八年级数学冀教版 第16章 轴对称和中心对称16.4 中心对称图形16.4.1 中心对称图形【教案】

合集下载

2024-2025学年初中数学八年级上册(冀教版)教案第16章轴对称和中心对称

2024-2025学年初中数学八年级上册(冀教版)教案第16章轴对称和中心对称

第十六章轴对称和中心对称16.1 轴对称教学目标教学反思1.认识轴对称图形,能够识别简单的轴对称图形;2.理解两个图形成轴对称的概念,能够运用轴对称的性质作图;3.理解线段垂直平分线的意义和线段的轴对称性并用其作图.教学重难点重点:掌握轴对称图形和关于直线成轴对称这两个概念的实质,轴对称的性质;难点:轴对称图形和两个图形成轴对称的区别与联系.教学过程旧知回顾你以前学过哪些图形的变换?平移、旋转.导入新课美图欣赏引入“轴对称”建筑师、设计师在设计建筑或物品时,喜欢运用轴对称的元素,请欣赏:设置悬念:面对生活中这些美丽的图片,你是否强烈地感受到美就在我们身边!这是一种怎样的美呢?请谈谈你的感想?让学生通过观察,比较发现,这些图形都具有对称美.通过设问和学生发现的结果,揭示课题——本节课学习轴对称.教师板书课题.探究新知一、轴对称图形定义:一般地,如果一个图形沿某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.注意:有关对称轴的问题:1.对称轴指的是一条直线;2.轴对称图形的对称轴可能不止一条.练习:下列各图,你能找出它们的对称轴吗?结果:图(1)有四条对称轴;图(2)有四条对称轴;图(3)有无数条对称轴;图(4)有两条对称轴;图(5)有六条对称轴.二、轴对称展示挂图,大家想一想,你发现了什么?每一对图形沿着虚线折叠,左边的图形能与右边的图形重合.轴对称:一般地,如果两个图形沿某条直线对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴. 像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.三、轴对称图形与轴对称的区别与联系轴对称图形 两个图形成轴对称图形区别 一个图形具有的特殊形状 两个全等图形的特殊的位置关系联系 1. 都是沿着某条直线折叠后能重合.2. 可以互相转化.练习:下列说法正确的是( )A .能够完全重合的两个图形成轴对称B .全等的两个图形成轴对称C .形状一样的两个图形成轴对称D .沿着一条直线对折能够重合的两个图形成轴对称 答案:D2.如图,观察这几张图片,它们是不是轴对称图形?中垂线的定义:垂直且平分一条线段的直线,叫做这条线段的垂直平分线,简称中垂线.线段是轴对称图形,线段的中垂线是它的对称轴.线段中垂线的用法:课堂练习1.下列说法中,正确的是()A.两个全等的三角形一定关于某条直线对称B.两个图形关于某条直线对称,对应点一定在直线两旁C.两个图形的对应点连线的垂线,就是它们的对称轴D.两个关于某直线对称的三角形是全等三角形2.如图1,正方形ABCD 的边长为5 cm,则图中阴影部分的面积为__________.图1 图2 图33.如图2,在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形是轴对称图形,则符合条件的小正方形共有____个.4.如图3,将长方形纸片ABCD折叠,使点D与点B重合,点C落在C'处,折痕为EF,若AB=1,BC=2,则△ABE与△BC'F的周长之和为_______.参考答案1.D2.12.5 cm²3.34.6课堂小结1.轴对称图形:如果一个图形沿某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫轴对称图形,这条直线叫对称轴.2.两个图形成轴对称:如果两个图形沿某条直线对折后,这两个图形能够完全重合,那么就说这两个图形成轴对称.3.中垂线:如果两个图形关于某一条直线成轴对称,那么,这两个图形是全等形,它们的对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分.垂直且平分一条线段的直线,叫做这条线段的垂直平分线,简称中垂线.布置作业完成教材第110页习题A组、B组.板书设计16.1轴对称教学反思轴对称轴对称图形轴对称轴对称与轴对称图形一般地,如果两个图形沿某条直线对折后,这两个图形能完全重合,那么我们就说这两个图形成轴对称如果两个图形关于某一条直线成轴对称,那么,这两个图形是全等形,它们的对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分把成轴对称的两个图形看成一整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称一般地,如果一个图形沿某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形定义性质第十六章 轴对称和中心对称16.2 线段的垂直平分线第1课时 线段垂直平分线的性质定理教学目标1.会进行线段垂直平分线的性质定理的证明;2.理解并能灵活运用线段垂直平分线的性质解题;3.会作最短路径问题.教学重难点 重点:理解并能灵活运用线段垂直平分线的性质解题; 难点:会作最短路径问题. 教学过程 旧知回顾 回忆轴对称图形: 如果一个图形沿某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.回忆线段的垂直平分线的定义:垂直且平分一条线段的直线叫做这条线段的垂直平分线.导入新课 师问:线段是轴对称图形吗?它的对称轴是什么?生答:是轴对称图形,对称轴是线段的垂直平分线.那么线段的垂直平分线有什么样的性质呢?这节课我们来学习线段的垂直平分线的有关内容.教师板书课题.探究新知 一、线段垂直平分线的性质定理 如图所示,已知线段AB 和它的中垂线l ,O 为垂足.在直线l ,PB ,线段P A?提出你的猜想并说明理由. 事实上,因为线段AB 是轴对称图形,垂直平分线l 是它的对称轴,所以线段AB 沿对称轴l 对折后,点A和点B 重合,线段P A 和线段PB 重合,从而P A =PB .教师指导学生画线段AB ,通过对折的方法,找到它的垂直平分线,然后在对称轴上多确定几个点,让学生测量,有什么发现?如图所示,直线l 垂直平分线段AB ,P 1,P 2,P 3,…是l 上的点,分别量一量点P 1,P 2,P 3,…到点A 与点B 的距离,你有什么发现?由学生归纳命题,教师给予纠正,使之规范. 命题:线段垂直平分线上的点到线段两端的距离相等. 这个命题,是我们通过观察、猜想得到的,你能进行证明吗?已知:如图所示,线段AB 和它的垂直平分线l ,垂足为O ,点P 为直线l 上任意一点,连接P A ,PB . 求证:P A =PB . 教学反思引导学生利用SAS 证明△P AO ≌△PBO ,从而得到P A =PB . 证明:在△P AO 和△PBO 中,∵ {AO =BO,∠POA =∠POB =90°,PO =PO ,∴ △P AO ≌△PBO (SAS ),∴ P A =PB (全等三角形的对应边相等).从而得到线段的垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.几何语言:∵ l 垂直平分AB,P 为l 上一点, ∴ P A =PB .[知识拓展] (1)线段垂直平分线的性质是线段垂直平分线上所有点都具有的共同特征,即线段垂直平分线上的每一个点到线段两端的距离都相等.(2)由性质定理的证明可知,要证明一个图形上每一个点都具有这种性质,只需要在图形上任取一点作代表即可.(3)这个定理向我们提供了一个证明线段相等的方法.说明:今后我们可以直接利用这个性质得到有关线段相等,同时这也可当作等腰三角形的一种判定方法. 二、最短路径问题已知:如图所示,点A ,B 是直线l 外的任意两点,在直线l 上,试确定一点P ,使AP +BP 最短.解:如图所示,作点A 关于直线l 的对称点A ',连接A 'B ,交直线l 于点P ,则AP +BP 最短.引导学生分析、证明. 【提出问题】(1)我们知道两点之间线段最短,那么怎样把P A 和PB 这两条线段转化到一条线段上?学生讨论、分析得到:要作其中某一点关于直线l 的对称点,对称点与另一点的连线与直线l 的交点,即为点P .(2)在直线l 上任取一个异于点P 的点P ′,怎样利用“两点之间线段最短”加以证明.学生小组内交流,教师指定一名学生板演. 解:∵ 点A 和点A ′关于直线l 对称, ∴ AP =A ′P .∴ AP +BP =A ′P +BP =A ′B (等量代换).如图所示,在直线l 上任取一个异于点P 的点P ′,连接AP ′,BP ′,A ′P ′,则A ′P ′+BP ′>A ′B (两点之间线段最短).即AP ′+BP ′=A ′P ′+BP ′≥A ′B =AP +BP . ∴ AP +BP 最短.新知应用例1 已知:如图所示,D ,E 分别是AB ,AC 的中点,CD ⊥AB 于点D ,BE ⊥AC 于点E . 求证:AC =AB . 证明:连接BC ,教学反思因为点D ,E 分别是AB ,AC 的中点, 且CD ⊥AB ,BE ⊥AC ,所以CD ,BE 分别是AB ,AC 的垂直平分线, 所以AC =BC ,AB =CB , 所以AC =AB .例2 如图,A ,B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A ,B 两地,问该站建在河边的什么地方,可使所修的渠道最短? 作法:1.作点A 关于直线a 的对称点A ′. 2.连接A ′B ,交a 于点P . 点P 即为抽水站的位置.课堂练习1.如图1,已知线段AB ,BC 的中垂线 21,l l 交于点M ,则线段AM ,CM 的大小关系是( )A .AM >CMB .AM =CMC .AM <CMD .无法确定2.如图2,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是( )A .AB =AD B .CA 平分∠BCDC .AB =BD D .△BEC ≌△DEC图3.如图3,AD ⊥BC 于点D ,D 为BC 的中点,连接AB ,∠ABC的平分线交AD 于点O ,连接OC ,若∠AOC =120°,则∠ABC = _____.4.如图4,在△ABC 中,AB =AC ,D 是AB 的中点,且DE ⊥AB ,已知△BCE 的周长为12,且AC -BC =2,求AC,BC 的长. 参考答案1.B2.C3.60°4.解:∵ D 是AB 的中点,DE ⊥AB , ∴ DE 为AB 的中垂线.∴ AE =BE .∵ △BCE 的周长为12,∴ BC +CE +BE =12. ∴ AC +BC =12.∵ AC -BC =2,∴ AC =7,BC =5.课堂小结线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.布置作业完成教材第114页习题.板书设计16.2 线段的垂直平分线第1课时 线段垂直平分线的性质定理一、线段垂直平分线的性质定理 二、最短路径问题 教学反思第十六章轴对称和中心对称16.2 线段的垂直平分线第2课时线段垂直平分线的性质定理的逆定理教学目标教学反思1.理解并掌握线段垂直平分线性质定理的逆定理并学会运用;2.能够运用线段垂直平分线的性质定理和逆定理解决实际问题;3.通过经历线段垂直平分线性质定理的逆定理的证明过程,体验逻辑推理的数学方法.教学重难点重点:理解并掌握线段垂直平分线性质定理的逆定理并学会运用;难点:能够运用线段垂直平分线的性质定理和逆定理解决实际问题.教学过程旧知回顾回忆线段垂直平分线的性质定理以及主要注意的问题:线段垂直平分线上的点到线段两端的距离相等.注意:(1)线段垂直平分线的性质是线段垂直平分线上所有点都具有的特征,即线段垂直平分线上的每一个点到线段两端的距离相等.(2)由性质定理的证明可知,要证明一个图形上每一个点都具有某种性质,只需要在图形上任取一点作代表即可,应注意理解和掌握这种由特殊到一般的思想方法.(3)这个定理向我们提供了一个证明两条线段相等的方法.导入新课试一试:在练习本上以线段AB为底边作等腰△PAB.△P AB的形状和大小是确定的吗?符合条件的△P AB能作几个?观察:你所画出的所有点P的位置,有什么特征?带着问题进入我们今天的学习.教师板书课题.探究新知一、线段垂直平分线性质定理的逆定理再来回顾:你所画出的所有点P的位置,有什么特征?(学生动手操作,小组讨论,展示成果)学生很快会发现:所有的点P都在同一条直线上.大胆推测一下这条直线与线段AB的关系:这条直线是线段AB的中垂线.思考:当P A=PB时,点P一定在AB的中垂线上吗?