冀教版数学八年级上册期末检测卷
冀教版八年级数学上册期末测试卷(加答案)
冀教版八年级数学上册期末测试卷(加答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是()A.-2 B.12-C.12D.22.若12xyx-=有意义,则x的取值范围是()A.1x2≤且x0≠B.1x2≠C.1x2≤D.x0≠3.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣19 4.已知a b3132==,,则a b3+的值为()A.1 B.2 C.3 D.275.方程组33814x yx y-=⎧⎨-=⎩的解为()A.12xy=-⎧⎨=⎩B.12xy=⎧⎨=-⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.107.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A .80°B .60°C .50°D .40°9.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .10.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的 距离为( )A .40海里B .60海里C .70海里D .80海里二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.若|x |=3,y 2=4,且x >y ,则x ﹣y =__________.3.分解因式:3x -x=__________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE :y =-2x -4与直线AB 及y 轴围成图形的面积;(3)根据图象,直接写出关于x 的不等式kx +b >-2x -4的解集.5.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、B5、D6、B7、D8、D9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、7或-12、1或5.3、x(x+1)(x-1)4、﹣2<x<25、96、8三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、11a-,1.3、(1)a的取值范围是﹣2<a≤3;(2)当a为﹣1时,不等式2ax+x>2a+1的解集为x<1.4、(1)y=x+5;(2)272;(3)x>-3.5、(1)略;(2)112.5°.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
冀教版八年级数学上册期末测试卷(全面)
A B.y =2x ,4 C.y €2x ,2 D2如果尸、=2-7+3,那么y x 的算术平方根是A B.3 C.9 D ±33函数y €x -2的图象不经过(冀教版八年级数学上册期末测试卷(全面)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线y €2x -3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()4.如图,在四边形ABCD 中,ZA=140°,ZD=90°, OB 平分ZABC ,0C 平分ZD.135°BCD ,则ZBOC 二(A.105°SB.115°C.125°5.已知a 与b 互为相反数且都不为零, n 为正整数, 则下列两数互为相反数的是() A.a 2n —1与—b 2n —1B.a 2n —1与b 2n —1C.a 2n 与b 2n D ・a n -与b n 6.计算(-a ……-a 2 的结果为() A.b B.-b C.ab厂b D.—a 7.在平面直角坐标中,点M (—2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是第一象限 B.第二象限 C.第三象限第四象限 A . D .x€y二5300200x€150y二30x€y二5300150x€200y二30x€y二30200x€150y二5300x€y二30150x€200y二5300A.ZA=ZDB.AB=DCC.ZACB=ZDBCD.AC=BD2.已知3x-4(x-1)(x-2) ,则实数A二A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()10.如图,已知ZABC=ZDCB,下列所给条件不能证明△ABC^^DCB的是二、填空题(本大题共6小题,每小题3分,共18分)1•若=忑,则x=3.使JX—2有意义的x的取值范围是.4.如图,AABC中,CD丄AB于D,E是AC的中点.若AD=6,DE=5,则CD的长A5.如图,在△ABC和厶DBC中,Z A=40°,AB二AC=2,Z BDC=140°,BD=CD,以点D为顶点作Z MDN=70°,两边分别交AB,AC于点M,N,连接MN,则A AMN的周长为点A重合,折痕为DE,则厶ABE的周长为6.如图所示,在△ABC中,Z B=90°,AB=3,AC=5,将厶ABC折叠,使点C与1解方程三、解答题(本大题共6小题,共72分),X2\4x2—4x (1)2.先化简,再求值:-——X…1一,其中X满足X2…X-2二0.(X—1丿1一X3.已知关于x的方程X2…ax…a—2=0・(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根・4.在口ABCD中,ZBAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若ZABC=90°,G是EF的中点(如图2),直接写出ZBDG的度数;(3)若ZABC=120°,FG〃CE,FG=CE,分别连接DB、DG(如图3),求ZBDG的度数.5.如图,有一个直角三角形纸片,两直角边AC€6cm,BC=8cm,现将直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、B5、B6、A7、B8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、13、x€24、8.5、46、7三、解答题(本大题共6小题,共72分)21、x二1121,2x;5乙、91,33、(1)2,2;(2)略.4、(1)略;(2)45°;(3)略.5、CD的长为3cm.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
冀教版八年级上册数学期末考试试题及答案
冀教版八年级上册数学期末考试试卷一、单选题1x 的取值范围是( )A .x >2B .x <2C .x≥2D .x≤22.下列计算正确的是( )A B C =6 D 4 3.若分式242x x -+的值为0,则x 的值为( ) A .-2 B .0 C .2 D .±24.-64( )A .-2或2B .-2或-6C .-4+或-4-D .05.下列银行标志中,既不是中心对称图形也不是轴对称图形的是( )A .B .C .D .6.若a ,b 均为正整数,且a >b <+a b 的最小值是( )A .3B .4C .5D .6 7.分式方程52=x+3x 的解是( ) A .x=2B .x=1C .x=12D .x=-2 8.已知2221x M x y x y ÷=--,则M 等于( ) A .xx y 2 B .2x y x + C .2x x y - D .2x y x- 9.下列命题:①两个周长相等的三角形是全等三角形;②两个周长相等的直角三角形是全等三角形;③两个周长相等的等腰三角形是全等三角形;④两个周长相等的等边三角形是全等三角形.其中,真命题有( )A .1个B .2个C .3个D .4个10.一等腰三角形的两边长x 、y 满23x y -=足方程组23328x y x y -=⎧⎨+=⎩则此等腰三角形的周长为 ( )A .5B .4C .3D .5或411.如图,直角三角板ABC 的斜边AB =12 cm ,∠A =30°,将三角板ABC 绕点C 顺时针旋转90°至三角板A′B′C′的位置后,再沿CB 方向向左平移,使点B′落在原三角板ABC 的斜边AB 上,则三角板A′B′C′平移的距离为( )A .6 cmB .4 cmC .(6-cmD .6)cm12.下列性质中,等腰三角形具有而直角三角形不一定具有的是 ( )A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .内角和等于180°13.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 14.如图,△ABC 和△DCE 都是边长为3的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,则BD 长( )A B .C .D .15.在△ABC 中,AB =AC =13,BC =10,点D 为BC 的中点,DE ⊥AB ,垂足为点E ,则DE 等于( )A .1013B .1513C .6013D .751316.如图,将长方形ABCD 对折,得折痕PQ ,展开后再沿MN 翻折,使点C 恰好落在折痕PQ 上的点C′处,点D 落在D′处,其中M 是BC 的中点且MN 与折痕PQ 交于F ,连接AC′,BC′,则图中共有等腰三角形的个数是( )A .1B .2C .3D .4二、填空题17________. 18.如图所示,由四个全等的直角三角形拼成的图中,直角边长分别为2,3,则大正方形的面积为________,小正方形的面积为________.19.如图,△ABC 绕点A 顺时针旋转45°得到△'''A B C ,若∠BAC=90°,,则图中阴影部分的面积等于________.20.如图所示,在边长为2的等边三角形ABC 中,G 为BC 的中点,D 为AG 的中点,过点D 作EF ∥BC 交AB 于E ,交AC 于F ,P 是线段EF 上一个动点,连接BP ,GP ,则△BPG的周长的最小值是________.三、解答题21.先化简,再求值: (1)211()1211x x x x x x ++÷--+-,其中x ;(2)2+21a a -÷(1)a ++22121a a a --+,其中a 1. 22.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数.23.如图的等边三角形ABC 是学校的一块空地,为美化校园,决定把这块空地分为全等的三部分,分别种植不同的花草.现有两种划分方案:(1)分为三个全等的三角形;(2)分为三个全等的四边形.你认为这两种方案能实现吗?若能,画图说明你的划分方法.24.烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.25.课外兴趣小组活动时,老师出示了如下问题:如图①,已知在四边形ABCD 中,AC 平分∠DAB ,∠DAB =60°,∠B 与∠D 互补,求证:AB +AD .