2005-2009年湖南省常德市中考数学试卷及答案(5套)

合集下载

湖南常德市初中毕业学业考试数学试卷及答案.doc

湖南常德市初中毕业学业考试数学试卷及答案.doc

湖南常德市初中毕业学业考试数学试题卷一.填题(本大题8个小题,每小题3分,满分24分) 1.2的倒数为________. 2.函数26y x =-中,自变量x 的取值范围是_________.3.如图1,已知直线AB ∥CD ,直线EF 与直线AB 、CD 分别交于点E 、F ,且有170,2∠=︒∠=则__________.4.分解因式:269___________.x x ++=5.已知一组数据为:8,9,7,7,8,7,则这组数据的众数为____.6.化简:123______.-=7.如图2,四边形ABCD 中,AB ∥CD ,要使四边形ABCD 为平行四边形,则可添加的条件为_____________________.(填一个即可)8.如图3,一个数表有7行7列,设ij a 表示第i 行第j 列上的数(其中i=1,2,3,...,j=1,2,3,...,).例如:第5行第3列上的数537a =. 则(1)()()23225253______.a a a a -+-= (2)此数表中的四个数,,,,np nk mp mk a a a a 满足()()______.npnk mk mp aa a a -+-=DABC图21 2 3 4 3 2 1 2 3 4 5 4 3 2 3 4 5 6 5 4 3 4 5 6 7 6 5 4 5 6 7 8 7 6 5 6 7 8 9 8 7 6 7 8 9 10 9 8 7图3图1BD ACE F1 2二.选择题(本大题8个小题,每小题3分,满分24分) 9.四边形的内角和为( )A 。

900B 。

180oC 。

360oD 。

720o10.某市在一次扶贫助残活动中,共捐款2580000元,将2580000用科学记数法表示为( ) A 。

72.5810⨯元 B 。

62.5810⨯元 C 。

70.25810⨯元 D 。

625.810⨯元11.已知⊙O 1的半径为5㎝,⊙O 2的半径为6㎝,两圆的圆心距O 1O 2=11㎝,则两圆的位置关系为( ) A 。

2009年常德市中考数学试题及谜底

2009年常德市中考数学试题及谜底

3,已知//AE BD ,∠1=130o ,∠,则∠C =

.一个函数的图象关于y 轴成轴对称图形时,称该函数为偶函数. 那么在下列四个函数
2x =;②31y x =--;③6y x
=
2
1x +中,偶函数是 所有偶函数的序号).
二、选择题(本大题8个小题,每小题324分)
2的结果是( )图1
图3
图2
图5
活动的指定产品.利民家电超市该型电视机的售价为2000元/台,如果农户到的政府补贴.下面的图表是这家超市该品周的每周销量统计图表.
B型电视机销量折线图
条)
图6
图7
起汉寿县太子庙镇,北至桃源县盘塘镇创元工业园.在这一走廊内
2010年达到743.6亿元,那年的工业总产值年平均增长率是多少?《常德工业走廊建设发展规
1200亿元,若继续保持上面
是直角三角形.
图8
图9图10 图11
图8
∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分
5
x-
6
=,。

常德市初中毕业学业考试试卷数学试题及答案(word版)

常德市初中毕业学业考试试卷数学试题及答案(word版)

2007年常德市初中毕业学业考试试卷数 学考生注意:1.请考生在总分栏上面的座位号方格内工整地填写好座位号; 2.本学科试卷共六道大题,满分150分,时量120分钟; 3.考生可带科学计算器参加考试.一、填空题(本大题8个小题,每小题4分,满分32分) 1.|7|-= .2.分解因式:22b b -= .3.如图1,若AB CD ∥,150∠=,则2∠= .4.若反比例函数ky x=的图象经过点(12)-,,则该函数的解析式为 . 5.据科学家测算,用1吨废纸造出的再生好纸相当于0.3~0.4亩森林木材的造纸量.我市今年大约有46.710⨯名初中毕业生,每个毕业生离校时大约有12公斤废纸,若他们都把废纸送到回收站生产再生好纸,则至少可使森林免遭砍伐的亩数为 亩. 6.分式方程532x x=-的解为x = . 7.如图2,O 的直径CD 过弦EF 的中点G ,40EOD ∠=,则DCF ∠= .8.观察下列各式:3211=332123+= 33221236++= 33332123410+++=……猜想:333312310++++= .二、选择题(本题中的选项只有一个是正确的,请你将正确的选项填在下表中,本大题8个小题,每小题4分,共32分) 9.下列运算正确的是( ) A .236a a a =B .22124aa --=-C .235()a a -= D .22223a a a --=-1 2 A BDC图1EFCD G O图210.函数8y x =-的自变量x 的取值范围是( )A .8x <B .8x >C .8x ≤D .8x ≥11.下面图形中是正方体平面展开图的是( )12.若两圆的半径分别为3cm ,5cm ,圆心距为4cm ,则两圆的位置关系为( ) A .外切 B .内含 C .相交 D .内切13.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .210x +=B .2210x x ++= C .2230x x ++=D .2230x x +-=14.下列说法正确的是( ) A .“明天的降水概率为30%”是指明天下雨的可能性是30% B .连续抛一枚硬币50次,出现正面朝上的次数一定是25次C .连续三次掷一颗骰子都出现了奇数,则第四次出现的数一定是偶数D .某地发行一种福利彩票,中奖概率为1%,买这种彩票100张一定会中奖 15.如图4,正方形OABC 的边长为2,则该正方形绕点 O 逆时针旋转45后,B 点的坐标为( ) A .(22),B .(022),C .(220),D .(02),16.某电信部门为了鼓励固定电话消费,推出新的优惠套餐:月租费10元;每月拔打市内电话在120分钟内时,每分钟收费0.2元,超过120分钟的每分钟收费0.1元;不足1分钟时按1分钟计费.则某用户一个月的市内电话费用y (元)与拔打时间t (分钟)的函数关系用图象表示正确的是( )三、(本大题4个小题,每小题6分,满分24分)17.计算:2012279tan303-⎛⎫++- ⎪⎝⎭.A .B .C .D .CBAOyx图4y 元 t 分钟120 O10 A .y 元 t 分钟 120 O10 B .y 元t 分钟120 O10 C . y 元t 分钟 120 O10 D .18.先化简再求值:21111b bb b b ⎛⎫+++÷⎪--⎝⎭,其中3b =. 19.解方程组1(1)32(1)6(2)xy x y ⎧+=⎪⎨⎪+-=⎩ 20.图6-2是中国象棋棋盘的一部分,图中红方有两个马,黑方有三个卒子和一个炮,按照中国象棋中马的行走规则(马走日字,例如:按图6-1中的箭头方向走),红方的马现在走一步能吃到黑方棋子的概率是多少?四、(本大题2个小题,每小题8分,满分16分)21.游艇在湖面上以12千米/小时的速度向正东方向航行,在O 处看到灯塔A 在游艇北偏东60方向上,航行1小时到达B 处,此时看到灯塔A 在游艇北偏西30方向上.求灯塔A 到航线OB 的最短距离(答案可以含根号).22.如图8,已知AB AC =,(1)若CE BD =,求证:GE GD =;(6分) (2)若CE m BD =(m 为正数),试猜想GE 与GD 有何关系(只写结论,不证明).(2分)马 卒卒炮马卒马图6-1图6-2ABO图7北6030图8 A BC D GE23.某化工厂现有甲种原料7吨,乙种原料5吨,现计划用这两种原料生产两种不同的化工产品A 和B 共8吨,已知生产每吨A B ,产品所需的甲、乙两种原料如下表:甲原料 乙原料A 产品 0.6吨 0.8吨B 产品1.1吨0.4吨销售A B ,两种产品获得的利润分别为0.45万元/吨、0.5万元/吨.若设化工厂生产A 产品x 吨,且销售这两种产品所获得的总利润为y 万元. (1)求y 与x 的函数关系式,并求出x 的取值范围;(8分) (2)问化工厂生产A 产品多少吨时,所获得的利润最大?最大利润是多少?(2分)24.阅读理解:市盈率是某种股票每股市价与每股盈利的比率(即:某支股票的市盈率=该股票当前每股市价 该股票上一年每股盈利).市盈率是估计股票价值的最基本、最重要的指标之一.一般认为该比率保持在30以下是正常的,风险小,值得购买;过大则说明股价高,风险大,购买时应谨慎.应用:某日一股民通过互联网了解到如下三方面的信息: ①甲股票当日每股市价与上年每股盈利分别为5元、0.2元 乙股票当日每股市价与上年每股股盈利分别为8元、0.01元 ②该股民所购买的15支股票的市盈率情况如下表: 编号 1234 5 6 7 8 9 10 11 12 13 14 15 市盈率25 800 61191828283559806280808243③丙股票最近10天的市盈率依次为:20 20 30 28 32 35 38 42 40 44 根据以上信息,解答下列问题:(1)甲、乙两支股票的市盈率分别是多少?(2分)(2)该股民所购买的15支股票中风险较小的有几支?(2分) (3)求该股民所购15支股票的市盈率的平均数、中位数与众数;(3分) (4)请根据丙股票最近10天的市盈率画出折线统计图,并依据市盈率的有关知识和折线统计图,就丙股票给该股民一个合理的建议.(3分)图91 2 3 4 5 6 7 8 9 10天数市盈率 2025 30 35 404525.如图10所示的直角坐标系中,若ABC △是等腰直角三角形,82AB AC ==,D 为斜边BC 的中点.点P 由点A 出发沿线段AB 作匀速运动,P '是P 关于AD 的对称点;点Q 由点D 出发沿射线DC 方向作匀速运动,且满足四边形QDPP '是平行四边形.设平行四边形QDPP '的面积为y ,DQ x =. (1)求出y 关于x 的函数解析式;(5分)(2)求当y 取最大值时,过点P A P ',,的二次函数解析式;(4分)(3)能否在(2)中所求的二次函数图象上找一点E 使EPP '△的面积为20,若存在,求出E 点坐标;若不存在,说明理由.(4分)26.如图11,已知四边形ABCD 是菱形,G 是线段CD 上的任意一点时,连接BG 交AC 于F ,过F 作FH CD ∥交BC 于H ,可以证明结论FH FGAB BG=成立(考生不必证明). (1)探究:如图12,上述条件中,若G 在CD 的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;(5分) (2)计算:若菱形ABCD 中660AB ADC ==,∠,G 在直线..CD 上,且16CG =,连接BG 交AC 所在的直线于F ,过F 作FH CD ∥交BC 所在的直线于H ,求BG 与FG 的长.(7分) (3)发现:通过上述过程,你发现G 在直线CD 上时,结论FH FGAB BG=还成立吗?(1分)常德市2007年初中毕业会考试卷(新课标版)图11ABDFCHG图12A BCDFHG图10x yA PB D F P ' Q C数 学参考答案及评分标准说明:(一)《答案》中各行右端所注分数表示正确作完该步应得的累加分数,全卷满分150分. (二)《答案》中的解法只是该题解法中的一种或几种,如果考生的解法和本《答案》不同,可参照本答案中的标准给分.(三)评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而末改变本题的内容和难度者,视影响程度决定后面部分的得分,但原则上不超过后面部分应得分数的一半,如有严重的概念错误,就不给分.一、填空题(本小题8个小题,每小题3分,满分24分) 题号 1 23 4 5 6 7 8 答案7(2)b b - 1302y x=-241.2 3-20552或3025二、选择题(本小题8个小题,每小题3分,满分24分) 题 号 9 10 11 12 13 14 15 16 答 案DDCCDABB三、(本小题2个小题,每小题5分,满分10分)17.解:原式=1+9+33-33 ··································································· 4分=10 ······································································· 6分18.解:原式22111111b b bb b b-+-=⨯-+=+ ···································································· 5分 B =3时,原式41 ················································································· 6分 19.解:由(1)得:x +3=3y ,即x =3y -3 (3) ······················································ 2分由(2)得:2x -y =4 (4) ······················································ 4分 把(3)代入(4)得: y =2把y =2代入(3)得: x =3 ,因此原方程组的解为3,2.x y =⎧⎨=⎩··························· 6分20.解:红方马走一步可能的走法有14种,其中有3种情况吃到了黑方棋子 ····································································· 4分 则红马现在走一步能吃到黑方棋子的概率是143. ·················································· 6分 四、 (本大题2个小题,每小题8分,满分16分)21.解:过点A 作AC ⊥OB 交OB 于C ,则AC 为所求,设AC =x据题意得:OB=12千米,∠AOC=30,∠ABC =60 ·············································· 1分在Rt △ACO 和Rt △ACB 中:tan 30tan 60333x x OC BCOC x BC x ====,,则, ·········································································· 5分而OC +CB ==+x x 33312,解之得:x =33(千米)············································ 7分 答:灯塔A 到航线OB 的最短距离为33千米. ··················································· 8分 22.(1)证明:过D 作DF //CE ,交BC 于F , 则∠E =∠GDF …………………………2分 ∵AB =AC ,DF //CE∴∠DFB =∠ACB =∠ABC∴DF =DB =EC …………………………4分又∠DGF =∠EGC …………………………5分 ∴ △GDF ≌△GEC∴GE =GD …………………………6分 (2) GE = m ·GD ………………………………8分 五、 (本大题2个小题,每小题10分,满分20分) 23.解:(1)据题意得:y =0.45x +(8-x )×0.5 =-0.05x +4 ····························································· 3分 又生产两种产品所需的甲种原料为:0.6x +1.1×(8-x ), 所需的乙种原料为:0.8x +0.4×(8-x ) ···························································· 5分则可得不等式组()()0.6 1.1870.80.485x x x x +⨯-⎧⎪⎨+-⎪⎩≤≤ 解之得3.6 4.5x ≤≤ ···························· 8分(2) 因为函数关系式y =-0.05x +4中的-0.05<0,所以y 随x 的增大而减小.则由(1)可知当x =3.6时,y 取最大值,且为3.82万元. 答:略 ····································································································· 10分 24.解:(1)甲股票的市盈率为:5÷0.2=25乙股票的市盈率为:8÷0.01=800……………………………………2分 (2)5 支 ……………………4分 (3)平均数为100,中位数为59 众数为80 ……………………7分 (4)画图 ……………………9分合理即可(如:存在一定的风险, 建议卖掉;继续观察市盈率变化情况, 如果继续增加,可考虑减少持有量;) ···························································· 8分六、 (本大题2个小题,每小题13分,满分26分)EAB CGD 图1 F 1 2 3 4 5 6 7 8 9 10 2025 303540 45 市盈率 天数 图225.解:(1)∵△ABC 为等腰直角三角形,AB =AC =82∴BC =16∵D 为斜边BC 的中点 ∴AD =BD =DC =8 ······················································································· 2分 ∵四边形PDQP '为平行四边形,DQ =x ∴AF PF FP '===x 21故DF =AD -AF =218-x 则平行四边形PDQP '的面积2118822y DQ DF x x x x ⎛⎫==-=-+ ⎪⎝⎭ ·················· 5分 (2)当x =8时,y 取最大值,此时Q 点运动到C 点,P 点运动到AB 的中点,则点A 、P 、P '的坐标分别为(0,8)、(-44,)、()44,.设过上述三点的二次函数解析式为82+=ax y , 代入P 点坐标有8412+-=x y ····································································· 9分 (3)假设在8412+-=x y 的图象上存在一点E ,使20PP E S '=△ 设E 的坐标为(x ,y ), 则1|||4|202PP E S PP y ''=-=△.即=-|4|y 5,可得=y 9、1-,代入解析式可得E 点坐标为()()161,6---,、. ··· 13分 26.解:(1)结论BGFGAB FH =成立 ····································································· 1分 证明:由已知易得//FH AB ∴BCHCAB FH =································································································ 3分 ∵FH //GCBG FG BC HC = ∴BGFGAB FH = ············································································· 5分 (2)∵G 在直线CD 上 ∴分两种情况讨论如下:① G 在CD 的延长线上时,DG =10 如图3,过B 作BQ ⊥CD 于Q ,由于ABCD 是菱形,∠ADC =60, ∴BC =AB =6,∠BCQ =60, ∴BQ =33,CQ =3BA D C 图3F H GQ∴BG =972]33[1922=+ ········································································· 7分 又由FH //GC ,可得,BCBHGC FH = 而三角形CFH 是等边三角形∴BH =BC -HC =BC -FH =6-FH∴6616FH FH -=,∴FH =1148由(1)知BG FGAB FH = ∴FG =481162979711611FH BG AB == ···························································· 9分 ② G 在DC 的延长线上时,CG =16如图4,过B 作BQ ⊥CG 于Q , 由于ABCD 是菱形,∠ADC =600, ∴BC =AB =6,∠BCQ =600, ∴BQ =33,CQ =3∴BG =22]33[13+=14………………………………11分 又由FH //CG ,可得BCBHGC FH = ∴616BHFH =,而BH =HC -BC =FH -BC =FH -6 ∴FH =548又由FH //CG ,可得CGFHBG BF = ∴BF =5421654814=÷⨯ ∴FG =14+5112542= ····················································································· 12分 (3)G 在DC 的延长线上时,586548=÷=AB FH 58145112=÷=BG FG 所以BGFGAB FH =成立 结合上述过程,发现G 在直线..CD 上时,结论BGFGAB FH =还成立. ························ 13分ABC FHGD图4。

