广东省四会市2013年数学中考第二次模拟测试
2013年初中学生学业第二次模拟考试数学试题
2013年初中学生学业第二次模拟考试数 学 试 题(总分120分 考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.如果a 与-2互为倒数,那么1a是( ). A .-2B .-21C .21 D .22. 下列运算正确的是( )A .2x 2+3x 3=5x 5B .2x 3·3x 2=6x 6C .2x 3÷x 2=2xD .(2x 2)3=2x 63.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )4.将一个直角三角板和一把直尺如图放置,如果∠α=43°, 则∠β的度数是:A.43°B.47°C.30°D.60°5.某物体的三个视图如图所示,该物体的直观图是 ( ) A . B . C . D .A. B . C. D.第9题图6.将抛物线y=x 2-4x+5的顶点A 向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(2,3) B .(2,-1) C .(4,1) D. (0,1)7.一个圆锥的侧面展开图是半径为6、圆心角为120°的扇形,那么这个圆锥的底面圆的半径为( ) A .1 B .2 C .3 D .48.某工程队铺设一条480米的景观路,开工后,由于引进先进设备,工作效率比原计划提高50%,结果提前4天完成任务.若设原计划每天铺设x 米,根据题意可列方程为( ) A .B .C .D .A..1.1.10.一个盒子里有完全相同的三个小球,球上分别标上数字1、2、4.随机摸出一个小球(不放回)其数字记为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程x 2+px+q=0有两不相等实数根的概率是( ) A .12B .13C .23D .5611.如图,AB 是半圆O 直径,半径OC ⊥AB ,连接AC ,∠CAB 的平分线AD 分别交OC 于点E ,交BC ︵于点D ,连接CD 、OD ,以下三个结论:①AC ∥OD ;②AC =2CD ;③CD 2=CE ·CO ,其中所有正确结论的序号是( ) A .①② B .①③ C .②③ D .①②③;④P 点一定在直线y=x A .1 B .2 C .3 D .4第Ⅱ卷(非选择题 共84分)二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.国务院总理温家宝在政府工作报告中指出,我国2012年国内生产总值51.9万亿元.51.9万亿元用科学计数法表示为: 元. 14.分解因式:2x 2y -8y = .15.一组数据:-1,0,2,3,x ,其中这组数据的极差是5,那么这组数据的中位数是16.如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A′B′C′D′与正方形ABCD 是以AC 的中点O′为中心的位似图形,已知AC=23,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是17.如图,已知点A (0,0),B ( 3 ,0),C (0,1),在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1,第2个△B 1A 2B 2,第3个△B 2A 3B 3,…,则第n 个等边三角形的面积等于第12题图三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:(113tan 3012sin 453-⎛⎫--︒+-+ ⎪⎝⎭;(2)先化简,再求代数式212312+-÷⎪⎭⎫ ⎝⎛+-x x x 的值,其中x 是不等式组⎩⎨⎧<+>-812,02x x 的整数解. 19. (本题满分9分)我县实施新课程改革后,学习的自主字习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A :特别好;B :好;C :一般;D :较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据下方统计图解答下列问题:(1)本次调查中,张老师一共调査了 名同学,其中C 类女生有 名,D 类男生有 名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A 类和D 类学生中分别选取一位同学迸行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.20. (本题满分9分)如图,四边形ABCD 内接于⊙O ,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)AE是⊙O的切线吗?请说明理由;(2)若AE=4,求BC的长.21.(本题满分9分)据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”。
2013年第二次中考模拟考试数学模拟卷
2013年第二次中考模拟考试数学模拟卷一、选择题(本大题共10小题,每小题3分,满分30分)1、9-的绝对值是()A、9-B、9C、19D、19-2、地球半径约为6 40万米,用科学记数法表示为()A、0.64×107B、6.4×106C、64×105D、640×1043、下面的计算正确的是()A.326a a a⋅=B.()235a a=C.()236a a-= D.55a a-=4、图1所示的几何体的主视图是()5、圆锥底面半径为5cm,侧面积为65πcm2,则圆锥母线长为( )A、11cmB、12cmC、13cmD、14cm6、在反比例函数3kyx-=图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是()A.k>3 B.k>0 C.k<3 D.k<07、不等式组⎩⎨⎧≤->-24112xx的解在数轴上表示为()8、顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形9、如图2,∠1=30°,∠B=60°,AB⊥AC,则下列说法正确的是()A.AB∥CD B.AD∥BCC.AC⊥CD D.∠DAB+∠D=180°10、二次函数223y x x=--图象如图3所示.当y<0时,自变量x的取值范围是().A.-1<x<3 B.x<-1 C.x>3 D.x<-1或x>3二、填空题(本大题共6小题,每小题4分,满分24分)11.因式分解:32a ab-______________B1ACD图2图312. 若x 、y 为实数,且023=--+++y x y x ,则=xy ;13. 若分式112--x x 的值为0,则x 的值为 .14、由于全球经济危机的影响,我国某些商品价格持续上涨,某商品由原价20元/件通过两次的提高价格变为28.8元/件,若每次提价的百分率一样,则每次提价百分率为15、老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是2甲S =51、2乙S =12.则成绩比较稳定的是____ ___;(填甲或乙)16、如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是 。
广东省2013年中考数学全真模拟试题(针对2013版新考纲)(二)(含答案)
