静力学第三章平面一般力系
《工程力学》第三章 平面一般力系
• 故主矢R′的模为
• 主矢R′的方向从图3-3(b)中可知
图3-3
• 2.对点O的主矩 • 从图3-3(b)中可知,MO应是该平面一般力偶
系m1,m2,…,mn的合力偶矩。由平面力偶 系的合成定理可知,
• 由于Fd也等于力F对B点的矩,mB(F)=Fd,于 是得
• §3-2 平面一般力系向一点的简化 • 一、平面一般力系向一点的简化 • 在力系的作用平面内,被任选的一点O称为简
化中心。将力系中诸力平移至简化中心,同时 附加一个力偶系的过程,称为力系向给定点的 简化。
图3-2
•经 简 化 后 的 平 面 共 点 力 系 合成为一个合力R′,该合力作用点在简化 中心上;把简化后的附加力偶系m1, m2,…,mn合成得一力偶MO(图32(c))。自然,依据力的平移定理,可将 力R′和MO合成为一个力R(图3-2(d)), 这个力R就是原力系F1,F2,…,Fn的合 力。
• 二、截面法求桁架内力
• 截面法一般采用如下步骤:
• (1)先求出桁架支承约束反力。
• (2)如需求某杆的内力,可通过该杆作一 假想截面,将桁架截为两段(只截杆件, 不能截在节点上)。注意被截杆件一般不 能多于三根。任选半边桁架考虑平衡,在 杆件被截处,画出杆件内力,其指向假定 沿杆件而背离杆件被截处。
图3-5
• 二、平面一般力系向一点简化结果分析
• 1.平面一般力系向一点的简化结果
• 平面一般力系向简化中心简化,其结果可能出现 四种情况:
• (1)R′=0,MO=0
• 主矢和主矩均等于零。它表明简化后的平面汇交 力
3第三章平面任意力系
固定端(插入端)约束
说明: ①认为Fi 这群力在同一平面内; ② 将Fi向A点简化得一力和一力偶; ③FA方向不定可用正交分力FAx, Fay 表示; ④ FAy, FAx, MA为固定端约束反力;
⑤ FAx, FAy限制物体平动, MA为限
制转动。
11
MO
§3-2 平面一般力系的简化结果 合力矩定理 y 简化结果:主矢 F ' R ,主矩 M O 。
∴ 力的直线方程为:
MO
x
FR '
x
O
x
670.1 x 232.9 y 2355 0
2355 当 y 0, x 3.5 m 670 .1
18
FR
§3-3 平面一般力系的平衡条件与平衡方程
F' 0 R MO 0
为力平衡,没有移动效应。 为力偶平衡,没有转动效应。
P
45
0
M A (F i ) 0 :
FC sin45 AC P AB 0
B
FAy
FAx
y
A
C
FAx 20.01kN ,
FAy 10.0kN
FC
x
FC 28.3kN
或: M C ( F i ) 0 : FAy AC P CB 0
22
o
例:求横梁A、B处的约束力。已知 M Pa, q, 解:1)AB杆 q M B A 2)受力分析
主矩MO 方向:方向规定 +
Fiy tg 方向: tg FRx Fix
1
FRy
1
大小: M O M O ( Fi ) , (与简化中心有关),(因主矩等于各力对简化中心取矩 的代数和)
建筑力学-第三章(全)
建筑力学
3.5 平面一般力系平衡条件和平衡方程
众所周知,当主矢 FR 0 时,为力平衡;当主矩 MO 0 时,为力偶平衡。
故平面任意力系平衡的充要条件为: 力系的主矢 FR和 主矩 都M O等于零。
上述平衡条件可表示为
FR ( Fx )2 ( Fy )2 0
Mo Mo (Fi ) 0
YA
XA
A
Q1=12kN
300 S
Q2=7kN 三力矩方程:再去掉Σ X=0方程 B
mC 0, X A60tg300 30Q1 60Q2 0
D
(二)力系的平衡
示例:斜梁。求支座反力
300
2kN/m B
2kN/m B
300
RB
A
300
A
2m
YA XA
C
X 0, X A RB sin 300 0
30cm
30cm Q1=12kN
Q2=7kN
X 0, X A S cos 300 0
X A 22.5kN
A
600
B
Y 0,YA Q1 Q2 S sin 300 0
YA 6kN
二力矩方程:去掉Σ Y=0方程
C
mB 0, 60YA 30Q1 0
FBl cos M 0
从而有:
FB
M l cos
20 kN 5 c os30
4.62kN
故:
FA FB 4.26kN
建筑力学
[例] 求图中荷载对A、B两点之矩.
