九年级数学上第一次月考试题
浙教版九年级上册数学第一次月考试卷含答案
浙教版九年级上册数学第一次月考试题一、单选题1.如果函数()23231kk y k x kx -+=-++是关于x 的二次函数,那么k 的值是()A .1或2B .0或3C .3D .02.顶点为()6,0-,开口向下,形状与函数212y x =的图象相同的抛物线所对应的函数是()A .21(6)2y x =-B .21(6)2y x =+C .21(6)2y x =--D .21(6)2y x =-+3.一位保险推销员对人们说:“人有可能得病,也有可能不得病,因此,得病与不得病的概率各占50%”他的说法()A .正确B .不正确C .有时正确,有时不正确D .应由气候等条件确定4.如图,抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴的一个交点在()3,0-和()2,0-之间,其部分图象如图所示,则下列结论:()2140b ac ->;()22a b =;()3点17,2y ⎛⎫- ⎪⎝⎭、23,2y ⎛⎫- ⎪⎝⎭、35,4y ⎛⎫ ⎪⎝⎭是该抛物线上的点,则123y y y <<;()4320b c +<;()()5t at b a b +≤-(t 为任意实数).其中正确结论的个数是()A .2B .3C .4D .55.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是()A .13B .14C .16D .1126.若二次函数22y x =的图象经过点P (1,a ),则a 的值为()A .12B .1C .2D .47.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为()A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x 8.下列哪些事件是必然事件的个数有()()1哈尔滨冬天会下雪()2中秋节(农历十月十五日)的晚上一定能看到月亮()3秋天的树叶一定是黄色的()4抛十次硬币五次正面,五次反面.A .1个B .2个C .3个D .4个9.明明的相册里放了大小相同的照片共32张,其中与同学合影8张、与父母合影10张、个人照片14张,她随机地从相册里摸出1张,摸出的恰好是与同学合影的照片的可能性是()A .12B .13C .14D .1810.二次函数22(3)5y x =--+图象的开口方向、对称轴和顶点坐标分别为()A .开口向下,对称轴为3x =-,顶点坐标为()3,5B .开口向下,对称轴为3x =,顶点坐标为()3,5C .开口向上,对称轴为3x =-,顶点坐标为()3,5-D .开口向上,对称轴为3x =,顶点坐标为()3,5--二、填空题11.抛物线2y x x m =-+,若其顶点在x 轴上,则m =________.12.已知()221m m y m x x -=-+-是关于x 的二次函数,则m =________.13.同时抛两枚1元硬币,出现两个正面的概率为14,其中“14”含义为___.14.二次函数21212y x x =+-的最小值为________.15.二次函数在x =32时,有最小值14-,且函数的图象经过点(0,2),则此函数的解析式为_______.16.已知抛物线的顶点在()1,2-,且过点()2,3,则抛物线的解析式为__.17.如图是抛物线()210y ax bx c a =++≠图象的一部分,抛物线的顶点坐标()1,3A ,与x 轴的一个交点()4,0B ,直线()20y mx n m =+≠与抛物线交于A ,B 两点,下列结论:①20a b -=;②0abc >;③方程23ax bx c ++=有两个相等的实数根;④抛物线与x 轴的另一个交点是()1,0-;⑤当14x <<时,有21y y <,其中正确的序号是________.18.若二次函数223y x x =--配方后为2()y x h k =-+,则h k +=__.19.若二次函数()20y ax bx c a =++≠的图象与x 轴有两个交点,坐标分别为()1,0x 、()2,0x ,且12x x <,图象上有一点()00,M x y 在x 轴下方,在下列四个算式中判定正确的是________.①()()01020a x x x x --<;②0a >;③240b ac -≥;④102x x x <<.20.已知二次函数2()1y x m =---,当1x >时,y 随x 的增大而减小,则m 的取值范围是________.三、解答题21.已知开口向下的抛物线225y ax x a =++-经过点()0,3-.()1确定此抛物线的解析式;() 2当x 取何值时,y 有最大值,并求出这个最大值.22.请你设计一个摸球游戏,要求:()1袋子中要有黄球、绿球和红球三种球.()2摸到球的概率;P (摸到红球)14=;P (摸到黄球)23=;并求出摸到绿球的概率有多大?23.二次函数2y ax bx c =++的图象过()3,0A -,()1,0B ,()0,3C ,点D 在函数图象上,点C ,D 是二次函数图象上的一对对称点,一次函数图象过点B ,D ,求:()1一次函数和二次函数的解析式;() 2写出使一次函数值大于二次函数值的x 的取值范围.24.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球实验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6000次.()1估计从袋中任意摸出一个球,恰好是红球的概率是多少?() 2请你估计袋中红球接近多少个?25.某商场有A 、B 两种商品,A 商品每件售价25元,B 商品每件售价30元,B 商品每件的成本是20元.根据市场调查“若按上述售价销售,该商场每天可以销售B 商品100件,若销售单价每上涨1元,B 商品每天的销售量就减少5件.()1请写出B 商品每天的销售利润y (元)与销售单价()x 元之间的函数关系?() 2当销售单价为多少元时,B 商品每天的销售利润最大,最大利润是多少?26.某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落OP=米,喷出的水流的最高点A距水平面的高度是4米,离柱子下(如图所示).若已知3OP的距离为1米.()1求这条抛物线的解析式;()2若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?参考答案1.D2.D3.B4.C5.A6.C7.A8.A9.C10.B11.1412.-113.当实验很多次时,平均每抛4次出现1次“两个正面”14.-315.y =x 2﹣3x +216.25103y x x =-+17.③⑤18.-319.①20.1m ≤21.(1)223y x x =-+-(2)52-22.11223.()12123y x x =--+,21y x =-+;()22x <-或1x >24.()10.75;()215个25.(1)y =−5x2+350x−5000;(2)当销售单价为35元时,B 商品每天的销售利润最大,最大利润是1125元.26.(1)2(1)4y x =--+;(2)不计其它因素,水池的半径至少3米,才能使喷出的水流不至于落在池外.。
部编数学九年级上册第一次九上册数学月考解析版含答案
人教版九年级上册第一次月考模拟卷考试范围:第21-22.1.3章;考试时间:120分钟;姓名:注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、单选题1.(2022·山东烟台·八年级期末)下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0B.ax2+bx+c=0C.x2﹣2x+3=0D.x2﹣2y﹣1=0【答案】C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x+3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,解题的关键是判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.x=,则m的值为2.(2022·全国·九年级专题练习)已知关于x的一元二次方程230+-=的一个根是1x x m()A.2B.4C.-4D.-2【答案】B【分析】把x=1代入方程230+-=得1+3-m=0,然后解关于m的方程即可.x x mx=,【详解】解:∵关于x的一元二次方程230x x m+-=的一个根是1∴1+3-m=0,m=.解得4故选B.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.(2022·浙江温州·八年级期末)把一元二次方程()213x x x -=-化为一般形式,正确的是( )A .2230x +=B .22230x x --=C .2220x x -+=D .22230x x -+=【答案】D【分析】将方程整理为一般式即可.【详解】解:()213x x x -=-,223x x x -=-,即22230x x -+=.故选:D .【点睛】本题考查一元二次方程的一般式,掌握一元二次方程的一般式的形式为20(a 0)++=¹ax bx c 是解题的关键.4.(2022·内蒙古赤峰·一模)将一元二次方程2650x x -+=化成2()x h k +=的形式,则k 等于( )A .5-B .4C .9D .14【答案】B【分析】先将常数项移到右边,再在方程两边同时加上一次项系数一半的平方,即加上9,计算即可.【详解】解:∵2650x x -+=x 2-6x =-5x 2-6x +9=-5+9(x -3)2=4∴k =4,故选:B .【点睛】本题考查配方法,熟练掌握配方法的一般步骤是解题的关键.5.(2022·河南商丘·三模)下列关于x 的方程中,一定有两个不相等实数根的是( )A .220220x kx -+=B .220220x kx +-=C .220220x x k -+=D .220220x x k +-=【答案】B【分析】先求出V 的值,再比较出其与0的大小即可求解.【详解】解:A.()22420228088k k =--´=-V ,不能判断大小,不符合题意;B.()224202280880k k =-´-=+>V ,此选项符合题意;C.()222022420224k k =--=-V ,不能判断大小,不符合题意;D.()222022420224k k =-´-=+V ,不能判断大小,不符合题意.故选:B .【点睛】本题考查的是根的判别式,熟知一元二次方程的根与V 的关系是解答此题的关键.6.(2022·北京·九年级专题练习)某长方体木块的底面是正方形,它的高比底面边长还多50cm ,把这个长方体表面涂满油漆时,如果每平方米费用为16元,那么总费用与底面边长满足的函数关系是( )A .正比例函数关系B .一次函数关系C .反比例函数关系D .二次函数关系【答案】D【分析】设底面边长为x cm ,则正方体的高为(x +50)cm ,设总费用为y 元,则可表示出y 与x 的函数关系,根据关系式即可作出选择.【详解】设底面边长为x cm ,则正方体的高为(x +50)cm ,设总费用为y 元,由题意得:2216[24(50)]963200y x x x x x =++=+,这是关于一个二次函数.故选:D .【点睛】本题考查了列函数关系并判断函数形式,关键是根据题意列出函数关系式.7.(2021·黑龙江牡丹江·九年级阶段练习)若抛物线21(1)ay a x -=-的对称轴的左侧,y 随x 的增大而增大,则a 的值为( )A B .C .D .0【点睛】本题考查二次函数的性质和定义,解答本题的关键是掌握二次函数的性质,求出a 的值.8.(2022·全国·九年级专题练习)对于二次函数y =x 2-4x -1的图象,下列叙述正确的是( )A .开口向下B .对称轴为直线x =2C .顶点坐标为(-2,-5)D .当x ≥2时,y 随x 增大而减小【答案】B【分析】根据题目中的抛物线的解析式以及二次函数的性质可以判断各个选项中的说法是否正确.【详解】解:∵224125y x x x =--=--(),∴该函数图象开口向上,对称轴为直线2x =,顶点坐标为(2,-5),∴当2x ³时,y 随x 的增大而增大,故选项B 符合题意,故选:B .【点睛】本题考查二次函数的图象和性质,解答本题的关键是明确题意,利用二次函数的性质解答.9.(2022·全国·九年级)函数y =ax -a 和22y ax =+(a 为常数,且0a ¹),在同一平面直角坐标系中的大致图象可能是( )A .B .C .D .【答案】C【分析】先根据22y ax =+的顶点坐标为()0,2,判断A ,B 不符合题意,再由C ,D 中的二次函数的图象判断0,a < 则0,a -> 从而可得答案.【详解】解:由22y ax =+的顶点坐标为()0,2,故A ,B 不符合题意;由C ,D 中二次函数的图象可得:0,a <0,a \->\ 函数y =ax -a 过一,二,四象限,故C 符合题意,D 不符合题意,故选C【点睛】本题考查的是一次函数与二次函数的图象共存的问题,掌握“一次函数与二次函数的图象与性质”是解本题的关键.10.(2022·全国·九年级课时练习)已知二次函数2()y x h =-(h 为常数),当自变量x 的值满足1≤x ≤3时,其对应的函数值y 的最小值为1,则h 的值为( )A .2或4B .0或4C .2或3D .0或3【答案】B【分析】根据函数的对称轴为:x=h 和13x ££的位置关系,分三种情况讨论即可求解.【详解】解:函数的对称轴为:x=h ,①当3h ³时,x =3时,函数取得最小值1,即2(3)1h -=,解得h =4或h =2(舍去);②当1h £时,x =1时,函数取得最小值1,即2(1)1h -=,解得h =0或h =2(舍去);③当13h <<时,x=h 时,函数取得最小值1,不成立,综上,h =4或h =0,故选:B .【点睛】此题考查函数的最值,函数的对称轴,分情况讨论解决问题是解此题的关键.第II 卷(非选择题)二、填空题11.(2022·江苏南京·八年级期末)方程(x ﹣1)2=6的解是_____.12.(2021·上海浦东新·九年级期末)如果(2,y 1)(3,y 2)是抛物线y =(x +1)2上两点,那么y 1_____y 2.(填“>”或“<”)【答案】<【分析】根据二次函数的性质得到抛物线y =(x +1)2的开口向上,对称轴为直线x =﹣1,则在对称轴右侧,y 随x 的增大而增大.【详解】解:∵y =(x +1)2,∴a =1>0,∴抛物线开口向上,∵抛物线y =(x +1)2对称轴为直线x =﹣1,∵﹣1<2<3,∴y 1<y 2.故答案为<.【点睛】本题考查了2()y a x h =-的性质,求得对称轴是解题的关键.13.(2021·黑龙江牡丹江·九年级阶段练习)将抛物线y =x 2先向右平移6个单位长度,向下平移8个单位长度,此时抛物线的顶点与原点O 的距离为 _____.【答案】10【分析】先得到抛物线2y x =的顶点坐标为(0,0),再利用点的平移规律得到点(0,0)平移后对应点的坐标为(6,﹣8),然后根据勾股定理即可求得.【详解】∵抛物线2y x =的顶点坐标为(0,0)∴抛物线向右平移6个单位长度,再向下平移8个单位长度后得到对应点的坐标为(6,-8)14.(2023·河北·九年级专题练习)在一元二次方程220-+=中,若20x ax b->,则称a是该方程的中a b点值.(1)方程2830-+=的中点值是______;x x(2)已知20x mx n-+=的中点值是3,其中一个根是2,则此时mn的值为______.故答案为:4;48.【点睛】本题考查了新定义概念,解决本题的关键是充分理解新定义的含义.三、解答题15.(2022·湖北武汉·九年级阶段练习)请按指定的方法解方程.(1)用公式法解方程:x 2﹣x ﹣5=0;216.(2022·全国·九年级期中)已知关于x 的一元二次方程2(2)10x m x m -+++=.(1)如果该方程有两个相等的实数根,求m 的值;(2)如果该方程有一个根小于0,求m 的取值范围.【答案】(1)0m =(2)1m <-【分析】(1)根据题意,利用判别式0D =即可求解.(2)利用因式分解变形得[]2(2)1(1)(1)x m x m x x m -+++=--+,可得方程的解,再根据方程有一个根小于0即可求解.(1)解:依题意,得:22[(2)]4(1)m m m D =-+-+= ,∵方程有两个相等的实数根,∴20m =,∴0m =.(2)解:[]2(2)1(1)(1)0x m x m x x m -+++=--+=解得11x m =+,21x = ,∵方程有一个根小于0,∴10+<m ,∴1m <-.【点睛】本题考查了一元二次方程的判别式及根据根的情况求参数问题,熟练掌握一元二次方程根的判别式是解题的关键.用因式分解法解含在参数的一元二次方程是本题的难点.17.(2020·浙江·八年级期中)(1)已知a =+b =22a b ab +的值.(2)已知210x +=,求221x x +的值;(3)用配方法求代数式2611y y -+的最小值.18.(2022·全国·九年级课时练习)二次函数y=ax2+c (a≠0)的图象经过点A(1,-1),B(2,5),(1)求函数y=ax2+c的表达式.(2)若点C(-2,m),D(n ,7)也在函数的图象上,求点C的坐标;点D的坐标.19.(2022·全国·九年级课时练习)已知抛物线y=a (x-h )2+k 的图象如图所示,根据图象解答下列问题:(1)写出抛物线的解析式;(2)写出y 随x 的增大而增大的自变量x 的取值范围;(3)当自变量x 取何值时,函数y 有最大值?最大值为多少?【答案】(1)22(2)2y x =--+;(2)2x <;(3)当2x =时,y 有最大值,最大值为2【分析】(1)根据图象可知,抛物线的顶点坐标为(2,2),且过点(1,0),设顶点式2(2)2y a x =-+,将(1,0)代入解析式,即可求得a 的值,进而求得抛物线的解析式;(2)根据函数图象可知,在对称轴的左侧,y 随x 的增大而增大;(3)根据图象可知,抛物线的顶点坐标为(2,2),且开口朝下,进而求得当2x =时,最值为2.【详解】(1)根据图象可知,抛物线的顶点坐标为(2,2),且过点(1,0),设顶点式2(2)2y a x =-+,将(1,0)代入得,20(12)2a =-+,解得2a =-,\抛物线的解析式为22(2)2y x =--+;(2)根据函数图象可知,在对称轴的左侧,y 随x 的增大而增大,即2x <时,y 随x 的增大而增大,(3)根据图象可知,抛物线的顶点坐标为(2,2),且开口朝下,\当2x =时,y 有最大值,最大值为2.【点睛】本题考查了二次函数2()y a x h k =-+的图象与性质,掌握2()y a x h k =-+的图象与性质是解题的关键.20.(2022·江苏南京·模拟预测)某校举办了“冰雪运动进校园”活动,计划在校园一块矩形的空地上铺设两块完全相同的矩形冰场.如下图所示,已知空地长27m ,宽12m ,矩形冰场的长与宽的比为4:3,如果要使冰场的面积是原空地面积的23,并且预留的上、下通道的宽度相等,左、中、右通道的宽度相等,那么预留的上、下通道的宽度和左、中、右通道的宽度分别是多少米?21.(2022·全国·九年级单元测试)如图,抛物线的顶点为C (1,9),与x 轴交于A ,B (4,0)两点.(1)求抛物线的解析式;(2)抛物线与y 轴交点为D ,求BCD S △.【答案】(1)y =-x 2+2x +8;(2)S △BCD =6.【分析】(1)设抛物线的解析式为y =a (x -1)2+9,把点(4,0)代入可求得a =-1,据此即可求解;(2)过点C 作CE ⊥y 轴于点E ,利用S △BCD = S 梯形OBCE -S △ECD -S △OBD 计算即可求解.(1)解:∵抛物线的顶点为C (1,9),∴设抛物线的解析式为y =a (x -1)2+9,∵抛物线与x 轴交于点B (4,0),∴a (4-1)2+9=0,解得:a =-1,∴抛物线的解析式为y =-(x -1)2+9=-x 2+2x +8;(2)解:过点C 作CE ⊥y 轴于点E ,∵抛物线与y轴交点为D,∴D(0,8),---路线运动,到22.(2022·河北唐山·八年级期中)如图1,90∠=∠=︒,点P从A出发,沿A B C DB CS与x(秒)的图像.D停止;点P的速度为每秒1cm,运动时间为x秒,如图1是ABP△的面积()2cm(1)______时间段内点P在线段AB上运动;______时间段内点P在线段BC上运动;(2)根据题目中提供的信息,请你推断出图1中的AB=______cm;BC=______cm;CD=______cm;图2中的m=______2cm;=.(3)当点P运动______秒时,AP PD【答案】(1)0到2;2到5(2)2;3;1;3(3)323.(2021·福建·漳州市第七中学九年级阶段练习)今年是我国脱贫胜利年,我国在扶贫方面取得了巨大的成就,技术扶贫也使得我省某县的一个电子器件厂脱贫扭亏为盈.该电子器件厂生产一种电脑显卡,2019年该类电脑显卡的出厂价是200元/个,2020年,2021年连续两年在技术扶贫的帮助下改进技术,降低成本,2021年该电脑显卡的出厂价调整为162元/个.(1)这两年此类电脑显卡出厂价下降的百分率相同,则平均每年下降的百分率是;(2)2021年某赛格电脑城以出厂价购进若干个此类电脑显卡,以200元/个销售时,平均每天可销售20个.为了减少库存,商场决定降价销售.经调查发现,单价每降低5元,每天可多售出10个,如果每天盈利1150元,单价应降低多少元?。
九年级数学第一次月考卷(沪科版)(解析版)【测试范围:第二十一章】
2024-2025学年九年级数学上学期第一次月考卷基础知识达标测(考试时间:150分钟试卷满分:120分)考前须知:1.本卷试题共23题,单选10题,填空4题,解答9题。
2.测试范围:第二十一章(沪科版)。
第Ⅰ卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列函数:①y=32;②y=2x2;③y=x(3﹣5x);④y=(1+2x)(1﹣2x),是二次函数的有( )A.1个B.2个C.3个D.4个【分析】利用二次函数定义进行分析即可.【解答】解:①y=3―2;③y=x(3﹣5x);④y=(1+2x)(1﹣2x),是二次函数,共3个,故选:C.2.(4分)已知反比例函数y=―6x,下列说法中正确的是( )A.该函数的图象分布在第一、三象限B.点(2,3)在该函数图象上C.y随x的增大而增大D.该图象关于原点成中心对称【分析】根据反比例函数的解析式得出函数的图象在第二、四象限,函数的图象在每个象限内,y 随x的增大而增大,再逐个判断即可.【解答】解:A.∵反比例函数y=―6x中﹣6<0,∴该函数的图象在第二、四象限,故本选项不符合题意;B.把(2,3)代入y=―6x得:左边=3,右边=﹣3,左边≠右边,∴点(2,3)不在该函数的图象上,故本选项不符合题意;C.∵反比例函数y=―6x中﹣6<0,∴函数的图象在每个象限内,y随x的增大而增大,故本选项不符合题意;D.反比函数y=―6x的图象在第二、四象限,并且图象关于原点成中心对称,故本选项符合题意;故选:D.3.(4分)如果将抛物线y=x2﹣2平移,使平移后的抛物线与抛物线y=x2﹣8x+9重合,那么它平移的过程可以是( )A.向右平移4个单位,向上平移11个单位B.向左平移4个单位,向上平移11个单位C.向左平移4个单位,向上平移5个单位D.向右平移4个单位,向下平移5个单位【分析】根据平移前后的抛物线的顶点坐标确定平移方法即可得解.【解答】解:∵抛物线y=x2﹣8x+9=(x﹣4)2﹣7的顶点坐标为(4,﹣7),抛物线y=x2﹣2的顶点坐标为(0,﹣2),∴顶点由(0,﹣2)到(4,﹣7)需要向右平移4个单位再向下平移5个单位.故选:D.4.(4分)已知二次函数y=ax2+bx+c中的y与x的部分对应值如下表:x…﹣1012…y…﹣5131…则下列判断正确的是( )A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x>1时,y随x的增大而减小D.方程ax2+bx+c=0的正根在3与4之间【分析】结合图表可以得出当x=0或2时,y=1,可以求出此函数的对称轴是直线x=1,顶点坐标为(1,3),借助(0,1)两点可求出二次函数解析式,从而得出抛物线的性质.【解答】解:∵由图表可以得出当x=0或2时,y=1,可以求出此函数的对称轴是直线x=1,顶点坐标为(1,3),∴二次函数解析式为:y=a(x﹣1)2+3,再将(0,1)点代入得:1=a(﹣1)2+3,解得:a=﹣2,∴y=﹣2(x﹣1)2+3,∵a<0∴A,抛物线开口向上错误,故A错误;∵y=﹣2(x﹣1)2+3=﹣2x2+4x+1,与y轴交点坐标为(0,1),故与y轴交于正半轴,故B错误;∵当x>1时,y随x的增大而减小时正确的,故C正确;∵方程ax2+bx+c=0,△=16+4×2×1=22>0,此方程有两个不相等的实数根,由表正根在2和3之间;故选:C.5.(4分)若点(x1,y2)、(x2,y2)和(x3,y3)分别在反比例函数y=―2x的图象上,且x1<x2<0<x3,则下列判断中正确的是( )A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y1【分析】根据所给反比例函数解析式,得出y随x的变化情况,据此可解决问题.【解答】解:因为反比例函数的解析式为y=―2 x ,所以反比例函数的图象位于第二、四象限,且在每一个象限内y随x的增大而增大.因为x1<x2<0<x3,所以0<y1<y2,y3<0,所以y3<y1<y2.故选:B.6.(4分)如表中列出了二次函数y=ax2+bx+c(a≠0)的一些对应值,则一元二次方程ax2+bx+c=0(a≠0)的一个近似解x1的范围是( )x…﹣3﹣2 ﹣1 0 1 …y…﹣11﹣5 ﹣1 1 1 …A.﹣3<x1<﹣2B.﹣2<x1<﹣1C.﹣1<x1<0D.0<x1<1【分析】根据函数的增减性:函数在[﹣1,0]上y随x的增大而增大,可得答案.【解答】解:当x=﹣1时,y=﹣1,x=1时,y=1,函数在[﹣1,0]上y随x的增大而增大,得一元二次方程ax2+bx+c=0(a≠0)的一个近似解在﹣1<x1<0,故选:C.7.(4分)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反比例函数y=a―b+cx的图象在同一坐标系中大致为( )A.B.C.D.【分析】先根据二次函数的图象开口向下和对称轴可知b<0,由抛物线交y的正半轴,可知c>0,由当x=﹣1时,y<0,可知a﹣b+c>0,然后利用排除法即可得出正确答案.【解答】解:∵二次函数的图象开口向下,∴a<0,∵―b2a<0,∴b<0,∵抛物线与y轴相交于正半轴,∴c>0,∴直线y=bx+c经过一、二、四象限,由图象可知,当x=﹣1时,y>0,∴a﹣b+c>0,∴反比例函数y=a―b+cx的图象必在一、三象限,故B、C、D错误,A正确;故选:A.8.(4分)若二次函数y=ax2+bx+c的图象经过A(x1,y1)、B(x2,y2)、C(2﹣m,n)、D(m,n)(y1≠n)则下列命题正确的是( )A.若a>0且|x1﹣1|>|x2﹣1|,则y1<y2B.若a<0且y1<y2,则|1﹣x1|<|1﹣x2|C.若|x1﹣1|>|x2﹣1|且y1>y2,则a<0D.若x1+x2=2(x1≠x2),则AB∥CD【分析】根据D(m,n)、C(2﹣m,n)两点可确定抛物线的对称轴,再利用二次函数的性质一一判断即可.【解答】解:∵抛物线过点D(m,n),C(2﹣m,n)两点,∴抛物线的对称轴为x=2―m+m2=1,若a>0且|x1﹣1|>|x2﹣1|,则y1>y2,故选项A错误,若a<0且y1<y2,则|1﹣x1|>|1﹣x2|,故选项B错误,若|x1﹣1|>|x2﹣1|且y1>y2,则a>0,故选项C错误,若x1+x2=2(x1≠x2),则AB∥CD,故选项D正确.故选:D.9.(4分)如图,抛物线y=ax2+bx+c(a≠0)交x轴于A(﹣1,0),B两点,与y轴的交点C在(0,3),(0,4)之间(包含端点),抛物线对称轴为直线x=1,有以下结论:①abc>0;②3a+c=0;③―43≤a≤―1;④a+b≤am2+bm(m为实数);⑤方程ax2+bx+c﹣3=0必有两个不相等的实根.其中结论正确有( )A.1个B.2个C.3个D.4个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性和增减性即可解决问题.【解答】解:由函数图象可知,a<0,b>0,c>0,所以abc<0.故①错误.因为抛物线与x轴的一个交点坐标为(﹣1,0),所以a﹣b+c=0.又因为抛物线的对称轴为直线x=1,所以―b2a=1,即b=﹣2a,所以a﹣(﹣2a)+c=0,即3a+c=0.故②正确.因为点C在(0,3),(0,4)之间(包含端点),所以3≤c≤4.又因为c=﹣3a,则3≤﹣3a≤4,解得―43≤a≤―1.故③正确.因为抛物线开口向下,且对称轴为直线x=1,所以当x=1时,函数取得最大值:a+b+c.则抛物线上的任意一点(横坐标为m)的纵坐标都不大于a+b+c,即am2+bm+c≤a+b+c,故a+b≥am2+bm.故④错误.方程ax2+bx+c﹣3=0的根可看成函数y=ax2+bx+c与直线y=3交点的横坐标,显然两个图象有两个不同的交点,所以方程ax2+bx+c﹣3=0必有两个不相等的实根.故⑤正确.故选:C.10.(4分)在平面直角坐标系中,我们把横坐标和纵坐标互为相反数的点称为“相反点”,例如点(1,﹣1),(―…,都是“相反点”,若二次函数y=ax2+3x+c(a≠0)的图象上有且只有一个“相反点”(2,﹣2),当﹣1≤x≤m时,二次函数y=ax2+3x+c(a≠0)的最小值为﹣8,最大值为―74,则m的取值范围为( )A.﹣1≤m≤4B.―1≤m≤32C.32≤m≤4D.32≤m≤5【分析】把(2,﹣2)代入y=ax2+3x+c,求出a、c的关系,再根据二次函数图象上有且只有一个“相反点”,结合Δ=b2﹣4ac求出a、c的值,得出y=﹣x2+3x﹣4,化为顶点式,可得出该二次函数的最值,再根据当y=﹣8时,求出x的值即可.