机密★启用前2013年广东省初中毕业生学业考试模拟试题数学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓 名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,满分30分)1、-16的绝对值是( ) A 、-16 B 、16 C 、-6 D 、62、某种彩票的中奖机会是1%,下列说法正确的是( )A 、买1张这种彩票一定不会中奖B 、买1张这种彩票一定会中奖C 、买100张这种彩票一定会中奖D 、当购买彩票的数量很大时,中奖的频率稳定在1%)4、已知两个变量x 和y ,它们之间的3组对应值如下表所示:则y 与x 之间的函数关系式可能是( )A 、B 、C 、D 、A 、y =xB 、y =2x +1C 、y =x 2+x +1D 、y =3x5、一个多边形的内角和与外角和相等,则这个多边形是( )A 、四边形B 、五边形C 、六边形D 、八边形6、等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( )A 、16B 、18C 、20D 、16或207、下列图形即使轴对称图形又是中心对称图形的有( )①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形A 、1个B 、2个C 、3个D 、4个8、如图2,梯形ABCD 中AD//BC ,对角线AC 、BD 相交于点O , 若AO ∶CO =2:3,AD =4,则BC 等于( ) A 、12 B 、8 C 、7 D 、6 9、如图3,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A 、10π B、3 C、3π D 、π10、对正整数n ,记!123......n n =⨯⨯⨯⨯,则1!2!3!......10!+++的末尾数为( )A 、0B 、1C 、3D 、5二、填空题(本大题共6小题,每小题4分,满分24分)11、已知一个样本91,89,88,90,92,则这个样本的方差是 ;12、若x 、y 为实数,且023=--+++y x y x ,则=xy ;13、一次函数1y kx k =+-的图象与函数221x y =的图像有 个交点; 14、如图4,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C .若︒=∠40A ,则=∠C ____ _;图4AD B C O图2 AB C图3A CD15、四边形的两条对角线AC ,BD 互相垂直,AC+BD=10,当四边形ABCD 的面积最大,则AC=____ _;16、如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是 。
广东省2013年中考数学模拟试题及答案二
广东省2013年中考数学模拟试题一、选择题1.-3的相反数是( ) A .3B .31C .-3D .31-2.算式22222222+++可化为( )A .42B .28C .82D . 162 3.如图,下列条件中,能判断直线1l //2l 的是( )(A )∠2=∠3 (B )∠1=∠3(C )∠4+∠5=180° (D )∠2=∠44.某班七个合作学习小组人数如下:5、5、6、x 、7、7、8。
已知这组数据的平均数是6,则这组数据的中位数是( )A 、7B 、6C 、5.5D 、5 5. 不等式1+2x5≥1的解集在数轴上表示正确的是()6、某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( ) A .200(1+a %)2=148 B .200(1-a %)2=148 C .200(1-2a %)=148 D .200(1-a 2%)=148(第3题)1 25432l1l7.如图所示几何体的左视图是()B. D.8.从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称图形的卡片的概率是()A.41B.21C.43D.1二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.9.若分式51-x有意义,则实数x的取值范围是_______.10.三峡工程是世界防洪效益最为显著的水利工程,它能有效控制长江上游洪水,增强长江中下游抗洪能力.据相关报道三峡水库的防洪库容为22 150 000 000 m3,用科学记数法可记作__________ m3.11.已知点(12)-,在反比例函数kyx=的图象上,则k=.12.如图,∠1=∠2=∠3,有几对三角形相似,请写出其中的两对。
13、观察按下列顺序排列的等式:9011⨯+=;91211⨯+=;92321⨯+=;B(第12题)ACD E12393431⨯+=; 94541⨯+=;……猜想:第n 个等式(n 为正整数)用n 表示,可以表示成________________. 三、解答题(一)(本大题5小题,每小题7分,共35分)14.计算:1132-⎛⎫- ⎪⎝⎭15、先化简,再求值:(2+m )(2-m)+m (m-6)-3,其中m=1316、如图:在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D ,求征:BD=CD .(第16题) 17、如图,在等腰梯形ABCD 中,E 为底BC 的中点,连结AE 、DE .求证:ABE DCE △≌△.A DCBE(第17题)18、△ABC在平面直角坐标系中的位置如图所示,将△ABC沿y轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.四、解答题(二)(本大题3小题,每小题9分,共27分)19、在Rt△ABC中︒=∠︒=∠=90,30,36CBa,解这个直角三角形。
广东省四会市初中数学毕业班第二次模拟测试题 新人教版
四会市初中毕业班第二次模拟测试数 学 试 题说明:全卷共4页,考试时间为100分钟,满分120分.请在答题卡上解答.一、选择题:(本题共10个小题,每小题3分,共30分.在每小题给出的4个选项中,只有一项是符合题目要求的.) 1.3-的倒数等于A .3-B . 13-C .31D .92.保护水资源,人人有责.我国是缺水国家,目前可利用淡水资源总量仅约为899000亿米3,用科学记数法表示899000这个数为A .8.99×105B .0.899×106C .8.99×104D .89.9×103 3.函数1+=x y 中自变量x 的取值范围是A .x ≥1-B .x ≤1-C .1x >-D .1x <- 4.如图,下列选项中不是正六棱柱三视图的是5.如图,直线//a b ,若165∠=︒,则2∠的度数为A.65︒B.25︒C.115︒D.155︒ 6.一元二次方程230x kx ++=没有实数根,则k 满足的条件是A.212k > B.212k ≥ C.212k < D.212k ≤7.有一个矩形ABCD ,则下列不一定正确的是A. AD ∥BCB. AB =CDC. 对角线AC 与BD 互相平分D.对角线 AC ⊥BD 8.如图,⊙O 是△ABC 的外接圆,AB 为直径,若80BOC ∠=︒,则A ∠的度数是A.60︒B.50︒C.40︒D.30︒9.如图9,将Rt △AOB 绕点直角顶点O 旋转得到Rt △COD , 若∠BOC =130︒,则∠AOD 度数为 A.40︒ B.30︒C.60︒D.50︒10.为了了解我市中学生的体重情况,从某一中学任意抽取了100名中学生进行调查,在这个问题中,100名中学生的体重是 A .个体B .样本C .样本容量D .总体二、填空题:(本题共5个小题,每小题3分,共15分) 11.4的算术平方根是____▲_____.12.下列数据36,42,38,42,35,45,40的中位数为____▲_____.13.已知点A (l ,-2),若A 、B 两点关于x 轴对称,则B 点的坐标为____▲_____. 