常德市中考数学试卷附解析

常德市中考数学试卷附解析

常德市2015年中考数学试卷(附解析)常德市2015年中考数学试卷(附解析)一、选择题(本大题8个小题,每小题3分,满分24分)1、-2的倒数等于A、2B、-2C、D、-【解答与分析】由倒数的意义可得:答案为D2、下列等式恒成立的是:A、B、C、D、【解答与分析】这是整式的运算,乘法,积的乘方,同类项的合并:答案为B3、不等式组的解集是:A、B、C、D、无解【解答与分析】这是一元一次不等式组的解法:答案为C 4、某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为,,则产量稳定,适合推广的品种为:A、甲、乙均可B、甲C、乙D、无法确定【解答与分析】这是数据统计与分析中的方差意义的理解,平均数相同时,方差越小越稳定:答案为B5、一次函数的图像不经过的象限是:A、第一象限B、第二象限C、第三象限D、第四象限【解答与分析】这是一次函数的k与b决定函数的图像,可以利用快速草图作法:答案为C6、如图,四边形ABCD为⊙O的内接四边形,已知∠BOD =100°,则∠BCD的度数为:A、50°B、80°C、100°D、130°【解答与分析】圆周角与圆心角的关系,及圆内接四边形的对角互补:答案为D7、分式方程的解为:A、1B、2C、D、0【解答与分析】这是分式方程的解法:答案为A8、若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似。

如图,如果扇形AOB与扇形是相似扇形,且半径(为不等于0的常数)。

那么下面四个结论:①∠AOB=∠;②△AOB∽△;③;④扇形AOB与扇形的面积之比为。

成立的个数为:A、1个B、2个C、3个D、4个【解答与分析】这是一个阅读,扇形相似的意义理解,由弧长公式=可以得到:①②③正确,由扇形面积公式可得到④正确二、填空题(本大题8个小题,每小题3分,满分24分)9、分解因式:=【解答与分析】这是因式分解的考题,对提公因式、平方差公式,及彻底分解的步骤要掌握答案为:10、若分式的值为0,则=【解答与分析】这其实就分式方程的解法:=0,解之得答案为:=111、计算:=【解答与分析】这是一个整式的运算题,乘法运算与加法运算:答案为:12、埃是表示极小长度的单位名称,是为纪念瑞典物理学家埃基特朗而定的。

往年湖南省常德市中考数学真题及答案

往年湖南省常德市中考数学真题及答案

往年湖南省常德市中考数学真题及答案一.填空题 (本大题8个小题 ,每小题3分满分24分) 1.(2013湖南常德,1,3)-4的相反数是 . 【答案】42. (2013湖南常德,2,3)打开百度搜索栏,输入“数学学习方法”,百度为你找到的相关信息有12 000 000条.请用科学记数法表示12 000 000= . 【答案】71.210⨯3. (2013湖南常德,3,3)因式分解2x x +=_______. 【答案】()1x x +4. (2013湖南常德,4,3)如图1,已知a∥b 分别相交于点E 、F,若∠1=30,则∠2=_______. 【答案】30°图121F Eb a5. (2013湖南常德,5,3)请写一个图象在第二,第四象限的反比例函数解析式:_________. 【答案】答案不唯一,如1y x-=6. (2013湖南常德,6,3)如图2,已知⊙O 是△ABC 的外接圆,若∠BOC=100°,则∠BAC=___图2O CBA【答案】50°7. (2013湖南常德,7,3)分式方程312x x=+的解为_________. 【答案】1x =8. (2013湖南常德,8,3)小明在做数学题时,发现下面有趣的结果:321876541514131211109242322212019181716-=+--=++---=+++----=根据以上规律可知第100行左起第一个数是_________. 【答案】10200二.选择题(本大题8个小题,每个小题3分,满分24分)9. (2013湖南常德,9,3)在图3中,既是中心对称图形又是轴对称图形的是( )【答案】B10. (2013湖南常德,10,3)函数31x y x+=-中自变量的取值范围是( ) A. 3x ≥- B. 3x ≥ C. 0,1x x ≥≠且 D. 3,1x x ≥-≠且【答案】D11. (2013湖南常德,11,3)小伟5次引体向上的测试成绩(单位:个)分别为:16,18,20,18,18,对此成绩描述错误的是( )A. 平均数为18B. 众数为18C. 方差为0D. 极差为4 【答案】C12. (2013湖南常德,12,3)下面计算正确的是( )A. 330x x ÷= B. 32x x x -= C. 236x x x = D. 32x x x ÷= 【答案】D13. (2013湖南常德,13,3)下列一元二次方程中无实数解的方程是( )A. 2210x x ++= B. 210x += C. 221x x =- D. 2450x x --= 【答案】B14. (2013湖南常德,14,3)计算32827⨯+-的结果为( ) A. -1 B. 1 C. 433- D. 7【答案】B15. (2013湖南常德,15,3)如图4,将方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在D ′ 处,若AB =3,AD =4,则ED 的长为( )A.32 B. 3 C. 1 D. 43【答案】A 16. (2013湖南常德,16,3)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图5(扇形、菱形、直角梯形、红十字图标)中“直径” 最小的是( )【答案】C 三.(本大题2个小题,每个小题5分,满分10分) 17. (2013湖南常德,17,5)计算:()()2201312412π-⎛⎫-+-- ⎪⎝⎭【答案】1214 =2=+---解:原式18. (2013湖南常德,18,5)求不等式组21025x x x +>⎧⎨>-⎩的正整数解.【答案】解:由不等式①得12x >-由不等式②得5x < 则不等式组的解集为152x -<< ∴此不等式组的正整数解为1,2,3,4.四.(本大题2个小题,每个小题6分,满分12分) 19. (2013湖南常德,19,6)先化简再求值:222222322a bb b a a ab b a b a b -+⎛⎫+÷⎪-+--⎝⎭,其中5, 2.a b ==【答案】()()()()()()()()()()()223223223321a b ba b a b a b b aa b a b b a b a b a b a b a b b a a b a b a b a b b aa b ⎡⎤--=+⎢⎥+-+-⎢⎥⎣⎦⎡⎤+-=+⎢⎥+-+-+⎣⎦+-=+-+=+解:原式当5,2a b ==时,原式=17五.(本大题2个小题,每个小题7分,满分14分) 20. (2013湖南常德,20,6)某书店参加某校读书活动,并为每班准备了A,B 两套名著,赠予各班甲、乙两名优秀读者,以资鼓励,。

湖南省常德市各类高中招生考试数学试卷及参考答案

湖南省常德市各类高中招生考试数学试卷及参考答案

2005年常德市各类高中招生考试数学试卷一、选择题1.2的相反数是 ( ) A .2B .-2C .21D .22.y=(x -1)2+2的对称轴是直线 ( ) A .x=-1 B .x=1 C .y=-1D .y=13.如图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( )A .1:1B .1:2C .1:3D .1:44.右图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是( )A .60°B .80°C .120°D .150°5.函数11+=x y 中自变量x 的取值范围是 ( ) A .x ≠-1B .x>-1C .x ≠1D .x ≠0 6.下列计算正确的是 ( ) A .a 2·a 3=a 6B .a 3÷a=a 3C .(a 2)3=a 6D .(3a 2)4=9a 47.在下列图形中,既是中心对称图形又是轴对称图形的是 ( ) A .等腰三角形 B .圆 C .梯形8.右边给出的是2004年3月份的日历表,任意 圈出一竖列上相邻的三个数,请你运用方程思想来研 究,发现这三个数的和不可能是( )A .69B .54C .27D .409.相交两圆的公共弦长为16cm ,若两圆的半径长分别为10cm 和17cm ,则这两圆的圆心距为( )A .7cmB .16cmC .21cmD .27cm10.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。

车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。

下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )AB C D11.已知方程x 2+(2k+1)x+k 2-2=0的两实根的平方和等于11,k 的取值是( ) A .-3或1B .-3C .1D .312.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。

常德中考数学试题及答案

常德中考数学试题及答案

常德中考数学试题及答案常德市中考数学试题及答案一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边长,且a²+b²=c²,则三角形的形状是()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形2. 已知x²-3x+2=0,下列哪个选项是方程的解()A. x=1B. x=2C. x=-1D. x=-23. 函数y=-2x+3的图象经过第几象限()A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限4. 已知一个扇形的圆心角为60°,半径为6cm,那么这个扇形的面积是多少()A. 18π cm²B. 9π cm²C. 36π cm²D. 6π cm²5. 已知一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的面积是多少()A. 12 cm²B. 18 cm²C. 24 cm²D. 30 cm²6. 已知一个数列的前三项为1,2,4,那么这个数列的第四项是多少()A. 6B. 8C. 12D. 167. 已知一个二次函数的顶点坐标为(2,-1),且经过点(0,3),那么这个二次函数的解析式为()A. y=-(x-2)²-1B. y=-(x-2)²+1C. y=(x-2)²-1D. y=(x-2)²+18. 已知一个圆的半径为5cm,那么这个圆的周长是多少()A. 10π cmB. 20π cmC. 30π cmD. 40π cm9. 已知一个等差数列的首项为3,公差为2,那么这个数列的第10项是多少()A. 23B. 25C. 27D. 2910. 已知一个直角三角形的两直角边长分别为3cm和4cm,那么这个三角形的斜边长是多少()A. 5cmB. 6cmC. 7cmD. 8cm二、填空题(每题3分,共30分)1. 已知一个数的平方根为±2,那么这个数是______。

湖南省常德市中考数学真题试卷(含解析)

湖南省常德市中考数学真题试卷(含解析)