【解答】解:∵点(2,﹣2)是二次函数y=ax2+3x+c(a≠0)的“相反点”,∴﹣2=4a+6+c,∴c=﹣4a﹣8,∵二次函数y=ax2+3x+c(a≠0)的图象上有且只有一个“相反点”,∴ax2+3x+c=﹣x(即ax2+4x+c=0)有且只有一个根,∴Δ=16﹣4ac=0,∴16﹣4a(﹣4a﹣8)=0,解得,a=﹣1,c=﹣4×(﹣1)﹣8=﹣4∴y=﹣x2+3x﹣4=﹣(x―32)2―74,二次函数图象的对称轴为直线x=32,函数的最大值为―74,当y=﹣8时,﹣x2+3x﹣4=﹣8,解得,x1=﹣1,x2=4,当32≤m ≤4时,函数的最大值为―74,最小值为﹣8.故选:C .二.填空题(共4小题,满分20分,每小题5分)11.(5分)若函数y =(m +2)x 3―m 2是反比例函数,则m 的值为 .【分析】形如y =kx(k 为常数,k ≠0)的函数叫做反比例函数,也可写成y =kx ﹣1(k 为常数,k ≠0),由此解答即可.【解答】解:若函数y =(m +2)x 3―m 2是反比例函数,则3﹣m 2=﹣1,解得m =±2,∵m +2≠0,∴m ≠﹣2,∴m =2,故答案为:2.12.(5分)若抛物线y =x 2+2x +c 的顶点在x 轴上,则c = .【分析】根据x 轴上点的,纵坐标是0,列出方程求解即可.【解答】解:∵抛物线的顶点在x 轴上,∴y =4ac―b 24a =4c―224×1=0,解得c =1.故答案为:1.13.(5分)如图,在△OAB OA 在y 轴上.反比例函数y =kx(x >0)的图象恰好经过点B ,与边AB 交于点C .若BC =3AC ,S △OAB =10.则k 的值为 .【分析】根据BC =3AC ,S △OAB =10可得S △COB =152,再根据反比例函数k 值的几何意义列出方程12×(k m +k 4m )×(4m ―m)=152求出k 即可.【解答】解:∵BC =3AC ,S △OAB =10.∴S△COB =34×10=152,设点C(m,km),则B(4m,k4m),∵S△COB =S梯形BCDE=152,∴12×(km+k4m)×(4m―m)=152,解得:k=4.故答案为:4.14.(5分)抛物线y=ax2﹣4x+5的对称轴为直线x=2.(1)a= ;(2)若抛物线y=ax2﹣4x+5+m在﹣1<x<6内与x轴只有一个交点,则m的取值范围是 .【分析】(1)由抛物线y=ax2﹣4x+5的对称轴为直线x=2,得――42a=2,即有a=1;(2)①抛物线y=x2﹣4x+5+m的顶点是(2,0),可得0=4﹣4×2+5+m,解得m=﹣1,②当x=﹣1和x=6时,对应的函数值异号,故10+m>017+m<0或10+m<017+m>0,解得﹣17<m<﹣10,当m=﹣17时,抛物线y=x2﹣4x+5+m在﹣1<x<6没有交点,当m=﹣10时,抛物线y=x2﹣4x+5+m 在﹣1<x<6有一个交点(5,0),即可得m=﹣1或﹣17<m≤﹣10.【解答】解:(1)∵抛物线y=ax2﹣4x+5的对称轴为直线x=2.∴――42a=2,∴a=1;故答案为:a=1;(2)由(1)知:a=1,∴抛物线y=ax2﹣4x+5+m为y=x2﹣4x+5+m,∴由Δ≥0得m≤﹣1,∵对称轴为直线x=2,∴抛物线y=x2﹣4x+5+m在﹣1<x<6内与x轴只有一个交点,分两种情况:①抛物线y=x2﹣4x+5+m的顶点是(2,0),∴0=4﹣4×2+5+m,解得m=﹣1,②当x=﹣1和x=6时,对应的函数值异号,而当x=﹣1时,y=10+m,x=6时,y=17+m,∴10+m>017+m<0或10+m<017+m>0,解得﹣17<m<﹣10,当m=﹣17时,抛物线y=x2﹣4x+5+m在﹣1<x<6没有交点,当m=﹣10时,抛物线y=x2﹣4x+5+m在﹣1<x<6有一个交点(5,0),符合题意,综上所述,m取值范围是m=﹣1或﹣17<m≤﹣10,故答案为:m=﹣1或﹣17<m≤﹣10.三.解答题(共9小题,满分90分)15.(8分)已知:y=y1+y2,并且y1与(x﹣1)成正比例,y2与x成反比例.当x=2时,y=5;当x=﹣2时,y=﹣9.(1)求y关于x的函数解析式;(2)求当x=8时的函数值.【分析】(1)首先设y1=k1(x﹣1),y2=k2x,再根据y=y1+y2可得y=k1(x﹣1)+k2x,然后把x=2时,y=5;当x=﹣2时,y=﹣9代入可得关于k1、k2的方程组,解出k1、k2的值,可得函数解析式;(2)把x=8代入函数解析式可得答案.【解答】解:(1)∵y1与(x﹣1)成正比例,y2与x成反比例,∴设y1=k1(x﹣1),y2=k2 x,∵y=y1+y2,∴y=k1(x﹣1)+k2 x,∵当x=2时,y=5;当x=﹣2时,y=﹣9.∴5=k1+k22―9=―3k1―k22,解得:k1=2k2=6,∴y关于x的函数解析式为y=2(x﹣1)+6 x(2)当x=8时,原式=2×7+34=1434.16.(8分)已知二次函数y=x2﹣(m+2)x+2m﹣1.(1)求证:不论m取何值,该函数图象与x轴总有两个公共点;(2)若该函数图象与y轴交于点(0,3),求该函数的图象与x轴的交点坐标.【分析】(1)令y=0,则x2﹣(m+2)x+2m﹣1=0,计算判别式即可得出结论.(2)先根据图象与y轴交于点(0,3),求出m的值,得出其解析式,再求出y=0时x的值.【解答】(1)证明:令y=0,则x2﹣(m+2)x+2m﹣1=0,∴Δ=[﹣(m+2)2]﹣4(2m﹣1),=m2+4m+4﹣8m+4,=m2﹣4m+8=(m﹣2)2+4≥4,∴Δ>0,∴方程总有两个不相等的实数根,即抛物线与x轴总有两个交点;(2)∵函数的图象与y轴交于点(0,3).∴2m﹣1=3,∴m=2,∴抛物线的解析式为:y=x2﹣4x+3,∵y=x2﹣4x+3=(x﹣2)2﹣1,当y=0时,0=(x﹣2)2﹣1,∴x1=3,x2=1,∴该函数的图象与x轴的交点坐标(3,0)或(1,0).17.(8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题.(1)写出方程ax2+bx+c=0的两个根: ;(2)写出不等式ax2+bx+c<0的解集: ;(3)写出y随x的增大而减小的自变量x的取值范围 ;(4)若方程ax2+bx+c=k有两个不相等的实数根,直接写出k的取值范围: .【分析】(1)根据图象可知x=1和3是方程的两根;(2)找出函数值小于0时x的取值范围即可;(3)首先找出对称轴,然后根据图象写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,据此求出k的取值范围.【解答】解:(1)由图象可知,图象与x轴交于(1,0)和(3,0)点,则方程ax2+bx+c=0的两个根为x=1和x=3,故答案为:1和3;(2)由图象可知当x<1或x>3时,不等式ax2+bx+c<0;故答案为:x<1或x>3;(3)由图象可知,y=ax2+bx+c(a≠0)的图象的对称轴为直线x=2,开口向下,即当x>2时,y随x的增大而减小;故答案为:x>2.(4)由图象可知,二次函数y=2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c (a≠0)的最大值,故答案为:k<2.18.(8分)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=k2x的图象交于A(4,﹣2),B(﹣2,n)两点.(1)求反比例函数和一次函数的表达式;(2)连接OA,OB,求△ABO的面积;(3)不等式k1x+b>k2x的解集是 .【分析】(1)把A (4,﹣2)代入反比例函数y =k 2x得出k 2的值,进而求得B 的坐标,再把A 、B 的坐标代入y =k 1x +b ,运用待定系数法分别求其解析式;(2)设一次函数与x 轴交于点C ,由y =﹣x +2即可求得点C 的坐标,把三角形AOB 的面积看成是三角形AOC 和三角形OCB 的面积之和进行计算即可求得;(3)根据图象即可求解.【解答】解:(1)将A (4,﹣2)代入反比例函数解析式得:k 2=﹣8,则反比例解析式为y =―8x;将B (﹣2,n )代入反比例解析式得:n =4,即B (﹣2,4),将A 与B 坐标代入y =k 1x +b 中,得:4k 1+b =―2―2k 1+b =4,解得:k 1=―1b =2,则一次函数解析式为y =﹣x +2;(2)如图所示,设一次函数与x 轴交于点C ,对于一次函数y =﹣x +2,令y =0,得到x =2,即OC =2,则S △AOB =S △AOC +S △BOC =12×22+12×2×4=6.(3)根据函数图象可知:不等式k 1x +b >k 2x的解集为x <﹣2或0<x <4,故答案为:x <﹣2或0<x <4.19.(10分)如图1所示是一座古桥,桥拱截面为抛物线,如图2,AO,BC是桥墩,桥的跨径AB 为20m,此时水位在OC处,桥拱最高点P离水面6m,在水面以上的桥墩AO,BC都为2m.以OC所在的直线为x轴、AO所在的直线为y轴建立平面直角坐标系,其中x(m)是桥拱截面上一点距桥墩AO的水平距离,y(m)是桥拱截面上一点距水面OC的距离.(1)求此桥拱截面所在抛物线的表达式;(2)有一艘游船,其左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在河中航行.当水位上涨2m时,水面到棚顶的高度为3m,遮阳棚宽12m,问此船能否通过桥洞?请说明理由.【分析】(1)先求出点A,点B,点P的坐标,再把抛物线解析式设为顶点式进行求解即可;(2)求出当y=5时x的值,然后计算出两个对应的x的值之间的差的绝对值即可得到答案.【解答】解:(1)由题意知,A(0,2),P(10,6),B(20,2),设抛物线解析式为y=a(x﹣10)2+6,把A(0,2)代入解析式得,100a+6=2,解得a=―1 25,∴此桥拱截面所在抛物线的表达式为y=―125(x―10)2+6;(2)此船不能通过,理由:当y=2+3=5时,―125(x―10)2+6=5,解得x=5或x=15,∵15﹣5=10<12,∴此船不能通过桥洞.20.(10分)为了预防流感,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y(mg)与x(min)成反比例,如图所示,现测得药物9min燃毕,此时室内空气每立方米的含药量为5mg.请你根据题中提供的信息,解答下列问题:(1)分别求出药物燃烧时和药物燃烧后y关于x的函数关系式;(2)研究表明,当空气中每立方米的含药量不低于3mg 且持续时间不低于10min 时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?【分析】(1)直接利用待定系数法分别求出函数解析式;(2)利用y =3时分别代入求出答案.【解答】解:(1)设药物燃烧时y 关于x 的函数关系式为y =k 1x (k 1>0),代入(9,5)得5=9k 1,∴k 1=59,设药物燃烧后y 关于x 的函数关系式为y =k 2x(k 2>0),代入(9,5)得5=k 29,∴k 2=45,∴药物燃烧时y 关于x 的函数关系式为y =59x (0≤x ≤9),药物燃烧后y 关于x 的函数关系式为:y =45x(x >9),∴y =≤x ≤8)(x >8);(2)无效,理由如下:把y =3代入y =59x ,得:x =275,把y =3代入y =45x,得:x =15,∵15―275=485,485<10,∴这次消毒是无效的.21.(12分)在函数的学习中,我们经历了列表、描点、连线画出函数图象,并结合函数图象研究函数性质及其应用的过程,以下是我们研究函数y=(x+1)2―1,x≤11,x>1的性质及其应用的部分过程,请按要求完成下列各小题.x…﹣4﹣3﹣2﹣1012…y…a2―14﹣1―142b…(1)写出表中a,b的值:a= ,b= ;(2)请根据表中的数据在平面直角坐标系中画出该函数的图象,并根据函数图象写出该函数的一条性质: ;(3)若此函数与直线y=m﹣2有2个交点,请结合函数图象,直接写出m的取值范围 .【分析】(1)根据解析式计算即可;(2)利用描点法画出函数图象,观察图象可得函数的一条性质.(3)根据图象即可求解.【解答】解:(1)当x=﹣4时,y=34(﹣4+1)2﹣1=234∴a=23 4,当x=2时,y=2+1=3,∴b=3,故答案为:234,3;(2)画出函数图象如图所示:由图象得:x>1时,y随x的增大而增大;故答案为:x>1时,y随x的增大而增大;(3)由图象可知,若此函数与直线y=m﹣2有2个交点,m的取值范围:m﹣2>﹣1,即m>1.故答案为:m>1.22.(12分)某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为 .(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w元,问:x为何值时,w最大?最大值是多少?【分析】(1)利用待定系数法求出一次函数解析式即可;(2)当x=200时,代入y=―110x+110,确定批发单价,根据总价=批发单价×200,进而求出答案;(3)首先根据服装厂获利w元,当100≤x≤300且x为10整数倍时,得出w与x的函数关系式,进而得出最值,再利用当300<x≤400时求出最值,进而比较得出即可.【解答】解:(1)当100≤x≤300时,设y与x的函数关系式为:y=kx+b,根据题意得出:100k+b=100300k+b=80,解得:k=―110 b=110,∴y与x的函数关系式为:y=―110x+110,故答案为:y=―110x+110;(2)当x=200时,y=﹣20+110=90,∴90×200=18000(元),答:某零售商一次性批发A品牌服装200件,需要支付18000元;(3)分两种情况:①当100≤x≤300时,w=(―110x+110﹣71)x=―110x2+39x=―110(x﹣195)2+3802.5,∵批发件数x为10的正整数倍,∴当x=190或200时,w有最大值是:―110(200﹣195)2+3802.5=3800;②当300<x≤400时,w=(80﹣71)x=9x,当x=400时,w有最大值是:9×400=3600,∴一次性批发A品牌服装x(100≤x≤400)件时,x为190或200时,w最大,最大值是3800元.23.(14分)如图,已知:抛物线y=―14x2+bx+c经过点A(0,2)点C(4,0),且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求△ACM面积的最大值及此时点M的坐标;(3)M点坐标为(2)中的坐标,若抛物线的图象上存在点P,使△ACP的面积等于△ACM面积的一半,则P点的坐标为 .【分析】(1)用待定系数法可得抛物线的解析式为y=―14x2+12x+2;(2)过M作MK∥y轴交AC于K,设M(m,―14m2+12m+2),△ACM面积为S,求出直线AC解析式为y=―12x+2,知K(m,―12m+2),KM=(―14m2+12m+2)﹣(―12m+2)=―14m2+m,故S=12KM•|x C﹣x A|=12×(―14m2+m)×4=―12m2+2m=―12(m﹣2)2+2,根据二次函数性质可得答案;(3)过P作PN∥y轴交AC于N,设P(n,―14n2+12n+2),则N(n,―12n+2),PN=|(―14n2+12n+2)﹣(―12n+2)|=|―14n2+n|,故S△ACP=12PN•|x C﹣x A|=12×|―14n2+n|×4=|―12n2+2n|=12S△ACM=1,解方程组可得答案.【解答】解:(1)把A(0,2)、C(4,0)代入y=―14x2+bx+c得:c=2―4+4b+c=0,解得b=12 c=2,∴抛物线的解析式为y=―14x2+12x+2;(2)过M作MK∥y轴交AC于K,如图:设M(m,―14m2+12m+2),△ACM面积为S,由A(0,2)、C(4,0)得直线AC解析式为y=―12x+2,∴K(m,―12m+2),∴KM=(―14m2+12m+2)﹣(―12m+2)=―14m2+m,∴S=12KM•|x C﹣x A|=12×(―14m2+m)×4=―12m2+2m=―12(m﹣2)2+2,∵―12<0,∴当m =2时,S 取最大值2,此时M (2,2);∴△ACM 面积的最大值是2,此时点M 的坐标为(2,2);(3)过P 作PN ∥y 轴交AC 于N ,设P (n ,―14n 2+12n +2),则N (n ,―12n +2),∴PN =|(―14n 2+12n +2)﹣(―12n +2)|=|―14n 2+n |,∴S △ACP =12PN •|x C ﹣x A |=12×|―14n 2+n |×4=|―12n 2+2n |=12S △ACM=1,解得n =2+22+2―∴P 点的坐标为(22―2+2―故答案为:(2+)或(2―22―。
九年级上第一次月考数学试卷含解析
九年级(上)第一次月考数学试卷一、选择题(本大题共6小题,每题3分,共18分)1.(3分)关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1 B.a≠﹣1 C.a≠±1 D.为任意实数2.(3分)下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线相等且互相垂直D.矩形的对角线不能相等3.(3分)用配方法解方程3x2﹣6x+1=0,则方程可变形为()A.(x﹣3)2= B.3(x﹣1)2=C.(3x﹣1)2=1 D.(x﹣1)2=4.(3分)已知一元二次方程x2﹣3x﹣3=0的两根为α与β,则的值为()A.﹣1 B.1 C.﹣2 D.25.(3分)如图,菱形ABCD的对角线AC、BD相交于点O,AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH等于()A.2 B.C.D.6.(3分)如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()A.﹣4+4B.4+4 C.8﹣4D. +1二、填空题7.(3分)方程x2=3x的根是.8.(3分)等腰三角形两腰长分别为a,b,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为.9.(3分)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点P为AB边上任一点,过P分别作PE⊥AC于E,PF ⊥BC于F,则线段EF的最小值是.10.(3分)如图,BE、CF分别是△ABC的高,M为BC的中点,EF=5,BC=8,则△EFM的周长是.11.(3分)若a,b是方程x2﹣x﹣2=0的两个根,则a2+b=.12.(3分)矩形ABCD中,AB=10,BC=3,E为AB边的中点,P为CD边上的点,且△AEP是腰长为5的等腰三角形,则DP=.三、解答题(本大题共5小题,每题6分,共30分)13.(6分)解方程:(1)2x2+x﹣2=0(用公式法)(2)(x+3)2﹣2x(x+3)=0.14.(6分)如图,在平行四边形ABCD中,点P是对角线AC上的一点,PE⊥AB,PF⊥AD,垂足分别为E、F,且PE=PF,平行四边形ABCD是菱形吗?为什么?15.(6分)已知代数式x2﹣5x+7,先用配方法说明,不论x取何值,这个代数式的值总是正数;再求出当x取何值时,这个代数式的值最小,最小值是多少?16.(6分)如图正六边形ABCDEF,请分别在图1,图2中使用无刻度的直尺按要求画图.(1)在图1中,画出一个与正六边形的边长相等的菱形;(2)在图2中,画一个边长与正六边形的边长不相等的菱形.17.(6分)已知关于x的一元二次方程x2﹣(k+2)x+2k=0.(1)若x=1是这个方程的一个根,求k的值和它的另一根;(2)对于任意的实数k,判断方程根的情况,并说明理由.四、(本大题3小题,每小题8分,共24分)18.(8分)某省为解决农村困难户住危房的问题,决定实行精准扶贫,省财政部门共投资10亿元对各市的“危房改造”予以一定比例的补助.2016年,A市在省财政补助的基础上投入600万元用于“危房改造”,计划以后每年以相同的增长率投资,2018年该市计划投资“危房改造”864万元.(1)求A市投资“危房改造”费用的年平均增长率;(2)从2016年到2018年,A市三年共投资“危房改造”多少万元?19.(8分)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:无论p取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足x12+x22=3x1x2,求实数p的值.20.(8分)某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)根据图象求y与x的函数关系式;(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?五、(本大题2小题,每小题9分,共18分)21.(9分)如图,矩形ABCD中,点E在AD边上,过点E作AB的平行线,交BC于点F,将矩形ABFE 绕着点E逆时针旋转,使点F的对应点落在边CD上,点B的对应点N落在边BC上.(1)求证:BF=NF;(2)已知AB=2,AE=1,求EG的长;(3)已知∠MEF=30°,求的值.22.(9分)在正方形ABCD和正方形DEFG中,顶点B、D、F在同一直线上,H是BF的中点.(1)如图1,若AB=1,DG=2,求BH的长;(2)如图2,连接AH,GH.小宇观察图2,提出猜想:AH=GH,AH⊥GH.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:延长AH交EF于点M,连接AG,GM,要证明结论成立只需证△GAM是等腰直角三角形;想法2:连接AC,GE分别交BF于点M,N,要证明结论成立只需证△AMH≌△HNG.…请你参考上面的想法,帮助小宇证明AH=GH,AH⊥GH.(一种方法即可)六、(本大题共12分)23.(12分)在一张长方形纸片ABCD中,AB=25cm,AD=20cm,现将这张纸片按下列图示方法折叠,请解决下列问题.(1)如图(1),折痕为DE,点A的对应点F在CD上,求折痕DE的长;(2)如图(2),H,G分别为BC,AD的中点,A的对应点F在HG上,折痕为DE,求重叠部分的面积;(3)如图(3),在图(2)中,把长方形ABCD沿着HG对开,变成两张长方形纸片,将两张纸片任意叠合后,判断重叠四边形的形状,并证明;(4)在(3)中,重叠四边形的周长是否存在最大值或最小值?如果存在,试求出来;如果不存在,试简要说明理由.九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每题3分,共18分)1.(3分)关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1 B.a≠﹣1 C.a≠±1 D.为任意实数【解答】解:由题意得:a2﹣1≠0,解得a≠±1.故选:C.2.(3分)下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线相等且互相垂直D.矩形的对角线不能相等【解答】解:A、菱形的对角线相互垂直平分,所以A选项错误;B、平行四边形不是轴对称图形,只是中心对称图形,所以B选项错误;C、正方形的对角线相等且互相垂直,所以C选正确;D、矩形的对角线相等,所以D选项错误.故选:C.3.(3分)用配方法解方程3x2﹣6x+1=0,则方程可变形为()A.(x﹣3)2= B.3(x﹣1)2=C.(3x﹣1)2=1 D.(x﹣1)2=【解答】解:原方程为3x2﹣6x+1=0,二次项系数化为1,得x2﹣2x=﹣,即x2﹣2x+1=﹣+1,所以(x﹣1)2=.故选D.4.(3分)已知一元二次方程x2﹣3x﹣3=0的两根为α与β,则的值为()A.﹣1 B.1 C.﹣2 D.2【解答】解:根据题意得α+β=3,αβ=﹣3,所以===﹣1.故选:A.5.(3分)如图,菱形ABCD的对角线AC、BD相交于点O,AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH等于()A.2 B.C.D.【解答】解:∵四边形ABCD是菱形,AC=8,BD=6,∴BO=3,AO=4,AO⊥BO,∴AB==5.∵OH⊥AB,∴AO•BO=AB•OH,∴OH=,故选:D.6.(3分)如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()A.﹣4+4B.4+4 C.8﹣4D. +1【解答】解:∵四边形ABCD是正方形,∴∠D=90°,∠ACD=45°,AD=CD=2,则S △ACD =AD•CD=×2×2=2; AC=AD=2,则EC=2﹣2,∵△MEC 是等腰直角三角形,∴S △MEC =ME•EC=(2﹣2)2=6﹣4,∴阴影部分的面积=S △ACD ﹣S △MEC =2﹣(6﹣4)=4﹣4. 故选:A .二、填空题7.(3分)方程x 2=3x 的根是 0或3 .【解答】解:x 2=3xx 2﹣3x=0即x (x ﹣3)=0∴x=0或3故本题的答案是0或3.8.(3分)等腰三角形两腰长分别为a,b,且a,b 是关于x 的一元二次方程x 2﹣6x +n ﹣1=0的两根,则n 的值为 10 .【解答】解:∵等腰三角形两腰长分别为a 、b,∴a=b .∵a,b 是关于x 的一元二次方程x 2﹣6x +n ﹣1=0的两根,∴△=(﹣6)2﹣4×1×(n ﹣1)=40﹣4n=0,解得:n=10.故答案为:10.9.(3分)如图,Rt △ABC 中,∠C=90°,AC=3,BC=4,点P 为AB 边上任一点,过P 分别作PE ⊥AC 于E,PF ⊥BC 于F,则线段EF 的最小值是 .【解答】解:连接CP,∵∠ACB=90°,AC=3,BC=4,由勾股定理得:AB=5,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠ACB=90°,∴四边形EPFC是矩形,∴EF=CP,即EF表示C与边AB上任意一点的距离,根据垂线段最短,过C作CD⊥AB,当EF=DC最短,根据三角形面积公式得:AC×BC=AB×CD,∴CD=,故答案为:.10.(3分)如图,BE、CF分别是△ABC的高,M为BC的中点,EF=5,BC=8,则△EFM的周长是13.【解答】解:∵BE、CF分别是△ABC的高,M为BC的中点,BC=8,∴在Rt△BCE中,EM=BC=4,在Rt△BCF中,FM=BC=4,又∵EF=5,∴△EFM的周长=EM+FM+EF=4+4+5=13.11.(3分)若a,b是方程x2﹣x﹣2=0的两个根,则a2+b=3.【解答】解:∵a,b是方程x2﹣x﹣2=0的两个根,∴a2﹣a=2,a+b=1,∴a2+b=a2﹣a+(a+b)=2+1=3.故答案为:3.12.(3分)矩形ABCD中,AB=10,BC=3,E为AB边的中点,P为CD边上的点,且△AEP是腰长为5的等腰三角形,则DP=4或1或9.【解答】解:(1)如图1,当AE=EP=5时,过P作PM⊥AB,∴∠PMB=90°,∵四边形ABCD是矩形,∴∠B=∠C=90°,∴四边形BCPM是矩形,∴PM=BC=3,∵PE=5,∴EM===4,∵E是AB中点,∴BE=5,∴BM=PC=5﹣4=1,∴DP=10﹣1=9;(2)如图2,当AE=AP=5时,DP===4;(3)如图3,当AE=EP=5时,过P作PF⊥AB,∵四边形ABCD是矩形,∴∠D=∠DAB=90°,∴四边形BCPF是矩形,∴PF=AD=3,∵PE=5,∴EF==4,∵E是AB中点,∴AE=5,∴DP=AF=5﹣4=1.故答案为:1或4或9.三、解答题(本大题共5小题,每题6分,共30分)13.(6分)解方程:(1)2x2+x﹣2=0(用公式法)(2)(x+3)2﹣2x(x+3)=0.【解答】解:(1)这里a=2,b=1,c=﹣2,∵△=1+16=17,∴x=;(2)分解因式得:(x+3)(x+3﹣2x)=0,解得:x1=﹣3,x2=3.14.(6分)如图,在平行四边形ABCD中,点P是对角线AC上的一点,PE⊥AB,PF⊥AD,垂足分别为E、F,且PE=PF,平行四边形ABCD是菱形吗?为什么?【解答】解:是菱形.理由如下:∵PE⊥AB,PF⊥AD,且PE=PF,∴AC是∠DAB的角平分线,∴∠DAC=∠CAE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠DCA=∠CAB,∴∠DAC=∠DCA,∴DA=DC,∴平行四边形ABCD是菱形.15.(6分)已知代数式x2﹣5x+7,先用配方法说明,不论x取何值,这个代数式的值总是正数;再求出当x取何值时,这个代数式的值最小,最小值是多少?【解答】解:由题意,得x2﹣5x+7=(x﹣)2+,∵(x﹣)2≥0,∴(x﹣)2+≥,∴(x﹣)2+>0∴这个代数式的值总是正数.设代数式的值为M,则有M=x2﹣5x+7,∴M=(x﹣)2+,∴当x=时,这个代数式的值最小为.16.(6分)如图正六边形ABCDEF,请分别在图1,图2中使用无刻度的直尺按要求画图.(1)在图1中,画出一个与正六边形的边长相等的菱形;(2)在图2中,画一个边长与正六边形的边长不相等的菱形.【解答】解:(1)画图如下:四边形AOEF(或四边形BCDO)即为所求;(2)画图如下:解法一:菱形FGCH即为所求.解法二:菱形AGDH即为所求.17.(6分)已知关于x的一元二次方程x2﹣(k+2)x+2k=0.(1)若x=1是这个方程的一个根,求k的值和它的另一根;(2)对于任意的实数k,判断方程根的情况,并说明理由.【解答】解:x=1是关于x的一元二次方程x2﹣(k+2)x+2k=0的一个根,∴1﹣(k+2)×1+2k=0∴k=1,∴原方程为x2﹣3x+2=0,解得x1=1,x2=2,即:k=1,方程的另一根为x=2.(2)∵方程x2﹣(k+2)x+2k=0,∴△=(k+2)2﹣4×2k=k2﹣4k+4=(k﹣2)2≥0,∴对于任意的实数k,方程有两个实数根.