高考一轮复习数学53平面向量的数量积及应用

合集下载

2020届高考数学一轮复习学霸提分秘籍专题6.3 平面向量的数量积及其应用(解析版)

2020届高考数学一轮复习学霸提分秘籍专题6.3 平面向量的数量积及其应用(解析版)

第六篇 平面向量与复数 专题6.03 平面向量的数量积及其应用【考试要求】1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表达式,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;5.会用向量的方法解决某些简单的平面几何问题. 【知识梳理】1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则a 与b 的数量积(或内积)a ·b =|a ||b |cos__θ.规定:零向量与任一向量的数量积为0,即0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 2.平面向量数量积的性质及其坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角. (1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2.(2)模:|a |=a ·a =x 21+y 21.(3)夹角:cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)两非零向量a ⊥b 的充要条件:a·b =0⇔x 1x 2+y 1y 2=0.(5)|a·b|≤|a||b|(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2. 3.平面向量数量积的运算律(1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律). (3)(a +b )·c =a ·c +b ·c (分配律).【微点提醒】1.两个向量a ,b 的夹角为锐角⇔a·b>0且a ,b 不共线;两个向量a ,b 的夹角为钝角⇔a·b<0且a ,b 不共线.2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2. (2)(a +b )2=a 2+2a ·b +b 2. (3)(a -b )2=a 2-2a ·b +b 2. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( ) (2)向量在另一个向量方向上的投影为数量,而不是向量.( )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (4)若a ·b =a ·c (a ≠0),则b =c .( ) 【答案】 (1)× (2)√ (3)√ (4)× 【解析】 (1)两个向量夹角的范围是[0,π].(4)由a ·b =a ·c (a ≠0)得|a ||b |·cos 〈a ,b 〉=|a ||c |·cos 〈a ,c 〉,所以向量b 和c 不一定相等. 【教材衍化】2.(必修4P108A10改编)设a ,b 是非零向量.“a ·b =|a ||b |”是“a ∥b ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件【答案】 A【解析】 设a 与b 的夹角为θ.因为a ·b =|a |·|b |cos θ=|a |·|b |,所以cos θ=1,即a 与b 的夹角为0°,故a ∥b .当a ∥b 时,a 与b 的夹角为0°或180°, 所以a ·b =|a |·|b |cos θ=±|a |·|b |,所以“a ·b =|a |·|b |”是“a ∥b ”的充分而不必要条件.3.(必修4P108A2改编)在圆O 中,长度为2的弦AB 不经过圆心,则AO →·AB →的值为________. 【答案】 1【解析】 设向量AO →,AB →的夹角为θ,则AO →·AB →=|AO →||AB →|·cos θ=|AO →|cos θ·|AB →|=12|AB →|·|AB→|=12×(2)2=1. 【真题体验】4.(2018·全国Ⅱ卷)已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A.4 B.3C.2D.0【答案】 B【解析】 a ·(2a -b )=2|a |2-a ·b =2×12-(-1)=3.5.(2018·上海嘉定区调研)平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( ) A.13+6 2 B.2 5 C.30D.34【答案】 D【解析】 依题意得a 2=2,a ·b =2×2×cos 45°=2,|3a +b |=(3a +b )2=9a 2+6a ·b +b 2=18+12+4=34.6.(2017·全国Ⅰ卷)已知向量a =(-1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________. 【答案】 7【解析】 由题意得a +b =(m -1,3),因为a +b 与a 垂直,所以(a +b )·a =0,所以-(m -1)+2×3=0,解得m =7. 【考点聚焦】考点一 平面向量数量积的运算【例1】 (1)若向量m =(2k -1,k )与向量n =(4,1)共线,则m ·n =( ) A.0B.4C.-92D.-172(2)(2018·天津卷)在如图的平面图形中,已知OM =1,ON =2,∠MON =120°,BM →=2MA →,CN →=2NA →,则BC →·OM →的值为( )A.-15B.-9C.-6D.0【答案】 (1)D (2)C【解析】 (1)由题意得2k -1-4k =0,解得k =-12,即m =⎝⎛⎭⎫-2,-12, 所以m ·n =-2×4+⎝⎛⎭⎫-12×1=-172. (2)连接OA .在△ABC 中,BC →=AC →-AB →=3AN →-3AM →=3(ON →-OA →)-3(OM →-OA →)=3(ON →-OM →),∴BC →·OM →=3(ON →-OM →)·OM →=3(ON →·OM →-OM →2)=3×(2×1×cos 120°-12)=3×(-2)=-6.【规律方法】 1.数量积公式a ·b =|a ||b |cos θ在解题中的运用,解题过程具有一定的技巧性,需要借助向量加、减法的运算及其几何意义进行适当变形;也可建立平面直角坐标系,借助数量积的坐标运算公式a ·b =x 1x 2+y 1y 2求解,较为简捷、明了.2.在分析两向量的夹角时,必须使两个向量的起点重合,如果起点不重合,可通过“平移”实现.【训练1】 (1)在△ABC 中,AB =4,BC =6,∠ABC =π2,D 是AC 的中点,E 在BC 上,且AE ⊥BD ,则AE →·BC →等于( ) A.16B.12C.8D.-4(2)(2019·皖南八校三模)已知|a |=|b |=1,向量a 与b 的夹角为45°,则(a +2b )·a =________. 【答案】 (1)A (2)1+ 2【解析】 (1)以B 为原点,BA ,BC 所在直线分别为x ,y 轴建立平面直角坐标系(图略),A (4,0),B (0,0),C (0,6),D (2,3).设E (0,t ),BD →·AE →=(2,3)·(-4,t )=-8+3t =0,∴t=83,即E ⎝⎛⎭⎫0,83, AE →·BC →=⎝⎛⎭⎫-4,83·(0,6)=16. (2)因为|a |=|b |=1,向量a 与b 的夹角为45°, 所以(a +2b )·a =a 2+2a ·b =|a |2+2|a |·|b |cos 45°=1+ 2. 考点二 平面向量数量积的应用 角度1 平面向量的垂直【例2-1】 (1)(2018·北京卷)设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =________. (2)(2019·宜昌二模)已知△ABC 中,∠A =120°,且AB =3,AC =4,若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为( ) A.2215B.103C.6D.127【答案】 (1)-1 (2)A【解析】 (1)a =(1,0),b =(-1,m ),∴a 2=1,a ·b =-1, 由a ⊥(m a -b )得a ·(m a -b )=0,即m a 2-a ·b =0. ∴m -(-1)=0,∴m =-1. (2)因为AP →=λAB →+AC →,且AP →⊥BC →,所以有AP →·BC →=(λAB →+AC →)·(AC →-AB →)=λAB →·AC →-λAB →2+AC →2-AB →·AC →=(λ-1)AB →·AC →-λAB →2+AC →2=0,整理可得(λ-1)×3×4×cos 120°-9λ+16=0, 解得λ=2215.【规律方法】1.当向量a ,b 是非坐标形式时,要把a ,b 用已知的不共线向量作为基底来表示且不共线的向量要知道其模与夹角,从而进行运算.2.数量积的运算a·b =0⇔a ⊥b 中,是对非零向量而言的,若a =0,虽然有a·b =0,但不能说a ⊥b.角度2 平面向量的模【例2-2】 (1)已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________. (2)(2019·杭州调研)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________. 【答案】 (1)10 (2)5【解析】 (1)由α⊥(α-2β)得α·(α-2β)=α2-2α·β=0, 所以α·β=12,所以(2α+β)2=4α2+β2+4α·β=4×12+22+4×12=10,所以|2α+β|=10.(2)建立平面直角坐标系如图所示,则A (2,0),设P (0,y ),C (0,b ),则B (1,b ).所以PA →+3PB →=(2,-y )+3(1,b -y )=(5,3b -4y ), 所以|PA →+3PB →|=25+(3b -4y )2(0≤y ≤b ),所以当y =34b 时,|PA →+3PB →|取得最小值5.【规律方法】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.角度3 平面向量的夹角【例2-3】 (1)(2019·衡水中学调研)已知非零向量a ,b 满足|a +b |=|a -b |=233|a |,则向量a +b 与a -b 的夹角为________.(2)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.【答案】 (1)π3(2)⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3 【解析】 (1)将|a +b |=|a -b |两边平方,得a 2+b 2+2a ·b =a 2+b 2-2a ·b ,∴a ·b =0. 将|a +b |=233|a |两边平方,得a 2+b 2+2a ·b =43a 2,∴b 2=13a 2.设a +b 与a -b 的夹角为θ,∴cos θ=(a +b )·(a -b )|a +b |·|a -b |=a 2-b 2233|a |·233|a |=23a 243a 2=12.又∵θ∈[0,π],∴θ=π3.(2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )·c <0,即(2k -3,-6)·(2,1)<0,解得k <3. 又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,此时2a -3b 与c 反向,不合题意.综上,k 的取值范围为⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3. 【规律方法】1.研究向量的夹角应注意“共起点”;两个非零共线向量的夹角可能是0或π;注意向量夹角的取值范围是[0,π];若题目给出向量的坐标表示,可直接套用公式cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22求解.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【训练2】 (1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________.(2)(一题多解)(2017·全国Ⅰ卷)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________.(3)(2017·山东卷)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 【答案】 (1)2 (2)23 (3)33【解析】 (1)由a ⊥b ,得a ·b =0, 又a =(-2,3),b =(3,m ), ∴-6+3m =0,则m =2. (2)法一 |a +2b |=(a +2b )2=a 2+4a ·b +4b 2=22+4×2×1×cos 60°+4×12=12=2 3.法二 (数形结合法)由|a |=|2b |=2知,以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC →|.又∠AOB =60°,所以|a +2b |=2 3. (3)由题意知|e 1|=|e 2|=1,e 1·e 2=0,|3e 1-e 2|=(3e 1-e 2)2=3e 21-23e 1·e 2+e 22=3-0+1=2.同理|e 1+λe 2|=1+λ2.所以cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12, 解得λ=33. 考点三 平面向量与三角函数【例3】 (2019·潍坊摸底)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 【答案】见解析【解析】(1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝⎛⎭⎫-352=45. (2)由正弦定理,得a sin A =bsin B ,则sin B =b sin A a =5×4542=22,因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4.由余弦定理得(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1,c =-7舍去,故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.【规律方法】 平面向量与三角函数的综合问题的解题思路:(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.【训练3】 (2019·石家庄模拟)已知A ,B ,C 分别为△ABC 的三边a ,b ,c 所对的角,向量m =(sin A ,sin B ),n =(cos B ,cos A ),且m ·n =sin 2C . (1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求边c 的长. 【答案】见解析【解析】(1)由已知得m ·n =sin A cos B +cos A sin B =sin(A +B ), 因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C , 所以m ·n =sin C ,又m ·n =sin 2C , 所以sin 2C =sin C ,所以cos C =12.又0<C <π,所以C =π3.(2)由已知及正弦定理得2c =a +b . 因为CA →·(AB →-AC →)=CA →·CB →=18, 所以ab cos C =18,所以ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab 所以c 2=4c 2-3×36, 所以c 2=36,所以c =6. 【反思与感悟】1.计算向量数量积的三种方法定义、坐标运算、数量积的几何意义,要灵活运用,与图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. 【易错防范】数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.数量积运算不满足结合律,(a ·b )·c 不一定等于a ·(b ·c ). 【核心素养提升】【数学运算、数学建模】——平面向量与三角形的“四心”1.数学运算是指在明晰运算的基础上,依据运算法则解决数学问题的素养.通过学习平面向量与三角形的“四心”,学生能进一步发展数学运算能力,形成规范化思考问题的品质,养成一丝不苟、严谨求实的科学精神.2.数学建模要求在熟悉的情境中,发现问题并转化为数学问题,能够在关联的情境中,经历数学建模的过程,理解数学建模的意义.本系列通过学习平面向量与三角形的“四心”模型,能够培养学生用模型的思想解决相关问题.设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a2sin A. (2)O 为△ABC 的重心⇔OA →+OB →+OC →=0. (3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →. (4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0. 类型1 平面向量与三角形的“重心”【例1】 已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA→+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过( ) A.△ABC 的内心 B.△ABC 的垂心 C.△ABC 的重心D.AB 边的中点 【答案】 C【解析】 取AB 的中点D ,则2OD →=OA →+OB →, ∵OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →],∴OP →=13[2(1-λ)OD →+(1+2λ)OC →]=2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,∴P ,C ,D 三点共线,∴点P 的轨迹一定经过△ABC 的重心. 类型2 平面向量与三角形的“内心”问题【例2】 在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP →=xOB →+yOC →,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B.1463C.4 3D.6 2【答案】 B【解析】 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则 12bc sin A =12(a +b +c )r ,解得r =263, 所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463.类型3 平面向量与三角形的“垂心”问题【例3】 已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP→=OA →+λ⎝⎛⎭⎪⎫AB →|AB →|cos B + AC →|AC →|cos C ,λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A.重心 B.垂心C.外心D.内心【答案】 B【解析】 因为OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|cos B + AC →|AC →|cos C , 所以AP →=OP →-OA →=λ⎝⎛⎭⎪⎫AB →|AB →|cos B + AC →|AC →|cos C , 所以BC →·AP →=BC →·λ⎝ ⎛⎭⎪⎫AB→|AB →|cos B + AC →|AC →|cos C =λ(-|BC →|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上, 即动点P 的轨迹一定通过△ABC 的垂心. 类型4 平面向量与三角形的“外心”问题【例4】 已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO →=xAB →+yAC →,则有序实数对(x ,y )为( ) A.⎝⎛⎭⎫45,35 B.⎝⎛⎭⎫35,45 C.⎝⎛⎭⎫-45,35D.⎝⎛⎭⎫-35,45 【答案】 A【解析】 取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC →, OM →=AM →-AO →=12AB →-(xAB →+yAC →)=⎝⎛⎭⎫12-x AB →-yAC →, ON →=AN →-AO →=12AC →-(xAB →+yAC →)=⎝⎛⎭⎫12-y AC →-xAB →. 由OM →⊥AB →,得⎝⎛⎭⎫12-x AB →2-yAC →·AB →=0,① 由ON →⊥AC →,得⎝⎛⎭⎫12-y AC →2-xAC →·AB →=0,② 又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB →2,所以AC →·AB →=AC →2+AB →2-BC→22=-12,③把③代入①、②得⎩⎪⎨⎪⎧1-2x +y =0,4+x -8y =0,解得x =45,y =35.故实数对(x ,y )为⎝⎛⎭⎫45,35.【分层训练】【基础巩固题组】(建议用时:40分钟) 一、选择题1.已知向量a =(m -1,1),b =(m ,-2),则“m =2”是“a ⊥b ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 【答案】 A【解析】 当m =2时,a =(1,1),b =(2,-2), 所以a ·b =(1,1)·(2,-2)=2-2=0, 所以a ⊥b ,充分性成立;当a ⊥b 时,a ·b =(m -1,1)·(m ,-2)=m (m -1)-2=0, 解得m =2或m =-1,必要性不成立. 所以“m =2”是“a ⊥b ”的充分不必要条件.2.(2019·北京通州区二模)已知非零向量a ,b 的夹角为60°,且|b |=1,|2a -b |=1,则|a |=( ) A.12B.1C. 2D.2【答案】 A【解析】 由题意得a ·b =|a |×1×12=|a |2,又|2a -b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=4|a |2-2|a |+1=1,即4|a |2-2|a |=0,又|a |≠0, 解得|a |=12.3.(2019·石家庄二模)若两个非零向量a ,b 满足|a +b |=|a -b |=2|b |,则向量a +b 与a 的夹角为( ) A.π3B.2π3C.5π6D.π6【答案】 D【解析】 设|b |=1,则|a +b |=|a -b |=2. 由|a +b |=|a -b |,得a ·b =0,故以a 、b 为邻边的平行四边形是矩形,且|a |=3, 设向量a +b 与a 的夹角为θ,则cos θ=a ·(a +b )|a |·|a +b |=a 2+a ·b |a |·|a +b |=|a ||a +b |=32,又0≤θ≤π,所以θ=π6.4.如图,在等腰梯形ABCD 中,AB =4,BC =CD =2,若E ,F 分别是边BC ,AB 上的点,且满足BE BC =AF AB=λ,则当AE →·DF →=0时,λ的值所在的区间是( )A.⎝⎛⎭⎫18,14B.⎝⎛⎭⎫14,38 C.⎝⎛⎭⎫38,12D.⎝⎛⎭⎫12,58【答案】 B【解析】 在等腰梯形ABCD 中,AB =4,BC =CD =2, 可得〈AD →,BC →〉=60°,所以〈AB →,AD →〉=60°,〈AB →,BC →〉=120°,所以AB →·AD →=4×2×12=4,AB →·BC →=4×2×⎝⎛⎭⎫-12=-4,AD →·BC →=2×2×12=2, 又BE BC =AF AB=λ,所以BE →=λBC →,AF →=λAB →, 则AE →=AB →+BE →=AB →+λBC →, DF →=AF →-AD →=λAB →-AD →, 所以AE →·DF →=(AB →+λBC →)·(λAB →-AD →) =λAB →2-AB →·AD →+λ2AB →·BC →-λAD →·BC →=0,即2λ2-7λ+2=0,解得λ=7+334(舍去)或λ=7-334∈⎝⎛⎭⎫14,38. 5.(2017·浙江卷)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A.I 1<I 2<I 3B.I 1<I 3<I 2C.I 3<I 1<I 2D.I 2<I 1<I 3【答案】 C【解析】 如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,∴∠AOB 与∠COD 为钝角,∠AOD 与∠BOC 为锐角,根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →||CA →|·cos ∠AOB <0,∴I 1<I 2,同理I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,∴OB <BG =GD <OD ,而OA <AF =FC <OC ,∴|OA →||OB →|<|OC →||OD →|, 而cos ∠AOB =cos ∠COD <0,∴OA →·OB →>OC →·OD →, 即I 1>I 3.∴I 3<I 1<I 2. 二、填空题6.(2019·杭州二模)在△ABC 中,三个顶点的坐标分别为A (3,t ),B (t ,-1),C (-3,-1),若△ABC 是以B 为直角顶点的直角三角形,则t =________. 【答案】 3【解析】 由已知,得BA →·BC →=0, 则(3-t ,t +1)·(-3-t ,0)=0,∴(3-t )(-3-t )=0,解得t =3或t =-3, 当t =-3时,点B 与点C 重合,舍去.故t =3.7.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a ,b 夹角θ的余弦值为________. 【答案】 -13【解析】 |a |=|a +2b |,两边平方得, |a |2=|a |2+4|b |2+4a ·b =|a |2+4|b |2+4|a ||b |·cos θ. 又|a |=3|b |,所以0=4|b |2+12|b |2cos θ,得cos θ=-13.8.(2019·佛山二模)在Rt △ABC 中,∠B =90°,BC =2,AB =1,D 为BC 的中点,E 在斜边AC 上,若AE →=2EC →,则DE →·AC →=________. 【答案】 13【解析】 如图,以B 为坐标原点,AB 所在直线为x 轴,BC 所在直线为y 轴,建立平面直角坐标系,则B (0,0),A (1,0),C (0,2),所以AC →=(-1,2).因为D 为BC 的中点,所以D (0,1), 因为AE →=2EC →,所以E ⎝⎛⎭⎫13,43, 所以DE →=⎝⎛⎭⎫13,13,所以DE →·AC →=⎝⎛⎭⎫13,13·(-1,2)=-13+23=13.三、解答题9.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值. 【答案】见解析【解析】(1)由题设知AB →=(3,5),AC →=(-1,1), 则AB →+AC →=(2,6),AB →-AC →=(4,4). 所以|AB →+AC →|=210,|AB →-AC →|=4 2. 故所求的两条对角线的长分别为42,210.(2)由题设知:OC →=(-2,-1),AB →-tOC →=(3+2t ,5+t ). 由(AB →-tOC →)·OC →=0,得 (3+2t ,5+t )·(-2,-1)=0, 从而5t =-11,所以t =-115.10.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )(0≤θ≤π2).(1)若AB →⊥a ,且|AB →|=5|OA →|,求向量OB →;(2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →.【答案】见解析【解析】(1)由题设知AB →=(n -8,t ), ∵AB →⊥a ,∴8-n +2t =0. 又∵5|OA →|=|AB →|,∴5×64=(n -8)2+t 2=5t 2,得t =±8. 当t =8时,n =24;当t =-8时,n =-8, ∴OB →=(24,8)或OB →=(-8,-8). (2)由题设知AC →=(k sin θ-8,t ), ∵AC →与a 共线,∴t =-2k sin θ+16, t sin θ=(-2k sin θ+16)sin θ =-2k (sin θ-4k )2+32k .∵k >4,∴0<4k<1,∴当sin θ=4k 时,t sin θ取得最大值32k .由32k =4,得k =8, 此时θ=π6,OC →=(4,8),∴OA →·OC →=(8,0)·(4,8)=32. 【能力提升题组】(建议用时:20分钟)11.在△ABC 中,∠C =90°,AB =6,点P 满足CP =2,则PA →·PB →的最大值为( ) A.9 B.16C.18D.25【答案】 B【解析】 ∵∠C =90°,AB =6,∴CA →·CB →=0,∴|CA →+CB →|=|CA →-CB →|=|BA →|=6,∴PA →·PB →=(PC →+CA →)·(PC →+CB →)=PC →2+PC →·(CA →+CB →)+CA →·CB → =PC →·(CA →+CB →)+4,∴当PC →与CA →+CB →方向相同时,PC →·(CA →+CB →)取得最大值2×6=12, ∴PA →·PB →的最大值为16.12.(2018·浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2-4e ·b +3=0,则|a -b |的最小值是( ) A.3-1 B.3+1 C.2D.2- 3【答案】 A【解析】 设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min=|CA →|-|CB →|=3-1.13.(2019·安徽师大附中二模)在△ABC 中,AB =2AC =6,BA →·BC →=BA →2,点P 是△ABC 所在平面内一点,则当PA →2+PB →2+PC →2取得最小值时,AP →·BC →=________. 【答案】 -9【解析】 ∵BA →·BC →=|BA →|·|BC →|·cos B =|BA →|2, ∴|BC →|·cos B =|BA →|=6, ∴CA →⊥AB →,即A =π2,以A 为坐标原点建立如图所示的坐标系,则B (6,0),C (0,3),设P (x ,y ),则PA →2+PB →2+PC →2=x 2+y 2+(x -6)2+y 2+x 2+(y -3)2=3x 2-12x +3y 2-6y +45=3[(x -2)2+(y -1)2+10]∴当x =2,y =1时,PA →2+PB →2+PC →2取得最小值,此时AP →·BC →=(2,1)·(-6,3)=-9.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )BA →·BC →=cCB →·CA →.(1)求角B 的大小;(2)若|BA →-BC →|=6,求△ABC 面积的最大值.【答案】见解析【解析】(1)由题意得(2a -c )cos B =b cos C .根据正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B =sin(C +B ), 即2sin A cos B =sin A ,因为A ∈(0,π),所以sin A >0,所以cos B =22,又B ∈(0,π),所以B =π4. (2)因为|BA →-BC →|=6,所以|CA →|=6,即b =6,根据余弦定理及基本不等式得6=a 2+c 2-2ac ≥2ac -2ac =(2-2)ac (当且仅当a =c 时取等号),即ac ≤3(2+2).故△ABC 的面积S =12ac sin B ≤3(2+1)2, 因此△ABC 的面积的最大值为32+32. 【新高考创新预测】15.(新定义题型)对任意两个非零的平面向量α和β,定义α⊗β=|α||β|cos θ,其中θ为α和β的夹角.若两个非零的平面向量a 和b 满足:①|a |≥|b |;②a 和b 的夹角θ∈⎝⎛⎭⎫0,π4;③a ⊗b 和b ⊗a 的值都在集合{x |x =n 2,n ∈N }中,则a ⊗b 的值为________. 【答案】 32【解析】 a ⊗b =|a ||b |cos θ=n 2,b ⊗a =|b ||a |cos θ=m 2,m ,n ∈N .由a 与b 的夹角θ∈⎝⎛⎭⎫0,π4,知cos 2θ=mn 4∈⎝⎛⎭⎫12,1,故mn =3,m ,n ∈N .因为|a |≥|b |,所以0<b ⊗a =m 2<1,所以m =1,n =3,所以a ⊗b =32.。