湖南省常德市中考数学真题试卷一、选择题(共8小题).1.4的倒数为()A.B.2 C.1 D.﹣4 2.下面几种中式窗户图形既是轴对称又是中心对称的是()A.B.C.D.3.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70°B.65°C.35°D.5°4.下列计算正确的是()A.a2+b2=(a+b)2B.a2+a4=a6C.a10÷a5=a2D.a2•a3=a55.下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个6.一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A.4 B.3 C.2 D.18.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F二、填空题(本大题8个小题,每小题3分,满分24分)9.分解因式:xy2﹣4x=.10.若代数式在实数范围内有意义,则x的取值范围是.11.计算:﹣+=.12.如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k=.13.4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如表:阅读时间(x小时)x≤3.5 3.5<x≤5 5<x≤6.5 x>6.5 人数12 8 6 4 若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为.14.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是次.15.如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为.16.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.三、(本大题2个小题,每小题5分,满分10分)17.计算:20+()﹣1•﹣4tan45°.18.解不等式组.四、(本大题2个小题,每小题6分,满分12分)19.先化简,再选一个合适的数代入求值:(x+1﹣)÷.20.第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?五、(本大题2个小题,每小题7分,满分14分)21.已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.22.如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)六、(本大题2个小题,每小题8分,满分16分)23.今年2﹣4月某市出现了200名新冠肺炎患者,市委根据的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.24.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE 交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.七、(本大题2个小题,每小题10分,满分20分)25.如图,已知抛物线y=ax2过点A(﹣3,).(1)求抛物线的解析式;(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.26.已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.参考答案一、选择题(本大题8个小题,每小题3分,满分24分)1.4的倒数为()A.B.2 C.1 D.﹣4【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,求倒数的方法,是把一个数的分子和分母互换位置即可,是带分数的化成假分数,再把分子分母互换位置,据此解答.解:4的倒数为.故选:A.2.下面几种中式窗户图形既是轴对称又是中心对称的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故本选项不合题意;故选:C.3.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70°B.65°C.35°D.5°【分析】根据平行线的性质和∠1=30°,∠2=35°,可以得到∠BCE的度数,本题得以解决.解:作CF∥AB,∵AB∥DE,∴CF∥DE,∴AB∥DE∥DE,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.4.下列计算正确的是()A.a2+b2=(a+b)2B.a2+a4=a6C.a10÷a5=a2D.a2•a3=a5【分析】根据完全平方公式、合并同类项法则、同底数幂的乘除法计算得到结果,即可作出判断.解:A、a2+2ab+b2=(a+b)2,原计算错误,故此选项不符合题意;B、a2与a4不是同类项不能合并,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、a2•a3=a5,原计算正确,故此选项符合题意;故选:D.5.下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个【分析】根据必然事件的概念、众数的定义、随机事件的概率逐项分析即可得出答案.解:A、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误;B、抛掷一枚质地均匀的硬币两次,正面朝上的概率是,故本选项错误;C、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确;D、一组数据的众数不一定只有一个,故本选项错误;故选:C.6.一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π【分析】先利用勾股定理计算出母线长,然后利用扇形的面积公式计算这个圆锥的侧面积.解:这个圆锥的母线长==10,这个圆锥的侧面积=×2π×10×10=100π.故选:C.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A.4 B.3 C.2 D.1【分析】先由抛物线与x周董交点个数判断出结论①,利用抛物线的对称轴为x=2,判断出结论②,先由抛物线的开口方向判断出a<0,进而判断出b>0,再用抛物线与y轴的交点的位置判断出c>0,判断出结论③,最后用x=﹣2时,抛物线在x轴下方,判断出结论④,即可得出结论.解:由图象知,抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,故①正确,由图象知,抛物线的对称轴直线为x=2,∴﹣=2,∴4a+b=0,故②正确,由图象知,抛物线开口方向向下,∴a<0,∵4a+b=0,∴b>0,而抛物线与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故③正确,由图象知,当x=﹣2时,y<0,∴4a﹣2b+c<0,故④错误,即正确的结论有3个,故选:B.8.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F【分析】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)﹣7p格,这时P是整数,且使0≤k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤,设k=7+t(t=1,2,3)代入可得,k(k+1)﹣7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.二、填空题(本大题8个小题,每小题3分,满分24分)9.分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)10.若代数式在实数范围内有意义,则x的取值范围是x>3 .【分析】根据二次根式有意义的条件可得2x﹣6>0,再解即可.解:由题意得:2x﹣6>0,解得:x>3,故答案为:x>3.11.计算:﹣+=3.【分析】直接化简二次根式进而合并得出答案.解:原式=﹣+2=3.故答案为:3.12.如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k=﹣12 .【分析】根据反比例函数比例系数的几何意义即可解决问题.解:∵AB⊥OB,∴S△AOB==6,∴k=±12,∵反比例函数的图象在二四象限,∴k<0,∴k=﹣12,故答案为﹣12.13.4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如表:阅读时间(x小时)x≤3.5 3.5<x≤5 5<x≤6.5 x>6.5 人数12 8 6 4 若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为400人.【分析】用总人数×每周课外阅读时间在5小时以上的学生人数所占的百分比即可得到结论.解:1200×=400(人),答:估计全校每周课外阅读时间在5小时以上的学生人数为400人.14.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 4 次.【分析】设李红出门没有买到口罩的次数是x,买到口罩的次数是y,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x和y的二元一次方程组,求解即可.解:设李红出门没有买到口罩的次数是x,买到口罩的次数是y,由题意得:,整理得:,解得:.故答案为:4.15.如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为12 .【分析】设正方形ABCD的边长为x,由翻折及已知线段的长,可用含x的式子分别表示出BE、BF及EF的长;在Rt△BEF中,由勾股定理得关于x的方程,解得x的值,即为DG的长.解:设正方形ABCD的边长为x,由翻折可得:DG=DA=DC=x,∵GF=4,EG=6,∴AE=EG=6,CF=GF=4,∴BE=x﹣6,BF=x﹣6,EF=6+4=10,如图1所示:在Rt△BEF中,由勾股定理得:BE2+BF2=EF2,∴(x﹣6)2+(x﹣4)2=102,∴x2﹣12x+36+x2﹣8x+16=100,∴x2﹣10x﹣24=0,∴(x+2)(x﹣12)=0,∴x1=﹣2(舍),x2=12.∴DG=12.故答案为:12.16.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+或x=﹣1﹣.【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣1+或x=﹣1﹣.三、(本大题2个小题,每小题5分,满分10分)17.计算:20+()﹣1•﹣4tan45°.【分析】先计算20、、()﹣1、tan45°,再按运算顺序求值即可.解:原式=1+3×2﹣4×1=1+6﹣4=3.18.解不等式组.【分析】首先分别解出两个不等式的解集,再根据解集的规律确定不等式组的解集.解:,由①得:x<5,由②得:x≥﹣1,不等式组的解集为:﹣1≤x<5.四、(本大题2个小题,每小题6分,满分12分)19.先化简,再选一个合适的数代入求值:(x+1﹣)÷.【分析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的值代入化简后的式子即可解答本题.解:(x+1﹣)÷====,当x=2时,原式==﹣.20.第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?【分析】首先设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,根据题意可得等量关系:4G下载600兆所用时间﹣5G下载600兆所用时间=140秒.然后根据等量关系,列出分式方程,再解即可.解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,由题意得:﹣=140,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,15×4=60,答:该地4G的下载速度是每秒4兆,则该地5G的下载速度是每秒60兆.五、(本大题2个小题,每小题7分,满分14分)21.已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.【分析】(1)直接把(3,18),(﹣2,8)代入一次函数y=kx+b中可得关于k、b的方程组,再解方程组可得k、b的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式,根据题意得到△=0,解方程即可得到结论.解:(1)把(3,18),(﹣2,8)代入一次函数y=kx+b(k≠0),得,解得,∴一次函数的解析式为y=2x+12;(2)∵一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,∴只有一组解,即2x2+12x﹣m=0有两个相等的实数根,∴△=122﹣4×2×(﹣m)=0,∴m=﹣18.把m=﹣18代入求得该方程的解为:x=﹣3,把x=﹣3代入y=2x+12得:y=6,即所求的交点坐标为(﹣3,6).22.如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)【分析】直接过点C作CF⊥AB于点F,利用锐角三角函数关系得出CF的长,进而得出BC的长.【解答】方法一:解:如图1,过点C作CF⊥AB于点F,在Rt△ACF中,∵sin∠CAB=sin(60°+5°)=sin65°=,∴CF=AC•sin65°≈2×0.91=1.82,在Rt△BCF中,∵∠ABC=45°,∴CF=BF,∴BC=CF=1.41×1.82=2.5662≈2.6,答:所求BC的长度约为2.6米.方法二:解:如图2,过点A作AE⊥BC于点E,在Rt△ACE中,∵∠C=180°﹣65°﹣45°=70°,∴cos C=cos70°=,即CE=AC×cos70°≈2×0.34=0.68,sin C=sin70°=,即AE=AC×sin70°≈2×0.94=1.88,又∵在Rt△AEB中,∠ABC=45°,∴AE=BE,∴BC=BE+CE=0.68+1.88=2.56≈2.6,答:所求BC的长度约为2.6米.六、(本大题2个小题,每小题8分,满分16分)23.今年2﹣4月某市出现了200名新冠肺炎患者,市委根据的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.【分析】(1)因为总人数已知,由轻症患者所占的百分比即可求出其的人数;(2)求出该市危重症患者所占的百分比,即可求出其共花费的钱数;(3)用加权平均数公式求出各种患者的平均费用即可;(4)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中B、D两位同学的情况,再利用概率公式即可求得答案.解:(1)轻症患者的人数=200×80%=160(人);(2)该市为治疗危重症患者共花费钱数=200×(1﹣80%﹣15%)×10=100(万元);(3)所有患者的平均治疗费用==2.15(万元);(4)列表得:A B C D EA(B,A)(C,A)(D,A)(E,A)B(A,B)(C,B)(D,B)(E,B)C(A,C)(B,C)(D,C)(E,C)D(A,D)(B,D)(C,D)(E,D)E(A,E)(B,E)(C,E)(D,E)由列表格,可知:共有20种等可能的结果,恰好选中B、D两位同学的有2种情况,∴P(恰好选中B、D)==.24.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE 交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.【分析】(1)连接OC,由等腰三角形的性质和直角三角形的性质可得∠OCB+∠ECF=90°,可证EC是⊙O的切线;(2)由勾股定理可求AC=6,由锐角三角函数可求BF=5,可求CF=3,通过证明△OAC ∽△ECF,可得,可求解.解:(1)连接OC,∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF,∴,∴EC===.七、(本大题2个小题,每小题10分,满分20分)25.如图,已知抛物线y=ax2过点A(﹣3,).(1)求抛物线的解析式;(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.【分析】(1)利用待定系数法即可解决问题.(2)构建方程组确定点B的坐标,再利用平行线分线段成比例定理解决问题即可.(3)如图2中,设P(t,t2),根据PD=CD构建方程求出t即可解决问题.解:(1)把点A(﹣3,)代入y=ax2,得到=9a,∴a=,∴抛物线的解析式为y=x2.(2)设直线l的解析式为y=kx+b,则有,解得,∴直线l的解析式为y=﹣x+,令x=0,得到y=,∴C(0,),由,解得或,∴B(1,),如图1中,过点A作AA1⊥x轴于A1,过B作BB1⊥x轴于B1,则BB1∥OC∥AA1,∴===,===,∴=,即MC2=MA•MB.(3)如图2中,设P(t,t2)∵OC为一边且顶点为O,C,P,D的四边形是平行四边形,∴PD∥OC,PD=OC,∴D(t,﹣t+),∴|t2﹣(﹣t+)|=,整理得:t2+2t﹣6=0或t2+2t=0,解得t=﹣1﹣或﹣1=或﹣2或0(舍弃),∴P(﹣1﹣,2+)或(﹣1+,2﹣)或(﹣2,1).26.已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.【分析】(1)①证明△CBP是直角三角形,根据直角三角形斜边中线可得结论;②根据同位角相等可得BC∥EF,由平行线的性质得BP⊥EF,可得EF是线段BP的垂直平分线,根据等腰三角形三线合一的性质可得∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,证明△QEP≌△DEC(SAS),则PQ=DC=DB,由QE=DE,∠DEF=90°,知EF是DQ的垂直平分线,证明△FQP≌△FDB (SAS),再由EF是DQ的垂直平分线,可得结论.【解答】证明(1)①∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,同理∠EDF=60°,∴∠A=∠EDF=60°,∴AC∥DE,∴∠DMB=∠ACB=90°,∵D是Rt△ABC斜边AB的中点,AC∥DM,∴,即M是BC的中点,∵EP=CE,即E是PC的中点,∴ED∥BP,∴∠CBP=∠DMB=90°,∴△CBP是直角三角形,∴BE=PC=EP;②∵∠ABC=∠DFE=30°,∴BC∥EF,由①知:∠CBP=90°,∴BP⊥EF,∵EB=EP,∴EF是线段BP的垂直平分线,∴PF=BF,∴∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,∵EC=EP,∠DEC=∠QEP,∴△QEP≌△DEC(SAS),则PQ=DC=DB,∵QE=DE,∠DEF=90°∴EF是DQ的垂直平分线,∴QF=DF,∵CD=AD,∴∠CDA=∠A=60°,∴∠CDB=120°,∴∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP,∴△FQP≌△FDB(SAS),∴∠QFP=∠BFD,∵EF是DQ的垂直平分线,∴∠QFE=∠EFD=30°,∴∠QFP+∠EFP=30°,∴∠BFD+∠EFP=30°.。

湖南省常德市中考数学试题及答案

湖南省常德市中考数学试题及答案

2008年常德市初中毕业学业考试数学试题准考证号姓名________________________考生注意:1、请考生在试题卷首填写好准考证号及姓名.2、请将答案填写在答题卡上,填写在试题卷上的无效.3、本学科试题卷共页,七 道大题,满分120 分,考试时量 120 分钟.4、考生可带科学计算器参加考试.一、填空题(本大题8个小题,每小题3分,满分24分) 1.计算:4-(-2)= 6 .2.分解因式:22mb ma -= ))((b a b a m -+ . 3.如图1,已知AD//BC, ∠EAD=50 O,∠ACB=40 O,则∠BAC= 90 O.4.“凤凰号”火星探测器于去年从美国佛罗里达州卡纳维拉尔角发射,经过近10个月的时间,飞行了近680 000 000千米后到达火星。

其中680 000 000千米用科学记数法可表示为 6.80×108千米(保留三个有效数字).5.函数31-=x y 的自变量x 的取值范围是 3>x .6.已知⊙O 的半径为5㎝,弦AB 的长为8㎝,则圆心O 到AB 的距离为 3 ㎝.7.小红量得一个圆锥的母线长为15㎝,底面圆的直径是6㎝,它的侧面积为 45π㎝2(结果保留π). 8. 下面是一个三角形数阵:12 4 23 6 9 6 34 8 12 16 12 8 4……根据该数阵的规律,猜想第十行所有数的和是 103 .二、选择题(本大题8个小题,每小题只有一个正确的选项,每小题3分,共24分) 9.图2中的几何体的俯视图是 ( B )2是同类二次根式的是 ( C ) 11 A . 360O B .540O C .720O D .900O 12.下列说法正确的是 ( C ) A .检查地震灾区的食品质量应采取普查的方法B .地震一周后,埋在废墟下的人员幸存的可能性很小,我们应放弃搜救行动C .唐家山堰塞湖出现溃坝的概率是93%,说明该堰塞湖溃坝的可能性很大BA DCE 图150 O 40 OB C DA 图2D .我市发生地震的概率很小,则我市一定不会发生地震,我们不必学习相关知识 13.下面的函数是反比例函数的是 ( D ) A . 13+=x y B .x x y 22+=C .2x y =D .xy 2= 14.如图3,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:(1)DE=1,(2)AB 边上的高为3,(3)△CDE ∽△CAB ,(4)△CDE 的面积与 △CAB 面积之比为1:4.其中正确的有 (D ) A .1个 B .2个 C .3个D .4个15.北京奥组委为了更好地传播奥运匹克知识,倡导奥林匹克精神,鼓励广大民众到现场观看精彩的比赛,小明一家积极响应,上网查得部分项目的门票价格如下:这些门票价格的中位数和众数分别是 (A ) A .50, 50 B .67.5, 50 C .40, 30 D .50, 30 16.把抛物线221x y =向右平移2个单位,再向上平移1个单位,所得的抛物线的解析 式为 (A)A.()+-=2221x y1 B. ()--=2221x y 1 C. ()++=2221x y 1 D. ()21212-+=x y三、 (本大题2个小题,每小题5分,满分10分)17.计算:()160sin 23312+--⎪⎭⎫ ⎝⎛---解:原式232331⨯+--==-2 注:上面的计算每错一处扣1分.18.化简:211112xx x x -÷⎪⎭⎫⎝⎛--+ 解:原式=()()x x x x x x x -+⨯⎪⎭⎫⎝⎛----+1111112…………………………2分 =()()xx x x x -+⨯-1113=()x +13=33+x ………………5分 四、(本大题2个小题,每小题6分,满分12分)B图319.解不等式组 ()⎪⎩⎪⎨⎧->+≤-.214,121x x x 解:解不等式①,得 3≤x .………………………………………2分 解不等式②,得 244->+x x , 即 2->x . …4分 ∴原不等式组的解集为32≤<-x . …………………………6分20.在社会主义新农村建设中,县交通局决定对某乡的村级公路进行改造,由甲工程队单独施工,预计180天能完成。

2009年湖南省常德市中考数学试卷

2009年湖南省常德市中考数学试卷

2009年湖南省常德市中考数学试卷一、填空题(共8小题,每小题3分,满分24分)1.(3分)3的倒数是.2.(3分)因式分解:zn2—mn+mx—nx=.3.(3分)己知AABC中,BC=6cm,E、F分别是仙、AC的中点,那么EF长是cm.4.(3分)若一个圆锥的母线长是5c“z,底面半径是3c沮,则它的侧面展开图的面积是cm2.5.(3分)如图,已知点C为反比例函数y=--±的一点,过点。

向坐标轴引垂线,垂足X分别为A、B,那么四边形AOBC的面积为.6.(3分)如图,AA5C向右平移4个单位后得到△A'B'C,则川点的坐标是7.(3分)如图,已知AE//BD,Zl=130°,匕2=30。

,则ZC=度.AE1C8.(3分)一个函数的图象关于y轴成轴对称图形时,称该函数为偶函数.那么在下列四个函数①y=2x;②y=-3x-1;(3)y=—;④y=x2 +1中,偶函数是(填出所有偶函X数的序号,答案格式如:“1234”).二、选择题(共8小题,每小题3分,满分24分)9.(3分)计算卷-姻的结果是()B.^6A.6 C.2 D.a/210.(3分)要使分式工有意义,则X应满足的条件是()X+1A.x^lB.x^-1C.x。

0D.x>111.(3分)为了响应中央号召,今年我市加大财政支农力度,全市农业支出累计达到234760000元,其中234760000元用科学记数法可表示为()(保留三位有效数字)A. 2.34xlO8元B. 2.35xl08元C. 2.35X109元D. 2.34xlO9元b—(—3)2,c=\/—9,12.(3分)设a=2°,d=(―尸,贝\\a,b,c,d按由小到大的顺序排列正确的是()A.c<a<d<bB.b<d<a<cC.a<c<d<bD.b<c<a<d13.(3分)下面事件:①掷一枚硬币,着地时正面向上;②在标准大气压下,水加热到100°C会沸腾;③买一张福利彩票,开奖后会中奖;④明天会下雨.其中,必然事件有()A.1个B.2个C.3个D.4个两个同心圆的半径分别为3cm和5cm,弦AB与小圆相切于点C,则AB 如图,14.(3分)B.5cmC.6c mD.8cm15.(3分)下列命题中错误的是()A.两组对边分别相等的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组对边平行的四边形是梯形16.(3分)甲,乙,丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲,乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲B.乙C.丙D.不能确定三、解答题(共10小题,满分72分)1917.(5分)解方程:土=工x x—13x+5...—1(1)18.(5分)解不等式组:13-x>-x(2)v-3519.(6分)化简:工^+3+2—-).4y—8y—220.(6分)“六一”儿童节期间,某儿童用品商店设置了如下促销活动:如果购买该店100元以上的商品,就能参加一次游戏,即在现场抛掷一个正方体两次(这个正方体相对的两个面上分别画有相同图案),如果两次都出现相同的图案,即可获得价值20元的礼品一份,否则没有奖励.求游戏中获得礼品的概率是多少?21.(7分)如图,某人在。

常德市中考数学试题及答案.doc

常德市中考数学试题及答案.doc

2010年湖南常德市初中毕业学业考试数学试题卷一.填题(本大题8个小题,每小题3分,满分24分) 1.2的倒数为________. 2.函数26y x =-中,自变量x 的取值范围是_________.3.如图1,已知直线AB ∥CD ,直线EF 与直线AB 、CD 分别交于点E 、F ,且有170,2∠=︒∠=则__________.4.分解因式:269___________.x x ++=5.已知一组数据为:8,9,7,7,8,7,则这组数据的众数为____.6.化简:123______.-=7.如图2,四边形ABCD 中,AB ∥CD ,要使四边形ABCD 为平行四边形,则可添加的条件为_____________________.(填一个即可)8.如图3,一个数表有7行7列,设ij a 表示第i 行第j 列上的数(其中i=1,2,3,...,j=1,2,3,...,).例如:第5行第3列上的数537a =. 则(1)()()23225253______.a a a a -+-= (2)此数表中的四个数,,,,np nk mp mk a a a a 满足()()______.npnk mk mp aa a a -+-=DABC图21 2 3 4 3 2 1 2 3 4 5 4 3 2 3 4 5 6 5 4 3 4 5 6 7 6 5 4 5 6 7 8 7 6 5 6 7 8 9 8 7 6 7 8 9 10 9 8 7图3图1BD ACE F1 2二.选择题(本大题8个小题,每小题3分,满分24分) 9.四边形的内角和为( )A 。

