组对顶角相等判定法:若两条直线被两条交线所切,且交线互相平行,则这两条直线是平行线。

3.教师进行示范演示,并与学生一起完成练习。

三、巩固练习(40分钟)1.学生个体练习:学生根据所学方法判断给出的线段是否平行,并将判断结果写在纸上。

2.学生小组合作练习:将学生分成小组,给出一系列线段,要求小组成员使用所学方法判断线段是否平行,并在小组内讨论解决方案。

3.学生展示和总结:请几个小组代表上台展示他们的解决方案,并讨论归纳总结各种方法的使用条件和优缺点。

四、拓展延伸(15分钟)1.引导学生思考:如何利用平行线的性质解决实际问题?例如,利用平行线的判定方法判断两条铁轨是否平行。

2.让学生将所学方法应用于解决其他几何问题,并自行寻找更多的平行线的实际应用场景。

《平行线的判定教案》知识点梳理、课堂实践、评价反思一体化的教学方案

《平行线的判定教案》知识点梳理、课堂实践、评价反思一体化的教学方案

《平行线的判定教案》知识点梳理、课堂实践、评价反思一体化的教学方案》一、教学目标1.了解平行线的定义;2.掌握判定平行线的几何条件;3.能够独立判定两条直线是否平行;4.运用平行线的相关知识解决实际问题。

二、教学内容1.平行线的定义和性质;2.判定平行线的几何条件;3.实际应用:平行线的相关问题。

三、教学过程(一)知识梳理1.引入引导学生回顾在中学数学中所学过的直线相关知识,如直线的定义、直线的性质、直线之间的关系等。

2.学习平行线的定义和性质讲解平行线的定义和性质,引导学生理解、记忆并掌握相关概念。

3.判定平行线的几何条件讲解判定平行线的几何条件,如同侧内角、同旁内角、平行截线等,引导学生掌握和灵活运用。

4.应用平行线的相关问题讲解平行线的实际应用,引导学生理解和解决相关问题。

(二)课堂实践1.知识点梳理教师应用板书、PPT等辅助工具,对平行线的定义、性质、判定条件进行梳理复习,强化学生对平行线相关知识点的理解和记忆。

2.课堂练习教师设计多种练习题目,让学生独立思考、独立解决,学会灵活运用判定平行线的几何条件。

同时,教师在课堂上逐步提高难度,使学生不断挑战自我。

(三)评价反思1.课堂检测教师根据上课情况出题,测试学生对平行线相关知识点的掌握程度,检测学生独立运用这些知识点解决问题的能力。

2.评价反思教师进行课堂教学和学生学习情况的评价,针对不足加以改进;同时鼓励学生在日常学习中多加练习,加深对平行线相关知识点的理解和记忆。

四、教学反思在实际教学过程中,我通过采用多种教学方法如讲解、演示、练习、检测等,使学生能够全面掌握平行线的定义、性质和判定条件。

同时,帮助学生在解决实际问题时运用平行线相关知识点。

通过课堂实践,学生的学习兴趣和参与度得到了提高,对平行线知识的掌握程度也得以提升。

此教学方案能够有效提高学生的数学知识水平和解决实际问题的能力,培养学生的数学思维和创新精神,是一种评价反思和课堂实践相结合的教学方式。

沪教版(上海)数学七年级第二教学设计:13.4平行线的判定

沪教版(上海)数学七年级第二教学设计:13.4平行线的判定
(3)针对学生的错误,进行错题分析,帮助学生找出错误原因,提高解题能力。
(五)总结归纳
1.教学活动设计:
在总结归纳环节,教师将引导学生回顾本节课所学内容,形成知识体系,提高学生的几何素养。
2.教学实施:
(1)教师引导学生回顾本节课的主要内容,如平行线的定义、判定方法等。
(2)学生分享学习心得,总结自己在学习过程中的收获和不足。
(3)学生展开讨论,教师巡回指导,解答学生疑问。
(4)各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.教学活动设计:
课堂练习环节旨在检验学生对平行线判定方法的掌握程度,通过分层练习,让学生在练习中巩固所学知识。
2.教学实施:
(1)设计基础题、提高题和拓展题,分别针对不同水平的学生。
(2)学生独立完成练习,教师巡回指导,解答学生疑问。
(3)教师点评,强调重点知识,指出学生在学习过程中应注意的问题。
(4)布置课后作业,巩固所学知识,为下一节课的学习做好铺垫。
五、作业布置
为了巩固本节课的学习内容,确保学生对平行线的判定方法有深入的理解和掌握,特布置以下作业:
1.基础巩固题:完成课本第13.4节后的练习题1、2、3,这些题目主要针对平行线的基础概念和判定方法,旨在帮助学生巩固基础知识。
5.思考总结题:要求学生撰写一篇关于平行线判定方法的学习心得,内容包括对平行线判定方法的理解、学习过程中的困难与收获,以及如何将所学知识应用到实际问题中。
作业布置要求:
1.学生需独立完成作业,确保作业质量。在完成作业过程中,遇到问题应主动思考、查阅资料或与同学讨论,以提高解决问题的能力。
2.家长应关注学生的学习情况,协助学生合理安排时间,确保作业按时完成。