高考一轮第四章 第三节 平面向量的数量积及向量应用ppt

高考一轮第四章  第三节  平面向量的数量积及向量应用ppt

返回
|a|2 (3)a· a= ,|a|= a· a.
(4)cos〈a,b〉= (5)|a· b|

a· b |a||b| .
|a||b|.
3.数量积的运算律: (1)交换律:a· b· . b= a
c (2)分配律:(a+b)· a· c= c+b· . b a· (3)对λ∈R,λ(a· b)= (λa)· = (λb) .
(
)
解析:|a· b|=|a|· |b||cos θ|,只有a与b共线时,才有|a· b| =|a||b|,可知B是错误的. 答案:B
返回
2.(2011· 辽宁高考)已知向量a=(2,1),b=(-1,k), a· (2a-b)=0,则k= ( )
A.-12
C.6
B.-6
D.12
解析:∵2a-b=(4,2)-(-1,k)=(5,2-k), 由a· (2a-b)=0,得(2,1)· (5,2-k)=0 ∴10+2-k=0,解得k=12. 答案: D
即18+3x=30,解得:x=4. [答案] C
返回
[例2]
π (2011· 江西高考)已知两个单位向量e1,e2的夹角为3,若向
量b1=e1-2e2,b2=3e1+4e2,则b1·2=________. b
[自主解答] b1=e1-2e2,b2=3e1+4e2,则b1·2=(e1-2e2)· 1+ b (3e
第 四 章 平 面 向 量、 数 系 的 扩 充 与 复 数 的 引 入
第三 节
平面 向量 的数 量积
抓 基 础
明 考 向
教 你 一 招 我 来 演 练
及向
量的 应用
提 能 力
返回
[备考方向要明了] 考 什 么

2021高三统考北师大版数学一轮学案:第5章第3讲平面向量的数量积及应用含解析

2021高三统考北师大版数学一轮学案:第5章第3讲平面向量的数量积及应用含解析

2021高三统考北师大版数学一轮学案:第5章第3讲平面向量的数量积及应用含解析第3讲平面向量的数量积及应用基础知识整合1.向量的夹角定义图示范围共线与垂直已知两个非零向量a和b,作错误!=a,错误!=b,则错误!∠AOB就是a与b 的夹角设θ是a与b的夹角,则θ的取值范围是020°≤θ≤180°错误!θ=0°或θ=180°⇔a∥b,错误!θ=90°⇔a⊥b2.平面向量的数量积定义设两个非零向量a,b的夹角为θ,则数量错误!|a||b|·cosθ叫做a与b的数量积,记作a·b投影错误!|a|cosθ叫做向量a在b方向上的投影,错误!|b|cosθ叫做向量b在a方向上的投影几何意义数量积a·b等于错误!a的长度|a|与错误!b在a的方向上的投影|b|cosθ的乘积3.向量数量积的运算律交换律a·b=错误!b·a分配律(a+b)·c错误!a·c+b·c数乘结合律(λa)·b=λ(a·b)=12a·(λb)4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.结论几何表示坐标表示模|a|=错误!|a|=错误!错误!夹角cosθ=错误!cosθ=错误!错误!a⊥b的充要条件a·b=0错误!x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤错误!1.数量积运算律要准确理解、应用,例如,a·b=a·c(a≠0)不能得出b=c,两边不能约去一个向量.2.数量积不满足结合律,即(a ·b)·c≠a·(b·c).3.当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|,特别地,a·a=a2或|a|=错误!.4.有关向量夹角的两个结论:(1)两个向量a与b的夹角为锐角,则有a·b>0,反之不成立(因为a与b夹角为0时也有a·b>0).(2)两个向量a与b的夹角为钝角,则有a·b〈0,反之不成立(因为a与b夹角为π时也有a·b〈0).1.(2019·重庆模拟)已知向量a=(k,3),b=(1,4),c=(2,1),且(2a -3b)⊥c,则实数k=()A.-错误!B.0C.3 D.错误!答案C解析因为2a-3b=(2k-3,-6),(2a-3b)⊥c,所以(2a -3b)·c=2(2k-3)-6=0,解得k=3.选C.2.(2019·全国卷Ⅱ)已知向量a=(2,3),b=(3,2),则|a-b|=()A.错误!B.2C.5 2 D.50答案A解析∵a-b=(2,3)-(3,2)=(-1,1),∴|a-b|=错误!=错误!.故选A。

平面向量的数量积及平面向量的应用(一轮公开)课

平面向量的数量积及平面向量的应用(一轮公开)课
菜 单 隐 藏
高考总复习 B 数学(文)
抓主干 考 点 解 密
研考向 要 点 探 究 悟典题 能 力 提 升 提素能 高 效 训 练
平面向量的夹角与模
【例2】 (1)(2014年锦州模拟)平面向量a与b的夹角为60° , 2,|b|=1,则|a+2b|=( B ) A. 3 B.2 3 C.4 D.10
菜 单
隐 藏
高考总复习 B 数学(文)
抓主干 考 点 解 密
研考向 要 点 探 究 悟典题 能 力 提 升 提素能 高 效 训 练
平面向量数量积的运算
→ =(1,2), 【例 1】 (1)(2013 年高考福建卷)在四边形 ABCD 中,AC → =(-4,2),则该四边形的面积为( BD A. 5 B.2 5 C.5
的乘积.
高考总复习 B 数学(文)
抓主干 考 点 解 密
研考向 要 点 探 究 悟典题 能 力 提 升 提素能 高 效 训 练
1.(2014年武汉模拟)已知向量a,b,满足|a|=3,|b|=2 3 ,且a⊥ (a+b),则a与b的夹角为( D ) π 2π 3π A. B. C. 2 3 4 5π D. 6
(1)交换律:a·b= b·a .
思考:(a·b)c=a(b·c),对吗?
(2)分配律:(a+b)·c= a·c+b·c . (3)对λ∈R,λ(a·b)=
菜 单 隐 藏
(λa)·b = a·(λb)

山 东 金 太 阳 书 业 有 限 公 司
高考总复习 B 数学(文)
抓主干 考 点 解 密
研考向 要 点 探 究 悟典题 能 力 提 升 提素能 高 效 训 练
(1)a,b是两个非零向量,它们的夹角为θ,则数量|a||b|·cos θ叫做 a与b的数量积,记作a·b,即a·b= |a||b|·cos θ .规定0·a=0.

近年高考数学一轮复习第五章平面向量第三节平面向量的数量积与平面向量应用举例作业本理(2021年整理)

近年高考数学一轮复习第五章平面向量第三节平面向量的数量积与平面向量应用举例作业本理(2021年整理)

(北京专用)2019版高考数学一轮复习第五章平面向量第三节平面向量的数量积与平面向量应用举例作业本理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((北京专用)2019版高考数学一轮复习第五章平面向量第三节平面向量的数量积与平面向量应用举例作业本理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(北京专用)2019版高考数学一轮复习第五章平面向量第三节平面向量的数量积与平面向量应用举例作业本理的全部内容。

第三节平面向量的数量积与平面向量应用举例A组基础题组1。

(2017北京丰台二模,5)已知向量a=,b=(,-1),则a,b的夹角为()A。

B。

C。

D.2.(2016北京,4,5分)设a,b是向量。

则“|a|=|b|”是“|a+b|=|a—b|"的()A.充分而不必要条件B。

必要而不充分条件C.充分必要条件D.既不充分也不必要条件3。

(2017北京西城二模,6)设a,b是平面上的两个单位向量,a·b=。

若m∈R,则|a+mb|的最小值是( )A. B。

C。

D。

4。

已知向量a=,b=(—,1),c=a+λb,则c·a等于()A。

λB。

—λ C.1 D。

—15.已知平面上三点A,B,C满足||=6,||=8,||=10,则·+·+·=()A。

48 B。

-48 C.100 D。

-1006.(2017北京朝阳二模,10)若平面向量a=(cos θ,sin θ),b=(1,—1),且a⊥b,则sin 2θ的值是。

7.已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|= .8。

【龙门亮剑】高三数学一轮复习 第五章 第三节 平面向量的数量积课件 理(全国版)

【龙门亮剑】高三数学一轮复习 第五章 第三节 平面向量的数量积课件 理(全国版)

→ → 如图 OA =a, OB =b,过B作BB1垂直于 直线OA,垂足为B1,则OB1=|b|cos θ.
|b|cos θ叫做向量b在a方向上的投影. 当 θ为锐角时,如图①,它是_____ 正值 . 负值 . 当 θ为钝角时,如图②,它是_____ 当 θ为直角时,如图③,它是_____. 0 |b| 当 θ=0° 时,它是____. -|b| 当 θ=180° 时,它是______.
【思路点拨】 利用平面向量数量积的定 义及运算律.可求出第(1)问;求|a+b|可先 求(a+b)2,再开方.
【自主解答】
3π (1)a· b=|a|· |b|· cos 4
2 =3×4×(- )=-6 2. 2 a2=32=9,b2=16. ∴(3a-2b)· (a-2b)=3a2-8a· b+4b2 =3×9-8×(-6 2)+64=91+48 2.
【答案】 C
4.若b=(1,1),a· b=2,(a-b)2=3,则 |a|=________.
【解析】 |b|= 2, (a-b)2=a2-2a· b+b2=|a|2-2×2+2=3. ∴|a|2=5,∴|a|= 5.
【答案】
5
5.已知|a|=1,|b|= 2 ,且a⊥(a-b), 则向量a与b的夹角是________.
【解析】 ∵a⊥(a-b),∴a· (a-b)=0, 即a2-a· b=0,∴a· b=1. 设a与b的夹角为θ,则 1 2 π a· b cos θ= = = .∴θ= . |a||b| 1× 2 2 4
【答案】 π 4
数量积的运算 3π 已知|a|=3,|b|=4,a与b的夹角为 ,求: 4 (1)(3a-2b)· (a-2b);(2)|a+b|.
(3)当a与b同向时,a· b=|a||b|; -|a||b| 当a与b反向时,a· b=_______ a· a 特别地,a· a=|a|2或|a|=______. ab (4)cos θ= |a||b| ≤ a||b|. (5)|a· b|____|