解:
(a)
(b)
图(a): MA = - 8×2 = -16 kN ·m MB = 8×2 = 16 kN ·m
理论力学 第三章 平面力系
FBl cos M 0
得
M 20 k N m FB 4.62 kN l cos 5 m cos 30
FA FB 4.62kN
故
目录
第三章 平面力系\力的平移定理
3.3 力的平移定理
作用于刚体上的力,可平行移动到刚体内任一指定点,但必须 在该力与指定点所决定的平面内同时附加一力偶,此附加力偶的矩 等于原力对指定点之矩。 平面一般力系向一点简化的理论基础是力的平移定理。
设平面汇交力系F1、F2、…、Fn中各力在x、y轴上的投影分 别为Xi、Yi,合力FR在x、y轴上的投影分别为XR、YR,利用公式
F Fx Fy Xi Yj
分别计算式FR=F1+F2+…+Fn=ΣF 等号的左边和右边,可得 FR = XR i+YR j 以及 F1+F2+…+Fn=(X1i+Y1j)+(X2i+Y2j)+…+(Xni+Ynj) =(X1+X2+…+Xn)i+(Y1+Y2+…+Yn)j 比较后得到 X R X1 X 2 X n X YR Y1 Y2 Yn Y 目录
返回
第三章 平面力系
如图(a)所示水坝,通常取单位长度坝段进行受力分析,并将坝 段所受的力简化为作用于坝段中央平面内的一个平面力系[图(b)]。
返回
第三章 平面力系
第三章 平面力系
3.1 平面汇交力系的合成与平衡 3.2 平面力偶系的合成与平衡 3.3 力的平移定理 3.4 平面一般力系向一点简化 3.5 平面一般力系的平衡方程及其应用
第三章 平面力系\平面力偶系的合成与平衡
《工程力学:第三章-力系的平衡条件和平衡方程》解析
工程力学 1. 选择研究对象。以吊车大梁 AB为研究对象,进行受力分析 (如图所示) 2.建立平衡方程
第三章 力系的平衡条件和平衡方程
FAX FTB cos 0 Fy 0
F
x
0
: (1)
M
FAy FQ FP FTB sin 0
A
(F ) 0
工程力学
第三章 力系的平衡条件和平衡方程
§3.3 考虑摩擦时的平衡问题
3.3.1 滑动摩擦定律
概念:
静摩擦力:F 最大静摩擦力:Fmax 滑动摩擦力: Fd
静摩擦因数:
水平拉力: Fp
Fmax f s FN
fs
工程力学
第三章 力系的平衡条件和平衡方程
3.3.2 考虑摩擦时构件的平衡问题
考虑摩擦力时与不考虑摩擦力时的平衡 解题方法和过程基本相同, 但是要注意摩擦力的方向与运动趋势方向相反;且在滑动之前摩擦 力不是一个定值,而是在一定范围内取值。
l l sin 0
(3)
工程力学
第三章 力系的平衡条件和平衡方程
• 联立方程(1)(2)(3)得:
FAX
FQ FP 3 l x 2
(2)由FTB结果可以看出,当x=L时,即当电动机移动到大梁右 端B点时,钢索所受的拉力最大,最大值为
非静定问题:未知数的数目多于等于独立的平衡方程的数目,不能 解出所有未知量。相应的结构为非静定结构或超静定结构。
会判断静定问题和非静定问题
工程力学
第三章 力系的平衡条件和平衡方程
工程力学
第三章 力系的平衡条件和平衡方程
3.2.2 刚体系统平衡问题的特点与解法
1.整体平衡与局部平衡的概念 系统如果整体是平衡的,则组成系统的每一个局部以及每一个 2.研究对象有多种选择 刚体也必然是平衡的。
静力学-03-平面一般力系
平面力系的平衡
当Q=180 kN,满载W=200 kN时
mA(F )0
Q62 P2W 12 2 NB 4 0
Fi 0,
QPW N A NB 0
NA 210 kN NB 870 kN
平面力系的平面力系的平衡
平面力系的平衡
平面力系的平衡
平面一般力系
1.平面力系的简化 2.平面力系的平衡 3.物体系平衡
X 0
mA(F) 0
Y 0
XA 0
RB
a
q
a
a 2
m
P
2a
0
YA RB qa P 0
RB 12 kN
YA 24 kN
平面力系的平衡
平面平行力系
各力的作用线在同一平面内且相互平行的力系。
平面平行力系的平衡条件
Y 0
mO (Fi )0
一矩式
两个独立方程 只能求解两个独立的未知数
mA (Fi ) 0
mB (Fi ) 0
二矩式
AB连线不能平行于力的作用线
平面力系的平衡
已知:塔式起重机 P=700 kN, W=200 kN (最大起重量),尺寸 如图。求: ①保证满载和空载时不致翻倒, 平衡块Q=? ②当Q=180 kN时,求满载时轨道 A、B给起重机轮子的反力?