14.若一个圆锥的底面半径r =1,且底面积是侧面积的13,则该圆锥的高等于___▲__.15.用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是____▲_____.三、解答题(本大题共10小题,共75分.解答应写出文字说明,证明过程或者演算步骤)16.(本小题满分6分)计算:102(2012)3tan 60π---+︒.17.(本小题满分6分)解不等式组: 211,84 1.x x x x ->+⎧⎨+<-⎩18.(本小题满分6分)如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个方格地面是草坪,除此以外小方格地面完全相同.AB .C .D .第5题图(1)一只自由飞行的小鸟,将随意落在图中所示的方格地面上, 求小鸟落在草坪上的概率;(2)现准备从图中所示的3个小方格空地中任选2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?19.(本小题满分7分)如图,已知E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE=DF . (1) 求证:四边形AECF 是平行四边形;(2) 若BC =10,∠BAC =90°,且四边形AECF 是菱形, 求BE 的长.20.(本小题满分7分)先化简,再求值:22121(1)()22x x x x x-++÷--,其中x =3.21.(本小题满分7分)如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD 的高度,他们先在A 处测得古塔顶端点D 的仰角为45︒,再沿着BA 的方向后退20m 至C 处,测得古塔顶端点D 的仰角为30︒.求该古塔BD 的高度3 1.732≈,结果保留一位小数) .22.(本小题满分8分)如图,已知一次函数()0≠+=k b kx y 的图象与x 轴,y 轴分别交于A(1,0)、B (0,-1)两点,且又与反比例函数()0≠=m xmy 的图象在第一象限交于C 点,C 点的横坐标为2. ⑴ 求一次函数的解析式;⑵ 求C 点坐标及反比例函数的解析式.23.(本小题满分8分)如图,过矩形ABCD (AD >AB )的对角线AC 的中点O 作AC 的垂直平分线EF ,分别交AD 、BC 于点E 、F ,分别连结AF 和CE . (1)求证:四边形AFCE 是菱形;(2)过点E 作AD 的垂线交AC 于点P ,求证:2AE 2=AC ·AP .24.(本小题满分10分)如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上任意一点(不与点A 、B 重合),连接CO 并延长CO 交⊙O 于点D ,连接AD . (1)求弦AB 的长;(2)当∠D =20°时,求∠BOD 的度数;(3)当AC 的长度为多少时,以点A 、C 、D 为顶点的三角形 与以B 、C 、O 为顶点的三角形相似?请写出解答过程.25.(本小题满分10分)已知二次函数22-++=a ax x y .(1)求证:不论a 为何实数,此函数图象与x 轴总有两个交点;(2)设a <0,当此函数图象与x 轴的两个交点的距离为13时,求出此二次函数的解析式;(3)在满足第(2)问的条件下,若此二次函数图象与x 轴交于A 、B 两点,在函数图象上是否存在点P ,使得△PAB 的面积为2133,若存在求出P 点坐标,若不存在请说明理由. 初三数学第二次模拟测试 数学科参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案BAAACCDCDB二、填空题(本大题共5小题,每小题3分,共15分)题号1112131415 答案240(1,2)223n +2三、解答题(本大题共10小题,共75分,其中第16-18题每小题6分,第19-21题每小题7分,第22、23题每小题8分,第24、25题每小题10分)16.解: 11332=-原式……3分 132=-+ ……5分 52=……6分17.解:解不等式①,得2x >. ………………………………… 2分解不等式②,得3x >. …………………………………… 4分 ∴ 原不等式组的解集为3x >. ……………………………………… 6分18. 解:(1)P (小鸟落在草坪上)=96=32. ………………… 2分 (2)用树状图或利用表格列出所有可能的结果(图略) ………………… 4分 可得编号为1、2的2个小方格空地种植草坪的概率为62=31. ………………… 6分19.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,且AD=BC ,∴AF ∥EC , ………………… 2分 ∵BE=DF ,∴AF=EC ,∴四边形AECF 是平行四边形. ………………… 4分 (2)∵四边形AECF 是菱形,∴AE =CE ,∴∠1=∠2, …………………5分 ∵∠BAC =90°,∴∠3=∠90°-∠2,∠4=∠90°-∠1, ∴∠3=∠4,∴AE =BE , ………………… 6分 ∴BE =AE =CE =12BC =5. ………………… 7分20.解:原式=21(1)2(2)x x x x x --÷-- …………………………3分 =21(2)2(1)x x x x x --⨯-- …………………………4分 =1xx - …………………………5分 当x =3时,原式=1x x -=33312=-. ………………………………………7分21.解:根据题意可知:45,30.BAD BCD ∠=︒∠=︒20m.AC =在Rt ABD △中,由45,BAD BDA ∠=∠=︒得AB BD =. …………………………2分在Rt BDC △中,由tan BD BCD BC ∠=.得3.tan 30BDBC BD ==︒………………………4分 又∵BC AB AC -=,∴320BD BD -=.∴2027.331BD =≈-(m).………………6分 答:该古塔BD 的高度27.3米. ………………7分22. 解:(1)由题意得:01k b b +=⎧⎨=-⎩, ………………2分解得1,1.k b =⎧⎨=-⎩, ………………3分所以一次函数的解析式为y=x-1。
2013年广东省中考数学模拟试题2
2013年广东省中考数学模拟试题2班级 __________ 姓名 ____________ 成绩 _______BCD3.根据下列物体的三视图,填出几何体名称:该几何体是()主视图俯视图左视图A.正六边形B.正六菱柱C.正六菱锥D.正五菱柱4.已知实数x , y 满足x 4 + .. y —8=0,则以x , y 的值为两边长的等腰三角形的周长是【 】A . 20或16B . 20C . 16D .以上答案均不对(B ) y 3x 2 ( C ) y 3 2x( D ) y 3x 2成绩进行统计分析.在这个问题中,样本是指 A . 150C.被抽取的150名考生的中考数学成绩 7.如果2x 3n y m 4与-3x 9 y 2n 是同类项,那么()B .被抽取的150名考生D . 惠州市2012年中考数学成绩m n 的值分别为( )A . m=-2, n=3B . m=2 n=3C . m=-3, n=2D . m=3 n=28. 下列各组数中,以 a , b , c 为边的三角形不是 Rt △的是( )A 、a=1.5 , b=2,c=3B 、a=7,b=24,c=25C 、a=6,b=8,c=10D a=3,b=4,c=59. 如图所示,在 ABC 中,/ C = 90°, AC = 4 cm, AB= 7 cm, AD 平分/ BAC 交 BC 于 D, DE ! AB 于 E ,贝U EB 的长是()5.下列一次函数中, y随着x 增大而减小的是6.为了了解惠州市 2012年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学A 、3cmC 、5 cmD 不能确定、选择题(本大题共 10小题,每小题3分,共30 分)1.四川雅安芦山县发生 7.0级地震,截止到4月24日累计造成了 199万人受灾,199万用科学记数法可表示为()6 6A 、1.99 X 10 人B 、1.99 X 10-人 2. 下列图形中,是轴对称图形的为(54C 、19.9 X 10 人D 、199 X 10 人 )(A )y 3x10.若运用湘教版初中数学教材上使用的某种电子计算器进行计算,则按键的结果为(A . 16 B. 33 D . 36二、填空题(本大题共6小题,每小题4分,共24分)11.计算:4cos45°8+ +.3°+ 1 2013 - (-2)-112. A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时个机器零件,设A每小时做x个零件。
