高考文科复习题解析三角函数图象与性质的综合问题含答案解析

合集下载

高考数学最新真题专题解析—三角函数图像、性质与恒等变形(新高考卷)

高考数学最新真题专题解析—三角函数图像、性质与恒等变形(新高考卷)

高考数学最新真题专题解析—三角函数图像、性质与恒等变形(新高考卷)【母题来源】2022年新高考I卷【母题题文】6.若sin(α+β)+cos(α+β)=2√2cos(α+π4)sinβ,则()A. tan(α+β)=−1B. tan(α+β)=1C. tan(α−β)=−1D. tan(α−β)=1【答案】C【分析】本题考查三角恒等变换的应用法一:利用特殊值法,排除错误选项即可法二,利用三角恒等变换,求出正确选项【解答】解法一:设β=0则sinα+cosα=0,取α=34π,排除B,D再取α=0则sinβ+cosβ=2sinβ,取β=π4,排除A;选C.解法二:由sin(α+β)+cos(α+β)=√2sin(α+β+π4)=√2sin[(α+π4)+β]=√2sin(α+π4)cosβ+√2cos(α+π4)sinβ,故√2sin(α+π4)cosβ=√2cos(α+π4)sinβ故sin(α+π4)cosβ−cos(α+π4)sinβ=0,即sin(α+π4−β)=0,故sin(α−β+π4)=√22sin(α−β)+√22cos(α−β)=0,故sin(α−β)=−cos(α−β),故tan(α−β)=−1.【母题来源】2022年新高考II卷【母题题文】记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T<π,且y=f(x)的图像关于点(3π2,2)中心对称,则f(π2)=()A. 1B. 32C. 52D. 3【答案】A【分析】本题主要考查三角函数的周期性和对称性,属于中档题.【解答】解:由题可知:T=2πω∈(2π3,π),所以ω∈(2,3).又因为y=f(x)的图像关于点(3π2,2)中心对称,所以b=2,且f(3π2)=sin(ω×3π2+π4)+b=2.所以ω=23(k−14),k∈Z,所以ω=52.所以f(x)=sin(52x+π4)+2.所以f(π2)=1.(多选)已知函数f(x)=sin(2x+φ)(0<φ<π)的图象关于点(2π3,0)对称,则()A. f(x)在(0,5π12)单调递减B. f(x)在(−π12,11π12)有两个极值点C. 直线x=7π6是曲线y=f(x)的一条对称轴D. 直线y=√32−x是曲线y=f(x)的一条切线【答案】AD【解析】【分析】解:由题意得:f(2π3)=sin(4π3+φ)=0,所以4π3+φ=kπ,即φ=−4π3+kπ,k∈Z,又0<φ<π,所以k=2时,φ=2π3,故f(x)=sin(2x+2π3).选项A:x∈(0,5π12)时,2x+2π3∈(2π3,3π2),由y=sinu图象知f(x)在(0,5π12)单调递减;选项B:x∈(−π12,11π12)时,2x+2π3∈(π2,5π2),由y=sin u图象知f(x)在(−π12,11π12)有1个极值点;选项C:由于f(7π6)=sin3π=0,故直线x=7π6不是f(x)的对称轴;选项D:令f′(x)=2cos(2x+2π3)=−1,得cos(2x+2π3)=−12,解得2x+2π3=2π3+2kπ或2x+2π3=4π3+2kπ,k∈Z,从而得x=kπ或x=π3+kπ,k∈Z,令 k =0 ,则 (0,√32) 是斜率为 −1 的直线与曲线的切点,从而切线方程为 y −√32=−(x −0) ,即 y =√32−x .【母题来源】2022年新高考II 卷.若实数x ,y 满足x 2+y 2−xy =1,则( ) A. x +y ≤1 B. x +y ≥−2C. x 2+y 2≥1D. x 2+y 2≤2【答案】BC 【解析】 【分析】本题考查三角恒等变换与正弦函数的值域利用正余弦函数表示 x , y ,代入到 x +y , x 2+y 2 ,再利用三角函数的性质判断选项即可 【解答】解: 由 x 2+y 2−xy =1 得 (x −y 2)2+(√32y)2=1令 {x −y2=cosθ√32y =sinθ⇒{x =√33sinθ+cosθy =2√33sinθ 故 x +y =√3sinθ+cosθ=2sin(θ+π6)∈[−2,2] ,故 A 错, B 对 ; x 2+y 2=(√33sinθ+cosθ)2+(2√33sinθ)2=√33sin2θ−13cos2θ+43=23sin(2θ−φ)+43∈[23,2]( 其中 tanφ=√33) ,故 C 对, D 错. 【命题意图】考察两角和与差的正弦、余弦公式,考察二倍角的正现有、余弦、正切应用。

高三数学三角函数的图象与性质试题答案及解析

高三数学三角函数的图象与性质试题答案及解析

高三数学三角函数的图象与性质试题答案及解析1.将函数f(x)=sinωx(其中ω>0)的图象向右平移个单位长度,所得图象关于对称,则ω的最小值是( )A.6B.C.D.【答案】D【解析】将f(x)=sinωx的图象向左平移个单位,所得图象关于x=,说明原图象关于x=-对称,于是f(-)=sin(-)=±1,故(k∈Z),ω=3k+(k∈Z),由于ω>0,故当k=0时取得最小值.选D考点:三角函数的图象与性质2.已知函数的最大值是2,且.(1)求的值;(2)已知锐角的三个内角分别为,,,若,求的值.【答案】(1);(2)【解析】(1)先由辅助角公式将化为一个的三角函数,利用最大值为2求出A,再利用列出关于的方程,解出的值;(2)由(1)可得的解析式,由可求得和,再由同角三角函数基本关系式求出,将2C代入将用C表示出来,利用三角形内角和定理及诱导公式,将化为A,B的函数,再利用两角和与差的三角公式,化为A,B的三角函数,即可求出.试题解析:(1)∵函数的最大值是2,,∴ 2分∵又∵,∴ 4分(2)由(1)可知 6分,∴ 8分∵∴, 10分∴12分考点: 辅助角公式;三角函数图像与性质;诱导公式;两角和与差的三角公式;运算求解能力3.函数的部分图象如图所示,则的值分别是()A.B.C.D.【答案】A【解析】由图知在时取到最大值,且最小正周期满足,故,,∴,∵,∴,∴,∴,∴.【考点】由三角函数图象确定函数解析式.4.设则A.B.C.D.【答案】C.【解析】故选C.【考点】1.三角函数基本关系式(商关系);2. 三角函数的单调性.5.设函数.(1)求函数f(x)的最大值和最小正周期。

(2)设A、B、C为⊿ABC的三个内角,若,,且C为锐角,求.【答案】(1);(2)【解析】(1)利用领个角的和的余弦公式、二倍角化简整理得,由可求得函数的最大值,根据求出函数的最小正周期;(2)将代入,再利用倍角公式求得,从而得到角,由,根据,求得,由结合诱导公式、两个角的和的正弦公式求出结论.(1).∴当,即(k∈Z)时,,(4分)f(x)的最小正周期,故函数f(x)的最大值为,最小正周期为π.(6分)(2)由,即,解得.又C为锐角,∴.(8分)∵,∴.∴.(12分)【考点】三角函数的和差公式、二倍角公式.6.(12分)(2011•广东)已知函数f(x)=2sin(x﹣),x∈R.(1)求f(0)的值;(2)设α,β∈,f(3)=,f(3β+)=.求sin(α+β)的值.【答案】(1)﹣1(2)【解析】(1)把x=0代入函数解析式求解.(2)根据题意可分别求得sinα和sinβ的值,进而利用同角三角函数基本关系求得cosα和cosβ的值,最后利用正弦的两角和公式求得答案.解:(1)f(0)=2sin(﹣)=﹣1(2)f(3)=2sinα=,f(3β+)=2sinβ=.∴sinα=,sinβ=∵α,β∈,∴cosα==,cosβ==∴sin(α+β)=sinαcosβ+cosαsinβ=点评:本题主要考查了两角和与差的正弦函数.考查了对三角函数基础公式的熟练记忆.7.已知命题:函数是最小正周期为的周期函数,命题:函数在上单调递减,则下列命题为真命题的是()A.B.C.D.【答案】D【解析】函数的最小正周期为,故命题为真命题;结合正切函数图象可知,正切函数在区间上是增函数,因此函数在区间上是增函数,故命题为假命题,因此命题、、为假命题,为真命题,故选D.【考点】1.三角函数的基本性质;2.复合命题8.(2013•湖北)将函数的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.【答案】B【解析】y=cosx+sinx=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选B9.已知函数,.(1)求函数的最小正周期;(2)若函数有零点,求实数的取值范围.【答案】(1);(2)实数的取值范围是.【解析】(1)求函数的最小正周期,需对函数化简,把它化为一个角的一个三角函数,利用来求,因此本题的关键是化简,由形式,需对三角函数降次,因此利用二倍角公式将函数化为,由,即可得,即可求出周期;(2)若函数有零点,即,有解,移项得,因此,方程有解,只要在函数的值域范围即可,因此只需求出即可.(1) 4分6分∴周期 7分(2)令,即, 8分则, 9分因为, 11分所以, 12分所以,若有零点,则实数的取值范围是. 13分【考点】三角恒等变化,三角函数的周期,值域.10.已知向量,设函数.(1)求f(x)的最小正周期;(2)求f(x)在[0,]上的最大值和最小值.【答案】(1)π(2)最大值是1,最小值是-【解析】(1)f(x)=a·b=(cosx,-)·(sinx,cos2x)=cosxsinx-cos2x=sin2x-cos2x=sin(2x-)f(x)的最小正周期为T=π,(2)∵0≤x≤,∴-≤2x-≤.由正弦函数的性质知,sin(2x-)∈[-,1]当2x-=,即x=时,f(x)取得最大值1.当2x-=-,即x=0时,f(0)=-,因此, f(x)在[0,]上的最大值是1,最小值是-.11.已知函数f(x)=(2cos2x-1)sin2x+cos4x(1)求f(x)的最小正周期及最大值。

高三数学三角函数的图象与性质试题答案及解析

高三数学三角函数的图象与性质试题答案及解析

高三数学三角函数的图象与性质试题答案及解析1.函数的最小正周期为.【答案】π【解析】因为,所以函数f(x)=cos2x-sin2x的最小正周期为【考点】三角函数的周期2.已知函数,下面结论错误的是()A.函数的最小正周期为2B.函数在区间[0,]上是增函数C.函数的图象关于直线=0对称D.函数是奇函数【答案】D.【解析】A:最小正周期,∴A正确;B:当时,,∴B正确;C:∵,∴C正确;D:∵,∴是偶函数,∴D错误.【考点】三角函数的图象和性质.3.已知函数f(x)=4sinxcos(x-)-1(1)求函数f(x)的最小正周期; (2)当x∈[-π,]时,求函数f(x)的取值范围.【答案】(1)π;(2)[-2,1]【解析】(1)先化简函数表达式,利用T=求周期;(2)根据已知条件,先确定出整体变量(2x-)的范围,然后根据正弦函数的性质求出f(x)的取值范围.试题解析:(1)∵函数f(x)=4sinxcos(x-)-1=4sinx(cosxcos+sinxsin)-1=2sinxcosx+2sin2x-1=sin2x-cos2x=2sin(2x-),∴T=,∴函数f(x)的最小正周期π;(2)∵x∈[-,],∴2x∈[-,],∴2x-∈[-π,],∴f(x)∈[-2,1].【考点】两角和与差的三角函数,正弦型函数的性质,最小正周期,值域4.函数的最小正周期是()A.B.C.D.【答案】B【解析】由周期公式,又,所以函数的周期,故选B.【考点】三角函数的最小正周期.5.设函数f(x)=3sin(x+),若存在这样的实数x1,x2,对任意的x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为________.【答案】2【解析】f(x)=3sin(x+)的最小正周期T=2π×=4,f(x1),f(x2)应分别为函数f(x)的最小值和最大值,故|x1-x2|的最小值为=2.6.已知函数(1)求的值;(2)当时,求函数的值域.【答案】(1)2 ;(2).【解析】本题主要考查倍角公式、两角和的正弦公式、诱导公式、三角函数值域等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用倍角公式和两角和的正弦公式化简表达式,使之化简成的形式,将代入解析式,用诱导公式化简得到数值;第二问,利用第一问化简的表达式,将代入,先得到角的范围,再利用数形结合得到函数的值域.(1) .2分4分6分(2), 8分, 10分,即的值域是 12分【考点】倍角公式、两角和的正弦公式、诱导公式、三角函数值域.7.江西高考设f(x)=sin 3x+cos 3x,若对任意实数x都有|f(x)|≤a,则实数a的取值范围是________.【答案】[2,+∞)【解析】由于f(x)=sin 3x+cos 3x=2sin,则|f(x)|=2≤2,要使|f(x)|≤a恒成立,则a≥2.8.已知函数的部分图象如图所示,则( ) A.B.C.D.【答案】D【解析】由题意得:,又,,所以.【考点】三角函数图像与性质9.已知函数的图象由的图象向右平移个单位得到,这两个函数的部分图象如图所示,则的值为( )A.B.C.D.【答案】A【解析】函数的图象在轴右侧的第一个对称轴为,所以,关于对称的直线为,由图象可知,通过向右平移之后,横坐标为的点平移到,所以,故应选A.10.已知函数f(x)=(2cos2x-1)sin2x+cos4x(1)求f(x)的最小正周期及最大值。

高三数学三角函数综合试题答案及解析

高三数学三角函数综合试题答案及解析

高三数学三角函数综合试题答案及解析1.已知函数,则的值为 .【答案】.【解析】∵,两边求导,∴,令,得,∴,∴,即.【考点】导数的运用.2.已知函数.(1)求的最小正周期和最小值;(2)若,且,求的值.【答案】(1),;(2).【解析】(1)首先根据二倍角公式进行化简,并将函数的解析式化为的形式,然后利用最小正周期公式,最小值为,可得结果;(2)将代入,化简,利用得到三角函数值,根据,得到的值.此题考察三角函数的化简求值,属于基础题.试题解析:(1)解:, 4分,,所以的最小正周期为,最小值为. 8分(2)解:,所以, 11分因为,,所以,因此的值为. 13分【考点】1.三角函数的化简;2.三角函数的求值.3.函数的值域为.【答案】【解析】令,则.【考点】1、三角函数;2、二次函数;3、换元法.4.已知,,则x= .(结果用反三角函数表示)【答案】【解析】本题关键是注意反三角函数值的取值范围,适当利用诱导公式,,,而,故,即.【考点】反正弦函数.5.已知函数.(Ⅰ)求的单调减区间;(Ⅱ)求在区间上最大值和最小值.【答案】(Ⅰ)函数的单调减区间是:;(Ⅱ).【解析】(Ⅰ)将降次化一,化为的形式,然后利用正弦函数的单调区间,即可求得其单调递增区间.(Ⅱ)由(Ⅰ)可得,又的范围为,由此可得的范围,进而求得的范围.试题解析:.函数的单调减区间是:.的范围为,所以,所以即:【考点】1、三角恒等变换;2、三角函数的单调区间及范围.6.如图,两座建筑物的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9和15,从建筑物的顶部看建筑物的视角.⑴求的长度;⑵在线段上取一点点与点不重合),从点看这两座建筑物的视角分别为问点在何处时,最小?【答案】⑴;⑵当为时,取得最小值.【解析】⑴根据题中图形和条件不难想到作,垂足为,则可题中所有条件集中到两个直角三角形中,由,而在中,再由两角和的正切公式即可求出的值,又,可求出的值;⑵由题意易得在两直角三角形中,可得,再由两角和的正切公式可求出的表达式,由函数的特征,可通过导数求出函数的单调性和最值,进而求出的最小值,即可确定出的最小值.试题解析:⑴作,垂足为,则,,设,则 2分,化简得,解之得,或(舍)答:的长度为. 6分⑵设,则,. 8分设,,令,因为,得,当时,,是减函数;当时,,是增函数,所以,当时,取得最小值,即取得最小值, 12分因为恒成立,所以,所以,,因为在上是增函数,所以当时,取得最小值.答:当为时,取得最小值. 14分【考点】1.两角和差的正切公式;2.直角三角形中正切的表示;3.导数在函数中的运用7.已知以角为钝角的的三角形内角的对边分别为、、,,且与垂直.(1)求角的大小;(2)求的取值范围【答案】(1);(2).【解析】(1)观察要求的结论,易知要列出的边角之间的关系,题中只有与垂直提供的等量关系是,即,这正是我们需要的边角关系.因为要求角,故把等式中的边化为角,我们用正弦定理,,,代入上述等式得,得出,从而可求出角;(2)要求的范围,式子中有两个角不太好计算,可以先把两个角化为一个角,由(1),从而,再所其化为一个三角函数(这是解三角函数问题常用方法),下面只要注意这个范围即可.试题解析:1)∵垂直,∴(2分)由正弦定理得(4分)∵,∴,(6分)又∵∠B是钝角,∴∠B(7分)(2)(3分)由(1)知A∈(0,),, (4分),(6分)∴的取值范围是(7分)【考点】(1)向量的垂直,正弦定理;(2)三角函数的值域.8.已知向量,,(Ⅰ)若,求的值;(Ⅱ)在中,角的对边分别是,且满足,求函数的取值范围.【答案】(1);(2).【解析】本题主要考查两角和与差的正弦公式、二倍角公式、余弦定理、三角函数的值域等基础知识,考查运用三角公式进行三角变换的能力和基本的运算能力.第一问,利用向量的数量积将坐标代入得表达式,利用倍角公式、两角和的正弦公式化简表达式,因为,所以得到,而所求中的角是的2倍,利用二倍角公式计算;第二问,利用余弦定理将已知转化,得到,得到,得到角的范围,代入到中求值域.试题解析:(Ⅰ)∵,而,∴,∴,(Ⅱ)∵,∴,即,∴,又∵,∴,又∵,∴,∴.【考点】1.向量的数量积;2.倍角公式;3.两角和与差的正弦公式;4.余弦公式;5.三角函数的值域.9.若,且,则 ( )A.B.C.D.【答案】B.【解析】,故选B.【考点】1.三角函数诱导公式;2.三角函数平方关系.10.在△ABC中,角均为锐角,且,则△ABC的形状是()A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形【答案】D.【解析】又角均为锐角,则且中,,故选D.【考点】1.诱导公式;2.正弦函数的单调性.11.已知函数为常数).(Ⅰ)求函数的最小正周期;(Ⅱ)若时,的最小值为,求a的值.【答案】(Ⅰ)的最小正周期;(Ⅱ).【解析】(Ⅰ)求函数的最小正周期,由函数为常数),通过三角恒等变化,把它转化为一个角的一个三角函数,从而可求函数的最小正周期;(Ⅱ)利用三角函数的图像,及,可求出的最小值,让最小值等于,可求出a的值.试题解析:(Ⅰ)∴的最小正周期(Ⅱ)时,时,取得最小值【考点】三角函数的性质.12.已知函数.(1)求函数的最小正周期;(2)求函数在区间上的函数值的取值范围.【答案】(1);(2).【解析】(1)函数.通过二倍角的逆运算将单角升为二倍角,再化为一个三角函数的形式,从而求出函数的周期.(2)x的范围是所以正弦函数在是递增的.所以f(x)的范围是本题考查三角函数的单调性,最值,三角函数的化一公式,涉及二倍角的逆运算等.三角函数的问题要关注角度的变化,角度统一,二次式化为一次的,三角函数名称相互转化.切化弦,弦化切等数学思想.试题解析:(1) 4分6分故的最小正周期为 8分(2)当时, 10分故所求的值域为 12分【考点】1.三角函数的化一公式.2.二倍角公式.3.函数的单调性最值问题.13.下列命题中:函数的最小值是;②在中,若,则是等腰或直角三角形;③如果正实数满足,则;④如果是可导函数,则是函数在处取到极值的必要不充分条件.其中正确的命题是_____________.【答案】②③④.【解析】当,等号成立时当且仅当“即”,显然不成立,则命题①不正确;在中,若,则或,则是等腰或直角三角形,故②正确;由,因为正实数,满足,所以,故③正确;如果是可导函数,若函数在处取到极值,则,当,,但函数在处无极值,则是函数在处取到极值的必要不充分条件,故④正确.【考点】基本不等式、三角函数性质、不等式及导数的性质.14.已知向量,函数.(1)求函数的最小正周期;(2)已知分别为内角、、的对边, 其中为锐角,且,求和的面积.【答案】(1);(2).【解析】(1)根据题意,再利用二倍角公式及辅助角公式将化简为;(2)将代入,得,因为,所以,再利用余弦定理,解出,最后根据三角形面积公式求出. 试题解析:(1)由题意所以.由(1),因为,所以,解得.又余弦定理,所以,解得,所以.【考点】1.三角函数恒等变形;2.三角函数周期;3.余弦定理及三角形面积公式.15.已知,,其中,若函数,且函数的图象与直线y=2两相邻公共点间的距离为.(l)求的值;(2)在△ABC中,以a,b,c(分别是角A,B,C的对边,且,求△ABC周长的取值范围.【答案】(1);(2).【解析】(1)先根据,结合二倍角公式以及和角公式化简,求得,函数最大值是,那么函数的图像与直线两相邻公共点间的距离正好是一个周期,然后根据求解的值;(2)先将代入函数的解析式得到:,由已知条件以及,结合三角函数的图像与性质可以解得,所以,由正弦定理得,那么的周长可以表示为:,由差角公式以及和角公式将此式化简整理得,,结合角的取值以及三角函数的图像与性质可得.试题解析:(1), 3分∵,∴函数的周期,∵函数的图象与直线两相邻公共点间的距离为.∴,解得. 4分(2)由(Ⅰ)可知,,∵,∴,即,又∵,∴,∴,解得. 7分由正弦定理得:,所以周长为:, 10分,所以三角形周长的取值范围是. 12分【考点】1.和角公式;2.差角公式;3.二倍角公式;4.三角函数的图像与性质;5.正弦定理16.已知向量,(Ⅰ)当时,求的值;(Ⅱ)求函数在上的值域.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)本小题主要利用向量平行的坐标运算得到,然后解出,再利用二倍角正切公式可得;(Ⅱ)本小题首先化简函数解析式,然后根据三角函数的图像与性质,得到三角函数的取值范围,进而求值域;试题解析:(Ⅰ),, 2分即,, 4分6分(Ⅱ)=10分,12分,即 14分【考点】1.平行向量;2.三角函数的图像与性质.17.已知 .【答案】【解析】.【考点】1.两角差的正切公式;2.三角函数的拆角方法.18.已知∈(,),sin=,则tan()等于()A.-7B.-C.7D.【答案】A.【解析】由题意,则.【考点】三角函数运算.19.在中,的对边分别为且成等差数列.(1)求B的值;(2)求的范围.【答案】(1);(2)【解析】(1)对于三角形问题中的边角混合的式子,可以利用正弦定理和余弦定理边角转化,或边化角转化为三角函数问题,或角化边转化为代数问题来处理,该题由等差中项列式,再利用正弦定理边化角为,,又根据三角形内角的关系,得,进而求;(2)由(1)得,可得,代入所求式中,化为自变量为的函数解析式,再化为,然后根据的范围,确定的范围,进而结合的图象确定的范围,进而求的范围.试题解析:(1)成等差数列,∴,由正弦定理得,,代入得,,即:,,又在中,,∵,∴;(2)∵,∴,∴===,∵,∴,∴,∴的取值范围是.【考点】1、等差中项;2、正弦定理;3、型函数的值域.20.取得最小值a时,此时x的值为b,则取得最大值时,的值等于________。