900B 。

180oC 。

360oD 。

720o10.某市在一次扶贫助残活动中,共捐款2580000元,将2580000用科学记数法表示为( ) A 。

72.5810⨯元 B 。

62.5810⨯元 C 。

70.25810⨯元 D 。

625.810⨯元11.已知⊙O 1的半径为5㎝,⊙O 2的半径为6㎝,两圆的圆心距O 1O 2=11㎝,则两圆的位置关系为( ) A 。

2009年常德市初中毕业学业考试

2009年常德市初中毕业学业考试

2009年常德市初中毕业学业考试数学试题卷准考证号 姓 名_______________考生注意:1、请考生在试题卷首填写好准考证号及姓名.2、请将答案填写在答题卡上,填写在试题卷上的无效.3、本学科试题卷共 4页,七道大题,满分120 分,考试时量 120 分钟.4、考生可带科学计算器参加考试.一、填空题(本大题8个小题,每小题3分,满分24分) 1.3的倒数等于 .2.因式分解:2m m n m x nx -+-= .3.已知△ABC 中,BC =6cm ,E 、F 分别是AB 、AC 的中点,那么EF 长是 cm .4.一个圆锥的母线长为5cm ,底面圆半径为3 cm ,则这个圆锥的侧面积是 cm 2(结果保留π). 5.如图1,已知点C 为反比例函数6y x=-上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为 .6.如图2,△ABC 向右平移4个单位后得到△A ′B ′C ′,则A ′点的坐标是 .7.如图3,已知//AE BD ,∠1=130o ,∠2=30o ,则∠C = .8.一个函数的图象关于y 轴成轴对称图形时,称该函数为偶函数. 那么在下列四个函数①2y x =;②31y x =--;③6y x=;④21y x =+中,偶函数是 (填出所有偶函数的序号).二、选择题(本大题8个小题,每小题3分,满分24分) 9.28-的结果是( )A .6B .22C .2D .210.要使分式11x +有意义,则x 应满足的条件是( )A .1x ≠B .1x ≠-C .0x ≠D .1x >图1图3 图211.为了响应中央号召,今年我市加大财政支农力度,全市农业支出累计达到234 760 000元,其中234 760000元用科学记数法可表示为( )(保留三位有效数字). A .2.34×108元 B .2.35×108元 C .2.35×109 元D .2.34×109元12.设02a =,2(3)b =-,c =,11()2d -=,则a b c d ,,,按由小到大的顺序排列正确的是( )A .c a d b <<<B .b d a c <<<C .a c d b <<<D .b c a d <<<13.下面事件:①掷一枚硬币,着地时正面向上;②在标准大气压下,水加热到100℃会沸腾;③买一张福利彩票,开奖后会中奖;④明天会下雨.其中,必然事件有( ) A .1个B .2个C .3个D .4个14.如图4,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点C ,则AB 的长为( )A .4cmB .5cmC .6cmD .8cm15.下列命题中错误的是( )A .两组对边分别相等的四边形是平行四边形B .对角线相等的平行四边形是矩形C .一组邻边相等的平行四边形是菱形D .一组对边平行的四边形是梯形16.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是( ) A . 甲B . 乙C . 丙D .不能确定三、(本大题2个小题,每小题5分,满分10分)17.解方程:121-=x x18.解不等式组:351(1)13(2)2x x x +-⎧⎪⎨->⎪⎩ ≥四、(本大题2个小题,每小题6分,满分12分) 19. 化简:35(2)482y y y y -÷+---20.“六一”儿童节期间,某儿童用品商店设置了如下促销活动:如果购买该店100元以上的商品,就能参加一次游戏,即在现场抛掷一个正方体两次(这个正方体相对的两个面上分别画有相同图案),如果两次都出现相同的图案,即可获得价值20元的礼品一份,否则没有奖励.求游戏中获得礼品的概率是多少?图4五、(本大题2个小题,每小题7分,满分14分)21.如图5,某人在D 处测得山顶C 的仰角为30o ,向前走200米来到山脚A 处,测得山坡AC 的坡度为i=1∶0.51.73,结果保留整数).22.某品牌A 、B 两种不同型号的电视机是“家电下乡”活动的指定产品.利民家电超市该品牌A 型电视机的售价为2400元/台,B 型电视机的售价为2000元/台,如果农户到该家电超市购买这两种电视机,将获得20%的政府补贴.下面的图表是这家超市该品牌A 、B 两种不同型号的电视机近5周的每周销量统计图表.?2条) (3)通过计算说明哪种型号的电视机销量较稳定?六、(本大题2个小题,每小题8分,满分16分)23.如图7,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC相似吗?请证明你的结论.B 型电视机销量折线图图6图524.常德市工业走廊南起汉寿县太子庙镇,北至桃源县盘塘镇创元工业园.在这一走廊内的工业企业2008年完成工业总产值440亿元,如果要在2010年达到743.6亿元,那么2008年到2010年的工业总产值年平均增长率是多少?《常德工业走廊建设发展规划纲要(草案)》确定2012年走廊内工业总产值要达到1200亿元,若继续保持上面的增长率,该目标是否可以完成?七、(本大题2个小题,每小题10分,满分20分)25.已知二次函数过点A (0,2-),B (1-,0),C (5948,).(1)求此二次函数的解析式; (2)判断点M (1,12)是否在直线AC 上?(3)过点M (1,12)作一条直线l 与二次函数的图象交于E 、F 两点(不同于A ,B ,C 三点),请自已给出E 点的坐标,并证明△BEF 是直角三角形.26.如图9,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN 是等边三角形.(1)当把△ADE 绕A 点旋转到图10的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由;(4分)(2)当△ADE 绕A 点旋转到图11的位置时,△AMN 是否还是等边三角形?若是,请给出证明,并求图8图7出当AB =2AD 时,△ADE 与△ABC 及△AMN 的面积之比;若不是,请说明理由.(6分)2009年常德市初中毕业学业考试数学参考答案及评分细则说明: (一)《答案》中各行右端所注分数表示正确作完该步应得的累加分数,全卷满分120分. (二)《答案》中的解法只是该题解法中的一种或几种,如果考生的解法和本《答案》不同,可参照本答案中的标准给分. (三)评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而末改变本题的内容和难度者,视影响程度决定后面部分的得分,但原则上不超过后面部分应得分数的一半,如有严重的概念错误,就不给分.一、填空题(本大题8个小题,每小题3分,满分24分) 1.132. ()()m n m x -+ 3.3 4.15π5. 6 6.(1,2) 7. 20o 8.④二、选择题(本大题8个小题,每小题3分,满分24分)9.C 10.B 11. B 12.A 13. A 14. D 15.D 16.C 三、(本大题2个小题,每小题5分,满分10分)17.原方程变形得12-=x x ································································································ 2分∴1-=x ························································································································· 4分 经检验1-=x 是原方程的根 ··························································································· 5分 18.解不等式(1)得2x -≥ ······························································································ 2分 解不等式(2)得2x < ···································································································4分图9 图10 图11原不等式组的解集为22x -<≤ ··················································································· 5分 四、(本大题2个小题,每小题6分,满分12分) 19. 原式=3(2)(2)54822y y y y y y ⎡⎤-+-÷-⎢⎥---⎣⎦ ············································································· 2分=239324824(2)(3)(3)y y y y y y y y y ----÷=⨯----+ ····································································· 4分=14(3)y + ················································································································· 6分说明:通分;作差并整理;约分各2分.20.解法一:设这三种图案分别用A 、B 、C 表示,则列表得第一次第二次A B CA (A ,A ) (A ,B ) (A ,C ) B (B ,A ) (B ,B ) (B ,C ) C (C ,A ) (C ,B ) (C ,C )······················································ 4分 ∴31()93P ==获得礼品 ····································································································· 6分解法二:正确列出树状图 (略) ·························································································· 4分 ∴31()93P ==获得礼品 ····································································································· 6分五、(本大题2个小题,每小题7分,满分14分) 21. 设山高BC =x ,则AB =12x , ······················································································ 2分 由tan 3012002B C x B Dx==+,得 ··························································································· 4分1)400x =,··················································································································· 5分解得16211x ==米 ·············································································· 7分 22.(1)2400×(1-20%)=1920(元),2000×(1-20%)=1600(元) ··························· 2分所以农民购买一台A 型电视机需1920元,购买一台B 型电视机需1600元. (2)答案不唯一.如:B 型电视机的销量呈逐渐增长趋势;A 、B 两种型号的电视机的销量较为接近, 且第3周的销量相同;B 型第2周的销量为17台等等.············································· 4分 (3)1918202221205A X ++++==,1617202324205B X ++++==由计算器计算得:22210A B S S ==,, ∵22A B S S <,∴A 型号的电视机销量较稳定. ···················································································· 7分 注:(3)中没有计算直接下结论的给1分. 六、(本大题2个小题,每小题8分,满分16分) 23.△ABE 与△ADC 相似.理由如下: 在△ABE 与△ADC 中∵AE 是⊙O 的直径, ∴∠ABE =90o , ················································································ 2分 ∵AD 是△ABC 的边BC 上的高,∴∠ADC =90o , ∴∠ABE =∠ADC . ····················································································· 4分 又∵同弧所对的圆周角相等, ∴∠BEA =∠DCA . ······················································ 6分 ∴△ABE ~△ADC . ··············································································································· 8分 24.设2008年到2010年的年平均增长率为 x ,则 2440(1)743.6x+= ····················· 3分 化简得 : 2(1) 1.69x +=, 120.330% 2.3x x ===-,(舍去) ·························· 6分 2743.6(10.3)1256.6841200⨯+=> ··········································································· 8分 答:2008年到2010年的工业总产值年平均增长率为 30%,若继续保持上面的增长率, 在2012年将达到1200亿元的目标.七、(本大题2个小题,每小题10分,满分20分)25.(1)设二次函数的解析式为c bx ax y ++=2(0a ≠), 把A (0,2-),B (1-,0),C (5948,)代入得2092558164c a b c a b c⎧⎪=-⎪=-+⎨⎪⎪=++⎩解得 a =2 , b =0 , c =-2, ∴222y x =-······························································· 3分 (2)设直线AC 的解析式为(0)y kx b k =+≠ , 把A (0,-2),C (5948,)代入得29584b k b=-⎧⎪⎨=+⎪⎩, 解得522k b ==-, ,∴522y x =- 当x =1时,511222y =⨯-=∴M (1,12)在直线AC 上 ······································ 5分图8(3)设E 点坐标为(1322--,),则直线EM 的解析式为4536y x =-由 2453622y x y x ⎧=-⎪⎨⎪=-⎩化简得2472036x x --=,即17()(2)023x x +-=, ∴F 点的坐标为(713618,). ···························································································· 6分过E 点作EH ⊥x 轴于H ,则H 的坐标为(102-,). ∴3122EH BH ==, ∴2223110()()224BE =+=,类似地可得 22213131690845()()186324162B F =+==,222401025001250()()186324162E F=+==, ···················································································· 9分∴2221084512504162162B E B F E F +=+==,∴△BEF 是直角三角形. ····························· 10分26.解:(1)CD =BE .理由如下: ········································· 1分 ∵△ABC 和△ADE 为等边三角形∴AB=AC ,AE=AD ,∠BAC=∠EAD =60o ∵∠BAE =∠BAC -∠EAC =60o -∠EAC , ∠DAC =∠DAE -∠EAC =60o -∠EAC ,∴∠BAE=∠DAC , ∴△ABE ≌ △ACD ·········································· 3分 ∴CD=BE ···································································· 4分 (2)△AMN 是等边三角形.理由如下: ··························· 5分 ∵△ABE ≌ △ACD , ∴∠ABE =∠ACD . ∵M 、N 分别是BE 、CD 的中点, ∴BM =1122BE C D C N ==∵AB=AC ,∠ABE=∠ACD , ∴△ABM ≌ △ACN . ∴AM=AN ,∠MAB=∠NAC . ······································ 6分 ∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC =60o∴△AMN 是等边三角形. ············································· 7分设AD=a ,则AB=2a .∵AD=AE=DE ,AB=AC , ∴CE=DE .∵△ADE 为等边三角形, ∴∠DEC=120 o , ∠ADE=60o ,∴∠EDC =∠ECD =30o , ∴∠ADC =90o . ······················································· 8分图10C N DAME图11CNDAME∴在Rt △ADC 中,AD=a ,∠ACD =30 o , ∴ CD .∵N 为DC 中点,∴2D N =, ∴2A N ===.··························· 9分∵△ADE ,△ABC ,△AMN 为等边三角形,∴S △ADE ∶S △ABC ∶ S △AMN 7:16:447:4:1)27(:)2(:222===a a a ·························· 10分解法二:△AMN 是等边三角形.理由如下: ········································································ 5分∵△ABE ≌ △ACD ,M 、N 分别是BE 、CN 的中点,∴AM=AN ,NC=MB . ∵AB=AC ,∴△ABM ≌ △ACN ,∴∠MAB=∠NAC , ∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC =60o∴△AMN 是等边三角形 ··································································································· 7分 设AD=a ,则AD =AE =DE = a ,AB =BC =AC =2a 易证BE ⊥AC ,∴BE =a aa AEAB3)2(2222=-=-,∴2E M a = ∴a aa AEEMAM 27)23(2222=+=+=∵△ADE ,△ABC ,△AMN 为等边三角形∴S △ADE ∶S △ABC ∶ S △AMN 7:16:447:4:1)27(:)2(:222===a a a ······························ 10分。

常德市中考数学试题及答案-中考数学试题、初中数学中考试卷、模拟题-初中数学试卷

常德市中考数学试题及答案-中考数学试题、初中数学中考试卷、模拟题-初中数学试卷

常德市中考数学试题及答案-中考数学试题、初中数学中考试卷、模拟题、复习资料-初中数学试卷-试卷下载2005年常德市中考数学试题及答案一、选择题1.2的相反数是()A.2B.-2C.D.2.y=(x-1)2+2的对称轴是直线()A.x=-1B.x=1C.y=-1D.y=13.如图1,DE是ΔABC的中位线,则ΔADE与ΔABC的面积之比是()日一二三四五六12345 678910111213141516171819202122232425262728293031A.1:1B.1:2C.1:3D.1:4(1)(2)(3)4.如图2是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60°B.80°C.120°D.150°5.函数中自变量x的取值范围是()A.x≠-1B.x&gt;-1C.x≠1D.x≠06.下列计算正确的是()A.a2·a3=a6B.a3÷a=a3C.(a2)3=a6D.(3a2)4=9a47.在下列图形中,既是中心对称图形又是轴对称图形的是()A.等腰三角形B.圆C.梯形D.平行四边形8.如图3是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()A.69B.54C.27D.409.相交两圆的公共弦长为16cm,若两圆的半径长分别为10cm和17cm,则这两圆的圆心距为()A.7cm B.16cm C.21cm D.27cm10.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。

车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。

下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是()ABCD(A)(B)(C)(D)11.已知方程x2+(2k+1)x+k2-2=0的两实根的平方和等于11,k的取值是()A.-3或1B.-3C.1D.312.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。

【真题】湖南省常德市中考数学试卷含答案解析(2)

【真题】湖南省常德市中考数学试卷含答案解析(2)