初中平行线的判定教案

初中平行线的判定教案

教案初中平行线的判定教学目标:1. 学生能够理解平行线的定义及性质。

2. 学生能够运用平行线的判定方法解决实际问题。

3. 培养学生的观察、分析、推理能力。

教学重点:1. 平行线的定义及性质。

2. 平行线的判定方法。

教学难点:1. 理解平行线的判定方法。

2. 运用平行线判定方法解决实际问题。

教学准备:1. 教学课件或黑板。

2. 直尺、圆规等绘图工具。

3. 练习题。

教学过程:一、导入1. 教师出示一张图片,引导学生观察图片中的平行线。

2. 学生分享观察到的平行线,并简单描述其特点。

二、新课导入1. 教师引导学生回顾平行线的定义及性质。

2. 学生分享平行线的定义及性质。

三、探究活动1. 教师出示探究活动一:如何判定两条直线是否平行?2. 学生分组讨论,探究平行线的判定方法。

四、实际应用1. 教师出示实际应用题目,引导学生运用平行线的判定方法解决问题。

2. 学生独立完成题目,教师巡回指导。

五、课堂小结2. 学生分享学习心得。

六、课后作业(布置作业)1. 教师布置相关练习题,巩固平行线的判定方法。

2. 学生完成课后作业。

教学反思:本节课通过观察、探究、实际应用等环节,让学生深入理解平行线的判定方法。

在教学过程中,教师要注意引导学生的观察、分析、推理能力,鼓励学生积极参与讨论,培养学生的合作意识。

同时,教师要及时点评学生的表现,给予鼓励和指导,提高学生的学习兴趣和自信心。

教案探索分数的基本性质教学目标:1. 学生能够理解分数的基本性质。

2. 学生能够运用分数的基本性质解决实际问题。

3. 培养学生的观察、分析、推理能力。

教学重点:1. 分数的基本性质。

2. 分数的基本性质在实际问题中的应用。

教学难点:1. 理解分数的基本性质。

2. 运用分数的基本性质解决实际问题。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入1. 教师出示一张图片,引导学生观察图片中的分数。

2. 学生分享观察到的分数,并简单描述其特点。

沪科版数学七年级下册10.2《平行线的判定》教学设计2

沪科版数学七年级下册10.2《平行线的判定》教学设计2

沪科版数学七年级下册10.2《平行线的判定》教学设计2一. 教材分析《平行线的判定》是沪科版数学七年级下册第10.2节的内容。

本节内容主要让学生掌握同位角相等、内错角相等、同旁内角互补三种判定方法,以及平行线的性质。

通过这些判定方法,学生能够判断两条直线是否平行,并理解平行线的性质。

教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析七年级的学生已经学习了直线、射线、线段的基本概念,对图形的认知有一定的基础。