探究:如果P A=PB,那么点P在线段AB的垂直平分线上.请同学们画出图形,写出已知,求证.已知:P为线段AB外一点,且P A=PB.求证:点P在线段AB的垂直平分线上.师:为了证明P点在AB的垂直平分线上,可以过P作辅助线,先构造“垂直或平分”中的一个关系,去证明另一个.特别要注意防止“过P作线段AB的垂直平分线”这种错误.证法1:如图1所示,取AB的中点C,作直线PC.∵P A=PB,PC=PC,AC=CB,∴△APC≌△BPC(SSS).∴∠PCA=∠PCB.又∵ ∠PCA +∠PCB =180°,∴ ∠PCA =∠PCB =90°,即PC ⊥AB , ∴ P 点在AB 的垂直平分线上.证法2:如图2所示,作∠APB 的平分线PC ,则∠1=∠2.又∵ AP =BP ,PC =PC ,∴ △APC ≌△BPC (SAS ). ∴ ∠PCA =∠PCB ,AC =BC .又∵ ∠PCA +∠PCB =180°,∴ ∠PCA =∠PCB =90°,即PC ⊥AB ,∴ P 点在AB 的垂直平分线上.线段垂直平分线性质定理的逆定理:到线段两端距离相等的点,在这条线段的垂直平分线上. 几何语言: ∵ P A =PB ,∴ P 在AB 的垂直平分线上.用途:判断一个点是否在线段的垂直平分线上.二、判断线段中垂线的方法思考:(1)若P A =PB ,过点P 作直线l ,则直线l 是线段AB 的中垂线吗?答:不一定是.理由:经过一点的直线有无数条.(2)若P A =PB ,同时MA =MB ,则直线PM 是线段AB 的中垂线吗? 答:是.理由:两点确定一条直线. 用线段中垂线性质定理的逆定理判定线段垂直平分线的步骤: ∵ AB =AC ,MB =MC ,∴ 点A ,M 均在线段BC 的中垂线上(两点确定一条直线),∴ AM 垂直平分BC .总结:判定线段中垂线的方法1.用线段中垂线的定义.2.用线段中垂线性质定理的逆定理,推出两个点都在线段的中垂线上,则过这两个点的直线就是这条线段的中垂线. 练习:1.已知,MN 是线段AB 的中垂线,下列说法正确的是( ) A .与AB 距离相等的点在MN 上B .与点A 和点B 距离相等的点在MN 上C .与MN 距离相等的点在AB 上D .AB 垂直平分MN2.点D 在△ABC 的边BC 上,且BC =BD +DA ,则点D 在线段( )的垂直平分线上. A .AB B .AC C .BC D .不能确定 答案:1.B 2.B 新知应用 例1 已知:如图所示,在△ABC 中,AB ,AC 的垂直平分线DP与EP 相交于点P .求证:点P 在BC 的垂直平分线上.引导学生分析,要让点P 在BC 的垂直平分线上,就是要证明BP =CP .教学反思学生证明,写出证明过程,教师巡视指导后全班讲评. 证明:如图所示,连接P A ,PB ,PC .∵ DP ,EP 分别是AB ,AC 的垂直平分线,∴ P A =PB =PC , ∴ 点P 在BC 的垂直平分线上. 通过此题你发现了什么结论? 【拓展延伸】 三角形三边的中垂线相交于一点,这点到三角形三个顶点的距离相等.例2 已知:如图所示,在四边形ABCD 中,AB =BC =CD =AD ,AC ⊥BD ,垂足为O . 求证:AO =OC ,BO =OD . 让学生独立思考后完成.证明:因为AB =BC ,CD =AD ,所以点B ,D 均在线段AC 的垂直平分线上,直线BD 是线段AC 的垂直平分线,所以AO =OC ,同理,BO =DO .课堂练习1.已知:点C ,D 为线段AB 外两点,下列说法正确的是( )A .若AC =BC ,则经过点C 的直线垂直于ABB .若AC =BC ,AD =BD ,则直线CD 垂直于ABC .若AD =BD ,则经过点D 的直线垂直于ABD .若CD ⊥AB ,则AC =BC ,AD =BD2.如图1,A ,B ,C 表示三个居民小区,为丰富居民的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在( ) A .AC ,BC 两边高线的交点处 B .AC ,BC 两边中线的交点处C .AC ,BC 两边垂直平分线的交点处D .∠A ,∠B 两内角平分线的交点处3.如图2,AD 为△ABC 的角平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,连接EF 交AD 于点O ,求证:AD 垂直平分EF .图1 图2 图34.如图3,四边形ABCD 是一个“风筝”骨架,其中AB =AD ,CB =CD . 设对角线AC =a ,BD =b ,请用含a ,b 的式子表示四边形ABCD 的面积. 参考答案 1.B 2.C3.证明:∵ AD 为△ABC 的角平分线,∴ ∠EAD =∠F AD.又∵ DE ⊥AB ,DF ⊥AC ,∴ ∠AED =∠AFD =90°.又AD =AD ,∴ △AED ≌△AFD (AAS ), ∴ AE =AF ,DE =DF ,∴ AD 垂直平分EF . 11114..2222CBD ABD ABCD S S S BD CE BD AE BD AC ab =+=+==△△四边形解:课堂小结教学反思教学反思布置作业完成教材117页习题A组、B组.板书设计16.2线段的垂直平分线第2课时线段垂直平分线的性质定理的逆定理一、线段垂直平分线性质定理的逆定理:到线段两端距离相等的点,在线段的垂直平分线上.二、判定线段中垂线的方法第十六章 轴对称和中心对称16.2 线段的垂直平分线 第3课时 尺规作线段的垂直平分线教学目标1.掌握如何用尺规作一条线段的垂直平分线.2.过一点作已知直线的垂线.教学重难点重点:会作已知线段的垂直平分线和已知直线的垂线;难点:运用以上两种尺规作图解决实际问题. 教学过程 旧知回顾回忆线段垂直平分线的性质定理 线段垂直平分线上的点到线段两端点的距离相等; 回忆线段垂直平分线性质定理的逆定理 到线段两端距离相等的点在线段的垂直平分线上.导入新课 如图所示,点A ,B ,C 表示三个村庄,现要建一座深井水泵站,三个村庄分别送水,为使三条输水管长度相同,处?请画示意图,并说明理由.分析:因为向三个村庄分别送水,三条输水管长度相同形三个顶点的距离相等),所以水泵站应在AB ,BC 交点处.说明:那么如何用尺规作图的方法作出线段的中垂线呢?书课题. 探究新知 一、尺规作线段的垂直平分线 如图,已知线段AB . 求作:线段AB 的垂直平分线.交流:1.在小组内交流个人作法.2.小组归纳作已知线段的垂直平分线的步骤.3.教师规范作法,并写出规范的作图语言.两点,连接这两个点,即得所求作的直线. 作法:(1)分别以点A ,B 为圆心,以大于21AB 在线段AB 的两侧画弧,分别相交于点C ,D . (2)连接CD .直线 CD 即为所求.可以用这种方法确定线段的中点.练习:如图所示的尺规作图是作( )A.线段的垂直平分线B.一个半径为定值的圆C.角的平分线D.一个角等于已知角教学反思答案:A二、过直线外一点作直线的垂线如图所示,已知直线l及l外一点P.求作:经过点P,且垂直于l的直线.处理方式:1.学生先独立思考.2.随机找一名学生说思路,教师给予适当的提示:(1)已知条件提示用什么知识点?(2)怎样才能得到结论?在直线l上作出一条线段CD,使得点P在线段CD的垂直平分线上.再作出到点C,D距离相等的点Q,连接P Q,直线P Q即为所求.3.两生板演,教师巡视指导.作法:(1)以点P为圆心,适当长为半径画弧,交直线l于点C,D.(2)分别以点C,D为圆心,适当长为半径,在直线l的另一侧画弧,两弧相交于点Q.(3)连接P Q.直线P Q即为所求.思考:如果点P在线段AB上,应该怎么做?学生思考后会发现:和点P在直线外类似,只需把P挪到直线上即可.归纳:1.根据线段垂直平分线性质定理的逆定理,只要找到两个到线段两端距离相等的点,那么过这两点就可以作出线段的垂直平分线.2.过一点作已知直线的垂线,由于已知点与直线可以有两种不同的位置关系:①点在直线外;②点在直线上.因此同学们在作图时要掌握这两种方法的区别.课堂练习1.锐角三角形ABC内有一点P,满足P A=PB=PC,则点P是△ABC()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点2.下列说法:①若点P,E是线段AB垂直平分线上的两点,则EA=EB,P A=PB;②若P A=PB,EA=EB,则直线PE垂直平分线段AB;③若P A=PB,则点P必是线段AB的垂直平分线上的点;④若EA=EB,则经过点E的直线垂直平分线段AB.其中正确的有__________. (填序号)3.如图1,在△ABC中,分别以点A和点B为圆心,大于12 AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为( )A.7B.14C.17D.204.如图,在某河道l的同侧有两个村庄A,B,想要在河道上建一个水泵站,这个水泵站建在什么位置,能使两个村庄到水泵站的距离相等?教学反思参考答案Array 1.D 2.①②③ 3.C教学反思4. 解:如图3所示,点P即为所求作.课堂小结布置作业完成教材第119页习题A组、B组.板书设计16.2线段的垂直平分线第3课时尺规作线段的垂直平分线1.作已知线段的垂直平分线;2.过直线外一点作已知直线的垂线.第十六章轴对称和中心对称16.3 角的平分线教学目标1.掌握角平分线的性质定理及其逆定理;2.能利用角平分线的性质定理及其逆定理证明相关结论.3.能利用尺规作出一个已知角的平分线.教学重难点重点:角平分线的性质定理及逆定理,利用尺规作一个角的平分线.难点:角平分线性质定理的逆定理的得出.教学过程旧知回顾1.角平分线的定义从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.2.线段垂直平分线的性质定理和逆定理线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;线段垂直平分线的性质定理的逆定理:到线段两端距离相等的点,在这条线段的垂直平分线上.导入新课1.图中表示点P到直线l的距离的是线段PC的长.2.本章中,从哪些方面学习线段的垂直平分线?①线段的垂直平分线的定义;②线段的轴对称性;③线段的垂直平分线的性质定理;④线段的垂直平分线的性质定理的逆定理;⑤线段的垂直平分线的尺规作图.类似地,今天我们将从这些角度学习角的平分线的相关知识.教师板书课题探究新知探究点一角平分线的性质定理1.角平分线的轴对称性问题:角是轴对称图形吗?如图所示,将∠AOB对折,你发现了什么?学生自己动手操作.归纳:角是轴对称图形,角的平分线所在的直线是它的对称轴.2.角平分线的性质定理动手操作:如图所示,OC是∠AOB的平分线,在角平分线OC上任意选一点P,在边OA上取点D,边OB上取点E,怎样才能使PD=PE? 同学们拿出课前准备好的∠AOB,用折纸的方法确定D,E的位置.师生活动:学生的折纸方法有可能出现的情况很多,让小组同学展示,然后从班内选择以下两教学反思种对本节课有帮助的情况,展开后的图形如图所示.第一种情况:由折叠过程可得,PD=PE.第二种情况:这样的折叠过程,实际上是给出了PD⊥OA, PE⊥OB,也能得到PD=PE.下面来证明第二种情况结论的正确性.已知:OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:PD=PE.你能用什么方法说明你的结论是正确的?教师指点,学生自行讨论,完成证明过程.展示成果:方法一:用刻度尺测量PD,PE,得到两条线段的长度相等.方法二:利用角的对称性,当沿OC所在的直线对折时,PD与PE重合,因此PD=PE. 方法三:证明:∵PD⊥OA,PE⊥OB,OC平分∠AOB,∴∠PDO=∠PEO=90°,∠AOC=∠BOC.在△PDO和△PEO中,,,,PDO PEOAOC BOC OP OP⎧⎪⎨⎪⎩∠=∠∠=∠=∴△PDO≌△PEO(AAS),∴PD=PE.教师:请你用语言描述你所得到的结论.学生:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.它常用于证明两条垂线段相等.教师:利用角的平分线的性质可直接推导出与角的平分线有关的两条线段相等,但在推导过程中不要漏掉垂直关系的书写,同时涉及角平分线上的点与角的两边的垂直关系时,可直接得到垂线段相等,不必再证两个三角形全等而走弯路.练习:判断下列的写法是否正确?(1)∵如图所示,AD平分∠BAC,(已知)∴BD=CD.(角平分线上的点到这个角的两边的距离相等 )解:错误,理由:没有垂直,不能确定BD,CD是点D到角两边的距离.(2)∵如图所示,DB⊥AB,DC⊥AC,(已知)∴BD=CD.(角平分线上的点到这个角的两边的距离相等) 教学反思。