平面向量的数量积-高三新高考一轮复习(人教A版)

平面向量的数量积-高三新高考一轮复习(人教A版)
(3)向量的夹角
已知两个_非_零__向量 a 和 b,作O→A=a,O→B=b,则∠AOB
=θ(0°≤θ≤180°)叫作向量 a 与 b 的夹角.如果向量 a 与
b 的夹角是 90°,我们说 a 与 b 垂直,记作_a_⊥__b_.
2.平面向量数量积的运算律 已知向量 a,b,c 和实数 λ.
①交换律:__a·_b_=__b_·a__; ②数乘结合律:(λa)·b=_λ_(_a_·b_)_=_a_·_(λ_b_)_(λ∈R); ③分配律:(a+b)·c=_a_·c_+__b_·_c .
解析 (1)因为|a|=|b|=1,向量 a 与 b 的夹角为 45°, 所以(a+2b)·a=a2+2a·b=|a|2+2|a|·|b|cos 45°=1+ 2. (2)如图,由 AD∥BC,AE=BE,得∠BAD=∠ABE= ∠EAB=30°.又 AB=2 3,
所以 AE=BE=2.因为B→D=A→D-A→B, 所以A→E·B→D=A→E·(A→D-A→B)=A→E·A→D-A→E·A→B =2×5×cos 60°-2×2 3×cos 30°=-1.
解析 根据物理中力的平衡原理有 F3+F1+F2=0, ∴|F3|2=|F1|2+|F2|2+2F1·F2 =12+( 2)2+2×1× 2×cos 45°=5. ∴|F3|= 5 N.
◇考题再现
4.已知向量 a,b 满足|a|=1,a·b=-1,则 a·(2a-b)
=( B )
A.4
B.3
C.2
a·b
④cos θ=_|_a_||b_|_. ⑤|a·b|_≤__|a||b|.
4.平面向量数量积的有关结论
已知两个非零向量 a=(x1,y1),b=(x2,y2).
向量表示

平面向量的数量积及平面向量的应用举例

平面向量的数量积及平面向量的应用举例

3.求向量模的常用方法:利用公式 |a|2=a2,将模的运算转化为向量数量 积的运算.
失误防范
1.零向量:(1)0 与实数 0 的区别,不可 写错:0a=0≠0,a+(-a)=0≠0,a·= 0 0≠0;(2)0 的方向是任意的,并非没有方 向,0 与任何向量平行,我们只定义了非 零向量的垂直关系.
课前热身
1.若向量a,b,c满足a∥b 且a⊥c,则c· (a+2b)=( )
A.4
C.2
B.3
D.0
答案:D
2.已知向量 a,b 满足 a· b=0,|a|=1, |b|=2,则|2a-b|=( A.0 C.4 ) B.2 2 D.8
答案:B
3. (2011· 高考大纲全国卷)已知抛物线 C: y2=4x 的焦点为 F,直线 y=2x-4 与 C 交于 A,B 两点,则 cos∠AFB=( 4 3 A. B. 5 5 3 4 C.- D.- 5 5 )
a· b 2 则 cosθ= = = , |a||b| 2 2 1× 2 π 又 θ∈[0,π],∴θ= . 4 π 即 a 与 b 的夹角为 . 4
1 2
(2)∵(a-b)2=a2-2a· 2 b+b 1 1 1 =1-2× + = , 2 2 2 2 ∴|a-b|= , 2 ∵(a+b)2=a2+2a· 2 b+b 1 1 5 =1+2× + = , 2 2 2
量积等于0说明两向量的夹角为直角,
数量积小于0且两向量不共线时两向量
的夹角是钝角.
考点3 两向量的平行与垂直关系
向量的平行、垂直都是两向量关系中 的特殊情况,判断两向量垂直可以借 助数量积公式.如果已知两向量平行 或垂直可以根据公式列方程(组)求解
例3
已知|a|=4,|b|=8,a与b的夹角

平面向量的数量积及其应用

平面向量的数量积及其应用

解析 解法一:∵|a+b|+|a-b|≥|(a+b)+(a-b)|=2|a|=2,且|a+b|+|a-b|≥|(a+b)(a-b)|=2|b|=4, ∴|a+b|+|a-b|≥4,当且仅当a+b与a-b反向时取等号,此时|a+b|+|a-b|取最 小值4.
| a b |2 | a b |2 | a b| | a b| ∵ ≤ = a 2 b 2 = 5 , 2 2
2 2 x12 y12 ,|b|= x2 y2 (2)|a|= .
平面向量的长度问题
( x1 x2 ) 2 ( y1 y2 ) 2 . 2.若A(x1,y1),B(x2,y2),则| AB |=

考点三
平面向量的夹角、两向量垂直及数量积的应用
x1 x2 y1 y2
已知a=(x1,y1),b=(x2,y2). (1)若a与b的夹角为θ,则cos θ= . 2 (2)a⊥b⇔x1x2+y1y2=0.
∴|a+b|+|a-b|≤2 5 . 当且仅当|a+b|=|a-b|时取等号,此时a· b=0.
故当a⊥b时,|a+b|+|a-b|有最大值2 5 .
解法二:设x=|a+b|,由||a|-|b||≤|a+b|≤|a|+|b|, 得1≤x≤3.
设y=|a-b|,同理,1≤y≤3. 而x2+y2=2a2+2b2=10, 故可设x= 10 cos θ, ≤cos θ≤ , y= 10 sin θ, ≤sin θ≤ . 设α1,α2为锐角,且sin α1= ,sin α2= ,
方法 2 求向量夹角问题的方法