但是,对于平行线的判定和性质,学生可能还比较陌生,需要通过具体的例题和实践活动来理解和掌握。

此外,学生可能对一些专业术语如“同位角”、“内错角”、“同旁内角”等概念理解起来有一定的困难,需要教师进行详细的解释和引导。

三. 教学目标1.知识与技能:使学生掌握同位角相等、内错角相等、同旁内角互补三种判定方法,以及平行线的性质。

2.过程与方法:通过观察、操作、猜想、证明等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。

四. 教学重难点1.教学重点:同位角相等、内错角相等、同旁内角互补三种判定方法,以及平行线的性质。

2.教学难点:对“同位角”、“内错角”、“同旁内角”等概念的理解,以及如何运用这些判定方法判断两条直线是否平行。

五. 教学方法1.情境教学法:通过生活实例引入平行线的概念,让学生在具体的情境中感受和理解平行线的性质。

2.小组合作学习:引导学生分组讨论,共同探究平行线的判定方法,培养学生的团队合作意识。

3.引导发现法:教师通过提问、启发,引导学生发现平行线的性质,培养学生的逻辑思维能力。

4.实践操作法:让学生动手画图、观察、测量,提高学生的动手能力和空间想象能力。

六. 教学准备1.教学课件:制作课件,展示平行线的判定方法和性质。

2.练习题:准备一些有关平行线的练习题,巩固所学知识。

《平行线的判定(第2课时)》教学设计

《平行线的判定(第2课时)》教学设计

《平行线的判定(第2课时)》教学设计教学目标:1、进一步掌握推理、证明的基本格式,掌握平行线判定方法的推理过程。

2、学习简单的推理论证说理的方法。

3、通过简单的推理过程的学习,培养学生进行数学推理的习惯和方法,同时培养提高学生“观察-分析-推理-论证”的能力。

教学重点:平行线判定方法2和判定方法3的推理过程及几何解题的基本格式教学难点:判定定理的形成过程中逻辑推理及书写格式。

教学过程:复习引入1、叙述平行线的判定方法12、结合图形用数学语言叙述平行线的判定方法1。

3、我们学习平行线的性质定理时,有几条定理?那么两条直线平行的判定方法除了方法外,是否还有其他的方法呢?二、探究新知1、如下图,两条直线a、b被第三条直线c所截,有一对内错角相等,即∠1=∠2,那么a与b平行吗?分析后,学生填写依据。

解:因为∠1=∠2(已知)∠1=∠3(对顶角相等)所以∠2=∠3(等量代换)所以a∥b(同位角相等,两直线平行)2、如下图,两条直线a、b被第三条直线c所截,有一对同旁内角互补,即∠1+∠2=180°,那么a与b平行吗?分析后,学生填写依据。

解:因为∠1+∠2=180°(已知)∠1+∠3=180°(邻补角的概念)所以∠2=∠3(等式的性质)所以a∥b(同位角相等,两直线平行)3、归纳平行线的判定方法2和判定方法3平行线的判定方法2 两直线被第三条直线所截,有一对内错角相等,那么这两条直线平行。

平行线的判定方法3 两直线被第三条直线所截,有一对同旁内角互补,那么这两条直线平行。

4、归纳所学的三条判定方法的简单表述形式:同位角相等,两直线平行。

内错角相等,两直线平行。

同六内角互补,两直线平行。

5、P66做一做用两个相同的三角形,可以拼成一个四边形,拼成的四边形的对边互相平行吗?6、讲解P66的例题如图已知AB∥CD,∠ABC=∠ADC。

问AD∥BC吗?解:因为AB∥CD(已知)所以∠1=∠2(两直线平行,内错角相等)又因为∠ABC=∠ADC (已知)所以∠ABC-∠1=∠ADC-∠2即∠4=∠3(等式的性质)所以AD∥BC(内错角相等,两直线平行)。

平行线的判定教案

平行线的判定教案

5.2.2平行线的判定(一)教学目标:经历探索两直线平行条件的过程,理解两直线平行的条件.重点:探索两直线平行的条件难点:理解“同位角相等,两条直线平行”教学过程一、情景导入.装修工人正在向墙上钉木条,如果木条b 与墙壁边缘垂直,那么木条a 与墙壁边缘所夹角为多少度时,才能使木条a 与木条b 平行?要解决这个问题,就要弄清楚平行的判定。

二、直线平行的条件以前我们学过用直尺和三角尺画平行线,如图(课本P13图5.2-5)在三角板移动的过程中,什么没有变?三角板经过点P 的边与靠在直尺上的边所成的角没有变。

简化图5.2-5,得图3.图3∠1与∠2是三角板经过点P 的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单地说:同位角相等,两条直线平行.符号语言:∵∠1=∠2∴AB ∥CD.如图(课本P145.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗? 用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行.”,可知这样画出的就是平行线。

如图,(1)如果∠2=∠3,能得出a ∥b 吗?(2)如果∠2+∠4=1800,能得出a ∥b 吗?你能用文字语言概括上面的结论吗?两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单地说:内错角相等,两直线平行.符号语言:∵∠2=∠3∴a ∥b.(2)∵∠4+∠2=180°,∠4+∠1=180°(已知)∴∠2=∠1(同角的补角相等)∴a ∥b.(同位角相等,两条直线平行)你能用文字语言概括上面的结论吗?两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.D CB A (1)∵∠2=∠3(已知)∠3=∠1(对顶角相等) ∴∠1=∠2(等量代换) ∴a ∥b (同位角相等,两条直线平行)3 2 b ac4 1简单地说:同旁内角互补,两直线平行.符号语言:∵∠4+∠2=180°∴a∥b.四、课堂练习1、课本P15练习1,补充(3)由∠A+∠ABC=1800可以判断哪两条直线平行?依据是什么?2、课本P162题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辅仁教育七年级精英班数学教学案
教学标题:平行线的判定
教学目标:1.能利用同位角、内错角、同旁内角判断两直线平行。

2.有基本判定定理推导出几个常用结论。

教学重难点:应用基本判定定理判定直线平行。

教学过程:
(一)检查作业,讲解错题:
(二)新课讲授:
1.复习引入
(1)如右图,∠1与∠2是直线----与直线-----被直线------所截得的----角。