湖南省常德市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.下列各数中无理数为( )A .2B .0C .12017D .﹣1 【答案】A .考点:无理数.2.若一个角为75°,则它的余角的度数为( )A .285°B .105°C .75°D .15° 【答案】D . 【解析】试题分析:它的余角=90°﹣75°=15°,故选D . 考点:余角和补角.3.一元二次方程23410x x -+=的根的情况为( ) A .没有实数根 B .只有一个实数根 C .两个相等的实数根 D .两个不相等的实数根 【答案】D . 【解析】试题分析:∵△=(﹣4)2﹣4×3×1=4>0,∴方程有两个不相等的实数根.故选D . 考点:根的判别式.4.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )A .30,28B .26,26C .31,30D .26,22 【答案】B .考点:中位数;加权平均数.5.下列各式由左到右的变形中,属于分解因式的是( )A .a (m +n )=am +anB .2222()()a b c a b a b c --=-+- C .21055(21)x x x x -=- D .2166(4)(4)6x x x x x -++=+-+ 【答案】C . 【解析】试题分析:A .该变形为去括号,故A 不是因式分解;B .该等式右边没有化为几个整式的乘积形式,故B 不是因式分解; D .该等式右边没有化为几个整式的乘积形式,故D 不是因式分解; 故选C .考点:因式分解的意义.6.如图是一个几何体的三视图,则这个几何体是( )A .B .C .D .【答案】B . 【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B . 考点:由三视图判断几何体.7.将抛物线22x y =向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( ) A.5)3(22--=x y B .5)3(22++=x y C .5)3(22+-=x y D .5)3(22-+=x y 【答案】A .考点:二次函数图象与几何变换;几何变换.8.如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是( )302sin60° 22 ﹣3 ﹣2 ﹣sin45° 0 |﹣5| 6 23()﹣14()﹣1A .5B .6C .7D .8 【答案】C .【解析】试题分析:∵第一行为1,2,3,4;第二行为﹣3,﹣2,﹣1,0;第四行为3,4,5,6,∴第三行为5,6,7,8,∴方阵中第三行三列的“数”是7,故选C .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.二、填空题(本小题共8小题,每小题3分,共24分)9.计算:328-- = . 【答案】0. 【解析】试题分析:原式=2﹣2=0.故答案为:0. 考点:实数的运算;推理填空题. 10.分式方程xx 412=+的解为 . 【答案】x =2.考点:解分式方程.11.据统计:我国微信用户数量已突破887000000人,将887000000用科学记数法表示为 .【答案】8.87×108. 【解析】试题分析:887000000=8.87×108.故答案为:8.87×108. 考点:科学记数法—表示较大的数.12.命题:“如果m 是整数,那么它是有理数”,则它的逆命题为: . 【答案】“如果m 是有理数,那么它是整数”.【解析】试题分析:命题:“如果m 是整数,那么它是有理数”的逆命题为“如果m 是有理数,那么它是整数”. 故答案为:“如果m 是有理数,那么它是整数”.考点:命题与定理.13.彭山的枇杷大又甜,在今年5月18日“彭山枇杷节”期间,从山上5棵枇杷树上采摘到了200千克枇杷,请估计彭山近600棵枇杷树今年一共收获了枇杷 千克. 【答案】24000. 【解析】试题分析:根据题意得:200÷5×600=24000(千克).故答案为:24000. 考点:用样本估计总体.14.如图,已知Rt △ABE 中∠A =90°,∠B =60°,BE =10,D 是线段AE 上的一动点,过D 作CD 交BE 于C ,并使得∠CDE =30°,则CD 长度的取值范围是 .【答案】0≤CD ≤5.考点:含30度角的直角三角形;直角三角形斜边上的中线.15.如图,正方形EFGH 的顶点在边长为2的正方形的边上.若设AE =x ,正方形EFGH 的面积为y ,则y 与x 的函数关系为 .【答案】2244y x x =-+(0<x <2).考点:根据实际问题列二次函数关系式;正方形的性质.16.如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为.【答案】12n -.【解析】试题分析:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴A n(4n﹣4,0).∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点A n+1(4n,0)在直线y=kx+2上,∴0=4nk+2,解得:k=12n-.故答案为:12n-.考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.三、解答题(本题共2小题,每小题5分,共10分.)17.甲、乙、丙三个同学站成一排进行毕业合影留念,请用列表法或树状图列出所有可能的情形,并求出甲、乙两人相邻的概率是多少? 【答案】23. 【解析】试题分析:用树状图表示出所有情况,再根据概率公式求解可得. 试题解析:用树状图分析如下:∴一共有6种情况,甲、乙两人恰好相邻有4种情况,∴甲、乙两人相邻的概率是46=23. 考点:列表法与树状图法.18.求不等式组⎪⎩⎪⎨⎧⋯-≤-⋯+≤-+②①)23(2352513)1(4x x x x 的整数解. 【答案】0,1,2.考点:一元一次不等式组的整数解.四、解答题:本大题共2小题,每小题6分,共12分.19.先化简,再求值:⎪⎪⎭⎫⎝⎛--+-+-⎪⎪⎭⎫ ⎝⎛---+-22231231334222x x x x x x x x x ,其中x =4. 【答案】x ﹣2,2.考点:分式的化简求值.20.在“一带一路”倡议下,我国已成为设施联通,贸易畅通的促进者,同时也带动了我国与沿线国家的货物交换的增速发展,如图是湘成物流园通过“海、陆(汽车)、空、铁”四种模式运输货物的统计图.请根据统计图解决下面的问题:(1)该物流园货运总量是多少万吨?(2)该物流园空运货物的总量是多少万吨?并补全条形统计图;(3)求条形统计图中陆运货物量对应的扇形圆心角的度数?【答案】(1)240;(2)36;(3)18°.(2)空运货物的总量是240×15%=36吨,条形统计图如下:(3)陆运货物量对应的扇形圆心角的度数为12240×360°=18°. 考点:条形统计图;扇形统计图.五、解答题:本大题共2小题,每小题7分,共14分.21.如图,已知反比例函数xky =的图象经过点A (4,m ),AB ⊥x 轴,且△AOB 的面积为2. (1)求k 和m 的值;(2)若点C (x ,y )也在反比例函数xky =的图象上,当﹣3≤x ≤﹣1时,求函数值y 的取值范围.【答案】(1)k =4,m =1;(2)﹣4≤y ≤﹣43. 【解析】试题分析:(1)根据反比例函数系数k 的几何意义先得到k 的值,然后把点A 的坐标代入反比例函数解析式,可求出k 的值;(2)先分别求出x =﹣3和﹣1时y 的值,再根据反比例函数的性质求解.考点:反比例函数系数k 的几何意义;反比例函数图象上点的坐标特征. 22.如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于C ,BE ∥CO . (1)求证:BC 是∠ABE 的平分线;(2)若DC =8,⊙O 的半径OA =6,求CE 的长.【答案】(1)证明见解析;(2)4.8. 【解析】试题分析:(1)由BE ∥CO ,推出∠OCB =∠CBE ,由OC =OB ,推出∠OCB =∠OBC ,可得∠CBE =∠CBO ; (2)在Rt △CDO 中,求出OD ,由OC ∥BE ,可得DC DOCE OB=,由此即可解决问题;试题解析:(1)证明:∵DE 是切线,∴OC ⊥DE ,∵BE ∥CO ,∴∠OCB =∠CBE ,∵OC =OB ,∴∠OCB =∠OBC ,∴∠CBE =∠CBO ,∴BC 平分∠ABE .(2)在Rt △CDO 中,∵DC =8,OC =0A =6,∴OD =22CD OC +=10,∵OC ∥BE ,∴DC DO CE OB =,∴8106CE =,∴EC =4.8.考点:切线的性质.六、解答题:本大题共2小题,每小题8分,共16分.23.收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)到甜甜和她妹妹在六一收到红包的年增长率是多少?(2)六一甜甜和她妹妹各收到了多少钱的微信红包?【答案】(1)10%;(2)甜甜在六一收到微信红包为150元,则她妹妹收到微信红包为334元.试题解析:(1)设到甜甜和她妹妹在六一收到红包的年增长率是x,依题意得:400(1+x)2=484,解得x1=0.1=10%,x2=﹣2.1(舍去).答:到甜甜和她妹妹在六一收到红包的年增长率是10%;(2)设甜甜在六一收到微信红包为y元,依题意得:2y+34+y=484,解得y=150,所以484﹣150=334(元).答:甜甜在六一收到微信红包为150元,则她妹妹收到微信红包为334元.考点:一元一次方程的应用;一元二次方程的应用;增长率问题.24.如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414)【答案】3.05.答:篮框D到地面的距离是3.05米.考点:解直角三角形的应用.七、解答题:每小题10分,共20分.25.如图,已知抛物线的对称轴是y轴,且点(2,2),(1,54)在抛物线上,点P是抛物线上不与顶点N重合的一动点,过P作P A⊥x轴于A,PC⊥y轴于C,延长PC交抛物线于E,设M是O关于抛物线顶点N 的对称点,D是C点关于N的对称点.(1)求抛物线的解析式及顶点N的坐标;(2)求证:四边形PMDA是平行四边形;(3)求证:△DPE∽△P AM3P的坐标.【答案】(1)2114y x =+, N (0,1);(2)证明见解析;(3)证明见解析,P (23,4)或(﹣23,4). 试题解析:(1)解:∵抛物线的对称轴是y 轴,∴可设抛物线解析式为2y ax c =+ ,∵点(2,2),(1,54)在抛物线上,∴4254a c a c +=⎧⎪⎨+=⎪⎩,解得:141a c ⎧=⎪⎨⎪=⎩,∴抛物线解析式为2114y x =+,∴N 点坐标为(0,1); (2)证明:设P (t ,2114t +),则C (0,2114t +),P A =2114t +,∵M 是O 关于抛物线顶点N 的对称点,D 是C 点关于N 的对称点,且N (0,1),∴M (0,2),∵OC =2114t +,ON =1,∴DM =CN =2114t +﹣1=214t ,∴OD =2114t -,∴D (0,2114t -+),∴DM =2﹣(2114t -+)=2114t +=P A ,且PM ∥DM ,∴四边形PMDA 为平行四边形;(3)解:同(2)设P (t ,2114t +),则C (0,2114t +),P A =2114t +,PC =|t |,∵M (0,2),∴CM =2114t +﹣2=2114t -,在Rt △PMC 中,由勾股定理可得PM =22PC CM +2221(1)4t t +- =221(1)4t +=2114t +=P A ,且四边形PMDA 为平行四边形,∴四边形PMDA 为菱形,∴∠APM =∠ADM =2∠PDM ,∵PE ⊥y 轴,且抛物线对称轴为y 轴,∴DP =DE ,且∠PDE =2∠PDM ,∴∠PDE =∠APM ,且PD DE PA PM=,∴△DPE ∽△P AM ;∵OA =|t |,OM =2,∴AM =24t +,且PE =2PC =2|t |,当相似比为3时,则AM PE =3,即224tt + =3,解得t =23或t =﹣23,∴P 点坐标为(23,4)或(﹣23,4).考点:二次函数综合题;压轴题.26.如图,直角△ABC 中,∠BAC =90°,D 在BC 上,连接AD ,作BF ⊥AD 分别交AD 于E ,AC 于F .(1)如图1,若BD =BA ,求证:△ABE ≌△DBE ;(2)如图2,若BD =4DC ,取AB 的中点G ,连接CG 交AD 于M ,求证:①GM =2MC ;②AG 2=AF •AC .【答案】(1)证明见解析;(2)①证明见解析;②证明见解析.试题解析:(1)在Rt △ABE 和Rt △DBE 中,∵BA =BD ,BE =BE ,∴△ABE ≌△DBE ;(2)①过G 作GH ∥AD 交BC 于H ,∵AG =BG ,∴BH =DH ,∵BD =4DC ,设DC =1,BD =4,∴BH =DH =2,∵GH ∥AD ,∴21GM HD MC DC ==,∴GM =2MC ;考点:相似三角形的判定与性质;全等三角形的判定与性质;和差倍分.。

湖南省常德市中考数学试卷(word版,含答案解析)

湖南省常德市中考数学试卷(word版,含答案解析)