肇庆市四会市2013年中考数学一模试卷及答案(word解析版)
2013年广东省肇庆市四会市中考数学一模试卷一、选择题:(本题共10个小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的.)B.3.(3分)(2010•徐州)一个几何体的三视图如图所示,这个几何体是()4.(3分)(2010•连云港)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其6.(3分)(2010•南通)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()7.(3分)(2010•南通)某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合8.(3分)(2010•天津)如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()9.(3分)(2010•益阳)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶B.10.(3分)(2013•肇庆一模)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,…,按这样的规律进行下去,第2013个正方形的面积为()B.得出=,求出C=是(×==AB=AD===,B+BC=+面积是(),个正方形的边长是==)2,面积是(2)3()×,面积是()二、填空题:(本题共6个小题,每小题4分,共24分)11.(4分)(2013•肇庆一模)若在实数范围内有意义,则x的取值范围是x≥2.根据式子有意义的条件为解:∵本题考查了二次根式有意义的条件:式子12.(4分)(2013•肇庆一模)化简:(x+1)2﹣2x+1=x2+2.13.(4分)(2013•娄底)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.14.(4分)(2013•肇庆一模)已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为10.考点:圆锥的计算.分析:侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.解答:解:设母线长为x,根据题意得:2πx÷2=2π×5,解得x=10.故答案为:10.点评:本题考查了圆锥的计算,关键是明白侧面展开后得到一个半圆就是底面圆的周长.15.(4分)(2013•肇庆一模)已知:在△ABC中,∠CAB=70°,在同一平面内将△ABC绕A点旋转到△AB′C′位置,且CC′∥AB,则∠BAB′的度数是40°.考点:旋转的性质.专题:压轴题.分析:旋转中心为点A,B与B′,C与C′分别是对应点,根据旋转的性质可知,旋转角∠BAB′=∠CAC′,AC=AC′,再利用平行线的性质得∠C′CA=∠CAB,把问题转化到等腰△ACC′中,根据内角和定理求∠CAC′,即可求出∠BAB′的度数.解答:解:∵CC′∥AB,∠CAB=70°,∴∠C′CA=∠CAB=70°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°﹣2∠C′CA=40°.故填:40°.点评:本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.同时考查了平行线的性质.16.(4分)(2013•肇庆一模)如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为y=.考点:反比例函数图象的对称性.专题:计算题.分析:根据圆的对称性以及反比例函数的对称性可得,阴影部分的面积等于圆的面积的,即可求得圆的半径,再根据P在反比例函数的图象上,以及在圆上,即可求得k的值.解答:解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π(=k.=r=2.y=三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2010•东莞)计算:.18.(5分)(2013•肇庆一模)解不等式组并将解集在数轴上表示出来.解:19.(5分)(2010•防城港)如图所示,Rt△ABC中,∠C=90°,AC=4,BC=3.(1)根据要求用尺规作图:作斜边AB边上的高CD,垂足为D;(2)求CD的长.AB=,故AD=.四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2011•广安)广安市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时.某校根据实际,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题.(1)样本中最喜欢B项目的人数百分比是20%,其所在扇形图中的圆心角的度数是72°;(2)请把统计图补充完整;(3)已知该校有1200人,请根据样本估计全校最喜欢乒乓球的人数是多少?21.(8分)(2008•遵义)我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米?(结果保留根号).(22.(8分)(2013•肇庆一模)如图,已知A(n,﹣2),B(1,4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积.中,得,解得,一次函数解析式为=本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数中k的几何意五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2013•肇庆一模)如图,已知抛物线与x轴交于A (﹣4,0)和B(1,0)两点,与y轴交于C点.(1)求此抛物线的解析式;(2)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q点,当P点运动到什么位置时,线段PQ的长最大,并求此时P点的坐标.考点:二次函数综合题.分析:(1)直接将A(﹣4,0),B(1,0)两点代入抛物线解析式求出即可;(2)首先求出直线AC的解析式,再利用抛物线上和直线上点的坐标性质得出PQ的长度即可.