四、(本大题3小题,每小题8分,共24分)18.(8分)某省为解决农村困难户住危房的问题,决定实行精准扶贫,省财政部门共投资10亿元对各市的“危房改造”予以一定比例的补助.2016年,A市在省财政补助的基础上投入600万元用于“危房改造”,计划以后每年以相同的增长率投资,2018年该市计划投资“危房改造”864万元.(1)求A市投资“危房改造”费用的年平均增长率;(2)从2016年到2018年,A市三年共投资“危房改造”多少万元?【解答】解:(1)设A市投资“危房改造”费用的年平均增长率为x.由题意:600(1+x)2=864,解得x=0.2或﹣2.2(舍弃),∴x=0.2=20%,答:设A市投资“危房改造”费用的年平均增长率为20%.(2)由题意可得:600+600(1+20%)+864=2184(万元),答:A市三年共投资“危房改造”2184万元19.(8分)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:无论p取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足x12+x22=3x1x2,求实数p的值.【解答】(1)证明:(x﹣3)(x﹣2)﹣p2=0,x2﹣5x+6﹣p2=0,△=(﹣5)2﹣4×1×(6﹣p2)=4p2+1,∵不论p为何值,4p2+1>0,∴无论p取何值时,方程总有两个不相等的实数根;(2)解:x2﹣5x+6﹣p2=0,根据根与系数的关系得:x1+x2=5,x1•x2=6﹣p2,∵x12+x22=3x1x2,∴(x1+x2)2﹣2x1•x2=3x1x2,∴25﹣2(6﹣p2)=3(6﹣p2),解得:p=±1.20.(8分)某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)根据图象求y与x的函数关系式;(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?【解答】解:(1)设y与x的函数关系式为y=kx+b,将(40,160),(120,0)代入,得,解得,所以y与x的函数关系式为y=﹣2x+240(40≤x≤120);(2)由题意得(x﹣40)(﹣2x+240)=2400,整理得,x2﹣160x+6000=0,解得x1=60,x2=100.当x=60时,销售单价为60元,销售量为120千克,则成本价为40×120=4800(元),超过了3000元,不合题意,舍去;当x=100时,销售单价为100元,销售量为40千克,则成本价为40×40=1600(元),低于3000元,符合题意.所以销售单价为100元.答:销售单价应定为100元.五、(本大题2小题,每小题9分,共18分)21.(9分)如图,矩形ABCD中,点E在AD边上,过点E作AB的平行线,交BC于点F,将矩形ABFE 绕着点E逆时针旋转,使点F的对应点落在边CD上,点B的对应点N落在边BC上.(1)求证:BF=NF;(2)已知AB=2,AE=1,求EG的长;(3)已知∠MEF=30°,求的值.【解答】解:(1)连结BE,EN,如图,∵四边形ABCD是矩形,∴∠BFE=90°,由旋转得BE=EN,∴BF=NF;(2)∵四边形ABCD是矩形,∴BF=AE,EF=AB,由旋转得EH=EA,∵BF=NF,∴EH=NF,∵∠BFE=∠GHE=90°,∠NGF=∠HGE,∴△NGF≌△HGE,∴FG=GH,设DE=x,则GF=GH=2﹣x,由勾股定理得x2﹣(2﹣x)2=1,解得x=,∴EG=;(3)∵EF∥DC,∴∠DME=∠MEF=30°,设DE=x,∵∠D=90°,∴ME=DC=AB=2x,DM=x,∴MC=(2﹣)x,∵∠NME=90°,∠DME=30°,∴∠NMC=60°,∴∠MNC=30°,∴MN=2MC=2(2﹣)x,∴BC=AD=DM+MN=2(2﹣)x+x=(5﹣2)x,∴=.22.(9分)在正方形ABCD和正方形DEFG中,顶点B、D、F在同一直线上,H是BF的中点.(1)如图1,若AB=1,DG=2,求BH的长;(2)如图2,连接AH,GH.小宇观察图2,提出猜想:AH=GH,AH⊥GH.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:延长AH交EF于点M,连接AG,GM,要证明结论成立只需证△GAM是等腰直角三角形;想法2:连接AC,GE分别交BF于点M,N,要证明结论成立只需证△AMH≌△HNG.…请你参考上面的想法,帮助小宇证明AH=GH,AH⊥GH.(一种方法即可)【解答】(1)解:∵正方形中ABCD和正方形DEFG,∴△ABD,△GDF为等腰直角三角形.∵AB=1,DG=2,∴由勾股定理得BD=,DF=2.∵B、D、F共线,∴BF=3.∵H是BF的中点,∴BH=BF=(2)证法一:如图1,延长AH交EF于点M,连接AG,GM,∵正方形中ABCD和正方形DEFG且B、D、F共线,∴AB∥EF.∴∠ABH=∠MFH.又∵BH=FH,∠AHB=∠MHF,∴△ABH≌△MFH.∴AH=MH,AB=MF.∵AB=AD,∴AD=MF.∵DG=FG,∠ADG=∠MFG=90°,∴△ADG≌△MFG.∴∠AGD=∠MGF,A G=MG.又∵∠DGM+∠MGF=90°,∴∠AGD+∠DGM=90°.∴△AGM为等腰直角三角形.∵AH=MH,∴AH=GH,AH⊥GH.证法二:如图2,连接AC,G E分别交BF于点M,N,∵正方形中ABCD和正方形DEFG且B、D、F共线,∴AC⊥BF,GE⊥BF,DM=BD,DN=DF.∴∠AMD=∠GNH=90°,MN=BF.∵H是BF的中点,∴BH=BF.∴BH=MN.∴BH﹣MH=MN﹣MH.∴BM=HN.∵AM=BM=DM,∴AM=HN=DM.∴MD+DH=NH+DH.∴MH=DN.∵DN=GN,∴MH=GN.∴△AMH≌△HNG.∴AH=GH,∠AHM=∠HGN.∵∠HGN+∠GHN=90°,∴∠AHM+∠GHN=90°.∴∠AHG=90°.∴AH⊥GH.∴AH=GH,AH⊥GH.六、(本大题共12分)23.(12分)在一张长方形纸片ABCD中,AB=25cm,AD=20cm,现将这张纸片按下列图示方法折叠,请解决下列问题.(1)如图(1),折痕为DE,点A的对应点F在CD上,求折痕DE的长;(2)如图(2),H,G分别为BC,AD的中点,A的对应点F在HG上,折痕为DE,求重叠部分的面积;(3)如图(3),在图(2)中,把长方形ABCD沿着HG对开,变成两张长方形纸片,将两张纸片任意叠合后,判断重叠四边形的形状,并证明;(4)在(3)中,重叠四边形的周长是否存在最大值或最小值?如果存在,试求出来;如果不存在,试简要说明理由.【解答】解:(1)∵四边形ADFE是正方形,∴DE===20(cm)(2)∵由折叠可知DG=AD=DF,∴在Rt△DGF中,∠GFD=30°,∠GDF=60°,∵∠GDE=∠EDF,∴∠EDA=30°.∴在Rt△ADE中,tan∠EDA=,∴AE=AD•tan30°=.=AE•AD=×20×=.∴S△DEF(3)重叠四边形MNPQ的形状是菱形;如图1,证明:因纸片都是矩形,则重叠四边形的对边互相平行,则四边形MNPQ是平行四边形.如图1,过Q作QL⊥NP于点L,QK⊥NM于点K,又∵QL=QK,∴S MNPQ=PN•QL=MN•QK.∴MN=NP,∴四边形MNPQ的形状是菱形.(4)当矩形纸片互相垂直时,这个菱形的周长最短是40 cm.最大的菱形如图2所示放置时,重叠部分的菱形面积最大.设GK=x,则HK=25﹣x.在Rt△KHB中,x2=(25﹣x)2+102,解得x=14.5.则菱形的最大周长为58 cm.。
人教版九年级上册数学第一次月考试卷及答案
人教版九年级上册数学第一次月考试题一、单选题1.方程x 2-4x-3=0的一次项系数和常数项分别为()A .4和3B .4和﹣3C .﹣4和﹣3D .﹣4和32.抛物线24y x =-与y 轴的交点坐标为()A .()0,4B .()4,0C .()0,4-D .()4,0-3.把方程x 2﹣4x ﹣1=0转化成(x+m )2=n 的形式,则m ,n 的值是()A .2,3B .2,5C .﹣2,3D .﹣2,54.若关于x 的一元二次方程230x x a -+=的一个根为1,则a 的值为()A .2B .3C .-2D .-15.一元二次方程2x 2-3x +1=0根的情况是()A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根6.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是()A .6B .7C .8D .97.已知抛物线y =x 2+x-1经过点P(m ,5),则代数式m 2+m+100的值为()A .104B .105C .106D .1078.把二次函数y =-x 2的图象先向右平移2个单位,再向上平移5个单位后得到一个新图象,则新图象,则新图象所表示的二次函数的解析式是()A .y =-(x -2)2+5B .y =-(x +2)2+5C .y =-(x -2)2-5D .y =-(x +2)2-59.设1(2,)A y -,2(1,)B y -,3(1,)C y ,是抛物线2(1)y x m =+-上的三点,则y 1,y 2,y 3的大小关系为()A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 210.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,有下列4个结论:①abc >0;②b 2<4ac ;③9a+3b+c <0;④2c <3b .其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.方程x2﹣4x=0的解为______.12.方程(m-1)21m x++3x+5=0为一元二次方程,则m的值为___.x x+=______.13.已知方程2+-=的两根分别为1x和2x,则12x x243014.抛物线y=2(x-3)2+1的顶点坐标为_______.15.有一人感染了传染性很强的病毒,经过两轮传染后共有625人患病,每轮传染中平均一人传染______人.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,请直接写出不等式ax2+bx+c>0的解集_____.x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,17.如图,把抛物线y=12x2交于点Q,则图中阴影部分的面积为.0),它的顶点为P,它的对称轴与抛物线y=12三、解答题18.解方程:2670-+=x x19.已知二次函数y=﹣2x2+5x﹣2.(1)写出该函数的对称轴,顶点坐标;(2)求该函数与坐标轴的交点坐标.20.一条抛物线经过点A(-2,0)且抛物线的顶点是(1,-3),求满足此条件的函数解析式.21.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0的两实根为x1,x2.(1)求m的取值范围;(2)如果x12+x22=x1x2+33,求m的值.22.如图,依靠一面长18米的墙,用34米长的篱笆围成一个矩形场地花圃ABCD,AB边上留有2米宽的小门EF(用其他材料做,不用篱笆围).(1)设花圃的一边AD长为x米,请你用含x的代数式表示另一边CD的长为米;(2)当矩形场地面积为160平方米时,求AD的长.23.某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;求x为何值时y的值为1920;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少.24.阅读下列材料,并用相关的思想方法解决问题.材料:为解方程x4﹣x2﹣6=0可将方程变形为(x2)2﹣x2﹣6=0然后设x2=y,则(x2)2=y2,原方程化为y2﹣y﹣6=0…①解得y1=﹣2,y2=3,当y1=﹣2时,x2=﹣2无意义,舍去;当y2=3时,x2=﹣3,解得x=所以原方程的解为x1x2问题:(1)在原方程得到方程①的过程中,利用法达到了降次的目的,体现了的数学思想;(2)利用以上学习到的方法解下列方程(x2+5x+1)(x2+5x+7)=7.-,与y 25.如图,抛物线2y x bx c=++与x轴交于A,B两点,其中点A的坐标为(3,0)D--在抛物线上.轴交于点C,点(2,3)(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA PD的最小值;△的面积为6,求点Q的坐标.(3)若抛物线上有一动点Q,使ABQ参考答案1.C【分析】根据ax2+bx+c=0(a,b,c是常数且a≠0)a,b,c分别叫二次项系数,一次项系数,常数项,可得答案.【详解】解:x2-4x-3=0的一次项系数和常数项分别为-4,-3.故选:C.【点睛】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且a≠0)特别要注意a≠0的条件.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.C【解析】【分析】求图象与y轴的交点坐标,令x=0,求y即可.【详解】当x=0时,y=-4,所以y轴的交点坐标是(0,-4).故选:C.【点睛】主要考查了二次函数图象与y轴的交点坐标特点,解题的关键是熟知函数图像的特点.3.D【解析】【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:∵x2﹣4x﹣1=0,∴x2﹣4x=1,则x2﹣4x+4=1+4,即(x﹣2)2=5,∴m=﹣2,n=5,故选:D.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的集中常用方法:直接开方法、因式分解法、公式法、配方法,结合方程特点选择合适、简便的方法是解题关键.4.A【解析】【分析】根据方程的解的定义,把x=1代入方程,即可得到关于a的方程,再求解即可.【详解】解:根据题意得:1-3+a=0解得:a=2.故选A.【点睛】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.5.B 【解析】【分析】根据一元二次方程根的判别式24b ac -与0的大小关系,即可得出方程根的情况.【详解】解:2x 2-3x +1=0,2,3,1a b c ==-=,∴224(3)42110b ac -=--⨯⨯=>,∴方程有两个不相等的实数根,故选:B .【点睛】本题主要考查了一元二次方程根的判别式,解题的关键在于掌握根的判别式的应用,即240b ac ->,方程有两个不相等的实数根;240b ac -=,方程有两个相等的实数根;240b ac -<,方程无实数根.6.D 【解析】【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x ﹣1)=36,化简,得x 2﹣x ﹣72=0,解得x 1=9,x 2=﹣8(舍去),答:参加此次比赛的球队数是9队.故选:D .【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.7.C【解析】【分析】把P(m,5)代入y=x2+x﹣1得m2+m=6,然后利用整体代入的方法计算代数式的值.【详解】解:把P(m,5)代入y=x2+x﹣1得m2+m﹣1=5,所以m2+m=6,所以m2+m+100=6+100=106.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式,也考查了整体思想的应用.8.A【解析】【分析】根据函数图象“左加右减,上加下减”可得答案.【详解】解:把二次函数y=-x2的图象先向右平移2个单位,再向上平移5个单位后得到一个新图象是y=-(x-2)2+5,故选:A.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.9.D【解析】【分析】根据二次函数的对称性,可利用对称性,找出点C的对称点C ,再利用二次函数的增减性可判断y值的大小.【详解】解: 函数的解析式是2(1)y x m =+-,∴对称轴是直线1x =-,∴点C 关于对称轴的点C '是1(3,)y -,那么点A 、B 、C '都在对称轴的左边,而对称轴左边y 随x 的增大而减小,于是312y y y >>.故选:D .【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是利用二次函数的对称性得出C 关于对称轴的点C '.10.B 【解析】【分析】①函数对称轴在y 轴右侧,则ab <0,c >0,即可求解;②根据抛物线与x 轴有两个交点,由判别式即可得解;③当x=3时,y <0,即可求解;④函数的对称轴为:x=1,故b=-2a ,结合③的结论,代入9a+3b+c <0,即可得解;【详解】解:①函数对称轴在y 轴右侧,则ab <0,c >0,故①错误,不符合题意;②抛物线与x 轴有两个交点,则b 2﹣4ac >0,所以b 2>4ac ,故②错误,不符合题意;③x =3时,y =9a+3b+c <0,故正确,符合题意;④函数的对称轴为:x =1,故b =﹣2a ,∴2b a =-,由③知9a+3b+c <0,代入得302bc -+<,故2c <3b 正确,符合题意;故选:B .【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.11.x 1=0,x 2=4【解析】【分析】24x x -提取公因式x ,再根据“两式的乘积为0,则至少有一个式子的值为0”求解.【详解】解:240x x -=,(4)0x x -=,0x =或40x -=,10x =,24x =,故答案是:10x =,24x =.【点睛】本题考查一元二次方程的解法,解题的关键是掌握在解一元二次方程时应当注意要根据实际情况选择最合适快捷的解法,该题运用了因式分解法.12.-1【解析】【分析】把含有一个未知数且未知数的最高次数为二次的整式方程是一元二次方程,根据一元二次方程的概念即可完成.【详解】由题意得:212m +=且m-1≠0解得:m=-1即当m=-1时,方程(m-1)21m x ++3x+5=0是一元二次方程.【点睛】本题考查了一元二次方程的概念,其一般形式为20ax bx c ++=,其中a≠0,且a ,b ,c 是常数,理解概念是关键.13.2-【解析】【分析】方程()200++=≠ax bx c a 的两根分别为1x 和2x ,则1212,,b c x x x x a a+=-=根据根与系数的关系直接计算即可.【详解】解: 方程22430x x +-=的两根分别为1x 和2x ,1242.2b x x a ∴+=-=-=-故答案为: 2.-【点睛】本题考查的是一元二次方程的根与系数的关系,掌握“一元二次方程的根与系数的关系”是解题的关键.14.(3,1)【解析】【分析】由抛物线解析式可求得答案.【详解】根据二次函数的性质,由顶点式直接得出顶点坐标为(3,1).故答案是(3,1).【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在()2y a x h k =-+中,对称轴为直线x=h ,顶点坐标为(h ,k ).15.24【解析】【分析】根据题意列一元二次方程,解方程即可【详解】设每轮传染中平均一人传染x 人,则第一轮有(1)x +人感染,第二轮有2(1)x +人感染,根据题意可得:2(1)=625x +解得:1224,26x x ==-(不符题意,舍去)故答案为24【点睛】本题考查了一元二次方程的应用,解一元二次方程,根据题意列出方程是解题的关键.16.1<x <3【解析】【分析】直接写出抛物线在x 轴上方所对应的自变量的范围即可.【详解】解:不等式ax 2+bx+c >0的解集为1<x <3.故答案为1<x <3.【点睛】本题考查了二次函数与不等式(组):对于二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.17.272【解析】【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴,然后求出点P 的坐标,过点P 作PM ⊥y 轴于点M ,根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积,然后求解即可.【详解】过点P 作PM ⊥y 轴于点M ,设PQ 交x 轴于点N ,∵抛物线平移后经过原点O 和点A (﹣6,0),∴平移后的抛物线对称轴为x=﹣3.∴平移后的二次函数解析式为:y=12(x+3)2+h ,将(﹣6,0)代入得出:0=12(﹣6+3)2+h ,解得:h=﹣92.∴点P 的坐标是(3,﹣92).根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,∴S=9273=22⨯-18.13x =+23x =【解析】【分析】根据方程特点,先将方程变形为267-=-x x ,则利用配方法求解即可.【详解】解:∵2670x x -+=,∴267-=-x x ,则26979x x -+=-+,即2(3)2x -=,∴3x -=∴13x =+23x =【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法及步骤是解题的关键.19.(1)抛物线的对称轴x=52,顶点坐标为(52,212);(2)抛物线交y 轴于(0,﹣2),交x 轴于(2,0)或(12,0).【解析】【分析】(1)把二次函数y=-2x 2+5x-2化为顶点式的形式,根据二次函数的性质写出答案即可;(2)令x=0可求图象与y 轴的交点坐标,令y=0可求图象与x 轴的交点坐标;【详解】(1)∵y=﹣2(x 2﹣52x+2516﹣2516)﹣2=﹣2(x ﹣54)2+98,∴抛物线的对称轴x=54,顶点坐标为(54,98).(2)对于抛物线y=﹣2x 2+5x ﹣2,令x=0,得到y=﹣2,令y=0,得到﹣2x 2+5x ﹣2=0,解得:x=2或12,∴抛物线交y 轴于(0,﹣2),交x 轴于(2,0)或(12,0).20.()211 3.3y x =--【解析】【分析】设抛物线为:()2,y a x h k =-+根据抛物线的顶点坐标求解,h k ,再把()2,0A -代入解析式可得答案.【详解】解:设抛物线为:()2,y a x h k =-+ 抛物线的顶点是(1,-3),1,3,h k ∴==-∴抛物线为:()213,y a x =--把()2,0A -代入抛物线得:()22130,a ---= 93a ∴=,1,3a ∴=∴抛物线为:()211 3.3y x =--【点睛】本题考查的是利用待定系数法求解抛物线的解析式,根据题意设出合适的抛物线的解析式是解题的关键.21.(1)m≥-2;(2)m=2.【解析】【分析】(1)根据判别式在大于等于0时,方程有两个实数根,确定m 的值;(2)根据根与系数的关系可以求出m 的值.【详解】解:(1)∵△≥0时,一元二次方程有两个实数根,Δ=[2(m+1)]2-4×1×(m 2-3)=8m+16≥0,m≥-2,∴m≥-2时,方程有两个实数根.(2)∵x 12+x 22=x 1x 2+33,∴21212()3x x x x +-=33,∵1222b x x m a+=-=+,2123c x x m a ⋅==-,∴22(22)3(3)m m +--=33,解得m=2或-10(舍去),故m 的值是m=2.【点睛】本题考查了根的判别式和根与系数的关系,要记住12b x x a +=-,12c x x a⋅=-.22.(1)(36﹣2x );(2)AD =10米【解析】【分析】(1)设AD =x 米,则BC =AD =x 米,利用CD 的长=篱笆的长+门的宽﹣2AD ,即可用含x 的代数式表示出CD 的长;(2)利用矩形的面积计算公式,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合墙的长度为18米,即可确定AD 的长.【详解】(1)设AD =x 米,则BC =AD =x 米,∴CD =34+2﹣2AD =34+2﹣2x =(36﹣2x )米.故答案为:(36﹣2x ).(2)依题意得:x (36﹣2x )=160,化简得:x2﹣18x+80=0,解得:x1=8,x2=10.当x=8时,36﹣2x=36﹣2×8﹣20>18,不合题意,舍去;当x=10时,36﹣2x=36﹣2×10=16<18,符合题意.故AD的长为10米.【点睛】本题考查了列代数式,一元二次方程的应用,注意:求得的两个解要检验是否符合题意.23.(1)x=2;(2)每件商品的售价为34元时,商品的利润最大,为1960元.【解析】【分析】(1)销售利润=每件商品的利润×(180-10×上涨的钱数),根据每件售价不能高于35元,可得自变量的取值;(2)利用公式法结合(1)得到的函数解析式可得二次函数的最值,结合实际意义,求得整数解即可.【详解】解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);令y=1920得:1920=﹣10x2+80x+1800x2﹣8x+12=0,(x﹣2)(x﹣6)=0,解得x=2或x=6,∵0≤x≤5,∴x=2,(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).∵﹣10<0,∴当x=802(10)-⨯-=4时,y最大=1960元;∴每件商品的售价为34元答:每件商品的售价为34元时,商品的利润最大,为1960元.【点睛】本题考查考查二次函数的应用;得到月销售量是解决本题的突破点;注意结合自变量的取值求得相应的售价.24.(1)换元,化归;(2)x 1=0,x 2=﹣5【解析】【分析】(1)利用换元法达到了降次的目的,体现了化归的数学思想,据此可得答案;(2)令y =x 2+5x ,得到关于y 的一元二次方程,解之求出y 的值,从而得到两个关于x 的一元二次方程,分别求解可得.【详解】解:(1)在原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了化归的数学思想;故答案为换元,化归.(2)令y =x 2+5x ,则原方程化为(y+1)(y+7)=7,整理,得:y 2+8y =0,解得y 1=0,y 2=﹣8,当y =0时,x 2+5x =0,解得:x 1=0,x 2=﹣5;当y =﹣8时,x 2+5x =﹣8,即x 2+5x+8=0,∵△=52﹣4×1×8=﹣7<0,∴此方程无解.综上,方程(x 2+5x+1)(x 2+5x+7)=7的解为x 1=0,x 2=﹣5.【点睛】本题考查利用换元法解方程,熟练掌握该方法是解题关键.25.(1)223y x x =+-;(2)(3)点Q 的坐标为(0,3)-或(2,3)--或(1-+或(1-【解析】【分析】(1)将A 、D 点代入抛物线方程2y x bx c =++,即可解出b 、c 的值,抛物线的解析式可得;(2)点C 、D 关于抛物线的对称轴对称,连接AC ,点P 即为AC 与对称轴的交点,PA+PD的最小值即为AC 的长度,用勾股定理即可求得AC 的长度;(3)求得B 点坐标,设点()2,23Q m m m +-,利用三角形面积公式,即可求出m 的值,点Q 的坐标即可求得.【详解】解:(1)∵抛物线2y x bx c =++经过点(3,0),(2,3)A D ---,∴930,423,b c b c -+=⎧⎨-+=-⎩解得2,3,b c =⎧⎨=-⎩∴抛物线的解析式为223y x x =+-.(2)由(1)得抛物线223y x x =+-的对称轴为直线1,(0,3)x C =--.∵(2,3)D --,∴C ,D 关于抛物线的对称轴对称,连接AC ,可知,当点P 为直线AC 与对称轴的交点时,PA PD +取得最小值,∴最小值为AC ==(3)设点()2,23Q m m m +-,令2230y x x =+-=,得3x =-或1,∴点B 的坐标为(1,0),∴4AB =.∵6QAB S = ,∴2142362m m ⨯⨯+-=,∴2260m m +-=或220m m +=,解得:1m =-1-0或2-,∴点Q 的坐标为(0,3)-或(2,3)--或(1-或(1-.【点睛】本题考察了待定系数法求解析式、两点之间线段最短、勾股定理、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答。
九年级数学上册第一次月考试卷(含答案)
更
a b c 0, a b c 2 , 所 以 a c 1 , 所 以 a 1 c ,因为 c<0,所以 a 1 ,所以②③④正确.
考点:二次函数图象的性质. 11.-3. 【解析】 2 试题分析:根据一元二次方程的定义得到 m-3≠0 且 m -7=2,然 后解不等式和方程即可得到满足条件的 m 的值. 2 试题解析:根据题意得 m-3≠0 且 m -7=2, 所以 m=-3. 考点:一元二次方程的定义. 12.
九年级上册第一次月考试卷
满分 100 分,时间 60 分钟
一、选择题(每题 3 分,共 24 分)
1.已知关于 x 的一元二次方程 x 2 x a 0 有两个相等的实数根,则 a 的值是(
2
)
A.4
2
B.-4
C.1
D.-1
3 2
2.如果 x x 1 0 ,那么代数式 x 2 x 7 的值是( A、6 B、8 C、-6 D、-8
∠PAD+∠BAP=90°, x2 x 1 , 所 以 ∴∠APB=∠PAD, 3 2 3 2 2 2 2 2 x 2 x 7 x x x 7 x ( x x ) x 7 x x又∵∠B=∠DEA=90°, 7 1 7 6 ∴△ABP∽△DEA,
22.某工厂生产的某种产品按质量分为 10 个档次,据调研显示,每个档次的日产量及相应的单件利润如下表所 示(其中 x 为正整数,且 1≤x≤10):
为了便于调控,此工厂每天只生产一个档次的产品.当生产质量档次为 x 的产品时,当天的利润为 y 万元. (1)求 y 关于 x 的函数关系式; (2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.