湖南省常德市中考数学试卷一.选择题(本大题8个小题,每小题3分,满分24分)1.(3分)﹣2相反数是()A.2B.﹣2C.2﹣1D.﹣【分析】直接利用相反数定义分析得出答案.【解答】解:﹣2相反数是:2.故选:A.【点评】此题主要考查了相反数,正确把握相反数定义是解题关键.2.(3分)已知三角形两边长分别是3和7,则此三角形第三边长可能是()A.1B.2C.8D.11【分析】根据三角形三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.【点评】此题主要考查了三角形三边关系,关键是掌握三角形两边之和大于第三边.三角形两边差小于第三边.3.(3分)已知实数a,b在数轴上位置如图所示,下列结论中正确是()A.a>bB.|a|<|b|C.ab>0D.﹣a>b【分析】根据数轴可以判断a.b正负,从而可以判断各个选项中结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.【点评】本题考查实数与数轴.绝对值,解答本题关键是明确题意,利用数形结合思想解答.4.(3分)若一次函数y=(k﹣2)x+1函数值y随x增大而增大,则()A.k<2B.k>2C.k>0D.k<0【分析】根据一次函数性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.【点评】本题考查了一次函数性质,y=kx+b,当k>0时,函数值y随x增大而增大.5.(3分)从甲.乙.丙.丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你平均成绩都是86.5分,方差分别是S甲认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【分析】根据方差是反映一组数据波动大小一个量.方差越大,则平均值离散程度越大,稳定性也越小;反之,则它与其平均值离散程度越小,稳定性越好可得答案.【解答】解:∵1.5<2.6<3.5<3.68,∴甲成绩最稳定,∴派甲去参赛更好,故选:A.【点评】此题主要考查了方差,关键是掌握方差越小,稳定性越大.6.(3分)如图,已知BD是△ABC角平分线,ED是BC垂直平分线,∠BAC=90°,AD=3,则CE长为()A.6B.5C.4D.3【分析】根据线段垂直平分线性质得到DB=DC,根据角平分线定义.三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形性质解答.【解答】解:∵ED是BC垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查是线段垂直平分线性质.直角三角形性质,掌握线段垂直平分线上点到线段两端点距离相等是解题关键.7.(3分)把图1中正方体一角切下后摆在图2所示位置,则图2中几何体主视图为()A. B. C. D.【分析】根据从正面看得到图形是主视图,可得答案.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.【点评】本题考查了简单组合体三视图,从正面看得到图形是主视图.8.(3分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面方法解二元一次方程组时,下面说法错误是()A.D==﹣7 B.D x=﹣14C.D y=27D.方程组解为【分析】分别根据行列式定义计算可得结论.【解答】解:A.D==﹣7,正确;B.D x==﹣2﹣1×12=﹣14,正确;C.D y==2×12﹣1×3=21,不正确;D.方程组解:x===2,y===﹣3,正确;故选:C.【点评】本题是阅读理解问题,考查了2×2阶行列式和方程组解关系,理解题意,直接运用公式计算是本题关键.二.填空题(本大题8个小题,每小题3分,满分24分)9.(3分)﹣8立方根是﹣2.【分析】利用立方根定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根概念.如果一个数x立方等于a,即x三次方等于a(x3=a),那么这个数x就叫做a立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.(3分)分式方程﹣=0解为x=﹣1.【分析】分式方程去分母转化为整式方程,求出整式方程解得到x值,经检验即可得到分式方程解.【解答】解:去分母得:x﹣2﹣3x=0,解得:x=﹣1,经检验x=1是分式方程解.故答案为:﹣1【点评】此题考查了解分式方程,利用了转化思想,解分式方程注意要检验. 11.(3分)已知太阳与地球之间平均距离约为150000000千米,用科学记数法表示为 1.5×108千米.【分析】科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数.确定n值时,要看把原数变成a时,小数点移动了多少位,n绝对值与小数点移动位数相同.当原数绝对值>10时,n是正数;当原数绝对值<1时,n是负数.【解答】解:1 5000 0000=1.5×108,故答案为:1.5×108.【点评】此题考查科学记数法表示方法.科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a值以及n值.12.(3分)一组数据3,﹣3,2,4,1,0,﹣1中位数是1.【分析】将数据按照从小到大重新排列,根据中位数定义即可得出答案.【解答】解:将数据重新排列为﹣3.﹣1.0.1.2.3.4,所以这组数据中位数为1,故答案为:1.【点评】本题考查了中位数概念:将一组数据按照从小到大(或从大到小)顺序排列,如果数据个数是奇数,则处于中间位置数就是这组数据中位数;如果这组数据个数是偶数,则中间两个数据平均数就是这组数据中位数.13.(3分)若关于x一元二次方程2x2+bx+3=0有两个不相等实数根,则b值可能是6(只写一个).【分析】根据方程系数结合根判别式△>0,即可得出关于b一元二次不等式,解之即可得出b取值范围,取其内任意一值即可得出结论.【解答】解:∵关于x一元二次方程2x2+bx+3=0有两个不相等实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6.【点评】本题考查了根判别式,牢记“当△>0时,方程有两个不相等实数根”是解题关键.14.(3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围频率为0.35.视力x频数4.0≤x<4.3204.3≤x<4.6404.6≤x<4.9704.9≤x≤5.2605.2≤x<5.510【分析】直接利用频数÷总数=频率进而得出答案.【解答】解:视力在4.9≤x<5.5这个范围频数为:60+10=70,则视力在4.9≤x<5.5这个范围频率为:=0.35.故答案为:0.35.【点评】此题主要考查了频率求法,正确把握频率定义是解题关键.15.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上点G处,点C 落在点H处,已知∠DGH=30°,连接BG,则∠AGB=75°.【分析】由折叠性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题关键是熟练掌握翻折变换性质:折叠前后图形形状和大小不变,位置变化,对应边和对应角相等.16.(3分)5个人围成一个圆圈做游戏,游戏规则是:每个人心里都想好一个实数,并把自己想好数如实地告诉他相邻两个人,然后每个人将他相邻两个人告诉他数平均数报出来,若报出来数如图所示,则报4人心里想数是9.【分析】设报4人心想数是x,则可以分别表示报1,3,5,2人心想数,最后通过平均数列出方程,解方程即可.【解答】解:设报4人心想数是x,报1人心想数是10﹣x,报3人心想数是x ﹣6,报5人心想数是14﹣x,报2人心想数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.【点评】本题属于阅读理解和探索规律题,考查知识点有平均数相关计算及方程思想运用.规律与趋势:这道题解决方法有点奥数题思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选方法,而且,多设几个未知数,把题中等量关系全部展示出来,再结合题意进行整合,问题即可解决.本题还可以根据报2人心想数可以是6﹣x,从而列出方程x﹣12=6﹣x求解.三.(本大题2个小题,每小题5分,满分10分)17.(5分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.【分析】本题涉及零指数幂.负指数幂.二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数运算法则求得计算结果.【解答】解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点评】本题主要考查了实数综合运算能力,是各地中考题中常见计算题型.解决此类题目关键是熟练掌握负整数指数幂.零指数幂.二次根式.绝对值等考点运算.18.(5分)求不等式组正整数解.【分析】根据不等式组解集表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组解集是﹣2<x≤,不等式组正整数解是1,2,3,4.【点评】本题考查了解一元一次不等式组,利用解一元一次不等式组解集表示方法是解题关键.四.(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再求值:(+)÷,其中x=.【分析】直接将括号里面通分运算,再利用分式混合运算法则计算得出答案.【解答】解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.【点评】此题主要考查了分式化简求值,正确掌握分式混合运算法则是解题关键.20.(6分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数解析式;(2)请根据图象直接写出y1<y2时x取值范围.【分析】(1)由点A坐标利用反比例函数图象上点坐标特征可求出k2值,进而可得出反比例函数解析式,由点B纵坐标结合反比例函数图象上点坐标特征可求出点B坐标,再由点A.B坐标利用待定系数法,即可求出一次函数解析式;(2)根据两函数图象上下位置关系,找出y1<y2时x取值范围.【解答】解:(1)∵反比例函数y2=(k2≠0)图象过点A(4,1),∴k2=4×1=4,∴反比例函数解析式为y2=.∵点B(n,﹣2)在反比例函数y2=图象上,∴n=4÷(﹣2)=﹣2,∴点B坐标为(﹣2,﹣2).将A(4,1).B(﹣2,﹣2)代入y1=k1x+b,,解得:,∴一次函数解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x取值范围为x<﹣2或0<x<4.【点评】本题考查了待定系数法求一次函数解析式以及反比例函数图象上点坐标特征,解题关键是:(1)利用反比例函数图象上点坐标特征求出点B坐标;(2)根据两函数图象上下位置关系,找出不等式y1<y2解集.五.(本大题2个小题,每小题7分,满分14分)21.(7分)某水果店5月份购进甲.乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果数量与5月份都相同,将多支付货款300元,求该店5月份购进甲.乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果3倍,则6月份该店需要支付这两种水果货款最少应是多少元?【分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x.y二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付货款为w元,则购进乙种水果(120﹣a)千克,根据总价=单价×购进数量,即可得出w关于a函数关系式,由甲种水果不超过乙种水果3倍,即可得出关于a一元一次不等式,解之即可得出a取值范围,再利用一次函数性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果货款最少应是1500元.【点评】本题考查了二元一次方程组应用.一元一次不等式应用以及一次函数应用,解题关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间关系,找出w关于a函数关系式.22.(7分)图1是一商场推拉门,已知门宽度AD=2米,且两扇门大小相同(即AB=CD),将左边门ABB1A1绕门轴AA1向里面旋转37°,将右边门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)【分析】作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE.Rt△CDF中可求出AE.BE.DF.FC长度,进而可得出EF长度,再在Rt△MEF中利用勾股定理即可求出EM长,此题得解.【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间距离约为1.4米.【点评】本题考查了解直角三角形应用.勾股定理以及平行四边形判定与性质,构造直角三角形,利用勾股定理求出BC长度是解题关键.六.(本大题2个小题,每小题8分,满分16分)23.(8分)某校体育组为了解全校学生“最喜欢一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制不完整统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球学生所占百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目有多少名?(3)在扇形统计图中,“篮球”部分所对应圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目甲.乙.丙.丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取两人恰好是甲和乙概率.【分析】(1)先利用喜欢足球人数和它所占百分比计算出调查总人数,再计算出喜欢乒乓球人数,然后补全条形统计图;(2)用500乘以样本中喜欢排球百分比可根据估计全校500名学生中最喜欢“排球”项目写生数;(3)用360°乘以喜欢篮球人数所占百分比即可;(4)画树状图展示所有12种等可能结果数,再找出抽取两人恰好是甲和乙结果数,然后根据概率公式求解.【解答】解:(1)调查总人数为8÷16%=50(人),喜欢乒乓球人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球学生所占百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目有60名;(3),篮球”部分所对应圆心角=360×40%=144°;(4)画树状图为:共有12种等可能结果数,其中抽取两人恰好是甲和乙结果数为2,所以抽取两人恰好是甲和乙概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能结果n,再从中选出符合事件A或B结果数目m,然后利用概率公式计算事件A 或事件B概率.也考查了统计图.24.(8分)如图,已知⊙O是等边三角形ABC外接圆,点D在圆上,在CD延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O切线;(2)求证:BD=CF.【分析】(1)根据等边三角形性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O切线;(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆性质得:∠ADF=∠ABC=60°,得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.【解答】证明:(1)连接OD,∵⊙O是等边三角形ABC外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A.B.C.D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.【点评】本题考查了全等三角形性质和判定,等边三角形及外接圆,四点共圆等知识点综合运用,属于基础题,熟练掌握等边三角形性质是关键.七.(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知二次函数图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数解析式;(2)若M是OB上一点,作MN∥AB交OA于N,当△ANM面积最大时,求M 坐标;(3)P是x轴上点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点三角形与以O,A,C为顶点三角形相似时,求P点坐标.【分析】(1)先利用抛物线对称性确定B (6,0),然后设交点式求抛物线解析式;(2)设M (t ,0),先其求出直线OA 解析式为y=x ,直线AB 解析式为y=2x ﹣12,直线MN 解析式为y=2x ﹣2t ,再通过解方程组得N (t ,t ),接着利用三角形面积公式,利用S △AMN =S △AOM ﹣S △NOM 得到S △AMN =•4•t ﹣•t•t ,然后根据二次函数性质解决问题;(3)设Q (m ,m 2﹣m ),根据相似三角形判定方法,当=时,△PQO ∽△COA ,则|m 2﹣m |=2|m |;当=时,△PQO ∽△CAO ,则|m 2﹣m |=|m |,然后分别解关于m 绝对值方程可得到对应P 点坐标.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B 点坐标为(6,0),设抛物线解析式为y=ax (x ﹣6),把A (8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x (x ﹣6),即y=x 2﹣x ;(2)设M (t ,0),易得直线OA 解析式为y=x ,设直线AB 解析式为y=kx +b ,把B (6,0),A (8,4)代入得,解得,∴直线AB 解析式为y=2x ﹣12,∵MN ∥AB ,∴设直线MN 解析式为y=2x +n ,把M (t ,0)代入得2t +n=0,解得n=﹣2t ,∴直线MN 解析式为y=2x ﹣2t , 解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM =•4•t ﹣•t•t=﹣t 2+2t=﹣(t ﹣3)2+3,当t=3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)设Q (m ,m 2﹣m ),∵∠OPQ=∠ACO , ∴当=时,△PQO ∽△COA ,即=,∴PQ=2PO ,即|m 2﹣m |=2|m |, 解方程m 2﹣m=2m 得m 1=0(舍去),m 2=14,此时P 点坐标为(14,28); 解方程m 2﹣m=﹣2m 得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,4); ∴当=时,△PQO ∽△CAO ,即=,∴PQ=PO ,即|m 2﹣m |=|m |, 解方程m 2﹣m=m 得m 1=0(舍去),m 2=8(舍去), 解方程m 2﹣m=﹣m 得m 1=0(舍去),m 2=2,此时P 点坐标为(2,﹣1); 综上所述,P 点坐标为(14,28)或(﹣2,4)或(2,﹣1).【点评】本题考查了二次函数综合题:熟练掌握二次函数图象上点坐标特征和二次函数性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间关系;会运用分类讨论思想解决数学问题.26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角余角相等判断出∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;(2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;(3)设CE=a,进而表示出EN=CE=a,CN=a,设DE=b,进而表示AD=a+b,根据勾股定理得,AC=(a+b),同(1)方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出,进而得出a=b,即可表示出CN=b,AC=b,AN=AC﹣CN=b,即可得出结论.【解答】解:(1)∵正方形ABCD对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;(2)连接MN,∵EN∥BD,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,∴EN=CN,同(1)方法得,OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM是平行四边形,∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,AC=AD=(a+b),同(1)方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴,∴,∴a=b(已舍去不符合题意)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.【点评】此题是相似形综合题,主要考查了正方形性质,平行四边形,菱形判定,全等三角形判定和性质,相似三角形判定和性质,勾股定理,判断出四边形DENM 是菱形是解(2)关键,判断出△DEN∽△ADE是解(3)关键.。