平面力系的平衡
平面力系的平衡
物体系平衡
静定(未知数三个)
静不定(未知数四个)
静不定问题在材料力学中用位移协调条件来求解。
物体系平衡
物体系:由几个物体组成的系统,它们之间通过约束相连。 n个物体组成的系统: 最多3n个方程,可解3n个未知量。
外力:外界物体作用于系统上的力叫外力。 内力:系统内部各物体之间的相互作用力叫内力。
工程力学教学课件 第3章 平面任意力系
A
MA
FAx
A
简 化
2021/7/22
FAy
11
一、简化结果分析
3.2
平
面 任
F1
A1
F2
O A n A2
M O FR'
O
意
Fn
力
系 的 简 化
1 . F R ' 0 ,M o 0
2 . F R ' 0 ,M O 0
结 果
3 . F R ' 0 ,M O 0 4 . F R ' 0 ,M O 0
的 简 化
此时主矩与简化中心的位置无关。
3、主矢不等于零,主矩等于零 (F R ' 0 ,M O 0 )
结 果
此时平面力系简化为一合力,作用在简化
中心,其大小和方向等于原力系的主矢,即
FRF
2021/7/22
13
一、简化结果分析
3.2 4、主矢和主矩均不等于零 (F R ' 0 ,M O 0 )
平
此时还可进一步简化为一合力。
面
任
FR'
FR'
FR
FR
意 力
O M O O
O
d
O
O
O
d
系 的 简 化
FR'' M O m O ( F R ) F R d F R 'd 于是
d M
F
由主矩的定义知:M O m O (F i)
O ' R
结 所以:
m O (F R ) m O (F i)
果 结论:平面任意力系的合力对作用面内任一点之矩
杆所受的力。
A
45
理论力学第3章 力系的平衡
基础部分——静力学第3 章力系的平衡主要内容:§3-7 重心即:力系平衡的充分必要条件是,力系的主矢和对任一点3-2-1 平衡方程的一般形式∑=iF F R ∑=)(i O O F M M 已知∑=iF F R ∑=)(i O O F M M 投影式:平衡方程i即:力系中所有力在各坐标轴上投影的代数和分别等于零;所有力对各坐标轴之矩的代数和分别等于零。
说明:¾一般¾6个3个投影式,3个力矩式;¾一般形式基本形式3-2-2 平面一般力系的平衡方程xy zOF1F2Fn平面内,¾一般形式¾3个2个投影式,1个力矩式;¾ABAzzCC附加条件:不垂直附加条件:不共线Bx二矩式的证明必要性充分性合力平衡AA 点。
B 点。
过ABBx故必有合力为零,力系平衡证毕平面问题3个3个 解题思路BAMFo45l l[例3-1] 悬臂梁,2解:M A 校核:0)(=∑F MB满足!解题思路?AyF AxF[例3-2] 伸臂梁F AxF AyF BF q 解:0=∑x F 0)(=∑F AM3(F −+0=∑yF3(F −+(F −+0)(=∑F AM=∑yF0=∑x F F AxF AyF BF q 思考:如何用其他形式的平衡方程来求解?0=∑x F 3(F −+0)(=∑F AMF AxF F BF q 0)(=∑F BM(F −+二矩式思考练习][练习FFlll F ACB DlllACB DM=F l[思考][思考]lll F ACB DlllACB DF见书P54例3-1—约束lllACB DF—约束CBADEFM—约束—约束—整体平衡局部平衡CB ADEFM研究对象的选取原则¾仅取整体或某个局部,无法求解;¾一般先分析整体,后考虑局部;¾尽量做到一个方程解一个未知力。
qCBAm2m2m2m2MBCM[例3-3] 多跨梁,求:如何选取研究对象?F CqF CFAxF AyM ABAqF'BxF'ByM A F Ax F AyF Bx F By解:先将分布力用合力来代替。
静力学:第三章-平面任意力系(1)详解
合力
合力
3.3 平面任意力系的平衡
平面任意力系平衡的充要条件:力系的主矢和对任
意点的主矩都等于零。
平面任意力系的平衡方程:
一般式
二矩式
三矩式
Fx Fy
0 0
MO 0
F x
0
M A 0
M B 0
M A 0 M B 0 M C 0
两个取矩点连线, 不得与投影轴垂直
三个取矩点, 不得共线
解得: P3max=350kN
P3
P1
P2
75kN P3 350kN A
B
FA
FB
当 P3=180kN 时(平面平行力系):
M A 0 4 P3 2 P1 14 P2 4 FB 0 P3
P1
P2
Fy 0 FA FB P1 P2 P3 0
解得: FA=210kN FB=870kN
平面任意力系的平衡方程只有三个,只能求三 个未知数。
三个特例:
平面汇交力系: Fx 0, Fy 0 平面力偶系: M o 0
平面平行力系: Fy 0, M o 0 或者 M A 0, M B 0
3.4 物体系统的平衡
静定问题:系统未知量数目等于独立的平衡方程数目。 超静定问题(静不定问题):系统未知量数目超过独
其中:M B M B (F ) Fd
3.2 平面任意力系向作用面内一点简化
主矢:矢量和 FR Fi 主矩: 代数和 M O M O (Fi )
主矢与简化中心无关,而主矩一般与简化中心有关.
主矩简化什么情况下与简化位置无关?