冀教版八年级上册数学第16章 轴对称和中心对称 成中心对称

冀教版八年级上册数学第16章 轴对称和中心对称  成中心对称

着某一点旋转180 °,它 个图形的位置关
能够与另一个图形重合那 系而言的
中心 对称
么就说这两个图形关于这 (2)中心对称有一个
个点成中心对称
对称中心
2.性质:成中心对称的两个 (3)中心对称是绕对
图形中,对应点所连线段 称中心旋转
经过对称中心,且被对总结 (1)连接两对对应点,则线段的交点即为对称中心. (2)中心对称作图的方法步骤: ①确定对称中心;②作关键点的对称点; ③连线;④写结论. (3)每一对对应点所连线段被对称中心平分是识别中心对
知1-讲
例1 如图所示的图形中,成中心对称的有____3____组.
导引:利用成中心对称的定义解答.
总结
知1-讲
根据成中心对称的定义,看左边的图形能否绕一点 旋转180°后与右边的图形重合,能就成中心对称,不 能就不成中心对称.
知1-练
1 下列说法正确的是( D ) A.全等的两个图形成中心对称 B.能够完全重合的两个图形成中心对称 C.绕某点旋转后能重合的两个图形成中心对称 D.绕某点旋转180°后能够重合的两个图形成中心对
知2-练
1 如图,△ABC与△A1B1C1关于点O成中心对称,下列 说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA= OA1;④△ABC与△A1B1C1的面积相等,其中正确的 有( D )
A.1个 B.2个 C.3个 D.4个
知2-练
2 如图,将△ABC以点O为旋转中心旋转180°后得到 △A′B′C′,点E,D分别是AB,AC的中点,已知ED =2,则线段E′D′的长度为( A )
知3-练
1 如图,已知四边形ABCD和点O,画四边形A′B′C′D′, 使四边形A′B′C′D′与四边形ABCD关于点O成中心对 称.