小敏反复探索,不得其解.她想,可先将四边形ABCD 特殊化,再进一步解决该问题.(1)由特殊情况入手,添加条件:“∠B =∠D”,如图②,可证AB +AD .请你完成此证明.(2)受到(1)的启发,在原问题中,添加辅助线:过C点分别作AB,AD的垂线,垂足分别为点E,F,如图③.请你补全证明过程.参考答案1.C【分析】二次根式的性质:被开方数大于等于0.【详解】根据题意,得2x-4≥0,解得,x≥2.故选C.【点睛】本题考查了二次根式有意义的条件.二次根式的被开方数是非负数.2.B【分析】根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断.【详解】解:A A选项不正确;B B选项正确;C C选项不正确;D,所以D选项不正确.故选B.【点睛】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.3.C【详解】由题意可知:24020xx=⎧-⎨+≠⎩,解得:x=2,故选C.4.C【分析】先依据立方根的性质得到-64的立方根-4,然后再求得平方根,最后相加即可.【详解】解:-64的立方根是-4.,8的平方根是±,所以-644+4-故选C.【点睛】本题主要考查的是立方根、平方根的性质,熟练掌握相关知识是解题的关键.5.D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,也是中心对称图形,故A选项不合题意;B、是轴对称图形,不是中心对称图形,故B选项不合题意;C、是轴对称图形,也是中心对称图形.故C选项不合题意;D、不是轴对称图形,也不是中心对称图形,故D选项符合题意;故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.6.B【解析】【分析】a、b的最小值,即可计算a+b的最小值.【详解】∴23.∵a a为正整数,∴a的最小值为3.∴12.∵b b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故选B.【点睛】本题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.7.A【分析】首先去掉分母,观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可.【详解】解:去分母,得5x=2(x+3),解得x=2.经检验,x=2是原方程的解.故选A.【详解】 试题解析:试题解析:()()222122.1x x x y x M x y x y x y x y x y-=÷=⋅=--+-+ 故选A.9.A【分析】根据全等三角形的判定方法依次分析各选项即可做出判断.【详解】解:A .周长相等的锐角三角形的对应角不一定相等,对应边也不一定相等,假命题; B .周长相等的直角三角形对应锐角不一定相等,对应边也不一定相等,假命题; C .周长相等的等腰三角形对应角不一定相等,对应边也不一定相等,假命题;D .两个周长相等的等边三角形的对应角一定相等,都是60°,对应边也一定相等,真命题. 真命题共1个.故选A .【点睛】本题考查了三角形判定定理的运用,命题与定理的概念.关键是掌握三角形判定定理. 10.A【分析】先解二元一次方程组,然后讨论腰长的大小,再根据三角形三边关系即可得出答案.【详解】 解:解方程组23328x y x y -=⎧⎨+=⎩,得21x y =⎧⎨=⎩, 所以等腰三角形的两边长为2,1.若腰长为1,底边长为2,由112+=知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为5.所以,这个等腰三角形的周长为5.故选:A .【点睛】本题考查了等腰三角形的性质及解二元一次方程组,难度一般,关键是掌握分类讨论的思想11.C【分析】根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再利用勾股定理列式求出AC,然后求出AB′,过点B′作B′D⊥AC交AB于D,然后解直角三角形求出B′D即可.【详解】解:∵AB=12cm,∠A=30°,∴BC=12AB=12×12=6cm,由勾股定理得,,∵三角板ABC绕点C顺时针旋转90°得到三角板A′B′C′,∴B′C′=BC=6cm,∴AB′=AC-,过点B′作B′D⊥AC交AB于D,则()=(cm.故选C.【点睛】本题考查了平移的性质,旋转变换的性质,解直角三角形,熟练掌握各性质是解题的关键,作出图形更形象直观.12.B【详解】解:A、对于任意一个三角形都有两边之和大于第三边,不符合题意;B、等腰三角形顶角的平分线垂直于顶角的对边,而直角三角形(等腰直角三角形除外)没有任何一个角的平分线垂直于这个角的对边,符合题意;C、只有直角三角形才有两个锐角的和等于90°,不符合题意;D、对于任意一个三角形都有内角和等于180°,不符合题意.故选B.13.C【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【详解】∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.14.C【分析】根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现∠BDE=90°,再进一步根据勾股定理进行求解.【详解】解:∵△ABC和△DCE都是边长为3的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=3.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴=故选:C.【点睛】此题综合运用了等边三角形的性质、等腰三角形的性质、三角形的外角的性质和勾股定理.15.C【解析】可用面积相等求出DE 的长,知道三边的长,可求出BC 边上的高,连接AD ,△ABC 的面积是△ABD 面积的2倍.解:连接AD ,∵AB=AC ,D 是BC 的中点,∴AD ⊥BC ,BD=CD=12×10=5∴AD=2−52.∵△ABC 的面积是△ABD 面积的2倍.∴2•12AB•DE=12•BC•AD , DE=10×122×13=6013.故选C .16.C【分析】根据翻折,平行及轴对称的知识找到所有等腰三角形的个数即可.【详解】解:∵C′在折痕PQ 上,∴AC′=BC′,∴△AC′B 是等腰三角形;∵M 是BC 的中点,∴BM=MC′,∴△BMC′是等腰三角形;由翻折可得∠CMF=∠C′MF ,∵PQ ∥BC ,∴∠PFM=∠CMF ,∴∠C′MF=∠PFM ,∴C′M=C′F ,∴△C′MF是等腰三角形,∴共有3个等腰三角形,故选C.【点睛】考查由翻折问题得到的等腰三角形的判定;综合运用所学知识得到等腰三角形的个数是解决本题的关键.17.【分析】先把各根式化为最简二次根式,再合并同类项即可.【详解】解故答案为:.【点睛】本题考查的是二次根式的加减法,熟知二次根式的加减实质上是合并同类项是解答此题的关键.18.13, 1【分析】根据条件可算出大正方形的面积为每个直角三角形斜边的平方,小正方形的边长为两条直角边的差,因此两条直角边的差的平方为小正方形的面积.【详解】解:根据勾股定理,每个直角三角形的斜边长的平方为22+32=13,即大正方形的面积为13.观察图形可知小正方形的边长为1,则小正方形的面积为1.故答案为:13;1.【点睛】本题考查了正方形的性质、勾股定理的证明图形;大正方形的面积可通过几个图形的面积之和求得.19【分析】根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=12BC=1,,进而求出阴影部分的面积. 【详解】解:∵△ABC 绕点A 顺时针旋转45°得到△A′B′C′,∠BAC=90°, ∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD ⊥BC ,B′C′⊥AB ,∴AD=12BC=1,,∴图中阴影部分的面积等于:S △AFC′﹣S △DEC′=12×1×1﹣12×1)2﹣1.1.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD ,AF ,DC′的长是解题关键.20.3【分析】由于点G 关于直线EF 的对称点是A ,所以当B 、P 、A 三点在同一直线上时,BP+PG 的值最小,此时△BPG 的周长的最小.【详解】解:由题意得AG ⊥BC ,点G 与点A 关于直线EF 对称,连接PA ,则BP +PG =BP +PA ,所以当点A ,B ,P 在一条直线上时,BP +PA 的值最小,最小值为2.由题可得BG =1,因为△BPG 的周长为BG +PG +BP ,所以当BP +PA 的值最小时,△BPG 的周长最小,最小值是3.故答案为:3.【点睛】此题考查了线路最短的问题,确定动点为何位置时,使PC+PD 的值最小是关键.21.(1) 【分析】(1)先化简原式的值,然后将x 的值代入原式即可求出答案.(2)先根据分式的混合运算顺序和运算法则化简原式,再把a 的值代入计算可得.【详解】 解:(1)2111211x x x x x x +⎛⎫+÷ ⎪--+-⎝⎭)=()()()21111x x x -++-·x 1x -=()22x 1x -·1x x-=1x x -.当x =2 (2)2+21a a -÷()1a ++22121a a a --+=()2a 11a +-·1+1a +()()()2a 1a-11a +-=2-1a +11a a +-=31a a +-.当a 1. 【点睛】本题考查分式的化简求值,解题的关键熟练运用分式的运算法则和因式分解,熟练掌握分式混合运算顺序和运算法则.本题属于基础题型.22.见解析(2)∠EBC=25°【分析】(1)根据AAS 即可推出△ABE 和△DCE 全等.(2)根据三角形全等得出EB=EC ,推出∠EBC=∠ECB ,根据三角形的外角性质得出∠AEB=2∠EBC ,代入求出即可【详解】解(1)证明:∵在△ABE 和△DCE 中,A D{AEB DEC AB DC∠=∠∠=∠=,∴△ABE ≌△DCE (AAS )(2)∵△ABE ≌△DCE ,∴BE=EC ,∴∠EBC=∠ECB ,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°23.(1)见解析;(2)见解析.【分析】(1)三角形的中线把三角形的面积分成相等的两个三角形, 画△ABC 的两条中线,即可找出;(2)还是画△ABC 的两条中线,能够找出三个全等的四边形.【详解】解:能.划分方法如下:(1)画△ABC 的中线AD ,BE ,两条中线相交于O 点,连接OC ,则△ABO ,△BCO ,△ACO 为三个全等的三角形,如图①所示.(2)画△ABC 的中线AD ,BE ,两条中线相交于O 点,连接CO 并延长交AB 于点F ,则四边形AEOF ,四边形BDOF ,四边形CDOE 为三个全等的四边形,如图②所示.(答案不唯一)【点睛】本题考查等边三角形的性质.解答本题的关键是熟练掌握等底同高的三角形面积相等,等边三角形三线合一.24.