平面任意力系应用:平面固定端约束
=
=
平面任意力系的简化结果
(1) FR 0, M O 0
静力学-平面力系
03
平面力偶系合成与平衡
力偶概念及性质
力偶定义
由两个大小相等、方向相反且作用线平 行的力组成的力系。
VS
力偶性质
力偶没有合力,只能用力偶矩来度量其效 应;力偶对其作用面内任一点之矩恒等于 力偶矩,而与矩心的位置无关。
力偶矩计算与方向判断
力偶矩计算
力偶矩等于两力大小与两力作用线间距离的 乘积,即M=Fd。
计算方法
通过矢量运算,将力系中 的每个力分别投影到坐标 轴上,然后进行代数求和, 得到主矢和主矩。
简化结果讨论:合力、合力偶、平衡
合力
当主矢不为零时,力系可 简化为一个合力,其作用 点通过简化中心,大小和 方向由主矢确定。
合力偶
当主矢为零但主矩不为零 时,力系可简化为一个合 力偶,其力偶矩等于主矩。
全性。
建筑工程
在建筑结构中,框架结构和剪力 墙结构等常常受到空间平行力系 的作用。通过合理设计和施工, 可以确保建筑物的稳定性和承载
能力。
机械工程
在机械设计中,许多机构和构件 受到空间平行力系的作用。例如, 齿轮传动、带传动等机械传动中, 各构件受到的力和力矩往往构成
空间平行力系。
拓展思考
01
建立力学模型
摩擦角概念
当物体处于临界平衡状态时,摩擦力与正压力之间的夹 角称为摩擦角。
考虑滑动摩擦时物体平衡问题求解方法
确定研究对象和受力分析
选取研究对象,进行受力分析,画出受力图。
列平衡方程
根据静力学平衡条件,列出平衡方程。
引入滑动摩擦定律
在平衡方程中引入滑动摩擦定律,将摩擦力 表示为正压力的函数。
求解未知量
06
空间平行力系简介与拓展 思考
《建筑力学》第三章平面一般力系
VS
产生条件
摩擦力的产生需要满足三个条件,即接触 面粗糙、接触面间有正压力和物体间有相 对运动或相对运动趋势。
考虑摩擦时物体平衡问题解决方法
01
02
03
静力学方法
通过受力分析,列出平衡 方程,考虑摩擦力对物体 平衡的影响。
动力学方法
分析物体的运动状态,根 据牛顿第二定律列出动力 学方程,考虑摩擦力对物 体运动的影响。
静定结构特性分析
1 2 3
内力与外力关系
静定结构的内力与外力之间存在一一对应的关系, 即外力的变化会直接导致内力的变化。
变形与位移
在荷载作用下,静定结构会产生变形和位移,但 变形和位移的大小与材料的力学性质有关,与结 构的超静定性无关。
稳定性分析
静定结构在受到微小扰动后,能够自动恢复到原 来的平衡状态,具有良好的稳定性。
求解未知数
通过解平衡方程,求解出未知 的力或力矩。
确定研究对象
根据问题要求,确定需要研究 的物体或物体系统。
列平衡方程
根据平面任意力系的平衡条件, 列出物体系统的平衡方程。
校验结果
将求解结果代入原方程进行校 验,确保结果的正确性。
05 静定结构内力计算
静定结构基本概念和分类
静定结构定义
静定结构是指在外力作用下,其反力和内力都可以用静力学平衡方程求解,且解答唯一确定的结构。
02 平面汇交力系分析
汇交力系几何法求解合力
几何法概念
利用力的平行四边形法则或三角形法则求解汇交力系的合 力。
求解步骤
首先确定各分力的方向和大小,然后选择合适的几何图形 (如平行四边形或三角形)进行力的合成,最后根据图形 求解合力的大小和方向。
注意事项
工程力学 静力学第三章 平面一般力系
∑Y = 0
∑mO ( Fi ) = 0
①一矩式
∑ mB ( Fi ) = 0
②二矩式 条件: 条件:x 轴不⊥ AB 连线
上式有三个独立方程,只能求出三个未知数。 上式有三个独立方程,只能求出三个未知数。
注意:不论采用哪种形式的平衡方程, 注意:不论采用哪种形式的平衡方程,其独立的平衡方程的 三个未知量 个数只有三个,对一个物体来讲, 只能解三个未知量,不得多 个数只有三个,对一个物体来讲 只能解三个未知量 不得多 列! 14
8
平面一般力系简化结果的应用 简图:
固定端约束的反力
R
固定端约束反力有三个分量: 两个正交分力, 两个正交分力,一个反力偶
9
第二节
平面一般力系的简化结果分析
R=ΣFi 与简化中心无关 MO =ΣMo(Fi) 与简化中心有关
R ——主矢 主矢 MO——主矩
① R =0, MO =0,力系平衡,与简化中心位置无关,下节专 , 门讨论。 =0,M ② R =0, O≠0 即简化结果为一合力偶, MO=M 此时刚 体等效于只有一个力偶的作用,因为力偶可以在刚体平 面内任意移动,故主矩与简化中心位置无关。 ≠0,M =0,即简化为一个作用于简化中心的合力。这时, ③ R≠0, O =0 简化结果就是合力(这个力系的合力), R = R 。 ( (此时与简化中心有关,换个简化中心,主矩不为零) 此时与简化中心有关, 此时与简化中心有关 换个简化中心,主矩不为零)