冀教版数学八年级上:第十六章 轴对称和中心对称第十六章 轴对称和中心对称

冀教版数学八年级上:第十六章 轴对称和中心对称第十六章 轴对称和中心对称

第十六章轴对称和中心对称1.通过具体实例了解轴对称、轴对称图形、中心对称、中心对称图形的概念,探索它们的基本性质.2.能按要求画出简单平面图形经过轴对称、中心对称后的图形.3.理解和掌握线段的垂直平分线和角平分线的性质定理及其逆定理.4.能够运用平移、旋转和轴对称进行简单图案的设计.5.通过欣赏和设计图案,认识到图形的平移、旋转和轴对称在现实生活中的应用.1.通过观察、思考、操作、交流、初步验证、推理验证等活动,体会知识的形成过程.2.在直观感知、操作确认的基础上,进一步学会说理,掌握一定的演绎推理能力,体会数学在现实生活中的广泛应用.1.通过探究活动,培养学生探求知识的欲望,让学生体验成功的乐趣.2.让学生经历观察、思考、操作、欣赏、设计等活动过程,进一步发展空间观念,增强审美意识,积累数学活动经验.本章的主要内容是轴对称和轴对称图形、中心对称和中心对称图形及其性质,探究线段垂直平分线、角平分线的性质定理及其逆定理,利用平移、旋转、轴对称设计图案.(1)轴对称、中心对称在现实生活中有着广泛应用,在教材的处理上,为学生提供大量生动的现实情境,通过赏析,提高学生的审美能力,激发学生的学习兴趣,加强数学与现实联系,更好地培养学生的应用意识.(2)通过“一起探究”,设置观察、猜想、交流、探究、验证等活动,引导学生发现轴对称、中心对称的性质定理及其逆定理,经历发现问题、提出问题、分析问题、解决问题的过程,使学生掌握解决问题的方法,积累一定的数学活动经验.(3)线段、角是简单的轴对称图形,通过观察、思考、操作验证、证明验证等活动,探究线段垂直平分线、角平分线的性质定理及其逆定理,发展学生的合情推理、演绎推理能力.(4)在学习完平移、旋转和轴对称后,引导学生辨析典型图形,使学生认识到一些较为复杂的图形可由简单图形经过变化得到,目的是深化平移、轴对称、旋转的性质,加强前后知识的联系和综合运用.【重点】1.轴对称和轴对称图形、中心对称和中心对称图形及其性质.2.线段垂直平分线、角平分线的性质定理及其逆定理.3.利用平移、旋转、轴对称设计图案.【难点】1.轴对称和轴对称图形、中心对称和中心对称图形的性质.2.线段垂直平分线、角平分线的性质定理及其逆定理的应用.1.轴对称、中心对称与现实有着紧密的联系,在教学中,应以现实生活中的实例为素材,让学生体会和认识生活中的轴对称和中心对称,通过观察、分析、操作、猜想、验证等活动,提炼轴对称及轴对称图形、中心对称及中心对称图形的概念,利用合情推理和演绎推理探究轴对称、中心对称的性质定理及其逆定理.2.教师在组织教学活动的过程中,要充分发扬民主精神,为学生提供自主学习及探索的空间与时间,促使学生在课堂上积极动手实践、勤于思考、一起探究、合作交流,并在活动的过程中不断地获取新知识,提高数学思考的能力.3.倡导教师根据教学实际,适当选取贴近学生生活实际的实例丰富教材,利用各种教学资源、现代化教学手段,创设有利于学生认识、学习及相互交流的氛围.4.注意知识间的相互联系和区别.图形的平移、旋转不是本章所学知识,但它们也都是图形变化的主要方式.在后面的教学中,应把平移、旋转和轴对称融合在一起,让学生在整体上认识图形的变化,这样能较好地体现新旧知识的联系.16.1轴对称1.理解轴对称、两个图形成轴对称的概念.2.了解轴对称图形的对称轴,两个图形成轴对称的对称轴、对应点.3.了解轴对称图形与两个图形成轴对称的区别与联系.1.通过学习轴对称图形和两个图形成轴对称,进一步认识几何图形的本质特征.2.通过学习轴对称图形和两个图形成轴对称的区别和联系,进一步发展学生的抽象概括能力.通过对轴对称图形和两个图形成轴对称的学习,激发学生的学习欲望,使他们主动参与数学学习活动中.【重点】轴对称图形和两个图形成轴对称的概念.【难点】轴对称图形和两个图形成轴对称的区别与联系.【教师准备】课件.【学生准备】搜集轴对称图形.导入一:我们生活在一个充满对称的世界中,许多建筑物都设计成对称的,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中有些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥妙,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,从这节课开始,我们来学习第十六章.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.导入二:出示图片:青山倒映在水中.这是什么景象呢?同学们可以想象,落日、晚霞、青山倒映在平静的水中,这样如诗如画的景致多么令人难忘!自远古以来,对称形式就被认为是和谐美丽的,不论是在自然界中还是建筑里,甚至最普通的日常生活中,对称的形式都随处可见.本节课我们就一起去探究轴对称的奥秘吧![设计意图]两个导入都是以生活中的轴对称为例,勾勒美好的画面,让学生感受数学中的美,体会数学与生活的密切联系,自然地引入到本节课的学习之中.活动一:观察与思考——认识轴对称思路一【活动1】展示教材第108页图16-1-1及收集到的生活中的图片.【师生活动】教师展示生活中的图片,让学生欣赏图片,感知对称图形,学生列举所见到的图形.活动中,教师明确:(1)对称的多样性,而其中轴对称是重要的一种;(2)本节要探究的内容:轴对称有哪些性质?[设计意图]展示的图片与生活实际相关,包含自然景观、分子结构、建筑物、艺术作品、动物、植物、生活用品等,让学生感知对称图形,激发学生的学习热情.通过展示学生自制的图片,让学生联系生活实际,主动参与数学活动,感知数学与生活的密切联系.【活动2】(1)把一张长方形纸对折,剪出一个图案,再打开,就剪出了美丽的窗花,你能剪出什么样的窗花呢?(2)观察剪出的窗花,你能发现它们有什么共同特征?(3)联系实际,你能举出一个轴对称图形的例子吗?【师生活动】教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这个纸片,让学生观赏,然后学生自己动手按要求剪纸.学生在观察、互相交流的基础上描述图形的特征.教师归纳轴对称图形的概念,并板书概念,然后让学生举例.归纳:一般地,如果一个图形沿某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.[知识拓展]轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成两部分,沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以有一条,也可以有多条甚至无数条.[设计意图]教师演示剪纸过程起一个示范作用,学生动手剪纸是让学生参与到活动中去,培养学生的动手能力,通过观察、思考,让学生互相交流,增强发现能力.【活动3】问题(1)教材图16-1-2的图形有什么特征?(2)联系实际,你能举出一些生活中两个图形成轴对称的例子吗?【师生活动】学生观察、举例、讨论交流,教师引导得出两个图形关于某直线对称及对称轴、对应点、对应线段、对应角的概念,并板书概念.归纳:一般地,如果两个图形沿某条直线对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴,关于对称轴对称的点、对称的线段、对称的角分别叫做对应点、对应线段、对应角.[设计意图]学生通过观察、举例、独立思考,认识两个图形关于某直线对称的本质特征,鼓励学生善于观察、勇于发现,培养合作意识.【活动4】问题(1)轴对称图形与两个图形成轴对称有什么区别?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?成轴对称的两个图形全等吗?(3)如果把两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?【师生活动】学生根据两组图形的比较观察,讨论交流(1),教师引导学生得出区别.教师提出问题后,让学生思考(2),进一步明确轴对称图形与两个图形成轴对称之间的联系.[知识拓展]图形成轴对称包括两层含义:(1)有两个图形,且这两个图形能够完全重合,即形状、大小完全相同;(2)对重合的方式有限制,只能是把它们沿某条直线对折后能够完全重合.[设计意图]通过学生举例,进一步认识两个图形成轴对称的本质.通过比较观察、相互讨论进一步认识两种图形的本质特征.让学生运用辩证的观点认识事物,发展学生抽象思维能力.活动二:一起探究——成轴对称图形的性质【活动5】问题:成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?【师生活动】学生独立思考后,再展开讨论,教师参与学生讨论,及时指导.[设计意图]通过练习进一步巩固两个图形成轴对称的概念.【活动6】问题观察教材图16-1-3:1.根据全等形的意义,ΔABC与ΔA'B'C'全等吗?对应线段有怎样的数量关系?对应角呢?2.对应点的连线AA',BB',CC'分别与对称轴l有怎样的位置关系?你能用刻度尺测量出点A与A'到对称轴l的距离吗?B与B'、C与C'到对称轴l的距离呢?【师生活动】教师引导学生从位置上观察三条线段与对称轴l的关系,利用投影动画展示A与A',B与B',C与C'重合的情形.归纳:成轴对称图形的性质:如果两个图形关于某一条直线成轴对称,那么这两个图形是全等形,它们的对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分.说明:成轴对称的图形的性质对于轴对称图形同样适用.垂直且平分一条线段的直线,叫做这条线段的垂直平分线,简称中垂线.线段是轴对称图形,线段的中垂线是它的对称轴.线段垂直平分线的定义揭示线段与对称轴的关系:一是垂直;二是平分.从而归纳出成轴对称图形的性质.[设计意图]利用动画演示,让学生一目了然,便于接受,采用多种方法丰富学习渠道,加深了对知识的理解和掌握.【活动7】如图所示,已知线段AB和直线l,画出线段AB关于直线l的对称线段.【师生活动】引导学生根据成轴对称图形的性质画出图形,学生在练习本上操作,教师讲评.[设计意图]通过学生的操作,认识对称轴的确定方法,培养学生的探究能力.思路二【活动1】作品展示,交流体会1.作品展示:让部分学生展示课前的剪纸作品(可以将作品粘贴到黑板上).2.小组活动:(1)在窗花的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?[设计意图]通过收集材料、剪纸操作,增加学生对轴对称图形的感性认识,为轴对称概念的引出做铺垫.【活动2】概念形成(一)轴对称图形1.学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”的定义.2.结合学生准备的图形进一步分析轴对称图形的特点,以及对称轴的位置.3.