沪科版九年级上册数学第一次月考试卷含答案
沪科版九年级上册数学第一次月考试题一、单选题1.已知反比例函数k y x =的图象经过点()1,2A -,那么,(k =)A .2B .2-C .12D .12-2.函数()211m y m x+=+是二次函数,则m 的值是()A .±1B .1C .-1D .以上都不对3.把一根长为50cm 的铁丝弯成一个长方形,设这个长方形的一边长为x (cm ),它的面积为y (cm 2),则y 与x 之间的函数关系式为()A .y=-x 2+50xB .y=x 2-50xC .y=-x 2+25xD .y=-2x 2+254.如果点()1,2同时在函数y ax b =+与x b y a -=的图象上,那么a ,b 的值分别为()A .a=-3,b=-1B .a=-3,b=1C .a=1,b=-3D .a=-1,b=35.二次函数2y ax b =+与反比例函数ab y x=在同一平面直角坐标系中的图象可能是()A .B .C .D .6.抛物线2(1)2y x =-+的顶点坐标是()A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)7.如果矩形的面积为6cm 2,那么它的长ycm 与宽xcm 之间的函数关系用图象表示大致是()A .B .C .D .8.如图,在Rt ABC 中,90ACB ∠= ,CD AB ⊥于点D .3AC =,6AB =,则(AD =)A .32B .3C .92D .339.二次函数2y ax bx c =++的图象如图所示,则下列结论:①0abc <;②240b ac ->;③20a b +>;④0a b c ++<;⑤220ax bx c +++=的解为0x =,其中正确的有()A .5个B .4个C .3个D .2个10.如图,在直角坐标系中,有菱形OABC ,A 点的坐标是()10,0,双曲线(0)k y x x=>经过点C ,且160OB AC ⋅=,则k 的值为()A .40B .48C .64D .80二、填空题11.以原点O 为位似中心,将ABC 缩小,使变换后得到的111A B C 与ABC 对应边的比为1:2.请在网格内画出111A B C ,并写出点1A 的坐标________.12.方程2123x x x-+=的实根的个数为________个.13.结合二次函数224233y x x =-++的图象图回答:() 1当x =________时,()02y =当________时,()03y >当________时,0y <.14.若37a b =,则a b a b+=-________.15.函数2241y x x =++,当x ________时,y 随x 的增大而减小.16.如图,ABC 是一块锐角三角形材料,边6BC cm =,高4AD cm =,要把它加工成一个矩形零件,使矩形的一边在BC 上,其余两个顶点分别在AB 、AC 上,要使矩形EGFH 的面积最大,EG 的长应为________cm .17.已知数3,6,请写出一个数,使这三个数中的一个数是另外两个数的比例中项,这个数是____________.(填写一个即可)18.已知抛物线212y x bx =+经过点()4,0A .设点()1,3C -,请在抛物线的对称轴上确定一点D ,使得AD CD -的值最大,则D 点的坐标为________.19.下列函数中________是反比例函数.①1y x x =+,②231x y x +=,③12x y -=,④32y x=.20.如图,线段AB 、CD 相交于E ,//AD BC ,若:1:2AE EB =,1ADE S = ,则AEC S 等于________.三、解答题21.如图,抛物线223y x x =--+于x 轴交于()1,0A ,()3,0B -两点,交y 轴于点()0,3C ;在抛物线上是否存在点H ,使得BCH 为直角三角形.22.已知两个相似三角形的一对对应边长分别是35cm 和14cm()1已知他们的周长相差60cm ,求这两个三角形的周长.() 2已知它们的面积相差2588cm ,求这两个三角形的面积.23.如图,在矩形ABCD 中,6AB cm =,12BC cm =,点P 沿边AB 从点A 向点B 以1/cm s 的速度移动;同时,点Q 从点B 沿边BC 向点C 以2/cm s 的速度移动,设点P 、Q 移动的时间为t s .问:() 1当t 为何值时PBQ 的面积等于28cm() 2当t 为何值时DPQ 是直角三角形?() 3是否存在t 的值,使DPQ 的面积最小,若存在,求此时t 的值及此时的面积;若不存在,请说明理由.24.随着某市近几年城市建设的快速发展,对花木的需求量逐年提高,某园林专业户计划投资种植花卉及树木.根据市场调查与预测,种植树木的利润y 1与投资量x 成正比例关系,如图①所示;种植花卉的利润y 2与投资量x 成二次函数关系,如图②所示(注:利润与投资量的单位:万元).(1)分别求出利润y 1与y 2关于投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?25.如图,是小亮晚上在广场散步的示意图,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯的位置.()1在小亮由B 处沿BO 所在的方向行走到达O 处的过程中,他在地面上的影子长度越来越________(用“长”或“短”填空);请你在图中画出小亮站在AB 处的影子BE ;()2当小亮离开灯杆的距离 3.6OB m =时,身高为1.6m 的小亮的影长为1.2m ,①灯杆的高度为多少m ?②当小亮离开灯杆的距离6OD m =时,小亮的影长变为多少m ?26.如图1,抛物线23y x x =--与直线22y x =--交于A 、B 两点,过A 作//AC x 轴交抛物线于点C ,直线AB 交x 轴于点D .()1求A 、B 、C 三点的坐标;()2若点H 是线段BD 上的一个动点,过H 作//HE y 轴交抛物线于E 点,连接OE 、OH ,当310HE AC =时,求OEH S 的值;()3如图2,连接BO ,CO 及BC ,设点F 是BC 的中点,点P 是线段CO 上任意一点,将BFP 沿边PF 翻折得到GPF ,求当PC 为何值时,GPF 与CFP 重叠部分的面积是BCP 面积的14.参考答案1.B2.B3.C4.D5.B6.D7.C8.A9.C10.B11.()1,412.113.1-或313x -<<1x <-或3x >.14.52-15.1<-16.217.或1.5或1218.()2,6-19.④20.221.在抛物线上存在使BCH 为直角三角形的点H .22.(1)较大的三角形的周长为100cm ,较小的三角形的周长为40cm ;(2)较大的三角形的面积为2700cm ,较小的三角形的面积为2112cm .23.(1)当2t s =或4t s =时,PBQ 的面积等于28cm ;(2)当t 的值为0秒或32秒或6秒时,DPQ 是直角三角形;(3)存在,当3t =时,DPQ S 有最小值27.24.(1)利润y 1关于投资量x 的函数关系式是y 1=2x (x≥0),利润y 2关于投资量x 的函数关系式是y=12x 2(x≥0);(2)当x=8时,z 的最大值是32.25.(1)短,画图见解析;(2)①x=6.4;②小亮的影长是2米.26.(1)点A 坐标()1,4-,点B 坐标()2,2-,点C 坐标()4,4--;(2)3338OEH S +=;(3)当PC =时,GPF 与CFO 重叠部分的面积是BCP 面积的14.。
九年级数学第一次月考阶段性测试(苏科版第1-2章,培优卷)(解析版)
九年级数学第一次月考阶段性测试(江苏专用,10月份培优卷)班级:__________姓名:___________得分:__________注意事项:本试卷满分120分,试题共26题,其中选择6道、填空10道、解答10道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共6小题,每小题2分,共12分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(23-24九年级上·江苏盐城·阶段练习)下列方程是一元二次方程的是()A.2x+y=1B.x2=0C.x x+3=x2 D.x2+3x=1【答案】B【分析】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.根据一元二次方程的定义逐个判断即可.【详解】解:A、2x+y=1是二元一次方程,故A选项不符合题意;B、x2=0是一元二次方程,故B选项符合题意;C、x x+3=x2整理得3x=0,是一元一次方程,故C选项不符合题意;D、x2+3x=1是分式方程,不是整式方程,故D选项不符合题意;故选:B.2.(24-25九年级上·江苏宿迁·阶段练习)将一元二次方程x x+1=2化为一般形式,正确的是() A.x2+x-2=0 B.x2-x+2=0 C.x2+x=2 D.x2+2x-2=0【答案】A【分析】本题主要考查了一元二次方程的一般式.根据一元二次方程的一般式ax2+bx+c=0a≠0,即可求解.【详解】解:∵x x+1=2,∴x2+x-2=0,故选:A.3.(2024·江苏无锡·一模)下列结论:①三点确定一个圆;②相等的圆心角所对的弧相等;③经过半径的端点并且垂直于这条半径的直线是圆的切线;④圆内接四边形对角互补;⑤三角形的外心到三角形三个顶点的距离都相等;⑥直角三角形的内心在斜边的中点上.正确的个数是()A.1个B.2个C.3个D.4个【答案】B【分析】本题考查圆的性质,涉及确定圆的条件、圆心角与弧的关系、切线判定、圆内接四边形、三角形的内心与外心定义等知识,根据相关概念,逐项判断即可得到答案,熟记与圆有关的概念与性质是解决问题的关键.【详解】解:①当三点在一条直线上时,无法确定一个圆;故①结论错误;②圆的大小不同,相等的圆心角所对的弧不相等;故②结论错误;③经过半径的端点(不是圆心)并且垂直于这条半径的直线是圆的切线;故③结论错误;④圆内接四边形对角互补;故④结论正确;⑤三角形的外心是三角形外接圆的圆心,到三角形三个顶点的距离都相等;故⑤结论正确;⑥直角三角形的外心在斜边的中点上;故⑥结论错误;综上所述,正确的结论是④⑤,共2个,故选:B .4.(24-25九年级上·江苏南京·阶段练习)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC上的点.连接AC ,若∠BAC =20°,则∠D 的度数为( ).A.100°B.110°C.120°D.130°【答案】B【分析】本题考查了圆周角定理,连接BD ,根据圆周角定理求出∠ADB 及∠BDC 的度数,进而可得出结论,根据题意作出辅助线,构造出圆周角是解题的关键.【详解】解:连接BD ,∵AB 是半圆的直径,∴∠ADB =90°,∵∠BAC =20°,∴∠BDC =∠BAC =20°,∴∠ADC =∠ADB +∠BDC =90°+20°=110°,故选:B .5.(2024·江苏无锡·一模)设x 1,x 2是关于x 的一元二次方程x 2-2m +1 x +m 2+2=0的两个实数根,且x 1+1 x 2+1 =8,则m 的值为()A.1B.-3C.3或-1D.1或-3【答案】A【分析】本题考查了一元二次方程根与系数的关系,解一元二次方程,一元二次方程根的判别式,解题的关键是掌握一元二次方程ax 2+bx +c =0a ≠0 根与系数关系:x 1+x 2=-b a ,x 1⋅x 2=ca.先根据一元二次方程根与系数的关系得出x 1x 2=c a =m 2+2,x 1+x 2=-ba=2m +1 ,再得出x 1+1 x 2+1 =x 1x 2+x 1+x 2+1=8,得出关于m 的一元二次方程,求解,再根据判别式检验即可.【详解】解:∵x 1,x 2是关于x 的一元二次方程x 2-2m +1 x +m 2+2=0的两个实数根,∴x 1x 2=c a =m 2+2,x 1+x 2=-ba=2m +1 ,∵x 1+1 x 2+1 =x 1x 2+x 1+x 2+1=8,∴m 2+2+2m +1 +1=8,整理得:m 2+2m -3=0,m -1 m +3 =0,解得:m =1或m =-3,当m =1时,原方程为x 2-4x +3=0,Δ=b 2-4ac =16-4×1×3=4>0,则原方程有实数根,符合题意;当m =-3时,原方程为x 2+4x +11=0,Δ=b 2-4ac =16-4×1×11=-28<0,则原方程无实数根,不符合题意;综上:m =1.故选:A .6.(2023·湖北武汉·模拟预测)如图,AB 为⊙O 直径,C 为圆上一点,I 为△ABC 内心,AI 交⊙O 于D ,OI ⊥AD 于I ,若CD =4,则AC 为()A.1255B.1655C.25D.5【答案】A【分析】如图,连接BI ,BD ,由题意知,AD 平分∠BAC ,BI 平分∠ABC ,则∠BAD =∠CAD ,∠ABI =∠CBI ,BD=CD,BD =CD =4,由∠DBI =∠DBC +∠CBI =∠DAC +∠CBI =∠DAB +∠ABI =∠BID ,可得ID =BD =4,由垂径定理得OI ⊥AD ,则AD =2ID =8,由勾股定理得,AB =BD 2+AD 2=45,如图,连接OD 交BC 于E ,则OD ⊥BC ,设DE =x ,则OE =25-x ,由勾股定理得,BE 2=OB 2-OE 2=BD 2-DE 2,即25 2-25-x 2=42-x 2,解得x =455,进而可得BE =855,BC =2BE =1655,由勾股定理得,AC =AB 2-BC 2,计算求解即可.【详解】解:如图,连接BI ,BD ,由题意知,AD 平分∠BAC ,BI 平分∠ABC ,∴∠BAD =∠CAD ,∠ABI =∠CBI ,∴BD=CD,BD =CD =4,∵∠DBI =∠DBC +∠CBI =∠DAC +∠CBI =∠DAB +∠ABI =∠BID ,∴ID =BD =4,∵OI ⊥AD ,∴AD =2ID =8,由勾股定理得,AB =BD 2+AD 2=45,如图,连接OD 交BC 于E ,则OD ⊥BC ,设DE =x ,则OE =25-x ,由勾股定理得,BE 2=OB 2-OE 2=BD 2-DE 2,即25 2-25-x 2=42-x 2,解得x =455,∴BE =855,BC =2BE =1655,由勾股定理得,AC =AB 2-BC 2=1255,故选:A .【点睛】本题考查了内心,勾股定理,垂径定理,同弧或等弧所对的圆周角相等,等腰三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.二、填空题(本大题共10小题,每小题2分,共20分)请把答案直接填写在横线上7.(23-24九年级上·江苏泰州·阶段练习)若x 2=x ,则x =.【答案】1或0【分析】移项后分解因式得出x (x -1)=0,推出x =0,x -1=0,求出即可.本题考查了解一元二次方程,掌握方法是解题的关键.【详解】解:x 2=x ,∴x 2-x =0,∴x (x -1)=0,∴x =0,x -1=0,解得:x 1=0,x 2=1,故答案为:1或0.8.(23-24九年级上·江苏盐城·阶段练习)已知一元二次方程x 2-5x +2=0的两个根为x 1、x 2,x 1+x 2则的值为.【答案】5【分析】本题考查了韦达定理,熟练掌握该知识点是解题的关键.根据韦达定理进行计算即可.【详解】解:∵x 2-5x +2=0∴a =1,b =-5∴x 1+x 2=-b a =--51=5故答案为:5.9.(24-25九年级上·江苏南京·阶段练习)若关于x 的方程kx 2-x +1=0有两个不等的实数根,则k 的值为.【答案】k <14且k ≠0【分析】本题考查一元二次方程判别式,熟练掌握方程有两个不相等的实数根,则Δ>0是解题的关键.根据方程有两个不相等的实数根,Δ>0,结合一元二次方程的定义求解即可.【详解】解:由根与系数的关系可知,当一元二次方程有两个不等的实数根,则Δ>0,且k ≠0,即Δ=b 2-4ac =-1 2-4×1×k =1-4k >0,解得,k <14,∴k <14且k ≠0.故答案为:k <14且k ≠010.(22-23九年级上·江苏扬州·单元测试)在半径是20cm的圆中,的圆心角所对的弧长为cm.(结果保留π)【答案】10π【分析】本题考查了弧长的计算,根据弧长公式l=nπr180n是圆心角度数,r是半径,由此即可求解.【详解】解:的圆心角所对的弧长为l=90π×20180=10π,故答案为:10π.11.(2024·北京门头沟·一模)如图所示,为了验证某个机械零件的截面是个半圆,某同学用三角板放在了如下位置,通过实际操作可以得出结论,该机械零件的截面是半圆,其中蕴含的数学道理是.【答案】90°的圆周角所对的弦是直径【分析】本题考查圆周角定理,掌握“90°的圆周角所对的弦是直径”是正确解答的关键.根据圆周角定理进行判断即可.【详解】解:根据“90°的圆周角所对的弦是直径”即可得出答案,故答案为:90°的圆周角所对的弦是直径.12.(2024·江苏扬州·模拟预测)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠D=34°,则∠A的度数为.【答案】28°/28度【分析】本题考查了切线的性质,圆周角定理,熟知切线的性质与圆周角定理是解题的关键.连接OC,根据切线的性质得∠OCD=90°,求出∠DOC的度数,再根据圆周角定理计算∠A的度数.【详解】解:如图,连接OC,∵DC切⊙O于点C,∴OC⊥DC,∴∠OCD=90°,∵∠D=34°,∴∠DOC=90°-34°=56°,∴∠A=12∠DOC=28°,故答案为:28°.13.(20-21九年级上·四川绵阳·阶段练习)若关于x的方程ax2+bx+c=0的解为x1=-1,x2=3,则方程a (x -1)2+b (x -1)+c =0的解为.【答案】x 1=0,x 2=4【分析】将第二个方程中的(x -1)看成一个整体,则由第一个方程的解可知,x -1=-1或3,从而求解【详解】解:∵关于x 的方程ax 2+bx +c =0的解为x 1=-1,x 2=3,∴方程a (x -1)2+b (x -1)+c =0的解为x -1=-1或3,解得:x 1=0,x 2=4.【点睛】本题考查一元二次方程的解的概念,正确理解概念,利用换元法解方程是解题关键.14.(2024·江苏泰州·三模)如图,正五边形ABCDE 的边长为6,以顶点A 为圆心,长为半径画圆,若图中阴影部分恰是一个圆锥的侧面展开图,则这个圆锥底面圆的半径是.【答案】1.8【分析】本题主要考查了求圆锥底面圆半径,正多边形内角,熟知圆锥底面圆的周长即为其展开图中扇形的弧长是解题的关键.先利用正多边形内角和定理求出∠A 的度数,再根据圆锥底面圆的周长即为其展开图中扇形的弧长进行求解即可.【详解】解:∵ABCDE 是正五边形,∴∠A =180°×5-35=108°,设底面圆的半径为r ,则2πr =108π×6180,解得r =1.8,故答案为:1.8.15.(22-23九年级上·江苏泰州·阶段练习)如图,⊙M 半径为2,圆心M 坐标(3,4),点P 是⊙M 上的任意一点,P A ⊥PB ,且P A 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为.【答案】6【分析】本题主要考查点与圆的位置关系,熟练掌握直角三角形斜边上的中线等于斜边的一半得到答案即可.由Rt△APB中AB=2OP得到要使AB取得最小值,即OP需取最小值,连接OM,交⊙M于点P 即可得到答案.【详解】解:连接OP,∵P A⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,要使AB取得最小值,即OP需取最小值,连接OM,交⊙M于点P ,此时OP取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3,MQ=4,∴OM=5,∵MP =2,∴OP =3,∴AB=2OP =6,故答案为:6.16.(22-23九年级上·江苏盐城·期中)以正方形ABCD的边为直径作半圆O,过点C作直线切半圆于点F,交边于点E,若△CDE的周长为12,则正方形ABCD的边长为.【答案】4【分析】本题考查了正方形的性质、切线长定理等知识点,利用正方形的性质和圆的切线的判定得出均为圆O的切线是解题关键.根据切线长定理可得AE=EF,BC=CF,然后根据△CDE的周长可求出正方形的边长.【详解】解:在正方形ABCD中,∠BAD=∠ABC=90°,AD=CD=BC=AB,∵CE与半圆O相切于点F,以正方形ABCD的边为直径作半圆O,∴AD,BC与半圆O相切,∴AE=EF,BC=CF,∵△CDE的周长为12,∴EF+FC+CD+ED=12,∴AE+ED+CD+BC=AD+CD+BC=12,∵AD=CD=BC=AB,∴正方形ABCD的边长为4.故答案为:4.三、解答题(本大题共10小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(23-24九年级上·江苏常州·期末)解下列方程:(1)x2-4x=12;(2)3x(2x-5)=4x-10.【答案】(1)x1=6,x2=-2;(2)x1=23,x2=52.【分析】本题主要考查解一元二次方程,掌握配方法,因式分解法解一元二次方程是解题的关键.(1)运用配方法解一元二次方程即可求解;(2)运用因式分解法求一元二次方程即可求解.【详解】(1)解:x2-4x=12x2-4x+4=16x-22=16x-2=±4∴x1=6,x2=-2;(2)解:3x(2x-5)=4x-103x2x-5-22x-5=02x-53x-2=0∴2x-5=0或3x-2=0,∴x1=52,x2=23.18.(23-24九年级上·江苏盐城·阶段练习)如图,平面直角坐标系中有一个△ABC.(1)利用网格,只用无刻度的直尺作出△ABC的外接圆的圆心点O;(2)△ABC的外接圆的圆心坐标是;(3)该圆圆心到弦AC的距离为;(4)△ABC最小覆盖圆的半径为.【答案】(1)见解析(2)5,2(3)10(4)10【分析】本题考查了三角形外心的性质,等腰三角形三线合一,勾股定理,熟练掌握以上知识点并利用数形结合思想是解题的关键.(1)根据三角形外心的性质,分别作AB与BC的垂直平分线,两直线相交于点O,则O点即是△ABC的外接圆的圆心;(2)根据(1)所求,可由坐标系直接得到答案;(3)取AC的中点P,连接OP,根据等腰三角形三线合一可知OP⊥AC,利用勾股定理求出OP即为所求;(4)利用勾股定理求出CP即可.【详解】(1)解:分别作AB与BC的垂直平分线,两直线相交于点O,则O点即是△ABC的外接圆的圆心,如图即为所求:(2)解:由(1)可知,O点坐标为5,2故答案为:5,2.(3)解:取AC的中点P,连接OP,如图,OA=OC则OP⊥AC∵OP=12+32=10∴该圆圆心到弦AC的距离为10故答案为:10.(4)解:由图可知,最小覆盖圆的半径为CP长如图所示,可知CP为所求,利用网格CP=12+32=10故答案为:10.19.(22-23九年级上·江苏泰州·阶段练习)如图,已知AB、MD是⊙O的直径,弦CD⊥AB于E.(1)若CD=16cm,OD=10cm,求BE的长:(2)若∠M=∠D,求∠D的度数.【答案】(1)4cm(2)30°【分析】本题主要考查垂径定理,勾股定理以及圆周角定理,熟练掌握性质定理是解题的关键.(1)由垂径定理求出DE的长,再根据勾股定理求出答案即可;(2)根据圆周角定理求得∠D=1∠BOD,再根据两锐角互余的性质得到答案.2【详解】(1)解:∵弦CD⊥AB,CD=16cm,CD=8cm,∴CE=DE=12在Rt△OED中,OE=OD2-DE2=102-82=6cm,∴BE=OB-OE=10-6=4cm;∠BOD,(2)解:∵∠M=∠D,∠M=12∠BOD,∴∠D=12∵∠D+∠BOD=90°,∠D=30°.20.(24-25九年级上·江苏宿迁·阶段练习)关于x的方程x2-m+4x+3m+3=0.(1)求证:不论m取何值,方程总有两个实数根;(2)若该方程有两个实数根x1,x2,且x1+1=3,求m的值.x2+1【答案】(1)证明见详解(2)m=-54【分析】本题考查一元二次方程根的情况与判别式关系,一元二次方程根与系数的关系,熟记一元二次方程判别式与方程根的情况联系、一元二次方程根与系数的关系是解决问题的关键.(1)根据一元二次方程根的情况与判别式的关系,只要判定Δ≥0即可得到答案;(2)根据一元二次方程根与系数的关系得到x1+x2=m+4,x1x2=3m+3,将x1+1=3展开,代入x2+1求解即可.【详解】(1)证明:a=1,b=-m+4,c=3m+3,∴Δ=m+42≥0,=m-22-4×1×3m+3∴不论m取何值,方程总有两个实数根;(2)解:x1+1=3,x2+1x1x2+x1+x2+1=3,对于方程x2-m+4x+3m+3=0,可得x1+x2=m+4,x1x2=3m+3,∴m+4+3m+3+1=3,解得:m=-5 4.21.(24-25九年级上·全国·单元测试)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的边AB的长为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.【答案】(1)当羊圈的边AB的长为16m或20m时,能围成一个面积为640m2的羊圈(2)羊圈的面积不能达到650m2,理由见解析【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键.(1)设羊圈的边AB的长为xm,则边BC的长为72-2xm根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解.【详解】(1)解:设羊圈的边AB的长为xm,则边BC的长为72-2xm,根据题意,得x72-2x=640,化简,得x2-36x+320=0,解方程,得x1=16,x2=20,当x1=16时,72-2x=40,当x2=20时,72-2x=32.答:当羊圈的边AB的长为16m或20m时,能围成一个面积为640m2的羊圈.(2)不能,理由如下:根据题意,得x72-2x=650,化简,得x2-36x+325=0,∵b2-4ac=-362-4×325=-4<0,∴该方程没有实数根.∴羊圈的面积不能达到650m222.(22-23八年级下·浙江宁波·期末)冬季来临,某超市以每件35元的价格购进某款棉帽,并以每件58的价格出售.经统计,10月份的销售量为256只,12月份的销售量为400只.(1)求该款棉帽10月份到12月份销售量的月平均增长率;(2)经市场预测,下个月份的销售量将与12月份持平,现超市为了减少库存,采用降价促销方式,调查发现,该棉帽每降价1元,月销售量就会增加20只.当该棉帽售价为多少元时,月销售利润达8400元?【答案】(1)25%(2)【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)设该款棉帽10月份到12月份销售量的月平均增长率为x,可列出关于x的一元二次方程,解之取其符合题意的值,即可得出结论;(2)设该款棉帽售价为y元,则每件的销售利润为y-25元,利用月销售利润=每件的销售利润×月销售量,可列出关于y的一元二次方程,解之取其符合题意的值,即可得出结论.【详解】(1)解:设该款棉帽10月份到12月份销售量的月平均增长率为x,根据题意得:2561+x 2=400,解得:x 1=0.25=25%,x 2=-2.25(不符合题意,舍去)答:该款棉帽10月份到12月份销售量的月平均增长率为25%.(2)设该棉帽售价为y 元,则每件的销售利润为y -35 元,月销售量为400+2058-y =1560-20y 件根据题意得:y -35 1560-20y =8400解得:y 1=50,y 2=63(不符合题意,舍去).答:该款棉帽售价为元时,月销售利润达8400元.23.(22-23九年级上·江苏连云港·阶段练习)如图,AB 为⊙O 的直径,BC 是圆的切线,切点为B ,OC 平行于弦AD,(1)求证:DC 是⊙O 的切线;(2)直线AB 与CD 交于点F ,且DF =4,AF =2,求⊙O 的半径.【答案】(1)见解析(2)3【分析】(1)连接OD ,根据切线的性质得到OB ⊥BC ,证明△DOC ≌△BOC ,根据切线的性质得到∠ODC =∠OBC =90°,根据切线的判定定理证明结论;(2)设⊙O 的半径为r ,根据勾股定理列出方程,解方程求出⊙O 的半径.【详解】(1)证明:连接OD ,∵BC 是⊙O 的切线,∴OB ⊥BC ,∵OC ∥AD ,∴∠BOC =∠OAD ,∠DOC =∠ODA ,∵OA =OD ,∴∠ODA =∠OAD ,∴∠DOC =∠BOC ,在△DOC 和△BOC 中,OD =OB∠DOC =∠BOC OC =OC,∴△DOC ≌△BOC (SAS ),∴∠ODC =∠OBC =90°,∴OD ⊥CD ,∵OD 是⊙O 的半径,∴DC 是⊙O的切线;(2)解:设⊙O 的半径为r ,则OF =OA +AF =r +4,在Rt △ODF 中,OD 2+DF 2=OF 2,即r 2+42=(r +2)2,解得:r =3,∴⊙O 的半径为3.【点睛】本题考查的是切线的判定和性质,全等三角形的判定和性质,平行线的性质,勾股定理的,熟记经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.24.(24-25九年级上·江苏宿迁·阶段练习)如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根是另一个根的3倍,那么称这样的方程为“三倍根方程”.例如,方程x 2-4x +3=0的两个根是1和3,则这个方程就是“三倍根方程”.(1)下列方程是三倍根方程的是;(填序号即可)①x 2-2x -3=0;②x 2-3x =0;③x 2+8x +12=0.(2)如果关于x 的方程x 2-8x +c =0是“三倍根方程”,求c 的值;(3)如果点p ,q 在反比例函数y =3x的图象上,那么关于的x 方程px 2-4x +q =0是“三倍根方程”吗?请说明理由.(4)如果关于x 的一元二次方程ax 2+bx +c =0a ≠0 是“3倍根方程”,那么a 、b 、c 应满足的关系是.(直接写出答案)【答案】(1)③(2)c =12;(3)方程px 2-4x +q =0是“三倍根方程”;见解析(4)3b 2-16ac =0【分析】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a.也考查了一元二次方程的解和解一元二次方程.(1)分别求出①②③三个方程的根,然后根据题中所给定义可进行求解;(2)根据“三倍根方程”的定义设关于x 的方程x 2-8x +c =0的两个根为x 1,3x 1,进而根据一元二次方程根与系数的关系及方差的解可进行求解;(3)方程px 2-4x +q =0化为方程px 2-4x +3p =0,解方程求得方程的根,根据“三倍根方程”的定义即可求出答案;(4)根据“三倍根方程”的概念得到原方程可以改写为a x -t x -3t =0,解方程即可得到结论.【详解】(1)解:由x 2-2x -3=0可得:x 1=-1,x 2=3,不满足“三倍根方程”的定义;由x 2-3x =0可得:x 1=0,x 2=3,不满足“三倍根方程”的定义;由x 2+8x +12=0可得:x 1=-2,x 2=-6,满足“三倍根方程”的定义;故答案为:③;(2)解:设关于x 的方程x 2-8x +c =0的两个根为x 1,3x 1,由一元二次方程根与系数的关系可知:x 1+3x 1=8,3x 12=c ,∴x 1=2,c =12;(3)解:∵点p ,q 在反比例函数y =3x的图象上,∴q =3p ,∴方程px 2-4x +q =0化为方程px 2-4x +3p=0,整理得px -3 px -1 =0,解得x 1=3p ,x 2=1p,∴方程px 2-4x +q =0是“三倍根方程”;(4)解:根据“三倍根方程”的概念设一元二次方程ax 2+bx +c =0(a ≠0)的两个根为t 和3t .∴原方程可以改写为a x -t x -3t =0,∴ax 2+bx +c =ax 2-4atx +3at 2,∴b =-4at c =3at 2 .解得3b 2-16ac =0.∴a ,b ,c 之间的关系是3b 2-16ac =0.故答案为:3b 2-16ac =0.25.(23-24九年级上·江苏无锡·期中)如图1,平行四边形ABCD 中,AB =8,BC =4,∠ABC =60°.点P为射线BC 上一点,以BP 为直径作⊙O 交AB 、DC 于E 、F 两点.设⊙O 的半径为x .(1)如图2,当⊙O 与DP 相切时,x =.(2)如图3,当点P 与点C 重合时,①求线段CE 长度;②求阴影部分的面积;(3)当⊙O 与平行四边形ABCD 边所在直线相切时,求x 的值;【答案】(1)4(2)①23;②2π3-3(3)x =-12+83或43【分析】(1)由平行四边形的性质可得:AB ∥CD ,AB =CD =8,得出∠DCP =∠ABC =60°,再由切线的性质可得DP ⊥BP ,得出∠CDP =30°,利用30°所对的直角边等于斜边的一半,可得CP =12CD =4,推出⊙O 的直径BP =8,即可得出答案;(2)①运用勾股定理即可求得答案;②如图2,连接OE ,利用圆周角定理可得出∠BOE =2∠BCE =60°,过点E 作EH ⊥OB 于H ,则∠OEH =30°,利用勾股定理可求得EH =3,再运用扇形面积公式和三角形面积公式即可求得答案;(3)分两种情况:①当⊙O 与直线CD 相切时,由切线性质可得∠OFC =90°,进而可得OB =OF =x ,OC =4-x ,CF =12(4-x ),再由勾股定理建立方程求解即可;②当⊙O 与直线AD 相切时,如图4,过点O 作OT ⊥AD 于T ,连接AC ,则OT =OB =x ,证明四边形ACOT 是矩形,即可得出答案【详解】(1)解:如图1,∵四边形ABCD 是平行四边形,AB =8,BC =4,∠ABC =60°.∴AB ∥CD ,AB =CD =8,∴∠DCP =∠ABC =60°,∵⊙O 与DP 相切,∴DP ⊥BP ,∴∠CPD =90°,∴∠CDP =90°-∠DCP =30°,∴CP =12CD =4,∴⊙O 的半径x =4,(2)解:①∵点P 与点C 重合,∴BC 为⊙O 的直径,∴∠BEC =90°,∴∠BCE =90°-∠CBE =30°,∴BE =12BC =2,在Rt △BCE 中,CE =BC 2-BE 2=42-22=23,②如图2,连接OE ,∵BE =BE,∴∠BOE =2∠BCE =60°,过点E 作EH ⊥OB 于H ,则∠OEH =30°,∴OH =12OE =1,∴EH =OE 2-OH 2=22-12=3,∴S 阴影=S 扇形OBE -S △OBE=60π×22360-12×2×3=2π3-3;(3)解:①当⊙O 与直线CD 相切时,如图3,∴OF ⊥CD ,∴∠OFC =90°,∵∠OCF =∠ABC =60°,∴∠COF =30°,∴CF =12OC ,∵OB =OF =x ,∴OC =4-x ,CF =124-x ,∵CF 2+OF 2=OC 2,∴124-x2+x 2=4-x 2,解得:x =-12+83或x =-12-83(舍去),②当⊙O 与直线AD 相切时,如图4,过点O 作OT ⊥AD 于T ,连接AC ,则OT =OB =x ,取AB 的中点G ,连接CG ,∴BG =AG =12AB =4=BC ,∵∠ABC =60°,∴△BCG 是等边三角形,∴CG =BC =4=AG ,∴∠BAC =∠ACG =30°,∴∠ACB =90°∴AC =82-42=43,∴∠ACO =90°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠TOC =∠DTO =∠ATO =90°=∠ACO ,∴四边形ACOT 是矩形,∴x =OT =AC =43;综上所述,x =-12+83或43;【点睛】本题是圆的综合题,考查了圆的性质,圆周角定理,勾股定理,平行四边形的性质,矩形的判定和性质,切线的性质等,运用数形结合思想和分类讨论思想是解题关键.26.(23-24九年级上·江苏南京·阶段练习)【问题提出】我们知道:同弧或等弧所对的圆周角都相等,且等于这条弧所对的圆心角的一半,那么,在一个圆内同一条弦所对的圆周角与圆心角之间又有什么关系呢?【初步思考(1)如图1,AB 是⊙O 的弦,∠AOB =100°,点P 1、P 2分别是优弧AB 和劣弧AB 上的点,则∠AP 1B =°,∠AP 2B =°;(2)如图2,AB 是⊙O 的弦,圆心角∠AOB =m °(m <180°),点P 是⊙O 上不与A 、B 重合的一点,求弦AB 所对的圆周角∠APB 的度数为;(用m 的代数式表示)【问题解决】(3)如图3,已知线段AB ,点C 在AB 所在直线的上方,且∠ACB =135°,用尺规作图的方法作出满足条件的点C 所组成的图形(①直尺为无刻度直尺;②不写作法,保留作图痕迹);【实际应用】(4)如图4,在边长为12的等边三角形ABC 中,点E 、D 分别是边AC 、BC 上的动点,连接AD 、BE ,交于点P ,若始终保持AE =CD ,当点E 从点A 运动到点C 时,PC 的最小值是.【答案】(1)50,130;(2)180°-m 2°;(3)见解析;(4)43【分析】(1)根据圆周角定理即可求出∠AP 1B =50°,根据圆内接四边形即可求出∠AP 2B =130°;(2)分P 在优弧AB 上和P 在劣弧AB 上两种情况分类讨论即可求解;(3)作线段AB 的垂直平分线,以AB 为直径作圆,交垂直平分线于点O ,以点O 为圆心,以OA 为半径作圆,则AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形;(4)先证明△ACD ≌△BAE ,得到∠BAP +∠ABP =60°,∠APB =120°,根据(3)问点P 的运动轨迹是AB,∠AOB =120°,连接CO ,证明△OAC ≌△OBC ,进而得到∠ACO =∠BCO =30°,∠AOC =∠BOC =60°∠OAC =∠OBC =90°,根据勾股定理求出OP =OB =43OC =83,根据PC ≤OC -OP ,可得PC ≥43,即可求出PC 的最小值为43.【详解】解:(1)∠AP 1B =12∠AOB =12×100°=50°,∠AP 2B =180°-∠APB =180°-50°=130°.故答案为:50,130;(2)当P 在优弧AB 上时,∠APB =12∠AOB =m 2 °;当P 在劣弧AB 上时,∠APB =180°-m 2 °;故答案为:m 2 °或180°-m 2 °(3)如图AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形.证明:∵AB 为⊙P 的直径,∴∠AOB =90°,在⊙O 中,∵点C 在AB 上,由(2)得∠ACB =180°-∠AOB 2=135°,∴AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形;(4)解:如图,∵△ABC 为等边三角形,∴AB =BC =AC ,∠BAC =∠ACB =60°,∵AE =CD ,∴△ACD ≌△BAE ,∴∠CAD =∠ABE ,∵∠BAP +∠ABP =∠BAP +∠CAD =∠BAC =60°,∴∠APB =120°,∴点P 的运动轨迹是AB ,∴∠AOB =120°.连接CO ,∵OA =OB ,CA =CB ,OC =OC ,∴△OAC ≌△OBC ,∴∠ACO =∠BCO =30°,∠AOC =∠BOC =60°,∴∠OAC =∠OBC =90°,在Rt △OBC 中,设OB =x x >0 ,则OC =2x ,根据勾股定理得2x 2-x 2=122,解得x =43,∴OC =2x =83,OP =OB =43,∵PC ≤OC -OP ,∴PC ≥43,∴PC的最小值为43.故答案为:43.【点睛】本题考查了圆周角定理及其推论,圆内接四边形的性质,全等三角形的判定与性质,勾股定理,三角形三边关系等知识,综合性强,难度较大,解题时要熟知相关知识,注意在解决每一步时都要应用上一步结论进行解题.。