R = (∑ X ) 2 + (∑ Y ) 2 = 0
M O = ∑mO ( Fi ) = 0
13
∑
X =0
∑X =0
∑ m A ( Fi ) = 0
∑ m A ( Fi ) = 0 ∑ mB ( Fi ) = 0 ∑ mC ( Fi ) = 0
第3章 工程构件的静力学平衡问题
塔式起重机的结构简图如 图所示。起重机自重为W,载 重为W1,平衡物重W2。要使 起重机在空载、满载且载重在 最远处时均不翻到,试求平衡 物重。
W2
a
e
C
W
l
W1
b
解:(1)取塔式起重机整体为研究对象,受力分析如图。
(整机在平面平行力系作用下处于平衡。) (2) 列平衡方程:
1) 空载时( W1 =0): 不翻到的条件是:
解:1)选取刚架为研究对象 ; 2)画受力图; 3)建立坐标系,列平衡方程: y 2a C
P
a
D
Fxi 0, P FA cos 0 Fyi 0, FA sin FB 0
cos 2a 5a a sin 5a
A FA O
5a
FB
B x
5 P, 4)联立求解: FA 2
FR
工程力学 (2)解析法
第3章 工程构件的静力学平衡问题
汇交力系平衡的充要条件是:力系的合力等于零,即:
FR
满足
F F
2 xi yi
2
0
F
xi
0,
F
yi
0,
即:汇交力系的平衡条件是力系中各力在x轴和y轴投影 的代数和分别等于零。
工程力学
第3章 工程构件的静力学平衡问题
P FB 2
FA为负值,说明图中所假设的指向与其实际指向相反, FB为正值,说明图中所假设的指向与其实际指向相同。
工程力学
第3章 工程构件的静力学平衡问题
【例】一拱形桥由三个铰拱组成,如图所示。各拱重量不
计,已知作用于点H的水平力Fp ,试求A、B、C和D处各 个支座反力。
工程力学03章静力学平衡问题
FP
l
l
FP
l
l
M
q
M
q
2l l
2l l
A
FAx A MA
解:1.选择研究对象。
FAy
2 受力分析,画出受力图如图所示。
8
2l l
FP
l
l
M
FAx
A MA
FAy
3. 建立平衡方程求解未知力 应用平衡方程
Fx = 0, FAx ql 0
q Fy = 0, FAy FP 0
MA= 0,
B
C
M1
A 60o
M2
60o D
20
解: 取杆AB为研究对象画受力图。
杆AB只受力偶的作用而平衡且C处为光滑面约束,则A 处约束反力的方位可定。
B
B FA = FC = F,
M1
A 60o
C
C AC = a
FC
Mi = 0
M2 M1
60o D A
FA
a F - M1 = 0
M1 = a F (1)
的各坐标轴上投影的代数和及所有力对
各轴之矩的代数和均等于零
Fx 0 Fy 0 Fz 0
M M
x y
(F ) (F )
0 0
M
z
(F
)
0
26
§3-3 简单的刚体系统平衡问题
一、刚体系统静定与静不定的概念
1、静定问题:一个静力平衡问题,如果系统中未知量 的数目正好等于独立的平衡方程数,单用平衡方程就 能解出全部未知量。
y
4. 联立求解,得
FAB 54.5KN FBC 74.5KN
平面一般力系
.
4
F BC
FB
B FC
B
M
C
C
F
' A
FA
P
P
为什么钳工攻丝时, 两手要均匀用力?
A
A
牛腿柱的压、弯组合变形
.
5
为 什 么 有 时 滑 轮 不 给 尺 寸
.
6
二、平面一般力系向一点的简化
1、向简化中心平移—得到平面汇交力系和平 面力偶系
Fn
An o
A1
A2 F2
F1
F
' n
Mn o
F
' 2
F B2M P5 32.5P5 420 A F A x
P
FB
B
代入数据解得: FAx=3 kN FAy=5 kN FB=-1 kN
.
20
例3-5 自重为P=100 kN的T字型刚架 ABD,置于铅 垂面内,尺寸及载荷如图。其中 M=20 kN·m , F=400 kN , q= 20 kN/m ,l=1 m 。试 求固定端A的 约束反力。
(1)保证起重机在满载和空载时都不致翻倒,求平衡荷重 P3 应为多少?
(2)当平衡荷重 P3=180 kN 时,求满载时轨道 A、 B给起重 机轮子的反力
P3
6m
12 m
P2
P1
AB
.