高三数学三角函数的图象与性质试题答案及解析

高三数学三角函数的图象与性质试题答案及解析

高三数学三角函数的图象与性质试题答案及解析1.关于函数f(x)=sinx(sinx-cosx)的叙述正确的是A.f(x)的最小正周期为2πB.f(x)在内单调递增C.f(x)的图像关于对称D.f(x)的图像关于对称【答案】D【解析】f(x)=sin2x-sinxcosx=(1-cos2x-sin2x)=-sin(2x+)于是,f(x)的最小正周期为π,A错误;由2kπ+<2x+<2kπ+(k∈Z)解得kπ+<x<kπ+(k∈Z),可知在上,函数不是单调函数,B错误;当时,函数取得最小值,根据正弦型函数图象的特征,可知C错误,D正确.【考点】三角函数的化简,正弦型函数的图象与性质2.方程在区间上的所有解的和等于.【答案】【解析】原方程可变形为,即,,由于,所以,,所以.【考点】解三角方程.3.已知函数的图像关于直线对称,且图像上相邻两个最高点的距离为.(1)求和的值;(2)若,求的值.【答案】(1);(2)【解析】(1)由函数图像上相邻两个最高点的距离为求出周期,再利用公式求出的值;由函数的图像关于直线对称,可得,然后结合,求出的值.(2)由(1)知,由结合利用同角三角函数的基本关系可求得的值,因为可由两角和与差的三角函数公式求出从而用诱导公式求得的值.解:(1)因的图象上相邻两个最高点的距离为,所以的最小正周期,从而.又因的图象关于直线对称,所以因得所以.(2)由(1)得所以.由得所以因此=【考点】1、诱导公式;2、同角三角函数的基本关系;3、两角和与差的三角函数公式;4、三角函数的图象和性质.4.若函数在区间是减函数,则的取值范围是 .【答案】.【解析】时,是减函数,又,∴由得在上恒成立,.【考点】1.三角函数的单调性;2.导数的应用.5.若,则()A.B.C.D.【答案】A【解析】函数在区间上单调递减,由于,,,即,而,而,由于,,即,因此有,故选A.【考点】1.三角函数单调性;2.比较大小6.在平面直角坐标系中,点,,其中.(1)当时,求向量的坐标;(2)当时,求的最大值.【答案】(1);(2)取到最大值.【解析】(1)求向量的坐标,由向量坐标的定义可知,,即可写出,再把代入求出值即可;(2)求的最大值,先求向量的最大值,由于是三角函数,可利用三角函数进行恒等变化,把它变化为一个角的一个三角函数,利用三角函数的性质,即可求出的最大值,从而可得的最大值.(1)由题意,得, 2分当时,, 4分,所以. 6分(2)因为,所以 7分8分9分. 10分因为,所以. 11分所以当时,取到最大值, 12分即当时,取到最大值. 13分【考点】向量的坐标,向量的模,三角恒等变化.7.将函数的图像向右平移个单位长度后,所得的图像与原图像重合,则的最小值等于.【答案】6【解析】函数的图像向右平移个单位长度后得函数式为,它和相同,则,,最小值为6.【考点】三角函数图象平移,诱导公式.8.已知函数f(x)=3cos(2x-)在[0,]上的最大值为M,最小值为m,则M+m等于()A.0B.3+C.3-D.【答案】C【解析】由x∈[0,]得2x-∈[-,],故M=f()=3cos0=3,m=f()=3cos=-,故M+m=3-.9.若函数f(x)=sin(x+φ)(0<φ<π)是偶函数,则cos =________.【答案】【解析】因为函数f(x)=sin(x+φ)(0<φ<π)是偶函数,所以φ=,故cos =cos =.10.函数的周期是 .【答案】2【解析】函数的周期为.【考点】三角函数的周期.11.已知函数的最小正周期是,则.【答案】1【解析】要把函数式化简为或的形式,本题中,因此其最小正周期为,.【考点】三角函数的周期.12.若函数()的图象关于直线对称,则θ=.【答案】【解析】研究三角函数的对称性,可从图像理解.因为三角函数的对称轴经过最值点,所以当时,取最值,即,又所以【考点】三角函数性质:对称轴.13.设平面向量,,函数。

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析1.在中,已知,若分别是角所对的边,则的最大值为.【答案】【解析】由正余弦定理得:,化简得因此即最大值为.【考点】正余弦定理,基本不等式2. sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣【答案】A【解析】sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,故选A.3.三角形ABC是锐角三角形,若角θ终边上一点P的坐标为(sin A-cos B,cos A-sin C),则的值是( )A.1B.-1C.3D.4【答案】B【解析】因为三角形ABC是锐角三角形,所以A+B>90°,即A>90°-B,则sin A>sin(90°-B)=cos B,sin A-cos B>0,同理cos A-sin C<0,所以点P在第四象限,=-1+1-1=-1,故选B.4.已知函数则=【答案】【解析】因为函数由需要求的x都是整数,所以当x为奇数时的解析式为,当x为偶数时的解析式为.所以.所以.【考点】1.分段函数的性质.2.归纳推理的思想.3.三角函数的运算.4.等差数列的求和公式.5.若方程有实根,则实数的取值范围为【答案】【解析】由方程得,,即,因为,所以,若方程有实根,则,解得.【考点】方程的根.6.设,将函数在区间内的全部极值点按从小到大的顺序排成数列.(1)求数列的通项公式;(2)设,数列的前项和为,求.【答案】(1);(2).【解析】(1)先根据三角函数的恒等变换化简,得,再根据三角函数的性质找到极值点,利用等差数列的性质写出数列的通项公式;(2)先根据(1)中的结果写出的通项公式,然后写出的解析式,在构造出,利用错位相减法求,计算量比较大,要细心.试题解析:(1),其极值点为, 2分它在内的全部极值点构成以为首项,为公差的等差数列, 4分所以; 6分(2), 8分所以,,相减,得,所以. 12分【考点】1、三角函数的恒等变换及化简;2、三角函数的性质的应用;3、等差数列的通项公式;4、错位相减法求数列的前项和;5、等比数列的前项和.7.已知函数d的最大值为2,是集合中的任意两个元素,且的最小值为.(1)求函数的解析式及其对称轴;(2)若,求的值.【答案】(1),;(2).【解析】本题主要考查两角和与差的正弦公式、二倍角的余弦公式、诱导公式、三角函数的最小正周期、单调性等基础知识,考查运算能力.第一问,利用倍角公式化简表达式,先利用周期求出,再求最值,通过解方程求出,确定了解析式后求正弦函数的对称轴;第二问,通过角之间的关系转化角,考查诱导公式和倍角公式.试题解析:(1),由题意知:的周期为,由,知 2分由最大值为2,故,又, 4分∴ 5分令,解得的对称轴为 7分(2)由知,即, 8分∴ 10分12分【考点】1.倍角公式;2.两角和与差的三角函数;3.函数的周期;4.函数的对称轴.8.是偶函数,,则 .【答案】【解析】,,所以,因为为偶函数,所以对任意的,都有即成立,又,所以.【考点】三角函数的恒等变换,偶函数.9.已知方程在上有两个不同的解、,则下列结论正确的是()A.B.C.D.【答案】C【解析】由于方程在上有两个不同的解、,即方程在上有两个不同的解、,也就是说,直线与函数在轴右侧的图象有且仅有两个交点,由图象可知,当时,直线与曲线相切,且切点的横坐标为,当时,,则,故,在切点处有,即,,两边同时乘以得,,故选C.【考点】1.函数的零点;2.函数的图象;3.利用导数求切线的斜率10.将函数图像上各点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位,那么所得图像的一条对称轴方程为()A.B.C.D.【答案】B【解析】将函数的图像按题中要求变换后得到函数的图像,令,则,当时,.【考点】1.三角函数的变换;2.三角函数图象的对称轴.11.函数f(x)=sin+ACos(>0)的图像关于M(,0)对称,且在处函数有最小值,则的一个可能取值是( )A.0B.3C.6D.9【答案】D【解析】根据题意:相邻对称点与最小值之间可以相差也可以是不妨设为:=,可以为9,故选D.【考点】三角函数的最值;正弦函数的对称性.12.已知函数,(1)求的值;(2)若,且,求.【答案】(1);(2).【解析】(1)直接将代入计算即可;(2)用二倍角的正弦、余弦公式化简,再将正弦、余弦合为同一个的三角函数;根据已知条件,求出的值.试题解析:(1)(2)因为,且,所以,所以【考点】1、三角恒等变换;2、三角函数的基本运算.13.已知函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)讨论在区间上的单调性.【答案】(Ⅰ)(Ⅱ)当,即时,单调递增;当,即,单调递减.【解析】(1)由题意,所以由(1)知若,则当,即时,单调递增;当,即,单调递减.第(1)题根据三角函数的和差化简,二倍角公式以及辅助角公式,最后化成的形式,利用确定的值;第(2)题用整体法的思想确定的单调性,再反求出在指定范围内的单调性.本题属简单题.【考点】本题主要考查三角恒等变形、三角函数的图像及性质与三角函数图像的变换.考查逻辑推理和运算求解能力,中等难度.14.已知函数若方程有三个不同的实根,且从小到大依次成等比数列,则m的值为 .【答案】【解析】设三个根由小到大依次为,结合余弦函数图像可知关于直线对称,关于直线对称,代入计算得【考点】三角函数图像及性质点评:题目中主要结合三角函数图像的轴对称性找到三根之间的联系15.已知,则的值为()A.B.C.D.【答案】B【解析】因为,,即,,所以,=,故选B。

高考数学_三角函数的图像和性质问题(解析版)

高考数学_三角函数的图像和性质问题(解析版)

[高考地位]近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是高考的重点和难点。

要充分运用数形结合的思想,把图象与性质结合起来,同时也要能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法。

在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题.[方法点评]类型一 求三角函数的单调区间使用情景:一般三角函数类型解题模板:第一步 先将函数式化为基本三角函数的标准式,要特别注意参数,A ω的正负;第二步 利用三角函数的辅助角公式一般将其化为同名函数,且在同一单调区间; 第三步 运用三角函数的图像与性质确定其单调区间.例1 函数cos(2)4y x π=-的单调递增区间是〔 A .[k π+8π,k π+85π] B .[k π-83π,k π+8π]C .[2k π+8π,2k π+85π]D .[2k π-83π,2k π+8π]〔以上k ∈Z[答案]B.考点:三角函数单调性. [点评]本题解题的关键是将24x π-作为一个整体,利用余弦函数的图像将函数cos(2)4y x π=-的单调递增区间转化为24x πθ=-在区间[]2,2k k πππ-+上递减的.[变式演练1]已知函数),0)(62sin()(>+=ωπωx x f 直线21,x x x x ==是)(x f y =图像的任意两条对称轴,且21x x -的最小值为2π.求函数)(x f 的单调增区间; [答案]Z k k k ∈++-],6,3[ππππ.[解析]试题分析:根据两条对称轴之间的最小距离求周期,根据周期求ω,根据公式求此函数的单调递增区间. 试题解析:由题意得,π=T 则1,()sin(2).6f x x πω=∴=+由222,262k x k πππππ-+≤+≤+解得.,63Z k k x k ∈+≤≤+-ππππ故)(x f 的单调增区间是Z k k k ∈++-],6,3[ππππ.考点:1.()ϕω+=x A y sin 的单调性;[变式演练2]已知函数()sin()+(00 )2f x A x B A πωϕωϕ=+>><,,的一系列对应值如下表:x6π-3π 56π 43π 116π73π 176πy2-42-4〔1根据表格提供的数据求函数()f x 的解析式; 〔2求函数()f x 的单调递增区间和对称中心; [答案]〔1()3sin 13f x x π⎛⎫=-+ ⎪⎝⎭〔252 2()66k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,+ 1(3k k ππ∈Z)(,). 〔2当22()232k x k k πππππ-≤-≤+∈Z ,即52 ()266x k k k ππππ⎡⎤∈-+⎢⎥⎣⎦∈Z ,时,函数()f x 单调递增.令=(3x k k ππ-∈Z),得=+(3x k k ππ∈Z),所以函数()f x 的对称中心为+ 1(3k k ππ∈Z)(,). 考点:1.三角函数解析式及基本性质;2.数形结合法类型二 由sin()y A x ωϕ=+的图象求其函数式使用情景:一般函数sin()y A x ωϕ=+求其函数式解题模板:第一步 观察所给的图像及其图像特征如振幅、周期、与x 轴交点坐标等;第二步 利用特殊点代入函数解析式计算得出参数,,A ωϕ中一个或两个或三个; 第三步 要从图象的升降情况找准第一个零点的位置,并进一步地确定参数; 第四步 得出结论.例2 已知函数sin()y A x ωϕ=+),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的图象如图所示,则该函数的解析式是〔〔A )48sin(4π-π-=x y 〔B )48sin(4π-π=x y 〔C )48sin(4π+π=x y 〔D )48sin(4π+π-=x y[答案]D考点:()ϕω+=x A y sin 的图像[点评]本题的解题步骤是:首先根据已知图像与x 轴的交点坐标可得其周期为T ,进而可得ω的大小;然后观察图像知其振幅A 的大小;最后将图像与x 轴的交点坐标代入函数的解析式即可得到φ的大小. [变式演练3]已知函数()()sin f x A x ωϕ=+〔其中0,0,2A πωϕ>><的部分图象如图所示,则()f x 的解析式为〔 A .()2sin 3f x x π⎛⎫=+⎪⎝⎭B .()2sin 26f x x π⎛⎫=+⎪⎝⎭C .()2sin 26f x x π⎛⎫=- ⎪⎝⎭D .()2sin 46f x x π⎛⎫=-⎪⎝⎭[答案]B [解析]考点:由)sin(ϕω+=x A y 的部分图像确定解析式。

专题07 三角函数的图像与性质-2020年高考数(文)题根探源(全国Ⅰ卷)

专题07 三角函数的图像与性质-2020年高考数(文)题根探源(全国Ⅰ卷)