2024-2025学年江苏省连云港海宁中学九年级上学期第一次月考数学试题及答案
江苏省连云港海宁中学2024-2025学年初中九上数学第一次月考试题一.选择题(共8小题)1.已知任意实数满足等式x=a2﹣4ab+4b2,y=4a﹣8b﹣5,则x,y的大小关系是()A.x=y B.x>y C.x<y D.x≥y2.一元二次方程x2﹣8x﹣a=0的两实数根都是整数,则下列选项中a可以取的值是()A.12B.16C.20D.243.在平面直角坐标系中,已知点P(m﹣1,n2)、Q(m,n2﹣1),其中m≥0,则下列函数的图象可能同时经过P、Q两点的是()A.y=2x+b B.y=ax2+2ax+c(a>0)C.y=ax+2(a>0)D.y=﹣x2﹣2x+c(c>0)4.已知二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,其中对称轴为:x=1,下列结论:①abc>0;②a+c>b;③2a+3b>0;④a+b>am2+bm(m≠1);⑤c<﹣2a,上述结论中正确结论的个数为()A.1个B.2个C.3个D.4个5.如图1,在平行四边形ABCD中,BC⊥BD,点F从点B出发,以1cm/s的速度沿B→C→D匀速运动,点E从点A出发,以1cm/s的速度沿A→B匀速运动,其中一点停止时,另一点随之停止运动,图2是△BEF的面积S(cm2)随时间t(s)变化的函数图象,当△BEF的面积为10cm2时,运动时间t为()A.s B.4s或s C.5s D.3s或7s6.已知:x1,x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a、b的值分别是()A.a=﹣3,b=1B.a=3,b=1C.,b=﹣1D.,b=17.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k取值范围是()A.k≥﹣2B.k>2C.k<2且k≠1D.k>2且k≠18.如图,已知抛物线y=ax2+bx+c(a≠0)经过点(﹣2,0),对称轴为直线x=1,下列结论中正确的是()A.abc>0B.b=2a C.9a+3b+c<0D.8a+c=0二.填空题(共7小题)9.已知(a2+b2)(a2+b2﹣6)=16,则a2+b2的值为.10.若关于x的方程(m﹣2)x2﹣2x+1=0有两个不等的实根,则m的取值范围是.11.已知关于x的方程ax2﹣bx﹣c=0(a≠0)的系数满足a﹣b﹣c=0,且4a+2b﹣c=0,则该方程的根是.12.当m=时,关于x的方程x2﹣6x﹣m=0有两个相等的实数根.13.若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=1,则一元二次方程a(x﹣1)2+b(x﹣1)﹣1=0必有一根为.14.如图,二次函数y=a(x﹣1)2的图象经过点A(﹣1,4),与y轴交于点B,C、D分别为x轴、直线x=1上的动点,当四边形ABCD的周长最小时,则点D的坐标为.15.抛物线y=ax2﹣4ax﹣3(其中a>0,a为常数),若当4≤x<5时,对应的函数值y恰好有3个整数值,则a的取值范围是.三.解答题(共9小题)16.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且(x1+x2)2﹣(x1+x2)﹣12=0,求m的值.17.我们在求代数式y2+4y+8的最小值时,可以考虑用如下法求得:解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y2+4y+8的最小值是4.请用上面的方法解决下面的问题:(1)代数式m2+10m﹣6的最小值为;(2)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为24m的栅栏围成.如图,设AB=x(m),①AB的取值范围是;②当x取何值时,花园的面积最大?最大面积是多少?18.商场某种商品平均每天可销售40件,每件盈利60元,为了尽快减少库存,商场决定采取适当的降价措施.经调查,每件商品每降价1元,商场平均每天可多销售2件.(1)当每件盈利50元时,每天可销售件.(2)每件商品降价多少元时,商场日盈利可达到3072元?19.已知关于x的方程x2+ax+a﹣1=0.(1)若该方程的一个根为2,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有实数根.20.已知二次函数y=ax2+c的图象经过点(8,10),.(1)求二次函数的表达式;(2)点P为二次函数图象上一点,点F在y轴正半轴上,将线段PF绕点P逆时针旋转90°得到PE,点E恰好落在x轴正半轴上,求点P的坐标.21.某数学兴趣小组研究函数y=|x﹣1|的图象:首先根据式子结构采用分类的数学方法:当x≥1时,y=x﹣1;当x<1时,y=1﹣x.然后根据一次函数图象的画法分别画出图象,如图(1)所示.类似的,研究函数y=x|x﹣2|的图象时,他们已经画出了x≤2时的图象.(1)请你用描点法补全此函数的图象;(2)根据图象,直接写出当x为何值时,y随着x的增大而减小?(3)当0≤x≤a时,y的最大值是1,最小值是0,请你直接写出a的取值范围.22.如图,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C;(1)用配方法将二次函数y=2﹣2x﹣3化为y=a(x+h)2+k的形式;(2)观察图象,当0≤x<4时,y的取值范围为;(3)设二次函数y=x2﹣2x﹣3的图象的顶点为M,求△ACM的面积.23.如图,抛物线y=﹣x2+bx+c的图象与y轴交于点C,与x轴交于A、B两点,已知A(﹣2,0),B (4,0),点Q为射线OB上一点,过点Q作y轴的平行线,分别交抛物线、直线BC于点D、E.(1)求抛物线的表达式;(2)连接CD、AC,是否存在△CDE与△ABC相似,若存在,请求出点Q的坐标,若不存在,请说明理由;(3)是否存在以点C、D、G、E为顶点的四边形是平行四边形,若存在,请直接写出点D的坐标,若不存在,请说明理由.24.如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P是抛物线上的动点,且满足S△P AO=2S△PCO,求出P点的坐标;(3)连接BC,点E是x轴一动点,点F是抛物线上一动点,若以B、C、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.参考答案与试题解析一.选择题(共8小题)1.【解答】解:∵x﹣y=a2﹣4ab+4b2﹣(4a﹣8b﹣5)=(a﹣2b)2﹣4(a﹣2b)+4+1=[(a﹣2b)﹣2]2+1,∴[(a﹣2b)﹣2]2+1>0,∴x>y.故选:B.2.【解答】解:当a=12时,方程为x2﹣8x﹣12=0,解得不是整数,故A选项不符合题意;当a=16时,方程为x2﹣8x﹣16=0,解得不是整数,故B选项不符合题意;当a=20时,方程为x2﹣8x﹣20=0,解得x=10或x=﹣2是整数,故C选项符合题意;当a=24时,方程为x2﹣8x﹣24=0,解得不是整数,故D选项不符合题意;解法二:x=4±,由选项可知,a=20,符合题意.故选:C.3.【解答】解:∵m>0,∴m﹣1<m,∵n2>n2﹣1,∴当m>0时,y随x的增大而减小,A、y=2x+b中,y随x的增大而增大,故A不可能;B、y=ax2+2ax+c(a>0)中,开口向上,对称轴为直线x=﹣=﹣1,∴当x>﹣1时,y随x的增大而增大故B不可能;C、y=ax+2 中,a>0,y随x的增大而增大,故C不可能;D、y=﹣x2﹣2x+c中,开口向下,对称轴为直线x==﹣1,∴当x>﹣1时,y随x的增大而减小,故D有可能,故选:D.4.【解答】解:∵抛物线的开口向下,∴a<0,∵对称轴为:x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴交于y轴的正半轴,∴c>0,∴abc<0,故①不正确,∵2×1﹣3=﹣1,当x=3时,y=0,∴当x=﹣1时,a﹣b+c=0,∴a+c=b,故②不正确,∵b=﹣2a,∴2a+3b=2a﹣6a=﹣4a>0,故③正确,∵当x=1时,y=a+b+c,a<0,∴函数的最大值为:a+b+c,∴a+b+c>am2+bm+c(m≠0),∴a+b>am2+bm,故④正确,由上知,a﹣b+c=0,b=﹣2a,∴c=﹣3a>﹣2a,故⑤不正确,∴③④正确,故选:B.5.【解答】解:由图1、图2可知,当t=6时,点F与点C重合;当6<t≤10时,点F在CD上运动,而点E继续在AB上运动4s,∵四边形ABCD是平行四边形,点F、点E的速度都是1cm/s,∴CD=AB=1×10=10(cm),BC=1×6=6(cm),∵BC⊥BD,∴∠CBD=90°,∴BD===8(cm),当0<t≤6时,如图3,作FG⊥AB,交AB的延长线于点G,则∠G=∠CBD=90°,∵AB∥CD,∴∠GBF=∠C,∴△BGF∽△CBD,∴=,∴GF=•BF=×t=t(cm),∴S=×t(10﹣t)=﹣t2+4t,当S=10时,则﹣t2+4t=10,解得t1=t2=5;当6<t≤10时,如图4,作CH⊥AB,交AB的延长线于点H,∵CD•CH=BC•BD=S△CBD,∴×10CH=×6×8,解得CH=,∴S=×(10﹣t)=﹣t+24,当S=10时,则﹣t+24=10,解得t=,不符合题意,舍去,综上所述,运动时间t为5s,故选:C.6.【解答】解:∵x1,x2是一元二次方程x2+2ax+b=0的两根,∴x1+x2=﹣2a,x1x2=b,∵x1+x2=3,x1x2=1,∴﹣2a=3,b=1,即a=﹣,b=1,故选:D.7.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣4=0有两个不相等的实数根,∴,解得:k<2且k≠1.故选:C.8.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=1,∴﹣=1,∴b=﹣2a>0,∵抛物线交y轴的正半轴,∴c>0,∴abc<0,故A、B错误;∵抛物线的对称轴为直线x=1,而点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴当x=3时,y=9a+3b+c>0,故C错误;∵抛物线y=ax2+bx+c经过点(﹣2,0),∴4a﹣2b+c=0,∵b=﹣2a,∴4a+4a+c=0,即8a+c=0,故D正确,故选:D.二.填空题(共7小题)9.【解答】解:设a2+b2=y,则原方程换元为y(y﹣6)=16,即y2﹣6y﹣16=0∴(y﹣8)(y+2)=0,解得:y1=8,y2=﹣2,即a2+b2=8或a2+b2=﹣2(不合题意,舍去),∴a2+b2=8.故答案为:8.10.【解答】解:根据题意得m﹣2≠0且Δ=(﹣2)2﹣4(m﹣2)>0,解得m<3且m≠2.故答案为m<3且m≠2.11.【解答】解:∵关于x的方程ax2﹣bx﹣c=0(a≠0)的系数满足a﹣b﹣c=0,且4a+2b﹣c=0,∴该方程的根是x1=1,x2=﹣2.故答案为:x1=1,x2=﹣2.12.【解答】解:∵关于x的方程x2﹣6x﹣m=0有两个相等的实数根,∴Δ=(﹣6)2﹣4×1×(﹣m)=36+4m=0,解得:m=﹣9.故答案为:﹣9.13.【解答】解:对于一元二次方程a(x﹣1)2+b(x﹣1)﹣1=0,设t=x﹣1,所以at2+bt﹣1=0,而关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=1,所以at2+bt﹣1=0有一个根为t=1,则x﹣1=1,解得x=2,所以a(x﹣1)2+b(x﹣1)﹣1=0必有一根为x=2.故答案为:x=2.14.【解答】解:作点A关于对称轴x=1的对称点E,则E(3,4),作点B关于x轴的对称点F,连接EF交x轴于点C,交对称轴于点D,此时四边形ABCD的周长取得最小值,将点A(﹣1,4)代入y=a(x﹣1)2得4a=4,解得a=1,∴抛物线解析式为y=(x﹣1)2=x2﹣2x+1,∴点B坐标为(0,1),则点F(0,﹣1),设CD所在直线解析式为y=mx+n,将E(3,4),F(0,﹣1)代入得,解得,所以CD所在直线解析式为y=x﹣1.当x=1时,y=,∴D(1,).故答案为:(1,).15.【解答】解:∵抛物线y=ax2﹣4ax﹣3(其中a>0,a为常数),∴对称轴为直线x=﹣=2,∴当4≤x<5时,y随x的增大而增大,∴当x=4时,y=﹣3,x=5时,y=5a﹣3,∵当4≤x<5时,对应的函数值y恰好有3个整数值,∴它的三个整数分别是﹣3,﹣2,﹣1,∴﹣1≤5a﹣3≤0,∴;故答案为:.三.解答题(共9小题)16.【解答】解:(1)∵方程有两个不相等的实数根,∴Δ=b2﹣4ac=[﹣2(m+1)]2﹣4×1×(m2﹣3)=16+8m>0,解得:m>﹣2;(2)根据根与系数的关系可得:x1+x2=2(m+1),∵(x1+x2)2﹣(x1+x2)﹣12=0,∴[2(m+1)]2﹣2(m+1)﹣12=0,解得:m1=1或m2=﹣(舍去)∵m>﹣2;∴m=1.17.【解答】解:(1)m2+10m﹣6=m2+5m+25﹣25﹣6=(m+5)2﹣31,∵(m+5)2≥0,∴(m+5)2﹣31≥﹣31,∴m2+10m﹣6的最小值是﹣31,故答案为:﹣31;(2)①设AB=x m,则BC=(24﹣2x)m,∵墙长15m,∴0<24﹣2x≤15,解得≤x<12,∴AB的取值范围是≤x<12.故答案为:≤x<12;②设花园的面积为S,由题意得:S=x(24﹣2x)=﹣2x2+24x=﹣2(x2﹣12x)=﹣2(x2﹣12x+36﹣36)=﹣2(x﹣6)2+72,∵﹣2(x﹣6)2≤0,∴﹣2(x﹣6)2+72≤72,∴当x=6时,S最大=72,答:当x=6时,花园的面积最大,最大面积是72平方米.18.【解答】解:(1)40+2×(60﹣50)=60(件).故答案为:60.(2)设每件商品降价x元,则每件盈利(60﹣x)元,平均每天可售出(40+2x)件,依题意得:(60﹣x)(40+2x)=3072,整理得:x2﹣40x+336=0,解得:x1=12,x2=28,又∵要尽快减少库存,∴x=28.答:每件商品应降价28元.19.【解答】解:(1)将x=2代入方程x2+ax+a﹣1=0得,4+2a+a﹣1=0,解得,a=﹣1;方程为x2﹣x﹣2=0,解得x1=﹣1,x2=2,即方程的另一根为1;(2)∵Δ=a2﹣4(a﹣1)=a2﹣4a+4=a2﹣4a+4=(a﹣2)2≥0,∴不论a取何实数,该方程都有实数根.20.【解答】解:(1)∵二次函数y=ax2+c的图象经过点(8,10),,∴,解得:,∴二次函数的表达式为y=+2;(2)过点P作P A⊥x轴于点A,PB⊥y轴于点B,如图,∵线段PF绕点P逆时针旋转90°得到PE,点E恰好落在x轴正半轴上,∴∠FPE=90°,PF=PE∴∠FP A+∠EP A=90°.∵作P A⊥x轴,PB⊥y轴,OF⊥OE,∴四边形APBO为矩形,∴∠APB=90°,∴∠BPF+∠FP A=90°,∴∠FPB=∠EP A.在△BPF和△APE中,,∴△BPF≌△APE(AAS),∴PB=P A.∴点P的横纵坐标相等,设P(m,m),∵点P为二次函数图象上一点,∴2=m,解得:m1=m2=4,∴点P的坐标为(4,4).21.【解答】解:(1)当x≥2时,y=x|x﹣2|=y=x(x﹣2)=x2﹣2x,∴当x=2时,y=0,当x=3时,y=3,当x=4时,y=8,补全此函数的图象如下:(2)根据图象,当1<x<2时,y随着x的增大而减小;(3)当y=1时,x2﹣2x=1,解得x=+1或﹣+1∴a的取值范围为1≤a≤.22.【解答】解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4;(2)由(1)知,二次函数的顶点坐标为(1,﹣4),在将x=4代入二次函数解析式中的y=5.当0≤x≤4时,y的取值范围为:﹣4≤y<5.故答案为:﹣4≤y<5;(3)由(1)知,二次函数的顶点坐标为M(1,﹣4),由二次函数图象与x轴交于点B,所以x2﹣2x﹣3=0,得到点A(﹣1,0),由二次函数图象与y轴交于点C,所以点C(0,﹣3),所以三角形ACM的面积=×2×4﹣×(1+4)×1﹣×1×1=1.23.【解答】解:(1)设抛物线的表达式为:y=a(x﹣x1)(x﹣x2),则y=﹣(x+2)(x﹣4)=y=﹣x2+x+4,故抛物线的表达式为:y=﹣x2+x+4①;(2)存在,理由:过点C作直线l∥y轴交抛物线于点R,设∠ECR=α,则∠RCE=CBO=45°,即∠DCE=45°+α,由OB=OC=4知,∠OCB=∠OCB=45°,∵QD∥y轴,则∠DEC=∠OCB=∠ABC=45°,∵△CDE与△ABC相似,则∠DCE=∠ACB或∠CAB;①∠DCE=∠ACB时,∵∠ACB=∠ACO+∠BCO=∠ACO+45°,∠DCE=45°+α,∴∠ACO=α,∴tan∠ACO==tanα,故直线CD的表达式为:y=x+4②,联立①②得:﹣x2+x+4=x+4,解得:x=0(舍去)或1,即点D(1,4.5),则点Q(1,0);②∠DCE=∠CAB时,延长DC交x轴于点H,则∠CHO=∠DCE=α,∵∠OAC=∠ACH+∠AHC=α+∠ACH,∠DCE=45°+α,∴∠ACH=45°,在△ACH中,过点H作AC的垂线交CA的延长线于点M,∵tan∠HAM=tan∠CAO==2,设AM=m,则HM=2m,在等腰Rt△CMH中,HM=CM,即2m=m+,解得:m=2,在Rt△AMH中,AH==m=10,即点H(﹣12,0),由点C、H的坐标得,直线CH的表达式为:y=x+4③,联立①③得:﹣x2+x+4=x+4,解得:x=0(舍去)或,则点Q(,0)综上,点Q的坐标为:(,0)或(1,0);(3)存在,理由:设点D的坐标为(m,﹣m2+m),由点A、D的坐标得,直线AD的表达式为:y=﹣(m+4)(x+2),则点G(0,﹣m﹣4),同理可得,直线BC的表达式为:y=﹣x+4,则点E(m,﹣m+4),当以点C、D、G、E为顶点的四边形是平行四边形,则CG=DE,即4+m+4=|﹣m2+m+4+m﹣4|,解得:m=2或6,即点D(2,4)或D(6,﹣8).24.【解答】解:(1)∵抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,∴解得:,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵抛物线y=﹣x2﹣2x+3与y轴交于点C,∴点C(0,3)∴OA=OC=3,设点P(x,﹣x2﹣2x+3)∵S△P AO=2S△PCO,∴×3×|﹣x2﹣2x+3|=2××3×|x|,∴x=±或x=﹣2±,∴点P(,﹣2)或(﹣,2)或(﹣2+,﹣4+2)或(﹣2﹣,﹣4﹣2);(3)若BC为边,且四边形BCFE是平行四边形,∴CF∥BE,∴点F与点C纵坐标相等,∴3=﹣x2﹣2x+3,∴x1=﹣2,x2=0,∴点F(﹣2,3)若BC为边,且四边形BCEF是平行四边形,∴BE与CF互相平分,∵BE中点纵坐标为0,且点C纵坐标为3,∴点F的纵坐标为﹣3,∴﹣3=﹣x2﹣2x+3∴x=﹣1±,∴点F(﹣1+,﹣3)或(﹣1﹣,﹣3);若BC为对角线,则四边形BECF是平行四边形,∴BC与EF互相平分,∵BC中点纵坐标为,且点E的纵坐标为0,∴点F的纵坐标为3,∴点F(﹣2,3),综上所述,点F坐标(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3).。
九年级数学第一次月考卷(苏科版)(解析版)【测试范围:第一章~第二章】
2024-2025学年九年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟试卷满分:120分)考前须知:1.本卷试题共24题,单选6题,填空10题,解答8题。
2.测试范围:第一章~第二章(苏科版)。
第Ⅰ卷一.选择题(共6小题,满分18分,每小题3分)1.(3分)下列关于x的方程中,是一元二次方程的为( )A.x2+2x=―1B.x2﹣4=2yC.﹣2x2+3=0D.(a﹣1)x2﹣2x=0【分析】根据一元二方程的定义进行判断即可.【解答】解:A.x2+2x=―1是分式方程,不是一元二次方程,不符合题意;B.x2﹣4=2y是二元二次方程,不符合题意;C.﹣2x2+3=0是一元二次方程,符合题意;D.当a=1时,(a﹣1)x2﹣2=0化为一元一次方程﹣2x=0,不符合题意.故选:C.2.(3分)将一元二次方程4x2+81=5x化为一般形式后,常数项为81,二次项系数和一次项系数分别为( )A.4,5B.4,﹣5C.4,81D.4x2,﹣5x【分析】方程整理为一般形式,找出所求即可.【解答】解:方程整理得:4x2﹣5x+81=0,则二次项系数和一次项系数分别为4,﹣5.故选:B.3.(3分)如图,矩形ABCD是某会展中心一楼展区的平面示意图,其中边AB的长为40m,边BC的长为25m,该展区内有三个全等的矩形展位,每个展位的面积都为200m2,阴影部分为宽度相等的人行通道,求人行通道的宽度.若设人行通道的宽度为x m,下列方程正确的是( )A .(40﹣3x )(25﹣2x )=200B .(40﹣4x )(25﹣2x )=600C .40×25﹣80x ﹣100x +8x 2=200D .40×25﹣80x ﹣100x =600【分析】由人行通道的宽度为x m ,可得出每个展位的长为(25﹣2x )m ,宽为40―4x 3m ,根据每个展位的面积都为200m 2,即可得出关于x 的一元二次方程,此题得解.【解答】解:∵人行通道的宽度为x m ,∴每个展位的长为(25﹣2x )m ,宽为40―4x 3m .依题意得:40―4x 3•(25﹣2x )=200,即(40﹣4x )(25﹣2x )=600.故选:B .4.(3分)如图,PA ,PB 分别与⊙O 相切于点A ,点B .点E 为⊙O 上一点(点E 与A ,B 两点不重合).若∠P =70°,则∠AEB =( )A .75°B .30°或50°C .60°或120°D .75°或105°【分析】连接OA ,OB ,分为E 是优弧⌢AB 上一点,和E 是劣弧⌢AB 上一点,两种情况计算即可.【解答】解:(1)如图,点E 为优弧上一点,连接OA ,OB ,∵PA ,PB 分别与⊙O 相切,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∵∠P=30°,∴∠AOB=360°﹣90°﹣90°﹣30°=150°,∴∠AEB=12∠AOB=75°,(2)如图,点E为劣弧上一点,若M是优弧⌢AMB上一点,连接OA、OB,∵PA,PB分别与⊙O相切,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∵∠P=30°,∴∠AOB=360°﹣90°﹣90°﹣30°=150°,∴∠AMB=12∠AOB=75°,∵四边形AEBM是⊙O的内接四边形,∴∠AMB+∠AEB=180°,∴∠AEB=180°﹣75°=105故选:D.5.(3分)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C均在格点(两条网格线的交点叫格点)上,以点O为原点建立平面直角坐标系,则过A,B,C三点的圆的圆心坐标为( )A.(﹣1,﹣1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣2,﹣2)【分析】连接CB,作CB的垂直平分线,根据勾股定理和半径相等得出点D的坐标即可.【解答】解:连接CB ,作CB 的垂直平分线,如图所示:在CB 的垂直平分线上找到一点D ,CD =DB =DA ==∴点D 是过A 、B 、C 三点的圆的圆心,即D 的坐标为(﹣1,﹣2),故选:C .6.(3分)如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A .133B .92CD .【分析】连接OE ,OF ,ON ,OG ,在矩形ABCD 中,得到∠A =∠B =90°,CD =AB =4,由于AD ,AB ,BC 分别与⊙O 相切于E F G 三点得到∠AEO =∠AFO =∠OFB =∠BGO =90°,推出四边形AFOE ,FBGO 是正方形,得到AF =BF =AE =BG =2,由勾股定理列方程即可求出结果.【解答】解:连接OE ,OF ,ON ,OG ,在矩形ABCD 中,∵∠A =∠B =90°,CD =AB =4,∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,∴∠AEO =∠AFO =∠OFB =∠BGO =90°,∴四边形AFOE ,FBGO 是正方形,∴AF =BF =AE =BG =2,∴DE =3,∵DM 是⊙O 的切线,∴DN =DE =3,MN =MG ,∴CM=5﹣2﹣MN=3﹣MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=4 3,∴DM=3+43=133,故选:A.二.填空题(共10小题,满分30分,每小题3分)7.(3分)若x=3是关于x的方程ax2﹣bx=6的解,则2024﹣9a+3b的值为 .【分析】把x=3代入关于x的方程ax2﹣bx=6得﹣9a+3b=﹣6,再把所求结果整体代入所求代数式进行计算即可.【解答】解:把x=3代入关于x的方程ax2﹣bx=6得:9a﹣3b=6,∴﹣9a+3b=﹣6,∴2024﹣9a+3b=2024﹣6=2018,故答案为:2018.8.(3分)已知⊙O的圆心坐标为(3,0),直径为6,则⊙O与y轴的位置关系是 .【分析】由已知条件可证得圆心O到y轴的距离为等于⊙O的半径,根据直线与圆的位置关系可得结论.【解答】解:∵⊙O的圆心坐标为(3,0),∴圆心O到y轴的距离为3,∵⊙O的直径为6,∴⊙O的半径为3,∴圆心O到y轴的距离为等于⊙O的半径,∴⊙O与y轴相切.故答案为:相切.9.(3分)如图,⊙O的弦AB和直径CD交于点E,且CD平分AB,已知AB=8,CE=2,那么⊙O 的半径长是 .【分析】连接OA,由垂径定理的推论得出AB⊥CD,由已知可得AE=12AB=4,OE=OC﹣CE=r﹣2,OA=r,在Rt△AOE中,利用勾股定理求r.【解答】解:连接OA,∵,⊙O的弦AB和直径CD交于点E,且CD平分AB,∴AB⊥CD,∴AE=12AB=4,又OE=OC﹣CE=r﹣2,OA=r,在Rt△AOE中,由勾股定理,得AE2+OE2=OA2,即42+(r﹣2)2=r2,解得:r=5,故答案为:5.10.(3分)若圆锥的底面半径是2,侧面展开图是一个圆心角为120°的扇形,则该圆锥的母线长是 .【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×2=4πcm,则:120πl180=4π,解得l=6.故答案为:6.11.(3分)已知x1,x2是方程x2﹣x﹣2024=0的两个实数根,则代数式x31―2024x1+x22的值为 .【分析】先利用一元二次方程的根的意义和根与系数的关系得出x21―x1﹣2024=0,x1+x2=1,x1x2=﹣2024,即x31―2024x1=x21,最后代入即可得出结论.【解答】解:∵x1,x2是方程x2﹣x﹣2024=0两个实数根,∴x21―x1﹣2024=0,x1+x2=1,x1x2=﹣2024,∴x31―x21―2024x1=0,∴x31―2024x1=x21,∴x31―2024x1+x22=x21+x22=(x1+x2)2﹣2x1x2=12+4048=4049.故答案为:4049.12.(3分)已知⊙O的直径为8,点P到圆心O的距离为3,则经过点P的最短弦的长度为 .【分析】与OP垂直的弦最短,利用勾股定理求.【解答】解:与OP垂直的弦AB最短.证明如下:过点P任作一条弦CD,作OQ垂直于CD,垂足为Q,连接OD,AB=2AP===CD=2QD==在Rt△OPQ中,OP>OQ,即3>OQ,∴42﹣32<42﹣OQ2,∴AB<CD,∴弦AB最短,故答案为:13.(3分)如图,点A,B,C,D在⊙O上.若∠O=∠C=130°,则∠BAO= °.【分析】根据同弧或等弧所对的圆周角相等求解即可.【解答】解:如图:连接AD ,∵∠O =130°,OA =OD ,∴∠OAD =12(180°﹣130°)=25°,∵∠C =130°,∴∠BAD =180°﹣130°=50°,∴∠BAO =∠BAD +∠OAD =25°+50°=75°.故答案为:75.14.(3分)如图,AB 是⊙O 的直径,点C 在圆上.将AC 沿AC 翻折与AB 交于点D .若OA =3cm ,BC 的度数为40°,则AD = cm .【分析】作D 关于AC 的对称点E ,连接AE ,BE ,OE ,则AD =AE ,然后再根据BC 的度数为40°知∠CAB =20°,然后再根据圆周角定理、邻补角性质可得∠AOE =180°﹣80°=100°,最后运用弧长公式即可解答.【解答】解:如图,作D 关于AC 的对称点E ,连接AE ,BE ,OE ,则AD =AE ,∵BC 的度数为40°,∴∠CAB =20°,∴∠EAB =2∠CAB =40°,∴∠EOB =2∠EAB =80°,∴∠AOE =180°﹣80°=100°,∴AE 的长度为100°×2π×3360°=53π,∴AD 的长度为53π.故答案为:53π.15.(3分)如图,点O 是正六边形ABCDEF 的中心,以AB 为边在正六边形ABCDEF 的内部作正方形ABMN ,连接OD ,ON ,则∠DON = °.【分析】连接OA ,OB ,OE ,OF ,利用正六边形的性质得到OA =OB =OF =OE =OD ,∠AOB =∠AOF =∠FOE =∠EOD =60°,则△OAB 为等边三角形,D ,O ,A 在一条直线上;利用正方形的性质,等边三角形的性质和等腰三角形的性质求得∠AON 的度数,则结论可得.【解答】解:连接OA,OB,OE,OF,如图,∵点O是正六边形ABCDEF的中心,∴OA=OB=OF=OE=OD,∠AOB=∠AOF=∠FOE=∠EOD=60°,∴△OAB为等边三角形,∠AOF+∠FOE+∠EOD=180°,∴D,O,A在一条直线上,∠OAB=60°,OA=AB.∵以AB为边在正六边形ABCDEF的内部作正方形ABMN,∴∠NAB=90°,AB=AN,∴∠NAO=30°,OA=AN,∴∠AON=∠ANO=180°―30°2=75°,∴∠NOD=180°﹣∠AON=105°.故答案为:105.16.(3分)如图,已知A(6,0),B(4,3)为平面直角坐标系内两点,以点B圆心的⊙B经过原点O,BC⊥x轴于点C,点D为⊙B上一动点,E为AD的中点,则线段CE长度的最大值为 .【分析】如图,作点A关于点C的对称点A′,连接BA′,BD,DA′.因为AC=CA′,DE=EA,所以EC=12DA′,求出DA′的最大值即可解决问题.【解答】解:如图,作点A关于点C的对称点A′,连接BA′,BD,DA′.由题意AC=CA′=2,BC=3,BD=OB==5,∴BA′==∵AC=CA′,DE=EA,∴EC=12 DA′,∵DA′≤BD+BA′,∴DA′≤5+∴DA′的最大值为5+∴EC三.解答题(共8小题,满分72分)17.(6分)解方程:(1)x2﹣4x﹣5=0;(2)x2+ax﹣2a2=0.(a为常数且a≠0)【分析】(1)先利用因式分解法把方程转化为x﹣5=0或x+1=0,然后两个一次方程即可;(2)先利用因式分解法把方程转化为x+2a=0或x﹣a=0,然后两个一次方程即可.【解答】解:(1)x2﹣4x﹣5=0,(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=﹣1;(2)x2+ax﹣2a2=0,(x+2a)(x﹣a)=0,x+2a=0或x﹣a=0,所以x1=﹣2a,x2=a.18.(6分)如图,A、B是⊙O上的点,以OB为直径作⊙O1.仅用无刻度的直尺完成下列作图.(1)在图①中,在⊙O1上作出一个点C,使BC与AB的长度相等;(2)在图②中,在⊙O上作出一个点D,使AD与BD的长度相等.【分析】(1)连接OA交⊙O1于点C,点C即为所求.(2)连接AB交⊙O1于点T,作直线OT交⊙O于点D,点D′,点D,点D′即为所求.【解答】解:(1)如图,点C即为所求.(2)如图,点D或D′即为所求.19.