33
P3
6m
12 m
P1
AB
FA 4 FB
分析:要使起重机不翻倒,应
按临界状态的平衡条件求解。
当满载时,为使起重机不绕 B
F1' M 1 M 2
{F1,F2,,Fn} {F 1',F 2', ,F n', M1,M2,,Mn}
平面任意力系简化
静力学研究的两个基本问题
1.作用于物体上的力系的简化 2.力系的平衡条件
平面任意力系:力系中各力的作用线处于同一 平面内,但即不平行也不汇交
第三章 平面任意力系
§3.1 平面任意力系的简化
刚体上平面力系 F1、F2、…、Fn O Mn F2′ F1′ M2 M1 Fn 将各力平移到O点(简化中心) 得到汇交于O点的一 个平面汇交力系 F1′=F1 F2′=F2 … Fn′=Fn
第三章 平面任意力系
§3.2 平面任意力系的简化结果分析
三、FR′≠ 0,MO≠0 此时可进一步简化为一个合力 O d O′ FR
平移 FR′到O′点
FR = FR′= ∑F MO′ = FR′.d 如果 MO′ = MO d = MO /FR′
则FR 称为原力系的合力
此时 MO(FR) = FR.d = MO = ∑MO(Fi)
Fn′
F1 F2
和一个平面力偶系 M1=MO(F1)
M2=MO(F2) … Mn=MO(Fn)
ห้องสมุดไป่ตู้
第三章 平面任意力系
平面汇交力系 F1′=F1
F2′=F2 … Fn′=Fn O
Mn
M2
M1 FR′
—可合成为一个力FR′ (主矢量) FR′= F1′+ F2′+ …+ Fn′=∑F ′ = F1+ F2+ …+ Fn=∑F
= ∑MO(Fi)
平面任意力系向一平面内任一点简化,一般 可得到一个力和一个力偶。力通过简化中心, 为力系中各力的矢量和,力偶的矩等于力系 中各力对简化中心之矩的代数和。
第三章 平面任意力系
§3.2 平面任意力系的简化结果分析
02 平面一般力系
这是平面任意力系平衡方程的基本形式,也称为一 力矩式方程。
二、平面任意力系平衡问题的解题步骤
定。确定研究对象。 画。画出分离体受力图。 列。列平衡方程。 校。利用所学知识检查结果的正确性。
§4-3 平面平行力系的平衡方程及其应用
在平面平行力系中,若选择直角坐标轴的y(或x)轴与 力系各力作用线平行,则每个力在x(或y)轴上的投影 均为零,即∑Fx≡0(或∑Fy≡0)。于是平行力系只有两 个独立的平衡方程, 即 Fy 或 Fx 0
(a)
(b)
(c)
平面任意力系的简化,主矢与主矩 力系的主矢
y A1 F1 O A2 F2 An (a) Fn Mn MO
1
y
Fn FR
=
F1
M2 F2
x
=
O
O MO
FR
x
d
O
FR
O
d
O
FR (d)
FR (e)
(b)
(c)
平移力组成的平面汇交力系的合力, 称为原平面任意 力系的主矢。 作用点在简化中心O点,大小等于 各分力的矢量和,即
y a E1
a
F2
O
x
F3
F4
2.5 如练习2.5图所示三角支架的铰链A处销钉上悬挂一 重物G,各杆自重不计,已知G=10kN,试求杆AB、 AC所受的力。
B 6 0° G 3 0° C (a) A A B 6 0° 6 0° C
G (b )
2.6 构件的支承和载荷情况如练习2.6图所示,l=4m, 求支座A、B的约束反力。
一、平面一般力系的平衡方程 平面一般力系平衡的必要与充分条件为: FR′=0, MO=0。即
第03章 平面任意力系
第三章平面任意力系3.1 平面任意力系的简化·主矢与主矩3.2 平面任意力系的平衡条件与平衡方程3.3 物体系统的平衡·静定与静不定问题3.4 平面简单桁架的内力计算3.1 平面任意力系的简化·主矢与主矩所谓平面任意力系是指力系中各力的作用线在同一平面内且任意分布的力系,简称平面力系。
在实际工程中经常会遇到平面任意力系的情形,例如,下图所示的曲柄连杆机构,受力F ,矩为M 1,M 2的力偶以及支座反力F Ax ,F Ay 和F N 的作用,这些力及力偶构成平面任意力系。
3、固定端(或插入端)约束FAxFAyM AA4、平面任意力系的简化结果分析(1)简化为一个力偶当F R = 0,M O ≠0则原力系合成为合力偶,其矩为∑=)(i O O M M F 此时主矩与简化中心选择无关,主矩变为原力系合力偶。
由此很容易证得平面任意力系的合力矩定理:平面任意力系的合力对作用面内任一点的矩等于力系中各力对同一点的矩的代数和。
即∑=)()(R i O O M M F F 当F R ’= 0,M O = 0则原力系平衡。
(3)平面力系平衡例题3-3考虑一小型砌石坝的1m长坝段,受重力和的静水压力作用。
已知h = 8 m,a= 1.5 m,b= 1 m,P1=600 kN,P2=300 kN,单位体积的水重γ = 9.8 kN/m3。
求(1)将重力和水压力向O点简化的结果,(2)合力与基线OA的交点到点O的距离x,以及合力作用线方程。