解答:解:(1)由二次函数y=x2+bx+c与x轴交于A(﹣4,0),B(1,0)两点可得:,解得:,故所求二次函数解析式为:y=x2+x﹣2;(2)由抛物线与y轴的交点为C,则C点坐标为:(0,﹣2),若设直线AC的解析式为:y=kx+b,则有,解得:,故直线AC的解析式为:y=﹣x﹣2,若设P点的坐标为:(a,a2+a﹣2),又Q点是过点P所作y轴的平行线与直线AC的交点,则Q点的坐标为:(a,﹣a﹣2),则有:PQ=[﹣(a2+a﹣2)]﹣(﹣a﹣2)=﹣a2﹣2a=﹣(a+2)2+2,即当a=﹣2时,线段PQ的长取最大值,此时P点的坐标为(﹣2,﹣3).24.(9分)(2010•日照)如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.中,BE=BC=AB=a=aa25.(9分)(2010•福州)如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在边上,E、F两点分别在AB、AC上,AD交EF于点H.(1)求证:;(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式.=;=,∴xx∴S矩形EFPQ=EF•EQ=x(8﹣x)=﹣x2+8x=﹣(x﹣5)2+20∵﹣∴S=S矩形EFPQ﹣S Rt△MFN=20﹣t2=﹣t2+20②如图3[(S=。
2013年广东省中考数学模拟卷2(含 答案)
50100A .B .C .D . 2013年广东省中考数学模拟卷2第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分) 1.12-的倒数为( ) A .12B .2C .2-D .1-2.下列运算正确的是( )A .236·a a a = B .1122-⎛⎫=- ⎪⎝⎭C .4=±D .|6|6-=3.如果把yx x-3的x 与y 同时扩大2倍,那么这个代数式的值( ) A .不变B .扩大2倍C .扩大6倍D .缩小到原来的21 4.直线32+-=x y 的图象经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.下图的几何体是由三个同样大小的立方体搭成的,其左视图为( )6.若一个正多边形的一个内角是140°,则这个正多边形的边数是( )A .10B .9C .8D .67.下列四边形中,中心对称图形有( )①梯形 ②平行四边形 ③菱形 ④正方形 A .1个B .2个C .3个D .4个8.如图,E 、F 、G 、H 分别是矩形ABCD 各边的中点,若AB=4,AD=3,则四边形EFGH 的周长和面积分别是( ) A .5、6B .10、6C .5、12D .10、129.某校九年级⑴班50名学生积极参加献爱心慈善捐款活动,班长将捐款情况进行统计,并绘制成了统计图。
根据统计图提供的信息, 捐款金额的众数和中位数分别是( ) A .20、20 B .30、20 C .20、30 D .30、3010.向一个容器中注水,注满为止。
若注水量y (3cm)与容器中水的高度x (cm )之间关系的图象大致如图,则这个容器是下列四个图中的()HA .B .C .D .第二部分 非选择题(共90分)二、填空题(本大题6小题,每小题4分,共24分) 11.a 是整数,且12+<-<a a ,则a =__________.12.已知x 、y 是实数,0)2(32=-++xy x ,则y x +=__________.13.某种品牌手机经过连续两次降价,每部售价由3200元降到了2500元。
广东省中考数学模拟卷(二)
广东省2013年中考数学模拟卷(二)说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号,用2B 铅笔把对应该号码的标号涂黑. 3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑, 如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上. 4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回. 一、选择题(本大题10小题,每小题3分,共30分) 1.下列运算中正确的是( ) A.()11a a --=--B.()23624aa -= C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左-视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1, 2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠∠∠ B.123360++=∠∠∠ C.1322+=∠∠∠D.132+=∠∠∠5.已知⎩⎨⎧+=+=+.122,42k y x k y x 且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C.01k <<D.112k <<DB CA6.顺次连接矩形各边中点所得的四边形( )A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形C.既是轴对称图形又是中心对称图形 D.没有对称性 7.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程 中正确的是( ) A.21185580x = B.()211851580x -= C.()211851580x -=D.()258011185x +=8.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过点P 作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4条 9.如图,⊙I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的 度数为( ) A.76B.68C.52D.3810.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:当输入数据是8时,输出的数是( ) A.861B.865C.867D.869二、填空题(本大题6小题,每小题4分,共24分) 11.分解因式:24x x -= .12.请写出一个图象位于第二、四象限的反比例函数: .13.下面是一个简单的数值运算程序,当输入x 的值为2时,输出的数值是 .14.如果一个扇形的圆心角为135,半径为8,那么该扇形的弧长是 . 15.观察下列顺序排列的等式: 1234111111113243546a a a a =-=-=-=-,,,,….试输入x (1)⨯- 3+ 输出猜想第n 个等式(n 为正整数):n a = . 16.方程 2210x x --=的两根之和是 .三、解答题(一)(本大题3小题,每小题5分,共15分)17.如图,将一张矩形纸片ABCD 折叠,使AB 落在AD 边上,然后打开,折痕为AE ,顶点B 的落点为F .你认为四边形ABEF 是什么特殊四边形?请说出你的理由.18. 如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正 方体.从这些小正方体中任意取出一个,求取出的小正方体: (1)三面涂有颜色的概率; (2)两面涂有颜色的概率; (3)各个面都没有颜色的概率.19. 如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形, 即111A B C △和222A B C △.请你指出在方格纸内如何运用平移、旋转变换, 将111A B C △重合到222A B C △上.四、解答题(二)(本大题3小题,每小题8分,共24分)20.