(8分)已知关于x的方程x2﹣(k+2)x+2k=0(1)求证:无论k取任何实数,方程总有实数根;(2)若等腰△ABC的一边a=3,另两边长b、c恰好是这个方程的两个根,求△ABC的周长.【分析】(1)根据一元二次方程的根的判别式的符号进行证明;(2)注意:分b=c,b=a两种情况做.【解答】(1)证明:Δ=[﹣(k+2)]2﹣4×1×2k=(k﹣2)2,∵无论k取何值,(k﹣2)2≥0,即△≥0,∴无论k取任何实数,方程总有实数根;(2)解:①当b=c时,则Δ=0,即(k﹣2)2=0,∴k=2,方程可化为x2﹣4x+4=0,∴x1=x2=2,而b=c=2,∴△ABC的周长=a+b+c=3+2+2=7;②解:当b=a=3时,∵x2﹣(k+2)x+2k=0.∴(x﹣2)(x﹣k)=0,∴x=2或x=k,∵另两边b、c恰好是这个方程的两个根,∴k=b=3,∴c=2,∴△ABC的周长=a+b+c=3+3+2=8;综上所述,△ABC的周长为7或8.20.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过D作DE⊥AC,垂足为E,ED的延长线交AB的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若AC=13,BC=10,求DE长.【分析】(1)连接OD,由等腰三角形的性质得出∠ABC=∠C,∠ABC=∠ODB,得出∠ODB=∠C,进而得出OD∥AC,由DE⊥AC,得出OD⊥EF,即可证明EF是⊙O的切线;(2)先求出BD=5,再由勾股定理求出AD===12,最后再用面积法求解即可.【解答】(1)证明:如图1,连接OD,∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:∵AB=AC=13,BC=10,AD⊥BC,∴BD=5,∴AD===12,∵在直角△ADC中,AD=12,CD=BD=5,AC=13,∴12DE⋅AC=12AD⋅CD即DE=60 13.21.(10分)如图所示,AB为⊙O的直径,AC是⊙O的一条弦,D为BC的中点,作DE⊥AC于点E,交AB的延长线于点F,连接DA.(1)若AB=90cm,则圆心O到EF的距离是多少?说明你的理由.(2)若DA=DF=π).【分析】(1)直接利用切线的判定方法结合圆周角定理分析得出OD⊥EF,即可得出圆心O到EF的距离为圆的半径;(2)利用扇形面积公式和三角形面积公式计算即可;【解答】解:(1)如图所示,连接OD,∵D为BC的中点,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴OD∥AE,∵DE⊥AC,∴OD⊥EF,∴OD的长是圆心O到EF的距离,∵AB=90cm,∴OD=12AB=45cm.(2)如图所示,过点O作OG⊥AD交AD于点G.∵DA=DF,∴∠F=∠BAD,由(1)得∠CAD=∠BAD,∴∠F=∠CAD,∵∠F+∠BAD+∠CAD=90°,∴∠F=∠BAD=∠CAD=30°,∴∠BOD=2∠BAD=60°,OF=2OD,∵在Rt△ODF中,OF2﹣OD2=DF2,∴(2OD)2―OD2=2,解得OD=6,在Rt△OAG中,OA=OD=6,∠OAG=30°,OG=12×6=3,∴S △AOD =12××3=∴S 阴影=S 扇形OBD +S △AOD=60π×62360=6π+22.(10分)公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,测算在市场中,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?【分析】(1)设该品牌头盔销售量的月增长率为x ,根据该品牌头盔4月份及6月份的月销售量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据月销售利润=每个头盔的利润×月销售量,即可得出关于y 的一元二次方程,解之取其正值即可求出结论.【解答】解:(1)设该品牌头盔销售量的月增长率为x ,依题意,得:150(1+x )2=216,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去).答:该品牌头盔销售量的月增长率为20%.(2)设该品牌头盔的实际售价为y 元,依题意,得:(y ﹣30)[600﹣10(y ﹣40)]=10000,整理,得:y 2﹣130y +4000=0解得:y 1=80(不合题意,舍去),y 2=50,答:该品牌头盔的实际售价应定为50元.23.(12分)【问题提出】我们知道:同弧或等弧所对的圆周角都相等,且等于这条弧所对的圆心角的一半.那在一个圆内同一条弦所对的圆周角与圆心角之间又有什么关系呢?【初步思考】(1)如图1,AB 是⊙O 的弦,∠AOB =100°,点P 1、P 2分别是优弧AB 和劣弧AB 上的点,则∠AP 1B = 50 °,∠AP 2B = 130 °.(2)如图2,AB 是⊙O 的弦,圆心角∠AOB =m (m <180°),点P 是⊙O 上不与A 、B 重合的一点,求弦AB 所对的圆周角∠APB 的度数(用m 的代数式表示) (m 2)°或180°﹣(m 2)° .【问题解决】(3)如图3,已知线段AB,点C在AB所在直线的上方,且∠ACB=135°,用尺规作图的方法作出满足条件的点C所组成的图形(不写作法,保留作图痕迹).【实际应用】(4)如图4,在边长为12的等边三角形ABC中,点E、F分别是边AC、BC上的动点,连接AF、BE,交于点P,若始终保持AE=CF,在点E从点A运动到点C过程中,PC的最小值是【分析】(1)根据圆周角定理计算∠AP1B的度数,然后根据圆内接四边形的性质求∠AP2B的度数;(2)与(1)的求法一样(注意分类讨论);(3)先作AB的垂直平分线得到AB的中点P,再以AB为直径作圆交AB的垂直平分线于O,然后以O点为圆心,OA为半径作⊙O,则⊙O在⊙P内的弧为满足条件的点C所组成的图形;(4)由等边三角形的性质证明△AEB≌△CFA可以得出AF=BE,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,结合勾股定理分别求得DC、DP,即可得解.【解答】解:(1)∠AP1B=12∠AOB=12×100°=50°,∠AP2B=180°﹣∠APB=180°﹣50°=130°.故答案为:50,130;(2)当P在优弧AB上时,∠A PB=12∠AOB=(m2)°;当P在劣弧AB上时,∠A PB=180°﹣(m 2)°;故答案为:(m2)°;180°﹣(m2)°;(3)如图劣弧AB(不包含A、B两个端点)就是所满足条件的点C所组成的图形;(4)∵△ABC 是等边三角形,∴AB =AC =BC =12,∠BAC =∠C =60°.在△AEB 和△CFA 中,AB =AC∠BAC =∠C AE =CF,∴△AEB ≌△CFA (SAS ),∴AF =BE .点P 的路径是一段弧,由题目不难看出当E 为AC 的中点的时候,点P 经过弧AB 的中点,PC 最小,此时△ABP 为等腰三角形.且∠ABP =∠BAP =30°,OC ⊥AB ,如图3:∴∠AOB =120°,∵AB =12,AP =2DP ,∴AD =6,DP =∴DP =在Rt △ADC 中,DC ===∴PC ==故答案为:24.(12分)已知△ABC 的外接圆,圆心为点O ,点P 是该三角形的内心.(1)如图1,在△ABC 中,直线AP 与△ABC 外接圆交点为D ,求证:BD =PD =CD ;(2)如图2,若该△ABC ,M 是弧ABC 中点,MN ⊥BC 与点N ,①求证:AB +BN =CN ;②如图3,若△ABC 中,∠BAC =90°,AC =2AB ,求证:直线MN 经过内心点P ;③将上述第②题中∠BAC =90°改为∠BAC 为任意角,参考图3,其他条件均不变,试猜想该结论是否成立: (是,或者不是).【分析】(1)连接BP ,可推出∠ABP =∠CBP ,∠BAD =∠BCD ,∠DAC =∠CBD ,从而∠DBP =∠DPB ,从而BD =PD ,进一步得出结论;(2)过点M 作ME ⊥AB ,交AB 的延长线于E ,连接BM ,可证得Rt △AME ≌Rt △CMN ,从而MN =EM ,进而证得△BME ≌△BMN ,从而BE =BN ,进一步得出结论;②设AE ,AC 切⊙P 于点E ,F ,设AB =a ,AE =AF =x ,则AC =2a ,在BC 上截取CQ =AB =a ,可证得△ABM ≌△CQM ,从而BM =QM ,进而得出BN =NQ =12BQ ,根据⊙P 是△ABC 的内切圆可得出BC =BE +CF =(a ﹣x )+(2a ﹣x )=3a ﹣2x ,从而BQ =BC ﹣CQ =2a ﹣2x ,进而得出BN =12BQ =a ﹣x ,从而BE =BN ,进一步得出结论;③由②得出结论.【解答】(1)证明:如图1,连接BP,∵点P是△ABC的内心,∴AP、BP分别平分∠BAC、∠ABC,∴∠BAD=∠CAD,∠ABP=∠CBP,∴CD=BD,∴CD=BD,∵∠BAD=∠BCD,∠DAC=∠CBD,∴∠CBD=∠BAD,∴∠CBD+∠CBP=∠BAD+∠ABP,∴∠DBP=∠DPB,∴BD=PD,∴BD=PD=CD;(2)①证明:如图2,过点M作ME⊥AB,交AB的延长线于E,连接BM,则∠E=90°,∵MN⊥BC,∴∠BNM=∠CNM=90°,∴∠E =∠BNM =∠CMN ,∵M 是弧ABC 中点,∴AM =CM ,∵BM =BM ,∴∠MAB =∠MCB ,∴Rt △AME ≌Rt △CMN (HL ),∴MN =EM ,CN =AE ,∵BM =BM ,∴△BME ≌△BMN (HL ),∴BE =BN ,∵AB +BE =AE ,∴AB +BN =CN ;②证明:设AE ,AC 切⊙P 于点E ,F ,设AB =a ,AE =AF =x ,则AC =2a ,在BC 上截取CQ =AB =a ,∵∠C =∠BAM ,AM =CM ,∴△ABM ≌△CQM (SAS ),∴BM =QM ,CQ =AB =a ,∵MN ⊥BC ,∴BN =NQ =12BQ ,∵⊙P 是△ABC 的内切圆,∴BC =BE +CF =(a ﹣x )+(2a ﹣x )=3a ﹣2x ,∴BQ =BC ﹣CQ =2a ﹣2x ,∴BN =12BQ =a ﹣x ,∴BE =BN ,∴⊙P切BC于N,∴M、N、P共线,∴PN⊥BC,∴直线MN经过圆内心点P;③解:由②知:直线MN经过圆内心点P,故答案为:是.。
黑龙江省哈尔滨市九年级上学期数学月考试题及答案
黑龙江省哈尔滨市九年级上学期数学月考试题及答案一、选择题(每题3分,共30分)1. 下列四个实数中,是无理数的为( )A. 3.14B. 227【答案】C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、3.14是有限小数,属于有理数;B 、227是分数,属于有理数;CD 2=,是整数,属于有理数.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数.2. 观察下列图形,其中既是轴对称图形又是中心对称图形的是( )A. B.C. D.【答案】D【解析】【分析】根据轴对称图形和中心对称图形的定义进行判断即可.【详解】A 是中心对称图形不是轴对称图形,不符合题意;B 是轴对称图形不是中心对称图形,不符合题意;C 既不是轴对称图形也不是中心对称图形,不符合题意;D 既是轴对称图形又是中心对称图形,符合题意;故选:D .【点睛】本题考查了轴对称图形和中心对称图形的定义,即轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合,熟记轴对称图形和中心对称图形的定义是解题的关键.3. 下列计算中,结果正确的是( )A. 333()pq p q-= B. 3228x x x x x ⋅+⋅=5=± D. ()326a a =【答案】D【解析】【分析】根据积的乘方与幂的乘方运算,同底数幂的乘法、合并同类项,算术平方根,进行计算即可求解.【详解】解:A. 333()pq p q =--,故该选项不正确,不符合题意;B. 43222x x x x x ⋅+⋅=,故该选项不正确,不符合题意;5=,故该选项不正确,不符合题意;D. ()326a a =,故该选项正确,符合题意;故选:D .【点睛】本题考查了积的乘方与幂的乘方运算,同底数幂的乘法、合并同类项,算术平方根,熟练掌握以上运算法则是解题的关键.4. 如图,该几何体由6个大小相同的小立方体搭成,此几何体的俯视图为( )A. B.C. D.【答案】A【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从上面看易得第一层有3个正方形,第二层中间有一个正方形.故选:A.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5. 在反比例函数y= 1-3mx图象位于二、四象限,则m的取值范围是()A. m≥13B. m≤13C. m<13D. m>13【答案】D【解析】【分析】根据图象的位置先判断k值,再求解.【详解】解:反比例函数图象位于二、四象限,则k<0,即1-3m<0m>1 3 .故选D【点睛】此题重点考查学生对反比例函数图象性质的理解,掌握反比例函数性质是解题的关键.6.如图,将△ABC绕点A逆时针旋转20°得到△AB′C′,BC与B′C′交于点P,则∠B′PC的度数为()A. 100°B. 120°C. 140°D. 160°【答案】D【解析】【分析】首先根据三角形内角和定理求出C P C '∠,再根据平角定义得出答案.【详解】如图,根据题意可知20CAC '∠=︒,C C '∠=∠.∵180D A C A D C C '''∠+∠+∠=︒,180D P C P D C C ∠+∠+∠=︒,且A D C P D C '∠=∠,∴20D P C C A C '∠=∠=︒,∴180********BP C D P C '∠=︒-∠=︒-︒=︒.故选:D .【点睛】本题主要考查了旋转的性质,三角形内角和定理等,求出∠DPC的度数是解题的关键.7.如图,直线1l ∥2l ∥3l ,直线AC 分别交1l ,2l ,3l 于点A ,B ,C ,直线DF 分别交1l ,2l ,3l 于点D ,E ,F ,AC 与DF 相交于点H ,则下列式子不正确的是( )A. AB DE BC EF= B.AH DH CH FH =C. AB DE AC DF= D. AB BE BC CF =【答案】D 【解析】【分析】根据平行线分线段成比例定理得到AB DEBC EF=或AB DEAC DF=,然后利用比例性质得到AB BCDE EF=,于是可对各选项进行判断.【详解】解:∵直线1l∥2l∥3l,∴AB DEBC EF=,故A正确,不符合题意;AH DHCH FH=,故B正确,不符合题意;AB DEAC DF=,故C正确,不符合题意;HB BEHC CF=,故D错误,符合题意;故选:D.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.8.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,若在AC上取一点B,使∠ABD=145°,BD=500米,∠D=55°.要使A、C、E成一条直线,开挖点E与点D 的距离是()米.A. 500sin55°B. 500cos55°C. 500tan55°D. 500cos35°【答案】B【解析】【分析】先根据三角形外角的性质求出∠E=90°,再根据锐角三角函数值求出答案.【详解】∵∠ABD=145°,∠D=55°,∴∠AED=145°-55°=90°.在Rt△BDE中,BD=500米,得cos DE D BD∠=,即DE=500cos55°.故选:B .【点睛】本题主要考查了解直角三角形应用,确定直角三角形是解题的关键.9. 如图,A ,B ,C ,D 为O 上的点,OC AB ⊥于点E ,若30CDB ∠=︒,2OA =,则AB 的长为( )B. C. 2 D. 4【答案】B【解析】【分析】根据同圆中等弧所对的圆心角等于圆周角的两倍可求出AOC ∠的度数,在Rt AOE △中根据已知条件求出AE 的长度,再根据垂径定理即可求出AB 的长度.【详解】∵OC AB⊥∴AE BE =, =AC BC∴260AOC CDB ∠=∠=︒∴sin 2AE OA AOC =⋅∠==∴2AB AE ==.故选:B .【点睛】本题考查了解直角三角形、圆周角定理和垂径定理.根据垂径定理得到线段、弧相等是解题的关键.10.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y (单位:元)与一次性购买该书的数量x (单位:本)之间的函数关系如图所示,则下列结论错误的是( )的A. 一次性购买数量不超过10本时,销售价格为20元/本B. a =520C. 一次性购买10本以上时,超过10本的那部分书的价格打八折D. 一次性购买20本比分两次购买且每次购买10本少花80元【答案】D【解析】【分析】A 、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A 选项正确;C 、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C 正确;B 、根据总价=200+超过10本的那部分书的数量×16即可求出a 值,B 正确;D ,求出一次性购买20本书的总价,将其与400相减即可得出D 错误.此题得解.【详解】解:A 、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A 选项正确;C 、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C 选项正确;B 、∵200+16×(30﹣10)=520(元),∴a=520,B 选项正确;D 、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D 选项错误.故选D .【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.二、填空题(每题3分,共30分)11. 把113000000用科学记数法表示为________________.【答案】81.1310【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中1≤|a|<10,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:113000000=81.1310⨯.故答案为:81.1310⨯.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为10n a ⨯,其中1≤|a|<10,确定a 与n 的值是解题的关键.12. 在函数y=23x x -中,自变量x 的取值范围是 ______.【答案】x≠32.【解析】【详解】分析:根据分式有意义的条件,使分母不为0,列不等式求解即可.详解:因2x-3≠0∴x≠32.故答案为x≠32.点睛:此题主要考查了函数的自变量的取值范围,关键是观察函数的特点,利用分式有意义的条件为分母不为0求解.13.的结果是______.【解析】【分析】本题考查二次根式的减法,化简第二个二次根式,再合并同类二次根式即可.【详解】解:原式==.为14. 把多项式322363x x y xy -+分解因式的结果是______.【答案】()23x x y -【解析】【分析】先提出公因式,再利用完全平方公式解答,即可求解.【详解】解:322363x x y xy -+()2232x x xy y =-+()23x x y =-故答案为:()23x x y -【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.15. 不等式组20321x x -≥⎧⎨+>-⎩的解集是______.【答案】12x -<≤【解析】【分析】分别解不等式,然后确定其解集的公共部分为不等式组的解集.【详解】解:20321x x -≥⎧⎨+>-⎩①②解不等式①,得:2x ≤解不等式②,得:1x >-∴不等式组的解集为:12x -<≤.【点睛】本题考查解不等式组,掌握解不等式组的步骤正确计算是解题关键.16.观察下列“蜂窝图”,按照这样的规律,则第37840个图案中的“”的个数是______.【答案】113521【解析】【分析】本题是图形规律探索问题;第1个图案中有314+=(个),第2个图案中有2317⨯+=(个),第3个图案中有33110⨯+=(个),第4个图案中有34113⨯+=(个),…,每次增加3个六边形,由此规律,即可求解.【详解】解:第1个图案中有314+=(个),第2个图案中有2317⨯+=(个),第3个图案中有33110⨯+=(个),第4个图案中有34113⨯+=(个),…,一般地,第n 个图案中六边形的个数为:31n +;则第37840个图案中的六边形的个数是3378401113521´+=;故答案为:113521.17. 将抛物线y =(x+1)2﹣2向右平移1单位,得到的抛物线与y 轴的交点的坐标是_____.【答案】(0,﹣2)【解析】【分析】根据顶点式确定抛物线y =(x+1)2﹣2的顶点坐标为(﹣1,﹣2),再利用点的平移得到平移后抛物线的顶点坐标为(0,﹣2),于是得到移后抛物线解析式为y =x 2﹣2,然后求平移后的抛物线与y 轴的交点坐标.【详解】解:抛物线y =(x+1)2+2的顶点坐标为(﹣1,﹣2),把点(﹣1,﹣2)向右平移1个单位得到点的坐标为(0,﹣2),所以平移后抛物线解析式为y =x 2﹣2,所以得到的抛物线与y 轴的交点坐标为(0,﹣2).故答案为(0,﹣2).【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18. 已知一个扇形的面积是15π,圆心角为150︒,则此扇形的半径为__________.【答案】6【解析】【分析】利用扇形面积公式直接代入求出r 即可.【详解】∵扇形的圆心角为150°,它的面积为15π,∴设扇形的半径为:r ,∵2360n r S π=扇形,∴15π2150360r π=,解得:6r =.故答案为:6.【点睛】本题主要考查了扇形面积公式应用,熟练记忆扇形面积公式是解题关键.19.在平行四边形ABCD 中,30A ∠=︒,AD =BD =ABCD 的面积为_________.【解析】【分析】过D 作DE⊥AB于E ,先根据含30°的直角三角形的性质得到DE 、AE 的值,再解直角三角形得到AB=5或者AB=1,根据平行四边形的面积公式即可得到结论.【详解】解:过D 作DE⊥AB于E ,在Rt△ADE中,∵∠A=30°,AD =∴12DE AD == ,∴3AE AD === ,∴在Rt△BDE中,∵BD =∴2BE === ,如图1,AB=3+2=5,行四边形ABCD 的面积=AB•DE=5= ;如图2,AB=3-2=1,∴平行四边形ABCD 的面积=AB•DE=1⨯=;【点睛】本题考查了平行四边形的性质,平行四边形的面积公式的运用,30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半,勾股定理,熟练掌握各知识点是解题的关键.20. 如图,在Rt ABC △中,90ACB ∠=︒,AC BC =,点D 在AB 下方,连接AD 、CD BD 、,AC BD =,若8CD =,AD =,则线段AB 的长度为______.【答案】【解析】【分析】本题考查了全等三角形的判定与性质,勾股定理,等腰三角形性质,证明三角形全等是解题的关键;分别过A 、B 作CD 的垂线,垂足分别为E F 、,由题意得BC BD =,则F 是CD 的中点,则有4CF DF ==;再证明AEC CFB V V ≌,则4AE CF ==;在Rt ADE △中由勾股定理可求得DE ,进而得CE ,由勾股定理求得AC ,从而由勾股定理求得AB .【详解】解:如图,分别过A 、B 作CD 的垂线,垂足分别为E F 、,∵AC BC AC BD ==,,∴BC BD =,∵BF CD ⊥,∴F 是CD 的中点,∴142CF DF CD ===;∵90ACB AE CD Ð=°^,,∴ACE BCF ACE CAE Ð+Ð=Ð+Ð,∴BCF CAE ∠=∠,∵90CAE BFC AC BC Ð=Ð=°=,,∴AEC CFB V V ≌,∴4AE CF ==;在Rt ADE △中,由勾股定理得5DE ==,则853CE CD DE =-=-=,在Rt ACE 中,由勾股定理得5AC ==,在等腰Rt ABC △中,由勾股定理得AB ==故答案为:三、解答题21. 先化简,再求值:2222111m m m m m -+⎛⎫-÷ ⎪+-⎝⎭,其中tan 60tan 45m =︒-︒.【答案】1m m +,1【解析】【分析】本题考查了分式的化简求值,特殊角三角函数的混合运算,二次根式分母有理化;先按运算顺序计算分式,再求得m 的值,最后代入求值即可.【详解】解:原式21(1)1(1)m m m m m --=¸+-111m m m m -=´+-1m m =+;而tan 60tan 451m =︒-︒=-,当1m =-时,原式1===22. 如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.(1)将ABC 先向左平移6个单位,再向上平移4个单位,得到111A B C △,画出两次平移后的111A B C △;(2)画出111A B C △绕点1C 顺时针旋转90°后得到221A B C △;(3)在(2)的条件下,直接写出点1A 旋转到点2A 的过程中所经过的路径长(结果保留π).【答案】(1)见解析 (2)见解析(3)5π2【解析】【分析】本题考查了作图:作图形的平移、作图形的旋转,求弧长;(1)分别作出A 、B 、C 三个顶点平移后的对应点,并依次连接即可;(2)分别作出点11A B ,旋转后的对应点,并依次连接即可;(3)由勾股定理求得11A C ,由旋转知11290A C A ∠=︒,由弧长公式即可求解.小问1详解】解:两次平移后的图形如下:【小问2详解】解:旋转后的图形如下:【小问3详解】【解:如图,115C A ==,且11290A C A ∠=︒,∴ 1290π55π1802A A l ´==. 23.为推进“冰雪进校园”活动,我市某初级中学开展:A .速度滑冰,B .冰尜,C .雪地足球,D .冰壶,E .冰球等五种冰雪体育活动,并在全校范围内随机抽取了若干名学生,对他们最喜爱冰雪体育活动的人数进行统计(要求:每名被抽查的学生必选且只能选择一种),绘制了如图所示的条形统计图和扇形统计图.请解答下列问题:(1)这次被抽查的学生有多少人?(2)请补全条形统计图,并写出扇形统计图中B 类活动扇形圆心角的度数是______;(3)若该校共有1500人,请你估计全校最喜爱雪地足球的学生有多少人?【答案】(1)这次被抽查的学生有60人(2)补图见解析,120°(3)200人【解析】的【分析】(1)结合条形统计图和扇形统计图可知,被抽查的学生人数=A 类人数÷A 类百分比(2)用抽查的总人数减去其他项目的人数即可得到D 类人数,B 类活动圆心角度数=360°×B 类所占的百分比.(3)用全校人数乘以热爱雪地足球的学生所占百分比即可求出全校最喜爱雪地足球的学生有多少人.【小问1详解】解:1220%60÷=(人).答:这次被抽查的学生有60人.【小问2详解】解:60-(12+20+8+4)=16(人)补全图形见图,360°×2060=120°,B 类活动扇形圆心角的度数是120°.【小问3详解】解:8150020060⨯=(人).答:全校最喜爱雪地足球的学生有200人.【点睛】本题主要考查了条形统计图和扇形统计,结合两个统计同,熟练的求出所需要的数据是解题的关键.圆心角的度数=360°×各个项目数量被抽取的总数量.24.如图,AB 是O 的直径,CD 与O 相切于点C ,与AB 的延长线交于点D ,CE AB ⊥于点E .(1)求证:BCE BCD ∠=∠;(2)若O 的半径为154,2CE BE =,求线段AD 的长.【答案】(1)见解析 (2)10【解析】【分析】(1)连接OC ,则由切线性质得90BCD OCB ∠+∠=︒;由CE AB ⊥得90BCE OBC ∠+∠=︒,结合OC OB =,由等边对等角及等量代换即可证得结论成立;(2)设BE x =,则可分别表示出CE OE ,,由勾股定理建立方程求得x 的值,再证明OCE CDE ∽,利用相似三角形的性质即可求得DE ,进而求得结果.【小问1详解】证明:连接OC ,如图,∵CD与O 相切于点C ,∴90OCD ∠=︒,即90BCD OCB ∠+∠=︒;∵CE AB ⊥,∴90BCE OBC ∠+∠=︒;∵OC OB =,∴OBC OCB ∠=∠,∴BCE BCD ∠=∠;【小问2详解】解:设BE x =,1524CE x OE OB BE x ==-=-,,∵CE AB ⊥,∴由勾股定理得:222OE CE OC +=,即:2221515(2)44x x æöæöç÷ç÷-+=ç÷ç÷èøèø,解得:32x =;∴153923424CE x OE ===-=,,∵90ECD OCE Ð+Ð=°,90COD OCE Ð+Ð=°,∴COD ECD Ð=Ð,∵90OEC CED Ð=Ð=°,∴OCE CDE ∽,∴CE OE DE CE=,∴24CE DE OE==,∴15941044AD OA OE DE =++=++=.【点睛】本题考查了切线的性质,勾股定理,相似三角形的判定与性质,等腰三角形的性质等知识;遇到切线连接切点与圆心是常作的辅助线,证明三角形相似是本题的关键.25.三~四月的哈尔滨,冰雪消融,大地回春,正是植树好季节,市政有甲、乙两个植树工程队,甲工程队每天比乙工程队多植树20棵,甲工程队植树480棵和乙工程队植树360棵所用的时间相等.(1)求甲、乙两工程队每天各植树多少棵?(2)甲、乙两个工程队工作热情高涨,甲工程队每天比原来多植树10%,乙工程队每天比原来多植树20%,现有植树任务不少于1160棵,且乙工程队植树天数是甲工程队植树天数的2倍,则甲工程队至少植树多少天可以完成任务?【答案】(1)甲工程队每天植树80棵,乙工程队每天植树60棵(2)甲工程队至少植树5天可以完成任务【解析】【分析】本题考查了解分式方程的应用,一元一次不等式的应用,找到数量关系列出方程与不等式是关键;(1)设乙工程队每天植树x 棵,则甲工程队每天植树(20)x +棵,根据丙队的时间相等列出分式方程,求解即可,注意检验;(2)设甲工程队植树m 天可以完成任务,则乙工程队2m 天,根据:植树任务不少于1160棵,列出不等式并解之即可.【小问1详解】解:设乙工程队每天植树x 棵,则甲工程队每天植树(20)x +棵,由题意得:48036020x x=+,解得: 60x =,经检验,60x =是原方程的解,且符合实际,则甲工程队每天植树602080+=(棵);答:甲、乙两工程队每天各植树80棵、60棵;【小问2详解】解:设甲工程队植树m 天可以完成任务,则乙工程队2m 天,由题意得:(110%)80(120%)6021160m m +´++´´³,解得:5m ≥,答:甲工程队至少植树5天可以完成任务.26. 完成下列各题:(1)如图1,已知在ABC 中,90DAB EAC ∠=∠=︒,AB AD =,AC AE =,连接BE CD 、,请判断线段BE 与线段CD 的数量关系和位置关系,并说明理由:(2)如图2,已知在ABC 中,90DAB EAC ∠=∠=︒,AB AD ==AC AE ==DE ,请直接写出22BC DE +的值为______;(3)①如图3,已知=45ABC ∠︒,90EAC ∠=︒,6AB BC ==,AC AE =,请直接写出BE 的长为______;②如图4,ABC 中,90BAC ∠=︒,AB AC =,D 是平面内一点,AD =,CD =BD 的最大值为______.【答案】(1)BE CD BE CD =⊥,,理由见解析(2)113 (3)①;②【解析】【分析】(1)连接BD ,设BE CD ,交于点O ,证明DAC BAE ≌△△即可解决;(2)连接BD CE CD BE ,,,,设BE CD ,交于点O ,证明DAC BAE ≌△△,可得BE CD BE CD =⊥,,由勾股定理即可求解;(3)①过A 点在AB 上方作AD AB ⊥,且6AD AB ==,分别连接CD BD ,,则45DBA ∠=︒,从而可得DB BC ⊥,可求得CD 的长;再证明DAC BAE ≌△△,则BE CD =,即求得结果;②过A 点在AD 上方作AD AE ⊥,且46AD AE ==,分别连接CE DE ,,则DE =;再证明DAB EAC V V ≌,则CE BD =,由CE DE CD £+即求得最大值.【小问1详解】解:BE CD BE CD =⊥,,理由如下:连接BD ,设BE CD ,交于点O ,∵90DAB EAC ∠=∠=︒,∴DAB BAC BAC EAC Ð+Ð=Ð+Ð,即DAC BAE ∠=∠,∵AD AB AE AC ==,,∴DAC BAE ≌△△,∴BE CD ADC ABE =Ð=Ð,,∵90ADC CDB ABD ADB ABD Ð+Ð+Ð=Ð+Ð=°,∴90ABE CDB ABD Ð+Ð+Ð=°,即90CDB DBE Ð+Ð=°,∴CD BE ⊥;【小问2详解】解:连接BD CE CD BE ,,,,设BE CD ,交于点O ,如图,∵90DAB EAC ∠=∠=︒,∴DAB BAC BAC EAC Ð+Ð=Ð+Ð,即DAC BAE ∠=∠,∵AD AB AE AC ==,,∴DAC BAE ≌△△,∴BE CD ADC ABE =Ð=Ð,,∵90ADC CDB ABD ADB ABD Ð+Ð+Ð=Ð+Ð=°,∴90ABE CDB ABD Ð+Ð+Ð=°,即90CDB DBE Ð+Ð=°,∴CD BE ⊥;∵22222222BC DE OB OC OD OE BD CE +=+++=+,又90DAB EAC ∠=∠=︒,AB AD ==ACAE ==∴2222264249BD AB CE AC ====,,∴22226449113BC DE BD CE +=+=+=;故答案为:113;【小问3详解】解:①过A 点在AB 上方作AD AB ⊥,且6AD AB ==,分别连接CD BD ,,如图,则45DBA ∠=︒,DB ==,∴90DBC DBA ABC ∠=∠+∠=︒,即DB BC ⊥,∴CD =;与(1)同理,DAC BAE ≌△△,则BE CD ==;故答案为:②过A 点在AD 上方作AD AE ⊥,且AD AE ==CE DE ,,如图,则由勾股定理得DE ==∵90BAC DAE ∠=∠=︒,∴BAC CAD CAD DAE ∠+∠=∠+∠,即BAD CAE ∠=∠,∵AB AC AD AE ==,,∴DAB EAC V V ≌,∴CE BD =,∵CE DE CD ≤+=,∴BD 的最大值为.故答案为:.【点睛】本题是全等三角形的综合问题,考查了全等三角形的判定与性质,等腰三角形的性质,勾股定理,三角形三边关系,构造适当的辅助线证明三角形全等是关键.27.在平面直角坐标系中,抛物线()242y ax a x c =+-+与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴交于点C ,直线BC 的解析式为132y x =-.(1)求抛物线解析式;(2)点D 为第四象限抛物线上一动点,连接,DB DC ,点D 的横坐标为t ,DBC △的面积为S ,求S 与t 的函数关系式,并直接写出t 的取值范围;(3)在(2)的条件下,过点D 作DE x ⊥轴,垂足为点E ,连接CE ,当CO E D BC S S =△△时,点H 在抛物线上,原点O 关于直线CH 的对称点M 恰好落在直线CE 上,求点H 的坐标.【答案】(1)2134y x x =-- (2)23942S t t =-+;t 的取值范围为06t << (3)(1221H ,)或(2,4)-【解析】【分析】(1)由直线BC 的解析式可分别求出点B 、C 两点的坐标,再由待定系数法即可求得抛物线的解析式;(2)过点D 作x 轴的垂线交直线BC 于点F ,设点D 的坐标,则可得点F 的坐标,从而可表示DF ,利用DBC DFC DFB S S S =+ 即可求解;根据点D 在第四象限即可确定t 的取值范围;(3)由CO E D BC S S =△△可求得t 的值,得到点E 的坐标,则可求得直线CE 的解析式;在线段CE 上取CO CM =,过M 作MG x ⊥于G ,连接OM ,设OM 中点为N ;利用EGM EOC ∽可求得,GE GM 的长,从而求得M 的坐标及N 的坐标,则求得直线CH 的解析式,与二次函数联立即可求得H 的坐标;同理当点M 在点C 的下方时,可求得H 的坐标.【小问1详解】解:对于132y x =-,令0x =,得=3y -;令0y =,得6x =;∴(6,0)(0,3)B C -,;把B ,C 两点坐标分别代入()242y ax a x c =+-+中,得:366(42)03a a c c +-+=⎧⎨=-⎩,解得:143a c ⎧=⎪⎨⎪=-⎩,∴抛物线的解析式为2134y x x =--;【小问2详解】解:过点D 作x 轴的垂线交直线BC 于点F ,设点D 的坐标为21,34t t t æöç÷--ç÷èø,则点F 的坐标为1,32t t æöç÷-ç÷èø,∴221113332442DF t t t t t æöç÷=----=-+ç÷èø;∴DBC DFC DFBS S S S ==+ 11()()22F C B F DF x x DF x x =´-+´-1()2B C DF x x =´-21136242t t æöç÷=´-+´ç÷èø23942t t =-+;∵点D 在第四象,∴06t <<;【小问3详解】解:由题意知(,0)E t ,且CO ED BC S S =△△,3OC OG t ==,,∴21393242t t t ´´=-+,解得:4t =或0=t (舍去),即点E 的坐标为(4,0),且4OE =,∴5CE ==;设直线CE 的解析式为y kx b =+,把点C 、E 的坐标分别代入得:340b k b =-⎧⎨+=⎩,解得:343k b ⎧=⎪⎨⎪=-⎩,即直线CE 的解析式为334y x =-;在线段CE 上取3CM CO ==,过M 作MG x ⊥于G ,连接OM ,设OM 中点为N ;则MG OC ∥,532ME =-=,∴EGM EOC ∽,∴GM EM GE OC CE OE==,∴86,55GE GM ==,∴125OG OE GE =-=,∴点M 的坐标为126,55⎛⎫- ⎪⎝⎭,∴点N 的坐标为63,55⎛⎫- ⎪⎝⎭,设直线CH 的解析式为y mx n =+,把C ,N 的坐标代入得:36355n m n =-⎧⎪⎨+=-⎪⎩,得:23m n =⎧⎨=-⎩,即直线CH 的解析式为23y x =-;23y x =-与二次函数联立消去y 得:213234x x x --=-,解得120x x ==,(舍去)当12x =时,212321y =´-=,∴点H 的坐标为(12,21);同理,当点M 在点C 的下方时,则8EM CE CM =+=,由相似求得1224,55M æöç÷--ç÷èø,得612,55N æöç÷--ç÷èø,由待定系数法求得CH 解析式132y x =--,联立直线解析式与二次函数消去y 得:2113342x x x --=--,解得20x x ==,(舍去),则点H 的坐标为(24)-,;综上,点H 的坐标为(12,21)或(24)-,.【点睛】本题是二次函数的综合,考查了待定系数法求函数解析式,二次函数与面积的综合,相似三角形的判定与性质,勾股定理,一次函数与坐标轴的交点等知识,本题综合性较强,本题第(3)问由O 、M 关于CH 对称转化为CO CM 、关于CH 对称,从而在直线CE 上取CM CO =,这是解题的关键与难点.为。