(1) 苹果进价为每千克5元;(2) 甲超市销售方式更合算.【分析】(1)先设苹果进价为每千克x 元,根据两超市将苹果全部售完,其中甲超市获利2100元列出方程,求出x 的值,再进行检验即可求出答案.(2)根据(1)求出每个超市苹果总量,再根据大、小苹果售价分别为10元和5.5元,求出乙超市获利,再与甲超市获利2100元相比较即可.【详解】解:(1)设苹果进价为每千克x 元,根据题意得:3000400x 10%x 4002100x+-=(), 解得:x=5,经检验x=5是原方程的解,答:苹果进价为每千克5元.(2)由(1)得,每个超市苹果总量为:30005=600(千克), ∵大、小苹果售价分别为10元和5.5元,∴乙超市获利10 5.5600516502+⨯-=()(元). 又∵甲超市获利2100元,∴甲超市销售方式更合算.25.(1)见解析;(2)见解析.【分析】(1)如果:“∠B=∠D”,根据∠B 与∠D 互补,那么∠B=∠D=90°,又因为∠DAC=∠BAC=30°,因此我们可在直角三角形ADC 和ABC 中得出,那么. (2)按(1)的思路,作好辅助线后,我们只要证明三角形CFD 和BCD 全等即可得到(1)的条件.根据AAS 可证两三角形全等,DF=BE .然后按照(1)的解法进行计算即可.【详解】(1)证明:∵∠B =∠D =90°,AC 平分∠DAB ,∠DAB =60°,∴CD =CB ,∠CAB =∠CAD =30°.设CD =CB =x ,则AC =2x.由勾股定理,得AD ,AB∴AD +AB =,即AB +AD(2)解:由(1)知,AE +AF ∵AC 为角平分线,CF ⊥AD ,CE ⊥AB ,∴CF=CE,∠CFD=∠CEB=90°.∵∠ABC与∠D互补,∠ABC与∠CBE也互补,∴∠D=∠CBE,∴△CDF≌△CBE(AAS).∴DF=BE.∴AB+AD=AB+(AF+FD)=(AB+BE)+AF=AE+AF【点睛】本题考查了直角三角形全等的判定及性质;通过辅助线来构建全等三角形是解题的常用方法,也是解决本题的关键.。
冀教版八年级上册数学期末测试卷完整版
冀教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为3m和4m.。
按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A.2mB.3mC.4mD.6m2、我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×10 7kgB.0.13×10 8kgC.1.3×10 7kgD.1.3×10 8kg3、分式有意义,则 x 的取值范围是( )A.x≠-3B.x≠3C.x≠±3D.x≠94、光速约为300000千米/秒,用科学记数法表示为()A.3×10 4千米/秒B.3×10 5千米/秒C.3×10 6千米/秒 D.30×10 4千米/秒5、下列结论错误的是()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等6、如图,△ABC≌△CDA,∠BAC=∠DCA,则BC的对应边是()A.CDB.CAC.DAD.AB7、如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8,CD=3,则⊙O 的半径为()A.4B.5C.D.8、如图,在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为( )A.2B.2.6C.3D.49、如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④10、下列分式变形中,正确的是( )A. B. C. D.11、在中,D是直线上一点,已知,,,,则的长为()A.4或14B.10或14C.14D.1012、如图,四边形中,,,,连接,,,则的长为( )A. B. C. D.13、如图,在菱形ABCD中,∠ABC=80°,E是线段BD上一动点(点E不与点B,D重合),当△ABE是等腰三角形时,∠DAE=( )A.30°B.70°C.30°或60°D.40°或70°14、下列轴对称图形中,对称轴条数最少的是()A.等腰直角三角形B.等边三角形C.正方形D.长方形15、如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为()A.4B.5C.6D.不能确定二、填空题(共10题,共计30分)16、304.35 (精确到个位),则304.35≈________。
最新冀教版八年级数学上册期末测试卷(完整版)
最新冀教版八年级数学上册期末测试卷(完整版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是( ) A .6m <-且2m ≠ B .6m >且2m ≠ C .6m <且2m ≠- D .6m <且2m ≠3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---4.若2()(3)6x a x x mx +-=-- 则m等于( )A .-2B .2C .-1D .15.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.如图,▱ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长为( )A .15B .18C .21D .248.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点9.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 10.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.3.若a 、b 、c 为三角形的三边,且a 、b 满足229(2)0a b -+-=,则第三边c 的取值范围是_____________.4.如图,在△ABC 中,∠B =46°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC =________.5.如图,平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,且AB =AE ,延长AB 与DE 的延长线交于点F .下列结论中:①△ABC ≌△EAD ;②△ABE 是等边三角形;③AD =AF ;④S △ABE =S △CDE ;⑤S △ABE =S △CEF .其中正确的是_______.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分) 1.解方程:(1)2450x x --=; (2)22210x x --=.2.先化简代数式1﹣1x x-÷2212x x x -+,并从﹣1,0,1,3中选取一个合适的代入求值.3.解不等式组:3221152x x x x -<⎧⎪++⎨<⎪⎩,并把解集表示在数轴上;4.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.(1)求点B 的坐标;(2)若△ABC 的面积为4,求2l 的解析式.5.如图,△ABC 中,AB=AC ,∠BAC=90°,点D ,E 分别在AB ,BC 上,∠EAD=∠EDA ,点F 为DE 的延长线与AC 的延长线的交点.(1)求证:DE=EF ;(2)判断BD 和CF 的数量关系,并说明理由;(3)若AB=3,5BD 的长.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、D5、B6、D7、A8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、2.2、(3,7)或(3,-3)3、1<c <5.4、67°.5、①②⑤6、8三、解答题(本大题共6小题,共72分)1、(1)x 1=5,x 2=-1;(2)121122x x +==. 2、-11x +,-143、31x -<<4、(1)(0,3);(2)112y x =-. 5、(1)略;(2略;(3)BD=1.6、(1)120件;(2)150元.。
冀教版八年级数学上册期末测试题(附参考答案)
冀教版八年级数学上册期末测试题(附参考答案)满分120分 考试时间120分钟一、选择题(本大题共16个小题,共38分。
1—6小题各3分,7—16小题各2分。
每小题只有一个选项符合题目要求)1.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是( )2.化简x 2−1x÷(1−1x )的结果为( )A .x +1B .x−1xC .xD .1x3.小明解分式方程1x+1=2x3x+3-1的过程如下: 解:去分母,得3=2x -(3x +3)① 去括号,得3=2x -3x +3② 移项、合并同类项,得-x =6③ 化系数为1,得x =-6④以上步骤中,开始出错的一步是( ) A .① B .② C .③D .④4.如图,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同刻度分别与点M ,N 重合,则过角尺顶点C 的射线OC 是∠AOB 的平分线,请说明此做法的依据是( )A .SASB .ASAC .AASD .SSS5.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB =6,DE=3,则AC的长是( )A.8 B.6C.5 D.46.下列各数中为无理数的是( )A.√2B.1.5C.0 D.-17.△ABC的三边长a,b,c满足(a-b)2+√2a−b−3+|c-3√2|=0,则△ABC 是( )A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形8.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为点D,E是边BC上的中点,AD=ED=3,则BC的长为( )A.3√2B.3√3C.6 D.6√29.下列说法错误的是( )A.1的平方根是1B.4的算术平方根是2C.√2是2的平方根D.-√3是√(−3)2的平方根−√45,则实数m所在的范围是( )10.若实数m=5√15A.m<-5 B.-5<m<-4C.-4<m<-3 D.m>-3AB的长为半径11.如图,在△ABC中,AC>BC,分别以点A,B为圆心,以大于12画弧,两弧交于点D ,E ,经过点D ,E 作直线分别交AB ,AC 于点M ,N ,连接BN ,下列结论正确的是( )A .AN =NCB .AN =BNC .MN =12BCD .BN 平分∠ABC12.某学校组织七、八两个年级学生到黄河岸边开展植树造林活动.已知七年级植树900棵与八年级植树1 200棵所用的时间相同,两个年级平均每小时共植树350棵.求七年级年级平均每小时植树多少棵.