为体现党和政府对农民健康的关心,解决农民看病难问题,某县于今年4月1日开始全面实行新型农村合作医 疗,对住院农民的医疗费实行分段报销制.下面是该县县级医疗机构住院病人累计分段报销表:D ED D[例:某住院病人花去医疗费900元,报销金额为50020%40030%220⨯+⨯=(元)] (1)农民刘老汉在4月份因脑中风住院花去医疗费2 200元,他可以报销多少元? (2)写出医疗费超过万元时报销数额y (元)与医疗费x (元)之间的函数关系式; (3)刘老汉在6月份因脑中风复发再次住院,这次报销医疗费4 790.25元,刘老汉这次住院花去医疗费多少元?21.为节约用电,某学校在本学期初制定了详细的用电计划.如果实际每天比计划多用2度电,那么本学期的用电量将会超过2 990度;如果实际每天比计划节约2度电,那么本学期的用电量将不超过2 600度.若本学期的在校时间按130天计算,那么学校原计划每天用电量应控制在什么范围内?22.如图是两个半圆,点O 为大半圆的圆心,AB 是大半圆的弦与小半圆相切,且24AB =.问:能求出阴影部分的面积吗?若能,求出此面积;若不能,试说明理由.五、解答题(三)(本大题3小题,每小题9分,共27分)23.一架长5 m 的梯子AB 斜立在一竖直的墙上,这时梯子底端距墙底3 m .如果梯子的顶端沿墙下滑1 m ,梯子的底端在水平方向沿一条直线也将滑动1 m 吗?用所学知识,论证你的结论.24.某公司现有甲、乙两种品牌的计算器,甲品牌计算器有A B C ,,三种不同的型号,乙品牌计算器有D E ,两种不同的型号,某中学要从甲、乙两种品牌的计算器中各选购一种型号的计算器. (1)写出所有的选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号计算器被选中的概率是多少?(3)现知某中学购买甲、乙两种品牌计算器共40个(价格如图所示),恰好用了1 000元人民币,其中甲品牌计算器为A 型号计算器,求购买的A 型号计算器有多少个?25.如图,在⊙M 中,劣弧AB 所对的圆心角为120,已知圆的半径为2 cm ,并建立如图所示的直角坐标系.(1)求圆心M 的坐标;(2)求经过A B C ,,三点的抛物线的解析式;(3)点D 是弦AB 所对的优弧上一动点,求四边形ACBD 的最大面积;2013年广东省高中阶段学校招生考试数学预测卷(二)参考答案一、选择题(本大题10小题,每小题3分,30分)二、填空题(本大题6小题,每小题4分,共24分) 11.(4)x x - 12.2y x =-(答案合理即可) 13.1 14.6π 15.112n n -+ 16.0.5三、解答题(一)(本大题3小题,每小题5分,共15分) 17.解:四边形ABEF 是正方形.四边形ABCD 是矩形,90BAF B ∴==∠∠. 由于B ∠与AFE ∠折叠后重合,90AFE B ∴==∠∠.∴四边形ABEF 是矩形(有三个角是直角的四边形是矩形).AB ,AF 折叠后重合,AB AF ∴=.∴四边形ABEF 是正方形(一组邻边相等的矩形是正方形).18.解:(1)因为三面涂有颜色的小正方体有8个,所以P (三面涂有颜色)81648==(或0.125); (2)因为两面涂有颜色的小正方体有24个,所以P (两面涂有颜色)243648==(或0.375);(3)因为各个面都没有涂颜色的小正方体共有8个, 所以P (各个面都没有涂颜色)81648==(或0.125). 19. 解:(1)将111A B C △向上平移4个单位,再向右平移3个单位,然后绕点1C 顺时针旋转90.四、解答题(二)(本大题3小题,每小题8分,共24分)20.解:(1)报销数额为500×20%+(2 000-500)×30%+(2 200-2 000)×35% = 620(元),所以刘老汉可以报销 620元.(2)由题意,得y = 500×20%+(2 000-500)×30%+(5 000-2 000)×35%+(10 000-5 000)×40%+(x -10 000)×45% = 0.45x -900.∴所求函数关系式为y = 0.45x -900(x >10 000).ED(3)由题意,得4 790.25=0.45x -900. 解得x =12 645(元).所以刘老汉这次住院花去医疗费12 645元.21. 解:设学校原计划每天用电量为x 度,依题意得⎩⎨⎧≤->+2213022130)()(x x ,600,990 解得2122x <≤.即学校原计划每天的用电量应控制在21~22度(不包括21度)范围内. 22. 解法1:能(或能求出阴影部分的面积).设大圆与小圆的半径分别为R r ,, 作辅助线如右图所示,可得22212R r -=. 221(ππ)72π2S R r ∴=-=阴影. 解法2:能(或能求出阴影部分的面积). 设大圆与小圆的半径分别为R r ,,平移小半圆使它的圆心与大半圆的圆心O 重合(如下图). 作OH AB ⊥于H ,则OH r =,12AH BH ==. 22212R r ∴-=. 221π()72π2S S R r ∴==-=阴影半圆环.五、解答题(三)(本大题3小题,每小题9分,共27分) 23.是.证明1:在Rt ACB △中,354BC AB AC ====,,(m).413DC =-=(m). 在Rt DCE △中,354DC DE CE ====,,(m). 1BE CE CB =-=,即梯子底端也滑动了1 m .证明2:在Rt ACB △中,354BC AB AC ====,,(m).413DC =-=(m). 可证Rt Rt ECD ACB △≌△. 4CE AC ∴==(m). 1BE CE CB =-=.即梯子底端也滑动了1米.24.解:(1)树状图表示如下:A BCD E DE DE甲品牌 乙品牌列表表示如下:有6种可能结果:.),),(,),(,),(,),(,),(,(ECDCEBDBEADA(2)因为选中A型号计算器有2种方案,即),),(,(EADA,所以A型号计算器被选中的概率是2163=.(3)由(2)可知,当选用方案()A D,时,设购买A型号,D型号计算器分别为x y,个,根据题意,得⎩⎨⎧=+=+15060,40yxyx解得100140.xy=-⎧⎨=⎩,经检验不符合题意,舍去;当选用方案()A E,时,设购买A型号,E型号计算器分别为x y,个,根据题意,得⎩⎨⎧=+=+15060,40yxyx解得535.xy=⎧⎨=⎩,所以该中学购买了5个A型号计算器.[说明:设购买A型号计算器台,D(或E)型号计算器为(40-x)个,用一元一次方程解答也可]25.解:(1)如图,连结MA MB,.则120AMB∠=,60CMB∴∠=,30OBM∠=.112OM MB∴==,∴M(0,1).(2)由A B C,,三点的特殊性与对称性知,经过A B C,,三点的抛物线的解析式为2y ax c=+.1OC MC MO=-=,OB==∴C(0,-1),B(3,0).113c a∴=-=,.2113y x∴=-.(说明:只要求出113c a=-=,,无最后一步不扣分)(3)ABC ABDACBDS S S=+△△四边形,又ABCS△与AB均为定值,∴当ABD△边AB上的高最大时,ABDS△最大,此时点D为M与y轴的交点,如图.)cm(34OD·21OC·212=+=+=∴ABABSSSABDABCABCD△△四边形.x,000,000。
2013年初三数学第二次模拟考试试卷及答案201316