学生举例,试举几个在现实生活中见到的轴对称的例子.4.判断下面的图形是不是轴对称图形,如果是轴对称图形,找出它们的对称轴.[设计意图]在学生经历了一系列的过程后让学生尝试归纳,培养学生的概括能力,加深对轴对称图形的理解.(二)两个图形关于某条直线对称1.观察右图,有什么特点?2.两个图形成轴对称的定义.观察右图:把ΔA'B'C'沿直线l对折后能与ΔABC重合,则称ΔA'B'C'与ΔABC关于直线l对称,简称“成轴对称”,点A 与点A',点B与点B',点C与点C'称为对称点,直线l叫做对称轴.3.举例:你能举出一些生活中两个图形成轴对称的例子吗?4.讨论:轴对称图形和两个图形成轴对称的区别.[设计意图]先观察图形,再画图.其目的是突出两个图形和这两个图形之间的关系,在此基础上再给出定义.通过讨论、比较,便于进一步理解概念,弄清它们之间的联系和区别,以突破本课的教学难点.同时培养学生的辩证唯物主义观点.(三)成轴对称图形的性质观察上图,线段AA'与对称轴l有怎样的位置关系?你能说明理由吗?类似地,点B与点B',点C与点C'是否也有同样的位置关系?你能用语言归纳上述发现的规律吗?结合学生发表的观点,教师总结并板书:对称轴经过对称点所连线段的中点,并且垂直于这条线段.在这个基础上,教师给出线段的垂直平分线的概念,然后把上述规律概括成成轴对称图形的性质.上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对称轴两侧的对应点的连线与对称轴之间是否也有同样的关系呢?从而得出:类似地,轴对称图形的对称轴,是对称轴两侧对应点所连线段的垂直平分线.[设计意图]让学生主动参与进来,转变以往的学习方式,提高学习的认知水平和能力.【活动3】实践与应用1.下面是生活中的一些图形,它们是轴对称图形吗?2.下列图形是部分汽车的标志,哪些是轴对称图形?3.下图中的两个图形是否成轴对称?如果是,请找出它的对称轴.[设计意图]通过练习,进一步培养学生的观察、辨别能力,巩固所学知识.知识点一:轴对称图形1.轴对称图形沿对称轴折叠,两旁的部分能够完全重合.2.轴对称图形的对称轴是轴对称图形对称轴两侧的对应点所连线段的垂直平分线,可能只有一条,也可能不止一条.知识点二:两个图形成轴对称轴对称图形与两个图形成轴对称既有区别又有联系.区别:轴对称图形是指一个图形的特征,成轴对称是两个图形的位置关系.联系:二者都有对称轴,如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形;如果把轴对称图形对称轴两旁的部分看成两个图形,那么这两个图形成轴对称.知识点三:成轴对称图形的性质1.成轴对称图形的性质介绍了对称轴与对应点所连线段之间的关系,即对称轴垂直平分对应点所连的线段.2.根据这一性质,若已知对称轴和一个图形的一点就能准确作出该点的对应点,而不必再去对折了.1.如图所示,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为()A.30°B.45°C.60°D.75°解析:要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,易知∠1=60°.故选C.2.下面四句话中的文字有三句具有对称规律,其中没有这种规律的一句是()A.上海自来水来自海上B.有志者事竟成C.清水池里池水清D.蜜蜂酿蜂蜜解析:A.上海自来水来自海上,可将“水”理解为对称轴,对折后重合的字相同,故本选项错误;B.有志者事竟成,五字均不相同,所以不对称,故本选项正确;C.清水池里池水清,可将“里”理解为对称轴,对折后重合的字相同,故本选项错误;D.蜜蜂酿蜂蜜,可将“酿”理解为对称轴,对折后重合的字相同,故本选项错误.故选B.3.经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变解析:∵轴对称变换不改变图形的形状与大小,∴与原图形相比,形状没有改变,大小没有改变.故选A.4.如图所示,由4个大小相等的正方形组成的L形图案.(1)请你改变1个正方形的位置,使它变成轴对称图形;(2)请你再添加一个小正方形,使它变成轴对称图形.解析:根据轴对称图形的概念进行设计.解:答案不唯一,如图所示.16.1轴对称活动一:观察与思考——认识轴对称活动二:一起探究——成轴对称图形的性质例题一、教材作业【必做题】1.教材第110页练习第1,2题.2.教材第110页习题A组第1,2,3题【选做题】教材第111页习题B组第1,2题.二、课后作业【基础巩固】1.如图所示,不是轴对称图形的是()2.如图所示,一定是轴对称图形的有()A.1个B.2个C.3个D.4个3.京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.如图所示的京剧脸谱剪纸中是轴对称图形的个数有()A.1个B.2个C.3个D.4个4.如图所示的图形中不是轴对称图形的是()5.如图所示,▱ABCD与▱EBCF关于边BC所在的直线对称,若∠ABE=110°,则∠F等于()A.60°B.55°C.45°D.35°【能力提升】6.如图所示,在下面一组图形符号中找出它们所蕴含的规律,然后在横线上的空白处填上恰当的图形.7.如图所示,在长方形的台球桌面上,选择适当的角度打击白球,可以使白球经过两次反弹后将黑球直接撞入袋中,此时∠1=∠2,∠3=∠4,并且∠2+∠3=90°,∠4+∠5=90°.如果黑球与洞口的连线和台球桌面边缘的夹角∠5=40°,那么∠1应该等于多少度才能保证黑球准确入袋?请说明理由.【拓展探究】8.如图所示,ΔABC与ΔDEF关于直线MN对称,其中∠ACB=90°,AC=8 cm,DE=10 cm,BC=6 cm.(1)线段AD与MN的关系是什么?(2)求∠DFE的度数.(3)求ΔABC的周长和ΔDEF的面积.【答案与解析】1.A(解析:根据轴对称图形的定义判断即可.故选A.)2.C(解析:圆弧、角、等腰梯形都是轴对称图形.故选C.)3.C(解析:第一个、第三个、第四个图形是轴对称图形.故选C.)4.B(解析:根据轴对称图形的定义判断即可.故选B.)5.B(解析:∵▱ABCD与▱EBCF关于边BC所在的直线对称,∴∠ABC=∠EBC,∵∠ABE=110°,∴∠EBC=∠ABE=110°=55°,在▱EBCF中,∠F=∠EBC=55°.故选B.)6.(解析:从图中可以发现所有的图形都是轴对称图形,而且图形从左到右分别是1~7的数字,所以画一个轴对称图形且数字为6即可,答案不唯一.)7.解:由∠5=40°,易知∠7=∠5=40°,由∠3=∠4,易知∠7=∠6=40°,∴∠2=∠6=40°,∴∠1=∠2=40°.答:∠1等于40°时,才能保证黑球能直接入袋.8.解:(1)∵ΔABC与ΔDEF关于直线MN对称,∴MN垂直平分AD. (2)∵ΔABC与ΔDEF关于直线MN对称,∠ACB对应∠DFE,∴∠DFE=∠ACB=90°. (3)∵AC=8 cm,DE=10 cm,BC=6 cm,且AB对应DE,AC对应DF,BC 对应EF,∴DE=AB=10 cm,DF=AC=8 cm,EF=BC=6 cm,∴ΔABC的周长为6+8+10=24(cm),ΔDEF的面积为6×8=24(cm2).轴对称图形是一个较抽象的概念,教师在教学中根据学生的特点,设计了这堂课,在教学中始终以学生为主体,着力引导学生通过操作、观察、比较、思考、交流、讨论等活动,主动获取知识,掌握和理解轴对称图形的概念和基本特点,并在自主探索中体会到探索之趣,成功之乐,培养了学生的学习兴趣,更培养了学生的学习能力.从以下几个途径提升课堂教学的活力和效果:一、从直观引入,将轴对称图形的特点具体化,学生较易理解,得到了初步感知.二、动手操作充分,通过对图形的折、画,学生在操作活动中进一步理解了轴对称图形的特点及对称轴的含义.三、充分调动学生的各种感官来学习知识,整个教学活动中留有足够的空间让学生动口、动手、动脑,充分发挥了学生的主体学习地位,同时很好地培养了学生的发散性思维.整节课的安排,努力贯彻“学生为主体、教师为主导”学生自主发展的教育原则.教师只是对概念的引入加以指导以及对整个教学流程加以控制,其余都让学生自己观察、思考、操作、联想、讨论、口述,这样有利于每位学生积极动脑、动手、动口、耳闻、目睹,使全体学生真正成为学习活动的主人.其中,动手操作不仅适合八年级学生的年龄特征,更能激发学生的求知欲,使学生处于一种跃跃欲试的求知状态,从而创设良好的求知氛围,这样将有利于学生在教师的引导下去发现与掌握新知识.1.学生对轴对称图形和成轴对称图形的概念容易混淆,教师分析的不够到位.2.对于轴对称和成轴对称的性质教师还可以适当地加以延伸.3.对于知识的归纳和总结教师说得多,学生说得少.对于轴对称图形和成轴对称图形的概念要指导学生认真地区分,可以从两方面考虑:一是概念;二是它们的区别和联系,要让学生明确成轴对称的两个图形如果看成一个整体,就是一个轴对称图形.对于轴对称图形和成轴对称的图形的性质,一定要让学生自己去发现、归纳,在不足的情况下,让学生互相补充,能让学生说出来的,教师绝不包办代替,给学生自由思考和交流的空间,让他们自主探索,全面发展.练习(教材第110页)1.提示:从左到右依次标出(1)(2)(3)(4),图(1)(3)(4)是轴对称图形.画图略.2.解:画出的对称轴如图所示.图(1)中点B与点C关于对称轴对称.图(2)中点A与点D关于对称轴对称,点B 与点C关于对称轴对称.图(3)中点B与点D关于对称轴对称.习题(教材第110页)A组1.解: (1)第1,4个图形是轴对称图形. (2)对称轴如图所示.2.解:如图所示.B组1.提示:过点A作直线l的垂线,交直线l右侧四边形于点A'.(点B',C'同理,图略)2.解:∠BCD=2×(360°-90°-130°-110°)=2×30°=60°.唐朝某地建造了一座十佛寺,竣工时,太守在庙门右边写了一副上联“万瓦千砖百匠造成十佛寺”希望有人对出下联,且表达恰如其分,几个月过去了,无人能对,有个文人李生路过,感觉庙前没有下联不像话,十分感慨,一连几天在庙前苦思冥想,未能对出下联,有次在庙前散步,望见一条大船由远而来,船夫正使劲地摇橹,这时李生突发灵感,对出了下联“一舟二橹四人摇过八仙桥”.太守再次路过此庙时,看到下联,连连称赞:“妙、妙、妙”.这副对联数字对数字,事物对事物,对仗工整,可见,对称美在文学方面也有生动深刻的体现.生活中的轴对称无处不在,只要你善于观察,将会发现其间所蕴涵的丰富的文化价值和对称美给人带来的无穷享受.(2019·日照中考)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()〔解析〕 A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确.故选D.(2019·大庆中考)以下图形中对称轴的数量小于3的是()〔解析〕 A.有4条对称轴;B.有6条对称轴;C.有4条对称轴;D.有2条对称轴.故选D.。