专题07 三角函数的图像与性质【母题来源一】【2020年高考全国Ⅰ卷文数】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为A. 10π9 B.7π6 C. 4π3D. 3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 最小正周期为224332T πππω===,故选:C 【名师点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题. 【母题来源二】【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【答案】4-【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+23172(cos )48x =-++, 1cos 1x -≤≤,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【名师点睛】本题首先应用诱导公式,转化得到二倍角的余弦,进一步应用二倍角的余弦公式,得到关于cos x 的二次函数,从而得解.注意解答本题的过程中,部分考生易忽视1cos 1x -≤≤的限制,而简单应用二次函数的性质,出现运算错误.的【母题来源三】【2018年高考全国Ⅰ卷文数】已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4 【答案】B【解析】根据题意有()135cos 21(1cos 2)2cos 2222f x x x x =+--+=+, 所以函数()f x 的最小正周期为2ππ2T ==,且最大值为()max 35422f x =+=.故选B.【名师点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 【命题意图】(1)能画出y =sin x ,y =cos x ,y = tan x 的图象,了解三角函数的周期性.(2)理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、 最大值和最小值以及与x 轴的交点等). (3)能画出sin()y A x ωϕ=+的图象,了解参数,,A ωϕ对函数图象变化的影响.(4)理解同角三角函数的基本关系式、诱导公式,能运用和与差的三角函数公式、二倍角公式等进行简单的恒等变换. 【命题规律】三角函数的考查重点是三角函数的定义、图象与性质,考查中以图象的变换、函数的单调性、奇偶性、周期性、对称性、最值作为热点,并常与三角恒等变换交汇命题,难度为中档偏下. 常见的命题角度有: (1)三角函数的图象变换; (2)三角函数解析式的确定;(3)三角函数的性质(单调性、值域与最值、奇偶性、周期性、对称性等); (4)函数sin()y A x ωϕ=+的性质与其他知识的综合应用. 【方法总结】(一)函数图象的平移变换解题策略(1)对函数y =sin x ,y =A sin(ωx +φ)或y =A cos(ωx +φ)的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|,而不是ωx 变为ωx ±|φ|. (2)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移. (二)结合图象及性质求解析式y =A sin(ωx +φ)+B (A >0,ω>0)的方法(1)求A ,B ,已知函数的最大值M 和最小值m ,则,22M m M mA B -+==. (2)求ω,已知函数的周期T ,则2πTω=. (3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时,A ,ω,B 已知). ②五点法:确定φ值时,往往以寻找“五点法”中的第一个零点(,0)ϕω-作为突破口,具体如下: “第一点”(即图象上升时与x 轴的交点中距原点最近的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(三)求解三角函数的值域(最值)常见到以下几种类型的题目及求解方法(1)形如y =a sin x +b cos x +k 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域); (2)形如y =a sin 2x +b sin x +k 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).(四)三角函数单调性问题的常见类型及解题策略(1)已知三角函数解析式求单调区间.①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin (ωx +φ)或y =A cos (ωx +φ)(其中,ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解. (3)利用三角函数的单调性求值域(或最值).形如y =A sin (ωx +φ)+b 或可化为y =A sin (ωx +φ)+b 的三角函数的值域(或最值)问题常利用三角函数的单调性解决. (五)三角函数的奇偶性、周期性、对称性的处理方法(1)求三角函数的最小正周期,一般先通过恒等变形化为y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx+φ)的形式,再分别应用公式T =2||ωπ,T =2||ωπ,T =||ωπ求解. (2)对于函数y =A sin (ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否为函数的对称轴或对称中心时,可通过检验 f (x 0)的值进行判断.(3)若f (x )=A sin (ωx +φ)为偶函数,则φ=k π+2π(k ∈Z ),同时当x =0时,f (x )取得最大或最小值.若f (x )=A sin (ωx +φ)为奇函数,则φ=k π(k ∈Z ),同时当x =0时,f (x )=0. (六)三角函数的图象及性质与三角恒等变换相结合的综合问题(1)利用三角恒等变换及辅助角公式把三角函数关系式转化成y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的形式.(2)利用公式2π(0)T ωω=>求周期.(3)根据自变量的范围确定ωx +φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为二次函数的最值.(4)根据正、余弦函数的单调区间列不等式求函数y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的单调区间. 【好题训练】1.【2020广西南宁高三调研】如图,直线 2230x y +-=经过函数() sin()f x x ωϕ=+(0>ω,||ϕπ<) 图象的最高点 M 和最低点 N ,则A .2πω=,4πω=B .ωπ=, 0ϕ=C .2πω=,4πϕ=-D .ωπ=, 2ϕπ=【答案】A【解析】由M ,N 分别是图象的最高点和最低点得其纵坐标为1和1-,代入直线2230x y +-=得其横坐标分别为12和52,故1,12M ⎛⎫ ⎪⎝⎭,5,12N ⎛⎫- ⎪⎝⎭,得51 2222T =-=,故24T πω==,故2πω=,M代入()f x 得11sin 22πϕ⎛⎫=⨯+⎪⎝⎭,故12222k ππϕπ⨯+=+,所以24k k Z πϕπ=+∈,因为||ϕπ<,所以4πϕ=,故选A .【名师点睛】本题主要考查利用()sin y A x ωφ=+的图象特征,由函数()sin y A x ωφ=+的部分图象求解析式,理解解析式中,,A ωφ的意义是正确解题的关键,属于中档题.A 为振幅,有其控制最大、最小值,ω控制周期,即2T πω=,通常通过图象我们可得2T 和4T,φ称为初象,通常解出A ,ω之后,通过特殊点代入可得,用到最多的是最高点或最低点.2.【2020福建三明高三三模】函数()|sin |cos 2f x x x =+的值域为 A .91,8⎡⎤⎢⎥⎣⎦B .1,12⎡⎤⎢⎥⎣⎦C .[]0,1D .90,8⎡⎤⎢⎥⎣⎦【答案】D【解析】由题意得22()|sin |12sin 2|sin ||sin |1f x x x x x =+-=-++21992sin 0,488x ⎛⎫⎡⎤=--+∈ ⎪⎢⎥⎝⎭⎣⎦,故选D.【名师点睛】本题考查三角函数的恒等变换及性质,考查二次函数值域,考查运算求解能力,是中档题.3.【2020安徽阜阳高三模拟】已知函数()()2sin 0,0y x ωθωθπ=+><<为偶函数,其图象与直线2y =的交点的横坐标为12,x x ,若12x x -的最小值为π,则 A .=2=2πωθ, B .1==22πωθ, C .1==24πωθ,D .=2=4πωθ,【答案】A【解析】因为函数与直线2y =的交点的横坐标为12,x x ,且12x x -的最小值为π,所以周期T π=,,所以2==2πωπ,又函数为偶函数且0θπ<<,所以=2πθ,故选A. 【名师点睛】本题主要考查了正弦型函数的图象与性质,涉及周期性和奇偶性,属于中档题.4.【2020河南洛阳高三联考】将函数π()2sin 26f x x ⎛⎫=+⎪⎝⎭的图象向右平移π6个单位长度,再把图象上所 有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是A .函数()g x 1B .函数()g x 的最小正周期为πC .函数()g x 的图象关于直线π3x =对称 D .函数()g x 在区间π2,6π3⎡⎤⎢⎥⎣⎦上单调递增 【答案】D【解析】将函数()f x 的图象向右平移π6个单位长度得:πππ()2sin 22sin 2666h x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再把图象上所有点的横坐标伸长到原来的2倍得:()π2sin 6g x x ⎛⎫=- ⎪⎝⎭,()g x 的最大值为2,可知A 错误;()g x 的最小正周期为2π,可知B 错误;π3x =时,ππ66x -=,则π3x =不是()g x 的图象的对称轴,可知C 错误;当2,63ππx ⎡⎤∈⎢⎥⎣⎦时,ππ0,62x ⎡⎤-∈⎢⎥⎣⎦,此时()g x 单调递增,可知D 正确. 【名师点睛】本题考查三角函数图象平移变换和伸缩变换、正弦型函数的单调性、对称性、值域和最小正周期的求解问题,关键是能够明确图象变换的基本原则,同时采用整体对应的方式来判断正弦型函数的性质.求解时,根据平移变换和伸缩变换的原则可求得()g x 的解析式,依次判断()g x 的最值、最小正周期、对称轴和单调性,可求得正确结果.5.【2020湖南邵阳高三质检】已知函数()sin()(0)f x x ωϕω=+>的图象与x 轴的两个相邻交点的距离等于4π,若()6,x R f x f π⎛⎫∀∈≤ ⎪⎝⎭,则正数ϕ的最小值为A .6πB .56π C .3π D .4π 【答案】B【解析】∵函数()sin()(0)f x x ωϕω=+>的图象与x 轴的两个相邻交点的距离等于4π, ∴1224ππω⋅=,∴4ω=,∴()sin(4)f x x ϕ=+, 又∵()6,x R f x f π⎛⎫∀∈≤ ⎪⎝⎭,∴6x π=是()f x 的一条对称轴,∴462k ππϕπ⨯+=+,k Z ∈ ,∴6,k k Z πϕπ=-∈.∵0ϕ>,故令1k =,得56πϕ=为最小值.故选:B. 【名师点睛】本题为考查“()sin()f x A x b ωϕ=++的图像和性质”的基本题型,考查学生对三角函数相关性质的理解记忆,以及运用,为中等偏下难度题型. 6.【2020广东省韶高三调研】已知函数ππ()sin cos 44f x x x ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭,则下列说法错误的是 A .()f x 的图象关于π=4x 对称 B .()f x 的最小正周期为π2C .()f x 在区间π0,4⎡⎤⎢⎥⎣⎦上是减函数D .()f x 的一个对称中心是(π,0)【答案】D【解析】ππ1π1()sin cos sin 2|cos2|44222f x x x x x ⎛⎫⎛⎫⎛⎫=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 由()f x 的图象知,()f x 的图象关于π4x =对称,故A 正确;()f x 的最小正周期为π2,故B 正确; ()f x 在区间π0,4⎡⎤⎢⎥⎣⎦上是减函数,故C 正确;点(π,0)不是()f x 的一个对称中心,故D 错误.选:D【名师点睛】本小题考查三角函数的图象,考查余弦函数的最小正周期、对称轴、对称中心、单调区间等基本知识,考查了运算能力,逻辑推理能力,函数与方程思想,属于中档题.7.【2020江西赣州高三诊断】已知函数()cos()(0)f x x ωϕω=+>的最小正周期为π,且对x ∈R ,()3f x f π⎛⎫⎪⎝⎭恒成立,若函数()y f x =在[0,]a 上单调递减,则a 的最大值是A .π6B .π3C .2π3D .5π6【答案】B【解析】因为函数()()cos f x x ωϕ=+的最小正周期为π,所以22πωπ==,又对任意的x ,都使得()3f x f π⎛⎫≥ ⎪⎝⎭,所以函数()f x 在3x π=上取得最小值,则223k πϕππ+=+,k Z ∈,即2,3k k Z πϕπ=+∈,所以()cos 23f x x π⎛⎫=+ ⎪⎝⎭,令222,3k x k k Z ππππ≤+≤+∈,解得,63k x k k Z ππππ-+≤≤+∈ ,则函数()y f x =在0,3π⎡⎤⎢⎥⎣⎦上单调递减,故a 的最大值是3π.故选B 【名师点睛】本题考查三角函数的图象及其性质,考查运算求解能力.8.【2020广东佛山高三模拟】已知函数()f x 是定义域在R 上的偶函数,且()()11f x f x =+-,当[]0,1x ∈时,()3f x x =,则关于x 的方程()cos f x x π=在15,22⎡⎤-⎢⎥⎣⎦上所有实数解之和为A .1B .3C .6D .7【答案】D【解析】因为()()11f x f x =+-,则()()2f x f x =-,所以()f x 的最小正周期为2,又由()()()111f x f x f x +=-=-得()f x 的图像关于直线1x =对称.令()cos g x x π=,则()g x 的图像如图所示,由图像可得,()y f x =与()cos g x x π=的图像在15,22⎡⎤-⎢⎥⎣⎦有7个交点且实数解的和为2317⨯+=,故选D.【名师点睛】一般地,方程()()f x g x =的解的性质的讨论,可以通过构建新函数()()()F x f x g x =-来讨论,也可以通过考虑()y f x =和()y g x =的图像的交点性质来讨论. 9.【2020湖北襄阳高三模拟】关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误.故答案为:②③.【名师点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.10.【2020河南郑州高三质检】已知函数()1cos 2c 4os f x x b x c =++,若对任意1x ,2x R ∈,都有12()()4f x f x -≤,则b 的最大值为 . 【答案】2 【解析】2111()cos 2cos cos cos 424f x x b x c x b x c =++=++-,令[]cos 1,1t x =∈-,问题等价于211()24g t t bt c =++-, 对任意1t ∀,[]21,1t ∈-,都有()()124g t g t -≤,即max min ()()4g t g t -≤, 欲使满足题意的b 最大,所以考虑0b >,21()2g t t bt c =++对称轴为x b =-,当01b <<时,2max min 11()(1),()()22g t g b c g t g b b c ==++=-=-+m max 22in ()()4111(1)2222g t g t b b b =-=++<≤+,01b ∴<<;当1b ≥时,max min ()()(1)(1)24g t g t g g b -=--=≤,2b ≤,12b <≤,综上,02b <≤,b 的最大值为2,故选:C.【名师点睛】本题考查了三角函数的图象与性质应用问题,也考查了二次函数的性质应用问题,属于较难题.。

数学三角函数的图象与性质试题答案及解析

数学三角函数的图象与性质试题答案及解析

数学三角函数的图象与性质试题答案及解析1.(本题满分14分)已知函数的周期(Ⅰ)若直线与函数的图象在是两个公共点,其横坐标分别为求的值;(Ⅱ)已知三角形的内角的对边分别为且若向量共线,求的值.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)且周期为.的图像关于对称,所以当时,与函数图像的交点关于对称,.(Ⅱ)由(Ⅰ)知,.又.,.2.(本题满分12分)已知,.(I)求函数的单调递增区间;(II)函数的图象可以由函数的图象经过怎样的变换得到?【答案】(I),(II)见解析【解析】(Ⅰ)由已知,4分当,,即,时,函数单调递增,所以函数的单调递增区间为,. 7分(II)函数图象向左平移个单位长度,得到函数的图象;然后使曲线上各点的横坐标缩为原来的倍得到函数的图象;再将曲线上各点的纵坐标伸长为原来的倍得到函数的图象. 12分另法:函数图象上各点的横坐标缩为原来的倍,得到函数的图象;然后使图象向左平移个单位长度,得到函数的图象;再将曲线上各点的纵坐标伸长为原来的倍得到函数的图象. 12分【考点】本题考查平面向量的坐标运算、三角恒等变换、三角函数图象得到变换等基础知识,意在考查考生的数学运算能力、作图视图的能力及应用数学知识解决问题的能力.3.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为A.B.C.D.【答案】B【解析】得到的偶函数解析式为,显然【考点】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,选择合适的值通过诱导公式把转化为余弦函数是考查的最终目的.4.已知函数,下列结论中错误的是()A.的图像关于点中心对称B.的图像关于直线对称C.的最大值为D.既是奇函数,又是周期函数【答案】C【解析】由题意知.令,则.令,得.当时,函数值为0;当时,函数值为;当时,函数值为.∴,即f(x)的最大值为.故选C.【考点】三角函数的性质5.已知,函数在上单调递减.则的取值范围是()A.B.C.D.【答案】A【解析】函数的导数为,要使函数在上单调递减,则有恒成立,则,即,所以,当时,,又,所以有,解得,即,选6.在同一平面直角坐标系中,函数y=cos(+)(x∈[0,2π])的图象和直线y=的交点个数是()A.0B.1C.2D.4【答案】C.【解析】因为y=cos(+)(x∈[0,2π]),即(x∈[0,2π])的图像是半个周期的图像,所以它与直线y=的交点有两个.【考点】三角函数的诱导公式及正弦函数的图像.点评:本小题关键是利用诱导公式把y=cos(+)(x∈[0,2π])转化为(x∈[0,2π])然后画出它的图像从图像上观察它与直线y=的交点个数.7.函数的图象为C,:①图象关于直线对称;②函数在区间内是增函数;③由的图象向右平移个单位长度可以得到图象.以上三个论断中正确论断的个数为A.0B.1C.2D.3【答案】C【解析】函数的图象为C①图象关于直线对称,当k=1时,图象C关于对称;①正确;②x∈时,∈(-,),∴函数在区间内是增函数;②正确;③由的图象向右平移个单位长度可以得到,得不到图象,③错误;∴正确的结论有2个,选C。

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析1.若点在函数的图象上,则的值为 .【答案】.【解析】由题意知,解得,所以.【考点】1.幂函数;2.三角函数求值2.设,将函数在区间内的全部极值点按从小到大的顺序排成数列.(1)求数列的通项公式;(2)设,数列的前项和为,求.【答案】(1);(2).【解析】(1)先根据三角函数的恒等变换化简,得,再根据三角函数的性质找到极值点,利用等差数列的性质写出数列的通项公式;(2)先根据(1)中的结果写出的通项公式,然后写出的解析式,在构造出,利用错位相减法求,计算量比较大,要细心.试题解析:(1),其极值点为, 2分它在内的全部极值点构成以为首项,为公差的等差数列, 4分所以; 6分(2), 8分所以,,相减,得,所以. 12分【考点】1、三角函数的恒等变换及化简;2、三角函数的性质的应用;3、等差数列的通项公式;4、错位相减法求数列的前项和;5、等比数列的前项和.3.若函数的一个对称中心是,则的最小值为()A.B.C.D.【答案】B【解析】由于正切函数的对称中心坐标为,且函数的一个对称中心是,所以,因此有,因为,所以当时,取最小值,故选B.【考点】三角函数的对称性4.在锐角中,,,则的值等于;的取值范围为 .【答案】;【解析】,所以,由正弦定理得,即,所以,为锐角三角形,则,且,即,则有,且有,所以,故有,,所以,即,故的取值范围为.【考点】1.正弦定理;2.三角函数的取值范围5.已知是第二象限角,,则()A.B.C.D.【答案】B【解析】已知是第二象限角,,所以,故选B.【考点】同角三角函数基本关系式.6.在中,角的对边分别为向量,,且.(1)求的值;(2)若,,求角的大小及向量在方向上的投影.【答案】(1);(2),向量在方向上的投影.【解析】(1)由向量数量积坐标形式列式,可求得的值,再利用平方关系可求得的值;(2)先利用正弦定理可求得的值,再利用大边对大角可求得角的大小.由投影的定义可求得向量在方向上的投影.试题解析:(1)由,得, 1分, 2分.. 3分.4分(2)由正弦定理,有, 5分.6分,, 7分. 8分由余弦定理,有, 9分或(舍去). 10分故向量在方向上的投影为 11分. 12分【考点】1、向量数量积、投影;2、三角恒等变换;3、解三角形.7.在中产生区间上均匀随机数的函数为“( )”,在用计算机模拟估计函数的图像、直线和轴在区间上部分围成的图形面积时,随机点与该区域内的点的坐标变换公式为( )A.B.C.D.【答案】D【解析】由于,,而,,所以坐标变换公式为,. 故选D.【考点】均匀随机数的意义与简单应用.8.已知函数,则下列结论正确的是()A.函数的图象关于直线对称B.函数的最大值为C.函数在区间上是增函数D.函数的最小正周期为【答案】C【解析】令得错误;函数的最大值为,故错误;函数的最小正周期为,故错误;当时,,故函数在区间上是增函数,所以选.【考点】考查三角函数的图像及其性质.9.函数,,在上的部分图象如图所示,则的值为.【答案】【解析】根据题意,由于函数,,在上的部分图象可知周期为12,由此可知,A=5,将(5,0)代入可知,5sin(+)=0,可知=,故可知==,故答案为【考点】三角函数的解析式点评:主要是考查了三角函数的解析式的求解和运用,属于基础题。

高中试卷-5.4 三角函数的图象和性质(含答案)

高中试卷-5.4 三角函数的图象和性质(含答案)