y2013年初三数学第二次模拟考试试卷(本试卷共三大题,29小题,满分130,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的班级、姓名、考试号用0.5毫米黑色签字笔写在答题卷的相应位置上.2.除作图可使用2B 铅笔作答外,其余各题请按题号用0.5毫米黑色签字笔在各题目规定的答题区域内作答,不能超出横线或方格,超出答题区域的答案无效. 3.考试结束,只需交答题卷.一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置.......上) 1.下列四个数中,最小的数是( ▲ )A .2B . 2-C .0D . 12-2.下列运算正确的是( ▲ )A5=- B . 21164-⎛⎫-= ⎪⎝⎭C . 632x x x ÷=D . ()235x x =3.函数y =x 的取值范围在数轴上可表示为( ▲ )4.某校有15名同学参加百米竞赛,预赛成绩各不相同,要取前7名参加决赛,小张已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这15名同学成绩的( ▲ ) A .平均数B .众数C .中位数D .极差5.由四个大小相同的正方体组成的几何体如图所示,它的左视图是( ▲ )6.函数1y x =-+与函数2y x=-在同一坐标系中的大致图象是( ▲ )7.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8m ,最深处水深0.2m ,则此输水管道的直径是( ▲ )m . A .0.5 B .1 C .2 D .4第7题 第8题 第10题 第12题8.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE BC ⊥于点E ,则AE 的长是( ▲ )A .B .C .485cmD .245cm 9.下列命题中,其中真命题有( ▲ )①若分式21x xx --的值为0,则0x =或1;②两圆的半径R 、r 分别是方程2320x x -+=的两根,且圆心距3d =,则两圆外切; ③对角线互相垂直的四边形是菱形;④将抛物线22y x =向左平移4个单位,再向上平移1个单位可得到抛物()2241y x =-+. A .0个B .1个C .2个D .3个10.如图,ABC ∆中,8AB BC CA ===.一电子跳蚤开始时在BC 边的0P 处,03BP =.跳蚤第一步从0P 跳到AC 边的1P (第1次落点)处,且10CP CP =;第二步从1P 跳到AB 边的2P (第2次落点)处,且21AP AP =;第三步从2P 跳到BC 边的3P (第3次落点)处,且32BP BP =;……;跳蚤按照上述规则一直跳下去,第n 次落点为n P (n 为正整数),则点2012P 与点2013P 之间的距离为( ▲ ) A .2B .3C .4D .5二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应横线上) 11.某校学生在“爱心传递”活动中,共筹得捐款37400元,请你将数字37400用科学计数法并保留两个有效数字表示为 ▲ .12.把一块直尺与一块三角板如图放置,若140o ∠=,则2∠的度数为 ▲ . 13.分解因式:2363x x ++= ▲ .14.若两个等边三角形的边长分别为a 与3a ,则它们的面积之比为 ▲ .15.若某个圆锥的侧面积为28cm π,其侧面展开图的圆心角为45o ,则该圆锥的底面半径为▲ cm .16.如图,点A 、B 在反比例函数4y x=()0x >的图像上,过点A 、B 作x 轴的垂线,垂E足分别为C 、D ,延长线段AB 交x 轴于点E ,若OC CD DE ==,则AOE ∆的面积为 ▲ .17.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若3AB =,则BC 的长为 ▲ .第16题 第17题 第18题18.如图,点A 、B 、C 、D 在O 上,点O 在D ∠的内部,四边形OABC 为平行四边形,则OAD OCD ∠+∠= ▲ °.三、解答题(本大题共有11小题,共76分,解答过程请写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明) 19.(本题满分8分)(1)计算:()02sin 6020132π︒+-+(2)解方程:2512112x x+=--20.(本题满分4分)先化简,再求值:2112x x x x x ⎛⎫++÷- ⎪⎝⎭,其中3x =.21.(本题满分5分)如图,在平行四边形ABCD 中,E 、F 是BC 、AB 的中点,DE 、DF 的延长线分别交AB 、CB 的延长线于H 、G ;(1)求证:BH AB =;(2)若四边形ABCD 为菱形,试判断G ∠与H ∠的大小,并证明你的结论.22.(本题满分6分)为了解我市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A :40分;B :39-35分;C :34-30分;D :29-20分;E :19-0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为 ▲ ,b 的值为 ▲ ;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数”.请问:甲同学的体育成绩应在什么分数段内? ▲ .(填相应分数段的字母)(3)若把成绩在35分以上(含35分)定为优秀,则我市今年11300名九年级学生中体育成绩为优秀的学生人数约有多少名?23.(本题满分6分)有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张. (1)列表或画树状图表示所有取牌的可能性; (2)甲、乙两人做游戏,现有两种方案:A 方案:若两次抽得相同花色则甲胜,否则乙胜;B 方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案获胜概率更高?24.(本题满分6分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE 的高度,他们在这棵树正前方一座楼亭前的台阶上A 点处测得树顶端D 的仰角为30o ,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60o .已知A 点的高度AB 为2m ,台阶AC的坡度为B 、C 、E 三点在同一条直线上.请根据以上条件求出树DE 的高度(测倾器的高度忽略不计).25.(本题满分7分)某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中某月获得的利润y (万元)和月份n 之间满足函数关系式:21424y n n =-+-.DECBA30°60°(1)若一年中某月的利润为21万元,求n 的值; (2)哪一个月能够获得最大利润,最大利润是多少?(3)当产品无利润时,企业会自动停产,企业停产是哪几个月份?26.(本题满分7分)如图,在平面直角坐标系中,四边形ABCD 为菱形,点A (0,3),B (4-,0). (1)求经过点C 的反比例函数的解析式; (2)设P 是(1)中所求函数图象上一点,以P 、O 、A 为顶点的三角形的面积与COD ∆的面积相等,求点P 的坐标.27.(本题满分8分)如图,在平面直角坐标系中,点A 坐标是(0,6),点M 坐标是(8,0).P 是射线AM 上一点,PB x ⊥轴,垂足为B ,设AP a =. (1)AM = ▲ ;(2)如图,以AP 为直径作圆,圆心为点C .若C 与x 轴相切,求a 的值;(3)D 是x 正半轴上一点,连接AD 、PD .若OAD ∆∽BDP ∆,试探究满足条件的点D 的个数(直接写出点D 的个数及相应a 的取值范围,不必说明理由).28.(本题满分9分)如图,在平面直角坐标系xOy 内,正方形AOBC 的顶点C 的坐标为(1,1),过点B 的直线MN 与OC 平行,AC 的延长线交MN 于点D ,点P 是直线MN 上的一个动点,CQ ∥OP 交MN 于点Q .