设七年级年级平均每小时植树x 棵,则下面所列方程中正确的是( ) A .900350−x =1 200xB .900x =1 200350+xC .900350+x =1 200xD .900x=1 200350−x13.在正数范围内定义一种运算 “※”,其规则为a ※b =1a +1b ,如2※4=12+14,根据这个规则,方程3※(x -1)=1的解为( ) A .x =52 B .x =-1 C .x =12D .x =-314.如图,点D 是AC 的垂直平分线与边BC 的交点,作DE ⊥AB 于点E .若∠BAC =68°,∠C =36°,则∠ADE 的度数为( )A .56°B .58°C .60°D .62°15.如图,在等边三角形ABC 中,D ,E 分别是BC ,AC 的中点,P 是线段AD 上的一个动点,当△PCE 的周长最小时,点P 的位置在( )A.A点处B.D点处C.AD的中点处D.△ABC三条高的交点处16.幻方的历史很悠久,如图为两个三阶幻方,请你探究如图三阶幻方中,奇数和偶数的位置、数和数之间的数量关系所呈现的规律,根据这一规律,求出a,b,则a b=( )二、填空题(本大题共3个小题,共10分,17小题2分,18—19小题各4分,每空2分)17.若x=3-√2,则代数式x2-6x+9的值为18.如图,在△ABC中,AB=4,AC=5,∠A=80°,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB,AC于点M,N,则△AMN的周长为,∠BEC=19.因为√4<√7<√9,即2<√7<3,所以√7的整数部分为2,小数部分为√7-2.那么√11的整数部分为,若√2整数部分为a, √11的小数部分为b,则a+b+5=三、解答题(本大题共7小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)(1)计算:√27÷√3×2√2-6√22(2)|-2 024|+π0-(16)−1+√1621.(本小题10分)(1)解方程:2x−5x−2=3x−3x−2-3 (4分)(2)先化简(1+3a−1)÷a 2−4a−1,再从-1,0,1,2中选择一个适当的数作为a 的值代入求值.(6分)22.(本小题10分)如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示-√2,设点B 所表示的数为m .(1)求实数m 的值 (2)求|m +1|+|m -1|的值(3)在数轴上还有C ,D 两点分别表示实数c 和d ,且有|2c +4|与√d −4互为相反数,求2c +3d 的平方根23.(本小题满分10分)如图,在△ABC 中,AB =AC ,AD 为△ABC 的角平分线.以点A 圆心,AD 长为半径画弧,与AB ,AC 分别交于点E ,F ,连接DE ,DF .(1)求证:△ADE ≌△ADF ;(2)若∠BAC=80°,求∠BDE的度数.24.(本小题满分10分)如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半EF的长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于12径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,求BD 的长。
冀教版数学八年级上册期末试卷及答案
冀教版数学八年级上册期末试卷1一、选择题(本大题共12个小题,1-6每小题2分,7-12每小题2分,共计30分)1.4的平方根是()A.±2 B.﹣2 C.2 D.2.如果分式有意义,则x的取值范围是()A.全体实数 B.x≠1 C.x=1 D.x>13.下列各命题中,是真命题的是()A.同位角相等B.内错角相等C.邻补角相等D.对顶角相等4.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到千分位)C.0.05(精确到百分位) D.0.0502(精确到0.0001)5.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.6.化简(﹣)2的结果是()A.﹣3 B.3 C.±3 D.97.如图,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是()A.∠B=∠E B.∠A=∠EDF C.∠BCA=∠F D.BC∥EF8.下列各式的计算中,正确的是()A. =×=6 B.(﹣1)2=3﹣1=2C. =×=9 D.3=9.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.OC=OD C.∠CPO=∠DPO D.∠CPD=∠DOC10.用反证法证明命题:在一个三角形中,最大的内角不小于60°,证明的第一步是()A.假设最大的内角小于60°B.假设最大的内角大于60°C.假设最大的内角大等于60°D.假设最大的内角小等于60°11.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,∠ACD=30°,那么下列结论正确的是()A.AD=CD B.AC=AB C.BD=BC D.CD=AB12.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm二、填空题13.下列各式:①②③④是最简二次根式的是(填序号).14.如图,已知△ABC≌△FED,∠A=40°,∠B=106°,则∠EDF= .15.实数a在数轴上的位置如图,则|a﹣3|= .16.如图,已知∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到边AB的距离为.17.如图,在△ABC中,∠ACB=90°,∠B=40°,D为线段AB的中点,则∠ACD= .18.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.19.已知,则= .20.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD 为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2016个等腰直角三角形的斜边长是.三、解答题21.计算:÷+×﹣6.22.阅读下列解题过程,并按要求回答:化简: +=﹣…①=﹣…②=…③=…④=﹣…⑤(1)上述计算过程在第几步出现错误,并指出错误原因;(2)请书写正确的化简过程.23.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD 的长,再计算三角形的面积.24.某校为美化校园,计划对某一区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?【电子版下载搜索公粽号:好学熊资料库】25.数学课上,老师要求学生证明:“到角的两边距离相等的点在这个角的平分线上”,请你结合图形书写已知、求证,并完成证明过程:已知:.求证:.证明:26.如图,在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,且∠B=∠ADE,(1)如图1,当点D为BC中点时,试说明:.(2)如图2,联接CE,当EC⊥BC时,试说明:△ABC为等腰直角三角形.参考答案与试题解析一、选择题(本大题共12个小题,1-6每小题2分,7-12每小题2分,共计30分)1.4的平方根是()A.±2 B.﹣2 C.2 D.【考点】平方根.【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:A.2.如果分式有意义,则x的取值范围是()A.全体实数 B.x≠1 C.x=1 D.x>1【考点】分式有意义的条件.【分析】直接利用分式有意义的条件得出x的值.【解答】解:∵分式有意义,∴x﹣1≠0,解得:x≠1.故选:B.3.下列各命题中,是真命题的是()A.同位角相等B.内错角相等C.邻补角相等D.对顶角相等【考点】命题与定理.【分析】根据平行线的性质对A、B进行判断;根据邻补角的定义对C进行判断;根据对顶角的性质对D进行判断.【解答】解:A、两直线平行,同位角相等,所以A选项错误;B、两直线平行,内错角相等,所以B选项错误;C、邻补角不一定相等,只有都为90度时,它们才相等,所以C选项错误;D、对顶角相等,所以D选项正确.故选D.4.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到千分位)C.0.05(精确到百分位) D.0.0502(精确到0.0001)【考点】近似数和有效数字.【分析】根据近似数的精确度把0.05019精确到0.1得到0.1,精确度千分位得0.050,精确到百分位得0.05,精确到0.0001得0.0502,然后依次进行判断.【解答】解:A、0.05019≈0.1(精确到0.1),所以A选项正确;B、0.05019≈0.050(精确到千分位),所以B选项错误;C、0.05019≈0.05(精确到百分位),所以C选项正确;D、0.05019≈0.0502(精确到0.0001),所以D选项正确.故选:B.5.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【电子版下载搜索公粽号:好学熊资料库】【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.6.化简(﹣)2的结果是()A.﹣3 B.3 C.±3 D.9【考点】二次根式的乘除法.【分析】原式利用平方根定义计算即可得到结果.【解答】解:(﹣)2=3,故选B7.如图,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是()A.∠B=∠E B.∠A=∠EDF C.∠BCA=∠F D.BC∥EF【考点】全等三角形的判定.【分析】由条件可知有两组边对应相等,则可加第三组边相等或这两个边的夹角相等,则可求得答案.【解答】解:∵AB=DE,BC=EF,∴要使△ABC≌△DEF,则需要∠B=∠E,根据SAS可判定其全等,故选A.8.下列各式的计算中,正确的是()A. =×=6 B.(﹣1)2=3﹣1=2C. =×=9 D.3=【考点】二次根式的混合运算.【分析】根据二次根式的乘法法则对A进行判断;根据完全平方公式对B进行判断;根据平方差公式和二次根式的乘法法则对C进行判断;利用二次根式的性质对D进行判断.【解答】解:A、原式==×=6,所以A选项错误;B、原式=3﹣2+1=4﹣2,所以B选项错误;C、原式==×=9,所以C选项正确;D、原式=,所以D选项错误.故选C.9.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.OC=OD C.∠CPO=∠DPO D.∠CPD=∠DOC【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得PC=PD,再利用“HL”证明Rt△OCP和Rt△ODP全等,根据全等三角形对应边相等可得OC=OD,全等三角形对应角相等可得∠CPO=∠DPO,从而得解.