5.4 三角函数的图象和性质1. 用“五点法”作三角函数的图象;2. 利用图象变换作三角函数的图象;3. 利用正、余弦函数的图象解三角不等式;4. 利用正弦函数、余弦函数图象判断方程根的个数;5. 求三角函数的周期;6. 三角函数奇偶性的判断;7. 三角函数奇偶性与周期性的综合运用;8. 求三角函数的单调区间;9. 三角函数对称轴、对称中心;10. 与三角函数有关的函数的值域(或最值)的求解问题;11. 求定义域;12.三角函数的图像和性质的综合应用.一、单选题1.(浙北四校2021届高三12月模拟)若函数f (x )=2x ,x ∈R ,则f (x )是( )A . 最小正周期为π为奇函数B . 最小正周期为π为偶函数C . 最小正周期为π2为奇函数 D . 最小正周期为π2为偶函数【答案】A 【解析】∵+2x =-sin2x ,∴f(x )=-sin2x ,可得f (x )是奇函数,最小正周期T=2π2=π故选:A .2.(2021·永州市第四中学高一月考)函数1sin y x =-,[]0,2x p Î的大致图像是( )A .B .C .D .【答案】B 【解析】当0x =时,1y =;当2x p=时,0y =;当πx =时,1y =;当3π2x =时,2y =;当2x p =时,1y =.结合正弦函数的图像可知B 正确.故选B.3.(2021·全国高三课时练习(理))已知函数,则()f x 在[]0,2p 上的零点的个数为( )A .1B .2C .3D .4【答案】C 【解析】由下图可得()f x 在[]0,2p 上的零点的个数为3,故选C.4.(2021·河南濮阳·高一期末(文))下列函数中,为偶函数的是( )A .()21y x =+B .2xy -=C .sin y x =D .()()lg 1lg 1y x x =++-【答案】C 【解析】对于A,函数关于1x =-对称,函数为非奇非偶函数,故A 错误;对于B,函数为减函数,不具备对称性,不是偶函数,故B 错误;对于C,()()()sin sin sin f x x x x f x -=-==-=,则函数()f x 是偶函数,满足条件,故C 正确;对于D,由1010x x +>ìí->î得11x x >-ìí>î得1x >,函数的定义为()1,+¥,定义域关于原点不对称,为非奇非偶函数,故D 错误.故选:C.5.(2021·河南信阳·°的大小属于区间(A .1,02æö-ç÷èøB .æççèC .10,2æöç÷èøD .【答案】B 【解析】cos 2020cos(5360220)cos 220cos(18040)cos 40°=´°+°=°=°+°=-°,因为cos y x =在(0,90)°上递减,且304045°<°<°,所以cos30cos 40cos 45°>°>°,cos 40>°>所以cos 40<-°<所以cos 2020<°<故选:B6.(2021·辽宁大连·高一期末)函数()cos 26f x x p æö=+ç÷èø的图像的一条对称轴方程为()A .6x p=B .512x p =C .23x p =D .23x p =-【答案】B 【解析】函数()cos 26f x x p æö=+ç÷èø令()26x k k pp +=ÎZ ,则,212k x k p p=-ÎZ ,当1k =时,512x p =,故选B.7.(2021·海南枫叶国际学校高一期中)函数()f x =cos()x w j +的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,44k k k Z p p -+ÎB .13(2,2),44k k k Z p p -+ÎC .13(,),44k k k Z-+ÎD .13(2,244k k k Z-+Î【答案】D 【解析】由五点作图知,1+42{53+42pw j p w j ==,解得=w p ,=4p j ,所以()cos()4f x x p p =+,令22,4k x k k Z pp p p p <+<+Î,解得124k -<x <324k +,k Z Î,故单调减区间为(124k -,324k +),k Z Î,故选D.8.(2021·河南林州一中高一月考)函数()21sin 1xf x x eæö=-ç÷+èø的图象的大致形状是( )A .B .C .D .【答案】A【解析】()211sin sin 11x xxe f x x x ee æö-æö=-=ç÷ç÷++èøèø故()()f x f x -=则()f x 是偶函数,排除C 、D ,又当()0,0x f x ®> 故选:A.9.(2021·山东聊城·高一期末)用五点法作函数()sin 0,0,2y A x A p w j w j æö=+>><ç÷èø的图象时,得到如下表格:x6p 23p x w j+02pp32p 2py4-4则A ,w ,j 的值分别为( )A .4,2,3p-B .4,12,3p C .4,2,6pD .4,12,6p -【答案】A 【解析】由表中的最大值为4,最小值为4-,可得4A =,由21362T p p -=,则T p =,22p w p\==,4sin(2)y x j =+Q ,图象过(6p,0),04sin(2)6p j \=´+,\226k pj p ´+=,()k ÎZ ,解得23k pj p =-,||2pj <Q ,\当0k =时,3pj =-.故选:A .10.(2021·镇原中学高一期末)若点,26P p æö-ç÷èø是函数()()sin 0,2f x x m p w j w j æö=++><ç÷èø的图象的一个对称中心,且点P 到该图象的对称轴的距离的最小值为2p,则( )A .()f x 的最小正周期是pB .()f x 的值域为[]0,4C .()f x 的初相3pj =D .()f x 在4,23p p éùêúëû上单调递增【答案】D 【解析】由题意得()62k k Z m pw j p ì-+=Îïíï=î,且函数的最小正周期为422T p p =´=,故21T p w ==.代入()6k k Z p w j p -+=Î,得()6k k Z pj p =+Î,又2p j <,所以6π=j .所以()sin 26f x x p æö=++ç÷èø.故函数()f x 的值域为[]1,3,初相为6p.故A ,B ,C 不正确,当4[,2]3x p p Î时,313[,626x p p p +Î,而sin y x =在313[,26p p 上单调递增,所以()f x 在4,23p p éùêúëû上单调递增,故D 正确.故选:D.二、多选题11.(2021·陕西渭滨·高一期末)函数tan(2)6y x p=-的一个对称中心是( )A .(,0)12pB .2(,0)3pC .(,0)6pD .(,0)3p【答案】AD 【解析】因为tan()01266f p p p æö=-=ç÷èø;24tan()tan 3366f pp p p æö=-==ç÷èø;tan 66f p p æö==ç÷èø;当3x p =时, 2362p p p ´-=.所以(,0)12p 、(,0)3p 是函数tan(2)6y x p=-的对称中心.故选:AD12.(2021·浙江高三专题练习)下列函数中,是奇函数的是( ).A .2sin y x x=B .sin y x =,[0,2]x p ÎC .sin y x =,[,]x p p Î-D .cos y x x=【答案】ACD 【解析】对A ,由()2sin ==y f x x x ,定义域为R ,且()()()()22sin sin f x x x x x f x -=--=-=-,故函数2sin y x x =为奇函数,故A 正确对B ,由函数的定义域为[0,2]x p Î,故该函数为非奇非偶函数,故B 错对C ,()sin y gx x ==,定义域关于原点对称,且()()()sin sin -=-=-=-g x x x g x ,故C 正确对D ,()cos ==y m x x x 的定义域为R ,且()()()()cos cos -=--=-=-m x x x x x m x ,故该函数为奇函数,故D 正确故选:ACD13.(2021·湖南天心·长郡中学高三月考)下图是函数()sin()f x A x w j =+(其中0A >,0>w ,0||x j <<)的部分图象,下列结论正确的是( )A .函数12y f x p æö=-ç÷èø的图象关于顶点对称B .函数()f x 的图象关于点,012p æö-ç÷èø对称C .函数()f x 在区间,34p p éù-êúëû上单调递增D .方程()1f x =在区间23,1212p p éù-êúëû上的所有实根之和为83p 【答案】ABD 【解析】由已知,2A =,2543124T p p p=-=,因此T p =,∴22pw p==,所以()2sin(2)f x x j =+,过点2,23p æö-ç÷èø,因此43232k p pj p +=+,k ÎZ ,又0||j p <<,所以6π=j ,∴()2sin 26f x x p æö=+ç÷èø,对A ,2sin 212y f x x p æö=-=ç÷èø图象关于原点对称,故A 正确;对B ,当12x p=-时,012f p æö-=ç÷èø,故B 正确;对C ,由222262k x k pppp p -£+£+,有36k x k ppp p -££+,k ÎZ 故C 不正确;对D ,当231212x pp -££时,2[0,4]6x pp +Î,所以1y =与函数()y f x =有4个交点令横坐标为1x ,2x ,3x ,4x ,12317822663x x x x p p p+++=´+´=,故D 正确.故选:ABD.14.(2021·江苏海安高级中学高二期末)关于函数()sin cos f x x x =+()x R Î,如下结论中正确的是( ).A .函数()f x 的周期是2pB .函数()f x 的值域是éëC .函数()f x 的图象关于直线x p =对称D .函数()f x 在3,24p pæöç÷èø上递增【答案】ACD 【解析】A .∵()sin cos f x x x =+,∴sin cos cos sin cos sin ()222f x x x x x x x f x p p p æöæöæö+=+++=+-=+=ç÷ç÷ç÷èøèøèø,∴()f x 是周期为2p的周期函数,A 正确,B .当[0,]2x p Î时,()sin cos 4f x x x x p æö=+=+ç÷èø,此时3,444x p p p éù+Îêúëû,,∴()f x Î,又()f x 的周期是2p,∴x ÎR 时,()f x 值域是,B 错;C .∵()()(2)sin 2cos 2sin cos sin cos ()f x x x x x x x f x p p p -=-+-=-+=+=,∴函数()f x 的图象关于直线x p =对称,C 正确;D .由B 知[0,2x pÎ时,()4f x x p æö=+ç÷èø,当[0,]4x p Î时,[,]442x p p p +Î,()f x 单调递增,而()f x 是周期为2p的周期函数,因此()f x 在3,24p p æöç÷èø上的图象可以看作是在0,4p æöç÷èø上的图象向右平移2p 单位得到的,因此仍然递增.D 正确.故选:ACD .三、填空题15.(2021·山东高一期末)函数tan 2xy =的定义域为_____.【答案】{}2,x x k k Z p p ¹+Î【解析】解不等式()22x k k Z pp ¹+Î,可得()2x k k Z p p ¹+Î,因此,函数tan2xy =的定义域为{}2,x x k k Z p p ¹+Î.故答案为:{}2,x x k k Z p p ¹+Î.16.(2021·河南林州一中高一月考)函数224sin 6cos 633y x x x pp æö=+--££ç÷èø的值域________.【答案】16,4éù-êúëû【解析】224sin 6cos 64(1cos )6cos 6y x x x x =+-=-+-22314cos 6cos 24(cos )44x x x =-+-=--+,233x p p -££Q ,1cos 12x \-££ ,故231164(cos )444x -£--+£,故答案为:16,4éù-êúëû17.(2021·全国高考题)关于函数f (x )=1sin sin x x+有如下四个命题:①f(x )的图像关于y 轴对称.②f(x )的图像关于原点对称.③f(x )的图像关于直线x=2p对称.④f(x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】对于命题①,152622f p æö=+=ç÷èø,152622f p æö-=--=-ç÷èø,则66f f p p æöæö-¹ç÷ç÷èøèø,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z p ¹Î,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x æö-=-+=--=-+=-ç÷-èø,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x p p p æöæö-=-+=+ç÷ç÷æöèøèø-ç÷èøQ ,11sin cos 22cos sin 2f x x x x x p p p æöæö+=++=+ç÷ç÷æöèøèø+ç÷èø,则22f x f x p p æöæö-=+ç÷ç÷èøèø,所以,函数()f x 的图象关于直线2x p=对称,命题③正确;对于命题④,当0x p -<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.18.(2021·上海高一课时练习)函数42cos 133æö=+-ç÷èøx y p ,当x =_________时有最小值,最小值是___________.【答案】3,22k k Z pp +Î 3- 【解析】当4cos 133x p æö+=-ç÷èø时,即4233x k p p p +=+,可得3,22x k k Z pp =+Î,此时y 取得最小值;此时,最小值为3-;故答案为:3,22k k Z pp +Î; 3-.19.(2021·浙江高一课时练习)设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____.【答案】121- 【解析】根据题意,得3212A B A B ì-=ïïíï+=-ïî,解得1,12A B ==-.故答案为:1,12-20.(2021·上海高一课时练习)函数sin 2sin =+xy x的最大值是________,最小值是________.【答案】131- 【解析】Q 21si 2sin 2sin n x y x x -==++,Q 221sin 11sin 232sin 23x x x -££Þ£+£Þ-£-£-+,\2111sin 23x -£-£+,\函数sin 2sin =+xy x 的最大值是13;最小值是1-.故答案为:13;1-.21.(2021·上海高一课时练习)若函数2()cos sin (0)=-+>f x x a x b a 的最大值为0,最小值为4-,则实数a =_________,b =________.【答案】2 2- 【解析】Q 2sin si )n (1x f a x b x =--++,令sin (11)t x t =-££,则21(11)y t at b t --++££=-,函数的对称轴为2a t =-,当12a-£-,即2a ³时,110,2,114,2,a b a a b b -+++==ììÞíí--++=-=-îî当102a -<-<,即02a <<时,2((1022a aa b ---×-++=且114a b --++=-,此时方程组无解;\2,2,a b =ìí=-î故答案为:2,2-.五、解答题22.(2021·全国高一课时练习)求下列函数的定义域.(1)y =(2)sin cos tan x xy x+=.【答案】(1){|22,}x k x k k Z p p p ££+Î;(2)|,2k x x k Z p ìü¹Îíýîþ【解析】(1)要使函数有意义,必须使sin 0x ³.由正弦的定义知,sin 0x ³就是角x 的终边与单位圆的交点的纵坐标是非负数.∴角x 的终边应在x 轴或其上方区域,∴22,k x k k Z p p p ££+Î.∴函数y ={|22,}x k x k k Z p p p ££+Î.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ¹.∴,()2x k k Z x k p p pì¹+ïÎíï¹î∴,2kx k Z p ¹Î.∴函数sin cos tan x x y x +=的定义域为|,2k x x k Z p ìü¹Îíýîþ.23.(2021·涡阳县第九中学高一月考)已知函数()()2sin (0,0)f x x w j w j p =+><<最小正周期为p,图象过点4p æçè.(1)求函数()f x 解析式(2)求函数()f x 的单调递增区间.【答案】(1)()2sin(2)4f x x p=+;(2)()3,88k k k Z p p p p éù-++Îêúëû.【解析】(1)由已知得2pp =w,解得2w =.将点4p æçè2sin 24p j æö=´+ç÷èø,可知cos j =,由0j p <<可知4pj =,于是()2sin 24f x x p æö=+ç÷èø.(2)令()222242k x k k Z pppp p -+£+£+Î解得()388k x k k Z p pp p -+££+Î, 于是函数()f x 的单调递增区间为()3,88k k k Z p pp p éù-++Îêúëû.24.(2021·全国高三(文))(1)利用“五点法”画出函数1()sin()26f x y x p==+在长度为一个周期的闭区间的简图.列表:126x p +x y 作图:(2)并说明该函数图象可由sin (R)y x x =Î的图象经过怎么变换得到的.(3)求函数()f x 图象的对称轴方程.【答案】(1)见解析(2) 见解析(3) 22,3x k k Z pp =+Î.【解析】(1)先列表,后描点并画图126x p +02pp32p 2px3p-23p 53π83p 113p y 01-1;(2)把sin y x =的图象上所有的点向左平移6p个单位, 再把所得图象的点的横坐标伸长到原来的2倍(纵坐标不变),得到1sin(26y x p=+的图象,即1sin(26y x p=+的图象;(3)由12,2,2623x kx x k k Z p p pp +=+=+Î,所以函数的对称轴方程是22,3x k k Z pp =+Î.25.(2021·全国高一课时练习)求函数πtan(3)3y x =-的定义域、值域,并判断它的奇偶性和单调性.【答案】定义域为5|,,318k x x x k p p ìüι+ÎíýîþR Z 且,值域为R ,非奇非偶函数,递增区间为5,()183183k k k p p p pæö-++Îç÷èøZ 【解析】tan y t =的定义域为|,2t t k k Z p p ìü¹+Îíýîþ,单调增区间为,,22k k k Z pp p p æö-+Îç÷èø.又tan 33y x p æö=-ç÷èø看成tan ,33y t t x p==-的复合函数,由2t k pp ¹+得5,318k x k Z p p¹+Î,所以所求函数的定义域为5|,318k x x k Z p p ìü¹+Îíýîþ,值域为R ;函数tan 33y x p æö=-ç÷èø的定义域不关于原点对称,因此该函数是非奇非偶函数;令3232k x k pppp p -<-<+,解得5,318318k k x k Z p p p p -<<+Î,即函数tan 33y x p æö=-ç÷èø的单调递增区间为5,,318318k k k Z p p p p æö-+Îç÷èø.26.(2021·陕西省汉中中学(理))已知函数()2sin(1(0)6f x x pw w =-->的周期是p .(1)求()f x 的单调递增区间;(2)求()f x 在[0,2p上的最值及其对应的x 的值.【答案】(1)(),63k k k Z p p p p éù-++Îêúëû;(2)当0x =时,()min 2f x =-;当3x p =时,()max 1f x =.【解析】(1)解:∵2T pp w==,∴2w =,又∵0>w ,∴2w =,∴()2sin 216f x x p æö=--ç÷èø,∵222262k x k pppp p -+£-£+,k Z Î,∴222233k x k p pp p -+££+,k Z Î,∴63k x k ppp p -+££+,k Z Î,∴()f x 的单调递增区间为(),63k k k Z p p p p éù-++Îêúëû(2)解:∵02x p££,∴02x ££p ,∴52666x ppp-£-£,∴1sin 2126x p æö-£-£ç÷èø,∴12sin 226x p æö-£-£ç÷èø,∴22sin 2116x p æö-£--£ç÷èø,当0x =时,()min 2f x =-,当226x ππ-=,即3x p=时,()max 1f x =27.(2021·镇原中学高一期末)已知函数()()()sin 0,0,f x A x A w j w j p =+>><,在一周期内,当12x p=时,y 取得最大值3,当712x p=时,y 取得最小值3-,求(1)函数的解析式;(2)求出函数()f x 的单调递增区间、对称轴方程、对称中心坐标;(3)当,1212x p p éùÎ-êúëû时,求函数()f x 的值域.【答案】(1)()3sin 23f x x p æö=+ç÷èø;(2)增区间为()5,1212k k k Z p p p p éù-+Îêúëû,对称轴方程为212k x p p =+,k Z Î,对称中心为,062k p p æö-+ç÷èø(k Z Î);(3)3,32éùêúëû.【解析】(1)由题设知,3A =,周期7212122T p p p =-=,T p =,由2T p w =得2w =.所以()()3sin 2f x x j =+.又因为12x p=时,y 取得最大值3,即3sin 36j p æö+=ç÷èø,262k p p j p \+=+,解得23k p j p =+,又j p <,所以3pj =,所以()3sin 23f x x p æö=+ç÷èø.(2)由222232k x k pppp p -£+£+,得51212k x k p p p p -££+.所以函数()f x 的单调递增区间为()5,1212k k k Z p p p p éù-+Îêúëû.由232x k ppp +=+,k Z Î,得212k x p p=+,k Z Î.对称轴方程为212k x p p=+,k Z Î..由23x k pp +=,得62πkπx =-+(k Z Î).所以,该函数的对称中心为,062k p p æö-+ç÷èø(k Z Î).(3)因为,1212x p p éùÎ-êúëû,所以2,362x p p p éù+Îêúëû,则1sin 2,132x p æöéù+Îç÷êúèøëû,所以33sin 2323x p æö£+£ç÷èø.所以值域为:3,32éùêúëû.所以函数()f x 的值域为3,32éùêúëû.。

2022高三总复习数学 三角函数的图象与性质(含解析)

2022高三总复习数学  三角函数的图象与性质(含解析)