高考数学一轮复习3 第3讲 平面向量的数量积及应用举例

高考数学一轮复习3 第3讲 平面向量的数量积及应用举例

第3讲平面向量的数量积及应用举例最新考纲考向预测1.通过物理中的功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积.2.通过几何直观,了解平面向量投影的概念以及投影向量的意义.3.会用数量积判断两个平面向量的垂直关系.命题趋势平面向量数量积的概念及运算,与长度、夹角、平行、垂直有关的问题,平面向量数量积的综合应用仍是高考考查的热点,题型仍是选择题与填空题.核心素养数学运算、逻辑推理1.向量的夹角(1)条件:平移两个非零向量a和b至同一起点,结论:∠AOB=θ(0°≤θ≤180°)叫做a与b的夹角.(2)范围:0°≤θ≤180°.特殊情况:当θ=0°时,a与b共线同向.当θ=180°时,a与b共线反向.当θ=90°时,a与b互相垂直.2.向量的数量积(1)条件:两个向量a与b,夹角θ,结论:数量|a||b|cos_θ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos_θ.(2)数量积的几何意义条件:a的长度|a|,b在a方向上的投影|b|cos_θ(或b的长度|b|,a在b方向上的投影|a|cos_θ),结论:数量积a·b等于|a|与|b|cos_θ的乘积(或|b|与|a|cos_θ的乘积).3.平面向量数量积的运算律(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),θ=a,b.结论几何表示坐标表示向量的模|a|=a·a |a|=x21+y21夹角余弦cos θ=a·b|a||b|cos θ=x1x2+y1y2x21+y21x2+y2a⊥b充要条件a·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤x21+y21x22+y2常用结论1.求平面向量的模的公式(1)a2=a·a=|a|2或|a|=a·a=a2;(2)|a±b|=(a±b)2=a2±2a·b+b2;(3)若a=(x,y),则|a|=x2+y2.2.有关向量夹角的两个结论(1)两个向量a与b的夹角为锐角,则有a·b>0,反之不成立(因为夹角为0时不成立);(2)两个向量a与b的夹角为钝角,则有a·b<0,反之不成立(因为夹角为π时不成立).常见误区1.投影和两向量的数量积都是数量,不是向量.2.向量a在向量b方向上的投影与向量b在向量a方向上的投影不是一个概念,要加以区别.3.向量数量积的运算不满足乘法结合律,即(a·b)·c不一定等于a·(b·c),这是由于(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.1.判断正误(正确的打“√”,错误的打“×”)(1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )(3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )·c =a ·(b ·c ).( )(5)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(6)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( ) 答案:(1)√ (2)√ (3)× (4)× (5)× (6)×2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |为( ) A .12 B .6 C .33D .3解析:选B.a ·b =|a ||b |cos 135°=-122,所以|b |=-1224×⎝ ⎛⎭⎪⎫-22=6.3.(多选)已知向量a =(1,-2),b =(-2,4),则( ) A .a ∥b B .(a +b )·a =-5 C .b ⊥(a -b )D .2|a |=|b |解析:选ABD.因为1×4=-2×(-2),所以a ∥b ,又a +b =(-1,2),所以(a +b )·a =-5.a -b =(3,-6),b ·(a -b )≠0,所以C 错误,|a |=5,|b |=25,2|a |=|b |,故选ABD.4.已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ=________. 解析:cos θ=a·b |a||b|=-632×6=-32,又因为0≤θ≤π,所以θ=5π6. 答案:5π65.已知向量a 与b 的夹角为π3,|a |=|b |=1,且a ⊥(a -λb ),则实数λ=________.解析:由题意,得a ·b =|a ||b |cos π3=12,因为a ⊥(a -λb ),所以a ·(a -λb )=|a |2-λa ·b =1-λ2=0,所以λ=2.答案:2平面向量数量积的运算(1)(2021·内蒙古赤峰二中、呼市二中月考)已知向量a ,b 的夹角为π3,若c =a |a|,d =b |b|,则c ·d =( ) A.14B .12 C.32 D .34(2)(多选)已知△ABC 的外接圆的圆心为O ,半径为2,OA →+AB →+AC →=0,且|OA →|=|AB→|,下列结论正确的是( ) A.CA→在CB →方向上的投影长为- 3 B.OA →·AB →=OA →·AC →C.CA→在CB →方向上的投影长为 3 D.OB →·AB →=OC →·AC→ 【解析】 (1)c ·d =a |a|·b |b|=|a||b|cos a ,b |a||b|=cos π3=12.故选B.(2)由OA→+AB →+AC →=0得OB →=-AC →=CA →,所以四边形OBAC 为平行四边形.又O 为△ABC 外接圆的圆心,所以|OB→|=|OA →|,又|OA →|=|AB →|,所以△OAB 为正三角形.因为△ABC 的外接圆半径为2,所以四边形OBAC 是边长为2的菱形,所以∠ACB =π6,所以CA →在CB →上的投影为|CA →|cos π6=2×32=3,故C 正确.因为OA →·AB→=OA →·AC →=-2,OB →·AB →=OC →·AC→=2,故B ,D 正确.【答案】 (1)B (2)BCD计算向量数量积的三个角度(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.1.已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( )A.55 B .-55 C .-255D .-355解析:选D.由a =(1,2),可得|a |=5,由a ·(b +a )=2,可得a ·b +a 2=2,所以a ·b =-3,所以向量b 在a 方向上的投影为a·b |a|=-355.故选D.2.(2020·重庆第一中学月考)已知非零向量a ,b ,c 满足a +b +c =0,a ,b 的夹角为120°,且|b |=2|a |,则向量a ,c 的数量积为( )A .0B .-2a 2C .2a 2D .-a 2解析:选A.由非零向量a ,b ,c 满足a +b +c =0,可得c =-(a +b ),所以a ·c =a ·[-(a +b )]=-a 2-a ·b =-a 2-|a |·|b |·cosa ,b.由于a ,b 的夹角为120°,且|b |=2|a |,所以a ·c =-a 2-|a |·|b |cos 120°=-|a |2-2|a |2×⎝ ⎛⎭⎪⎫-12=0.故选A.3.(一题多解)(2020·武昌区高三调研)在等腰直角三角形ABC 中,∠ACB =π2,AC =BC =2,点P 是斜边AB 上一点,且BP =2P A ,那么CP →·CA →+CP →·CB→=( ) A .-4 B .-2 C .2D .4解析:选D.通解:由已知得|CA →|=|CB →|=2,CA →·CB→=0,AP →=13(CB →-CA →),所以CP →·CA →+CP →·CB →=(CA →+AP →)·CA →+(CA →+AP →)·CB →=|CA →|2+AP →·CA →+CA →·CB →+AP →·CB →=|CA →|2+13(CB →-CA →)·(CB→+CA →)=|CA →|2+13|CB →|2-13|CA →|2=22+13×22-13×22=4. 优解:由已知,建立如图所示的平面直角坐标系,则C (0,0),A (2,0),B (0,2),设P (x ,y ).因为BP =2P A ,所以BP →=2P A →,所以(x ,y -2)=2(2-x ,-y ),所以⎩⎪⎨⎪⎧x =43y =23,所以CP →·CA →+CP →·CB →=(43,23)·(2,0)+(43,23)·(0,2)=4.故选D.平面向量数量积的应用角度一 求两平面向量的夹角(1)(2020·高考全国卷Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos〈a ,a +b 〉=( )A .-3135B .-1935 C.1735D .1935(2)(2021·普通高等学校招生全国统一考试模拟)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉=( )A.73 B .23 C.79D .29【解析】 (1)由题意,得a ·(a +b )=a 2+a ·b =25-6=19,|a +b |=a2+2a·b +b2=25-12+36=7,所以cosa ,a +b=a·(a +b )|a||a +b|=195×7=1935,故选D.(2)因为a ,b 是单位向量,所以|a |=|b |=1.又因为a ·b =0,c =7a +2b ,所以|c |=(7a +2b )2=3,a ·c =a ·(7a +2b )=7, 所以cos 〈a ,c 〉=a·c |a||c|=73.因为〈a ,c 〉∈[0,π],所以sin 〈a ,c 〉=23.故选B. 【答案】 (1)D (2)B求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系.(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x1x2+y1y2x21+y 21·x 2+y 2.角度二 求平面向量的模(2020·四川双流中学诊断)如图,在△ABC 中,M 为BC 的中点,若AB =1,AC =3,AB →与AC →的夹角为60°,则|MA→|=________.【解析】 因为M 为BC 的中点,所以AM→=12(AB →+AC →),所以|MA→|2=14(AB →+AC →)2 =14(|AB →|2+|AC →|2+2AB →·AC →) =14(1+9+2×1×3cos 60°)=134, 所以|MA→|=132. 【答案】 132求向量的模或其范围的方法(1)定义法:|a |=a2=a·a ,|a ±b |=(a±b )2=a2±2a·b +b2. (2)坐标法:设a =(x ,y ),则|a |=x2+y2.(3)几何法:利用向量加减法的平行四边形法则或三角形法则作出向量,再利用解三角形的相关知识求解.[提醒] (1)求形如m a +n b 的向量的模,可通过平方,转化为数量的运算. (2)用定义法和坐标法求模的范围时,一般把它表示成某个变量的函数,再利用函数的有关知识求解;用几何法求模的范围时,注意数形结合的思想,常用三角不等式进行最值的求解.角度三 两平面向量垂直问题已知向量AB →与AC →的夹角为120°,且|AB→|=3,|AC →|=2.若AP →=λAB →+AC →,且AP→⊥BC →,则实数λ的值为________.【解析】 因为AP →⊥BC →,所以AP →·BC →=0.又AP→=λAB →+AC →,BC →=AC →-AB →, 所以(λAB →+AC →)·(AC →-AB →)=0, 即(λ-1)AC →·AB →-λAB →2+AC →2=0, 所以(λ-1)|AC →||AB →|cos 120°-9λ+4=0.所以(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12-9λ+4=0.解得λ=712.【答案】 712有关平面向量垂直的两类题型根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.1.已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|a +2b |=( ) A .22 B .25 C.17D .15解析:选 C.因为a -b =(3,2),所以|a -b |=5,所以|a -b |2=|a |2-2a ·b +|b |2=5-2a ·b =5,则a ·b =0,所以|a +2b |2=|a |2+4a ·b +4|b |2=17,所以|a +2b |=17.故选C.2.(多选)设a ,b 是两个非零向量,则下列命题为假命题的是( ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b | 解析:选ABD.对于A ,若|a +b |=|a |-|b |, 则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |,得a ·b =-|a ||b |≠0,a 与b 不垂直,所以A 为假命题;对于B ,由A 解析可知,若a ⊥b ,则|a +b |≠|a |-|b |,所以B 为假命题; 对于C ,若|a +b |=|a |-|b |, 则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |, 得a ·b =-|a ||b |,则cos θ=-1,则a 与b 反向,因此存在实数λ,使得b =λa ,所以C 为真命题. 对于D ,若存在实数λ,使得b =λa ,则a ·b =λ|a |2,-|a ||b |=λ|a |2,由于λ不能等于0, 因此a ·b ≠-|a ||b |,则|a +b |≠|a |-|b |, 所以D 不正确. 故选ABD.3.(一题多解)已知正方形ABCD ,点E 在边BC 上,且满足2BE →=BC →,设向量AE→,BD →的夹角为θ,则cos θ=________. 解析:方法一:因为2BE→=BC →,所以E 为BC 的中点.设正方形的边长为2,则|AE →|=5,|BD →|=22,AE →·BD →=⎝ ⎛⎭⎪⎫AB →+12AD →·(AD →-AB →)=12|AD →|2-|AB →|2+12AD →·AB →=12×22-22=-2,所以cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.方法二:因为2BE→=BC →,所以E 为BC 的中点.设正方形的边长为2,建立如图所示的平面直角坐标系xAy ,则点A (0,0),B (2,0),D (0,2),E (2,1),所以AE →=(2,1),BD →=(-2,2),所以AE →·BD →=2×(-2)+1×2=-2,故cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.答案:-1010向量数量积的综合应用在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.【解】 (1)由m·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35, 所以cos A =-35.因为0<A <π, 所以sin A =1-cos2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理a sin A =b sin B ,得sin B =bsin A a =5×4542=22,因为a >b ,所以A >B ,则B =π4,由余弦定理得()422=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1.故向量BA→在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.平面向量与三角函数的综合问题(1)题目条件给出的向量坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等. K在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知向量m =(cos B ,2cos 2 C2-1),n =(c ,b -2a ),且m·n =0.(1)求∠C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积.解:(1)因为m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0,所以c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得sin C cos B +(sin B -2sin A )cos C =0,sin A =2sin A cos C ,又sin A ≠0,所以cos C =12,而∠C ∈(0,π),所以∠C =π3. (2)由AD→=DB →知,CD →-CA →=CB →-CD →, 所以2CD→=CA →+CB →, 两边平方得4|CD→|2=b 2+a 2+2ba cos ∠ACB =b 2+a 2+ba =28.①又c 2=a 2+b 2-2ab cos ∠ACB , 所以a 2+b 2-ab =12.②由①②得ab =8,所以S △ABC =12ab sin ∠ACB =23.核心素养系列4 逻辑推理——平面向量与三角形的“四心”三角形的“四心”:设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A . (2)O 为△ABC 的重心⇔OA→+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →.(4)O 为△ABC 的内心⇔a OA→+b OB →+c OC →=0. 类型一 平面向量与三角形的“重心”问题已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP→=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC→],λ∈R ,则点P 的轨迹一定经过( )A .△ABC 的内心B .△ABC 的垂心 C .△ABC 的重心D .AB 边的中点【解析】 取AB 的中点D ,则2OD→=OA →+OB →, 因为OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], 所以OP→=13[2(1-λ)OD →+(1+2λ)OC →] =2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,所以P ,C ,D 三点共线,所以点P 的轨迹一定经过△ABC 的重心. 【答案】 C类型二 平面向量与三角形的“内心”问题在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP→=xOB →+yOC→,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B .1463 C .43D .62【解析】 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263, 所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 【答案】 B类型三 平面向量与三角形的“垂心”问题已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P满足OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( )A .重心B .垂心C .外心D .内心【解析】 因为OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C ,所以AP →=OP →-OA →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , 所以BC →·AP →=BC →·λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C =λ(-|BC→|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.【答案】 B类型四 平面向量与三角形的“外心”问题已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO→=xAB →+yAC →,则有序实数对(x ,y )为( ) A.⎝⎛⎭⎪⎫45,35 B .⎝⎛⎭⎪⎫35,45C.⎝⎛⎭⎪⎫-45,35 D .⎝⎛⎭⎪⎫-35,45【解析】 取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC→, OM →=AM →-AO →=12AB →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-x AB →-yAC →,ON →=AN →-AO →=12AC →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-y AC →-xAB→. 由OM →⊥AB →,得⎝⎛⎭⎪⎫12-x AB →2-yAC →·AB→=0,①由ON →⊥AC →,得⎝ ⎛⎭⎪⎫12-y AC →2-xAC →·AB→=0,② 又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB2→, 所以AC →·AB →=AC →2+AB →2-BC →22=-12,③把③代入①,②得⎩⎪⎨⎪⎧1-2x +y =0,4+x -8y =0,解得x =45,y =35.故实数对(x ,y )为⎝ ⎛⎭⎪⎫45,35.【答案】 A[A 级 基础练]1.设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( ) A .-32 B .-53 C.53D .32解析:选A.c =a +k b =(1,2)+k (1,1)=(1+k ,2+k ),因为b ⊥c ,所以b ·c =0,b ·c =(1,1)·(1+k ,2+k )=1+k +2+k =3+2k =0,所以k =-32.2.若向量OF1→=(1,1),OF2→=(-3,-2)分别表示两个力F 1,F 2,则|F 1+F 2|为( )A.10 B .25 C.5D .15解析:选 C.由于F 1+F 2=(1,1)+(-3,-2)=(-2,-1),所以|F 1+F 2|=(-2)2+(-1)2=5.3.(2020·贵阳市第一学期监测考试)在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.109 B .259 C.269D .89解析:选A.方法一:因为|AB→+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,所以AB →·AC →=0,即∠BAC =90°.所以AE →·AF →=⎣⎢⎡⎦⎥⎤AB →+13(AC →-AB →)·⎣⎢⎡⎦⎥⎤AC →-13(AC →-AB →)=⎝ ⎛⎭⎪⎫23AB→+13AC →·(23AC →+13AB →)=29AB →2+29AC →2=109,故选A.方法二:因为|AB →+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,所以AB →·AC →=0,即AB→⊥AC →,以A 为坐标原点,AB ,AC 所在的直线分别为x 轴、y 轴建立如图所示的平面直角坐标系,则A (0,0),B (2,0),C (0,1),E (23,23),F (43,13),所以AE →·AF →=(23,23)·(43,13)=89+29=109,故选A.4.(多选)在△ABC 中,下列命题正确的是( ) A.AB→-AC →=BC →B.AB→+BC →+CA →=0 C .若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形D .若AC→·AB →>0,则△ABC 为锐角三角形 解析:选BC.由向量的运算法则知AB →-AC →=CB →;AB →+BC →+CA →=0,故A 错,B对;因为(AB →+AC →)·(AB →-AC →)=|AB →|2-|AC →|2=0, 所以|AB→|2=|AC →|2,即AB =AC , 所以△ABC 为等腰三角形,故C 对;因为AC →·AB →>0,所以角A 为锐角,但三角形不一定是锐角三角形.故选BC. 5.(2020·安徽示范高中名校月考)已知a ,b ,c 均为单位向量,a 与b 的夹角为60°,则(c +a )·(c -2b )的最大值为( )A.32 B .3 C .2D .3解析:选B.设c 与a -2b 的夹角为θ.因为|a -2b |2=a 2-4a ·b +4b 2=3,所以|a -2b |=3,所以(c +a )·(c -2b )=c 2+c ·(a -2b )-2a ·b =1+|c ||a -2b |cos θ-1=3cos θ,所以(c +a )·(c -2b )的最大值为3,此时cos θ=1.故选B.6.(2020·湖南、河南、江西3月联考)设非零向量a ,b 满足|a |=3|b |,cos a ,b=13,a ·(a -b )=16,则|b |=________. 解析:因为|a |=3|b |,cos a ,b=13,所以a ·(a -b )=9|b |2-|b |2=8|b |2=16,所以|b |=2.答案:27.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为________. 解析:因为|a |=|a +2b |, 所以|a |2=|a |2+4a ·b +4|b |2, 所以a ·b =-|b |2, 令a 与b 的夹角为θ.所以cos θ=a·b |a||b|=-|b|23|b||b|=-13. 答案:-138.(2020·新高考卷改编)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB→的取值范围是________. 解析:AP →·AB →=|AP →|·|AB →|·cos ∠P AB =2|AP →|·cos ∠P AB ,又|AP →|cos ∠P AB 表示AP →在AB →方向上的投影,所以结合图形可知,当P 与C 重合时投影最大,当P 与F 重合时投影最小.又AC →·AB →=23×2×cos 30°=6,AF →·AB →=2×2×cos 120°=-2,故当点P 在正六边形ABCDEF 内部运动时,AP →·AB→∈(-2,6).答案:(-2,6)9.已知向量a =(2,-1),b =(1,x ). (1)若a ⊥(a +b ),求|b |的值;(2)若a +2b =(4,-7),求向量a 与b 夹角的大小. 解:(1)由题意得a +b =(3,-1+x ). 由a ⊥(a +b ),可得6+1-x =0, 解得x =7,即b =(1,7), 所以|b |=50=52.(2)由题意得,a +2b =(4,2x -1)=(4,-7), 故x =-3,所以b =(1,-3),所以cos 〈a ,b 〉=a·b |a||b|=(2,-1)·(1,-3)5×10=22,因为〈a ,b 〉∈[0,π], 所以a 与b 的夹角是π4.10.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC→=0,求t 的值.解:(1)由题设知,AB →=(3,5),AC →=(-1,1),则AB →+AC →=(2,6),AB →-AC →=(4,4).所以|AB→+AC →|=210,|AB →-AC →|=42. 故所求的两条对角线的长分别为42,210.(2)方法一:由题设知,OC→=(-2,-1),AB →-tOC →=(3+2t ,5+t ).由(AB →-tOC →)·OC →=0,得 (3+2t ,5+t )·(-2,-1)=0, 从而5t =-11, 所以t =-115.方法二:AB →·OC →=tOC →2,AB →=(3,5),t =AB →·OC →|OC →|2=-115. [B 级 综合练]11.(多选)(2020·山东九校联考)已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( )A.AB →·CE →=-1B.OE→+OC →=0 C .|OA→+OB →+OC →|=32 D.ED→在BC →方向上的投影为76 解析:选BCD.由题意知E 为AB 的中点,则CE ⊥AB ,以E 为原点,EA ,EC 所在直线分别为x 轴,y 轴建立平面直角坐标系,如图所示,所以E (0,0),A (1,0),B (-1,0),C (0,3),D ⎝ ⎛⎭⎪⎫13,233, 设O (0,y ),y ∈(0,3),则BO→=(1,y ),DO →=⎝ ⎛⎭⎪⎫-13,y -233,因为BO →∥DO →,所以y -233=-13y , 解得y =32,即O 是CE 的中点,则OE→+OC →=0,所以选项B 正确;|OA→+OB →+OC →|=|2OE →+OC →|=|OE →|=32,所以选项C 正确; 因为CE ⊥AB ,所以AB →·CE →=0,所以选项A 错误;ED→=⎝ ⎛⎭⎪⎫13,233,BC →=(1,3). 故ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确.故选BCD.12.(2020·山东济宁一中月考)如图,在△ABC 中,∠BAC =π3,AD →=2DB →,P 为CD 上一点,且满足AP→=m AC →+12AB →,若△ABC 的面积为23,则|AP →|的最小值为( )A. 2 B .43 C .3D . 3解析:选 D.令CP→=k CD →(0<k <1),则AP →=AC →+CP →=AC →+k CD →=AC →+k (AD →-AC →)=AC →+k ⎝ ⎛⎭⎪⎫23AB →-AC →=2k 3AB →+(1-k )AC→=m AC →+12AB →,所以1-k =m ,2k 3=12,所以m =14,因为△ABC 的面积为23,所以12|AC →|·|AB →|·32=23,所以|AC →|·|AB→|=8,所以|AP →|=116|AC →|2+14|AB →|2+18|AC →||AB →|=1+116|AC →|2+16|AC →|2≥3,当且仅当|AC→|=4时取“=”,所以|AP →|的最小值为 3.故选D.13.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝ ⎛⎭⎪⎫0≤θ≤π2.(1)若AB→⊥a ,且|AB →|=5|OA →|,求向量OB →; (2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →.解:(1)由题设知AB→=(n -8,t ), 因为AB→⊥a ,所以8-n +2t =0. 又因为5|OA →|=|AB →|,所以5×64=(n -8)2+t 2=5t 2,得t =±8. 当t =8时,n =24;当t =-8时,n =-8, 所以OB→=(24,8)或OB →=(-8,-8). (2)由题设知AC→=(k sin θ-8,t ),因为AC→与a 共线,所以t =-2k sin θ+16, t sin θ=(-2k sin θ+16)sin θ=-2k ⎝ ⎛⎭⎪⎫sin θ-4k 2+32k . 因为k >4,所以0<4k <1,所以当sin θ=4k 时,t sin θ取得最大值32k , 由32k =4,得k =8,此时θ=π6,OC →=(4,8), 所以OA →·OC →=(8,0)·(4,8)=32.14.在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC→|=1,且∠AOC =θ,其中O 为坐标原点.(1)若θ=34π,设点D 为线段OA 上的动点,求|OC→+OD →|的最小值;(2)若θ∈⎣⎢⎡⎦⎥⎤0,π2,向量m =BC →,n =(1-cos θ,sin θ-2cos θ),求m ·n 的最小值及对应的θ值.解:(1)设D (t ,0)(0≤t ≤1), 由题意知C ⎝ ⎛⎭⎪⎫-22,22, 所以OC→+OD →=⎝ ⎛⎭⎪⎫-22+t ,22, 所以|OC →+OD →|2=12-2t +t 2+12=t 2-2t +1=⎝⎛⎭⎪⎫t -222+12(0≤t ≤1),所以当t =22时,|OC→+OD →|有最小值,最小值为22.(2)由题意得C (cos θ,sin θ),m =BC→=(cos θ+1,sin θ),则m ·n =1-cos 2θ+sin 2θ-2sin θcos θ=1-cos 2θ-sin 2θ=1-2sin ⎝ ⎛⎭⎪⎫2θ+π4,因为θ∈⎣⎢⎡⎦⎥⎤0,π2,所以π4≤2θ+π4≤5π4,所以当2θ+π4=π2,即θ=π8时,sin ⎝ ⎛⎭⎪⎫2θ+π4取得最大值1. 所以当θ=π8时,m ·n 取得最小值,为1-2.[C 级 创新练]15.在Rt △ABC 中,∠C 是直角,CA =4,CB =3,△ABC 的内切圆与CA ,CB分别切于点D ,E ,点P 是图中阴影区域内的一点(不包含边界).若CP →=xCD →+yCE →,则x +y 的值可以是( )A .1B .2C .4D .8解析:选 B.设△ABC 内切圆的圆心为O ,半径为r ,连接OD ,OE ,则OD ⊥AC ,OE ⊥BC ,所以3-r +4-r =5,解得r =1,故CD =CE =1,连接DE ,则当x +y =1时,P 在线段DE 上,但线段DE 均不在阴影区域内,排除A ;在AC 上取点M ,在CB 上取点N ,使得CM =2CD ,CN =2CE ,连接MN ,所以CP→=x 2CM →+y2CN→,则当点P 在线段MN 上时,x 2+y 2=1,故x +y =2.同理,当x +y =4或x +y =8时,点P 不在△ABC 内部,排除C ,D ,故选B.16.定义两个平面向量的一种运算a ⊗b =|a |·|b |sin a ,b,则关于平面向量上述运算的以下结论中,①a ⊗b =b ⊗a ; ②λ(a ⊗b )=(λa )⊗b ; ③若a =λb ,则a ⊗b =0;④若a =λb 且λ>0,则(a +b )⊗c =(a ⊗c )+(b ⊗c ). 正确的序号是________.解析:①恒成立,②λ(a ⊗b )=λ|a |·|b |sin a ,b,(λa )⊗b =|λa |·|b |sina ,b,当λ<0时,λ(a ⊗b )=(λa )⊗b 不成立,③a =λb ,则sin a ,b=0,故a ⊗b =0恒成立,④a =λb ,且λ>0,则a+b=(1+λ)b,(a+b)⊗c=|1+λ||b|·|c|sin b,c,(a⊗c)+(b⊗c)=|λb|·|c|sin b,c+|b|·|c|sin b,c=|1+λ||b|·|c|sin b,c,故(a+b)⊗c=(a⊗c)+(b⊗c)恒成立.答案:①③④。

高三数学一轮复习平面向量的数量积及应用教案

高三数学一轮复习平面向量的数量积及应用教案
命题走向
本讲以选择题、填空题考察本章的基本概念和性质,重点考察平面向量的数量积的概念及应用。重点体会向量为代数几何的结合体,此类题难度不大,分值5~9分。
平面向量的综合问题是“新热点”题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等问题,以解答题为主。
预测2017年高考:
(1)一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度问题;属于中档题目。
法二: · = ·( + )
= ·( + + )
=2 · + ·
=2| |·| |·cos ,
=2×| |·| |·
=2×| |2=2×32=18.
(1)C (2) 18
由题悟法
平面向量数量积问题的类型及求法
(1)已知向量a,b的模及夹角θ,利用公式a·b=|a||b|·cosθ求解;
(2)已知向量a,b的坐标,利用数量积的坐标形式求解.
以题试法
2.(1)设向量a=(x-1,1),b=(-x+1,3),则a⊥(a-b)的一个充分不必要条件是( )
A.x=0或2 B.x=2
C.x=1 D.x=±2
(2)已知向量a=(1,0),b=(0,1),c=a+λb(λ∈R),向量d如图所示,则( )
A.存在λ>0,使得向量c与向量d垂直
B.存在λ>0,使得向量c与向量d夹角为60°
2.向量的应用
(1)向量在几何中的应用;
(2)向量在物理中的应用。
二.典例分析
(1)若向量a=(1, 1),b=(2,5),c=(3,x)满足条件(8a-b)·c=30,则x=( )
A.6B.5
C.4D.3
(2) (2012·湖南高考)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则 · =________.