解:(1)以点O 为简化中心,求主矢∑=′x RxF F ()()kNF F yxR1.95322=+=′∑∑F 329.0cos =′=∑RxF F θ944.0cos −=′=∑RyF F β°±=79.70θ°±°=21.19180β故主矢在第四象限内,与x 轴的夹角为°−79.70F R ’M O θβkN 6.313=22121h qh γ==kN P P F F y Ry 90021−=−−==′∑(2)以点O 为简化中心,求主矩F R ’M O θβ()()()q M P M P M M O O O O ++=21bP a P hh 212321−+×−=γmkN ⋅−= 27.236表明主矩的方向与假设方向相反,及主矩的方向为顺时针。
3-2平面一般力系的平衡与应用
一、导入由上节课的简化结果可知:若平面一般力系平衡,则作用于简化中心的平面汇交力系和附加力偶也必须同时满足平衡条件。
由此可知,物体在平面一般力系的作用下,既不发生移动,也不发生转动的静力平衡条件为:力系中的所有各力在两个不同方向的X\Y轴上投影的代数和均为零,且力系中各力对平面内任意一点的力矩大代数和也等于零。
二、新授3-2平面一般力系的平衡与应用一、平面一般力系的平衡条件、平衡方程及其应用平面一般力系平衡的充要条件是力系主矢F R/ 和力系对某一点的主矩m o都等于零。
即:F R/ =0,m o =0要使F R/ =0,必须满足:∑F x =0 ∑F y =0要使m o =0,必须满足:∑m o(F)=0于是,平面一般力系的平衡条件可表达为:∑F x =0基本形式∑F y =0∑m o(F)=0 力矩方程平面一般力系有三个独立方程。
例1:钢筋混凝土钢架的受力及支座情况如图。
已知F=10KN,m=15KN.m,钢架自重不计,求支座反力。
平面一般力系平衡必须同时满足三个平衡方程式,这三个方程彼此独立,可求解三个未知量。
因此,平面一般力系平衡的充要条件又可叙述为:力系中所有各力在两个坐标轴上的投影的代数和都等于零,而且力系中所有各力对任一点力矩的代数和也等于零。
解:1、刚架为研究对象,画刚架的受力图, 建立坐标轴2、列平衡方程求解未知力 ∑F x =0 F -F BX =0 F BX =F =10KN∑m A (F )=0 -F ×3-m +F BY ×3=0 F BY =15KN () ∑F y =0 F A +F BY =0 F A =-F BY =-15KN () 二、平面一般力系平衡方程的其他形式 1、二力矩式平衡方程的基本形式并不是唯一的形式,还可以写成其他的形式,它与基本形式的平衡方程是等效的,但往往应用起来会方便一些。
形式:三个平衡方程中有两个力矩方程和一个投影方程00===∑∑∑xBA Fm m如果力系满足0=∑A m 的方程,简化结果就不可能是个合力偶,而只能是合力或平衡;若是合力则合力应通过A 点,同理,力系又满足0=∑B m ,则此合力还应通过B 点,也就是说,力系如果有合力则合力作用为AB 连线,又因为力系还满足=∑xF的方程,则进一步表明力系即使有合力,这合力也只是能与X 轴相垂直,但附加条件是AB 连线不与OX 轴垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Engineering Mechanics
静力学第三章平面一般力系
静力学第三章平面一般力系
2
§3–1 平面一般力系向作用面内任一点简化 §3–2 平面一般力系的简化结果分析 §3-3 平面一般力系的平衡条件与平衡方程 §3-4 平面桁架 §3-5 静定与静不定问题的概念 §3-6 摩擦
静力学第三章平面一般力系
静力学第三章平面一般力系
8
平面一般力系简化结果的应用
固定端约束的反力
简图:
R
固定端约束反力有三个分量: 两个正交分力,一个反力偶
静力学第三章平面一般力系
9
第二节 平面一般力系的简化结果分析
R ——主矢 R=ΣFi 与简化中心无关 MO——主矩 MO =ΣMo(Fi) 与简化中心有关
① R=0, MO =0,力系平衡,与简化中心位置无关,下节专
静力学第三章平面一般力系
6
.O
O——简化中心
R——主矢 R=ΣFi 与简化中心无关 MO——主矩 MO =Σmo(Fi)
与简化中心有关
力学与实践 > 2004年3期 > 关于力系简化静中力主学第矢三是章不平面是一力般的力系讨论
R
. MO O
7
力系向一点简化的特殊情况
(1)通过简化中心的平面汇交力系:简化为通过简化中心 的力,与简化中心的位置无关。 (绝对的,主矢决定于原力系中各力的大小和方向) (2)平面力偶系:与简化位置有关 (相对的,主矩的大小和转向取决于简化中心的位置)
解:①选AB梁研究 ②画受力图(以后注明 解除约束,可把支反 力直接画在整体结构 的原图上)
解除约束
由 m A(F i) P 02aN B3a0, N B2 3 P
X0 XA0
Y0 YBNBP0, YAP 3
静力学第三章平面一般力系
20
[例2] 已知:P=20kN, m=16kN·m, q=20kN/m, a=0.8m 求:A、B的约束反力。
坐标轴的选择: a:坐标轴的选择应尽可能使较多的力与坐标轴 平行或垂直。 b:尽可能将坐标原点设在较多的力的汇交处。 3. 列出平衡方程求出未知力 a:尽可能列一个方程求解一个未知数,注意列 出的次序 b:矩心的选择尽可能在比较多的力(未知力) 的汇交处。
静力学第三章平面一般力系
19
[例1] 已知:P, a , 求:A、B两点的支座反力?