冀教版八年级上册数学第16章 轴对称和中心对称 中心对称图形

冀教版八年级上册数学第16章 轴对称和中心对称  中心对称图形

知2-练
2 仔细观察艺术字:,与这两个字具有相同对称特征
的汉字是( ) C
A.甲
B.土
C.日
D.木
知3-讲
知识点 3 有关中心对称图形的画图
例3 如图是4×4正方形网格,请在其中选取一个白色的单位正 方形并涂黑,使图中黑色部分是一个中心对称图形.
导引: 图中中间的相邻的2对黑色的正方形是中心 对称图形,需找到最上边的那个小正方形的 中心对称图形,它原来在右上方,那么旋转 180º后将在左下方.
定在图形上
2.性质:对应点连线所得 (3)中心对称图形绕对
线段被对称中心平分
称中心旋转 180°
后能与自身重合
方法规律总结 (1)连接两对对应点,则线段的交点即为对称中心. (2)中心对称作图的方法步骤: ①确定对称中心;②作关键点的对称点; ③连线;④写结论. (3)每一对对应点所连线段被对称中心平分是识别中心对 称图形的重要依据.
A.等腰三角形
B.等边三角形
C.平行四边形
D.正方形
导引:根据轴对称图形与中心对称图形的定义判断.
选项中的轴对称图形有A,B,D,
中心对称图形有C,D,
既是轴对称图形又是中心对称图形的只有选项D.
总结
知1-讲
识别一个图形是不是中心对称图形的方法是看旋转 180°后是否和原图形重合,重合的就是,否则不是.
知1-练
1【中考·齐齐哈尔】下列汉字或字母既是中心对称图形 又是轴对称图形的是( C)
A
B
C
D
知1-练
2 下列汽车标志中,可以看成中心对称图形的是( D )
知1-练
3【中考·长沙】下列图形中,是轴对称图形,但不是中 心对称图形的是( B)

【冀教版】八年级上册数学第十六章 轴对称和中心对称 复习课件PPT课件

【冀教版】八年级上册数学第十六章 轴对称和中心对称 复习课件PPT课件
距离相等 . 线段垂直平分线上的点到线段两个端点的_________ 线段垂直平分线的性质定理的逆定理
与一条线段两个端点__________ 距离相等 的点,在这条线段的垂直平
分线上. 角平分线的性质定理
距离相等 角的平分线上的点到角的两边的__________. 角平分线性质定理的逆定理
角的内部到角的两边的___________ 距离相等 的点在角的平分线上.
全等形 ,它们的_______________ 对应角相等 ,对 对应线段相等 ,_____________ 是________
应点所连的线段被对称轴垂直平分. 垂直平分线
_____________ 垂直且平分 一条线段的直线,叫做这条线段的垂直平分
线,简称中垂线.
精选 中小学课件精品 2
线段垂直平分线的性质定理
精选
D.∠P2OP1>90°
中小学课件精品 9
3.如图,整个图形是轴对称图形吗?如果是轴对称图形,画出 它的对称轴.
精选
中小学课件精品
10
4.(1)根据要求作图:
①画出△ABC关于直线m对称的△A1B1C1;
②画出△A1B1C1关于直线n对称的△A2B2C2; ③画出△ABC关于直线n对称的△A3B3C3. m
中小学课件精品
C C′ C″ N 图(1)
B″ A″
5
解析 本题考查的是对称轴的画法及轴对称的性质,连接
△A′B′C′和△A″B″C″中的任意一对对应点,作所得线段的垂直 平分线即为直线EF,根据轴对称的性质可求角的数量关系. 答案(1)如图(2)所示,连接B ′ B ″,作线段B ′ B ″的垂直平
分线EF,则直线EF是△A ′ B ′ C ′和△A ″ B ″ C ″的对称轴.

冀教版数学八年级上:第十六章 轴对称和中心对称16.4 中心对称图形

冀教版数学八年级上:第十六章 轴对称和中心对称16.4 中心对称图形

轴对称图形与中心对称图形异同
轴对称图形 中心对称图形
至少有一条对称轴 ——直线 沿对称轴翻折
翻折后对称轴两侧的 图形互相重合
只有一个对称中心——点 绕对称中心旋转180°
旋转前、后的图形互相重 合
3.对于图形的旋转,有基本性质:“一个图形和它 经过旋转所得到的图形中,对应点到旋转中心的 距离相等,两组对应点分别与旋转中心连线所成 的角相等”,中心对称图形具有怎样的性质? 在成中心对称的两个图形中,对应点的连线经 过对称中心,并且被对称中心平分.
3.已知A,B,O三点不在同一直线上,A,A'关于O点对称, B, B'关于O点对称,那么线段AB与A' B' 平行且相等 .(填 数量和位置关系) 解析:中心对称图形中的不在同一直线上的两条对应线 段的关系是平行且相等.故填平行且相等. 4.如图所示,线段AB,CD互相平分于点 O,过O作EF交AC于E,交BD于F,则这 个图形是中心对称图形,对称中心是O.指 出图形中的对应点: ,对应线 段:______, 对应三角形: . :根据中心对称的定义结合图形可知图形中的对应点、对应线段、对应三角形. 解析 答案:A和B,C和D,E和F OA和OB,OC和OD,OE 和OF,AC和BD,AE和BF,CE和DF ΔAOC和 ΔBOD,ΔAOE和ΔBOF,ΔCOE和ΔDOF.
6.如图(1)所示的是4×4正方形网格,请在其中选 取一个白色的单位正方形并涂色,使图中涂色部 分是一个中心对称图形. 解析:图中间的相邻的2对涂色的正方 形已是中心对称图形,需找到与最上边 的那个正方形成中心对称的图形,那么 将它旋转180°即可.
解:如图(2)所示.
7.如图(1)所示的是以O为对称中心的中心对称 图形正六边形ABCDEF的部分,补全正六边形 ABCDEF,并指出所有的对应点和对应线段. 解析:画中心对称图形,要确保对称中心是 对应点所连线段的中点,即B,O,E共线, 并且OB=OE,C,O,F共线,并且OC=OF.

八年级数学上册16轴对称和中心对称16.4中心对称图形导学案新版冀教版

八年级数学上册16轴对称和中心对称16.4中心对称图形导学案新版冀教版

16.4 中心对称图形【学习目标】1.了解中心对称图形的概念,能识别中心对称图形,会找对称中心;2.了解成中心对称的概念,掌握中心对称图形的性质;3.能画出已知图形关于某点成中心对称的图形.【学习重点】中心对称图形与成中心对称的概念.【学习难点】中心对称图形的性质.【预习自测】知识链接:1. 画出线段AB以其中点为对称中心的对称图形2.画出等边三角形以其中心为对称中心的对称图形【合作探究】探究活动一:动手操作,同桌合作,判断长方形和等腰梯形是否为中心对称图形探究活动二:深入思考,小组讨论交流,如何判断一个图形是不是中心对称图形?结论:有的图形(如线段)绕某一点旋转180°后,能够与自身重合,有的图形(如等边三角形)绕一个点旋转180°后,不能与自身重合.这就是我们这节课要深入探究的——中心对称图形.方法总结:(1)先假设某一点为旋转中心.强调:这个旋转中心一定在图形的最中间处,一定不在图形的某一个顶点处.一般的,四边形的中心要先连出两条对角线,对角线的交点是四边形的中心.而三角形、五边形等需要用眼睛估计中心的位置.(2)在图形上选取一个或几个项点,作出它们关于已确定的中心的中心对称点.(3)如果作出的这些中心对称点在图形上,那么这个图形就是中心对称图形,如果不在就不是中心对称图形.例题:用所给的平行四边形瓷砖(如图3)四块铺设一个中心对称图形,请把你设计的图形画在如图10所示的8×8方格中(要求以点O为对称中心).图3 图4分析:此类考题具有开放性,答案不惟一.不仅考查考生的对知识的掌握,更重要的是考查考生的想象能力、动手操作能力以及发散思维能力.解决问题需要熟练掌握中心对称图形,轴对称的有关特征.解:下面给出几例供参考(如图5)图5评注:根据所给出的基本图形设计中心对称图形,需要掌握基本图形的特征以及中心对称图形所具有的特征.解决问题时可将基本图形放置在固定位置,然后通过将基本图形适当旋转一定的角度或对基本图形进行轴对称变换等构造中心对称图形.解决此类问题应具有一定的空间想象能力.【解难答疑】1.下列图形中,既是轴对称图形又是中心对称图形的是( )2.下列图形中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.3.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个【反馈拓展】为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的图弧构成的图案,既是轴对称图形又是中心对称图形.种植花草部分用阴影表示.请你在图1③、图1④、图1⑤中画出三种不同的的设计图案.提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图1①、图1②只能算一种.A .B .C .D .图1分析:本题是一道与对称图形有关的设计图案问题,要拼既具有中心对称又具有轴对称图案且只能用圆弧在正方形内加以设计.本题答案具有开放性,可以根据自己想象设计出符合要求的图案.解:给出五种不同的答案,如图所示.【总结反思】 1.本节课我学会了:还有些疑惑:2.做错的题目有: 原因:① ② ③ ④ ⑤。