湖南常德市初中毕业生学业考试试卷及参考答案

湖南常德市初中毕业生学业考试试卷及参考答案

2006年常德市初中毕业生学业考试数学试卷及答案题号 一 二 三 四 五 六 总分 合分人 复分人得分考试注意:1.请考生在总分栏上面的座位号方格内工整地填写好座位号; 2.本学科试卷共六道大题,满分150分,考试时量120分钟; 3.考生可带科学计算器参加考试.一、填空题(本大题8个小题,每个小题4分,满分32分) 1.12-的相反数是 . 2.据统计,湖南省常德市2005年农业总产值达到24 800 000 000元,用科学记数法可表示为 元.3.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).4.等腰梯形的上底、下底和腰长分别为4cm ,10cm ,6cm ,则等腰梯形的下底角为 度. 5.多项式24ax a -与多项式244x x -+的公因式是 . 6.如图1,若AB CD ∥,EF 与AB CD ,分别相交于点E F EP EF EFD ∠,,,⊥的平分线与EP 相交于点P ,且40BEP ∠=,则EPF ∠= 度.7.在半径为10cm 的O 中,圆心O 到弦AB 的距离为6cm ,则弦AB 的长是 cm . 8.右边是一个有规律排列的数表,请用含 n 的代数式(n 为正整数)表示数表中第n 行第n 列的数: .二、选择题(本题中的选项只有一个是正确的,请你将正确的选项填在下表中,本大题8个小题,每小题4分,满分32分) 题号 9 10 11 12 13 14 15 16 答案 9.下列计算正确的是( ) A.164=±B.32221-=C.2464÷=D.2623=10.图2是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是( ) 11.图3是某中学七年级学生参加课外活动人数的扇形统计图,B E A P F CD 图1 球类 其它35% 15% 美术 类 舞蹈类图2 A B C D若参加舞蹈类的学生有42人,则参加球类活动的学生人数有( ) A.145人 B.147人 C.149人 D.151人12.根据下列表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程2ax A. B. C.6.18 6.19x << D.6.19 6.20x <<13.下列命题中,真命题是( )A.两条对角线相等的四边形是矩形 B.两条对角线垂直的四边形是菱形C.两条对角线垂直且相等的四边形是正方形;D.两条对角线相等的平行四边形是矩形14.已知111222333()()()P x y P x y Px y ,,,,,是反比例函数2y x=的图象上的三点,且1230x x x <<<,则123y y y ,,的大小关系是(A.321y y y << B.C.213y y y <<D.15.如图4,在直角坐标系中,O 的半径为1,则直线y x =-+O 的位置关系是( )A.相离 B.相交 C.相切 16.若用(1),(2),(3),(4(b ),(c ),(d )对应的图象排序: (b )运动员推出去的铅球(铅球的高度与时间的关系) (c )一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物质量的关系)(d )某人从A 地到B 地后,停留一段时间,然后按原速返回(离开A 地的距离与时间的关系),其中正确的顺序是( )A.(3)(4)(1)(2) B.(3)(2)(1)(4) C.(4)(3)(1)(2) D.(3)(4)(2)(1) 三、(本大题4个小题,每小题6分,满分24分)17.计算:211(3.14)(1cos60)32-⎛⎫---π+- ⎪⎝⎭18.先化简代数式:22121111x x x x x -⎛⎫+÷⎪+--⎝⎭,然后选取一个使原式有意义的x 的值代入求值.(1) (2) (3)(4)19.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率.(4分)(2)你认为这个游戏公平吗?为什么?(2分)20.如图5,已知反比例函数1(my mx=≠2(0)y kx b k=+≠的图象经过点(03)C,(1(2)求点B的坐标.(2分)四、(本大题2个小题,每小题8分,满分16分)21.如图6,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度1:3i =,斜坡BD 的长是50米,在山坡的坡底B 处测得铁架顶端A 的仰角为45,在山坡的坡顶D 处测得铁架顶端A 的仰角为60.(1)求小山的高度;(4分)(2)求铁架的高度.(3 1.73≈,精确到0.1米)(4分)22.如图7,P 是等边三角形ABC 内的一点,连结PAPB PC ,,,以BP 为边作60PBQ ∠=,且BQ BP =,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.(4分)(2)若::3:4:5PA PB PC =,连结PQ ,试判断PQC △的形状,并说明理由.(4分)五、(本大题2个小题,每小题10分,满分20分)23.在今年“五一”长假期间,某学校团委会要求学生参加一项社会调查活动.八年级学生小青想了解她所居住的小区500户居民的家庭收入情况,从中随机调查了40户居民家庭的收入情况(收入取整数,单位:元)并绘制了如下的频数分布表和频数分布直方图.根据以上提供的信息,解答下列问题: (1) 补全频数分布表:(3分)(2) 补全频数分布直方图;(2分) (3) 这40户家庭收入的中位数落在哪一个小组?(2分)(4) 请你估计该居民小区家庭收入较低(不足1000元)的户数大约有多少户?(3分)分组 频数 频率 600~7992 0.050 800~999 6 0.150 1000~1199 0.450 1200~13999 0.225 1400~15991600~1800 2 0.050 合计 40 1.000 图7Q C PAB 600 800 1000 1200 1400 1600 1800 0 4812 16 20 (户数)) 频数分布表 频数分布直方图24.某电器经营业主计划购进一批同种型号的挂式空调和电风扇,若购进8台空调和20台电风扇,需要资金17400元,若购进10台空调和30台电风扇,需要资金22500元. (1)求挂式空调和电风扇每台的采购价各是多少元?(5分)(2)该经营业主计划购进这两种电器共70台,而可用于购买这两种电器的资金不超过30000元,根据市场行情,销售一台这样的空调可获利200元,销售一台这样的电风扇可获利30元.该业主希望当这两种电器销售完时,所获得的利润不少于3500元.试问该经营业主有哪几种进货方案?哪种方案获利最大?最大利润是多少?(5分)六、(本大题2个小题,每小题13分,满分26分)25.如图8,在直角坐标系中,以点A为圆心,以x 轴相交于点B C ,,与y 轴相交于点D E ,.(1)若抛物线213y x bx c =++经过C D ,两点,求抛物线的解析式,并判断点B 是否在该抛物线上.(6分)(2)在(1)中的抛物线的对称轴上求一点P ,使得PBD △的周长最小.(3分)(3)设Q 为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M ,使得四边形BCQM 是平行四边形.若存在,求出点M 的坐标;若不存在,说明理由.(4分)26.把两块全等的直角三角形ABC 和DEFABC 的斜边中点O 重合,其中90ABC DEF ∠=∠=,45C F ∠=∠=,4AB DE ==,把三角板ABC 固定不动,让三角板DEF 绕点O 旋转,设射线DE 与射线AB 相交于点P ,射线DF 与线段BC 相交于点Q .(1)如图9,当射线DF 经过点B ,即点Q 与点B 重合时,易证APD CDQ △∽△.此时,AP CQ =· .(2分)(2)将三角板DEF 由图9所示的位置绕点O 沿逆时针方向旋转,设旋转角为α.其中图8090α<<,问AP CQ ·的值是否改变?说明你的理由.(5分)(3)在(2)的条件下,设CQ x =,两块三角板重叠面积为y ,求y 与x 的函数关系式.(图10,图11供解题用)(6分)2006年常德市初中毕业生学业考试试卷数学参考答案及评分标准说明:(一)《答案》中各行右端所注分数表示正确作完该步应得的累加分数,全卷满分150分. (二)《答案》中的解法只是该题解法中的一种或几种,如果考生的解法和本《答案》不同,可参照本答案中的标准给分.(三)评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度者,视影响程度决定后面部分的得分,但原则上不超过后面部分应得分数的一半,如有严重的概念错误,就不给分. 一、填空题(本小题8个小题,每小题4分,满分32分)1.12 2.102.4810⨯ 3.220x x -=或2320x x -+=等 4.605.2x -6.657.16cm 8.21n n -+BEEA 图9 图10图1117.解:211(3.14)(1cos60)32-⎛⎫---π+- ⎪⎝⎭211111322-⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭ ···································································· 3分221232=-+ ·················································································· 4分223=-+ ······················································································· 5分43= ······························································································· 6分18.解:22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭222(1)21(1)(1)11x x x x x x ⎛⎫-=+÷ ⎪+---⎝⎭ ····················································· 2分2221(1)1x x x +=⨯-- ············································································ 4分21x =+ ························································································· 5分 当0x =时,原式的值为1. ··································································· 6分说明:只要1x ≠±,且代入求值正确,均可记满分6分.19.解:(120的有5种,所以甲获胜的概率为516P =甲. ················································································ 4分 (2)这个游戏对双方不公平,因为甲获胜的概率516P =甲,乙获胜的概率1116P =乙,1116165≠,所以,游戏对双方是不公平的. ······································································· 6分20.解:(1)∵点(21)A -,在反比例函数1my x=的图象上.2m1=-∴ 即2m =- 又(21)A -,,(03)C ,在一次函数2y kx b =+图象上. 213k b b -+=⎧⎨=⎩∴即13k b =⎧⎨=⎩∴反比例函数与一次函数解析式分别为:2y x=-与3y x =+ ············· 4分 (2)由32y x y x =+⎧⎪⎨=-⎪⎩得23x x +=-,即2320x x ++= 2x =-∴或1x =-于是21x y =-⎧⎨=⎩或12x y =-⎧⎨=⎩∴点B 的坐标为(12)-, ·································································· 6分 四、(本大题2个小题,每小题8分,满分16分)21.解:(1)如图,过D 作DF 垂直于坡底的水平线BC 于点F .由已知,斜坡的坡比i =tan 3DBC ∠=∴坡角30DBC ∠= ·············································································· 2分 于是在Rt DFB △中,sin 3025DF DB ==即小山高为25米 ················································································· 4分 (2)设铁架的高AE x =.在Rt AED △中,已知60ADE =,于是3tan 603AE DE x == ···················· 6分在Rt ACB △中,已知45ABC ∠=,25AC AE EC AE DF x =+=+=+∵又BC BF FC BF DE x =+=+=由AC BC =,得25x x += 43.3x =≈∴,即铁架高43.3米 ··················································· 8分 22.解:(1)猜想:AP CQ = ······································································ 1分 证明:在ABP △与CBQ △中,AB CB =∵,BPBQ =,60ABC PBQ ∠=∠=ABP ABC PBC PBQ PBC CBQ ∠=∠-∠=∠-∠=∠∴ ABP CBQ ∴△≌△ AP CQ =∴ ··················································································· 4分 (2)由::3:4:5PA PB PC = 可设3PA a =,4PB a =,5PC a = ·· 5分 连结PQ ,在PBQ △中,由于4PB BQ a ==,且60PBQ ∠= PBQ ∴△为正三角形 4PQ a =∴于是在PQC △中,22222216925PQ QC a a a PC +=+==∵PQC ∴△是直角三角形 ···································································· 8分 五、(本大题2个小题,每小题10分,满分20分)23.解:(1)频数:18 频数:3, 频率:0.075 ································ 3分 (2)略 ···································································································5分BFA(3)这40户家庭收入的中位数在10001199这个小组(或答第三小组) ··········· 7分(4)因为收入较低的频率为0.0500.1500.2+=,所以该小区500户居民的家庭收入较低的户数为0.2500100⨯=户. ············································································· 10分 24.解:(1)设挂式空调和电风扇每台的采购价格分别为x 元和y 元依题意,得82017400103022500x y x y +=⎧⎨+=⎩ ·································································· 3分解得1800150x y =⎧⎨=⎩即挂式空调和电风扇每台的采购价分别为1800元和150元. ······························· 5分 (2)设该业主计划购进空调t 台,则购进电风扇(70)t -台 则1800150(70)3000020030(70)3500t t t t +-⎧⎨+-⎩≤≥ 解得:498111711t ≤≤t ∵为整数 t ∴为9,10,11 ··································································· 7分 故有三种进货方案,分别是:方案一:购进空调9台,电风扇61台;方案二:购进空调10台,电风扇60台; 方案三:购进空调11台,电风扇59台. ················· 8分 设这两种电器销售完后,所获得的利润为W ,则20030(70)W t t =+- 1702100t =+由于W 随t 的增大而增大. 故当11t=时,W 有最大值,1701121003970W =⨯+=最大 即选择第3种进货方案获利最大,最大利润为3970元 ······························· 10分说明:如果将9t =,10,11时分别代入1702100W t =+中,通过比较得到获利最大的方案,同样记满分.六、(本大题2个小题,每小题13分,满分26分) 25.解:(1)OA =∵AB AC ==(B ∴,C 又在Rt AOD △中,AD =OA =3OD ==∴D ∴的坐标为(03)-, ···································································· 3分又D C ,两点在抛物线上,231(33)03c c =-⎧⎪⎨++=⎪⎩∴解得3b c⎧=⎪⎨⎪=-⎩ ∴抛物线的解析式为:2133y x x =-- ······································ 5分当x =0y =∴点(B 在抛物线上 ······························································ 6分(2)21333y x x =--∵21(43x =-∴抛物线2133y x x =--的对称轴方程为x =················· 7分在抛物线的对称轴上存在点P ,使PBD △的周长最小.BD ∵的长为定值 ∴要使PBD △周长最小只需PB PD +最小. 连结DC ,则DC 与对称轴的交点即为使PBD △周长最小的点.设直线DC 的解析式为y mx n =+.由30n n =-⎧⎪⎨+=⎪⎩得33m n ⎧=⎪⎨⎪=-⎩∴直线DC的解析式为3y x =-由3y x x ⎧=-⎪⎨⎪=⎩得2x y ⎧=⎪⎨=-⎪⎩故点P的坐标为2)- ························································ 9分(3)存在,设)Q t为抛物线对称轴x =M 在抛物线上要使四边形BCQM 为平行四边形,则BC QM ∥且BC QM =,点M 在对称轴的左侧. 于是,过点Q 作直线L BC ∥与抛物线交于点()m M x t ,由BC QM =得QM =从而mx =-,12t =故在抛物线上存在点(M ,使得四边形BCQM 为平行四边形. ···················································································································· 13分26.解:(1)8 ···························································································· 2分 (2)AP CQ 的值不会改变. ··································································· 3分 理由如下:在APD △与CDQ △中,45A C ∠=∠= 18045(45)90APD a a ∠=--+=- 90CDQ a ∠=- 即APD CDQ ∠=∠APD CDQ ∴△∽△ ···················· 5分AP CD AD CQ=∴ 22182AP CQ AD CD AD AC ⎛⎫==== ⎪⎝⎭∴ ············································· 7分E(3)情形1:当045a <<时,24CQ <<,即24x <<,此时两三角板重叠部分为四边形DPBQ ,过D 作DG AP ⊥于G ,DN BC ⊥于N , 2DG DN ==∴由(2)知:8AP CQ =得8AP x= 于是111222y AB AC CQ DN AP DG =-- 88(24)x x x =--<< ···························································情形2:当4590a <≤时,02CQ <≤时,即02x <≤,此时两三角板重叠部分为DMQ △,由于8AP x =,84PB x=-,易证:PBM DNM △∽△, BM PB MN DN =∴即22BM PB BM =-解得28424PB x BM PB x-==+- 84444x MQ BM CQ x x-=--=---∴ 于是1844(02)24x y MQ DN x x x-==--<-≤ 综上所述,当24x <<时,88y x x=-- 当02x <≤时,8444x y x x-=--- 2484y x x x =⎛⎫-+ ⎪-⎝⎭或 ······································ 13分 说明:①未指明x 的范围,不扣分.②上述情形2有多种解法,如:法二:连结BD ,并过D 作DN BC ⊥于点N ,在DBQ △与MCD △中,45DBQ MCD ∠=∠=45DQB QCB QDC QDC MDQ QDC MDC ∠=∠+∠=+∠=∠+∠=∠DBQ MCD ∴△∽△ MC DB CD BQ=∴ 即4x=- 84MC x=-∴ 284844x x MQ MC CD x x x -+=-=-=--∴ 2148(02)24x x y DN MQ x x-+==<-∴≤ 法三:过D 作DN BC ⊥于点N ,在Rt DNQ △中,222DQ DN NQ =+ B G24(2)x =+-248x x =-+于是在BDQ △与DMQ △中45DBQ MDQ ∠=∠= DMQ DBM BDM ∠=∠+∠45BDM =+∠BDQ =∠ BDQ DMQ ∴△∽△BQ DQ DQ MQ=∴ 即4x DQ DQ MQ-= 224844DQ x x MQ x x-+==--∴ 2148(02)24x x y DN MQ x x-+==<-∴≤。

2005-2011年湖南省常德市中考数学试卷及答案(7套)

2005-2011年湖南省常德市中考数学试卷及答案(7套)

2008年江苏省淮安市中等学校招生文化统一考试数学试题迎你参加中考,祝你取得好成绩!请先阅读以下几点注意事项:1.本卷分第Ⅰ卷(机器阅卷)和第Ⅱ卷(人工阅卷)两部分.共150分.考试时间120分钟.2.做第Ⅰ卷时,请将每小题选出的答案用2B 铅笔填涂在答题卡对应题目的标号上,如需改动,用橡皮擦干净后,再选涂其他答案,答案写在试题卷上无效.3.做第Ⅱ卷时,请先将密封线内的项目填写清楚,然后用蓝色或黑色的钢笔、签字笔、圆珠笔直接在试卷上作答,写在试题卷外无效.4.考试结束后,将第Ⅰ卷,第Ⅱ卷和答题卡一并交回.第Ⅰ卷 (选择题 共30分)一、选择题(本大题共10小题.每小题3分,共30分.下列各题的四个选项中,只有一个是符合题意的) 1.-3的相反数是A .-3B .-13 C .13D .32.第29届北京奥运会火炬接力活动历时130天,传递行程约为137000km .用科学记数法表示137000km 是 A .1.37×105km B .13.7×104km C .1.37×104km D .1.37×103km 3.若分式23x -有意义.则x 应满足的条件是 A .x ≠O B .x ≥3 C .x ≠3 D .x ≤34.如图,直线AB 、CD 相交于点O .OE 平分∠AOD ,若∠BOC =80°,则∠AOE 的度数是A .40°B .50°C .80°D . 100°5.下列各式中,正确的是A .2<3B .3<4C .4<5D . 14<16 6.下列计算正确的是A .a 2+a 2=a 4B .a 5·a 2=a 7C .()325a a = D .2a 2-a 2=27.如图,在Rt △ABC 中,∠C =90°,AC =1,BC =2.以边BC 所在直线为轴,把△ABC 旋转一周,得到的几何体的侧面积是A .πB .2πC .D .8.如图所示的几何体的俯视图是9.下列调查方式中.不合适的是A.了解2008年5月18日晚中央也视台“爱的奉献”抗震救灾文艺晚会的收视率,采用抽查的方式B.了解某渔场中青鱼的平均重量,采用抽查的方式C.了解某型号联想电脑的使用寿命,采用普查的方式D.了解一批汽车的刹车性能,采用普查的方式10.一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间t(h)之间的函数关系的是第Ⅱ卷(非选择题共120分)二、填空题(本大题共6小题.每小题3分,共18分.把正确答案直接填在题中的横线上)11.分解因式:a2-4=______________.12.已知⊙O1与⊙O2的半径分别为2cm和3cm,当⊙O1与⊙O2外切时,圆心距O1O2=______.13.如图,请填写一个适当的条件:___________,使得DE∥AB.14.小华在解一元二次方程x2-4x=0时.只得出一个根是x=4,则被他漏掉的一个根是x =____.15.小明上学期六门科目的期末考试成绩(单位:分)分别是:120,115,x,60,85,80.若平均分是93分,则x=_________.16.如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB 2B3C 1,……,依次下去.则点B 6的坐标是________________.三、解答题(本大题共12小题,共102分.解答应写出必要的计算过程、推演步骤或文字说明)17(本小题6分)1112sin 452o-⎛⎫-+ ⎪⎝⎭18.(本小题6分)先化简,再求值:()()()2,x y x y x y x ⎡⎤-+-+÷⎣⎦其中x =-1,y =12.19.(本小题6分)解不等式3x -2<7,将解集在数轴上表示出来,并写出它的正整数解.20.(本小题8分)一只不透明的袋子中装有6个小球,分别标有l 、2、3;、4、5、6这6个号码,这些球除号码外都相同.(1)直接写出事件“从袋中任意摸出一个球,号码为3的整数倍”的概率P 1;(2)用画树状图或列表格等方法,求事件“从袋中同时摸出两个球,号码之和为6”的慨率P 2. 21.(本小题8分)某县教育部门对该县参加奥运知识竞赛的7500名初中学生的初试成绩(成绩均为整数)进行一次抽样调查,所得数据如下表:(1)抽取样本的容量为___________;(2)根据表中数据,补全图中频数分布直方图;(3)样本的中位数所在的分数段范围为________________;(4)若规定初试成绩在90分以上(不包括90分)的学生进入决赛,则全县进入决赛的学生约为____人.22.(本小题8分)某民营企业为支援四川地震灾区,特生产A、B两种型号的帐篷.若A型帐篷每顶需篷布60平方米,钢管48米;B型帐篷每顶需篷布125平方米,钢管80米.该企业在生产这批帐篷时恰好(不计损耗)用了篷布9900平方米,钢管6720米.问:该企业生产了A、B 两种型号的帐篷各多少顶?23.(本小题8分)如图所示的网格中有A、B、C三点.(1)请你以网格线所在直线为坐标轴建立平面直角坐标系,使A、B两点的坐标分别为A(2,-4)、B(4,-2),则C点的坐标是_____________;(2)连结AB、BC、CA,先以坐标原点O为位似中心,按比例尺1:2在y轴的左侧''',再写出点C对应点C'的坐标画出△ABC缩小后的△A B C24.(本小题9分)已知:如图.矩形ABCD的对角线AC与BD相交于点O,点O关于直线AD的对称点是E,连结AE、DE.(1)试判断四边形AODE的形状,不必说明理由;(2)请你连结EB、EC.并证明EB=EC.25.(本小题9分)某项工程需要沙石料2×106立方米,阳光公司承担了该工程运送沙石料的任务.(1)在这项任务中平均每天的工作量v(立方米/天)与完成任务所需要的时间t(天)之间具有怎样的函数关系?写出这个函数关系式.(2)阳光公司计划投入A型卡车200辆,每天一共可以运送沙石料2×104立方米,则完成全部运送任务需要多少天?如果工作了25天后,由于工程进度的需要,公司准备再投入A型卡车120辆,在保持每辆车每天工作量不变的前提下,问:是否能提前28天完成任务?26.(本小题10分)如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若BC=DE=3.求:(1)⊙O的半径;(2)弦AC的长;(3)阴影部分的面积.27.(本小题10分)我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1是由△A复制出△A1,又由△A l 复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.(1)图l中标出的是一种可能的复制结果.它用到_____次平移._______次旋转.小明发现△B∽△A,其相似比为_________.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是________;(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;(4)图3是正五边形EFGHI.其中心是O.连结O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.28.(本小题14分)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的顶点为P,与x轴交点为A、B,与y轴交点为C.连结BP并延长交y轴于点D.(1)写出点P的坐标;(2)连结AP,如果△APB为等腰直角三角形,求a的值及点C、D的坐标;(3)在(2)的条件下,连结BC、AC、AD,点E(0,b)在线段CD(端点C、D除外)上,将△BCD绕点E逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S,根据不同情况,分别用含b的代数式表示S.选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b为何值时,重叠部分的面积最大?写出最大值.2008年淮安市中考数学试题参考解答一.选择题1.D 2.A 3.C 4.A 5.B 6.B 7.C 8.D 9.C 10.C 二、填空题 11.(a-2)(a+2) 12.5cm13.∠D=∠ABD(等等) 14.0 15.98 16.(-8,0) 三、解17.解:原式=2-1-2×22+2+2 =2-1-2+4 =318.解:原式=(x 2+y 2-2xy+x 2-y 2)÷x =(2x 2-2xy) ÷x =2x-2y ∵x=-1,y=12∴原式=2×(-1)-2×12=-3 19.解:3x<9 x<3将不等式的解集在数轴上表示如下:∴它的正整数解为1,2x4-120.解:⑴P 1= 26 = 13⑵分别用a,b,表示两个球的号码,c 表示两个球号码之和,用列表法表示如下:P 2=430 = 215(也可用树状图表示) 21.解:⑴500; ⑵⑶80.5~90.5⑷抽取的500人中进入决赛的人数为100人所占的百分比为100500=20%,因此7500学生中能进入决赛的人数约为7500×20%=1500(人) 22.解:设该企业生产了A 、B 两种型号的帐篷分别为x 顶和y 顶,据题意,得⎩⎨⎧60x+125y=990048x+80y=6720解之得⎩⎨⎧x=40y=60答:设该企业生产了A 、B 两种型号的帐篷分别40顶和60顶。