【解答】解:∵OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,∴PC=PD,在Rt△OCP和Rt△ODP中,,∴Rt△OCP≌Rt△ODP(HL),∴OC=OD,∠CPO=∠DPO,所以,A、B、C选项结论都正确,结论错误的是∠CPD=∠DOC.故选D.10.用反证法证明命题:在一个三角形中,最大的内角不小于60°,证明的第一步是()A.假设最大的内角小于60°B.假设最大的内角大于60°C.假设最大的内角大等于60°D.假设最大的内角小等于60°【考点】反证法.【分析】熟记反证法的步骤,从命题的反面出发假设出结论,直接选择即可.【解答】解:∵用反证法证明在一个三角形中,最大的内角不小于60°,∴第一步应假设结论不成立,即假设最大的内角小于60°.故选:A.11.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,∠ACD=30°,那么下列结论正确的是()A.AD=CD B.AC=AB C.BD=BC D.CD=AB【考点】含30度角的直角三角形.【分析】根据30°角所对的直角边等于斜边的一半解答即可.【解答】解:∵∠ACB=90°,∠ACD=30°,∴AD=AC,A错误;∵∠ACD+∠A=90°,∠B+∠A=90°,∴∠ACD=∠B=30°,∴AC AB,B正确;CD=BC,C、D错误;故选:B.12.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=AC,求出AB+BC+AC=19cm,AB+BD+AD=AB+BC=13cm,即可求出AC,即可得出答案.【解答】解:∵DE是AC的垂直平分线,∴AD=DC,AE=CE=AC,∵△ABC的周长为19cm,△ABD的周长为13cm,∴AB+BC+AC=19cm,AB+BD+AD=AB+BD+DC=AB+BC=13cm,∴AC=6cm,∴AE=3cm,故选A.二、填空题13.下列各式:①②③④是最简二次根式的是②③(填序号).【考点】最简二次根式.【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案..【解答】解:②③是最简二次根式,故答案为:②③.14.如图,已知△ABC≌△FED,∠A=40°,∠B=106°,则∠EDF= 34°.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠F=∠A=40°,∠E=∠B=106°,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△FED,∠A=40°,∠B=106°,∴∠F=∠A=40°,∠E=∠B=106°,∴∠EDF=180°﹣∠E﹣∠F=34°,故答案为:34°.15.实数a在数轴上的位置如图,则|a﹣3|= 3﹣a .【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,可得a与3的关系,根据差的绝对值是大数减小数,可得答案.【解答】解:由数轴上点的位置关系,得a<3.|a﹣3|=3﹣a,故答案为:3﹣a.16.如图,已知∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到边AB的距离为 4 .【考点】角平分线的性质.【分析】由已知条件首先求出线段CD的大小,接着利用角平分线的性质得点D到边AB的距离等于CD的大小,问题可解.【解答】解:∵BC=10,BD=6,∴CD=4,∵∠C=90°,∠1=∠2,∴点D到边AB的距离等于CD=4,故答案为:4.17.如图,在△ABC中,∠ACB=90°,∠B=40°,D为线段AB的中点,则∠ACD= 50°.【考点】直角三角形的性质.【分析】由“直角三角形的两个锐角互余”得到∠A=50°.根据“直角三角形斜边上的中线等于斜边的一半”得到CD=AD,则等边对等角,即∠ACD=∠A=50°.【解答】解:如图,∵在△ABC中,∠ACB=90°,∠B=40°,∴∠A=50°.∵D为线段AB的中点,∴CD=AD,∴∠ACD=∠A=50°.故答案是:50°.18.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动 4 分钟后△CAP与△PQB全等.【考点】直角三角形全等的判定.【分析】设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,此时AP=BQ,△CAP≌△PBQ;②若BP=AP,则12﹣x=x,得出x=6,BQ=12≠AC,即可得出结果.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.19.已知,则= .【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件求出x的值,进而得出y的值,代入代数式进行计算即可.【解答】解:∵y=++4,∴,解得x=,∴y=4,∴原式==.故答案为:.20.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD 为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2016个等腰直角三角形的斜边长是21008.【考点】等腰直角三角形.【分析】先求出第一个到第四个的等腰直角三角形的斜边的长,探究规律后即可解决问题.【解答】解:第一个等腰直角三角形的斜边为,第二个等腰直角三角形的斜边为2=()2,第三个等腰直角三角形的斜边为2=()3,第四个等腰直角三角形的斜边为4=()4,…第2016个等腰直角三角形的斜边为()2016=21008.故答案为21008.三、解答题21.计算:÷+×﹣6.【考点】二次根式的混合运算.【分析】根据二次根式的运算顺序和运算法则依次计算可得.【解答】解:原式=+﹣2=2+3﹣2=3.22.阅读下列解题过程,并按要求回答:化简: +=﹣…①=﹣…②=…③=…④=﹣…⑤(1)上述计算过程在第几步出现错误,并指出错误原因;(2)请书写正确的化简过程.【考点】分式的加减法.【分析】(1)根据去括号,可得答案;(2)根据分式的加减,可得答案.【解答】解:(1)第③步出现错误,错因:去带负号的括号时,括号里的各项没有变号(2)原式=﹣=﹣===﹣.23.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD 的长,再计算三角形的面积.【考点】勾股定理.【分析】设BD=x,由CD=BC﹣BD表示出CD,分别在直角三角形ABD 与直角三角形ACD中,利用勾股定理表示出AD2,列出关于x的方程,求出方程的解得到AD的长,即可求出三角形ABC面积.【解答】解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则有CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,∴152﹣x2=132﹣(14﹣x)2,解之得:x=9,∴AD=12,∴S△ABC=BC•AD=×14×12=84.24.某校为美化校园,计划对某一区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?【考点】分式方程的应用.【分析】设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出分式方程,解方程即可.【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得﹣=4解得:x=50经检验:x=50是原方程的解所以甲工程队每天能完成绿化的面积是50×2=100(m2)答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2.25.数学课上,老师要求学生证明:“到角的两边距离相等的点在这个角的平分线上”,请你结合图形书写已知、求证,并完成证明过程:已知:P是∠AOB内任一点,PC⊥OA,PD⊥OB,垂足分别是C、D两点,PC=PD;.求证:点P在∠AOB的平分线上.证明:【考点】角平分线的性质.【分析】根据题意画出图形,写出已知和求证,根据全等三角形的判定和性质证明结论.【解答】已知:P是∠AOB内任一点,PC⊥OA,PD⊥OB,垂足分别是C、D两点,PC=PD;求证:点P在∠AOB的平分线上;证明:连结OP;如图所示:∵PC⊥OA,PD⊥OB,∴∠PCO=∠PDO=90°,…在Rt△OPC 和Rt△OPD中,,∴Rt△OPC≌Rt△OPD(HL);∴∠POA=∠POB,∴OP是∠AOB的平分线,即点P在∠AOB的平分线上;故答案为:P是∠AOB内任一点,PC⊥OA,PD⊥OB,垂足分别是C、D 两点,PC=PD;点P在∠AOB的平分线上.26.如图,在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,且∠B=∠ADE,(1)如图1,当点D为BC中点时,试说明:.(2)如图2,联接CE,当EC⊥BC时,试说明:△ABC为等腰直角三角形.【考点】等腰直角三角形;等腰三角形的性质.【分析】(1)根据等腰三角形的性质可得出AD⊥BC,∠BAD=∠BAC,再通过角的计算即可证出结论∠EDC=∠BAD=∠BAC;(2)通过等腰三角形以及角的计算找出∠BAD=∠CAE,由此即可证出△BAD≌△CAE(SAS),从而得出∠B=∠ACE=∠ACB,再结合EC⊥BC,即可得出∠ACB=∠ACE=45°,∠B=45°,即△ABC为等腰直角三角形.【解答】证明:(1)∵点D为BC中点,AB=AC,∴AD⊥BC,∠BAD=∠BAC,∴∠ADB=∠ADC=90°,∴∠BAD+∠B=90°,∠ADE+∠EDC=90°,又∵∠B=∠ADE,∴∠EDC=∠BAD=∠BAC.(2)∵AB=AC,AD=AE,且∠B=∠ADE,∴∠BAC=∠DAE,∵∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∴∠BAD=∠CAE.在△BAD和△CAE中,有,∴△BAD≌△CAE(SAS),∴∠B=∠ACE=∠ACB,∵EC⊥BC,∴∠ACB=∠ACE=45°,∠B=45°,∴△ABC为等腰直角三角形.冀教版数学八年级上册期末试卷2一、选择题(1~10题每题3分,11~16题每题2分,共42分)1.下列银行标志中,既不是中心对称图形也不是轴对称图形的是( )2.下列计算正确的是( )A .3+2= 5B .3×2=6C .12-3= 3D .8÷2=4 3.若分式x 2-4x +2的值为0,则x 的值是( )A .2B .-2C .±2D .4 4.-64的立方根与64的平方根之和为( )A .-2或2B .-2或-6C .-4+2 2或-4-2 2D .4或-12 5.要使二次根式2x -4有意义,那么x 的取值范围是( )A .x >2B .x <2C .x ≥2D .x ≤2 6.