课时过关检测(二十二) 三角函数的图象与性质A 级——基础达标1.下列函数中,周期为2π的奇函数为( ) A .y =sin x 2cos x2B .y =sin 2xC .y =tan 2xD .y =sin 2x +cos 2x解析:选A y =sin 2x 为偶函数;y =tan 2x 的周期为π2;y =sin 2x +cos 2x 为非奇非偶函数,故B 、C 、D 都不正确,故选A .2.(2021·辽宁辽河模拟)已知函数f (x )=2cos 4x +1,则下列判断错误的是( ) A .f (x )为偶函数B .f (x )的图象关于直线x =π4对称C .f (x )的值域为[-1,3]D .f (x )的图象关于点⎝⎛⎭⎫-π8,0对称 解析:选D ∵f (-x )=1+2cos 4x =f (x ),∴f (x )为偶函数,A 判断正确;令4x =k π(k ∈Z ),得x =k π4(k ∈Z ),当k =1时,x =π4,则f (x )的图象关于直线x =π4对称,B 判断正确;∵2cos 4x ∈[-2,2],∴f (x )的值域为[-1,3],C 判断正确;f (x )的图象关于点⎝⎛⎭⎫-π8,1对称,D 判断错误.故选D.3.已知函数f (x )=2sin ⎝⎛⎭⎫π2x +π3,则f (x )在[-1,1]上的单调递增区间为( ) A .⎣⎡⎦⎤-13,13 B .⎣⎡⎦⎤-1,13 C .[]-1,1D .⎣⎡⎦⎤-π4,π4 解析:选B 令2k π-π2≤π2x +π3≤2k π+π2,k ∈Z ,得x ∈⎣⎡⎦⎤4k -53,4k +13,k ∈Z ,又x ∈[-1,1],所以f (x )在[-1,1]上的单调递增区间为⎣⎡⎦⎤-1,13. 4.若函数f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值为1,则ω=( ) A .14B .13C .12D .32解析:选C 因为0<ω<1,0≤x ≤π3,所以0≤ωx <π3,所以f (x )在区间⎣⎡⎦⎤0,π3上单调递增,则f (x )max =f ⎝⎛⎭⎫π3=2sin ωπ3=1,即sin ωπ3=12.又因为0≤ωx <π3,所以ωπ3=π6,解得ω=12. 5.(多选)(2021·郑州市高三联考)以下函数在区间⎝⎛⎭⎫0,π2上为单调递增函数的有( ) A .y =sin x +cos x B .y =sin x -cos x C .y =sin x cos xD .y =sin xcos x解析:选BD 对于A 选项,y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,当x ∈⎝⎛⎭⎫0,π2时,x +π4∈⎝⎛⎭⎫π4,3π4,所以,函数y =sin x +cos x 在区间⎝⎛⎭⎫0,π2上不单调;对于B 选项,y =sin x -cos x =2sin ⎝⎛⎭⎫x -π4,当x ∈⎝⎛⎭⎫0,π2时,x -π4∈⎝⎛⎭⎫-π4,π4,所以,函数y =sin x -cos x 在区间⎝⎛⎭⎫0,π2上单调递增;对于C 选项,y =sin x cos x =12sin 2x ,当x ∈⎝⎛⎭⎫0,π2时,2x ∈(0,π),所以,函数y =sin x cos x 在区间⎝⎛⎭⎫0,π2上不单调;对于D 选项,当x ∈⎝⎛⎭⎫0,π2时,y =sin xcos x =tan x ,所以,函数y =sin xcos x在区间⎝⎛⎭⎫0,π2上单调递增.故选B 、D. 6.(多选)若函数f (x )=cos x +|cos x |,x ∈R ,则函数f (x )( ) A .最小正周期为π B .是区间[0,1]上的减函数 C .图象关于点(k π,0)(k ∈Z )对称 D .是周期函数且图象有无数条对称轴解析:选BDf (x )=⎩⎨⎧2cos x ,-π2+2k π ≤x ≤π2+2k π,0,π2+2k π ≤x ≤3π2+2k π(k ∈Z ),对应图象如图.由图象知函数f (x )的最小正周期为2π,故A 错误;函数f (x )在⎣⎡⎦⎤0,π2上为减函数,故B 正确;函数f (x )的图象关于直线x =2k π(k ∈Z )对称,故C 错误;函数f (x )的图象有无数条对称轴,且周期是2π,故D 正确.故选B 、D.7.函数y =tan ⎝⎛⎭⎫x 2+π3的图象的对称中心是 .解析:由x 2+π3=k π2(k ∈Z ),得x =k π-2π3(k ∈Z ),即其对称中心为⎝⎛⎭⎫k π-2π3,0,k ∈Z . 答案:⎝⎛⎭⎫k π-2π3,0,k ∈Z 8.(2021·扬州中学高三模拟)已知f (x )=sin ⎣⎡⎦⎤π3(x +1)-3cos ⎣⎡⎦⎤π3(x +1),则f (x )的最小正周期为 ,f (1)+f (2)+…+f (2 020)= .解析:依题意可得f (x )=2sin π3x ,其最小正周期T =6,且f (1)+f (2)+…+f (6)=0,故f (1)+f (2)+…+f (2 020)=f (1)+f (2)+f (3)+f (4)= 3.答案:639.已知函数f (x )=2sin ⎝⎛⎭⎫ωx -π6+1(x ∈R )的图象的一条对称轴为直线x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为 .解析:由函数f (x )=2sin ⎝⎛⎭⎫ωx -π6+1(x ∈R )的图象的一条对称轴为直线x =π,可得ωπ-π6=k π+π2,k ∈Z , ∴ω=k +23,又ω∈(1,2),∴ω=53,∴函数f (x )的最小正周期为2π53=6π5. 答案:6π510.(2021·河北省中原名校联盟联考)若函数f (x )=3sin ⎝⎛⎭⎫x +π10-2在区间⎣⎡⎦⎤π2,a 上单调递减,则实数a 的最大值是 .解析:法一:令2k π+π2≤x +π10≤2k π+3π2,k ∈Z ,即2k π+2π5≤x ≤2k π+7π5,k ∈Z ,所以函数f (x )在区间⎣⎡⎦⎤2π5,7π5上单调递减,所以a 的最大值为7π5.法二:因为π2≤x ≤a ,所以π2+π10≤x +π10≤a +π10,而f (x )在⎣⎡⎦⎤π2,a 上单调递减,所以a +π10≤3π2,即a ≤7π5,所以a 的最大值为7π5. 答案:7π511.已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π. (1)求函数y =f (x )图象的对称轴方程; (2)讨论函数f (x )在⎣⎡⎦⎤0,π2上的单调性. 解:(1)∵f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4,且T =π,∴ω=2.于是,f (x )=2sin ⎝⎛⎭⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ),即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎡⎦⎤0,π2,所以令k =0,得函数f (x )在⎣⎡⎦⎤0,π2上的单调递增区间为⎣⎡⎦⎤0,3π8;同理,其单调递减区间为⎣⎡⎦⎤3π8,π2.12.(2021·山东泰安模拟)在①函数f ⎝⎛⎭⎫x -π3为奇函数;②当x =π3时,f (x )=3;③2π3是函数f (x )的一个零点这三个条件中任选一个,补充在下面问题中,并解答.已知函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2,f (x )的图象相邻两条对称轴间的距离为π, . (1)求函数f (x )的解析式;(2)求函数f (x )在[0,2π]上的单调递增区间.注:如果选择多个条件分别解答,按第一个解答计分.解:∵函数f (x )的图象相邻对称轴间的距离为π,∴T =2πω=2π,∴ω=1,∴f (x )=2sin(x +φ).选条件①.∵f ⎝⎛⎭⎫x -π3=2sin ⎝⎛⎭⎫x +φ-π3为奇函数, ∴φ-π3=k π,k ∈Z ,解得φ=π3+k π,k ∈Z .(1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ⎝⎛⎭⎫x +π3. (2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z ,得-56π+2k π≤x ≤π6+2k π,k ∈Z ,∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6,∴函数f (x )在[0,2π]上的单调递增区间为⎣⎡⎦⎤0,π6,⎣⎡⎦⎤76π,2π. 选条件②.f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫π3+φ=3,∴sin ⎝⎛⎭⎫π3+φ=32, ∴φ=2k π,k ∈Z 或φ=π3+2k π,k ∈Z ,(1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ⎝⎛⎭⎫x +π3. (2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z ,得-56π+2k π≤x ≤π6+2k π,k ∈Z ,∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6,∴函数f (x )在[0,2π]上的单调递增区间为⎣⎡⎦⎤0,π6,⎣⎡⎦⎤76π,2π. 选条件③.∵23π是函数f (x )的一个零点,∴f ⎝⎛⎭⎫23π=2sin ⎝⎛⎭⎫23π+φ=0,∴φ=k π-2π3,k ∈Z . (1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ⎝⎛⎭⎫x +π3. (2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z ,得-56π+2k π≤x ≤π6+2k π,k ∈Z ,∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6,∴函数f (x )在[0,2π]上的单调递增区间为⎣⎡⎦⎤0,π6,⎣⎡⎦⎤76π,2π. B 级——综合应用13.(多选)(2021·全国统一考试模拟演练)设函数f (x )=cos 2x2+sin x cos x,则( )A .f (x )=f (x +π)B .f (x )的最大值为12C .f (x )在⎝⎛⎭⎫-π4,0单调递增 D .f (x )在⎝⎛⎭⎫0,π4单调递减 解析:选AD f (x +π)=cos 2(x +π)2+sin (x +π)cos (x +π)=cos 2x2+sin x cos x=f (x ),故A 正确;∵f (x )=cos 2x 2+sin x cos x =2cos 2x4+sin 2x,∴f ′(x )=(2cos 2x )′(4+sin 2x )-2cos 2x (4+sin 2x )′(4+sin 2x )2=-4(1+4sin 2x )(4+sin 2x )2,令f ′(x )=0,解得sin 2x =-14,cos 2x =±154.所以f (x )max =215>12,故B 错误; 当x ∈⎝⎛⎭⎫-π4,0时,2x ∈⎝⎛⎭⎫-π2,0, 此时-4sin 2x -1∈(-1,3),∴f ′(x )有正有负,f (x )在⎝⎛⎭⎫-π4,0上不单调,故C 错误; 当x ∈⎝⎛⎭⎫0,π4时,2x ∈⎝⎛⎭⎫0,π2,此时-4sin 2x -1∈(-5,-1),f ′(x )<0恒成立,f (x )在⎝⎛⎭⎫0,π4单调递减,故D 正确. 14.(2021·石家庄市质量检测)已知函数f (x )=sin ωx +3cos ωx (ω>0),x 1,x 2为函数图象与x 轴的两个交点的横坐标,若|x 1-x 2|的最小值为π2,则( )A .f (x )在⎝⎛⎭⎫-5π6,π6上单调递增 B .f (x )在⎝⎛⎭⎫-2π3,π3上单调递减 C .f (x )在⎝⎛⎭⎫-5π12,π12上单调递增D .f (x )在⎝⎛⎭⎫π6,2π3上单调递减解析:选C 因为f (x )=2sin ⎝⎛⎭⎫ωx +π3,且|x 1-x 2|的最小值为π2,所以f (x )的最小正周期为π,即2πω=π,所以ω=2,所以f (x )=2sin ⎝⎛⎭⎫2x +π3,所以f (x )在区间⎝⎛⎭⎫-5π12,π12上单调递增,故选C .15.已知函数f (x )=sin 2x -3cos 2x ,x ∈R . (1)求f (x )的最小正周期;(2)若h (x )=f (x +t )的图象关于点⎝⎛⎭⎫-π6,0对称,且t ∈(0,π),求t 的值; (3)当x ∈⎣⎡⎦⎤π4,π2时,不等式|f (x )-m |<3恒成立,求实数m 的取值范围. 解:(1)因为f (x )=sin 2x -3cos 2x =2⎝⎛⎭⎫12sin 2x -32cos 2x=2sin ⎝⎛⎭⎫2x -π3,故f (x )的最小正周期为T =2π2=π.(2)由(1)知h (x )=2sin ⎝⎛⎭⎫2x +2t -π3. 令2×⎝⎛⎭⎫-π6+2t -π3=k π(k ∈Z ), 得t =k π2+π3(k ∈Z ),又t ∈(0,π),故t =π3或t =5π6.(3)当x ∈⎣⎡⎦⎤π4,π2时,2x -π3∈⎣⎡⎦⎤π6,2π3, 所以f (x )∈[1,2].又|f (x )-m |<3,即f (x )-3<m <f (x )+3,所以2-3<m <1+3,即-1<m <4.故实数m 的取值范围是(-1,4).C 级——迁移创新16.(2021·全国卷联考节选)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫其中A >0,ω>0,|φ|≤π2的图象离原点最近的对称轴为直线x =x 0,若满足|x 0|≤π6,则称f (x )为“近轴函数”.若函数y=2sin(2x -φ)是“近轴函数”,求φ的取值范围.解:函数y =2sin 2x 的图象离原点最近的对称轴是直线x =±π4,函数y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -φ2满足|x 0|≤π6,当φ>0时,π4-π6≤φ2≤π4+π6,即π6≤φ≤5π6,又|φ|≤π2,∴π6≤φ≤π2;当φ<0时,-π6-π4≤φ2≤π6-π4,即-5π6≤φ≤-π6,又|φ|≤π2, ∴-π2≤φ≤-π6.综上所述,φ的取值范围是⎣⎡⎦⎤-π2,-π6∪⎣⎡⎦⎤π6,π2.。