湖南省常德市中考数学试题及答案

湖南省常德市中考数学试题及答案

湖南省常德市中考数学试卷一、填空题(本大题8个小题,每小题3分,满分24分)1.4.2. 1.2×107.3.x(x+1).4.30°.5.y=﹣.6.50°.7.x=2.8.10200.9.B10.D11.C12.D13.B14.B15.A16.C17.解:原式=1+2﹣1﹣4=﹣2.解答:18.解解:解不等式2x+1>0,得:x>﹣,答:解不等式x>2x﹣5得:x<5,∴不等式组的解集为﹣<x<5,∵x是正整数,∴x=1、2、3、4、5.19.解答:解:原式=[+]•=•=•=,当a=5,b=2时,原式=.20.解答:解:画树状图得:∵共有6种等可能的结果,两数之和是偶数的有2种情况;∴甲获胜的概率为:=;∴P(甲获胜)=,∴P(甲)≠P(乙),∴这个游戏规则对甲、乙双方不公平.21.解答:解:设y2与x之间的函数关系式为y2=kx+b,由题意,得,解得:,故y2与x之间的函数关系式为y2=15x﹣25950;(2)由题意当y1=2y2时,5x﹣1250=2(15x﹣25950),解得:x=2026.故y1=5×2026﹣1250=8880.答:在2026年公益林面积可达防护林面积的2倍,这时该地公益林的面积为8880万亩.22.解答:解:(1)在△AB C中,∵AD是BC边上的高,∴∠ADB=∠ADC=90°.在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,∴DC=AD=1.在△ADB中,∵∠ADB=90°,sinB=,AD=1,∴AB==3,∴BD==2,∴BC=BD+DC=2+1;(2)∵AE是BC边上的中线,∴CE=BC=+,∴DE=CE﹣CD=﹣,∴tan∠DAE==﹣.23.解答:解:(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是25﹣35之间;(2)“经常(购物)”和“偶尔(购物)”共占的百分比为40%+22%=62%,则这次接受调查的职工中“参与网购”的人数是350×62%=217(人);(3)根据题意得:“从不(网购)”的占“25﹣35”岁年龄段接受调查人数的百分比为×100%=20%;(4)根据题意得:4000×(1﹣40%﹣22%)=1520(人),则该企业“从不(网购)”的人数是1520人.24.解答:证明:(1)∵∠ADE=90°,∴AE为⊙O的直径,∵△ADE为等腰直角三角形,∴∠EAD=45°,∵四边形ABCD为正方形,∴∠DAC=45°,∴∠EAC=45°+45°=90°,∴AC⊥AE,∴AC是⊙O的切线;(2)∵四边形ABCD为正方形,∴AB∥CD,∴△ABH∽△CEH,∴AH:CH=AB:ED,∵△ADE为等腰直角三角形,∴AD=ED,而AD=AB=DC,∴EC=2AB,∴AH:CH=1:2,即HC=2AH.25.解(1)解:设抛物线的解析式为:y=a(x+)2+k,答:∵点A(0,﹣3),B(,)在抛物线上,∴,解得:a=1,k=.∴抛物线的解析式为:y=(x+)2=x2+x﹣3.(2)证明:如右图,连接CD、DE、EF、FC.∵PM⊥x轴于点M,PN⊥y轴于点N,∴四边形PMON为矩形,∴PM=ON,PN=OM.∵PC=MP,OE=ON,∴PC=OE;∵MD=OM,NF=NP,∴MD=NF,∴PF=OD.在△PCF与△OED中,∴△PCF≌△OED(SAS),∴CF=DE.同理可证:△CDM≌△FEN,∴CD=EF.∵CF=DE,CD=EF,∴四边形CDEF是平行四边形.(3)解:假设存在这样的点P,使四边形CD EF为矩形.设矩形PMON的边长PM=ON=m,PN=OM=n,则PC=m,MC=m,MD=n,PF=n.若四边形CDEF为矩形,则∠DCF=90°,易证△PCF∽△MDC,∴,即,化简得:m2=n2,∴m=n,即矩形PMON为正方形.∴点P为抛物线y=x2+x﹣3与坐标象限角平分线y=x或y=﹣x的交点.联立,解得,,∴P1(,),P2(﹣,﹣);联立,解得,,∴P3(﹣3,3),P4(﹣1,1).∴抛物线上存在点P,使四边形CDEF为矩形.这样的点有四个,在四个坐标象限内各一个,其坐标分别为:P1(,),P2(﹣,﹣),P3(﹣3,3),P4(﹣1,1).26.(1)证法一:解答:如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,∴点B为线段AD的中点,又∵点M为线段AF的中点,∴BM为△ADF的中位线,∴BM∥CF.证法二:如答图1b,延长BM交EF于D,∵∠ABC=∠CEF=90°,∴AB⊥CE,EF⊥CE,∴AB∥EF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=MF,∵在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,∵BE=CE﹣BC,DE=EF﹣DF,∴BE=DE,∴△BDE是等腰直角三角形,∴∠EBM=45°,∵在等腰直角△CEF中,∠EC F=45°,∴∠EBM=∠ECF,∴MB∥CF;(2)解法一:如答图2a所示,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,∴AB=BC=BD=a,AC=AD=a,∴点B为AD中点,又点M为AF中点,∴BM=DF.分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=GE=2a,CG=CF=a,∴点E为FG中点,又点M为AF中点,∴ME=AG.∵CG=CF=a,CA=CD=a,∴AG=DF=a,∴BM=ME=×a=a.解法二:∵CB=a,CE=2a,∴BE=CE﹣CB=2a﹣a=a,∵△ABM≌△FDM,∴BM=DM,又∵△BED是等腰直角三角形,∴△BEM是等腰直角三角形,∴BM=ME=BE=a;(3)证法一:如答图3a,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,AC=CD,∴点B为AD中点,又点M为AF中点,∴BM=DF.延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=EG,CF=CG,∴点E为FG中点,又点M为AF中点,∴ME=AG.在△ACG与△DCF中,,∴△ACG≌△DCF(SAS),∴DF=AG,∴BM=ME.证法二:如答图3b,延长BM交CF于D,连接BE、DE,∵∠BCE=45°,∴∠ACD=45°×2+45°=135°∴∠BAC+∠ACF=45°+135°=180°,∴AB∥CF,∴∠BAM=∠DFM,∴M是AF的中点,∴AM=FM,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,BM=DM,∴AB=BC=DF,∵在△BCE和△DFE中,,∴△BCE≌△DFE(SAS),∴BE=DE,∠BEC=∠DEF,∴∠BED=∠BEC+∠CED=∠DEF+∠CED=∠CEF=90°,∴△BDE是等腰直角三角形,又∵BM=DM,∴BM=ME=BD,故BM=ME.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 010 年 河 北 省 初 中 毕 业 生 升 学 文 化 课 考 试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为 120 分,考试时间为 120 分钟.卷Ⅰ(选择题,共 24 分)注意事项:1.答卷 I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上;考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;答在试 卷上无效.一、选择题(本大题共 12 个小题,每小题 2 分,共 24 分.在每小题给出的四个选项中, 只有一项是符合题目要求的) 1.计算 3×( - 2) 的结果是A .5B . - 5C .6D . - 6 2.如图 1, 在 △ ABC 中 , D 是 BC 延 长 线 上 一 点 ,∠B = 40°,∠ACD = 120°,则∠A 等于 A .60° B .70° C .80° D .90° 3.下列计算中,正确的是A40° 120°BCD 图 1A . 2= 0B . a + a = a 2C 9 = ± 3D . (a 3 )2= a 64.如图 2,在□ABCD 中,AC 平分∠DAB ,AB = 3, D则□ABCD 的周长为 A .6 B .9 ACC .12D .155.把不等式 -2 x < 4 的解集表示在数轴上,正确的是B 图 2ABC D 6.如图 3,在 5×5 正方形网格中,一条圆弧经过 A ,B ,C 三点, 那么这条圆弧所在圆的圆心是A .点 PB .点 QC .点 RD .点 M 图 3a 2b 27.化简 - 的结果是 a - b A . a 2- b 2a - bB . a + bC . a - bD .18.小悦买书需用 48 元钱,付款时恰好用了 1 元和 5 元的纸币共 12 张.设所用的 1 元纸币为 x 张,根据题意,下面所列方程正确的是A . x + 5(12 - x ) = 48C . x + 12(x - 5) = 48 B . x + 5(x - 12) = 48D . 5x + (12 - x ) = 48 9.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为 15 km /h ,水流速 度为 5 km /h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航 行返回到甲地.设轮船从甲地出发后所用时间为 t (h ),航行的路程为 s (km ),则 s 与t 的函数图象大致是ss s sOOOA B COD10.如图 4,两个正六边形的边长均为 1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是 A .7 B .8 C .9 D .1011.如图 5,已知抛物线 y = x 2+ bx + c 的对称轴为 x = 2 ,点 A ,B 均在抛物线上 ,且 AB 与 x 轴平行,其中点 A 的坐标为 (0,3),则点 B 的坐标为 A .(2,3) B .(3,2)C .(3,3)D .(4,3)12.将正 方 体 骰 子( 相 对 面 上 的 点 数 分 别 为 1 和 6、 2 5、3 和 4)放置于水平桌面上,如图 6-1.在图 6-2 中,将骰子 向右翻滚 90°,然后在桌面上按逆时针方向旋转 90°,则完成 一次变换.若骰子的初始位置为图 6-1 所示的状态,那么按 上述规则连续完成 10 次变换后,骰子朝上一面的点数是图 4图 6-1图 6-2A .6B .5C .3D .2C2010 年河北省初中毕业生升学文化课考试数 学 试 卷卷 II (非选择题,共 96 分)注意事项:1.答卷 II 前,将密封线左侧的项目填写清楚.2.答卷 II 时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分.把答案写在题中横线上)13. 5 的相反数是 . 14.如图 7,矩形 ABCD 的顶点 A ,B在数轴上, CD = 6,点 A对应的数为 - 1 ,则点 B 所对应的数为 .15.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从图 8 的四张卡片中任意拿走一张,使 剩下的卡片从左到右连成一个三位数,该数就是他猜的价 格.若商品的价格是 360 元,那么他一次就能猜中的概率 是 . 16.已知 x = 1 是一元二次方程 x 2 + mx + n = 0 的一个根,则m 2 + 2mn + n 2 的值为 . 17.某盏路灯照射的空间可以看成如图 9 所示的圆锥,它的高 AO = 8 米,母线 AB 与底面半径 OB 的夹角为 ,tan = 4 ,3 则圆锥的底面积是 平方米(结果保留 π).18.把三张大小相同的正方形卡片 A ,B ,C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若 按图 10-1 摆放时,阴影部分的面积为 S 1;若按图 10-2 摆 放时,阴影部分的面积为 S 2,则 S 1 S 2(填“>”、 D C图 7356 0图 8图 9“<”或“=”).图 10-1图 10-2三、解答题(本大题共 8 个小题,共 78 分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分 8 分)解方程: 1 = 2.x - 1 x + 120.(本小题满分 8 分)如图 11-1,正方形 ABCD 是一个 6 × 6 网格电子屏的示意图,其中每个小正方形的边长为 1.位于 AD 中点处的光点 P 按图 11-2 的程序移动.(1)请在图 11-1 中画出光点 P 经过的路径;(2)求光点 P 经过的路径总长(结果保留 π).图 11-1图 11-221.(本小题满分 9 分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后, 发现学生成绩分别为 7 分、8 分、9 分、10 分(满分为 10 分).依据统计数据绘制了如下尚 不完整的统计图表. 甲校成绩统计表乙校成绩扇形统计图(1)在图 12-1 中,“7 分”所在扇形的圆心角等于 .°(2)请你将图 12-2 的统计图补充完整.(3)经计算,乙校的平均分是 8.3 分,中位数是 8 分,请写出甲校的平均分、中位数; 并从平均分和中位数的角度分析哪个学 校成绩较好.(4)如果该教育局要组织 8 人的代表队参加市级团体赛,为便于管理,决定从这两所学 校中的一所挑选参赛选手,请你分析,应图 12-1乙校成绩条形统计图 人数886 54 42 0 选哪所学校?图 12-2x 22.(本小题满分 9 分)如图 13,在直角坐标系中,矩形 OABC 的顶点 O 与坐标原点重合,顶点 A ,C 分别在 坐标轴上,顶点 B 的坐标为(4,2).过点 D (0,3)和 E (6,0)的直线分别与 AB ,BC 交于点 M ,N .(1)求直线 DE 的解析式和点 M 的坐标;(2)若反比例函数 y = m(x >0)的图象经过点 M ,求该反比例函数的解析式,并通x过计算判断点 N 是否在该函数的图象上;(3)若反比例函数 y = m(x >0)的图象与△MNB 有公共点,请直.接.写出 m 的取值范围.23.(本小题满分 10 分)观察思考某种在同一平面进行传动的机械装置如图 14-1,图 14-2 是它的示意图.其工作原理是:滑块 Q 在平直滑道 l 上可以 左右滑动,在 Q 滑动的过程中,连杆 PQ 也随之运动,并且 PQ 带动连杆 OP 绕固定点 O 摆动.在摆动过程中,两连杆的 接点 P 在以 OP 为半径的⊙O 上运动.数学兴趣小组为进一步研 究其中所蕴含的数学知识,过点 O 作 OH ⊥l 于点 H ,并测得 OH = 4 分米,PQ = 3 分米,OP = 2 分米.解决问题(1)点 Q 与点 O 间的最小距离是 分米;点 Q 与点 O 间的最大距离是 分米; l 点 Q 在 l 上滑到最左端的位置与滑到最右端位置间 的距离是 分米. (2)如图 14-3,小明同学说:“当点 Q 滑动到点 H 的位置时,PQ 与⊙O 是相切的.”你认为他的判断对吗? 为什么?(3)①小丽同学发现:“当点 P 运动到 O H 上时,点 P 到 l的距离最小.”事实上,还存在着点 P 到 l 距离最大 的位置,此时,点 P 到 l 的距离是 分米; ②当 OP 绕点 O 左右摆动时,所扫过的区域为扇形, 求这个扇形面积最大时圆心角的度数.l 滑道滑块连杆图 14-1Q图 14-2H (Q )PO图 14-324.(本小题满分10分)在图15-1至图15-3中,直线MN与线段AB相交于点O,∠1=∠2=45°.(1)如图15-1,若AO=OB,请写出AO与BD的数量关系和位置关系;(2)将图15-1中的MN绕点O顺时针旋转得到图15-2,其中AO=OB.求证:AC=BD,AC⊥BD;(3)将图15-2中的OB拉长为AO的k倍得到图15-3,求BD的值.MD2OA 1 BN图15-1DMAC2OA B1 CN 图15-2DM2OA B1 CN 图15-3E25.(本小题满分 12 分)如图 16,在直角梯形 ABCD 中,AD ∥BC , ∠ B = 90︒ ,AD = 6,BC = 8, AB = 3 3 ,点 M 是 BC 的中点.点 P 从点 M 出发沿 MB 以每秒 1 个单位长的速度向点 B 匀速运动,到 达点 B 后立刻以原速度沿 BM 返回;点 Q 从点 M 出发以每秒 1 个单位长的速度在射线 MC上匀速运动.在点 P ,Q 的运动过程中,以 PQ 为边作等边三角形 EPQ ,使它与梯形 ABCD 在射线 BC 的同侧.点 P ,Q 同时出发,当点 P 返回到点 M 时停止运动,点 Q 也随之停止. 设点 P ,Q 运动的时间是 t 秒(t >0).(1)设 PQ 的长为 y ,在点 P 从点 M 向点 B 运动的过程中,写出 y 与 t 之间的函数关 系式(不必写 t 的取值范围).(2)当 BP = 1 时,求△EPQ 与梯形 ABCD 重叠部分的面积.(3)随着时间 t 的变化,线段 AD 会有一部分被△EPQ 覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直.接.写出 t 的取值范围;若不能,请说明理由.DBPQ图 16B(备用图)新世纪教育网 精品资料 版权所有@新世纪教育网新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。

相关文档
最新文档