已知图中的两个三角形全等,则∠1等于( )A .72°B .60°C .50°D .58°7.若a ,b 均为正整数,且a >7,b <32,则a +b 的最小值是( )A .3B .4C .5D .6 8.分式方程5x +3=2x 的解是( )A .x =2B .x =1C .x =12 D .x =-2 9.已知2x x 2-y 2÷M =1x -y,则M 等于( )A .2x x +yB .x +y 2xC .2x x -yD .x -y 2x10.下列命题:①两个周长相等的三角形是全等三角形;②两个周长相等的直角三角形是全等三角形;③两个周长相等的等腰三角形是全等三角形;④两个周长相等的等边三角形是全等三角形.其中,真命题有( ) A .1个 B .2个 C .3个 D .4个11.已知:一等腰三角形的两边长x ,y 满足方程组⎩⎨⎧2x -y =3,3x +2y =8,则此等腰三角形的周长为( )A .5B .4C .3D .5或412.如图,直角三角板ABC 的斜边AB =12 cm ,∠A =30°,将三角板ABC 绕点C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( )A .6 cmB .4 cmC .(6-2 3)cmD .(4 3-6)cm13.如图,△ABC 的三边AB ,BC ,CA 的长分别是20,30,40,三条角平分线将△ABC 分为三个小三角形,则S △ABO ∶S △BCO ∶S △CAO 等于( )A.1∶1∶1 B.1∶2∶3C.2∶3∶4 D.3∶4∶514.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长度为()A. 3 B.2 3 C.3 3 D.4 3 15.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于()A.1013B.1513C.6013D.751316.如图,将长方形ABCD对折,得折痕PQ,展开后再沿MN翻折,使点C恰好落在折痕PQ上的点C′处,点D落在D′处,其中M是BC的中点,且MN 与折痕PQ交于F.连接AC′,BC′,则图中共有等腰三角形的个数是()A.1 B.2 C.3 D.4二、填空题(17题3分,18,19题每题4分,共11分)17.计算40+1025的结果为________.18.命题“在同一个三角形中,等边对等角”的逆命题是______________________,是________命题(填“真”或“假”).19.如图,在新修的小区中,有一条“Z ”字形绿色长廊ABCD ,其中AB ∥CD ,在AB ,BC ,CD 三段绿色长廊上各修一凉亭E ,M ,F 且BE =CF ,点M 是BC 的中点,在凉亭M 与F 之间有一池塘,不能直接到达,要想知道M 与F 的距离,只需要测出线段EM 的长度.理由是依据_____________可以证明_____________,从而由全等三角形对应边相等得出.三、解答题(20,21题每题8分,22~25题每题10分,26题11分,共67分) 20.(1)计算:33-(3)2+(x +3)0-27+|3-2|.(2)解方程:x x -2-1=8x 2-4.21.先化简,再求值:⎝ ⎛⎭⎪⎫x +1x -1+1x 2-2x +1÷x x -1,其中x = 2.22.如图,BD,CE分别是△ABC的高,且BE=CD,求证:Rt△BEC≌Rt△CDB.23.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE,BE,BE ⊥AE,延长AE,BC交于点F.求证:(1)AD=FC.(2)AB=BC+AD.24.如图,AD平分∠BAC,AD⊥BD,垂足为D,DE∥AC.求证:△BDE是等腰三角形.25.烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3 000元以相同的进价购进质量相同的苹果.甲超市的销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍销售,剩下的小苹果以高于进价的10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2 100元(其他成本不计),则:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?甲、乙超市的销售方案哪种更合算?26.课外兴趣小组活动时,老师出示了如下问题:如图①,已知在四边形ABCD 中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补.求证:AB+AD=3AC.小敏反复探索,不得其解.她想,可先将四边形ABCD特殊化,再进一步解决该问题.(1)由特殊情况入手,添加条件:“∠B=∠D”,如图②,可证AB+AD=3AC.请你完成此证明.(2)受到(1)的启发,在原问题中,添加辅助线:过C点分别作AB,AD的垂线,垂足分别为点E,F,如图③.请你补全证明过程.答案一、1.D 点拨:选项A :是轴对称图形,也是中心对称图形,故此选项不合题意;选项B :是轴对称图形,不是中心对称图形,故此选项不合题意; 选项C :是轴对称图形,也是中心对称图形,故此选项不合题意;选项D :不是轴对称图形,也不是中心对称图形,故此选项符合题意.故 选D.2.C 点拨:3与2的被开方数不同,因此不能合并,A 不正确;3×2=3×2=6,B 不正确;12-3=2 3-3=3,C 正确;8÷2=8÷2=2,D 不正确.故选C.3.A 点拨:本题的易错之处是因为粗心大意,只考虑到分子等于0,而忽略了分母不等于0的限制条件.4.C 点拨:-64的立方根是-4,64的平方根是2 2和-2 2.本题的易错之处是混淆了“64的平方根”与“64的平方根”.5.C 点拨:本题的易错之处是认为2x -4有意义时2x -4>0.6.D 7.B 8.A 9.A 10.A11.A 点拨:本题运用了分类讨论思想,由方程组⎩⎨⎧2x -y =3,3x +2y =8解得⎩⎨⎧x =2,y =1,根据组成三角形的条件,经分类讨论可知这个等腰三角形的腰长为2,底边长为1,故周长为2+2+1=5.12.C 13.C14.D 点拨:因为两个三角形都是边长为4的等边三角形,所以CB =CD =CE =DE =4,∠CDE =∠DCE =60°,所以∠CDB =∠CBD =30°,所以∠BDE =90°,由勾股定理可得BD =4 3.15.C 点拨:连接AD ,则由已知易得AD ⊥BC ,在△ABD 中根据勾股定理,得AD =AB 2-BD 2=AB 2-⎝ ⎛⎭⎪⎫BC 22=132-52=12.根据三角形面积公式,可得12AB ·DE =12BD ·AD ,即13DE =5×12,解得DE =6013.16.C 点拨:将长方形ABCD 对折,得折痕PQ ,则P ,Q 分别是AB ,CD 的中点,且PQ ∥AD ∥BC ,则PQ 垂直平分AB ,所以AC ′=BC ′,根据等腰三角形的定义可知△ABC ′是等腰三角形.因为M 是BC 的中点,折叠后点C 落在C ′处,则MC =MC ′=MB ,∠CMF =∠C ′MF =∠MFC ′,则根据等腰三角形的定义可知△MBC ′是等腰三角形,根据等腰三角形的判定定理可知△MFC ′是等腰三角形.二、17.4 1018.在同一个三角形中,等角对等边;真19.SAS ;△BEM ≌△CFM三、20.解:(1)原式=3-3+1-3 3+(2-3)=-3 3.(2)方程两边同时乘(x +2)(x -2),得x (x +2)-(x +2)(x -2)=8.去括号,得x 2+2x -x 2+4=8.移项、合并同类项,得2x =4.系数化为1,得x =2.检验:当x =2时,(x +2)(x -2)=0.即x =2不是原分式方程的解.所以原分式方程无解.21.解:⎝ ⎛⎭⎪⎫x +1x -1+1x 2-2x +1÷x x -1=()x -1()x +1+1()x -12·x -1x =x 2()x -12·x -1x =x x -1. 当x =2时,原式=22-1=2+ 2. 22.证明:∵BD ,CE 分别是△ABC 的高,∴∠BEC =∠CDB =90°.在Rt △BEC 和Rt △CDB 中,⎩⎨⎧BC =CB ,BE =CD ,∴Rt △BEC ≌Rt △CDB (HL).23.证明:(1)∵AD ∥BC ,∴∠D =∠ECF .∵E 为CD 的中点,∴DE =CE .又∵∠AED =∠FEC ,∴△ADE ≌△FCE (ASA).∴AD =FC .(2)由(1)知△ADE ≌△FCE ,∴AE =FE .又∵BE ⊥AF ,∴AB =FB .∵CF =AD ,∴AB =FB =BC +CF =BC +AD .24.证明:∵DE ∥AC ,∴∠CAD =∠ADE .∵AD 平分∠BAC ,∴∠CAD =∠DAE .∴∠DAE =∠ADE .∵AD ⊥BD ,∴∠DAE +∠B =90°,∠ADE +∠BDE =90°,∴∠B =∠BDE .∴△BDE 是等腰三角形.25.解:(1)设苹果进价为每千克x 元,根据题意,得400x +10%x ⎝ ⎛⎭⎪⎫3 000x -400=2 100,解得x =5,经检验,x =5是原方程的根. 故苹果进价为每千克5元.(2)由(1)知甲、乙两超市苹果的购进总量都为3 0005=600(千克),乙超市获利600×⎝ ⎛⎭⎪⎫10+5.52-5=1 650(元). ∵2 100>1 650,∴甲超市的销售方案更合算.26.(1)证明:易知∠B =∠D =90°.∵AC 平分∠DAB ,∠DAB =60°,∴CD =CB ,∠CAB =∠CAD =30°.设CD =CB =x ,则AC =2x .由勾股定理,得AD =3CD =3x ,AB =3CB =3x .∴AD +AB =3x +3x =2 3x =3AC ,即AB +AD =3AC .(2)解:由(1)知,AE +AF =3AC .∵AC 平分∠DAB ,CF ⊥AD ,CE ⊥AB ,∴CF =CE ,∠CFD =∠CEB =90°.∵∠ABC 与∠D 互补,∠ABC 与∠CBE 也互补,∴∠D =∠CBE ,∴△CDF ≌△CBE .∴DF =BE .∴AB +AD =AB +(AF +FD )=(AB +BE )+AF =AE +AF =3AC .点拨:本题运用从特殊到一般的思想求解,即:从特殊图形②中证出AB +AD =3AC ,然后根据这个解题思路证明一般图形,通过添加辅助线,实现了由“特殊”到“一般”的转化过程并达到解决问题的目的.。
冀教版八年级上册数学期末测试卷