∠3与∠4是直线----与直线-----被直线------所截得的--------角。

(2)
回忆用三角尺和直尺画平行线.
问题1:这种画法可以看做是怎样的图形变换?
问题2:在图形变换中哪两个角始终保持相等?它们有什么位置关系?
问题3:直线l1与l2位置关系如何?若∠1与∠2不相等,它们还有这样的位置关系吗?于是得出平行线的判断方法:__________________________________________________________________________
问题4:可以叙述为:∵∠1=∠2 ∴l1∥l2 ( )
若图中,直线AB与CD被直线EF所截,若∠3=∠4,则AB与CD平行吗?
问题1:∠3=∠4,能得出有一对同位角相等吗?
由此我们又获得怎样的判定AB∥CD的方法?
用几何语言表示:
∵∠3=∠4
∴AB∥CD()
问题2:若∠2+∠4=180°,又能得出有一对同位角相等吗?由此我们有能AB与CD平行吗?
∵∠2+∠4=180°
∴AB∥CD()
问题3:我们共学了几种平行线的判定方法?把它们写出来。

(三)课堂例题:
例1.已知直线l
1,l
2
被l
3
截,如图,∠1=45°,
∠2=135°,试判断l
1与l
2
是否平行.并说明理由.
抽象成几何图形
l
3
l
1
l
2
1
2
3
E
F
4
A B
C D
1
3
2
例2.如图,△ABC 中,∠A=50°,∠C=75°,∠ADE=55°,试说明DE ∥BC 的理由.
例3.如图,∠C+∠A=∠AEC 。

判断AB 与CD 是否平行,并说明理由。

分析:延长CE ,交AB 于点F ,则直线CD ,AB 被直线CF 所截。

这样,我们可以通过判断内错角∠C 和∠
AFC 是否相等,来判定AB 与CD 是否平行。

审一审:这题还可用“同旁内角互补,两直线平行”的来判定AB ∥CD 吗?说说你的理由。

例4. 通过练习你还掌握了哪些平行线的判定方法呢?好好想想,自己总结一下!一定好有好多哦!
(四)课堂练习:
1.如图,直线a,b 被直线c 所截,要判定a ∥b,则下列说法错误的是( )
A、∠1=45º,∠2=135º B、∠3=60º,∠4=60º C、∠2=120º,∠4=60º D、∠1=70º,∠3=110º
2.如图,若∠1=52º,那么∠C= ,才能使直线AB ∥CD . 3.某人骑自行车从A 地出发,沿正东方向前进至B 处后,右转15º, 沿直线向前驶到C 处,这时他想仍按正东方向行驶,那么他转 的方向和角度是向 方向转 度.
说明:如图,要使AB 、CE 方向相同,即AB ∥CE ,只要∠2=∠1=15º
∵∠1=∠2=15º ∴ ∥ ( ) 4.如图,直线AB 、CD 被直线EF 所截.
(1)由∠3=∠4能得到∠1=∠3吗?由∠1=∠3能得到 ∥ .
由此可得:由∠3=∠4得到 ∥ ,即两直线被第三条直线所截,如果
相等,则两直线平行. (2)若∠2+∠4=180º能得到AB ∥CD 吗?
A
C
D
B
E
∵∠2+∠4=180º,∠2+∠3=180º
∴∠ =∠ (同角的补角相等) 由(1)知AB ∥CD (内错角相等,两直线平行)
由此可得:当∠2+∠4=180º时,AB ∥CD ,即两直线被第三条直线所截,如果 ,那么 .
5.∠1=121°, ∠2=120°,∠3=120°说出其中的平行线,并说明理由。

6.看图填空:
(1)∵∠1+∠2=180º(己知)
∠2+∠3=180º( ) ∴∠1=∠3( )
∴AB ∥ ( ) (2)∵∠6+∠4=180º(己知)
∠5=∠4( )
∴∠6+∠5=180º(等量代换)
∴ ∥ ( ) (3)∵∠7=∠4(己知)
∠7=∠8( ) ∴∠8=∠4
∴ ∥ ( ) 7.如图,下列推理中正确的是( )
A 、∠1=∠2,则AD ∥BC
B 、∠1=∠2,则AB ∥D
C C 、∠A=∠3,则A
D ∥BC D 、∠3=∠4,则AB ∥DC
8.如图,下列条件中不能判断l 1∥l 2的是( )
A 、∠1=∠3
B 、∠2=∠3
C 、∠4=∠5
D 、∠2+∠4=180º
9、探究活动:有一条纸带如图所示,如果工具只有圆规,怎样检验纸带的两条边沿是否平行?如果没有工具呢?请说出你的方法和依据。

10.如图,AE 平分∠BAC,CE 平分∠ACD ,且∠AEC=90,那么AB 与CD 平行吗?试说说你的理由
(五)课堂小结:
师生共同回顾本节课内容中的要点,收益。

(六)课外作业:
未处理完的课堂练习。

学生表现记载:
E
F
G A B C
D
1
3
2
H。

相关文档
最新文档