2023届高三新高考数学试题一轮复习专题7.3平面向量数量积及应用教案讲义(Word)

2023届高三新高考数学试题一轮复习专题7.3平面向量数量积及应用教案讲义(Word)

7.3 平面向量数量积及应用课标要求考情分析核心素养1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.新高考3年考题 题 号 考 点 数学建模 数学运算 直观想象 逻辑推理2022(Ⅱ)卷4利用向量数量积的坐标运算求夹角2021(Ⅰ)卷 10 向量数量积的坐标运算,向量的模2021(Ⅱ)卷 15 向量数量积的运算2020(Ⅰ)卷7向量数量积的运算和投影1.向量的夹角定义范围 共线与垂直图示已知两个非零向量a ⃗和b ⃗⃗,作OA ⃗⃗⃗⃗⃗⃗=a ⃗,OB ⃗⃗⃗⃗⃗⃗=b ⃗⃗,则∠AOB =θ(0≤θ≤π)叫做向量a ⃗与b ⃗⃗的夹角.[0,π]a ⃗//b⃗⃗?θ=0或π; a ⃗⊥b⃗⃗?θ=π2向量夹角:共起点定义已知两个非零向量a ⃗与b ⃗⃗,它们的夹角为θ,我们把数量|a ⃗||b ⃗⃗|cosθ叫做a ⃗与b ⃗⃗的数量积,记作a ⃗?b ⃗⃗. 即a ⃗?b ⃗⃗=|a ⃗||b⃗⃗|cosθ. 特殊情况 0⃗⃗a ⃗=0; a ⃗⊥b ⃗⃗?a ⃗?b⃗⃗=0 运算律a ⃗?b ⃗⃗=b ⃗⃗?a ⃗(交换律);λa ⃗?b ⃗⃗=λ(a ⃗?b ⃗⃗)=a ⃗?(λb ⃗⃗)(结合律);(a ⃗+b ⃗⃗)?c ⃗=a ⃗?c ⃗+b ⃗⃗?c ⃗(分配律)运算性质(a ⃗+b ⃗⃗)2=a ⃗2+2a ⃗?b ⃗⃗+b ⃗⃗2; (a ⃗+b ⃗⃗)(a ⃗−b ⃗⃗)=a ⃗2−b⃗⃗2 (a ⃗+b ⃗⃗+c ⃗)2=a ⃗2+b ⃗⃗2+c ⃗2+2a ⃗?b ⃗⃗+2b ⃗⃗?c ⃗+2c ⃗?a ⃗如图,设a ⃗,b ⃗⃗是两个非零向量,AB ⃗⃗⃗⃗⃗⃗=a ⃗, CD ⃗⃗⃗⃗⃗⃗=b ⃗⃗,考虑如下变换:过AB ⃗⃗⃗⃗⃗⃗的起点A 和终点B ,分别作CD ⃗⃗⃗⃗⃗⃗所在直线的垂线,垂足分别为A 1、B 1,得到A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗,称上述变换为向量a ⃗向向量b ⃗⃗投影, A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗叫做向量a ⃗在向量b ⃗⃗上的投影向量.若向量a ⃗,b ⃗⃗的夹角为θ,则向量a ⃗在向量b ⃗⃗上的投影向量为|a ⃗⃗|cosθ|b⃗⃗|b ⃗⃗4.平面向量数量积的性质及坐标表示已知非零向量a ⃗=(x 1,y 1),b ⃗⃗=(x 2,y 2),a ⃗,b⃗⃗的夹角为θ.几何表示坐标表示数量积 a ⃗?b ⃗⃗=|a ⃗||b ⃗⃗|cosθ a ⃗?b ⃗⃗=x 1x 2+y 1y 2 夹角cosθ=a ⃗?b⃗⃗|a ⃗||b ⃗⃗|cosθ=x 1x 2+y 1y 2√x 12+y 12?√x 22+y 22模 |a ⃗|=√a ⃗2 |a ⃗|=√x 12+y 12 垂直 a ⃗⊥b ⃗⃗a ⃗?b ⃗⃗=0 a ⃗⊥b ⃗⃗?a ⃗?b⃗⃗=x 1x 2+y 1y 2=0 共线a ⃗//b ⃗⃗a ⃗=λb ⃗⃗(λ∈R ) a ⃗//b⃗⃗?x 1y 2=x 2y 1 不等关系a ⃗⃗,b⃗⃗共线时等号成立 |a ⃗?b ⃗⃗|≤|a ⃗||b⃗⃗| x 1x 2+y 1y 2≤√x 12+y 12?√x 22+y 221.向量模长不等式:||a ⃗|−|b ⃗⃗||≤|a ⃗±b ⃗⃗|≤|a ⃗|+|b ⃗⃗|; |a ⃗?b ⃗⃗|≤|a ⃗||b⃗⃗| 2.两个向量a ⃗,b ⃗⃗的夹角为锐角?a ⃗?b ⃗⃗>0且a ⃗,b ⃗⃗不共线;两个向量a ⃗,b ⃗⃗的夹角为钝角?a ⃗?b ⃗⃗<0且a ⃗,b ⃗⃗不共线1.【P24 T21】在三角形ABC 中,已知|AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗|=|AB ⃗⃗⃗⃗⃗⃗−AC ⃗⃗⃗⃗⃗⃗|,|AB ⃗⃗⃗⃗⃗⃗|=2,点G 满足GA ⃗⃗⃗⃗⃗⃗+GB ⃗⃗⃗⃗⃗⃗+GC ⃗⃗⃗⃗⃗⃗=0⃗⃗,则向量BG⃗⃗⃗⃗⃗⃗在向量BA ⃗⃗⃗⃗⃗⃗方向上的投影向量为() A. 13BA ⃗⃗⃗⃗⃗⃗ B. 23BA ⃗⃗⃗⃗⃗⃗ C. 2BA ⃗⃗⃗⃗⃗⃗ D. 3BA⃗⃗⃗⃗⃗⃗ 2.【P41 T3】设作用于同一点的三个力F 1⃗⃗⃗⃗,F 2⃗⃗⃗⃗⃗,F 3⃗⃗⃗⃗⃗处于平衡状态,若|F 1⃗⃗⃗⃗|=1,|F 2⃗⃗⃗⃗⃗|=2,且F 1→与F 2⃗⃗⃗⃗⃗的夹角为23π,如图所示.(1)求F 3→的大小; (2)求F 2→与F 3→的夹角.考点一 平面向量数量积的运算 【方法储备】1.平面向量数量积的运算方法2.已知数量积求参数已知向量的数量积,用上述方法展开,得出关于参数的方程,进而求出参数.角度1投影向量 【典例精讲】例1.(2022·安徽省期中)已知|a ⃗|=3,|b ⃗⃗|=5,a ⃗·b ⃗⃗=−12,且e ⃗是与b ⃗⃗方向相同的单位向量,则a ⃗在b ⃗⃗上的投影向量为.【名师点睛】本题考查向量的夹角、向量的投影,属于中档题.设a⃗与b ⃗⃗的夹角为θ,求出cos θ,根据投影向量的概念,即可求出结果. 【靶向训练】练1-1(2021·江苏省无锡市期末)设平面向量a ⃗,b ⃗⃗满足|a ⃗|=12,b ⃗⃗=(2,√5),a ⃗?b ⃗⃗=18,则b ⃗⃗在a ⃗方向上的投影向量为() A. 12b⃗⃗ B. 18b⃗⃗ C. 12a ⃗ D. 18a⃗ 练1-2(2022·陕西省模拟)已知△ABC 的外接圆圆心为O ,且AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗=2AO ⃗⃗⃗⃗⃗⃗,|AB ⃗⃗⃗⃗⃗⃗|=|OA ⃗⃗⃗⃗⃗⃗|,则CA ⃗⃗⃗⃗⃗⃗在CB ⃗⃗⃗⃗⃗⃗上的投影向量为() A. 14CB ⃗⃗⃗⃗⃗⃗ B. √32CB ⃗⃗⃗⃗⃗⃗ C. 34CB ⃗⃗⃗⃗⃗⃗ D. 12CB ⃗⃗⃗⃗⃗⃗ 角度2平面向量数量积的概念及运算 【典例精讲】例2.(2022·山东省潍坊市模拟)在梯形ABCD 中,AB//DC ,AD =BC =2,AB =4,∠ABC =π3,P 是BC 的中点,则AB ⃗⃗⃗⃗⃗⃗·AP⃗⃗⃗⃗⃗⃗= 【名师点睛】本题考查了平面向量的线性运算以及数量积的运算问题,把所求向量转化,再结合数量积的运算即可求解结论.【靶向训练】练1-3(2022·江西省模拟)已知两个单位向量a ⃗,b ⃗⃗的夹角为60°,c ⃗=ta ⃗+(1−t)b ⃗⃗.若c ⃗?b ⃗⃗=0,则t =.练1-4(2022·北京市期末)已知△ABC 是边长为1的等边三角形,点D 、E 分别是边AB 、BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF⃗⃗⃗⃗⃗⃗·BC ⃗⃗⃗⃗⃗⃗的值为() A. −58B. 14C. 18D. 118角度3平面向量数量积的坐标运算 【典例精讲】例3.(2021·新课标Ⅰ卷.多选)已知O 为坐标原点,点P 1(cosα,sinα),P 2(cosβ,−sinβ), P 3(cos(α+β),?sin(α+β)),A(1,?0),则() A. |OP 1⃗⃗⃗⃗⃗⃗⃗⃗|?=?|OP 2⃗⃗⃗⃗⃗⃗⃗⃗| B. |AP 1⃗⃗⃗⃗⃗⃗⃗⃗|?=?|AP 2⃗⃗⃗⃗⃗⃗⃗⃗|C. OA ⃗⃗⃗⃗⃗⃗?OP 3⃗⃗⃗⃗⃗⃗⃗⃗=OP 1⃗⃗⃗⃗⃗⃗⃗⃗?OP 2⃗⃗⃗⃗⃗⃗⃗⃗D. OA ⃗⃗⃗⃗⃗⃗?OP 1⃗⃗⃗⃗⃗⃗⃗⃗=OP 2⃗⃗⃗⃗⃗⃗⃗⃗?OP 3⃗⃗⃗⃗⃗⃗⃗⃗【名师点睛】本题考查平面向量的坐标运算,考查三角函数的恒等变形公式,属于中档题. 根据平面向量的坐标运算结合三角函数公式进行化简逐个判断即可.【靶向训练】练1-5(2022·辽宁省大连市模拟)设向量a ⃗=(1,m),b ⃗⃗=(2,1),且b ⃗⃗?(2a ⃗⃗+b ⃗⃗)=7,则m =. 练1-6(2022·江西省萍乡市期末)已知向量m ⃗⃗⃗⃗=(2cosωx,−1),n ⃗⃗=(√3sinωx −cosωx,1),其中ω>0,函数f(x)=m⃗⃗⃗⃗?n ⃗⃗+2,且f(x)的最小正周期为π2,则f(x)的解析式为. 考点二 平面向量的夹角、模长、垂直、共线问题 【方法储备】1.求平面向量模的方法2.求平面向量夹角的方法3.向量的垂直、共线问题(1)两个向量垂直的充要条件是两向量的数量积为0,即:a ⃗=(x 1,y 1), b ⃗⃗=(x 2,y 2),则a ⃗⊥b ⃗⃗?a ⃗·b⃗⃗=0?x 1x 2+y 1y 2=0. 应认识到此充要条件对含零向量在内的所有向量均成立,因为可视零向量与任意向量垂直. (2)利用向量垂直或平行的条件构造方程或函数是求参或最值问题最常用的解题技巧.【特别提醒】在分析两向量的夹角时,必须使两个向量的起点重合,如果起点不重合,可通过“平移”实现.角度1平面向量的模 【典例精讲】例4.(2022·山东省模拟)已知向量a ⃗⃗,b ⃗⃗夹角为45°,且|a ⃗⃗|=1,|2a ⃗⃗−b⃗⃗|=√10,则|b ⃗⃗|=. 【名师点睛】利用数量积的性质即可得出.本题考查了数量积的性质,向量模的计算,属于基础题.【靶向训练】练2-1(2022·湖北省咸宁市期末)已知向量a ⃗⃗,b ⃗⃗满足|a ⃗⃗|=|b ⃗⃗|=5,且|a ⃗⃗+b ⃗⃗|=6,则|a ⃗⃗−b⃗⃗|=() A. 6B. 8C. 36D. 64练2-2(2022·.山东省济南市期末.多选) 若平面向量a ⃗⃗、b ⃗⃗、c ⃗⃗两两的夹角相等,且|a ⃗⃗|=1,|b ⃗⃗|=2,|c ⃗⃗|=3,则|a ⃗⃗+b ⃗⃗+c ⃗⃗|=()A. √3B. 3C. 5D. 6角度2平面向量的夹角 【典例精讲】例 5.(2022·江西省模拟)若非零向量a ⃗⃗,b ⃗⃗满足|a ⃗⃗|=2√23|b ⃗⃗|,且(a ⃗⃗−b ⃗⃗)⊥(3a ⃗⃗+2b⃗⃗),则a ⃗⃗与b ⃗⃗的夹角为()A. π4 B. π2C. 3π4D. π【名师点睛】根据向量垂直的等价条件以及向量数量积的应用进行求解即可.本题主要考查向量夹角的求解,利用向量数量积的应用以及向量垂直的等价条件是解决本题的关键.【靶向训练】练2-3(2021·湖北省武汉市期末)在平行四边形ABCD 中,AB =3,AD =2,AP ⃗⃗⃗⃗⃗⃗=13AB ⃗⃗⃗⃗⃗⃗,AQ ⃗⃗⃗⃗⃗⃗=12AD ⃗⃗⃗⃗⃗⃗⃗, 若CP ⃗⃗⃗⃗⃗⃗CQ ⃗⃗⃗⃗⃗⃗=12,则∠ADC =()A. 5π6B. 3π4C. 2π3D. π2练2-4(2022·江苏省南通市期末)已知向量a ⃗⃗,b ⃗⃗满足|a ⃗⃗+b ⃗⃗|=|a ⃗⃗−b ⃗⃗|=2√33|a ⃗⃗|,则向量<a ⃗⃗+b ⃗⃗,a⃗⃗>=()A. 5π6B. 2π3C. π3D. π6角度3平面向量的垂直 【典例精讲】例6.(2021·浙江省温州市模拟)若|a ⃗⃗|=1,|b ⃗⃗|=2,a ⃗⃗与b ⃗⃗的夹角为60°,若(3a ⃗⃗+5b ⃗⃗)⊥(m a ⃗⃗−b ⃗⃗),则m 的值为【名师点睛】本题考查向量数量积的计算公式,两向量垂直的充要条件是两向量的数量积为0.由条件可求得a ⃗⃗?b ⃗⃗=1,根据两向量垂直,则两向量的数量积为0,从而会得到关于m 的方程,解方程即可求出m .【靶向训练】练2-5(2021·山东省模拟)已知向量a ⃗⃗与b ⃗⃗的夹角是π3,且|a ⃗⃗|=1,|b ⃗⃗|=4,若(3a ⃗⃗+λb ⃗⃗)⊥a ⃗⃗,则实数λ=()A. −32B. 32C. −2D. 2练2-6(2022·上海市期末)已知a 、b 都是非零向量,且a ⃗⃗+3b ⃗⃗与7a ⃗⃗−5b ⃗⃗垂直,a ⃗⃗−4b ⃗⃗与7a ⃗⃗−2b ⃗⃗垂直,则a ⃗⃗与b ⃗⃗的夹角为.考点三 平面向量中的最值、范围问题 【方法储备】1.求最值、范围问题的思路(1)将向量的最值、范围问题转化为平面几何的最值、范围问题,利用平面几何的知识求解; (2)将向量坐标化,转化为函数、方程、不等式的问题解决.【典例精讲】例7.(2022·湖北省黄冈市模拟)已知直角三角形ABC 中,∠A =90°,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则PB ⃗⃗⃗⃗⃗⃗PC⃗⃗⃗⃗⃗⃗的最大值为() A. 16+16√55B. 16+8√55C. 165D. 565【名师点睛】本题考查向量数量积的计算,涉及直线与圆的位置关系.根据题意,设AD 为斜边BC 上的高,求出AD 的值,连接PA ,可得PB ⃗⃗⃗⃗⃗⃗?PC ⃗⃗⃗⃗⃗⃗=(PA ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗)?(PA ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)=PA ⃗⃗⃗⃗⃗⃗2+PA ⃗⃗⃗⃗⃗⃗?(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)=165+PA ⃗⃗⃗⃗⃗⃗?(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗),分析可得当PA ⃗⃗⃗⃗⃗⃗与(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)同向时,PA ⃗⃗⃗⃗⃗⃗?(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)取得最大值,据此计算可得答案.【靶向训练】练3-1(2022·湖北省模拟)已知梯形ABCD 中,∠B =π3,AB =2,BC =4,AD =1,点P ,Q 在线段BC 上移动,且PQ =1,则DP ⃗⃗⃗⃗⃗⃗DQ⃗⃗⃗⃗⃗⃗⃗的最小值为()A. 1B. 112C. 132D. 114练3-2(2022·江苏省宿迁市期末)在ΔABC 中,角A,B,C 的对边分别为a,b,c ,若b(tanA +tanB)=2ctanB ,且G 是ΔABC 的重心,AB ⃗⃗⃗⃗⃗⃗AC⃗⃗⃗⃗⃗⃗=2,则|AG ⃗⃗⃗⃗⃗⃗|的最小值为.核心素养系列 直观想象、数学运算——平面向量与极化恒等式【方法储备】1.极化恒等式:a ⃗⃗?b ⃗⃗=14[(a ⃗⃗+b ⃗⃗)2−(a ⃗⃗−b ⃗⃗)2] 三角形模型:在△ABC 中,D 为BC 的中点,则AB ⃗⃗⃗⃗⃗⃗BC ⃗⃗⃗⃗⃗⃗=|AD ⃗⃗⃗⃗⃗⃗|2−|BD ⃗⃗⃗⃗⃗⃗⃗|2=|AD ⃗⃗⃗⃗⃗⃗|2−|CD ⃗⃗⃗⃗⃗⃗|2=|AD ⃗⃗⃗⃗⃗⃗|2−14|BC ⃗⃗⃗⃗⃗⃗|2平行四边形模型:在平行四边形ABCD 中:则AB ⃗⃗⃗⃗⃗⃗AD ⃗⃗⃗⃗⃗⃗=14(|AC⃗⃗⃗⃗⃗⃗|2−|BD ⃗⃗⃗⃗⃗⃗⃗|2) 2.