冀教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如右图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为( )A.5B.6C.3D.42、下列图形中,轴对称图形的个数是()A.1B.2C.3D.43、如图,已知△ABC,按以下步骤作图:①分别以 B,C 为圆心,以大于BC的长为半径作弧,两弧相交于两点 M,N;②作直线 MN 交 AB 于点 D,连接CD.若 CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°4、下列四个图形中,不能通过基本图形平移得到的是()A. B. C. D.5、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A.3 :4B.5 :8C.9 :16D.1 :26、如图,A、B、C是⊙O上的三点,若∠A+∠C=75°,则∠AOC的度数为()A.150°B.140°C.130°D.120°7、下列各式成立的是()A. B. C. D.8、小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A. =15B. =15C. =D.=9、如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有()对.A.5对B.4对C.3对D.2对10、如图,一圆柱高8cm,底面周长为12cm,一只蚂蚁从点A爬到点B处要爬行的最短路程是()A.20cmB.10cmC.14cmD.无法确定11、三角形一边上的高和这边上的中线重合,则这个三角形一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形12、下列式子从左到右变形一定正确的是( )A. B. C. D.13、下列图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.14、若分式在实数范围内有意义,则x的取值范围是A. B. C. D.15、世界实时统计数据显示,截至北京时间12月7日,全球新冠肺炎累计确诊病例超过67300000例,数67300000用科学记数法表示是()A. B. C. D.二、填空题(共10题,共计30分)16、用科学记数法表示﹣0.00012=________.17、在Rt△ABC中,∠C=90°,若a=40,b=9,则c=________;若c=25,b=15,则a=________.18、如图所示,已知ABC ADE,BC的延长线交DA于点F,交DE于点G,若D= ,E= ,DAC= ,则DGB=________.19、如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=30°,AB=4,则AE的长为________.20、如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD 交BC于点E,若平行四边形ABCD的周长为20,则△CDE的周长为_________.21、十八届五中全会确定为了全国实现小康目标,加大了贫困地区扶贫资金的投入,预计今后每年,国家将投入125亿元用于贫困地区基础设施建设,请你将12500000000用科学记数法表示为________.22、已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为________.23、曲靖市计划从到新增林地面积253万亩,253万亩用科学记数法表示正确的是________亩.24、如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若∠BAC=100°,则∠EAG=________.25、已知分式的值为零,那么x的值是________.三、解答题(共5题,共计25分)26、计算:27、某地区两个城市之间,可乘坐普通列车或高铁.已知高铁行驶线路的路程是400千米,普通列车行驶线路的路程是高铁行驶路程的1.3倍;高铁的平均速度是普通列车平均速度的2.5倍.如果乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.28、如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.29、如图,一艘帆船由于风向的原因,先向正东方航行了160千米,然后向正北方航行了120千米,这时它离出发点有多远?30、已知a、b在数轴上的位置如图所示,化简|a|﹣|a+b|+|a﹣b|.参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、C5、B6、A7、D8、D9、B10、B11、C12、C13、C14、C15、C二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
冀教版八年级数学上册期末测试卷及答案【全面】
冀教版八年级数学上册期末测试卷及答案【全面】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,2C .6,8,11D .5,12,236.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .9.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C .2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.若|x |=3,y 2=4,且x >y ,则x ﹣y =__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于________.5.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知方程组713x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数, y 为负数. (1)求m 的取值范围;(2)化简:||32m m --+;(3)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.已知:如图所示,AD平分BAC,M是BC的中点,MF//AD,分别交CA延长线,AB于F、E.求证:BE=CF.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、B6、B7、B8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、82、1或5.3、如果两个角互为对顶角,那么这两个角相等4、8.5、186、32°三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、3.3、(1)23m -<≤;(2)12m -;(3)1m =-4、(1)略;(2)45°;(3)略.5、略.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。
冀教版八年级数学上册期末测试卷(参考答案)
冀教版八年级数学上册期末测试卷(参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±33.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点9.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=__________. 3.分解因式:2x 3﹣6x 2+4x =__________.4.如图,AB∥CD,则∠1+∠3—∠2的度数等于 _________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为________.三、解答题(本大题共6小题,共72分)1.解方程组:4311 213x yx y-=⎧⎨+=⎩2.先化简,再求值:(x+2)(x-2)+x(4-x),其中x=14.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、D5、B6、A7、C8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1002、13、2x (x ﹣1)(x ﹣2).4、180°5、36、7三、解答题(本大题共6小题,共72分)1、53x y =⎧⎨=⎩.2、-3.3、8k ≥-且0k ≠.4、(1)略;(2)4.5、(1)2;(2)60︒ ;(3)见详解6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
冀教版八年级数学上册期末测试卷(含答案)
冀教版八年级数学上册期末测试卷(含答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.(2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.在△ABC 中,AB=10,,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.若a b a 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C .2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.4的平方根是 .4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE :y =-2x -4与直线AB 及y 轴围成图形的面积;(3)根据图象,直接写出关于x 的不等式kx +b >-2x -4的解集.5.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、C5、D6、B7、D8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、82、22()1y x =-+3、±2.4、20°.56、42.三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、112x -;15.3、(1)略(2)1或24、(1)y =x +5;(2)272;(3)x >-3.5、(1)略;(2)112.5°.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
冀教版八年级数学上册期末测试卷(完美版)
冀教版八年级数学上册期末测试卷(完美版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .12 2.矩形具有而平行四边形不一定具有的性质是( ) A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里B.45海里C.203海里D.303海里9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.若|x|=3,y2=4,且x>y,则x﹣y=__________.3.若m+1m=3,则m2+21m=________.4.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,平行四边形ABCD中,60BAD∠=︒,2AD=,点E是对角线AC上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B5、D6、B7、B8、D9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、12、1或5.3、74、1456、32°三、解答题(本大题共6小题,共72分)1、4x2、3x3、(1)1;(2)m >2;(3)-2<2m -3n <184、(1) 65°;(2) 25°.5、(1)略(2)等腰三角形,理由略6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