八年级数学冀教版 第16章 轴对称和中心对称16.1 轴对称【说课稿】

八年级数学冀教版 第16章  轴对称和中心对称16.1  轴对称【说课稿】

轴对称对于《轴对称》,我将从教材分析,学法分析,教法分析,教学过程分析四个方面加以说明。

一、教材分析本节课的内容,是初中数学的重要内容之一,一方面,轴对称现象在生活中是很常见的,在数学中具有十分重要的性质和运用。

本节课让学生学习了解轴对称现象的数学本质,为学习轴对称的性质、变换,等腰三角形的直观认识打下坚实基础。

另一方面,涉及到"空间与图形"领域中的图形与变换内容,是培养学生的观察能力、归纳类比能力、合作交流能力,让学生经历数学现象的探究过程,感受数学美,从而激发数学学习的乐趣,体会数学与生活的密切联系。

鉴于这种认识,我认为本节课不仅有着广泛的实际应用,而且起着承前启后的桥梁作用。

本课时的教学目标是知识与技能目标①理解轴对称图形,两个图形关于某直线对称的概念。

②了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点。

③了解轴对称图形与两个图形关于某直线对称的区别和联系。

过程与方法目标经历“观察----比较一操作一概括一检验一应用”的学习过程,培养学生的动手实践能力、抽象思维和空间想象能力.情感态度价值观目标通过对丰富的轴对称现象的认识,进一步培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力和审美能力的提高.重点是轴对称图形和两个图形关于某直线对称的概念。

难点是轴对称图形和两个图形关于某直线对称的区别和联系。

二、学法分析学情分析从认知情况来说这节课是在学生学习了“全等三角形”相关内容之后安排的一节课,学生已经具备了一定的推理能力,具备学习本节内容的认知条件,具备参与课堂探索活动的热情,因此,这节课通过观察图片和演示实验,让学生自己去发现和总结轴对称图形和轴对称的概念是切实可行的。

在教学过程中,我遵循学生的认知规律,根据学生的知识结构和认知结构,在学生探索知识的过程中培养他们掌握好的学习和解题方法,并且通过自己动手操作、动脑思考、动口表述,培养学生的观察、猜想、概括、实践、表述论证的能力。

冀教版八年级上册数学第16章 轴对称和中心对称 用尺规作线段的垂直平分线

冀教版八年级上册数学第16章 轴对称和中心对称  用尺规作线段的垂直平分线
2 用尺规作长度为8cm的线段AB的垂直平分线, 小明在以点A为圆心画弧时,所选的半径可以 是下列线段中的( C ) A.a=3cmB.b=4cm C.c=6cmD.d=300cm
知识点 2 作线段垂直平分线的应用
知2-讲
例2 如图,某城市规划局为了方便居民的生活,计划在三 个住宅小区A,B,C之间修建一个购物中心,试问: 该购物中心应建于何处,才能使 得它到三个小区的距离相等?
知2-讲
导引:本题转化为数学问题就是要找一个点,使它到三 角形的三个顶点的距离相等.首先考虑到A,B两 点距离相等的点应该在线段AB的垂直平分线上, 到B,C两点距离相等的点应该在线段BC的垂直平 分线上,两条垂直平分线的交点即为所求的点.
知2-讲
解:连接AB,BC,分别作AB,BC的垂直平分线DE, GF,两直线交于点M,则点M就是所要修建的购 物中心的位置.如图所示.
知2-练
1 设点M是直线AB上的一点,过点M作直线AB 的垂线时,第一步是( C ) A.以点A为圆心,大于A1B的长为半径画弧 B.以点M为圆心,大于A12B的长为半径画弧 C.以点M为圆心,适当长2为半径画弧 D.过点M作直线AB的垂线
知2-练
2 下列作图方法中,能确定线段AB的中点的是( B ) A.作线段AB的垂线 B.作线段AB的垂直平分线 C.过点A作线段AB的垂线 D.过线段AB的中点作线段AB的垂线
第十六章轴对称与中心对称
16.2线段的垂直平分线
第2课时用尺规作线段的 垂直平分线
1 课堂讲解 2 课时流程
尺规作线段的垂直平分线 作线段垂直平分线的应用
逐点 导讲练
课堂 小结
作性质是什么? 2. 说一说:线段垂直平分线的性质? 3. 如何判断一条直线是否是线段的垂直平分线?

冀教版八年级上册数学第16章 轴对称和中心对称 成中心对称

冀教版八年级上册数学第16章 轴对称和中心对称 成中心对称
解:如图,①连接AO,BO,CO,并分别延长至A″,B″, C″,使A″O=AO,B″O=BO,C″O=CO; ②连接A″B″,A″C″,B″C″, 则△A″B″C″即为所求.
*8.如图所示的4组图形中,右边图形与左边图形成 中心对称的是__①__②__③__.(填序号)
错解:①②③④ 诊断:判断两个图形是否成中心对称不能凭直 观感觉,应根据中心对称的定义进行判断.
12.如图,△ABM与△ACM关于直线AF成轴对称, △ABE与△DCE关于点E成中心对称,点E,D,M 都在线段AF上,BM的延长线交CF于点P. (1)求证:AC=CD;
证明:∵△ABM与△ACM关于直线AF 成轴对称,∴AB=AC. 又∵△ABE与△DCE关于点E成中心对称, ∴AB=CD.∴AC=CD.
5.如图,将△ABC 以点 O 为旋转中心旋转 180°后得到 △A′B′C′,ED=12BC,线段 ED 经旋转后变为线段 E′D′.已知 BC=4,则线段 E′D′的长度为( A )
A.2 B.3 C.4 D.1.5
6.若△ABC与△DEF关于点O成中心对称,且A,B,C
的对应点分别为D,E,F,若AB=5,AC=3,则EF
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量 关系,并说明理由.
解:∠F=∠MCD. 理 由 : 由 题 意 可 得 ∠ BAE = ∠ CAE = ∠ CDE , ∠CMA=∠BMA.∵∠BAC=2∠MPC, ∴设∠MPC=α,则∠BAE=∠CAE=∠CDE=α. 设∠BMA=β,则∠PMF=∠CMA=β,
9.如图,已知AD是△ABC的中线. (1)画出以点D为对称中心与△ABD成中心对称的三 角形;
解:如图所示,△ECD即为所求.
(2)画出以点B为对称中心与(1)所作三角形成中心对称 的三角形;

2022秋八年级数学上册第16章轴对称和中心对称16.4中心对称图形目标一中心对称图形课件新版冀教版

2022秋八年级数学上册第16章轴对称和中心对称16.4中心对称图形目标一中心对称图形课件新版冀教版

7 如图,正六边形A既 是中心对称图形,又是轴 对称图形,有6条对称轴.
(2)正六边形绕其中心旋转多少度可与自身重合? 解:旋转60°的正整数倍都可与自身重合.
(3)还有哪些正多边形是中心对称图形? 正方形、正八边形等,只要边数是偶数的正多边形都是 中心对称图形.
b,图形③的边长是 d,大长方形的周长是 l,则 l=2(a+2b +c),由图可得ab==bc++dd,,((21)) (1)-(2),可得 a-b=b-c,
∴2b=a+c.∴l=2(a+2b+c)=2×2(a+c)=4(a+c),或 l= 2(a+2b+c)=2×4b=8b.∴2(a+c)=2l ,4b=2l .∵图形①的周 长是 2(a+c),图形②的周长是 4b,2l 的值已知,∴图形①② 的周长不用测量就能知道,图形③的周长不用测量无法知
3 【中考·宁波】如图,小明家的住房平面图呈长方形, 被分割成3个正方形和2个长方形后仍是中心对称图 形.若只知道原住房平面图长方形的周长,则分割后 不用测量就能知道周长的图形的标号为( A ) A.①② B.②③ C.①③ D.①②③
【点拨】 如图,设图形①的长和宽分别是 a,c,图形②的边长是
道.∴分割后不用测量就能知道周长的图形的标号为①②.
4 如图,四边形ABCD是中心对称图形,直线EF经过四 边形ABCD的对称中心O,若AE=2 cm,四边形AEFB 的面积为12 cm2,则CF=__2__c_m___,四边形ABCD的 面积为__2_4__c_m_2_.
5 如图是某种标志的一部分,已知该标志是中心对称图 形,其对称中心是点A,请补全图形. 解:如图所示.
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那 些善于独立思考的人,给那些具有锲而不舍的人。2022年3月下午1时58分22.3.1113:58March 11, 2022