利用极化恒等式求数量积问题的步骤:【典例精讲】例8.(2022·山东省模拟) 如图,在△ABC 中,AC =6,AB =8,∠BAC =π2,D 为边BC 的中点. (1)求AD⃗⃗⃗⃗⃗⃗⃗?CB ⃗⃗⃗⃗⃗⃗的值; (2)若点P 满足CP →=λCA →(λ∈R),求PB ⃗⃗⃗⃗⃗⃗PC⃗⃗⃗⃗⃗⃗的最小值; (3)若点P 在∠BAC 的角平分线上,且满足PA →=mPB →+nPC →(m,n ∈R).若1≤n ≤2,求|PA⃗⃗⃗⃗⃗⃗|的取值范围. 【名师点睛】本题考查平面向量的数量积运算,考查化归与转化,考查运算求解能力,是中档题.(1)由极化恒等式及向量的加减运算求解;(2)设|AD ⃗⃗⃗⃗⃗⃗⃗|=3m >0,|BC ⃗⃗⃗⃗⃗⃗|=2n >0,由已知结合极化恒等式求解m 与n 值,进一步可得EB⃗⃗⃗⃗⃗⃗?EC ⃗⃗⃗⃗⃗⃗的值. 【靶向训练】练4-1(2021·湖北省模拟)如图,已知P 是半径为3,圆心角为π2的一段圆弧AB ⏜上一点,AB ⃗⃗⃗⃗⃗⃗=3BC ⃗⃗⃗⃗⃗⃗,则PA ⃗⃗⃗⃗⃗⃗?PC ⃗⃗⃗⃗⃗⃗的最小值是()A. −6B. 6−9√2C. −8D. 6−6√5练4-2(2022·福建省龙岩市期中)阅读下一段文字:(a ⃗+b ⃗⃗)2=a ⃗2+2a ⃗?b ⃗⃗+b ⃗⃗2,(a ⃗−b ⃗⃗)2=a ⃗2−2a ⃗?b ⃗⃗+b ⃗⃗2,两式相减得(a ⃗+b ⃗⃗)2−(a ⃗−b ⃗⃗)2=4a ⃗?b ⃗⃗?a ⃗?b ⃗⃗=14[(a ⃗+b ⃗⃗)2−(a ⃗−b ⃗⃗)2],我们把这个等式称作“极化恒等式”,它实现了在没有夹角的参与下将两个向量的数量积运算化为“模”的运算.试根据上面的内容解决以下问题:如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.(1)若AD =BC =3,求AB⃗⃗⃗⃗⃗⃗?AC ⃗⃗⃗⃗⃗⃗的值; (2)若AB ⃗⃗⃗⃗⃗⃗?AC ⃗⃗⃗⃗⃗⃗=27,FB ⃗⃗⃗⃗⃗⃗?FC ⃗⃗⃗⃗⃗⃗=−5,求EB⃗⃗⃗⃗⃗⃗?EC ⃗⃗⃗⃗⃗⃗的值.易错点1.投影向量理解错误例9.(2022·湖北省武汉市期末.多选)若A i (i =1,2,…,n)是△AOB 所在的平面内的点,且OA i ⃗⃗⃗⃗⃗⃗⃗⃗?OB ⃗⃗⃗⃗⃗⃗⃗=OA⃗⃗⃗⃗⃗⃗?OB ⃗⃗⃗⃗⃗⃗⃗.下面给出的四个命题中,其中正确的是() A. |OA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|+|OA 2⃗⃗⃗⃗⃗⃗⃗⃗⃗|+⋯+|OA n ⃗⃗⃗⃗⃗⃗⃗⃗⃗|=|OA ⃗⃗⃗⃗⃗⃗|B. AA i ⃗⃗⃗⃗⃗⃗⃗⃗?OB ⃗⃗⃗⃗⃗⃗⃗=0C. 点A 、A 1、A 2…A n 一定在一条直线上D. OA ⃗⃗⃗⃗⃗⃗、OA i ⃗⃗⃗⃗⃗⃗⃗⃗在向量OB ⃗⃗⃗⃗⃗⃗⃗方向上的投影数量一定相等易错点2.向量夹角定义理解错误例10.(2021·辽宁省期中)已知|a ⃗⃗|=√2,|b ⃗⃗|=4,当b ⃗⃗⊥(4a ⃗⃗−b ⃗⃗)时,向量a ⃗⃗与b ⃗⃗的夹角为()A. π6 B. π4 C. 2π3 D. 3π4易错点3.平面向量的运算律运用错误例11.(2022·江苏省南通市模拟.多选)关于平面向量a ⃗⃗,b ⃗⃗,c⃗⃗,下列说法不正确的是() A. 若a ⃗⃗?c ⃗⃗=b ⃗⃗?c ⃗⃗,则a ⃗⃗=b ⃗⃗B. (a ⃗⃗+b ⃗⃗)?c ⃗⃗=a ⃗⃗?c ⃗⃗+b ⃗⃗?c ⃗⃗C. 若a ⃗⃗2=b ⃗⃗2,则a ⃗⃗?c ⃗⃗=b ⃗⃗?c ⃗⃗D. (a ⃗⃗?b ⃗⃗)?c ⃗⃗=(b ⃗⃗?c ⃗⃗)?a ⃗⃗易错点4.混淆平面向量共线、垂直的坐标关系例12.(2022·福建省名校联考.多选)已知向量a ⃗⃗=(−1,2),b ⃗⃗=(1,m),则()A. 若a ⃗⃗与b ⃗⃗垂直,则m =12B. 若a ⃗⃗//b ⃗⃗,则m 的值为−2C. 若|a ⃗⃗|=|b ⃗⃗|,则m =2D. 若m =3,则a ⃗⃗与b ⃗⃗的夹角为45°答案解析【教材改编】1.【解析】在△ABC 中,∵|AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗|=|AB ⃗⃗⃗⃗⃗⃗−AC⃗⃗⃗⃗⃗⃗|, ∴AB⃗⃗⃗⃗⃗⃗2+2AB ⃗⃗⃗⃗⃗⃗?AC ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗2=AB ⃗⃗⃗⃗⃗⃗2−2AB ⃗⃗⃗⃗⃗⃗?AC ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗2,∴AB ⃗⃗⃗⃗⃗⃗?AC ⃗⃗⃗⃗⃗⃗=0,即AB ⊥AC , 点G 满足GA ⃗⃗⃗⃗⃗⃗+GB ⃗⃗⃗⃗⃗⃗+GC ⃗⃗⃗⃗⃗⃗=0⃗⃗,则G 为△ABC 的重心,设AC 的中点为D ,∴向量BG ⃗⃗⃗⃗⃗⃗在向量BA ⃗⃗⃗⃗⃗⃗方向上的投影向量为:23BA ⃗⃗⃗⃗⃗⃗⃗?BD ⃗⃗⃗⃗⃗⃗⃗|BA ⃗⃗⃗⃗⃗⃗⃗|BA ⃗⃗⃗⃗⃗⃗⃗|BA ⃗⃗⃗⃗⃗⃗⃗|, ∵BD ⃗⃗⃗⃗⃗⃗⃗?BA ⃗⃗⃗⃗⃗⃗=(AD ⃗⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗)?BA ⃗⃗⃗⃗⃗⃗=12AC ⃗⃗⃗⃗⃗⃗?BA ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗2=AB ⃗⃗⃗⃗⃗⃗2,∴向量BG ⃗⃗⃗⃗⃗⃗在向量BA ⃗⃗⃗⃗⃗⃗方向上的投影向量为:23×AB ⃗⃗⃗⃗⃗⃗⃗2|BA⃗⃗⃗⃗⃗⃗⃗|?BA⃗⃗⃗⃗⃗⃗⃗|BA ⃗⃗⃗⃗⃗⃗⃗|=23BA⃗⃗⃗⃗⃗⃗, 故答案选:B .2.【解析】 (1)由F 1⃗⃗⃗⃗,F 2⃗⃗⃗⃗⃗,F 3⃗⃗⃗⃗⃗处于平衡状态,知F 1⃗⃗⃗⃗+F 2⃗⃗⃗⃗⃗+F 3⃗⃗⃗⃗⃗=0⃗⃗,∵|F 1⃗⃗⃗⃗|=1,|F 2⃗⃗⃗⃗⃗|=2,且F 1⃗⃗⃗⃗与F 2⃗⃗⃗⃗⃗的夹角为23π, ∴|F 3⃗⃗⃗⃗⃗|=|−F 1⃗⃗⃗⃗−F 2⃗⃗⃗⃗⃗|=√(F 1⃗⃗⃗⃗+F 2⃗⃗⃗⃗⃗)2=√1+4+2×1×2×(−12)=√3;(2)∵F 3⃗⃗⃗⃗⃗=−(F 1⃗⃗⃗⃗+F 2⃗⃗⃗⃗⃗),∴F 3⃗⃗⃗⃗⃗·F 2⃗⃗⃗⃗⃗=−F 1⃗⃗⃗⃗·F 2⃗⃗⃗⃗⃗−F 2⃗⃗⃗⃗⃗·F 2⃗⃗⃗⃗⃗,设F 2⃗⃗⃗⃗⃗与F 3⃗⃗⃗⃗⃗的夹角为θ,∴√3×2×cosθ=−1×2×(−12)−4,解得cosθ=−√32,又θ∈[0,π],∴θ=5π6.即F 2⃗⃗⃗⃗⃗与F 3⃗⃗⃗⃗⃗的夹角为5π6.? 【考点探究】例1.【解析】设a ⃗与b ⃗⃗的夹角为θ,因为|a ⃗|=3,|b ⃗⃗|=5,a ⃗·b ⃗⃗=−12,所以cosθ=a ⃗⃗·b ⃗⃗|a⃗⃗||b ⃗⃗|=−123×5=−45, 因为e ⃗是与b ⃗⃗方向相同的单位向量,所以a ⃗在b ⃗⃗上的投影向量为:|a ⃗|cosθ·e ⃗=3×(−45)e ⃗=−125e ⃗.故答案为−125e ⃗.练1-1.【解析】因为平面向量a ⃗,b ⃗⃗满足|a ⃗|=12,?b ⃗⃗=(2,√5),?a ⃗?b ⃗⃗=18, 所以b ⃗⃗在a ⃗方向上的投影向量是a ⃗⃗?b ⃗⃗|a⃗⃗|×a ⃗⃗|a⃗⃗|=1812×a ⃗⃗12=18a ⃗.故答案选;D .练1-2.【解析】因为2AO ⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗+AC⃗⃗⃗⃗⃗⃗,所以O 为BC 中点,又△ABC 外接圆的圆心为O , 所以三角形为以A 为直角顶点的直角三角形, 又|AB ⃗⃗⃗⃗⃗⃗|=|OA ⃗⃗⃗⃗⃗⃗|,所以△ABO 为等边三角形,则∠ABC =60°,∠ACB =30°,所以向量CA⃗⃗⃗⃗⃗⃗在向量CB ⃗⃗⃗⃗⃗⃗上的投影向量为: CA ⃗⃗⃗⃗⃗⃗·CB ⃗⃗⃗⃗⃗⃗|CB⃗⃗⃗⃗⃗⃗|·CB ⃗⃗⃗⃗⃗⃗|CB ⃗⃗⃗⃗⃗⃗|=|CA⃗⃗⃗⃗⃗⃗||CB ⃗⃗⃗⃗⃗⃗|cos30°|CB⃗⃗⃗⃗⃗⃗|2·CB⃗⃗⃗⃗⃗⃗=|CB⃗⃗⃗⃗⃗⃗|cos30°|CB ⃗⃗⃗⃗⃗⃗|cos30°|CB⃗⃗⃗⃗⃗⃗|2·CB ⃗⃗⃗⃗⃗⃗=34CB⃗⃗⃗⃗⃗⃗. 故答案选:C .例2.【解析】∵在梯形ABCD 中,AB//DC ,AD =BC =2,AB =4,∠ABC =π3,P 是BC 的中点,∴AB ⃗⃗⃗⃗⃗⃗?AP ⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗?(AB ⃗⃗⃗⃗⃗⃗+BP ⃗⃗⃗⃗⃗⃗)=AB ⃗⃗⃗⃗⃗⃗2+AB ⃗⃗⃗⃗⃗⃗?12BC ⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗2−12BA ⃗⃗⃗⃗⃗⃗?BC ⃗⃗⃗⃗⃗⃗=42−12×4×2×12=14,故答案为:14.练1-3.【解析】∵c ⃗=ta ⃗+(1−t)b ⃗⃗,c ⃗?b ⃗⃗=0,∴c ⃗?b ⃗⃗=ta ⃗?b ⃗⃗+(1−t)b ⃗⃗2=0, ∵a ⃗,b ⃗⃗是单位向量,∴|a ⃗|=|b⃗⃗|=1, 又∵a⃗与b ⃗⃗的夹角为60°,∴a ⃗⃗?b ⃗⃗=1×1×cos60°=12, ∴c ⃗?b ⃗⃗=ta ⃗?b⃗⃗+(1−t)b ⃗⃗2=12t +(1−t)=0,∴t =2. 故答案为:2.练1-4.【解析】如图,∵D 、E 分别是边AB 、BC 的中点,且DE =2EF , ∴AF⃗⃗⃗⃗⃗⃗·BC ⃗⃗⃗⃗⃗⃗=(AD ⃗⃗⃗⃗⃗⃗+DF ⃗⃗⃗⃗⃗⃗)?BC ⃗⃗⃗⃗⃗⃗=(−12BA ⃗⃗⃗⃗⃗⃗+32DE ⃗⃗⃗⃗⃗⃗)?BC ⃗⃗⃗⃗⃗⃗=(−12BA ⃗⃗⃗⃗⃗⃗+34AC ⃗⃗⃗⃗⃗⃗)?BC ⃗⃗⃗⃗⃗⃗=(−12BA ⃗⃗⃗⃗⃗⃗+34BC ⃗⃗⃗⃗⃗⃗−34BA ⃗⃗⃗⃗⃗⃗)?BC ⃗⃗⃗⃗⃗⃗ =(−54BA ⃗⃗⃗⃗⃗⃗+34BC ⃗⃗⃗⃗⃗⃗)?BC ⃗⃗⃗⃗⃗⃗=−54BA ⃗⃗⃗⃗⃗⃗?BC ⃗⃗⃗⃗⃗⃗+34BC ⃗⃗⃗⃗⃗⃗2=−54|BA ⃗⃗⃗⃗⃗⃗|?|BC ⃗⃗⃗⃗⃗⃗|cos60°+34×12 =−54×1×1×12+34=18. 故答案选:C .例3.【解析】OA ⃗⃗⃗⃗⃗⃗=(1,0),OP 1⃗⃗⃗⃗⃗⃗⃗⃗=(cos?α,sin?α),OP 2⃗⃗⃗⃗⃗⃗⃗⃗=(cos?β,−sin?β),OP 3⃗⃗⃗⃗⃗⃗⃗⃗=(cos?(α+β),sin?(α+β)), AP 1⃗⃗⃗⃗⃗⃗⃗⃗=(cosα−1,sinα),AP 2⃗⃗⃗⃗⃗⃗⃗⃗=(cosβ−1,−sinβ),对于A ,|OP 1⃗⃗⃗⃗⃗⃗⃗⃗|=√cos 2α+sin 2α=1,|OP 2⃗⃗⃗⃗⃗⃗⃗⃗|=√cos 2β+(−sinβ)2=1,A 正确;对于B ,|AP 1⃗⃗⃗⃗⃗⃗⃗⃗|=√(cosα−1)2+sin 2α=√2−2cosα,|AP 2⃗⃗⃗⃗⃗⃗⃗⃗|=√(cosβ−1)2+(−sinβ)2=√2−2cosβ,因为α,β不一定相等,所以|AP 1⃗⃗⃗⃗⃗⃗⃗⃗|,|AP 2⃗⃗⃗⃗⃗⃗⃗⃗|不一定相等,B 错误;对于C ,OA ⃗⃗⃗⃗⃗⃗·OP 3⃗⃗⃗⃗⃗⃗⃗⃗=cos(α+β);OP 1⃗⃗⃗⃗⃗⃗⃗⃗?OP ⃗⃗⃗⃗⃗⃗2=cosαcosβ+sinα(−sinβ)=cos(α+β),C 正确;对于D ,OA ⃗⃗⃗⃗⃗⃗·OP 1⃗⃗⃗⃗⃗⃗⃗⃗=cosα,OP 2⃗⃗⃗⃗⃗⃗⃗⃗?OP 3⃗⃗⃗⃗⃗⃗⃗⃗=cosβcos(α+β)+(−sinβ)sin(α+β)=cos(α+2β),不一定相等,D 错误.故选:AC .练1-5.【解析】∵向量a ⃗=(1,m),b ⃗⃗=(2,1),∴2a ⃗⃗+b ⃗⃗=(4,2m +1),∵b ⃗⃗?(2a ⃗⃗+b ⃗⃗)=7,∴b ⃗⃗?(2a ⃗⃗+b ⃗⃗)=8+2m +1=7,解得m =−1. 故答案为:−1.练1-6.【解析】f (x )=m ⃗⃗⃗⃗·n ⃗⃗+2=2cosωx ·(√3sinωx −cosωx)−1+2 =√3sin2ωx −(1+cos2ωx )+1=2sin (2ωx −π6),∵最小正周期为π2,故ω=2,则f (x )的解析式为f (x )=2sin (4x −π6). 故答案为:f (x )=2sin (4x −π6).例4.【解析】∵向量a ⃗⃗,b ⃗⃗夹角为45°,且|a ⃗⃗|=1,|2a ⃗⃗−b ⃗⃗|=√10.∴√4a ⃗⃗2+b ⃗⃗2−4a ⃗⃗?b ⃗⃗=√10,化为4+|b ⃗⃗|2−4|b ⃗⃗|cos45°=10,化为|b ⃗⃗|2−2√2|b ⃗⃗|−6=0,∵|b ⃗⃗|≥0,解得|b ⃗⃗|=3√2. 故答案为:3√2.练2-1.【解析】因为|a ⃗⃗+b ⃗⃗|2=a ⃗⃗2+2a ⃗⃗?b ⃗⃗+b ⃗⃗2=50+2a ⃗⃗?b ⃗⃗=36,所以a ⃗⃗?b ⃗⃗=−7. 因为|a ⃗⃗−b ⃗⃗|2=a ⃗⃗2−2a ⃗⃗?b ⃗⃗+b ⃗⃗2=50+2×7=64,所以|a⃗⃗−b ⃗⃗|=8. 故选:B .练2-2.【解析】因为平面向量a ⃗⃗、b ⃗⃗、c ⃗⃗两两的夹角相等,所以夹角为0°或120°, 由题意知:|a ⃗⃗|=1,|b ⃗⃗|=2,|c ⃗⃗|=3, 当夹角为0°时,2a ⃗⃗·b ⃗⃗=2|a ⃗⃗||b ⃗⃗|=4,2b ⃗⃗·c ⃗⃗=2|b ⃗⃗||c ⃗⃗|=12,2a ⃗⃗·c ⃗⃗=2|a ⃗⃗||c ⃗⃗|=6,则|a ⃗⃗+b ⃗⃗+c ⃗⃗=√(a ⃗⃗+b ⃗⃗+c ⃗⃗)2=√a ⃗⃗2+b ⃗⃗2+c ⃗⃗2+2a ⃗⃗·b ⃗⃗+2b ⃗⃗·c ⃗⃗+2a ⃗⃗·c ⃗⃗=√1+4+9+4+12+6=6,故选项D 正确; 当夹角为120°时,2a ⃗⃗·b ⃗⃗=2|a ⃗⃗||b ⃗⃗|cos120°=−2,2b ⃗⃗·c ⃗⃗=2|b ⃗⃗||c ⃗⃗|cos120°=−6,2a ⃗⃗·c ⃗⃗=2|a ⃗⃗||c ⃗⃗|=−3,则|a ⃗⃗+b ⃗⃗+c ⃗⃗|=√(a ⃗⃗+b ⃗⃗+c ⃗⃗)2=√a ⃗⃗2+b ⃗⃗2+c ⃗⃗2+2a ⃗⃗·b ⃗⃗+2b ⃗⃗·c ⃗⃗+2a ⃗⃗·c ⃗⃗=√1+4+9−2−6−3=√3,故选项A 正确.故选:AD .例5.【解析】∵(a ⃗⃗−b ⃗⃗)⊥(3a ⃗⃗+2b ⃗⃗),∴(a ⃗⃗−b ⃗⃗)?(3a ⃗⃗+2b ⃗⃗)=0, 即3a ⃗⃗2−2b ⃗⃗2−a ⃗⃗?b ⃗⃗=0,即a ⃗⃗?b ⃗⃗=3a ⃗⃗2−2b ⃗⃗2=23b ⃗⃗2,∴cos <a ⃗⃗,b ⃗⃗>=a⃗⃗?b ⃗⃗|a ⃗⃗||b⃗⃗|=23b ⃗⃗22√23b ⃗2=√22,即<a ⃗⃗,b ⃗⃗>=π4,故选:A .