冀教版八年级数学上册期末考试卷(A4打印版)
冀教版八年级数学上册期末考试卷(A4打印版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1522.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A.48 B.60C.76 D.809.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.若3x x,则x=__________2.若|x|=3,y2=4,且x>y,则x﹣y=__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程组:4311 213 x yx y-=⎧⎨+=⎩2.先化简,再求值:2282442xxx x x⎛⎫÷--⎪-+-⎝⎭,其中2x=.3.已知,a、b互为倒数,c、d互为相反数,求31ab c d-+++的值.4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.=;(1)求证:BG DE(2)若E为AD中点,2FH=,求菱形ABCD的周长.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、D5、B6、A7、C8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、1或5.3、如果两个角互为对顶角,那么这两个角相等4、10.5、36、40°三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、22x-,12-.3、0.4、(1) 65°;(2) 25°.5、(1)略;(2)8.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
最新冀教版八年级数学上册期末测试卷(含答案)
最新冀教版八年级数学上册期末测试卷(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.分解因式:22a4a2-+=__________.3.若m+1m=3,则m2+21m=________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、D4、D5、B6、C7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、()2 2a1-3、74、﹣2<x<25、49 136、6三、解答题(本大题共6小题,共72分)1、(1)55xy=⎧⎨=⎩;(2)64xy=⎧⎨=⎩.2、3 x3、(1)略(2)1或24、(1) 65°;(2) 25°.5、24°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
冀教版八年级数学上册期末测试卷
八年级第一学期期末考试数学试卷(冀教版)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.16的算术平方根是………………………………………………………………【】A.4 B.±4 C.-4 D.82.若a>0,b<-2,则点(a,b+2)应在…………………………………………………【】A.第一象限B.第二象限C.第三象限D.第四象限3.下面的希腊字母中,是轴对称图形的是………………………………………【】A.μB.δC.ΨD.λ4.某位同学一次掷出三个骰子三个全是“6”的事件是…………………………【】A.不可能事件B.必然事件C.不确定事件, 可能性较小D.不确定事件, 可能性较大5.下列分式的运算中,其中结果正确的是……………………………………………【】A.112a b a b+=+B.323()aaa=C.22a ba ba b+=++D.231693aa a a-=-+-6.两个二元一次方程在平面直角坐标系中对应的直线如图所示,则由这两个二元一次方】A. B.C.D.7.在下列四个式子中,最简二次根式是………………………………………………【】X=2y=-5x第6题图X=-5y=2X=5y=2X=5y=-2A .8-B . 3-C .31 D .368.不等式组 的解集是-1<X <1,则ab 的值为………………………【 】A .12B .8C .15D .109.如图,是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆孔中心A 和B 的距离是…………………………………………………【 】 A .90mm B .120mm C .150mm D .180mm10.如图,AD 是△ABC 的中线,∠ADC =45o ,把△ADC 沿AD 对折,点C 落在C´的位置,若BC =2,则BC´的值为…………………………………【 】A .2B .2C .5D .1.5二、填空题(本大题共8个小题,每小题3分,共24分)11.在等腰ABC △中,若顶角A 等于150°,则B =∠________.12.约分:22105mxx m = . 13.写出大于3且小于15的所有整数 14.如果小强将镖随意投中如图所示的正方形木板,镖落在阴影部分的概率为 .15.如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______.16.计算1122x x x-+=--________. 第9题图180 ABC60601502X+a >35X-b <2 BC ′A CD第10题图第15题图第14题图17.已知点A 的坐标为(1,1),点B 与点A 关于x 轴对称,点C 与点B 关于y 轴对称,则△ABC 的面积是 .18.如图所示,已知矩形ABCD ,按如下步骤操作:(1)第一次折叠:在BC 上取点E ,以AE 为折痕(图18-1)折叠纸片,使点B 落在AD 上(图18-2);(2)第二次折叠:在AD 上取点F ,以EF 为折痕(图18-2)折叠纸片,使点A 落在BC 上(图18-318-4,则∠AFE = .三、解答题(本大题共8个小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)计算:(63+28)÷720.(本小题满分6分)一只不透明的盒子中装有2个白球和一个红球,这些球除颜色外都相同.⑴小明认为,搅匀后从中任意摸出一球,不是红球就是白球,因此,摸出红球和白球是等可能的,你同意他的看法吗?说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末检测卷
时间:120分钟 满分:100分
班级:__________ 姓名:__________ 得分:__________
一、选择题(每小题2分,共24分)
1. 9的平方根是( )
A .±3
B .-3
C .3
D .81
2.下面所给的图形中,不是轴对称图形的是( ) A. B. C. D.
3.如图,Rt △ABC ≌Rt △DEF ,则∠E 的度数为( )
A .30°
B .45°
C .60°
D .90°
第3题图
4.下列实数中,是无理数的是( )
A.π3 B .-0.3 C.227
D.38 5.下列各式从左到右的变形正确的是( )
A.y x =y +1
x +1 B.y x =ay ax
C.y x =a 2y
a 2x D.y x =(a 2+1)y
(a 2+1)x
6.下列计算结果正确的是( ) A.2+5=7 B.2×5=10
C .32-2=3 D.25=510
7.如图,在数轴上表示实数
7的点可能是( ) A .点P B .点Q C .点M D .点N
第7题图
8.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长为( ) A .13 B .17 C .22 D .17或22
9.如图,若∠2=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为( )
A .15°
B .30°
C .45°
D .60°
第9题图
第10题图
10.如图,在△ABC 中,AB =AC ,AD 是高,能直接判断△ABD ≌△ACD 的依据是( )
A .SSS
B .SAS
C .HL
D .ASA
11.某工厂生产一批零件,计划20天完成.若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列方程为( )
A.20x +10x +4=15
B.20x -10x +4
=15 C.20x +10x -4=15 D.20x -10x -4
=15 12.当x 分别取-2015、-2014、…、-2、-1、0、1、12、…、12014、12015
时,
计算分式x 2-1
x 2+1的值,再将所得结果相加,其和等于( )
A .-1
B .0
C .1
D .2015
二、填空题(每小题3分,共18分)
13.比较大小:23________3 2.
14.如果实数a ,b 满足a -4+(b -5)2=0,那么a +b =________.
15.如图,若∠ABD =76°,∠C =38°,BC =30cm ,则BD 的长为________cm.
第15题图 第16题图
16.如图,将ABC 折叠,使点B 与A 重合,得折痕DE .若AE =3,△ADC 的周长为8,则△ABC 的周长为________.
17.如图,在Rt △ABC 中,∠C =90°,AD 平分∠CAB .若AD =5,AC =4,则D 点到AB 的距离是________.
第17题图 第18题图 18.如图,在△ABC 中,AB =AC =24厘米,BC =16厘米,点D 为AB 的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.当点Q 的运动速度为________厘米/秒时,能够在某一时刻使△BPD 与△CQP 全等.
三、解答题(共58分)
19.(6分)计算:
(1)3a 4b ·16b 9a 2; (2)32-8+
12.
20.(6分)解方程:
x x -1-1=2x .
21.(6分)已知
2x 2-x -2=0,求⎝ ⎛⎭
⎪⎫1+4x 2-4·(x -2)的值.
22.(8分)如图,在△ABC 中,∠ABC =45°,AC =8,AD ⊥BC 于D ,BE ⊥AC 于E ,。