专题3 三角函数的图象与性质【高考文科数学】含答案

专题3 三角函数的图象与性质【高考文科数学】含答案

第一讲 三角函数的图象与性质1.任意角的三角函数(1)设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx.(2)各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 2 函数 性质 y =sin xy =cos xy =tan x定义域RR{x |x ≠k π+π2,k ∈Z}图象值域[-1,1] [-1,1]R对称性对称轴:x =k π+π2(k ∈Z);对称中心:(k π,0)(k ∈Z)对称轴:x = k π(k ∈Z);对称中心: (k π+π2,0)(k ∈Z)对称中心:⎝⎛⎭⎪⎫k π2,0(k ∈Z)周期2π2ππ单调性单调增区间[2k π-π2,2k π+π2](k ∈Z); 单调减区间[2k π+π2,2k π+3π2] (k ∈Z) 单调增区间 [2k π-π,2k π]( k ∈Z);单调增区间 (k π-π2,k π+π2)(k ∈Z)奇偶性 奇 偶 奇3. y =A sin(ωx +φ)的图象及性质(1)五点作图法:五点的取法:设X =ωx +φ,X 取0,π2,π,3π2,2π时求相应的x值、y 值,再描点作图.(2)给出图象求函数表达式的题目,比较难求的是φ,一般是从“五点法”中的第一点(-φω,0)作为突破口. (3)图象变换y =sin x ―――――――――――――→向左φ>0或向右φ<0平移|φ|个单位y =sin(x +φ)――――――――――――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ).1. (2013·江西)函数y =sin 2x +23sin 2x 的最小正周期T 为________.答案 π解析 y =sin 2x +3(1-cos 2x )=2sin ⎝ ⎛⎭⎪⎫2x -π3+3, ∴T =π.2. (2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( ) A.3π4 B.π4C .0D .-π4答案 B解析 把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin 2⎝ ⎛⎭⎪⎫x +φ2+π8=sin ⎝⎛⎭⎪⎫2x +φ+π4为偶函数,则φ=π4.3. (2013·四川)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3答案 A解析 34T =5π12-⎝ ⎛⎭⎪⎫-π3,T =π,∴ω=2,∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,k ∈Z .又φ∈⎝ ⎛⎭⎪⎫-π2,π2,∴φ=-π3,选A. 4. (2012·课标全国)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34C.⎝ ⎛⎦⎥⎤0,12D .(0,2]答案 A解析 取ω=54,f (x )=sin ⎝ ⎛⎭⎪⎫54x +π4,其减区间为⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π⊆⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,排除B ,C. 取ω=2,f (x )=sin ⎝⎛⎭⎪⎫2x +π4, 其减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z , 显然⎝ ⎛⎭⎪⎫π2,π⃘⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,排除D. 5. (2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 答案 C解析 由∀x ∈R ,有f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6知,当x =π6时f (x )取最值,∴f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫π3+φ=±1,∴π3+φ=±π2+2k π(k ∈Z ), ∴φ=π6+2k π或φ=-5π6+2k π(k ∈Z ),又∵f ⎝ ⎛⎭⎪⎫π2>f (π),∴sin(π+φ)>sin(2π+φ), ∴-sin φ>sin φ,∴sin φ<0.∴φ取-5π6+2k π(k ∈Z ).不妨取φ=-5π6,则f (x )=sin ⎝⎛⎭⎪⎫2x -5π6. 令-π2+2k π≤2x -5π6≤π2+2k π(k ∈Z ),∴π3+2k π≤2x ≤4π3+2k π(k ∈Z ), ∴π6+k π≤x ≤2π3+k π(k ∈Z ). ∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ).题型一 三角函数的概念问题例1 如图,以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P 、Q ,已知点P 的坐标为(-35,45).(1)求sin 2α+cos 2α+11+tan α的值;(2)若OP →·OQ →=0,求sin(α+β).审题破题 (1)先根据三角函数的定义求sin α,cos α,代入求三角函数式子的值;(2)根据OP →⊥OQ →和β范围可求sin β,cos β.解 (1)由三角函数定义得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos αsin α+cos αsin α+cos αcos α=2cos 2α=2×(-35)2=1825.(2)∵OP →·OQ →=0,∴α-β=π2,∴β=α-π2,∴sin β=sin(α-π2)=-cos α=35,cos β=cos(α-π2)=sin α=45.∴sin(α+β)=sin αcos β+cos αsin β=45×45+(-35)×35=725. 反思归纳 (1)三角函数的定义是求三角函数值的基本依据,如果已知角终边上的点,则利用三角函数的定义,可求该角的正弦、余弦、正切值.(2)同角三角函数间的关系、诱导公式在三角函数式的化简中起着举足轻重的作用,应注意正确选择公式、注意公式应用的条件.变式训练1 (1)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x上,则cos 2θ等于( )A .-45B .-35C.35D.45答案 B解析 依题意得tan θ=2,∴cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.(2)已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P (-4,3),则cos ⎝ ⎛⎭⎪⎫π2+αsin -π-αcos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α的值为________.答案 -34解析 原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义,得tan α=y x =-34,所以原式=-34.题型二 函数y =A sin(ωx +φ)的图象及应用 例2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.(1)求函数的解析式;(2)设0<x <π,且方程f (x )=m 有两个不同的实数根,求实数m 的取值范围以及这两个根的和.审题破题 (1)先由函数图象确定A ,ω,再代入点⎝ ⎛⎭⎪⎫π6,2求φ;(2)利用转化思想先把方程问题转化为函数问题,再利用数形结合法求解.解 (1)由图象知:A =2,34T =11π12-π6=3π4,则T =π,所以ω=2.又图象过点⎝ ⎛⎭⎪⎫π6,2, 所以2×π6+φ=π2,即φ=π6.所以所求的函数的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2)在同一坐标系中画出y =2sin ⎝ ⎛⎭⎪⎫2x +π6和y =m (m ∈R )的图象,如图所示,由图可知,-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,故m 的取值范围为-2<m <1或1<m <2.当-2<m <1时,两根之和为4π3; 当1<m <2时,两根之和为π3.反思归纳 (1)已知图象求函数y =A sin(ωx +φ) (A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最大、最小值求出A ,由周期确定ω,由适合解析式的点的坐标来确定φ(代点时尽量选最值点,或者搞清点的对应关系);(2)利用数形结合思想从函数图象上可以清楚地看出当-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,利用图象的对称性便可求出两根之和. 变式训练2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π)的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫12x +π4B .f (x )=2sin ⎝ ⎛⎭⎪⎫12x +3π4C .f (x )=2sin ⎝ ⎛⎭⎪⎫12x -π4D .f (x )=2sin ⎝ ⎛⎭⎪⎫12x -3π4答案 B解析 由图象可知A =2,T 2=3π2-⎝ ⎛⎭⎪⎫-π2=2π,即T =4π.又T =2πω=4π,所以ω=12,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫12x +φ.又f ⎝ ⎛⎭⎪⎫-π2=2sin ⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫-π2+φ=2,即sin ⎝ ⎛⎭⎪⎫-π4+φ=1,即-π4+φ=π2+2k π,k ∈Z ,即φ=3π4+2k π,k ∈Z ,因为-π<φ<π,所以φ=3π4,所以函数为f (x )=2sin ⎝ ⎛⎭⎪⎫12x +3π4,选B.题型三 三角函数的性质例3 已知函数f (x )=4sin ωx cos ⎝⎛⎭⎪⎫ωx +π3+3(ω>0)的最小正周期为π.(1)求f (x )的解析式;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π6上的最大值和最小值及取得最值时x 的值. 审题破题 利用和差公式、倍角公式将f (x )化为A sin(ωx +φ)的形式,然后求三角函数的最值.解 (1)f (x )=4sin ωx ⎝ ⎛⎭⎪⎫cos ωx cos π3-sin ωx sin π3+ 3=2sin ωx cos ωx -23sin 2ωx + 3=sin 2ωx +3cos 2ωx=2sin ⎝⎛⎭⎪⎫2ωx +π3. ∵T =2π2ω=π,∴ω=1.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3. (2)∵-π4≤x ≤π6,∴-π6≤2x +π3≤2π3,∴-12≤sin ⎝⎛⎭⎪⎫2x +π3≤1,即-1≤f (x )≤2, 当2x +π3=-π6,即x =-π4时,f (x )min =-1,当2x +π3=π2,即x =π12时,f (x )max =2.反思归纳 (1)求三角函数的周期、单调区间、最值及判断三角函数的奇偶性,往往是在定义域内,先化简三角函数式,尽量化为y =A sin(ωx +φ)+B 的形式,然后再求解. (2)对于y =a sin ωx +b cos ωx 型的三角函数,要通过引入辅助角化为y =a 2+b 2sin(ωx +φ)(cos φ=a a 2+b2,sin φ=ba 2+b 2)的形式来求.(3)讨论y =A sin(ωx +φ)+B ,可以利用换元思想设t =ωx +φ,转化成函数y =A sint +B 结合函数的图象解决.变式训练3 (1)函数y =2sin ⎝⎛⎭⎪⎫π6-2x (x ∈[0,π])为增函数的区间是( ) A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤π12,7π12C.⎣⎢⎡⎦⎥⎤π3,5π6D.⎣⎢⎡⎦⎥⎤5π6,π 答案 C解析 因为y =2sin ⎝ ⎛⎭⎪⎫π6-2x =-2sin ⎝ ⎛⎭⎪⎫2x -π6,由π2+2k π≤2x -π6≤3π2+2k π,k∈Z ,解得π3+k π≤x ≤5π6+k π,k ∈Z ,即函数的增区间为⎣⎢⎡⎦⎥⎤π3+k π,5π6+k π(k ∈Z ),所以当k =0时,增区间为⎣⎢⎡⎦⎥⎤π3,5π6,选C.(2)设函数f (x )=3cos(2x +φ)+sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2,且其图象关于直线x =0对称,则( )A .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为增函数B .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为减函数C .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为增函数D .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为减函数答案 B解析 f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+φ,其图象关于直线x =0对称,∴f (0)=±2,∴π3+φ=k π+π2,k ∈Z .∴φ=k π+π6,又|φ|<π2,∴φ=π6.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x . ∴y =f (x )的最小正周期为π,且在⎝ ⎛⎭⎪⎫0,π2上为减函数.题型四 三角函数的应用例4 已知函数f (x )=sin ωx ·cos ωx +3cos 2ωx -32(ω>0),直线x =x 1,x =x 2是y =f (x )图象的任意两条对称轴,且|x 1-x 2|的最小值为π4.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围.审题破题 (1)首先化简f (x )再根据题意求出最小正周期,然后可求ω,即可得f (x )的表达式;(2)根据图象平移求出g (x ),然后利用换元法并结合图形求解.解 (1)f (x )=12sin 2ωx +31+cos 2ωx 2-32=12sin 2ωx +32cos 2ωx =sin ⎝⎛⎭⎪⎫2ωx +π3, 由题意知,最小正周期T =2×π4=π2,T =2π2ω=πω=π2,所以ω=2, 所以f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎪⎫4x -π6的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫2x -π6的图象. 所以g (x )=sin ⎝⎛⎭⎪⎫2x -π6. 令2x -π6=t ,∵0≤x ≤π2,∴-π6≤t ≤5π6.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数g (x )=sin t 与y =-k 在区间⎣⎢⎡⎦⎥⎤-π6,5π6上有且只有一个交点.如图,由正弦函数的图象可知-12≤-k <12或-k =1.所以-12<k ≤12或k =-1.反思归纳 确定函数y =g (x )的解析式后,本题解法中利用两个数学思想:整体思想(设t =2x -π6,将2x -π6视为一个整体).数形结合思想,将问题转化为g (x )=sin t 与y=-k 在⎣⎢⎡⎦⎥⎤-π6,5π6上只有一个交点的实数k 的取值范围.互动探究 在例4(2)中条件不变的情况下,求函数y =g (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调区间.解 g (x )=sin ⎝⎛⎭⎪⎫2x -π6.令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z .又0≤x ≤π2,∴函数y =g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤0,π3.令2k π+π2≤2x -π6≤2k π+32π,k ∈Z ,得k π+π3≤x ≤k π+56π,k ∈Z .又0≤x ≤π2,∴函数g (x )的单调递减区间是⎣⎢⎡⎦⎥⎤π3,π2. 变式训练4 (2013·天津一中高三月考)函数f (x )=sin ⎝⎛⎭⎪⎫2x -π3(x ∈R )的图象为C ,以下结论正确的是________.(写出所有正确结论的编号)①图象C 关于直线x =11π12对称;②图象C 关于点⎝ ⎛⎭⎪⎫2π3,0对称;③函数f (x )在区间⎝ ⎛⎭⎪⎫-π12,5π12内是增函数; ④由y =sin 2x 的图象向右平移π3个单位长度可以得到图象C .答案 ①②③解析 当x =11π12时,f ⎝ ⎛⎭⎪⎫11π12=sin ⎝ ⎛⎭⎪⎫2×11π12-π3=sin ⎝ ⎛⎭⎪⎫11π6-π3=sin 3π2=-1,为最小值,所以图象C 关于直线x =11π12对称,所以①正确;当x =2π3时,f ⎝ ⎛⎭⎪⎫2π3=sin ⎝ ⎛⎭⎪⎫2×2π3-π3=sin π=0,图象C 关于点⎝ ⎛⎭⎪⎫2π3,0对称,所以②正确;当-π12≤x≤5π12时,-π2≤2x -π3≤π2,此时函数单调递增,所以③正确;y =sin 2x 的图象向右平移π3个单位长度,得到y =sin 2⎝ ⎛⎭⎪⎫x -π3=sin ⎝ ⎛⎭⎪⎫2x -2π3,所以④错误,所以正确的是①②③.典例 (12分)已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),其图象过点⎝ ⎛⎭⎪⎫π6,12.(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.规范解答解 (1)f (x )=12sin 2x sin φ+cos 2x +12cos φ-12cos φ=12(sin 2x sin φ+cos 2x cos φ) =12cos(2x -φ). [3分]又∵f (x )过点⎝ ⎛⎭⎪⎫π6,12, ∴12=12cos ⎝ ⎛⎭⎪⎫π3-φ,cos(π3-φ)=1. 由0<φ<π知φ=π3.[5分](2)由(1)知f (x )=12cos ⎝⎛⎭⎪⎫2x -π3.[7分]将f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,得到g (x )=12cos(4x -π3).[9分]∵0≤x ≤π4,∴-π3≤4x -π3≤2π3.当4x -π3=0,即x =π12时,g (x )有最大值12;当4x -π3=2π3,即x =π4时,g (x )有最小值-14.[12分]评分细则 (1)将点⎝ ⎛⎭⎪⎫π6,12代入解析式给1分;从cos ⎝ ⎛⎭⎪⎫π3-φ=1,由0<φ<π,得φ=π3得1分;(2)4x -π3范围计算正确,没有写出x 取何值时g (x )有最值不扣分. 阅卷老师提醒 (1)解决此类问题时,一般先将函数解析式化为f (x )=A sin(ωx +φ)或f (x )=A cos(ωx +φ)的形式,然后在此基础上把ωx +φ看作一个整体,结合题目要求进行求解.(2)解决图象变换问题时,要分清变换的对象及平移(伸缩)的大小,避免出现错误.1. (2013·江苏)函数y =3sin ⎝⎛⎭⎪⎫2x +π4的最小正周期为 ________. 答案 π解析 ω=2,T =2π|ω|=π.2. (2013·湖北)将函数y =3cos x +sin x (x ∈R ) 的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π6答案 B解析 y =3cos x +sin x =2sin(x +π3)向左平移m 个单位长度后得到y =2sin(x +π3+m ),它关于y 轴对称可得sin(π3+m )=±1,∴π3+m =k π+π2,k ∈Z , ∴m =k π+π6,k ∈Z ,∵m >0,∴m 的最小值为π6.3. 若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α等于( )A .-34B.34C.43D .-43答案 D 解析 cos α=39+y 2=35,∴y 2=16. ∵y <0,∴y =-4,∴tan α=-43.4. 设函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R ),则f (x )( )A .在区间⎣⎢⎡⎦⎥⎤-π,-π2上是减函数 B .在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数C .在区间⎣⎢⎡⎦⎥⎤π8,π4上是增函数D .在区间⎣⎢⎡⎦⎥⎤π3,5π6上是减函数答案 B解析 当2π3≤x ≤7π6时,2π3+π3≤x +π3≤7π6+π3,即π≤x +π3≤3π2,此时函数y=sin ⎝ ⎛⎭⎪⎫x +π3单调递减,所以y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数,选B.5. 已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ等于( )A.π4 B.π3C.π2D.3π4答案 A解析 由题意得周期T =2⎝⎛⎭⎪⎫5π4-π4=2π,∴2π=2πω,即ω=1,∴f (x )=sin(x +φ),∴f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+φ=±1, ∵0<φ<π,∴π4<φ+π4<5π4,∴φ+π4=π2,∴φ=π4.6. 函数f (x )=A sin(ωx +φ)(其中A >0,|φ|<π2)的图象如图所示,为了得到g (x )=sin3x 的图象,则只要将f (x )的图象( )A .向右平移π4个单位长度B .向右平移π12个单位长度C .向左平移π4个单位长度D .向左平移π12个单位长度答案 B解析 由题意,得函数f (x )的周期T =4⎝⎛⎭⎪⎫5π12-π4=2π3,ω=3,所以sin ⎝ ⎛⎭⎪⎫3×5π12+φ=-1,又|φ|<π2,所以φ=π4,所以f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4=sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x +π12,所以将函数f (x )的图象向右平移π12个单位长度可以得到函数g (x )=sin 3x 的图象.专题限时规范训练一、选择题1. 已知sin θ=k -1,cos θ=4-3k ,且θ是第二象限角,则k 应满足的条件是( )A .k >43B .k =1C .k =85D .k >1答案 C解析 根据已知(k -1)2+(4-3k )2=1,即5k 2-13k +8=0,解得k =1或k =85,由于sin θ>0,cos θ<0,所以k >43,可得k =85.2. 设tan α=33,π<α<3π2,则sin α-cos α的值为( )A .-12+32B .-12-32C.12+32D.12-32答案 A解析 由tan α=33,π<α<3π2,不妨在角α的终边上取点P (-3,-3),则|OP |=23,于是由定义可得sin α=-12,cos α=-32,所以sin α-cos α=-12+32,故选A. 3. 函数y =log 2sin x 在x ∈⎣⎢⎡⎦⎥⎤π6,π4时的值域为( ) A .[-1,0]B.⎣⎢⎡⎦⎥⎤-1,-12 C .[0,1)D .[0,1]答案 B解析 由x ∈⎣⎢⎡⎦⎥⎤π6,π4,得12≤sin x ≤22, ∴-1≤log 2sin x ≤-12.4. 设函数y =3sin(2x +φ) (0<φ<π,x ∈R )的图象关于直线x =π3对称,则φ等于( ) A.π6B.π3C.2π3D.5π6答案 D解析 由题意知,2×π3+φ=k π+π2(k ∈Z ),所以φ=k π-π6(k ∈Z ),又0<φ<π,故当k =1时,φ=5π6,选D.5. 将函数f (x )=-4sin ⎝⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,再将图象上每一点的横坐标缩短到原来的12倍,所得图象关于直线x =π4对称,则φ的最小正值为( )A.π8 B.38π C.34π D.π2答案 B解析 依题意可得y =f (x )⇒y =-4sin[2(x -φ)+π4]=-4sin[2x -(2φ-π4)]⇒y =g (x )=-4sin[4x -(2φ-π4)],因为所得图象关于直线x =π4对称,所以g ⎝ ⎛⎭⎪⎫π4=±4, 得φ=k 2π+38π(k ∈Z ),故选B.6. 已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)等于( )A .- 3B .-1 C. 3D .1答案 C解析 由图形知,T =πω=2(3π8-π8)=π2,ω=2.由2×3π8+φ=k π,k ∈Z ,得φ=k π-3π4,k ∈Z .又∵|φ|<π2,∴φ=π4.由A tan(2×0+π4)=1,知A =1,∴f (x )=tan(2x +π4),∴f (π24)=tan(2×π24+π4)=tan π3= 3.7. (2012·课标全国)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13B .3C .6D .9答案 C解析 由题意可知,nT =π3(n ∈N *),∴n ·2πω=π3(n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6.8. 已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( )A .[k π-π12,k π+5π12],k ∈ZB .[k π+5π12,k π+11π12],k ∈ZC .[k π-π3,k π+π6],k ∈ZD .[k π+π6,k π+2π3],k ∈Z答案 C解析 f (x )=3sin ωx +cos ωx =2sin (ωx +π6)(ω>0).∵f (x )的图象与直线y =2的两个相邻交点的距离等于π,恰好是f (x )的一个周期,∴2πω=π,ω=2.∴f (x )=2sin (2x +π6).故其单调增区间应满足2k π-π2≤2x +π6≤2k π+π2(k ∈Z ).解得k π-π3≤x ≤k π+π6(k ∈Z ).二、填空题9. 函数f (x )=3cos 25x +sin 25x 的图象相邻的两条对称轴之间的距离是________.答案 5π2解析 f (x )=3cos 25x +sin 25x =2sin(25x +π3),∴周期为T =2π25=5π,则相邻的对称轴间的距离为T 2=5π2.10.将函数y =sin(ωx +φ)(ω>0,|φ|<π2)的图象向左平移π3个单位,所得曲线的一部分如图所示,则ω、φ的值分别为________.答案 2、-π3解析 由图可知T 4=7π12-π3=π4,∴T =π,∴ω=2.把(7π12,-1)代入y =sin (2(x +π3)+φ)得sin (7π6+2π3+φ)=-1,∴11π6+φ=2k π+3π2(k ∈Z ),φ=2k π-π3(k ∈Z ),∵|φ|<π2,∴φ=-π3.11.已知函数f (x )=3sin ⎝⎛⎭⎪⎫ωx -π6 (ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是__________.答案 ⎣⎢⎡⎦⎥⎤-32,3 解析 ∵f (x )和g (x )的对称轴完全相同,∴二者的周期相同,即ω=2,f (x )=3sin ⎝⎛⎭⎪⎫2x -π6. ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴f (x )∈⎣⎢⎡⎦⎥⎤-32,3. 12.关于函数f (x )=sin 2x -cos 2x 有下列命题:①y =f (x )的周期为π;②x =π4是y =f (x )的一条对称轴;③⎝ ⎛⎭⎪⎫π8,0是y =f (x )的一个对称中心;④将y =f (x )的图象向左平移π4个单位,可得到y =2sin 2x 的图象,其中正确命题的序号是______(把你认为正确命题的序号都写上). 答案 ①③解析 由f (x )=sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π4, 得T =2π2=π,故①对;f ⎝ ⎛⎭⎪⎫π4=2sin π4≠±2,故②错; f ⎝ ⎛⎭⎪⎫π8=2sin 0=0,故③对; y =f (x )的图象向左平移π4个单位,得y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4, 故④错.故填①③. 三、解答题13.(2013·湖南)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos ⎝⎛⎭⎪⎫x -π3,g (x )=2sin 2x 2.(1)若α是第一象限角,且f (α)=335,求g (α)的值;(2)求使f (x )≥g (x )成立的x 的取值集合.解 f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos ⎝ ⎛⎭⎪⎫x -π3=32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335,得sin α=35,又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1,于是sin ⎝⎛⎭⎪⎫x +π6≥12.从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.14.已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0,在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围.解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin ⎝⎛⎭⎪⎫2ωx +π6. 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin ⎝⎛⎭⎪⎫4x +π6. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎪⎫4x -π3的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫2x -π3的图象. 所以g (x )=sin ⎝⎛⎭⎪⎫2x -π3. 因为0≤x ≤π2,所以-π3≤2x -π3≤2π3.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数y =g (x )与y =-k 在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个交点, 由正弦函数的图象可知-32≤-k <32或-k =1. 所以-32<k ≤32或k =-1.。

文科数学高考真题分类汇编 三角函数的图象与性质答案

文科数学高考真题分类汇编 三角函数的图象与性质答案

将 y = f (x)的图像上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),所得图像对应的
函数为 g (x ) ,则 g( x) = Asin x .

g
4
=
2
,则 g
4
=
Asin
4
=
2A= 2
2 ,即 A = 2 ,
所以
f
(x) = 2sin 2x ,则
f
3 8
=
2
sin
2
31.A【解析】 = 2 (x + ) [5 , 9 ] 不合题意 排除 D. 4 44
= 1 (x + ) [3 , 5 ] 合题意 排除 B,C. 4 44
另: (

)
2, (x +
) [
+
, +
]
[
, 3
]
2
42 4
4 22
得: + , + 3 1 5
2 42
42 2
4
32.B【解析】由于
4
4
2

=
k
+ 3
,所以
3
的最小正值是为

28
8
21.D【解析】函数 y
=
sin
x
的图象向左平移
个单位,得到函数
f
(x) =
sin( x +
)=
2
2
cos x 的图象, f (x) = cos x 为偶函数,排除 A; f (x) = cos x 的周期为2 ,排除 B;
因为 f ( ) = cos = 0 ,所以 f (x) = cos x 不关于直线 x = 对称,排除 C;故选 D.

高三数学三角函数的图象与性质试题答案及解析

高三数学三角函数的图象与性质试题答案及解析

高三数学三角函数的图象与性质试题答案及解析1.已知函数(1)求函数的最小正周期和值域;(2)若,求的值.【答案】(1)最小正周期为,值域为;(2).【解析】(Ⅰ)将化为或的形式,即可求得f(x)的最小正周期和值域;(Ⅱ)由可求得cos(α+)=,由余弦函数的二倍角公式与诱导公式可求得sin2α的值.试题解析:(1)由已知,4分所以的最小正周期为,值域为. 6分(2)由(1)知,所以. 8分所以, 12分或由得: 8分两边平方得:,所以. 12分【考点】1.三角函数中的恒等变换应用;2.二倍角的正弦;3.三角函数的周期性及其求法.2.已知函数f(x)=2sin(2x+φ)(0<φ<2π)的图象过点(,-2).(1)求φ的值;(2)若f()=,-<α<0,求sin(2α-)的值.【答案】(1)φ=.(2).【解析】(1)因为函数f(x)=2sin(2x+φ)(0<φ<2π)的图象过点(,-2),所以f()=2sin(π+φ)=-2,即sinφ=1.因为0<φ<2π,所以φ=.(2)由(1)得,f(x)=2cos2x.因为f()=,所以cosα=.又因为-<α<0,所以sinα=-.所以sin2α=2sinαcosα=-,cos2α=2cos2α-1=-.从而sin(2α-)=sin2αcos-cos2αsin=.试题解析:解:(1)因为函数f(x)=2sin(2x+φ)(0<φ<2π)的图象过点(,-2),所以f()=2sin(π+φ)=-2,即sinφ=1. 4分因为0<φ<2π,所以φ=. 6分(2)由(1)得,f(x)=2cos2x. 8分因为f()=,所以cosα=.又因为-<α<0,所以sinα=-. 10分所以sin2α=2sinαcosα=-,cos2α=2cos2α-1=-. 12分从而sin(2α-)=sin2αcos-cos2αsin=. 14分【考点】三角函数解析式,两角差的正弦公式,二倍角公式3.将函数的图象向左平移个单位,得到函数的函数图象,则下列说法正确的是()A.是奇函数B.的周期是C.的图像关于直线对称D.的图像关于对称【答案】D【解析】将函数的图象向左平移个单位,得到函数,因为,所以,选D.【考点】三角函数图象的变换,三角函数诱导公式,三角函数的图象和性质.4.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)在R上的部分图象如图所示,则f(2014)的值为________.【答案】-【解析】由三角函数图象可得A=5,T=12=,ω=,且函数图象经过点(2,5),所以5sin(2×+φ)=5,又0≤φ<2π,所以φ=,所以f(x)=5sin(x+),f(2014)=5sin(×2014+)=5sin(336π-)=-.5.设曲线y=sinx上任一点(x,y)处的切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()【答案】C【解析】由题意可知g(x)=cosx,y=x2cosx,该函数是偶函数,且当x=0时,函数值为0,故只能是选项C中的图象.6.函数的最小正周期为.【答案】【解析】【考点】三角函数的周期.7.若关于的方程在区间上有两个不同的实数解,则实数的取值范围为.【答案】【解析】原方程变形为,如图作出函数的图象,可见当时,直线与图象有两个交点.【考点】方程的解与函数图象的交点.8. [2014·海淀模拟]同时具有下列性质:“①对任意x∈R,f(x+π)=f(x)恒成立;②图象关于直线x=对称;③在[-,]上是增函数”的函数可以是()A.f(x)=sin(+)B.f(x)=sin(2x-)C.f(x)=cos(2x+)D.f(x)=cos(2x-)【答案】B【解析】依题意,知满足条件的函数的最小正周期是π,以x=为对称轴,且在[-,]上是增函数.对于A,其周期为4π,因此不正确;对于C,f()=-1,但该函数在[-,]上不是增函数,因此C不正确;对于D,f()≠±1,因此D不正确.9.已知函数,(l)求函数的最小正周期;(2)当时,求函数f(x)的单调区间。