练2-3.【解析】根据题意,因为AB =3,AD =2,AP ⃗⃗⃗⃗⃗⃗=13AB ⃗⃗⃗⃗⃗⃗,AQ ⃗⃗⃗⃗⃗⃗=12AD ⃗⃗⃗⃗⃗⃗⃗, 所以CP ⃗⃗⃗⃗⃗⃗CQ ⃗⃗⃗⃗⃗⃗=(CB ⃗⃗⃗⃗⃗⃗+BP ⃗⃗⃗⃗⃗⃗)·(CD ⃗⃗⃗⃗⃗⃗+DQ ⃗⃗⃗⃗⃗⃗⃗)=(DA ⃗⃗⃗⃗⃗⃗−23DC ⃗⃗⃗⃗⃗⃗)·(−DC ⃗⃗⃗⃗⃗⃗+12DA ⃗⃗⃗⃗⃗⃗) =23DC ⃗⃗⃗⃗⃗⃗2+12DA ⃗⃗⃗⃗⃗⃗2−43DC ⃗⃗⃗⃗⃗⃗?DA ⃗⃗⃗⃗⃗⃗=12,所以DC ⃗⃗⃗⃗⃗⃗DA ⃗⃗⃗⃗⃗⃗=−3,即|DC ⃗⃗⃗⃗⃗⃗||DA ⃗⃗⃗⃗⃗⃗|cos∠ADC =−3,即cos∠ADC =−12,又∠ADC ∈(0,π),所以∠ADC =2π3.故答案选:C .练2-4. 【解析】∵|a ⃗⃗+b ⃗⃗|=|a ⃗⃗−b ⃗⃗|,∴(a ⃗⃗+b ⃗⃗)2=(a ⃗⃗−b ⃗⃗)2?a ⃗⃗?b ⃗⃗=0, 又∵|a ⃗⃗+b|=2√33|a ⃗⃗|,∴(a ⃗⃗+b ⃗⃗)2=43a ⃗⃗2?|b ⃗⃗|=√33|a ⃗⃗|,∴(a ⃗⃗+b ⃗⃗)?a ⃗⃗=a ⃗⃗2+a ⃗⃗·b ⃗⃗=a ⃗⃗2,∴cos <a ⃗⃗+b ⃗⃗,a ⃗⃗>=(a ⃗⃗+b ⃗⃗)·a ⃗⃗|a ⃗⃗+b ⃗⃗|·|a ⃗⃗|=22√33|=√32,故向量a ⃗⃗+b ⃗⃗与a ⃗⃗的夹角为π6. 故答案选:D .例6.【解析】∵|a ⃗⃗|=1,|b ⃗⃗|=2,a ⃗⃗与b ⃗⃗的夹角为60°,∴a ⃗⃗·b ⃗⃗=|a ⃗⃗|·|b⃗⃗|·cos60°=1 ∵(3a ⃗⃗+5b ⃗⃗)⊥(m a ⃗⃗−b ⃗⃗),∴(3a ⃗⃗+5b ⃗⃗)?(m a ⃗⃗−b ⃗⃗)=3m |a ⃗⃗|2+(5m −3)·a ⃗⃗·b ⃗⃗−5|b⃗⃗|2=3m +(5m −3)−20=0;∴m =238. 故答案为:238.练2-5.【解析】已知向量a ⃗⃗与b ⃗⃗的夹角是π3,且|a ⃗⃗|=1,|b ⃗⃗|=4,则:a ⃗⃗?b ⃗⃗=|a ⃗⃗||b ⃗⃗|cos π3=2,已知:(3a ⃗⃗+λb ⃗⃗)⊥a ⃗⃗,则:(3a ⃗⃗+λb ⃗⃗)?a ⃗⃗=0,即:3a ⃗⃗2+λa ⃗⃗?b ⃗⃗=0,解得:λ=−32,故选:A .练2-6.【解析】∵a ⃗⃗+3b ⃗⃗与7a ⃗⃗−5b ⃗⃗垂直,∴(a ⃗⃗+3b ⃗⃗)?(7a ⃗⃗−5b ⃗⃗)=7a ⃗⃗2−15b ⃗⃗2+16a ⃗⃗?b ⃗⃗=0①,又∵a ⃗⃗−4b ⃗⃗与7a ⃗⃗−2b ⃗⃗垂直,∴(a ⃗⃗−4b ⃗⃗)?(7a ⃗⃗−2b ⃗⃗)=7a ⃗⃗2+8b ⃗⃗2−30a ⃗⃗?b ⃗⃗=0②,由①②得a ⃗⃗2=b ⃗⃗2=2a ⃗⃗?b ⃗⃗,又由cosθ=a⃗⃗?b ⃗⃗|a ⃗⃗|?|b⃗⃗|,易得:cosθ=12,则θ=60°,故答案为:60°例7.【解析】根据题意,直角三角形ABC 中,∠A =90°,设AD 为斜边BC 上的高, 又由AB =2,AC =4,则AD =√4+16=4√55, 连接PA ,则圆A 的半径r =|PA⃗⃗⃗⃗⃗⃗|=4√55,则PB ⃗⃗⃗⃗⃗⃗PC ⃗⃗⃗⃗⃗⃗=(PA ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗)?(PA ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)=PA ⃗⃗⃗⃗⃗⃗2+PA ⃗⃗⃗⃗⃗⃗?(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)=165+PA ⃗⃗⃗⃗⃗⃗?(AB ⃗⃗⃗⃗⃗⃗+AC⃗⃗⃗⃗⃗⃗), 当PA ⃗⃗⃗⃗⃗⃗与(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)同向时,PA ⃗⃗⃗⃗⃗⃗?(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)取得最大值, 此时|PA⃗⃗⃗⃗⃗⃗|=4√55,|AB ⃗⃗⃗⃗⃗⃗+AC⃗⃗⃗⃗⃗⃗|=√4+16=2√5, 则PA ⃗⃗⃗⃗⃗⃗(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)的最大值为4√55×2√5=8,故PB ⃗⃗⃗⃗⃗⃗?PC⃗⃗⃗⃗⃗⃗的最大值为165+8=565, 故选:D .练3-1.【解析】如图,以B 为坐标原点,?BC 所在的直线为?x 轴, 过点B 且垂直与BC 的直线为y 轴,建立平面直角坐标系, 因为AD//BC ,∠B =π3,AB =2,AD =1,所以D(2,√3),不妨设P (x,0),Q (x +1,0)(0≤x ≤3), 则DP ⃗⃗⃗⃗⃗⃗DQ ⃗⃗⃗⃗⃗⃗⃗=(x −2,−√3)?(x −1,−√3) =(x −2)(x −1)+3=x 2−3x +5=(x −32)2+114,由二次函数性质得当x =32时,DP ⃗⃗⃗⃗⃗⃗DQ ⃗⃗⃗⃗⃗⃗⃗取得最小值114. 故选D.练3-2.【解析】由b(tanA +tanB)=2ctanB ,得sinB (sinAcosA +sinBcosB )=2sinC ·sinBcosB , 整理得sinAcosB +cosAsinB =2sinCcosA ,即sin(A +B)=2sinCcosA , 又sin(A +B)=sinC , 所以cosA =12,由AB ⃗⃗⃗⃗⃗⃗AC ⃗⃗⃗⃗⃗⃗=2,得AB ⃗⃗⃗⃗⃗⃗?AC⃗⃗⃗⃗⃗⃗=bccosA =2,所以bc =4, 又AG ⃗⃗⃗⃗⃗⃗=13(AB ⃗⃗⃗⃗⃗⃗+AC⃗⃗⃗⃗⃗⃗), 所以|AG ⃗⃗⃗⃗⃗⃗|=13√(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)2=13√b 2+c 2+2×2≥13√2bc +4=√123=2√33, 当且仅当b =c 时,等号成立, 所以|AG ⃗⃗⃗⃗⃗⃗|的最小值为2√33.【素养提升】例8.【解析】 (1)由勾股定理知,AB =√AB 2+AC 2=10;解法一(坐标法):建立平面直角坐标系,如图所示:则A(0,0),B(0,8),C(6,0),BC 的中点D(3,4),所以AD ⃗⃗⃗⃗⃗⃗⃗=(3,4),CB ⃗⃗⃗⃗⃗⃗=(−6,8), 所以AD ⃗⃗⃗⃗⃗⃗⃗CB⃗⃗⃗⃗⃗⃗=3×(−6)+4×8=14; 解法二(基向量法):AD ⃗⃗⃗⃗⃗⃗⃗CB ⃗⃗⃗⃗⃗⃗=12(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)?(AB ⃗⃗⃗⃗⃗⃗−AC ⃗⃗⃗⃗⃗⃗)=12(AB ⃗⃗⃗⃗⃗⃗2−AC ⃗⃗⃗⃗⃗⃗2)=12×(82−62)=14; 解法三(定义法):AD ⃗⃗⃗⃗⃗⃗⃗?CB ⃗⃗⃗⃗⃗⃗=2AD ⃗⃗⃗⃗⃗⃗⃗?CD ⃗⃗⃗⃗⃗⃗=2×|AD ⃗⃗⃗⃗⃗⃗⃗|×|CD ⃗⃗⃗⃗⃗⃗|×cos2B =2×5×5×(2cos 2B −1)=50×[2×(45)2−1]=14;(2)由题意,点P 在AC 上,解法一(极化恒等式):PB ⃗⃗⃗⃗⃗⃗PC⃗⃗⃗⃗⃗⃗=(PB ⃗⃗⃗⃗⃗⃗⃗+PC ⃗⃗⃗⃗⃗⃗)2−(PB ⃗⃗⃗⃗⃗⃗⃗−PC ⃗⃗⃗⃗⃗⃗)24=PD⃗⃗⃗⃗⃗⃗2−CB ⃗⃗⃗⃗⃗⃗24=PD⃗⃗⃗⃗⃗⃗2−25,所以当PD ⊥CA 时,此时|PB⃗⃗⃗⃗⃗⃗|=4, PB⃗⃗⃗⃗⃗⃗?PC ⃗⃗⃗⃗⃗⃗取到最小值,即(PB ⃗⃗⃗⃗⃗⃗?PC ⃗⃗⃗⃗⃗⃗)min =−9; 解法二(坐标法):设P(x,0),则PB ⃗⃗⃗⃗⃗⃗PC ⃗⃗⃗⃗⃗⃗=(−x,8)?(6−x,0)=(x −3)2−9,所以PB ⃗⃗⃗⃗⃗⃗?PC ⃗⃗⃗⃗⃗⃗的最小值是−9; (3)解法一(坐标法):以AC ,AB 为x ,y 轴建立坐标系,则∠BAC 的角平分线方程为y =x ,可以设P(a,a),则PA ⃗⃗⃗⃗⃗⃗=m PB ⃗⃗⃗⃗⃗⃗+n PC ⃗⃗⃗⃗⃗⃗可以表示为(−a,−a)=m(−a,8−a)+n(6−a,−a)=(−am +6n −an,8m −am −an),所以(m +n −1)a =8m =6n ,m =34n ,|PA ⃗⃗⃗⃗⃗⃗|=√2|a|=√2|24n7n−4|=√2|247−4n|,当1≤n ≤2时,|PA ⃗⃗⃗⃗⃗⃗|的取值范围是[245√2,8√2]. 解法二(几何法):由已知得(1−m −n)PA ⃗⃗⃗⃗⃗⃗=m AB ⃗⃗⃗⃗⃗⃗+n AC ⃗⃗⃗⃗⃗⃗, 则有{(1−m −n)PA ⃗⃗⃗⃗⃗⃗?AB ⃗⃗⃗⃗⃗⃗=m AB ⃗⃗⃗⃗⃗⃗2+n AC ⃗⃗⃗⃗⃗⃗?AB ⃗⃗⃗⃗⃗⃗(1−m −n)PA ⃗⃗⃗⃗⃗⃗?AC ⃗⃗⃗⃗⃗⃗=m AC ⃗⃗⃗⃗⃗⃗?AB ⃗⃗⃗⃗⃗⃗+n AC⃗⃗⃗⃗⃗⃗2,即{(1−m −n)PA ⃗⃗⃗⃗⃗⃗?AB ⃗⃗⃗⃗⃗⃗=64m ①(1−m −n)PA ⃗⃗⃗⃗⃗⃗?AC⃗⃗⃗⃗⃗⃗=36n ②;由①÷②得86=64m 36n,所以m =34n ,所以PA⃗⃗⃗⃗⃗⃗=mAB ⃗⃗⃗⃗⃗⃗⃗+nAC ⃗⃗⃗⃗⃗⃗1−m−n=3nAB⃗⃗⃗⃗⃗⃗⃗+4nAC ⃗⃗⃗⃗⃗⃗4−7n,所以|PA ⃗⃗⃗⃗⃗⃗|=|24√2n (4−7n)|∈[24√25,8√2].? 练4-1.【解析】由题意可得AB =√32+32=3√2,又因为AB ⃗⃗⃗⃗⃗⃗=3BC ⃗⃗⃗⃗⃗⃗,则BC =√2,所以AC =4√2,取AC 的中点M ,则PA ⃗⃗⃗⃗⃗⃗+PC ⃗⃗⃗⃗⃗⃗=2PM ⃗⃗⃗⃗⃗⃗⃗,PC ⃗⃗⃗⃗⃗⃗−PA ⃗⃗⃗⃗⃗⃗=AC ⃗⃗⃗⃗⃗⃗, 两式平方后作差得PC⃗⃗⃗⃗⃗⃗PA ⃗⃗⃗⃗⃗⃗=PM ⃗⃗⃗⃗⃗⃗⃗2−14AC ⃗⃗⃗⃗⃗⃗2=PM ⃗⃗⃗⃗⃗⃗⃗2−8, 要使PC ⃗⃗⃗⃗⃗⃗PA⃗⃗⃗⃗⃗⃗最小,就要使PM 最小, 易知当圆弧AB 的圆心与点P ,M 三点共线时,PM 最小, 设AB 的中点为D ,圆心为O ,连接OD 和OM , 此时DM =AM −AD =2√2−3√22=√22, 在△ODM 中,OM =√OD 2+DM 2=(3√22)(√22)=√5,所以PM 的最小值为3−√5,代入求得PC ⃗⃗⃗⃗⃗⃗PA ⃗⃗⃗⃗⃗⃗最小值为6−6√5. 故答案选:D .练4-2.【解析】 (1)由极化恒等式知,AB ⃗⃗⃗⃗⃗⃗?AC ⃗⃗⃗⃗⃗⃗=14[(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)2−(AB ⃗⃗⃗⃗⃗⃗−AC ⃗⃗⃗⃗⃗⃗)2]=(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗2)2−BC ⃗⃗⃗⃗⃗⃗24=AD ⃗⃗⃗⃗⃗⃗2−BC ⃗⃗⃗⃗⃗⃗24=9−94=274;(2)设|AD ⃗⃗⃗⃗⃗⃗⃗|=3m >0,|BC ⃗⃗⃗⃗⃗⃗|=2n >0, 由极化恒等式知,AB⃗⃗⃗⃗⃗⃗AC ⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗2−BC ⃗⃗⃗⃗⃗⃗24,FB⃗⃗⃗⃗⃗⃗?FC ⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗⃗29−BC ⃗⃗⃗⃗⃗⃗24,EB ⃗⃗⃗⃗⃗⃗?EC ⃗⃗⃗⃗⃗⃗=4AD ⃗⃗⃗⃗⃗⃗⃗29−BC ⃗⃗⃗⃗⃗⃗24, 又AB⃗⃗⃗⃗⃗⃗AC ⃗⃗⃗⃗⃗⃗=27,FB ⃗⃗⃗⃗⃗⃗?FC ⃗⃗⃗⃗⃗⃗=−5, ∴有{9m 2−n 2=27m 2−n 2=−5,解得m =2,n =3,∴EB ⃗⃗⃗⃗⃗⃗EC ⃗⃗⃗⃗⃗⃗=4m 2−n 2=7.? 【易错点归纳】例9.【解析】因为OA⃗⃗⃗⃗⃗⃗i ·OB ⃗⃗⃗⃗⃗⃗⃗=OA ⃗⃗⃗⃗⃗⃗·OB ⃗⃗⃗⃗⃗⃗⃗,所以OA ⃗⃗⃗⃗⃗⃗i ·OB ⃗⃗⃗⃗⃗⃗⃗−OA ⃗⃗⃗⃗⃗⃗·OB ⃗⃗⃗⃗⃗⃗⃗=(OA ⃗⃗⃗⃗⃗⃗i −OA ⃗⃗⃗⃗⃗⃗)·OB ⃗⃗⃗⃗⃗⃗⃗=0, 所以AA i ⃗⃗⃗⃗⃗⃗⃗⃗·OB ⃗⃗⃗⃗⃗⃗⃗=0,故选项B 正确; 即|OA i ⃗⃗⃗⃗⃗⃗⃗⃗|?|OB ⃗⃗⃗⃗⃗⃗⃗|?cos∠A i OB =|OA ⃗⃗⃗⃗⃗⃗|?|OB ⃗⃗⃗⃗⃗⃗⃗|?cos∠AOB , 所以|OA i ⃗⃗⃗⃗⃗⃗⃗⃗|?cos∠A i OB =|OA ⃗⃗⃗⃗⃗⃗|?cos∠AOB ,则向量OA ⃗⃗⃗⃗⃗⃗、OA ⃗⃗⃗⃗⃗⃗i 在向量OB⃗⃗⃗⃗⃗⃗⃗方向上的投影数量相等, 又AA i ⃗⃗⃗⃗⃗⃗⃗⃗·OB ⃗⃗⃗⃗⃗⃗⃗=0,所以点A 、A i 在同一条垂直于直线OB 的直线上, 故A 选项错误,选项C 正确,选项D 正确. 故选:BCD .例10.【解析】根据题意,设向量a ⃗⃗与b ⃗⃗的夹角为θ, 若b ⃗⃗⊥(4a ⃗⃗−b ⃗⃗),则b ⃗⃗(4a ⃗⃗−b ⃗⃗)=4a ⃗⃗?b ⃗⃗−b ⃗⃗2=4|a ⃗⃗||b ⃗⃗|cosθ−|b ⃗⃗|2=16√2cosθ−16=0, 变形可得:cosθ=√22,又由0≤θ≤π,则θ=π4,故选:B .例11.【解析】对于A ,a ⃗⃗?c ⃗⃗=b ⃗⃗c ⃗⃗?(a ⃗⃗−b ⃗⃗)?c ⃗⃗=0,不一定有a ⃗⃗=b ⃗⃗?,故A 不正确; 对于B ,利用向量数量积的运算性质可得:(a ⃗⃗+b ⃗⃗)?c ⃗⃗=a ⃗⃗?c ⃗⃗+b ⃗⃗?c ⃗⃗?,故B 正确;对于C ,若a ⃗⃗2=b ⃗⃗2,则|a ⃗⃗|=|b ⃗⃗|,但当a ⃗⃗,b ⃗⃗与c ⃗⃗的夹角不相等时,a ⃗⃗?c ⃗⃗≠b ⃗⃗?c ⃗⃗,故C 不正确;对于D ,a ⃗⃗?b ⃗⃗与b ⃗⃗c ⃗⃗都为实数,而a ⃗⃗与c ⃗⃗不一定共线,因此(a ⃗⃗?b ⃗⃗)?c ⃗⃗≠(b ⃗⃗?c ⃗⃗)?a ⃗⃗.故D 不正确.故选:ACD .例12.【解析】向量a ⃗⃗=(−1,2),b ⃗⃗=(1,m),A .若a ⃗⃗与b ⃗⃗垂直,则(−1)×1+2×m =0,解得m =12,故A 正确;B .若a ⃗⃗?//b ⃗⃗,则(−1)×m −2×1=0,解得m =−2,故B 正确;C .若|a ⃗⃗|=|b ⃗⃗|,则√5=√1+m 2,所以m =±2,故C 错误;D .若m =3,则b ⃗⃗=(1,3),则a ⃗⃗·b ⃗⃗=1×(−1)+2×3=5,|a ⃗⃗|=√5,|b⃗⃗|=√10, 所以cos <a ⃗⃗,b ⃗⃗>=a⃗⃗·b ⃗⃗⃗⃗|a ⃗⃗||b ⃗⃗|=√5×√10=√22, 又<a ⃗⃗,b⃗⃗>∈[0,180°], 所以a ⃗⃗与b ⃗⃗的夹角为45°?,故D 正确. 故选:ABD .。