2023-2024学年福建省福州市九年级上学期数学月考试题及答案
2023-2024学年福建省福州市九年级上学期数学月考试题及答案一、选择题(本题共10小题,每小题4分,共40分.在每小题给出四个选项中,只有一项是符合要求的)1. 如图,A ,B ,C 是⊙O 上三点,且∠ABC=70°,则∠AOC 的度数是( )A. 35°B. 140°C. 70°D. 110°【答案】B【解析】【分析】根据同弧所对的圆心角与圆周角之间的关系定理即可解决.【详解】解:∵∠ABC 是圆周角,所对的弧是 AC ,∠AOC 是圆心角,所对的弧是 AC ,∴∠AOC=2∠ABC=2×70°=140°.故选:B .【点睛】本题考查同弧所对的圆周角、圆心角之间的关系定理,记住同弧所对圆心角是圆周角的两倍,属于中考常考题型.2. 如图,⊙O 的直径AB =4,点C 在⊙O 上,∠ABC=30°,则AC 的长是( )A. 1D. 2【答案】D【解析】【详解】解:∵AB 是⊙O 直径,∴∠ACB=90°;的的Rt△ABC 中,∠ABC=30°,AB=4;∴AC=12AB=2.故选D .考点:圆周角定理.3. 已知O 的半径为3,点P 到圆心O 的距离为4,则点P 与O 的位置关系是( )A. 点P 在O 外B. 点P 在O 上C. 点P 在O 内D. 无法确定【答案】A【解析】【分析】根据点与圆的位置关系进行判断即可得到答案.【详解】解:O 的半径分别是3,点P 到圆心O 的距离为4,d r ∴>,∴点P 与O 的位置关系是:点在圆外,故选:A .【点睛】本题主要考查了点与圆的位置关系,设点到圆心的距离为d ,半径为r ,当d r =时,点在圆上,当d r <时,点在圆内,当d r >时,点在圆外.4. A ,B 是切点,若70P ∠=︒,则ABO ∠=( )A. 30°B. 35°C. 45°D. 55°【答案】B【解析】【分析】连接OA ,根据切线的性质和四边形的内角和为360︒,求出AOB ∠的度数,等边对等角求出ABO ∠的度数即可.【详解】解:连接OA ,则:OA OB =,∵A,B 是切点,∴,OA PA OB PB ⊥⊥,∴90OBP OAP ∠=∠=︒,∴360110AOB APB OBP OAP ∠=︒-∠-∠-∠=︒,∵OA OB =,∴()1180352ABO AOB ∠=︒-∠=︒;故选B .【点睛】本题考查切线的性质.熟练掌握切线垂直于过切点的半径,是解题的关键.5. 如图,AB 是O 的直径,点C 是O 上的一点,若6BC =,10AB =,OD BC ⊥于点D ,则OD 长为( )A. 1B. 2C. 3D. 4【答案】D【解析】【分析】利用圆周角定理和勾股定理求出AC 的长,再利用垂径定理和三角形的中位线定理求出OD 的长即可.【详解】解:∵AB 是O 的直径,∴90BCA ∠=︒,∵6BC =,10AB =,∴8AC ==,∵OD BC ⊥,∴BD CD =,∵OA OB =,∴OD 是三角形ABC 的中位线,∴142OD AC ==;故选D .【点睛】本题考查圆周角定理,垂径定理和三角形的中位线定理,解题的关键是熟练掌握相关定理,正确的计算.6. 正n 边形的中心角是30°,n =( )A 6 B. 8 C. 10 D. 12【答案】D【解析】【分析】根据正n 边形的中心角是360n ︒,进行求解即可.【详解】解:由题意,得:36030n ︒=︒,∴12n =;故选D .【点睛】本题考查正多边形的中心角.熟练掌握正n 边形的中心角是360n︒,是解题的关键.7. 如图,⊙O 的弦AB=6,M 是AB 上任意一点,且OM 最小值为4,⊙O 的半径为( )A. 5B. 4C. 3D. 2【答案】A【解析】分析】当OM⊥AB 时值最小.根据垂径定理和勾股定理求解..【【详解】解:根据直线外一点到直线的线段中,垂线段最短,知:当OM⊥AB时,为最小值4,连接OA,AB=3,根据垂径定理,得:BM=12根据勾股定理,得:=5,即⊙O的半径为5.故选:A.【点睛】本题考查了垂径定理,主要运用了垂径定理、勾股定理求得半径.特别注意能够分析出OM的最小值.8. 如图,点A、B、C在⊙O上,且∠ACB=100o,则∠α度数为()A. 160oB. 120oC. 100oD. 80o 【答案】A【解析】AD BD利用圆的内接四边形的性质与一条弧所对的圆心角【分析】在⊙O取点D,连接,.是它所对的圆周角的2倍,可得答案.AD BD【详解】解:如图,在⊙O取点D,连接,.四边形ACBD为⊙O的内接四边形,180,∴∠+∠=︒ACB ADB∠=︒100,ACB80,D ∴∠=︒160.AOB ∴∠=︒ .故选A【点睛】本题考查的是圆的内接四边形的性质,同弧所对的圆心角是它所对的圆周角的2倍,掌握相关知识点是解题的关键.9. 圆锥底面圆的半径为3cm ,其侧面展开图是半圆,则圆锥母线长为( )A. 3cmB. 6cmC. 9cmD. 12cm 【答案】B【解析】【详解】试题分析:首先根据圆的周长公式求得圆锥的底面周长=6π,然后根据圆锥的侧面展开图(扇形)的弧长等于底面周长,根据弧长公式180n r l π=即可求得母线长6l ππ=,可得母线长为6.故选B .考点:圆锥的计算10. 如图,ABC 内接于O ,120BAC ∠=︒,AB AC =,BD 为O 的直径,6AD =,则BC 长为( )A. 4B.C. 6D. 【答案】C【解析】【分析】等边对等角,得到30ABC ACB ∠=∠=︒,圆周角定理,得到30ADB ∠=︒,90BAD BCD ∠=∠=︒,利用含30 度角的直角三角形的性质,求出BD 的长,再根据含30 度角的直角三角形的性质,求出BC 的长即可.【详解】解:∵120BAC ∠=︒,AB AC =,∴30ABC ACB ∠=∠=︒,∴30ADB ACB ∠=∠=︒连接CD ,则:18060BDC BAC ∠=︒-∠=︒,∵BD 为O 的直径,∴90BAD BCD ∠=∠=︒,在Rt BAD 中,30ADB ∠=︒,∴2,6BD AB AD ===,∴AB =BD =,在Rt BCD 中,BD =,60BDC ∠=︒,∴30CBD ∠=︒,12CD BD ==,∴6BC ==;故选C .【点睛】本题考查圆周角定理,等边对等角,含30度角的直角三角形.熟练掌握圆周角定理,是解题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11. 如图,已知点A ,B ,C 在O 上,AC OB ∥,40BOC ∠=︒,则ABO ∠=________.【答案】20︒##20度【解析】【分析】先根据圆周角定理求出20BAC =︒∠,再根据平行线的性质可证20ABO BAC ∠=∠=︒.【详解】解:∵40BOC ∠=︒,∴20BAC =︒∠,∵AC OB ∥,∴20ABO BAC ∠=∠=︒.故答案为:20︒【点睛】本题考查的是圆周角定理的应用,平行线的性质,熟记圆周角定理的含义是解本题的关键.12. 用反证法证明:“a 与b 不平行”,第一步假设为________.【答案】a 与b 平行【解析】【分析】反证法的第一步假设结论的对立面成立,作答即可.【详解】解:用反证法证明:“a 与b 不平行”,第一步假设为a 与b 平行;故答案为:a 与b 平行.【点睛】本题考查反证法,熟练掌握反证法的第一步为假设结论的对立面成立,是解题的关键.13. 在半径为3的圆中,150°的圆心角所对扇形的面积是________.【答案】154π【解析】【分析】根据扇形的面积公式进行计算即可.【详解】解:由题意,得:150°的圆心角所对的扇形的面积是21501533604ππ⨯=;故答案为:154π.【点睛】本题考查求扇形面积.熟练掌握扇形的面积公式,是解题的关键.14. 如图,点A ,B ,C ,D 都在⊙O 上,∠ABC=90°,AD =3,CD =2,则⊙O 的直径的长是________.【解析】【详解】连接AC ,根据∠ABC=90°可得AC 为直径,则∠ADC=90°,根据Rt△ACD 的勾股定理可得:=15. 如图,AB 为⊙O 的直径,弦CD AB ⊥于点E ,已知6,1CD EB ==,则⊙O 的半径为__________.【答案】5【解析】【详解】解:设圆的半径为r ,连接OC ,根据垂径定理可知CE=3,OE=r-1,()22231r r \+-=,解得r=5.故答案为5.16. 平面直角坐标系内,A(-1,0),B(1,0),C(4,﹣3),P 在以 C 为圆心 1 为 半径的圆上运动,连接 PA ,PB ,则22PA PB +的最小值是_______ .【答案】34【解析】【分析】设点P (x, y ),表示出22PA PB +的值,从而转化为求OP 的最值,画出图形后可直观得出OP 的最值,代入求解即可.【详解】解:设P (x ,y)∴222,OP x y =+∵A(-1,0),B(1,0),∴()()2222221, 1,PA x y PB x y =++=-+∴()22222222222PA PB x y x y+=++=++ ,∴22222,PA PB OP +=+当点P 处于OC 与圆的交点上时,OP 取得最值,∴OP 的最小值为OC-PC=5-1=4.∴22PA PB +最小值为22222224234,PA PB OP +=+=⨯+=.故答案为: 34.【点睛】本题考查了点与圆的位置关系,解答本题的关键是设出点P 坐标,将所求代数式的值转化为求解OP 的最小值,难度较大.三、解答题(共86分)17. 如图,在O 中,弦AC ∥半径OB ,40BOC ∠=︒,求AOC ∠的度数.【答案】100︒.【解析】【分析】先根据平行线的性质得到40OCA BOC ∠=∠=︒,然后根据等腰三角形的性质和三角形内角和定理计算AOC ∠的度数.【详解】解:AC ∥半径OB ,40OCA BOC ∴∠=∠=︒,OA OC = ,40A OCA ∴∠=∠=︒,1801804040100AOC A OCA ∴∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查了三角形内角和:三角形内角和是180︒.也考查了等腰三角形的性质和圆的认识.18. 如图,5OA OB ==,8AB =,O 的直径为6.求证:直线AB 是O 的切线.【答案】见解析【解析】【分析】过点O 作OD AB ⊥于点D ,根据三线合一和勾股定理求出OD 的长,即可.【详解】解:过点O 作OD AB ⊥于点D ,∵5OA OB ==,8AB =,∴4AD BD ==,∴3OD ==,∵O 的直径为6,∴OD 为O 的半径,又OD AB ⊥,∴直线AB 是O 的切线.【点睛】本题考查切线的判定.熟练掌握切线的判定方法,是解题的关键.19. 如图,A 、B 、C 、D 为⊙O 上四点,若AC⊥OD 于E ,且 =2AB AD .请说明AB =2AE .【答案】证明见解析【解析】【分析】根据垂径定理得到 2AC AD =,AC =2AE ,从而得到 AC AB =,得到AC=AB ,故可求解.【详解】解:∵AC⊥OD,∴AC AD=,AC=2AE,2∵=,2AB AD∴AC AB=,∴ AC=AB,∴ AB=2AE.【点睛】此题主要考查垂径定理,弧、弦、圆心角的关系,解题的关键是熟练掌握相关知识并能灵活运用.20. 如图,AB是⊙O的切线.A为切点,AC是⊙O的弦,过O作OH⊥AC于点H.若OH=2,AB=12,BO=13,求⊙O的半径和AC的值【答案】5,.【解析】【分析】根据切线的性质可得△AOB是直角三角形,由勾股定理可求得OA的长,即⊙O的半径;在Rt△OAH中,由勾股定理可得AH的值,进而由垂径定理求得AC的长.【详解】解:①∵AB是⊙O的切线,A为切点,∴OA⊥AB,在Rt△AOB中,=5,∴⊙O的半径为5;②∵OH⊥AC,∴在Rt△AOH中,,又∵OH⊥AC,.【点睛】本题考查:切线的性质、勾股定理及垂径定理的综合运用等知识,解题关键是勾股定理的应用.21. 如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C.∠DAB=∠B=30°.(1)直线BD是否与⊙O相切?为什么?(2)连接CD,若CD=5,求AB的长.【答案】(1)相切,理由见解析;(2)AB=15.【解析】【分析】(1)连接OD,通过计算得到∠ODB=90°,证明BD与⊙O相切.(2)△OCD是边长为5的等边三角形,得到圆的半径的长,然后求出AB的长【详解】解:(1)直线BD与⊙O相切.如图连接OD,CD,∵∠DAB=∠B=30°,∴∠ADB=120°,∵OA=OD,∴∠ODA=∠OAD=30°,∴∠ODB=∠ADB﹣∠ODA=120°﹣30°=90°.所以直线BD与⊙O相切;(2)连接CD,∠COD=∠OAD+∠ODA=30°+30°=60°,又OC=OD∴△OCD是等边三角形,即:OC=OD=CD=5=OA,∵∠ODB=90°,∠B=30°,∴OB=10,∴AB=AO+OB=5+10=15.22. 如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接OC,交⊙O于点E,弦AD∥OC.(1)求证:点E是弧BD的中点;(2)求证:CD是⊙O的切线.【答案】(1)见解析;(2)见解析【解析】【分析】(1)连接OD.根据相等的圆心角所对的弧相等,证明∠COD=∠COB后得证;(2)证明OD⊥CD即可.通过证明△COD≌△COB得∠ODC=∠OBC=90°得证.【详解】证明:(1)连接OD.∵AD∥OC,∴∠ADO=∠COD,∠A=∠COB.∵OA=OD,∴∠A=∠ADO.∴∠COD=∠COB.∴弧BE=弧DE,即点E是弧BD的中点.(2)由(1)可知∠COD=∠COB,在△COD 和△COB 中,0OD OB COD COB OC C =⎧⎪∠=∠⎨⎪=⎩,∴△COD≌△COB,∴∠CDO=∠CBO.∵BC 与⊙O 相切于点B ,∴BC⊥OB,即∠CBO=90°.∴∠CDO=90°,即DC⊥OD.∴CD 是⊙O 的切线.【点睛】此题考查了圆的有关性质及切线的判定方法等知识点.①相等的圆心角所对的弧相等,必须在同圆或等圆中成立;②要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.23. 如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC ,BC 分别交于点D ,E ,过点D 作DF⊥BC,垂足为点F.(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求DF 的长;(3)求图中阴影部分面积.【答案】(1)证明见解析;(2;(323π-. 【解析】【分析】(1)连接DO ,要证明DF 为⊙O 的切线只要证明∠FDP=90°即可;(2)由已知可得到CD ,CF 的长,从而利用勾股定理可求得DF 的长;(3)连接OE ,求得CF ,EF 的长,从而利用S 直角梯形FDOE -S 扇形OED 求得阴影部分的面积.的【详解】(1)连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形,∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°-∠C=30°,∴∠FDO=180°-∠ADO-∠CDF=90°,∴DF为⊙O的切线;(2)∵△OAD是等边三角形,∴AD=AO=12AB=2,∴CD=AC-AD=2.在Rt△CDF中,∵∠CDF=30°,∴CF=12CD=1,;(3)连接OE.由(2)同理可知CE=2,∴CF=1,∴EF=1,∴S 直角梯形FDOE =12 ∴S 扇形OED =26022=3603ππ⨯∴S 阴影=S 直角梯形FDOE -S 扇形OED 23π-24. 已知二次函数22y ax ax c =-+图象与x 轴交于坐标原点O 和点A ,顶点为点P .(1)求点P 的坐标(用含a 的式子表示);(2)已知点P 纵坐标与点A 横坐标相同,直线6y kx =-与抛物线交于M ,N 两点(点M 在点N 左侧),连接AM AN ,设直线AM 为11y k x m =+,直线AN 为22y k x n =+;①求P 点坐标.②求证:当3k ≠时,12k k 的值不变.【答案】(1)()1,a -(2)①点P 坐标为()1,2;②1212k k ⋅=-.【解析】【分析】(1)由抛物线经过原点可得0c =,将抛物线解析式化为顶点式求解.(2)①由点P 纵坐标与点A 横坐标相同可求出A ,P 坐标;②由直线AM ,AN 经过点A 可得m ,n 与1k ,2k 的关系,设点M ,N 横坐标分别为1x ,2x ,令2624kx x x -=-+可得1242k x x -+=,213x x ⋅=-,用含1x ,2x 及k 的代数式分别表示1k ,2k ,进而求解.【小问1详解】抛物线经过原点,0c ∴=,()2221y ax ax a x a ∴=-=--,∴点P 坐标为()1,a -.【小问2详解】① 抛物线对称轴为直线1x =,∴点A 坐标为()2,0,点P 纵坐标与点A 横坐标相同,2a ∴-=,2a ∴=-,∴点P 坐标为()1,2.②令2624kx x x -=-+,整理得()22460x k x +--=,设点M 横坐标为1x ,点N 横坐标为2x ,1242k x x -∴+=,213x x ⋅=-, 点M 在直线6y kx =-与直线AM 上,把(2,0)代入11y k x m =+得12m k =-,1112y k x k ∴=-,令111162kx k x k -=-,可得11162kx k x -=-, 点N 在直线6y kx =-与直线AN 上,把(2,0)代入22y k x n =+得22n k =-,2222y k x k ∴=-,令222262kx k x k -=-,可得22262kx k x -=-,()()212121212121212636662224k x x k x x kx kx k k x x x x x x -++--∴⋅=⋅=---++,把1242k x x -+=,213x x ⋅=-代入()()21212121263624k x x k x x x x x x -++-++得1236123k k k k-⋅=-+,3k ∴≠时,1212k k ⋅=-.【点睛】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数和方程的关系,掌握一元二次方程根与系数的关系.25. ABC 内接于O ,点D 在BC 边上,射线AD 交O 于点E ,点F 在弧BE 上,连接AF ,ADB AFE ∠=∠.(1)如图1,求证:AB AC =;(2)如图2,BE 交弦AF 于点G ,BC 经过O 点,2AGE EAF ∠=∠,求证:AF BE =;(3)如图3,在(2)的条件下,H 为EG 的中点,连接OH 、CH ,若2180ACH ABE ∠+∠=︒,AB =,求线段OH 的长.【答案】(1)证明见解析(2)证明见解析 (3【解析】【分析】(1)连接CF ,得到CFE CAE ∠=∠,AFC ABC ∠=∠,即AEF ABC CAE ∠=∠+∠,然后根据ADB CAE ACB ADB AFE ∠=∠+∠∠=∠,,可得到结果;(2)连接BF ,找到角度之间的关系,结合(1)中的结论,可得到AG EG =,通过同弧所对的圆周角相等,可得到AFB EBF ∠=∠,进而得到BG GF =,即可求得结果;(3)延长CH 交FG 于点K ,过O 作OM BE ⊥于点M ,过A 作AN CE ⊥于点N ,则90N AGB ∠=︒=∠,然后根据(1)(2)中的条件判断出四边形CKFE 是平行四边形,四边形ANEG 是矩形,得到MH =【小问1详解】证明:连接CF ,,∵ CECE =,∴CFE CAE ∠=∠,∵ AC AC =,∴AFC ABC ∠=∠,∴AEF AFC CFE ABC CAE ∠=∠+∠=∠+∠,∵ADB CAE ACB ADB AFE ∠=∠+∠∠=∠,,∴A ABC CB =∠∠,∴AB AC =;【小问2详解】证明:连接BF ,,∵BC 是直径,∴90BAC ∠=︒,∵AB AC =,∴45ABC ACB ∠==︒,∴18045135AGE EAF ∠+∠=︒-︒=︒,∵2AGE EAF ∠=∠,∴90AGE ∠=︒,45EAF ∠=︒,∴AG EG =,∵ AB AB =, EFEF =,∴45AFB AEB ∠=∠=︒,45EBF EAF ∠=∠=︒,∴AFB EBF ∠=∠,∴BG GF =,∴AG GF EG GB +=+,∴AF BE =;【小问3详解】解:延长CH 交FG 于点K ,过O 作OM BE ⊥于点M ,过A 作AN CE ⊥于点N ,则90N AGB ∠=︒=∠,,∵»»AE AE =,∴45AFE ABE ABC CBE CBE ∠=∠=∠+∠=︒+∠,∵45ACH ACB BCH BCH ∠=∠+∠=︒+∠,∴()245245ACH ABE BCH CBE ∠+∠=︒+∠+︒+∠1352180BCH CBE =︒+∠+∠=︒,∴245BCH CBE ∠+∠=︒,∴45CHE CBE ∠+∠=︒,∵45BEF CBE BAF CAE ∠+∠=∠+∠=︒,∴CHE BEF ∠=∠,∴CK EF =,∵BC 是直径,∴90CEB AGB ∠=︒=∠,∴AF CE ∥,∴四边形CKFE 是平行四边形,∴CK KF =,∵H 是GE 的中点,∴CH KH =,∵90CEG KGH ∠=∠=︒,∴CHE KHG ∠=∠,∴CHE KHG ≌△△,∴CE KG KF ==,设CE x =,则2FG x =,由(2)得2BG x =,∵90N CEG AGE ∠=∠=∠=︒,∴四边形ANEG 是矩形,∵AG EG =,∴四边形ANEG 是正方形,∴AG AN EN EG ===,∵AB AC =,∴Rt AGB Rt ANC △≌△,∴2BG CN x ==,∴3AN EN x ==,∵AB AC ==,∴在Rt ACN V 中,由勾股定理可得()()22232x x +=,∴x =(舍)或x ,∴CE =EG =,则BE BG EG =+=,∴GH HG ==,∵OM BE ⊥,∴BM ME ==∴MH ==,∵OB OC =,∴OM 是BCE 的中位线,∴12OM CE ==,在Rt OMH 中,OH ===【点睛】本题考查了圆与三角形的综合问题,其中有同弧所对的圆周角相等,垂线定理,等腰三角形的性质,勾股定理等知识点,解题的关键是找到各个角度、边长之间的关系.。
福建省漳州市2024-2025学年九年级上学期第一次数学月考试题答案
参考答案1.答案:C10x −≥,解得:1x ≥.故选C.2.答案:C的被开方数中含有开得尽方的因数,不是最简二次根式.故选C.3.答案:B3,故选B.4.答案:B解析: 5.答案:C解析:A.是一元一次方程,不是一元二次方程,故本选项不符合题意; B.方程的最高次数是3次,不是一元二次方程,故本选项不符合题意;C.符合定义,是一元二次方程,故本选项符合题意;D.当0a =时,方程20ax bx c ++=不是一元二次方程,故本选项不符合题意; 故选:C.6.答案:C解析:∵20x −≥,20x −≥,∴22x ≤≤,故2x =,∴2y =, ∴224y x ==故选:C. 7.答案:B解析:+=,不能直接加,故错误;,正确;=3=,故错误;8.答案:A解析:∵280x mx +−=,∴()2248320m m ∆=−×−=+>,所以原方程有两个不相等的实数根,故选:A.9.答案:A解析:设这两年小明收到的微信红包的年平均增长率为x ,由题意得: 2300(1)363x +=故选:A.10.答案:D解析:m ,n 是一元二次方程220230x x +−=的两个实数根, 1m n ∴+=−,22023m m +=, 22m m n ∴++2()m m m n =+++()20231+− 2022=,故选:D.11.答案:>;解析:13.答案:3解析:24843=× ,又n 是整数,∴符合n 的最小值是3.14.答案:(12)864x x −=解析: 长为x 步,宽比长少12步,∴宽为(12)x −步.依题意,得:(12)864x x −=.15.答案:6解析:∵a ,b 是一元二次方程2320x x −+=的两根,∴3a b +=,2ab = ∴()22236a b ab ab a b +=+=×=.16.答案:10解析:2680x x −+=,∴(2)(4)0x x −−=,解得12x =,24x =, 由题意得:这个三角形的三边长分别为2,2,4或2,4,4,(1)当这个三角形的三边长分别为2,2,4时,224+=,∴不满足三角形的三边关系定理,舍去,(2)当这个三角形的三边长分别为2,4,4时,244+> ,∴满足三角形的三边关系定理,∴三角形的周长为24410++=;故答案为:10. 17.(1)原式0−.(2)原式=18.(1)x 1=2,x 2=2-.移项,得x 2=2,直接开平方,得x=±2,解得:x 1=2,x 2=2-.(2)12x =,21x =−解析:由原方程,得:(1)(2)0x x +−=,解得:12x =,21x =-.19.(1)解:由题意得222(2)44(1)44161612200k k k k k k k ∆=+−××−=++−+=−+= 解得2k =或10k =.(2)当2k =时,原方程变为24410x x −+=,2(21)0x −=,即1212x x ==; 当10k =时,原方程为241290x x −+=, 5−2(23)0x −=,即1232x x ==. 20.解:设每次降价的百分率为x ,根据题意,得56(1-x)2=31.5 解这个方程,得x 1=0.25,x 2=1.75因为降价的百分率不可能大于1,所以x 2=1.75不符合题意。
2024-2025学年初中九年级上学期第一次月考数学试题及答案(苏科版)
2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x+= 2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x += 4. 若关于x 一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上的三点,则123,,y y y 为的大小关系为( )A 123y y y >> B. 132y y y >> C. 321y y y >> D. 312y y y >> 7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >的.二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.14. 抛物线()232y x =−−−的顶点坐标是________ .15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 取值范围为__________16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.18. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子的正方形的最大边长为______米.三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 20. 解方程:(1)2(2x 1)9+=;(2)2x 2﹣4x =1(配方法);(3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−= 21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少?22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,____________.(2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点____________,与y 轴交于点____________.(写坐标)(5)在下面的坐标系中画出该抛物线的图象.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 25. 已知:二次函数()221y x m x m =−++−. (1)求证:该抛物线与x(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;是的2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x += 【答案】B【解析】【分析】本题主要考查了一元二次方程的识别.本题根据一元二次方程的定义解答.【详解】解:A 、当0a ≠时,20ax bx c ++=是一元二次方程,故本选项不符合题意; B 、22x x −=是一元二次方程,故本选项符合题意;C 、变形为22x =不是一元二次方程,故本选项不符合题意;D 、11x x+=含有分式,不是一元二次方程,故本选项不符合题意; 故选:B2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根【答案】D【解析】【分析】本题考查一元二次方程根的情况,涉及一元二次方程根的判别式,由题中一元二次方程得到判别式,即可判断答案,熟记一元二次方程根的情况与判别式符号关系是解决问题的关键.【详解】解:一元二次方程2310x x −−=, 3,1,1a b c ==−=−,()()21431∴∆−−××−112=+130=>,∴一元二次方程2310x x −−=的根的情况为有两个不相等的实数根,故选:D .3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x +=【答案】B【解析】【分析】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【详解】解:2430x x −+=,∴243x x −=−,∴24434x x −+=−+,即()221x −=.故选:B4. 若关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 【答案】D【解析】【分析】本题考查了一元二次方程的定义和一元二次方程根的判别式.根据一元二次方程根的判别式,即可求解.【详解】解:∵关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,∴()26490k ∆=−−×>,且0k ≠,解得:1k <且0k ≠,即k 的取值范围是1k <且0k ≠.故选:D5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 【答案】B【解析】【分析】本题考查函数图象的平移,解题的关键是要熟练掌握函数的平移规律:“左加右减,上加下减”,根据函数图象平移规律即可得到答案.【详解】解:将抛物线2y x =先向上平移2个单位长度,得到22y x =+,再向右平移3个单位长度,得到()232y x =−+, 故选:B .6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上三点,则123,,y y y 为的大小关系为( )A. 123y y y >>B. 132y y y >>C. 321y y y >>D. 312y y y >>【答案】B【解析】【分析】本题主要考查了二次函数的性质,掌握当抛物线开口方向向上时,离对称轴越远,函数值越大成为解题的关键.先确定抛物线的对称轴,再确定抛物线开口向上,此时离对称轴越远,函数值越大,据此即可解答.【详解】解:∵()221y x a =−+,∴抛物线的对称轴为直线1x =,开口向上,∴离对称轴越远,函数值越大,∵点()12,A y −离对称轴最远,点()21,B y 在对称轴上,∴132y y y >>.故选:B .7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 【答案】C【解析】【分析】本题主要考查了二次函数与一元二次方程之间的关系,二次函数的定义,二次函数与x 轴有两个交点,则与之对应的一元二次方程有两个不相等的实数根,据此利用判别式求出k 的取值范围,再结合二次项系数不为0即可得到答案.【详解】解:∵抛物线242y kx x =−−与x 轴有两个交点, 的∴()()2Δ44200k k =−−×−⋅> ≠ , ∴2k >−且0k ≠,故选:C .8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >【答案】C【解析】 【分析】本题主要考查了二次函数的性质,先求出二次函数的表达式,再根据与x 轴的交点即可求出0y <的x 的取值范围,解题的关键是求出二次函数2y ax bx c ++的表达式.