2024年冀教版八年级上册 第十六章 轴对称和中心对称中心对称图形

2024年冀教版八年级上册 第十六章 轴对称和中心对称中心对称图形

课时目标1.认识并能够辨析中心对称图形和两个图形成中心对称.2.理解中心对称的基本性质,并会利用性质作图.学习重点理解中心对称的基本性质,并会利用性质作图.学习难点辨析中心对称图形和两个图形成中心对称.课时活动设计情境引入观察这些图片,回忆轴对称图形的特点,它们是轴对称图形吗?如果不是,它们的共同特征是什么?设计意图:回顾旧知识,联系生活中的情景,合理设置悬念,激发学生的学习兴趣.探究新知探究1中心对称图形学生观察下列图片,小组合作,交流探讨,教师巡视,适当给予指导.1.观察这些图片,将它们分别绕各自标示的“中心点”旋转180°后,能不能与它们自身重合?2.如图,已知线段AB和它的中点O,当线段AB绕点O旋转180°后,这条线段能不能与它自身重合?3.你还能找到具有问题1,2中图形的特征的图形吗?观察发现,问题1,2中的图形分别绕各自的“中心点”(或中点)旋转180°后,都能与它们自身重合.定义:像这样,如果一个图形绕某一个点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心,其中对称的点叫做对应点.线段是中心对称图形,线段的中点是它的对称中心,两个端点为一对对应点.探究2成中心对称中心对称图形是指一个图形的中心对称性,那么两个图形之间是否也具备这样的关系呢?观察△ABC和△DEF,你发现了什么?学生观察思考,小组合作,交流探讨,教师巡视,适当给予指导.△ABC和△DEF的顶点A,C,F,D在同一条直线上,O为线段CF的中点,AC=DF,BC=EF,∠ACB=∠DFE.将△ABC绕点O旋转180°后,它能与△DEF重合.定义:如果一个图形绕某一点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称,这个点叫做对称中心,其中成中心对称的点、线段和角,分别叫做对应点、对应线段和对应角.探究3中心对称图形和成中心对称的性质我们已经学过图形的旋转,我们知道“一个图形和它旋转后所得到的图形,对应点到旋转中心的距离相等,两组对应点分别与旋转中心连线所成的角相等”,那么中心对称图形(如图)又有怎样的性质呢?师生讨论交流并进行总结归纳.总结:在成中心对称的两个图形中,对应点的连线经过对称中心,并且被对称中心平分.反过来,如果两个图形的对应点连成的线段都经过某一点,并且被该点平分,那么这两个图形一定关于该点成中心对称.设计意图:通过问题情境,以现实生活中的实例为素材,让学生体会和认识生活中的中心对称图形.学生概括定义,培养归纳概括能力,学生通过观察、分析、操作、猜想、验证等活动,小组交流合作,教师适时指导,得到两个图形成中心对称的概念.通过猜想、测量、验证等探究活动,形成对中心对称图形和成中心对称的深刻认识,在活动中学生充分研讨,得到中心对称图形和成中心对称的性质.典例精讲例1如图,已知线段AB和点O,画出线段AB关于点O的中心对称图形.解:如图.(1)连接AO,BO,并延长AO到点C,延长BO到点D,使得OC=OA,OD=OB.(2)连接CD.线段CD即为所求.例2如图,四边形ABCD与四边形A'B'C'D'是成中心对称的两个图形,请你试着确定其对称中心的位置.解:如图,连接AA',DD',交点O即为所求.设计意图:通过例题,巩固本节课所学内容,帮助学生熟练掌握和运用新知识.巩固训练1.下列英文大写正体字母中,有中心对称图形吗?若有,哪些字母是中心对称图形?A B C D E F G H I J K L MN O P Q R S T U V W X Y Z解:有.H,I,N,O,S,X,Z是中心对称图形.2.如图1,把4张扑克牌放在桌子上,不让别人看见,将其中某些牌旋转(不能看到旋转过程)180°,旋转后看到的扑克牌如图2.你能很快确定哪张牌一定被旋转过吗?哪张牌可能被旋转过?解:黑桃9、黑桃8和梅花3这3张牌一定被旋转过,方块J可能被旋转过.3.如图,△ABO与△CDO关于点O成中心对称,点E,F在线段AC上,且AF=CE.求证:FD =BE.证明:∵△ABO 与△CDO 关于点O 成中心对称,∴AB =CD ,∠A =∠C.∵AF =CE ,∴AF +FE =CE +FE ,即AE =CF .在△ABE 和△CDF 中,A =C,∠=∠s C =C,∴△ABE ≌△CDF (SAS).∴FD =BE.设计意图:进一步巩固所学知识,加深对所学知识的理解,提高综合运用能力.课堂小结1.什么样的图形是中心对称图形?什么样的图形是成中心对称图形?2.成中心对称的性质有哪些?设计意图:以提问的形式总结回顾本节课学习的重点内容,帮助学生巩固课堂知识.课堂8分钟.1.教材第127页习题A 组第2,3,4题,习题B 组第1,2题.2.七彩作业.16.4中心对称图形在成中心对称的两个图形中,对应点的连线经过对称中心,并且被对称中心平分.反过来,如果两个图形的对应点连成的线段都经过某一点,并且被该点平分,那么这两个图形一定关于该点成中心对称.教学反思。

(河北专版)2022秋八年级数学上册 第16章 轴对称和中心对称16.1 轴对称课件冀教版

(河北专版)2022秋八年级数学上册 第16章 轴对称和中心对称16.1 轴对称课件冀教版

(2)若AB=8,AD=4,求四边形ECGF(阴影部分)的面积.
解:由(1)易得DF=GF=BE, ∴四边形ECGF的面积=四边形AEFD的面积= (AE+D2 F)·AD=(AE+B2 E)·AD=AB2·AD=8×24=16.
综合探究练 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
第16章 轴对称和中心 对称
16.1 轴对称
1D 2C 3C 4C 5 见习题
提示:点击 进入习题
6A 7D 8A 9B 10 A
答案显示
11 6 cm 12 D 13 4 14 见习题 15 见习题
16 见习题 17 见习题 18 见习题
答案显示
1.下面的图案中是轴对称图形的是( D )
A
B
A.5个
B.6个
C.7个
D.8个
【点拨】如图,与△ABC成轴对称,
顶点在格点上,且位置不同的三角
形有8个.
13.如图,4×5的方格纸中,在除阴影之外的方格中任意 选择一个涂上阴影,与图中阴影部分构成轴对称图形 的涂法有____4____种.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中心对称图形
教学目的:
1、了解中心对称图形的概念、知道与轴对称图形之间的区别与联系;能找出线段、平行四边形的对称中心。

2、培养学生的观察能力、动手能力、自学能力、计算能力、逻辑思维能力;
3、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点。

教学重点:定理1、定理2及逆定理。

教学难点:理解中心对称的概念。

教学程序
一、复习创情导入
什么叫做轴对称图形?
轴对称图形有什么性质?
如何判定两个图形关于对称中心对称?
二、授新
1、提出问题
(1)什么叫做点对称(中心对称)图形?对称中心?中心对称图形与中心对称有何联系和区别?
(2)点对称与轴对称有什么区别和联系?
(3)用硬纸做一个中心对称图形。

(4)线段、平行四边形、矩形、菱形、正方形是否都是中心对称图形?是否都是轴对称图形?
(5)举例说明中心对称图形的应用。

2、自学质疑:自学课本,完成预习题,并提出疑难问题。

3、分组讨论;讨论自学中不能解决的问题及学生提出问题。

4、反馈归纳
(1)什么叫做中心对称图形?对称中心?中心对称图形与中心对称有何联系和区别?
把一个图形绕它的某一点旋转1800,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。

完成预习思考题(1);
(2)用硬纸做一个中心对称图形。

观察说明自制中心对称图形,说明它是中心对称图形;
(3)线段、平行四边形、矩形、菱形、正方形是否都是中心对称图形?是否都是轴对称图形?
(4)举例说明中心对称图形的应用。

中心对称图形形状匀称美观:建筑、工艺做装饰图案;能够在所在平面内绕对称中心平稳旋转:旋转的零部件,如叶
轮等。

5、尝试练习
(1)完成跟踪练习(1)---(3)题,并总结,为什么三叶轮、五角星不是中心对称图形,有什么规律?
中心对称图形中的对比数为偶数,才有对应点。

(2)完成达标练习和综合练习;
(3)其它;
6、深化创新
(1)什么是中心对称?(两个图形)
(2)中心对称的性质定理1:关于中心对称的两个图形是全等的中心对称的性质定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并被对称中心平分。

(3)(判定)逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

7、推荐作业
(1)完成练习卷;
(2)预习并在作业纸上完成习题。

预习思考题
(1)什么叫做中心对称?对称中心?对称点?
(2)点对称与轴对称有什么区别和联系?
(3)点对称与轴对称有什么区别和联系?
(4)用硬纸做一个中心对称图形。

(5)线段、平行四边形、矩形、菱形、正方形是否都是中心对称图形?是否都是轴对称图形?
(6)举例说明中心对称图形的应用。

跟踪练习题
(1)线段是不是中心对称图形?射线、两条直线相交呢?填写下表。

(2)三个叶片的电风扇是中心对称图形。

()
(3)五角星不是中心对称图形。

()
达标练习题
(1)等腰直角三角形既是中心对称图形,又是轴对称图形。

()(2)等腰三角形既是中心对称图形,又是轴对称图形。

()
(3)平行四边形是中心对称图形,但不是轴对称图形。

()
(4)矩形、菱形、正方形不但是中心对称图形,又是轴对称图形。

()(5)等边三角形既是中心对称图形,又是轴对称图形。

()
综合应用练习题
(1)平行四边形和特殊的平行四边形都是对称图形,对称点是。

(2)如图,菱形ABCD中,对角线AC交BD于O,和线段AB成中心对称的线段是()。

(A)BA (B)CD (C)CB (D)AD
(3)下列命题中的真命题是()
(A)两个全等图形一定成中心对称。

(B)四边形若有对称中心,则只有一个。

(C)中心对称图形也是轴对称图形。

(D)中心对称图形是关于一点对称的两个全等图形。

(4)下列命题中的假命题是()
⑴两条相交直线成轴对称;⑵两条平行直线成中心对称;⑶线段是中心对称图形,也是轴对称图形;⑷角不是中心对称图形,也不是轴对称图形。

(A)⑴⑵(B)⑴⑶(C)⑶(D)⑷
创新练习题
像下面的样子,运用中心对称图形,画一装饰条纹,看谁画得更美观。

相关文档
最新文档