2021-2022年高考数学一轮复习专题5.3平面向量的数量积及其应用讲

2021-2022年高考数学一轮复习专题5.3平面向量的数量积及其应用讲

2021年高考数学一轮复习专题5.3平面向量的数量积及其应用讲【考纲解读】【知识清单】1.平面向量的数量积及其运算一、两个向量的夹角1.定义已知两个非零向量a和b,作=a,=b,则∠AOB=θ叫做向量a与b的夹角.2.范围向量夹角θ的范围是0°≤θ≤180°a与b同向时,夹角θ=0°;a与b反向时,夹角θ=180°.3.向量垂直如果向量a 与b 的夹角是90°,则a 与b 垂直,记作a ⊥b . 二、平面向量数量积1.已知两个非零向量a 与b ,则数量|a ||b |·cos θ叫做a 与b 的数量积,记作a ·b ,即a ·b =|a ||b |cos θ,其中θ是a 与b 的夹角. 规定0·a =0.当a ⊥b 时,θ=90°,这时a ·b =0. 2.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 三、向量数量积的性质1.如果e 是单位向量,则a ·e =e ·a . 2.a ⊥ba ·b =0. 3.a ·a =|a |2,.4.cos θ=.(θ为a 与b 的夹角) 5.|a ·b |≤|a ||b |. 四、数量积的运算律 1.交换律:a ·b =b ·a .2.分配律:(a +b )·c =a ·c +b ·c .3.对λ∈R ,λ(a ·b )=(λa )·b =a ·(λb ). 五、数量积的坐标运算设a =(a 1,a 2),b =(b 1,b 2),则: 1.a ·b =a 1b 1+a 2b 2. 2.a ⊥b a 1b 1+a 2b 2=0. 3.|a |=a 21+a 22.4.cos θ==.(θ为a 与b 的夹角) 对点练习:【xx 北京,理6】设m ,n 为非零向量,则“存在负数,使得”是“”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件【答案】A【解析】若,使,即两向量反向,夹角是,那么0cos1800m n m n m n ⋅==-<T ,若,那么两向量的夹角为 ,并不一定反向,即不一定存在负数,使得,所以是充分不必要条件,故选A.2.向量的夹角与向量的模1. a·a=|a|2,.2.cos θ=.(θ为a与b的夹角) 3.|a·b|≤|a||b|.对点练习:【xx浙江高三模拟】设,,是非零向量.若1|||||()|2a cbc a b c⋅=⋅=+⋅,则()A. B. C. D.【答案】D.3.平面向量垂直的条件a⊥ba·b=0a1b1+a2b2=0.对点练习:【xx浙江嘉兴、杭州、宁波效实五校联考】在中,,,则的最小值为______ ,又若,则________.【答案】【解析】()()22222222?964313AG mAB AC m AB mAB AC AC m m m=+=++=++=++,所以当时,取最小值;因为,所以()()()()22··1?31940 AG BC mAB AC AC AB m AB AC mAB AC m m =+-=--+=--+=,由.【考点深度剖析】平面向量的数量积是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.【重点难点突破】考点1 平面向量数量积的运算【1-1】已知向量,,则()A.2 B.-2 C.-3 D.4【答案】A【解析】【1-2】已知向量与的夹角为60°,,,则在方向上的投影为()A. B.2 C. D.3【答案】A【解析】因向量,的夹角为,,,,则在方向上的投影为,故应选A.【1-3】【xx天津,理13】在中,,,.若,,且,则的值为___________.【答案】【领悟技法】1.平面向量数量积的计算方法①已知向量a,b的模及夹角θ,利用公式a·b=|a||b|cosθ求解;②已知向量a,b的坐标,利用数量积的坐标形式求解.(2)对于向量数量积与线性运算的综合运算问题,可先利用数量积的运算律化简,再进行运算.【触类旁通】【变式一】【xx高考天津理数】已知△ABC是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为()(A)(B)(C)(D)【答案】B【变式二】已知向量,则在方向上的投影为( )A 、B 、C 、D 、 【答案】D 【解析】因为,所以1365,13a b a b ==⋅=,,则,则在方向上的投影既是在方向上的投影为.【变式三】在矩形中,3,3,2AB BC BE EC ===,点在边上,若,则的值为( ) A .0 B . C .-4 D .4 【答案】C 【解析】考点2 向量的夹角与向量的模【2-1】已知向量,,则与夹角的余弦值为( )A .B .C .D . 【答案】B.【解析】因为向量,,两式相加和相减可得,和;由数量积的定义式知,65631354815cos -=⨯--=⋅=→→→→ba b a θ. 故应选B.【2-2】已知向量的夹角为,且,,则( )A. B. C. D. 【答案】D.【解析】∵,∴22222(2)4410a b a b a a b b -=-=-⋅+=, 又∵的夹角为,且,∴,解得或(舍去), 即.【2-3】【xx 山东,理12】已知是互相垂直的单位向量,若与的夹角为,则实数的值是 . 【答案】【领悟技法】利用向量夹角公式、模公式,可将有关角度问题、线段长问题转化为向量的数量积来解决. 【触类旁通】【变式一】【xx 高考新课标1卷】设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = .【答案】 【解析】 由,得,所以,解得.【变式二】△ABC 中,△ABC 的面积夹角的取值范围是( ) A . B . C . D . 【答案】B313||||sin 22ABC S AB BC B ∆≤=≤,所以①,由知,,所以,代入①得,,所以,所以,所以的夹角为,其取值范围为,故选B. 【变式三】已知,,且与的夹角为锐角,则的取值范围是 . 【答案】且考点3平面向量垂直的条件【3-1】【xx 高考山东理数】已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=.若n ⊥(t m +n ),则实数t 的值为( ) (A )4 (B )–4(C )(D )–【答案】B 【解析】由,可设,又,所以22221()cos ,34(4)41603n tm n n tm n n t m n m n n t k k k tk k ⋅+=⋅+⋅=⋅<>+=⨯⨯⨯+=+= 所以,故选B.【3-2】【xx 安徽阜阳二模】已知()()()()1,3,2,,m n t m n m n ==+⊥-,则_________. 【答案】【解析】由题意得222,104, 6.m n t t ==+=±【3-3】【xx 湖南娄底二模】已知, , ,若向量满足,则的取值范围是__________. 【答案】【解析】易知,由得()2cos ,5cos ,c a b c a b c a b c c a b c =+=++=+,所以或,由此可得的取值范围是. 【领悟技法】利用平面向量垂直的充要条件,可将有关垂直问题转化为向量的数量积来解决. 【触类旁通】【变式一】【xx·全国卷Ⅰ】设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =________. 【答案】-23【变式二】【xx高考新课标2】已知向量,且,则()(A)-8 (B)-6 (C)6 (D)8【答案】D【解析】向量,由得,解得,故选D.【易错试题常警惕】易错典例:已知向量(1)若为锐角,求的范围;(2)当时,求的值.易错分析:从出发解出的值,忽视剔除同向的情况.正确解析:(1)利用向量夹角公式即可得出,注意去掉同方向情况;(2)利用向量垂直与数量积的关系即可得出.试题解析:(1)若为锐角,则且不同向温馨提醒:(1)两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角,若起点不同,应通过移动,使其起点相同,再观察夹角.(2)两向量夹角的范围为[0,π],特别当两向量共线且同向时,其夹角为0,共线且反向时,其夹角为π.(3)在利用向量的数量积求两向量的夹角时,一定要注意两向量夹角的范围.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想我国著名数学家华罗庚曾说过:"数形结合百般好,隔裂分家万事休。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档