高考数学专题《三角函数的图象与性质》习题含答案解析

高考数学专题《三角函数的图象与性质》习题含答案解析

专题5.3 三角函数的图象与性质1.(2021·北京市大兴区精华培训学校高三三模)下列函数中,既是奇函数又以π为最小正周期的函数是()A .cos 2y x =B .sin2y x=C .sin cos y x x=+D .tan 2y x=【答案】B 【解析】由三角函数的奇偶性和周期性判断即可得出答案.【详解】解:A 选项:cos 2y x =是周期为π的偶函数,故A 不正确;B 选项:sin2y x =是周期为π的奇函数,故B 正确;C选项:sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭,周期为2π且非奇非偶函数,故C 不正确;D 选项:tan 2y x =是周期为2π的奇函数,故D 不正确.故选:B.2.(2021·海南高三其他模拟)下列函数中,既是偶函数又存在零点的是( )A .ln y x =B .21y x =+C .sin y x=D .cos y x=【答案】D 【解析】根据题意,依次分析选项中函数的奇偶性以及是否存在零点,综合即可得答案.【详解】解:根据题意,依次分析选项:对于A ,y lnx =,为对数函数,不是奇函数,不符合题意,对于B ,21y x =+,为二次函数,是偶函数,但不存在零点,不符合题意,对于C ,sin y x =,为正弦函数,是奇函数,不符合题意,对于D ,cos y x =,为余弦函数,既是偶函数又存在零点,符合题意,故选:D .练基础3.(2021·浙江高三其他模拟)函数y =sin tan x e xx在[-2,2]上的图像可能是( )A .B .C .D .【答案】B 【解析】利用同角三角函数的商数关系并注意利用正切函数的性质求得函数的定义域,可以化简得到()cos ,2x k f x e x x k Z π⎛⎫=≠∈ ⎪⎝⎭,考察当x 趋近于0时,函数的变化趋势,可以排除A,考察端点值的正负可以评出CD.【详解】()sin cos ,tan 2x x e x k f x e x x k Z x π⎛⎫==≠∈ ⎪⎝⎭,当x 趋近于0时,函数值趋近于0cos 01e =,故排除A;()22cos 20f e =<,故排除CD,故选:B4.(2021·全国高三其他模拟(理))函数y =tan(3x +6π)的一个对称中心是( )A .(0,0)B .(6π,0)C .(49π,0)D .以上选项都不对【答案】C 【解析】根据正切函数y =tan x 图象的对称中心是(2k π,0)求出函数y =tan(3x +6π)图象的对称中心,即可得到选项.【详解】解:因为正切函数y =tan x 图象的对称中心是(2k π,0),k ∈Z ;令3x +6π=2k π,解得618k x ππ=-,k ∈Z ;所以函数y =tan(3x +6π)的图象的对称中心为(618k ππ-,0),k ∈Z ;当k =3时,C 正确,故选:C.5.(2019年高考全国Ⅱ卷文)若x 1=,x 2=是函数f (x )=(>0)两个相邻的极值点,则=( )A .2B .C .1D .【答案】A【解析】由题意知,的周期,解得.故选A .6.(2021·临川一中实验学校高三其他模拟(文))若函数cos (0)y x ωω=>的图象在区间,24ππ⎛⎫- ⎪⎝⎭上只有一个对称中心,则ω的取范围为( )A .12ω<≤B .ω1≤<2C .13ω<≤D .13ω≤<【答案】A 【解析】根据题意可得422πππω≤<,即可求出.【详解】4π43πsin x ωωω3212()sin f x x ω=232()44T ωπππ==-=π2ω=由题可知,cos (0)y x ωω=>在,42ππ⎡⎫⎪⎢⎣⎭上只有一个零点,又2x πω=,2x πω=,所以422πππω≤<,即12ω<≤.故选:A.7.(2019年高考北京卷文)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】时,,为偶函数;为偶函数时,对任意的恒成立,即,,得对任意的恒成立,从而.从而“”是“为偶函数”的充分必要条件,故选C.8.(2021·青海西宁市·高三二模(文))函数()cos 218f x x π⎛⎫=-- ⎪⎝⎭图象的一个对称中心为( )A .,14π⎛⎫-- ⎪⎝⎭B .,14π⎛⎫-⎪⎝⎭C .,116π⎛⎫-- ⎪⎝⎭D .3,116π⎛⎫-- ⎪⎝⎭【答案】D 【解析】根据余弦函数的对称中心整体代换求解即可.【详解】令2()82x k k πππ-=+∈Z ,可得5()216k x k ππ=+∈Z .所以当1k =-时,316x π=-,故3,116π⎛⎫-- ⎪⎝⎭满足条件,当0k =时,516x π=,故5,116π⎛⎫-⎪⎝⎭满足条件;故选:D0b =()cos sin cos f x x b x x =+=()f x ()f x ()=()f x f x -x ()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=-sin 0b x =x 0b =0b =()f x9.(2021·全国高一专题练习)设函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A .()f x 的最小正周期为2πB .()f x 的图象关于直线23x π=对称C .()f x 在,2ππ⎛⎫⎪⎝⎭单调递减D .()f x 的一个零点为6x π=【答案】C 【解析】根据解析式结合余弦函数的性质依次判断每个选项的正误即可.【详解】函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,()f x ∴的最小正周期为2π,故A 正确;22(cos 1333f πππ⎛⎫=+=- ⎪⎝⎭,∴()f x 的图象关于直线23x π=对称,故B 正确;当x ∈,2ππ⎛⎫⎪⎝⎭时,54,363πππx ⎛⎫+∈ ⎪⎝⎭,()f x 没有单调性,故C 错误;()cos 0663f πππ⎛⎫=+= ⎪⎝⎭,∴()f x 的一个零点为6x π=,故D 正确.综上,错误的选项为C.故选:C.10.(2017·全国高考真题(理))函数f (x )=s in 2x +3cosx ―34(x ∈0,__________.【答案】1【解析】化简三角函数的解析式,则f (x )=1―cos 2x+3cos x ―34=―cos 2x +3cos x +14= ―(cos x ―32)2+1,由x ∈[0,π2]可得cos x ∈[0,1],当cos x =32时,函数f (x )取得最大值1.练提升1.(2021·河南高二月考(文))已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+ ⎪⎝⎭><<的相邻的两个零点之间的距离是6π,且直线18x π=是()f x 图象的一条对称轴,则12f π⎛⎫=⎪⎝⎭( )A.B .12-C .12D【答案】D 【解析】由相邻两个零点的距离确定周期求出6ω=,再由对称轴确定6π=ϕ,代入12x π=可求出结果.【详解】解:因为相邻的两个零点之间的距离是6π,所以26T π=,23T ππω==,所以6ω=,又sin 6sin 118183f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=±⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且02πϕ<<,则6π=ϕ,所以()sin 66f x x π⎛⎫=+ ⎪⎝⎭,则sin 612126f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.故选:D.2.(2020·山东潍坊�高一期末)若函数的最小正周期为,则( )A .B .C .D .【答案】C 【解析】由题意,函数的最小正周期为,可得,解得,即,()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭π(2)(0)5f f f π⎛⎫>>-⎪⎝⎭(0)(2)5f f f π⎛⎫>>-⎪⎝⎭(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭(0)(2)5f f f π⎛⎫->> ⎪⎝⎭()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭πwππ=1w =()tan()4f x x π=+令,即,当时,,即函数在上单调递增,又由,又由,所以.故选:C.3.(2021·广东佛山市·高三二模)设()0,θπ∈,则“6πθ<”是“1sin 2θ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】由条件即06πθ<<,由06πθ<<,得1sin 2θ<;反之不成立,可举反例.再由充分必要条件的判定得答案.【详解】由()0,θπ∈,则6πθ<,即06πθ<<所以当06πθ<<时,由正弦函数sin y x =的单调性可得1sin sin62πθ<=,即由6πθ<可以得到1sin 2θ<.反之不成立,例如当56πθπ<<时,也有1sin 2θ<成立,但6πθ<不成立.故“6πθ<”是“1sin 2θ<”的充分不必要条件故选:A4.(2021·四川省华蓥中学高三其他模拟(理))已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的最,242k x k k Z πππππ-+<+<+∈3,44k x k k Z ππππ-+<<+∈1k =544x ππ<<()f x 5(,)44ππ4(0)(),()()()555f f f f f πππππ=-=-+=425ππ>>(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭大值为2,其图象相邻两条对称轴之间的距离为2π且()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,则下列判断不正确的是()A .要得到函数()f x 的图象,只需将2cos 2y x =的图象向右平移12π个单位B .函数()f x 的图象关于直线712x π=对称C .,126x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x D .函数()f x 在5,612ππ⎡⎤⎢⎥⎣⎦上单调递减【答案】C 【解析】根据最大值为2,可得A ,根据正弦型函数的周期性,可求得ω,根据对称性,可求得ϕ,即可得()f x 解析式,根据正弦型函数的单调性、值域的求法,逐一分析选项,即可得答案.【详解】由题意得A =2,因为其图象相邻两条对称轴之间的距离为2π,所以22Tπ=,可得2T ππω==,所以2ω=,所以()2sin(2)f x x ϕ=+,因为,06π⎛⎫-⎪⎝⎭为对称中心,所以2,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭,因为||2ϕπ<,令k =0,可得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭.对于A :将2cos 2y x =的图象向右平移12π个单位,可得2cos 22cos 22cos 22sin 22sin 21266263y x x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=--=+ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故A 正确;对于B :令2,32x k k Z πππ+=+∈,解得,212k x k Z ππ=+∈,令k =1,可得712x π=,所以函数()f x 的图象关于直线712x π=对称,故B 正确;对于C :因为,126x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,363x πππ⎡⎤+∈⎢⎥⎣⎦,所以当236x ππ+=时,min ()2sin16f x π==,故C 错误;对于D :令3222,232k x k k Z πππππ+≤+≤+∈,解得7,1212k x k k Z ππππ+≤≤+∈,令k =0,可得一个单调减区间为7,1212ππ⎡⎤⎢⎥⎣⎦,因为57,,6121212ππππ⎡⎤⎡⎤⊂⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()f x 在5,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故D 正确.故选:C5.(2021·玉林市第十一中学高三其他模拟(文))已知函数()sin (0)f x x ωω=>的图象向右平移4π个单位长度得y =g (x )的图象,若函数g (x )的图象与直线y =在,22ππ⎡⎤-⎢⎥⎣⎦上恰有两个交点,则a 的取值范围是( )A .[416,)39B .1620,[)99C .[208,93D .[8,4)3【答案】B 【解析】由函数的平移可得()sin 4g x x πωω⎛⎫=- ⎪⎝⎭,结合三角函数的图象与性质可得ω满足的不等式,即可得解.【详解】由题意,()sin sin 44g x x x ππωωω⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,3,444x πωπωπωω⎡⎤-∈-⎢⎥⎣⎦,因为函数g (x )的图象与直线y =在,22ππ⎡⎤-⎢⎥⎣⎦上恰有两个交点,则3542,2433122,2433k k k k πωπππππωππππ⎧⎛⎤-∈-+-+ ⎪⎥⎪⎝⎦⎨⎡⎫⎪∈++⎪⎢⎪⎣⎭⎩或3412,2433272,2433k k k k πωπππππωππππ⎧⎛⎤-∈-++ ⎪⎥⎪⎝⎦⎨⎡⎫⎪∈++⎪⎢⎪⎣⎭⎩,k Z ∈,又0>ω,所以1620,99ω⎡∈⎫⎪⎢⎣⎭.故选:B.6.(2020·北京四中高三其他模拟)函数tan 42y x ππ⎛⎫=- ⎪⎝⎭ 的部分图象如图所示,则 ()OA OB AB +⋅=( )A .6B .5C .4D .3【答案】A 【解析】根据正切函数的图象求出A 、B 两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果.【详解】由图象得,令tan 42y x ππ⎛⎫=- ⎪⎝⎭=0,即42x ππ-=kπ,k Z∈k =0时解得x =2,令tan 42y x ππ⎛⎫=-⎪⎝⎭=1,即424x πππ-=,解得x =3,∴A (2,0),B (3,1),∴()()()2,0,3,1,1,1OA OB AB ===,∴()()()5,11,1516OA OB AB +⋅=⋅=+=.故选:A .7.(2020·全国高三其他模拟(文))若函数()(0)xf x n nπ=>图象上的相邻一个最高点和一个最低点恰好都在圆222:O x y n +=上,则()1f =( )A B .C .-D .【答案】A 【解析】首先由题意判断该正弦型函数的大概图象及相邻最高点和最低点与圆的交点情况.从而解得n 的取值,再代入1x =求解.【详解】解:设两交点坐标分别为()11,x y ,()22,x y ,则1y =,2y =-又函数()(0)xf x n nπ=>为奇函数,∴12x x =-,当22xnx n ππ=⇒=时,函数取得最大值,∴12n x =-,22nx =,由题,函数()(0)xf x n nπ=>图象上的相邻一个最高点和一个最低点恰好都在圆22: O x y n +=上,∴22242n n n ⎛⎫+=⇒= ⎪⎝⎭,则(1)4f π==.故选:A.8.【多选题】(2021·全国高三其他模拟)已知函数()2sin(),(0,0)f x x ωϕωϕπ=+><<图象的一条对称轴为23x π=,4⎛⎫= ⎪⎝⎭f π,且()f x 在2,43ππ⎛⎫ ⎪⎝⎭内单调递减,则以下说法正确的是( )A .7,012π⎛⎫-⎪⎝⎭是其中一个对称中心B .145ω=C .()f x 在5,012π⎛⎫- ⎪⎝⎭单増D .16f π⎛⎫-=- ⎪⎝⎭【答案】AD 【解析】先根据条件求解函数的解析式,然后根据选项验证可得答案.【详解】∵f (x )关23x π=对称,4⎛⎫= ⎪⎝⎭f π,f (x )在2,43ππ⎛⎫ ⎪⎝⎭单调递减,232232,22643k k ωπωϕπππππϕωϕπ⎧=+=+⎧⎪⎪⎪∴∴⎨⎨=⎪⎪+=+⎩⎪⎩,B 错误;()2sin 2,6f x x π⎛⎫=+ ⎪⎝⎭令2,6x k k ππ+=∈Z ,可得,,122k x k ππ=-+∈Z 当1k =-时,7,12x π=-即()f x 关于7,012π⎛⎫- ⎪⎝⎭对称,A 正确;令222,262k x k πππππ-+<+<+得,312k x k ππππ-+<<+∴()f x 在,312ππ⎡⎤-⎢⎥⎣⎦单调递増,即C 错误;2sin 2sin 16366f ππππ⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,D 正确,故选:AD.9.【多选题】(2021·重庆市蜀都中学校高三月考)已知函数()f x 满足x R ∀∈,有()(6)f x f x =-,且(2)(2)f x f x +=-,当[1,1]x ∈-时,)()lnf x x =-,则下列说法正确的是( )A .(2021)0f =B .(2020,2022)x ∈时,()f x 单调递增C .()f x 关于点(1010,0)对称D .(1,11)x ∈-时,方程()sin 2f x x π⎛⎫=⎪⎝⎭的所有根的和为30【答案】CD 【解析】利用已知条件可知()f x 在[1,1]x ∈-上为奇函数且单调递减,关于21x k =+、(2,0)k ,k Z ∈对称,且周期为4,即可判断各选项的正误.【详解】由题设知:()))()f x x x f x -===-=-,故()f x 在[1,1]x ∈-上为奇函数且单调递减,又(2)(4)(2)f x f x f x +=-=-,即关于21x k =+、(2,0)k ,k Z ∈对称,且最小周期为4,A :(2021)(50541)(1)1)0f f f =⨯+==-≠,错误;B :(2020,2022)x ∈等价于(0,2)x ∈,由上易知:(0,1)上递减,(1,2)上递增,故()f x 不单调,错误;C :由上知:()f x 关于(2,0)k 对称且k Z ∈,所以()f x 关于(1010,0)对称,正确;D :由题意,只需确定()f x 与sin 2xy π=在(1,11)x ∈-的交点,判断交点横坐标的对称情况即可求和,如下图示,∴共有6个交点且关于5x =对称,则16253410x x x x x x +=+=+=,∴所有根的和为30,正确.故选:CD10.(2021·浙江杭州市·杭州高级中学高三其他模拟)设函数sin 3xy π=在[,1]t t +上的最大值为()M t ,最小值为()N t ,则()()M t N t -在3722t ≤≤上最大值为________.【答案】1【解析】依题意可得函数在39,22⎡⎤⎢⎥⎣⎦上单调递减,则39[,1],22t t ⎡⎤+⊆⎢⎥⎣⎦,所以()()cos 36t M t N t ππ⎛⎫-=-+⎪⎝⎭,即可求出函数的最大值;【详解】解:函数sin3xy π=的周期为6,函数sin3xy π=在39,22⎡⎤⎢⎥⎣⎦上单调递减,当3722t ≤≤时,39[,1],22t t ⎡⎤+⊆⎢⎥⎣⎦(1)()()sinsin2cos sin cos 3336636tt t t M t N t πππππππ+⎛⎫⎛⎫⎛⎫-=-=+-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为3722t ≤≤,所以243363t ππππ≤+≤,所以11cos 362t ππ⎛⎫-≤+≤-⎪⎝⎭所以1()()12M t N t ≤-≤当52t =时取最大值1故答案为:11.(2021·全国高考真题(理))已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( )A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A 【解析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .2.(2021·全国高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是( )练真题A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A 【解析】解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈,取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,CD 选项均不满足条件.故选:A.3.(2019年高考全国Ⅰ卷文)函数f (x )=在的图象大致为( )A .B .C .D .【答案】D2sin cos ++x xx x[,]-ππ【解析】由,得是奇函数,其图象关于原点对称,排除A .又,排除B ,C ,故选D .4.(2020·全国高考真题(理))设函数()cos π(6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【答案】C 【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+()f x 22π1π42π2(1,π2π()2f ++==>2π(π)01πf =>-+5.(2020·全国高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.6.(2018·北京高考真题(理))设函数f (x )=cos(ωx ―π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为f (x )≤f (π4)对任意的实数x 都成立,所以f (π4)取最大值,所以π4ω―π6=2k π(k ∈Z ),∴ω=8k +23(k∈Z ),因为ω>0,所以当k =0时,ω取最小值为23.。