【详解】解:由表格可知2y ax bx c ++经过()2,0−,()3,0,()0,6−,设解析式为()()23y a x x =+−∴()()02036a +−=−, 解得:1a =,∴抛物线解析式为()()2236y x x x x =+−=−−,∴抛物线图象开口向上,与x 轴的交点为()2,0−,()3,0,∴0y <时x 的取值范围是23x −<<,故选:C .二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 【答案】3【解析】【分析】本题考查一元二次方程的根的定义、代数式求值,根据一元二次方程的根的定义,将m 代入2520x x −−=,求出252m m −=,即可求出22101m m −−的值.【详解】解:∵m 是方程2520x x −−=的一个根,∴252m m −=,∴()2221012512213,m m m m −−=−−=×−=故答案为:3. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 【答案】1或3−【解析】【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()2Δ1410k =+−×=,然后解关于k 的方程即可. 【详解】解:由题意得:()2Δ1410k =+−×=,即:()214k +=,解得:1k =或3−,故答案为:1或3−. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 【答案】2−【解析】【分析】此题考查了一元二次方程的定义及方程的解的定义,将0x =代入方程求出2m =±,再根据一元二次方程的定义求出2m ≠,由此得到答案,正确理解一元二次方程的定义及方程的解的定义是解题的关键.【详解】解:将0x =代入()22240m x mx m −++−=,得240m −=, 解得2m =±,∵20m −≠,∴2m ≠,∴2m =−,故答案为2−.12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________ 【答案】22=302x x −【解析】【分析】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S ab =来解题的方法.本题可根据长方形的周长可以用x 表示另一边长的值,然后根据面积公式即可列出方程.【详解】解:一边长为 c m x ,则另一边长为22cm 2x −, 得22=302x x −. 故答案为:22=302x x −. 13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.【答案】30x −≤≤【解析】【分析】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象上方时,自变量x 的取值范围.根据图象,写出抛物线在直线上方部分的x 的取值范围即可.【详解】∵抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点, ∴由函数图象可得,不等式2ax bx c kx m ++≥+的解集是30x ≤≤﹣,故答案为:30x −≤≤.14. 抛物线()232y x =−−−的顶点坐标是________ . 【答案】()3,2− 【解析】【分析】本题考查了二次函数2()y a x h k =−+(a ,h ,k 为常数,0a ≠)性质,2()y a x h k =−+是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(,)h k ,对称轴是直线x h =. 【详解】解:物线()232y x =−−−的顶点坐标是()3,2−.故答案为:()3,2−.15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 的取值范围为__________ 【答案】35y −≤≤##53x ≥≥− 【解析】【分析】本题考查二次函数的图象与性质,根据题意得当1x >−时,y 随x 的增大而增大,求得当0x =时,=3y −;2x =时,5y =,即可求解.【详解】解:由题意得,10a =>,对称轴1x =−, ∴当1x >−时,y 随x 增大而增大, ∵当0x =时,=3y −;2x =时,5y =,∴当02x ≤≤时,函数值y 的取值范围为35y −≤≤, 故答案为:35y −≤≤.16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来. 【答案】20 【解析】【分析】本题主要考查二次函数的应用,飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值,根据顶点坐标的实际意义可得答案. 【详解】∵()2260 1.5 1.520600s t t t =−=−−+, ∴当20t =时,s 取得最大值600, ∴飞机着陆后滑行20秒才停下来.的的故答案:20.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.【答案】1 【解析】【分析】本题主要考查二次函数图象的对称性,能够熟练运用对称轴求点的横坐标是解题关键.求出对称轴后根据对称性求点B 横坐标,再代入解析式即可解答. 【详解】解:∵()2221y x =−−, ∴抛物线对称轴为直线2x =, ∵2AB =,∴点B 横坐标为213+=,将3x =代入()2221y x =−−得1y =, ∴点B 的纵坐标为1. 故答案为:118. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为______米.【解析】为【分析】本题主要考查了二次函数的实际应用,先建立解析中坐标系,则()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,,利用待定系数法求出抛物线解析式为211633y x =−+,再把B 、C 坐标代入求解即可.【详解】解:建立如下平面直角坐标系,则点()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,、设抛物线的表达式为:()21603y ax a =+≠, 将点A 的坐标代入上式得:160163a =+,解得13a =−,∴抛物线的表达式为:213y x =− 将点B 、C 的坐标代入上式得:()2211623311633m m n m n =−+ =−++①②,由①得1228m m ==−,(舍去),解得:2m n = = 或2m n = =(舍去),米.. 三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 【答案】(1)()40x −,2x(2)每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; (3)不能,理由见解析 【解析】【分析】此题考查了一元二次方程的实际应用,解题的关键是正确分析题目中的等量关系. (1)设每套拖把降价x 元,根据题意列出代数式即可;(2)设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,根据题意列出一元二次方程求解即可;(3)设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,根据题意列出一元二次方程,然后依据判别式求解即可. 【小问1详解】解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套, 每套拖把盈利()1208040x x −−=−元.故答案为:()40x −,()202x +; 【小问2详解】解:设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,依题意得:()()402021242x x −+=, 整理得:2302210x x −+=,解得:121317x x ==,. 又∵需要尽快减少库存,∴17x =.答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; 【小问3详解】解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y −−+=, 整理得:2303000y y −+=. ∵()22Δ43041300300<0b ac =−=−−××=−, ∴此方程无实数解, 即不可能每天盈利1400元. 20. 解方程:(1)2(2x 1)9+=; (2)2x 2﹣4x =1(配方法); (3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−=【答案】(1)121,2x x ==−;(2)1211x x ;(3)12x x ;(4)1233,5x x == 【解析】【分析】(1)直接开平方法解方程即可;(2)先方程两边除以2,将二次项系数化为1,再在方程两边同时加上1,配方开平方即可解答; (3)确定a 、b 、c ,求出△值,当判断方程有解时,带入公式求解即可; (4)整理方程,利用因式分解法解方程即可. 【详解】(1)2(2x 1)9+= 开平方,得:2x 13+=±, 解得:121,2x x ==−; (2)22x 41x −=,二次项系数化为1,得:21x 22x −=, 配方,得:21x 2112x −+=+, 即23(x 1)2−=,开方,得:1x −=解得:1211x x (3)22x 5x 10−+= ∵a=2,b=﹣5,c=1,∴△=224(5)42117b ac −=−−××=﹥0,∴x =,解得:12x x =(4)()2(x 3)4x 3x 0−−−= ()2(x 3)4x 30x +−−=(3)(53)0x x −−=∴30x −=或530x −=,解得:1233,5x x ==. 【点睛】本题考查解一元二次方程的方法,熟练掌握一元二次方程的各种解法的步骤和注意点,灵活选用解法是解答的关键.21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少? 【答案】(1)6万座 (2)70% 【解析】【分析】本题考查有理数乘法的应用,一元二次方程的实际应用:(1)根据计划到今年底,全省5G 基站数是目前的4倍,列出算式计算即可;(2)设全省5G 基站数量的年平均增长率为x ,根据题意,列出一元二次方程,进行求解即可 【小问1详解】解:由题意得:1.546×=(万座); 答:计划在今年底,全省5G 基站数量是6万座. 【小问2详解】解:设全省5G 基站数量的年平均增长率为x ,由题意得:()26117.34x +=,解得:120.7, 2.7x x ==−(不符合题意,舍去); 答:全省5G 基站数量的年平均增长率为70%.22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由. 【答案】(1)当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈 (2)羊圈的面积不能达到2650m ,理由见解析 【解析】【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键. (1)设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解. 【小问1详解】解:设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -,根据题意,得()722640x x −=,化简,得2363200x x −+=,解方程,得116x =,220x =,当116x =时,72240x −=, 当220x =时,72232x −=.答:当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈. 【小问2详解】不能,理由如下:根据题意,得()722650x x −=, 化简,得2363250x x −+=,()22436432540b ac −=−×=−−< , ∴该方程没有实数根. ∴羊圈的面积不能达到2650m 23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,是____________. (2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点,与y 轴交于点____________.(写坐标) (5)在下面的坐标系中画出该抛物线的图象.【答案】(1)1;4 (2)1<(3)见解析 (4)(1,0)−和(3,0);(0,3) (5)见解析 【解析】【分析】本题考查了二次函数的性质、抛物线与x 轴的交点坐标、二次函数图象与几何变换以及二次函数的最值,熟练掌握二次函数的性质是解题的关键.(1)根据二次函数的顶点式找出抛物线的顶点坐标,再根据二次项系数为1−得出抛物线开口向下,由此即可得出结论;(2)根据抛物线开口方向结合抛物线的对称轴,即可找出单增区间;(3)找出函数2y x =−的顶点坐标,结合函数2(1)4y x =−−+的顶点坐标,即可找出平移的方法; (4)令0y =可得出关于x 的一元二次方程,解方程求出x 值,由此得出抛物线与x 轴的交点坐标;令0x =求出y 值,由此即可得出抛物线与y 轴的交点坐标;(5)列表,描点,连线即可画出该抛物线的图象. 【小问1详解】解: 函数解析式为2(1)4y x =−−+,∴抛物线的开口向下,顶点坐标为(1,4). ∴当1x =时,抛物线有最大值,是4.故答案为:1;4; 【小问2详解】解: 抛物线的开口向下,对称轴为1x =,∴当1x <时,y 随x 的增大而增大.故答案为:1<; 【小问3详解】解: 函数2y x =−的顶点坐标为(0,0),∴将函数2y x =−的图象先向右平移1个单位长度,再向上平移4个单位长度即可得出函数2(1)4y x =−−+的图象.【小问4详解】解:令0y =,则有2(1)40x −−+=, 解得:11x =−,23x =,∴该抛物线与x 轴的交点坐标为(1,0)−和(3,0).当0x =时,2(01)43y =−−+=, ∴该抛物线与y 轴的交点坐标为(0,3).故答案为:(1,0)−和(3,0);(0,3). 【小问5详解】 解:列表:x 1−0 1 2 3 y343描点,连线,该抛物线的图象如图:.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 【答案】()221y x =−−+ 【解析】【分析】本题主要考查了求二次函数解析式,先把解析式设顶点式,再利用待定系数法求解即可. 【详解】解:设此二次函数解析式为()()2210y a x a =−+≠,把()3,0代入()()2210y a x a =−+≠中得:()20321a =−+,解得1a =−,∴此二次函数解析式为()221y x =−−+. 25. 已知:二次函数()221y x m x m =−++−.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.【答案】(1)见解析 (2)2y x x 2−− 【解析】【分析】(1)根据()()22Δ2418m m m =+−−=+的符号,即可求解,为(2)由根与系数关系,列出()()2224A B A B A B AB x x x x x x =−=+−⋅,即可求解,本题考查了根的判别式,根据系数关系,解题的关键是:熟练掌握根的判别式,根据系数关系.【小问1详解】证明:()()22Δ2418m m m =+−−=+,20m ≥ ,2Δ880m ∴=+≥>,故抛物线与x 轴一定有两个交点,【小问2详解】解:令0y =,得()2210x m x m −++−=, 由(1)知Δ0>,2A B x x m ∴+=+,1A B x x m ⋅=−,()()()()22224241A B A B A B AB x x x x x x m m =−=+−⋅=+−−, ()()22419m m ∴+−−=,解得1m =±,A 在原点左边,B 在原点右边,10A B x x m ∴⋅=−<,1m ∴<,1m ∴=−,故抛物线的表达式为:2y x x 2−−.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;【答案】(1)245y x x =−−(2)当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − 【解析】【分析】本题考查二次函数的综合应用,熟练掌握的图像和性质是解题的关键. (1)利用待定系数法求函数解析式即可;(2)过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −,则25PQ x x =−+,然后根据ABPS PQ OB =⋅ 计算即可. 【小问1详解】解:当xx =0时,5y =−,∴点A 的坐标为()0,5−, 当0y =时,50x −=,解得5x =,∴点B 的坐标为()5,0,设抛物线的解析式为()()51y a x x =−+,代入()0,5−得:55a −=−,解得:1a =,∴二次函数的解析式为()()25145y x x x x =−+=−−; 【小问2详解】解:过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −, ∴225(45)5PQ x x x x x =−−−−=−+, ∴()2211551255522228ABP S PQ OB x x x =⋅=×−+×==−−+ , 当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − .。
九年级上期第一次月考数学试题
_ _ _ _ _ _ _ _ _ _ _名姓_ _ _ _ _ _ _ _ _ _ _号考_ _ _ _ _ _ _ _ _ _ _级班九年级上期第一次月考数学试题(本试卷共 8 页,满分 150 分,时间 120 分钟 )一、选择题(此题共10 小题,每题 4 分,共 40 分,以下各题只有一个结论是正确的,请把正确选项的代号填入题后括号内.)1 、以下计算正确的选项是()(A).8 42(B)236(C)235( D)( 3)232 、以下二次根式中与 2 是同类二次根式的是()( A.) 1232(D )18( B)(C )233 、以下一元二次方程中,有两个不相等的实数根的方程是()(A)x240(B)4x24x10(C)x2x 30(D)x2 2 x104 、用配方法解方程x2+ x-1=0,配方后所得方程是()1313( A )( x- )2=4( B )( x+ )2=2241515( C ) (x+ )2=( D) (x- )2=24245、已知:20n 是整数,则知足条件的最小正整数n 为()(A) 2(B)3(C) 4(D)56、以下图形中既是轴对称图形又是中心对称图形的是()(A)(B)(C)(D)7 、已知a0, 则点 p( a21, a 3) 对于原点的对称点p1在()( A )第一象限( B)第二象限( C )第三象限( D)第四象限8 、若x为随意实数时,二次三项式26x c 的值都不小于0,则常数c x知足的条件是 ()( A )c≥ 0( B)c≥9( C)c> 0( D)c> 99 .已知:m,n是两个连续自然数(m n) ,且q mn.设p q n q m ,则 p ()(A)老是奇数(B)老是偶数(C).有时是奇数,有时是偶数(D)有时是有理数,有时是无理数C10.如图,在等边△ ABC 中, AC9,点 O在 AC上,且 AO 3 ,点 P 是 AB 上一动点,连接OP ,将线段 OP D绕点 O 逆时针旋转60获得线段 OD .要使点 D 恰巧落在OBC 上,则 AP 的长是()A( A)4(B)5( C)6(D)8P B(第 10 题图)二、填空题(此题共10 小题,每题 3 分,共 30分,请把最后结果填在题中横线上.)11、要使二次根式2x 6存心义, x 应知足的条件是.12a2b 20 ,那么点P( a, b)对于原点对称的点P1的坐、已知5标是。
九年级上册数学第一次月考试卷(含答案)
九年级月考(一)数学试题一.选择题(10×4)1.二次函数2(1)2y x =-+的最小值是( )A .2-B .2C .1-D .12.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为A. 0B. -1C. 1D. 23.二次函数22(1)3y x =-+的图象的顶点坐标是( ) A .(13),B .(13)-,C .(13)-,D .(13)--,4.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )5.将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大A. 7B. 6C. 5D. 4 6. 如图所示,A (1x ,1y )、B (2x ,2y )、C (3x ,3y )是函数xy 1=的图象在第一象限分支上的三个点,且1x <2x <3x ,过A 、B 、C 三点分别作坐标轴的垂线,得矩形ADOH 、BEON 、CFOP ,它们的面积分别为S 1、S 2、S 3,则下列结论中正确的是( ) A .S 1<S 2<S 3 B .S 3 <S 2< S 1C .S 2< S 3< S 1D .S 1=S 2=S 37.已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过 ( ) A (-a ,-b ) B (a ,-b ) C (-a ,b ) D (0,0)8.在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、 向右平移2个单位,那么在新坐标系下抛物线的解析式是A .y =2(x -2)2 + 2B .y =2(x + 2)2-2C .y =2(x -2)2-2D .y =2(x + 2)2 + 2y–1 33O xP1 xy C OA B9.如图,正方形ABOC 的边长为2,反比例函数ky x=过点A ,则k 的值是( ) A .2 B .2- C .4 D .4-10.一个函数的图象如图,给出以下结论: ①当0x =时,函数值最大;②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0.其中正确的结论是( ) A .①② B .①③C .②③D .①②③五、填空题(5×5)11.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.则他将铅球推出的距离是 m . 12.数学课本上,用“描点法”画二次函数2y ax bx c =++的图象时,列了如下表格:x… 2-1- 0 1 2 … y…162- 4-122- 2-122- …根据表格上的信息回答问题:该二次函数2y ax bx c =++在3x =时,y =13. 已知函数22y x x c =-++的部分图象如图所示,则c=______,当x______时,y 随x 的增大而减小. 14.如图,在反比例函数2y x=(x<0)的图象上,有点P 1(x 1,y 1),p 2(x 2,y 2)若x 1<x 2,则y 1___y 2 .15.如图,在平面直角坐标系中,函数ky x=(0x >,常数0k >)的图象经过点(12)A ,,()B m n ,,(1m >),过点B 作y 轴的垂线,垂足为C .若ABC △的面积为2,则点B 的坐标为 .(第10(第7题)ox13y OxC A (1,2)B (m ,n )三.解答题(85分)16.(8分)已知一次函数y =ax +b 的图像与反比例函数4y x=的图像交于A (2,2),B (-1,m ),求一次函数的解析式.17.(8分)已知二次函数y=x 2-2x-1。
人教版九年级上册数学第一次月考试卷含答案
人教版九年级上册数学第一次月考试题一、选择题。
(每小题只有一个正确答案)1.下列方程中,关于x 的一元二次方程是( )A .ax 2+bx+c=0B .x 2-x (x+7)=0C .2x 2-y-1=0D .x 2-2x-3=0 2.抛物线y=-2x 2-1的顶点坐标是( )A .(0,-2)B .(-2,-1)C .(0,-1)D .(1,0)- 3.下列一元二次方程中有两个相等实数根的是A .2x 30+=B .2x 2x 0+=C .()2x 10+=D .()()x 3x 10+-= 4.二次函数y=ax 2+bx ﹣1(a≠0)的图象经过点(1,1),则a+b+1的值是( ) A .﹣3 B .﹣1C .2D .3 5.二次函数()2221y x =+-的图象是( )A .B .C .D . 6.关于抛物线y=﹣2(x ﹣1)2说法正确的是( )A .顶点坐标为(﹣2,1)B .当x <1时,y 随x 的增大而增大C .当x=0时,y 有最大值1D .抛物线的对称轴为直线x=﹣27.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( ) A .122y y >> B .212y y >> C .122y y >> D .212y y >> 8.已知关于x 的方程x 2-3mx+5m-2=0的一个根为x=2,且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长为( )A .8B .10C .8或10D .6m 9.如图,在长为70 m ,宽为40 m 的长方形花园中,欲修宽度相等的观赏路(阴影部分所示),要使观赏路面积占总面积的18,则路宽x 应满足的方程是( )A .(40-x)(70-x)=2450B .(40-x)(70-x)=350C .(40-2x)(70-3x)=2450D .(40-2x)(70-3x)=35010.如图所示,桥拱是抛物线形,其函数的表达式为 y=﹣14x 2,当水位线在 AB 位置时,水面宽 12m ,这时水面离桥顶的高度为( )A .3mB .6mC .4mD .9m11.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨2元,月销售量就减少10千克.设每千克涨x 元,月销售利润为y 元,则y 与x 的函数关系式为( )A .y =(50+x-40)(500﹣10x )B .y =(x+40)(10x ﹣500)C .y =(x ﹣40)[500﹣5(x ﹣50)]D .y =(50+x-40)(500﹣5x )12.如图抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②0a b c -+<;③20b a +=;④当y <0时,x 的取值范围是-1<x <3;⑤当x <0时,y 随x 增大而增大;⑥方程ax 2+bx +c =2有两个不等的实数根,其中结论正确的个数是( )A .4个B .3个C .2个D .1个二、填空题13.方程5x 2=6x ﹣8一次项系数是________14.抛物线y =x 2的对称轴是____15.若 a 是方程 x 2﹣x+5=0 的一个根,则代数式 a 2﹣a 的值是___.16.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为________. 17.若关于x 的一元二次方程kx 2+2x +1=0有实数根,则k 的取值范围是____. 18.如图,P 是抛物线y=﹣x 2+x+2在第一象限上的点,过点P 分别向x 轴和y 轴引垂线,垂足分别为A ,B ,则四边形OAPB 周长的最大值为__三、解答题19.解方程:(1)(31)31x x x +=+(2)x 2-4x+1=020.把二次函数y =﹣2x 2﹣4x+5化成y=a(x-h)2+k 形式,并求出它的图象顶点坐标、对称轴21.已知二次函数的图象过顶点(8,9),且其图象过点(0,1)(1)求二次函数的解析式.(2)判断点A(16,1)是否在此二次函数的图象上?22.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为11米),围成中间隔有一道篱笆的长方形花圃.()1如果要围成面积为45平方米的花圃,那么AD 的长为多少米?()2能否围成面积为60平方米的花圃?若能,请求出AD 的长;若不能,请说明理由.23.为落实国务院房地产调控政策,使“居者有其屋”.某市加快了廉租房的建设力度,2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?24.如图,抛物线y=x 2 +bx+c 与x 轴交于A (﹣1,0),B (2,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P ,当点P 在该抛物线上滑动到什么位置时,满足6PAB S =△,并求出此时P 点的坐标.25.某大型商场出售一种时令鞋,每双进价100元,售价300元,则每天能售出400双.经市场调查发现:每双售价每降价1元,则每天可多售出5双.(1)如果每双降价40元 ,每天总获利润多少元?(2)每双时令鞋售价应定为多少元时,商场可获得最大利润?最大利润是多少?26.如图,抛物线213222y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点(1)求A 点和点B 的坐标;(2)判断△ABC 的形状,证明你的结论;(3)点M 是x 轴上的一个动点,当MD+MC 的值最小时,求点M 的坐标.参考答案1.D2.C3.C4.D5.C6.B7.A8.B9.C10.D11.D12.A13.﹣614.y 轴15.-516.1117.k ≠0且k ≤118.619.(1) 121,13x x =-=;(2) 122,2x x ==20.()22+17y x =-+,对称轴为直线1x =-,顶点坐标为()1,7-. 21.(1) ()21898y x =--+;(2)在,理由见详解. 22.(1)AD 的长为5米;()2不能围成面积为60平方米的花圃.23.(1)50%;(2)27.24.(1)2y x x 2=--;(2)(3,4),(﹣2,4)25.(1)如果降价40元,每天总获利96000元;(2)每双售价为240元时,每天的总获利最大,最大获利是98000元.26.(1)()()4,0,1,0B A -;(2)△ABC 是直角三角形,详见解析;(3)24,041M ⎛⎫ ⎪⎝⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长春市第五十六中学
九年级数学试卷
时 间 : 80分 分 :120分
一、选择题(每小题3分,共24分)
1. 下列根式中不是最简二次根式的是------------------------------------( ).
A .2
B .6
C .8
D . 10
2. 下列计算的结果正确的是--------------------------------------------( )
A .3+ 2= 5
B .3•2=6
C .8=4
D .2
)3(-=-3
3. 方程2x x =的解是--------------------------------------------------( )
A .1x =
B .0x =
C .1210x x ==,
D .1210x x =-=,
4.下面的四个方程中,是一元二次方程的是--------------------------------( ) A.(x-2)(x+2)=(x+1)2
B. 3x 2
-2y+1=0 C. 2x 2
-3x-5=0 D.
531
22
=+
+x
x
5. 已知△ABC 的两边分别为6 cm 和3 cm ,第三边长是一元二次方程
(x-4)(x-2)=0的一根,则△ABC 周长为---------------------------------( ) A 、11cm B 、13cm C 、11 cm 或13cm D 、无法确定
6.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是-----------( ) A.012
=+x B.012
=-+x x C.0322
=++x x D.01442
=+-x x 7. 已知A B C D E F △∽△,且:1:2A B D E =,则A B C △的面积与D E F △的面积 之比为------------------------------------------------------------( ) A .1∶2
B .1∶4
C .2∶1
D .4∶1
8.某地区2007年投入教育经费2500万元,预计2009年投入3600万元.设这两年投入 教育经费的年平均增长百分率为x ,那么下面列出的方程正确的是---------( ) A .2
25003600x =
B .2
2500(1%)3600x +=
C .2
2500(1)3600x +=
D .2
2500(1)2500(1)3600x x +++=
二、填空题(每小题3分,共18分)
9. 当x ____________时,二次根式32-x 有意义
10. 8
)2
(2
)1
(
3+
+
=
-x
x
x的一般形式是。
11. 若△ABC∽△DEF,且AB∶DE=1∶4,对应面积比_______________________。
12. 如果二次三项式x2-6x+m2是一个完全平方式,那么m的值是。
13. 请你写出一个有一根为1的一元二次方程:。
14. 在□ABCD中,E在D C上,若:1:2
D E E C=,则:
B F B E=。
三、计算:(每小题5分,共20分)
15.)3
)(
27
(-
-
- 16. 18÷8×
2
27
17.+= 18.2(8-3)+(2-3)(2+3)
四、用适当的方法解方程(每小题5分,共20分)
19.0
36
252=
-
x 20. ( x-3)2+2x(x-3)=0
21. 0
5
4
2=
-
+x
x 22. 0
3
7
22=
+
-x
x)
五、解答题(每小题7分,共28分)
23. 一元二次方程230
x mx
++=的一个根为1
-,求另一个根及m的值。
D
C
A
B
F
E
(14题)
24如图,已知E是矩形A B C D的边C D上一点,B F A E
于F,试说明:△∽△.
A B F E A D
25. 如图3-9-1所示,某小区规划在一个长为40米,宽为26米的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB平行,另一条与AB垂直,其余部分种草,若使每一块草坪的面积都为144米2,求甬路的宽度?
26. .某校八年一班的一节数学活动课安排了测量操场上悬挂国旗的旗杆的高度.甲、乙、丙三个学习小组设计的测量方案如图所示:甲组测得图中BO=60米,OD=3.4米,CD=1.7米;乙组测得图中,CD=1.5米,同一时刻影长FD=0.9米,EB=18米;丙组测得图中,EF∥AB、FH∥BD,BD=90米,EF=0.2米,人的臂长(FH)为0.6米,请你任选一种方案,利用实验数据求出该校旗杆的高度.
六、猜想、探究题(共10分)
27.在等边A B C △中,点D 为A C 上一点,连结B D ,直线l 与A B B D B C ,,分别相交于点E P F ,,,且60BPF ∠= .
(1)如图1,写出图中所有与B P F △相似的三角形,并选择其中一对给予证明; (2)若直线l 向右平移到图2的位置时(其它条件不变),(1)中的结论是否仍然成立?若
成立,请写出来(并证明),若不成立,请说明理由;
(3)若直线l 向右平移到、图3的位置时(其它条件不变),(1)中的结论是否仍然成立?
若成立,请写出来(不证明),若不成立,请说明理由;
A
B C F
D
P 图3
A
B
C D P
图2
E
l l E F A B
C
D P
图1
l E
F。