O
m0(R) m0(Fi)
合力矩定理:当平面一般力系具有合力 时,合力对平面内任一点之矩就等于该 力系的各分力对同一点之矩的代数和。
静力学第三章平面一般力系
12
第三节 平面一般力系的平衡条件与平衡方程
由于
R = 0 为力平衡
MO = 0 为力偶也平衡
平面任意力系平衡的充要条件为:
力系的主矢 R和主矩 MO 都等于零,即:
3
第一节 平面一般力系向作用面内任一点简化
平面一般力系(coplanar arbitrary force system) :各力的作用 线在同一平面内,既不汇交为一点又不相互平行的力系叫平面 一般力系.如图起重机横梁。
FAy
FT
FAx
G
Q
静力学第三章平面一般力系
4
平面一般力系的简化
F′
F′
Od F A
对任一点的矩为零。 ∴ 二矩式成立。
充分性 即
二矩式成立
平衡
∵
∴ 力系不可能合成为合力偶,
只可能合成为合力或平衡。
静力学第三章平面一般力系
16
合
由
若有合力,则合
力
力作用线过A点。 作
由
若有合力,则合
用
力作用线过B点。 线
又有
X= 0
B
过
AB
且 x 轴不与AB连线垂直 A
x
∴ 必有:合力为零,即力系平衡。 证毕
静力学第三章平面一般力系
14
■ 平衡方程的其它形式证明
1 二矩式: X= 0
2 三矩式:
附加条件:
附加条件:
B B
A
x
A
C
A、B 连线不垂直 A、B、C 三点不
于x 轴
在同一条直线上
静力学第三章平面一般力系
15
■二矩式的证明:
必要性 即
平 衡
二矩式成立
∵ 平衡 ∴ FR 0 , MO=0
则,力系的主矢在任一轴上的投影为零;
门讨论。
② R=0,MO≠0 即简化结果为一合力偶, MO=M 此时刚
体等效于只有一个力偶的作用,因为力偶可以在刚体平
面内任意移动,故主矩与简化中心位置无关。
③ R≠0,MO =0,即简化为一个作用于简化中心的合力。这时, 简化结果就是合力(这个力系的合力), RR 。
(此时与简化中心有关,换个简化中心,主矩不为零)
静力学第三章平面一般力系
10
④ R≠0,MO ≠0,为最一般的情况。此种情况还可以继续简 化为一个合力 R ' 。
力线平移定理
d M0 M0 R R
利用主矩的转向来确定合力R’的 作用线在简化中心的哪一侧。
静力学第三章平面一般力系
11
R d M0 M0
.O
d
.
R R
Rdm0(R)M0 m m0(Fi)
=
OM
d A
F″
力线平移定理
M F , F F M d O F
因此:作用于刚体上的力,可平移到刚体上的 任意一点,但必须附加一力偶,其附加力偶矩 等于原力对平移点的力矩。
静力学第三章平面一般力系
5
任意多个力组成的力系中所有力的矢量和, 称为该力系的主矢。主矢只有大小和方向。
各附加力偶组成的平面力偶系的合力偶矩, 称为该力系的主矩。主矩等于各分力对简化中心 的力矩的代数和,作用在力系所在的平面上,如 图示:
解:研究AB梁
由 X 0 ,X A 0
mA(F)0;
解得:
三矩式的证明类似,请大家自己证明。
静力学第三章平面一般力系
17
特殊力的平衡方程
平面汇交力系: Fix0
平面平行力系:
有力平行于x轴
F0
平面力偶系:
Mi 0
Fiy0
M(Fi)0
静力学第三章平面一般力系
18
求解平面一般力系平衡问题的一般方法步骤
1. 选取正确的研究对象,取分离体,作受力图。 2. 建立适当的坐标系(一般为平面直角坐标系)
R( X)2( Y)20
MOmO(Fi)0
静力学第三章平面一般力系
13
X0
Y0 mO(Fi)0
X0
mA(Fi)0
mA(Fi)0 mB(Fi)0
mB(Fi)0 mC(Fi)0
①一矩式
②二矩式
③三矩式
条件:x 轴不AB 连线
条件:A,B,C不在 同一直线上
上式有三个独立方程,只能求出三个未知数。
注意:不论采用哪种形式的平衡方程,其独立的平衡方程的 个数只有三个,对一个物体来讲, 只能解三个未知量,不得多列!