高考解答题专项突破(二) 三角函数的综合问题--2025年高考数学复习讲义及练习解析

高考解答题专项突破(二)  三角函数的综合问题--2025年高考数学复习讲义及练习解析

[考情分析]以三角形、三角函数为载体,以三角函数的图象与性质、正弦定理、余弦定理为工具,以三角恒等变换为手段来考查三角函数的综合问题是高考的热点题型,主要考查内容有正、余弦定理、三角形面积的计算、三角恒等变换和三角函数的性质.解题时要充分利用三角函数的图象与性质,交替使用正弦定理、余弦定理,利用数形结合、函数与方程思想等进行求解.考点一三角函数图象与性质的综合例1已知函数f (x )=A sin(ωx +φ>0,ω>0,|φ(1)求f (x )=2的解集;(2)求函数g (x )=f 解(1)由图象可知,周期T =5π12+7π12=π,∴ω=2ππ=2,∵,∴A 2×5π12+0,∴0,解得5π6+φ=π+2k π,φ=2k π+π6,k ∈Z ,∵|φ|<π2,∴φ=π6,∵点(0,1)在函数图象上,∴A sin π6=1,A =2,∴函数f (x )的解析式为f (x )=x由f (x )=x 2,得x 1,即2x +π6=π2+2k π,k ∈Z ,解得x =π6+k π,k ∈Z ,∴f (x )=2|x =π6k π,k ∈(2)g (x )=由(1)知f (x )=xg (x )=2sin 2+π6-2sin 2+π6=2sin2x -2sinx =2sin2x -x +32cos2sin2x -3cos2x=x 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z ,∴函数g (x )=f k π-π12,k π+5π12,k ∈Z .解决三角函数图象与性质综合问题的方法利用图象讨论三角函数的性质,应先把函数化成y =A sin(ωx +φ)(ω>0)或y =A cos(ωx +φ)(ω>0)的形式,然后通过换元法令t =ωx +φ,转化为研究y =A sin t 或y =A cos t 的性质.1.已知函数f (x )=2sin ωx cos φ+2sin φ-4sin 2ωx 2sin φ(ω>0,|φ|<π),其图象的一条对称轴与相邻对称中心的横坐标相差π4,________,从以下两个条件中任选一个补充在空白横线中.①函数f (x )的图象向左平移π6个单位长度后得到的图象关于y 轴对称且f (0)<0;②函数f (x )的图象的一条对称轴为直线x =-π3且f (1).(1)求函数f (x )的解析式;(2)若x ∈π2,3π4,函数h (x )=f (x )-a 存在两个不同零点x 1,x 2,求x 1+x 2的值.解(1)f (x )=2sin ωx cos φ+2sin φ-2(1-cos ωx )sin φ=2sin(ωx +φ),又函数f (x )的最小正周期为T =4×π4=π,所以ω=2πT=2,若选条件①:将函数f (x )的图象向左平移π6个单位长度得到的图象关于y 轴对称,所得函数为y =2sin 2φ=x +π3+由函数y =2sin x +π3+y 轴对称,可得π3+φ=π2+k π(k ∈Z ),解得φ=π6+k π(k ∈Z ),因为|φ|<π,所以φ的可能取值为-5π6,π6,若φ=-5π6,则f (x )=xf (0)=1,符合题意;若φ=π6,则f (x )=x f (0)=2sin π6=1,不符合题意.所以f (x )=x若选条件②:因为函数f (x )图象的一条对称轴为直线x =-π3,所以φ=π2+k π(k ∈Z ),解得φ=7π6+k π(k ∈Z ),因为|φ|<π,所以φ的可能取值为-5π6,π6,若φ=-5π6,则f (x )=x则2<f (1),符合题意;若φ=π6,则f (x )=x则2sin π2=2>f (1),不符合题意.所以f (x )=x(2)令t =2x -5π6∈π6,2π3,此时函数h (x )=f (x )-a 存在两个不同零点x 1,x 2等价于直线y =a 与函数y =2sin t ,t ∈π6,2π3的图象有两个不同交点.当t =π2时,函数取到最大值,所以t 1+t 2=π,即2x 1-5π6+2x 2-5π6=π,所以x 1+x 2=4π3.考点二三角函数与解三角形的综合例2(2023·河北石家庄二中模拟)设函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π),该函数图象上相邻两个最高点间的距离为4π,且f (x )为偶函数.(1)求ω和φ的值;(2)已知角A ,B ,C 为△ABC 的三个内角,若(2sin A -sin C )cos B =sin B cos C ,求[f (A )]2+[f (C )]2的取值范围.解(1)因为f (x )=2sin(ωx +φ)的图象上相邻两个最高点间的距离为4π,所以2πω=4π,解得ω=12,所以f (x )=2sin +又因为f (x )为偶函数,所以φ=k π+π2,k ∈Z .又因为0<φ<π,所以φ=π2.(2)因为(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B -sin C cos B =sin B cos C ,所以2sin A cos B =sin(B +C ),又因为A +B +C =π,且0<A <π,所以sin(B +C )=sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,则A +C =2π3,即C =2π3-A ,由(1)知,函数f (x )=2cos 12x ,所以[f (A )]2+[f (C )]2=2cos 212A +2cos 212C =cos A +cos C +2=cos A +2=cos A -12cos A +32sin A +2=32sin A +12cos A +2=2,因为0<A <2π3,所以π6<A +π6<5π6,所以1,则23,即[f (A )]2+[f (C )]23.解三角形与三角函数的综合应用主要体现在以下两个方面:(1)利用三角恒等变换化简三角函数式进行解三角形;(2)解三角形与三角函数图象和性质的综合应用.2.设f (x )=sin x cos x -cos x ∈[0,π].(1)求f (x )的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若0,a =1,求△ABC面积的最大值.解(1)由题意,得f (x )=12sin2x -12cos x 1=sin2x -12,因为0≤x ≤π,所以0≤2x ≤2π,由正弦函数的单调性可知,当0≤2x ≤π2或3π2≤2x ≤2π,即0≤x ≤π4或3π4≤x ≤π时,函数f (x )=sin2x -12单调递增,所以f (x )的单调递增区间是0,π4和3π4,π.(2)由题意,得sin A -12=0,所以sin A =12,因为△ABC 为锐角三角形,所以A 故A =π6.由余弦定理,得b 2+c 2-2bc cos A =a 2,故b 2+c 2-3bc =1,由基本不等式,得b 2+c 2≥2bc ,故bc ≤2+3,当且仅当b =c 时,等号成立.因此S △ABC =12bc sin A ≤2+34,当且仅当b =c 时,△ABC 的面积取得最大值2+34.考点三三角函数与平面向量的综合例3已知向量a =(sin x ,3sin(π+x )),b =(cos x ,-sin x ),函数f (x )=a ·b -32.(1)求f (x )的最小正周期及f (x )图象的对称轴方程;(2)先将f (x )的图象上每个点的纵坐标不变,横坐标变为原来的2倍,再向左平移π3个单位长度得到函数g (x )的图象,若函数y =g (x )-m 在区间π6,5π6内有两个零点,求m 的取值范围.解(1)因为f (x )=a ·b -32sin x cos x +3sin 2x -32=12sin2x -32cos2x =x 故f (x )的最小正周期为T =2π2=π.由2x -π3=k π+π2,k ∈Z ,得x =k π2+5π12,k ∈Z ,所以f (x )的最小正周期为π,对称轴方程为x =k π2+5π12,k ∈Z .(2)由(1),知f (x )=x由题意,得g (x )=sin x .函数y =g (x )-m 在区间π6,5π6内有两个零点,转化为函数y =sin x ,x ∈π6,5π6的图象与直线y =m 有两个交点.由图象可得,m 的取值范围为12,当题目条件给出的向量坐标中含有三角函数的形式时,首先运用向量数量积的定义、向量共线、向量垂直等,得到三角函数的关系式,然后利用三角函数的图象、性质解决问题.3.已知向量a x b =(cos x ,-1).(1)当a ∥b 时,求2cos 2x -sin2x 的值;(2)求f (x )=(a +b )·b 在-π2,0上的单调递增区间.解(1)由a ∥b ,得(-1)sin x =32cos x ,所以tan x =-32,所以2cos 2x -sin2x =2cos 2x -2sin x cos x cos 2x +sin 2x =2-2tan x 1+tan 2x =2+31+94=2013.(2)f (x )=a ·b +b 2=sin x cos x -32+cos 2x +1=12sin2x +1+cos2x 2-12=22sin x 当x ∈-π2,0时,2x +π4∈-3π4,π4,令-π2≤2x +π4≤π4,得-3π8≤x ≤0.故函数f (x )在-π2,0上的单调递增区间为-3π8,0.考点四解三角形与平面向量的综合例4(2024·四川成都调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且m =(2b +c ,a ),n =(cos A ,cos C ),m ⊥n .(1)求角A 的大小;(2)D 是线段BC 上的点,且AD =BD =2,CD =3,求△ABD 的面积.解(1)因为m =(2b +c ,a ),n =(cos A ,cos C ),m ⊥n ,所以m ·n =(2b +c )cos A +a cos C =0,由正弦定理可得2sin B cos A +(sin A cos C +cos A sin C )=0,即2sin B cos A +sin(A +C )=0,又A +C =π-B ,所以2sin B cos A +sin B =0,又B ∈(0,π),则sin B >0,所以cos A =-12,又A ∈(0,π),因此A =2π3.(2)设B =θ,因为A =2π3,则C =π-2π3-θ=π3-θ,因为AD =BD =2,所以∠BAD =B =θ,∠ADC =2θ,∠DAC =2π3-θ,在△ACD 中,由正弦定理可知AD sin C =CD sin ∠DAC,即23即θ-12sin θ+12sin 化简可得5sin θ=3cos θ,即tan θ=35,所以sin2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=5314,所以S △ABD =12AD ·BD sin(π-2θ)=12AD ·BD sin2θ=12×22×5314=537.解决解三角形与平面向量综合问题的关键:准确利用向量的坐标运算化简已知条件,将其转化为三角函数的问题解决.4.(2023·广东广州天河区模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足b cos B +C 2=a sin B .(1)求A ;(2)若a =19,BA →·AC →=3,AD 是△ABC 的中线,求AD 的长.解(1)因为cos B +C 2=sin A 2,所以b sin A 2=a sin B .由正弦定理,得sin B sin A 2=sin A sin B .因为sin B ≠0,所以sin A 2=sin A .所以sin A 2=2sin A 2cos A 2.因为A ∈(0,π),A 2∈所以sin A 2≠0,所以cos A 2=12.所以A 2=π3.所以A =2π3.(2)因为BA →·AC →=3,所以bc cos(π-A )=3.又A =2π3,所以bc =6.由余弦定理,得b 2+c 2=a 2+2bc cos A =13.又AD →=12(AB →+AC →),所以|AD →|2=14(AB →+AC →)2=14(c 2+b 2+2bc cos A )=74.所以|AD →|=72,即AD 的长为72.课时作业1.(2023·广东佛山模拟)已知函数f (x )=cos 4x +23sin x cos x -sin 4x .(1)求f (x )的最小正周期和单调递减区间;(2)已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=1,BC 边的中线AD 的长为7,求△ABC 面积的最大值.解(1)∵f (x )=cos 4x +23sin x cos x -sin 4x =(cos 2x -sin 2x )(cos 2x +sin 2x )+3sin2x =cos2x +3sin2x =x 故f (x )的最小正周期T =π,由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x ≤2π3+k π,k ∈Z ,∴f (x )的单调递减区间为π6+k π,2π3+k π(k ∈Z ).(2)由(1)得,f (A )=A 1,即A =12,∵0<A <π,∴2A +π6=5π6,∴A =π3,又AD →=12(AB →+AC →),∴AD →2=14(AB →2+AC →2+2AB →·AC →),∴7=14(c 2+b 2+2bc cos A )=14(b 2+c 2+bc ),∵b 2+c 2≥2bc ,∴b 2+c 2+bc ≥3bc ,∴bc ≤283,当且仅当b =c =2213时取等号,∴S △ABC =12bc sin A =34bc ≤34×283=733,∴△ABC 面积的最大值为733.2.(2024·江西南昌模拟)如图为函数f (x )=A sin(ωx +φ>0,ω>0,|φ|<π2,x ∈(1)求函数f (x )的解析式和单调递增区间;(2)若将y =f (x )的图象向右平移π12个单位长度,然后再将横坐标缩短为原来的12得到y =g (x )的图象,求函数g (x )在区间-π4,π12上的最大值和最小值.解(1)由图象知,A =2,T 4=π3-π12=π4,T =π,又ω>0,则ω=2ππ=2,则f (x )=2sin(2x +φ),,2,得π6+φ=2k π+π2,k ∈Z ,解得φ=2k π+π3,k ∈Z ,因为|φ|<π2,所以φ=π3,所以f (x )=x 令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,所以f (x )的单调递增区间为-5π12+k π,π12+k π(k ∈Z ).(2)将f (x )=2sin x 的图象向右平移π12个单位长度,得2sin 2+π3=2sin x ,然后再将横坐标缩短为原来的12,得g (x )=2sin x .因为x ∈-π4,π12,则4x +π6∈-5π6,π2,所以-1≤x 1.故当4x +π6=-π2,即x =-π6时,g (x )取得最小值,为-2;当4x +π6=π2,即x =π12时,g (x )取得最大值,为2.3.设函数f (x )=m ·n ,其中向量m =(2cos x ,1),n =(cos x ,3sin2x )(x ∈R ).(1)求f (x )的最小值;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知f (A )=2,b =1,△ABC 的面积为32,求b sin B的值.解(1)因为m =(2cos x ,1),n =(cos x ,3sin2x ),所以f (x )=2cos 2x +3sin2x =3sin2x +cos2x +1=x 1,所以当x 1,即2x +π6=-π2+2k π,k ∈Z ,即x =-π3+k π,k ∈Z 时,f (x )取得最小值,为-1.(2)由f (A )=2,得A 1=2,则A =12,又A ∈(0,π),所以2A +π6∈故2A +π6=5π6,则A =π3,由S △ABC =12bc sin A =12×1×c ×32=32,可得c =2,在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A =1+4-2×1×2×12=3,所以a =3,所以b sin B =a sin A =332=2.4.(2023·四川成都模拟)已知函数f (x )=2cos 2x +3sin2x .(1)求函数f (x )的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f (C )=3,c =1,ab =23,求△ABC 的周长.解(1)依题意,f (x )=2cos 2x +3sin2x =1+cos2x +3sin2x =x 1,由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,得-π3+k π≤x ≤π6+k π,k ∈Z ,所以函数f (x )的单调递增区间是-π3+k π,π6+k π(k ∈Z ).(2)由(1)知,f (C )=C 1=3,即C 1,而C ∈(0,π),则2C +π6∈于是2C +π6=π2,解得C =π6,由余弦定理c 2=a 2+b 2-2ab cos C ,得1=(a +b )2-(2+3)ab =(a +b )2-23×(2+3),解得a +b =2+3,所以△ABC 的周长为3+ 3.5.(2023·福建福州模拟)已知向量m 23sin x 4,n cos x 4,cos(1)若m ·n =2,求cos (2)记f (x )=m ·n ,在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求f (A )的取值范围.解(1)m ·n =23sin x 4cos x 4+2cos 2x 4=3sin x 2+cos x 2+1= 1.因为m ·n =2,所以=12.所以1-2sin =12.(2)因为f (x )=m ·n =1,所以f (A )= 1.因为(2a -c )cos B =b cos C ,由正弦定理,得(2sin A -sin C )cos B =sin B cos C .所以2sin A cos B -sin C cos B =sin B cos C ,所以2sin A cos B =sin(B +C ).因为A +B +C =π,所以sin(B +C )=sin A ,且sin A ≠0.所以cos B =12.因为B ∈(0,π),所以B =π3.所以0<A <2π3.所以π6<A 2+π6<π2,12<sin ,故f (A )的取值范围是(2,3).6.(2024·湖北黄冈调研)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m =(b ,a ),n =(sin A ,3cos(A +C )),且m ·n =0.(1)求角B 的大小;(2)若b =3,求3a +c 的最大值.解(1)在△ABC 中,因为m =(b ,a ),n =(sin A ,3cos(A +C )),m ·n =0,所以b sin A -3a cos B =0.由正弦定理,得sin A sin B =3sin A cos B ,又sin A >0,所以sin B =3cos B ,即tan B = 3.又0<B <π,所以B =π3.(2)由(1),知B =π3,b =3,由正弦定理,得a sin A =c sin C =b sin B=2,即a =2sin A ,c =2sin C .又C =2π3-A ,所以3a +c =6sin A +2sin C =6sin A +7sin A +3cos A =213sin(A +θ),其中锐角θ由tan θ=37确定,又0<A <2π3,所以θ<A +θ<2π3+θ.则当且仅当A +θ=π2,即tan A ==733时,sin(A +θ)取最大值1,所以3a +c 的最大值为213.7.已知函数f (x )=cos 4x -2sin x cos x -sin 4x .(1)求f (x )的最小正周期和单调递增区间;(2)求函数f (x )在区间0,π2上的值域;(3)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若0,a =2,求△ABC 面积的最大值.解(1)依题意,f (x )=(cos 2x +sin 2x )(cos 2x -sin 2x )-sin2x =cos2x -sin2x =2sinx 所以f (x )的最小正周期T =2π2=π;由2k π-π2≤2x +3π4≤2k π+π2,k ∈Z ,得k π-5π8≤x ≤k π-π8,k ∈Z ,所以f (x )的单调递增区间为k π-5π8,k π-π8(k ∈Z ).(2)由x ∈0,π2,得2x +3π4∈3π4,7π4,则-1≤x ≤22,即-2≤f (x )≤1,所以函数f (x )在区间0,π2上的值域为[-2,1].(3)由(1)知,=2sin 0,而0<A <π,即有3π4<A +3π4<7π4,则A +3π4=π,解得A =π4,由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ≥2bc -2bc ,于是bc ≤4+22,当且仅当b =c 时等号成立,因此S △ABC =12bc sin A =24bc ≤2+1,所以△ABC 面积的最大值为2+1.8.(2024·重庆永川北山中学模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,cos(A-C )+cos B =32,设m =(b ,c ),n =(a ,b )且m ∥n .(1)求角B 的大小;(2)延长BC 至D ,使BD =5,若△ACD 的面积S =3,求AD 的长.解(1)由cos(A -C )+cos B =32,可知cos(A -C )-cos(A +C )=32,即cos A cos C +sin A sin C -cos A cos C +sin A sin C =32,可得sin A sin C =34.由m ∥n 可得b 2-ac =0,由正弦定理可知sin 2B =sin A sin C =34,因为B ∈(0,π),所以sin B =32,因此B =π3或2π3.分别代入cos(A -C )+cos B =32,可知当B =2π3时,cos(A -C )=2,不成立.因此B =π3.(2)由B =π3可知cos(A -C )=1,即A =C ,因此△ABC 为等边三角形,即a =b =c ,S △ACD =12AC ·CD sin ∠ACD =12b (5-a )sin 2π3=34a (5-a )=3,整理可得a (5-a )=4,即a 2-5a =-4,在△ABD 中,由余弦定理可知,AD 2=AB 2+BD 2-2AB ·BD cos π3=c 2+25-5c =a 2+25-5a =21,因此AD 的长为21.。

高考文科数学试题分项版解析专题10-三角函数图像与性质(Word解析版)【11页】

高考文科数学试题分项版解析专题10-三角函数图像与性质(Word解析版)【11页】

高考文科数学试题分项版解析专题10-三角函数图像与性质(Word解析版)【11页】考纲解读明方向分析解读三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.2018年高考全景展示1.【2018年新课标I卷文】已知函数,则A. 的最小正周期为π,最大值为3B. 的最小正周期为π,最大值为4C. 的最小正周期为,最大值为3D. 的最小正周期为,最大值为4【答案】B【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为,之后应用余弦型函数的性质得到相关的量,从而得到正确选项.点睛:该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.2.【2018年天津卷文】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:首先确定平移之后的对应函数的解析式,然后逐一考查所给的选项是否符合题意即可.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间等知识,意在考查学生的转化能力和计算求解能力.3.【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.2017年高考全景展示1.【2017课标II,文13】函数的最大值为.【答案】【考点】三角函数有界性【名师点睛】通过配角公式把三角函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用求最值.2.【2017课标II,文3】函数的最小正周期为A. B. C. D.【答案】C【解析】由题意,故选C.【考点】正弦函数周期【名师点睛】函数的性质(1).(2)周期(3)由求对称轴(4)由求增区间; 由求减区间;3.【2017天津,文7】设函数,其中.若且的最小正周期大于,则(A)(B)(C)(D)【答案】【解析】试题分析:因为条件给出周期大于,,,再根据,因为,所以当时,成立,故选A.【考点】三角函数的性质【名师点睛】本题考查了的解析式,和三角函数的图象和性质,本题叙述方式新颖,是一道考查能力的好题,本题可以直接求解,也可代入选项,逐一考查所给选项:当时,,满足题意,,不合题意,B 选项错误;,不合题意,C 选项错误;,满足题意;当时,,满足题意;,不合题意,D 选项错误.本题选择A 选项.4.【2017山东,文7】函数最小正周期为A. B. C. D.【答案】C 【解析】【考点】三角变换及三角函数的性质【名师点睛】求三角函数周期的方法:①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为|ω|2π,y =tan(ωx +φ)的最小正周期为|ω|π.③对于形如的函数,一般先把其化为的形式再求周期.5.【2017浙江,18】(本题满分14分)已知函数f (x )=sin 2x –cos 2x – sin x cos x (xR ).(Ⅰ)求的值.(Ⅱ)求的最小正周期及单调递增区间.【答案】(Ⅰ)2;(Ⅱ)最小正周期为,单调递增区间为.【解析】试题分析:(Ⅰ)由函数概念,分别计算可得;(Ⅱ)化简函数关系式得,结合可得周期,利用正弦函数的性质求函数的单调递增区间.【考点】三角函数求值、三角函数的性质【名师点睛】本题主要考查了三角函数的化简,以及函数的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.2016年高考全景展示1.【2016高考新课标2文数】函数的部分图像如图所示,则()(A)(B)(C)(D)【答案】A【解析】试题分析:由图知,,周期,所以,所以,因为图象过点,所以,所以,所以,令得,,所以,故选A.考点:三角函数图像的性质【名师点睛】根据图像求解析式问题的一般方法是:先根据函数图像的最高点、最低点确定A,h的值,函数的周期确定ω的值,再根据函数图像上的一个特殊点确定φ值.2.【2016高考天津文数】已知函数,.若在区间内没有零点,则的取值范围是()(A)(B)(C)(D)【答案】D【解析】考点:解简单三角方程【名师点睛】对于三角函数来说,常常是先化为y =Asin(ωx +φ)+k 的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的体现;降次是一种三角变换的常用技巧,要灵活运用降次公式.3.【2016高考新课标1文数】若将函数y =2sin (2x +6π)的图像向右平移41个周期后,所得图像对应的函数为()(A )y =2sin(2x +4π) (B )y =2sin(2x +3π) (C )y =2sin(2x –4π) (D )y =2sin(2x –3π) 【答案】D 【解析】试题分析:函数的周期为,将函数的图像向右平移个周期即个单位,所得函数为,故选D.考点:三角函数图像的平移【名师点睛】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减“,二是平移多少个单位是对x 而言的,不用忘记乘以系数.4.[2016高考新课标Ⅲ文数]函数的图像可由函数的图像至少向右平移_____________个单位长度得到.【答案】【解析】考点:1、三角函数图象的平移变换;2、两角差的正弦函数.【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.5.【2016高考山东文数】(本小题满分12分)设.(I)求得单调递增区间;(II)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数的图象,求的值.【答案】()的单调递增区间是(或)()【解析】试题分析:()化简得由即得写出的单调递增区间()由平移后得进一步可得()由()知把的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到的图象,再把得到的图象向左平移个单位,得到的图象,即所以考点:1.和差倍半的三角函数;2.三角函数的图象和性质;3.三角函数图象的变换.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质、三角函数图象的变换.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,利用“左加右减、上加下减”变换原则,得出新的函数解析式并求值.本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档