(1)求直线MN 的函数解析式;(2)当点P 在x 轴的上方时,求证:OBP ∆≌CDQ ∆;猜想:若点P 运动到x 轴的下方时,OBP ∆与CDQ ∆是否依然全等?直接填“是”或“否” (3)当四边形OPQC 为菱形时,试求出点P 的坐标.29.(本题满分10分)如图1,抛物线2y x bx c =-++的顶点为Q ,与x 轴交于A (1-,0)、B (5,0)两点,与y 轴交于点C .(1)求抛物线的解析式及其顶点Q 的坐标;(2)在该抛物线的对称轴上求一点P ,使得PAC ∆的周长最小.请在图中画出点P 的位置,并求点P 的坐标;(3)如图2,若点D 是第一象限抛物线上的一个动点,过D 作DE x ⊥轴,垂足为E . ①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q 与x 轴相距最远,所以当点D 运动至点Q 时,折线D —E —O 的长度最长”.这个同学的说法正确吗?请说明理由.②若DE 与直线BC 交于点F .试探究:四边形DCEB 能否为平行四边形?若能,请直接写出点D 的坐标;若不能,请简要说明理由.数学参考答案一.选择题:1-10 BBCCA ABDBD 二.填空题:11.、3.7×104 12.、︒130 13、 2)1(3+x 14、 1:9 15、 1 16、 6 17、3 18、60三.解答题: 19、(1)3 (2)1-=x ,经检验是原方程的解 20、12-x ,1 21、(1)∵四边形ABCD 是平行四边形∴DC =AB ,DC ∥AB ,∴∠C =∠EBH ,∠CDE =∠H 又∵E 是CB 的中点,∴CE =BE ∴△CDE ≌△BHE ,∴BH =DC ∴BH =AB(2)∵四边形ABCD 是平行四边形,∴AD ∥CB ,∴∠ADF =∠G ∵四边形ABCD 是菱形,∴AD =DC =CB =AB ,∠A =∠C ∵E 、F 分别是CB 、AB 的中点,∴AF =CE∴△ADF ≌△CDE ,∴∠CDE =∠ADF ∴∠H =∠G 22、(1)a =32,b =10 (2)B (3)9040 23、(1)略 (2)A 方案:P (甲胜)=59 B 方案:P (甲胜)=49选择A 方案 24、6米25、(1)5月或9月 (2)7月 ,25万 (3)1月、2月、12月26、(1)x y 20=(2))215,38(P 或)215,38(--P 27、(1)10 (2)21528、(1) y =x -1 (2)略(ASA )(3)是 (4)P (213,231-+) 29、解:(1)将A (-1,0)、B (5,0)分别代入2y x bx c =-++中, 得010255b cb c=--+⎧⎨=-++⎩ ,得45b c =⎧⎨=⎩∴245y x x =-++.………………2分∵2245(2)9y x x x =-++=--+, ∴Q (2 ,9).……3分(2)如图1,连接BC ,交对称轴于点P ,连接AP 、AC.……4分 ∵AC 长为定值,∴要使△PAC 的周长最小,只需PA+PC 最小.∵点A 关于对称轴x =1的对称点是点B (5,0),抛物线245y x x =-++与y 轴交点C 的坐标为(0,5).∴由几何知识可知,PA +PC =PB +PC 为最小. ………………5分 设直线BC 的解析式为y=k x +5,将B (5,0)代入5k +5=0,得k =-1, ∴y =-x +5,∴当x =2时,y =3 ,∴点P 的坐标为(2,3). ….6分 (3)① 这个同学的说法不正确. ……………7分∵设2(,45)D t t t -++,设折线D -E -O 的长度为L ,则2225454555()24L t t t t t t =-+++=-++=--+,∵0a <,∴当52t =时,454L =最大值.而当点D 与Q 重合时,4592114L =+=<, ∴该该同学的说法不正确.…9分②四边形D C E B 不能为平行四边形.……………10分 如图2,若四边形D C E B 为平行四边形,则EF=DF ,CF=BF .∵DE ∥y 轴,∴1==BFCFEB OE ,即OE =BE=2.5. 当F x =2.5时, 2.55 2.5F y =-+=,即 2.5EF =; 当D x =2.5时, 2(2.52)98.75D y =--+=,即8.75DE =. ∴8.75 2.5 6.25DF DE EF =-=-=>2.5. 即DF >EF ,这与EF=DF 相矛盾,x。
肇庆市四会市2013年中考第二次模拟考试数学试题及答案
图3FEDCBA四会市2013年初中毕业班第二次模拟测试数 学 试 卷说明:全卷共4页,考试时间为100分钟,满分120分.请在答题卡上作答.一、选择题:(本题共10个小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的.)1. (-2)2的算术平方根是A .2B .±2C .-2D .2 2. 小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约 为12 500 000,这个数用科学记数法表示为A . 51.2510⨯ B .61.2510⨯ C .71.2510⨯ D .81.2510⨯ 3. 一个几何体的主视图、左视图、俯视图完全相同,它一定是A . 球体B .圆锥C . 圆柱D .长方体4. 在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为 A .4 B .8 C .12 D .16 5. 如图1,直线l 1∥l 2, ∠1=40°,∠2=75°,则∠3等于A . 55°B .60°C .65°D . 70° 6. 下列计算,正确的是A .623a a a ÷= B .()32628xx = C .222326a a a ⨯= D .()01a a -⨯=-7. 关于反比例函数4y x=的图象,下列说法正确的是 A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称8. 如图2,直径为8的⊙A 经过点C (0,4)和点O (0,0),B 是y 轴右侧 ⊙A 优弧上一点,则∠OBC 等于A . 15°B .30°C .45°D . 60° 9. 已知一次函数y =x +b 的图象经过一、二、三象限,则b 的值可以是 A .2- B .1- C .0 D .2 10. 如图3,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角 线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为 A .3 B .4 C .5 D .6 二、填空题:(本题共6个小题,每小题4分,共24分) 11. 不等式213x -<-的解集是 ▲ .l 1 l 2123图1图2图4图512. 如图4,在△ABC 中,AB = 5cm ,AC = 3cm ,BC 的垂直平分 线分别交AB 、BC 于点D 、E ,则△ACD 的周长为 ▲ .13. 若x ,y 为实数,且011=-++y x ,则2013()xy 的值是 ▲ .14.如图5,菱形ABCD 的边长是2㎝,E 是AB 的中点,且DE ⊥AB , 则菱形ABCD 的面积为 ▲ .(结果保留根号).15. 在全民健身环城越野赛中,甲、乙两选手的行程y (千米) 随时间(时)变化的图象(全程)如图6所示.有下列说法: ① 起跑后1小时内,甲在乙的前面;②第1小时两人都跑 了10千米;③甲比乙先到达终点;④两人都跑了20千米. 其中正确的说法的序号是 ▲ .16. 如图7,依次连结第一个矩形各边的中点得到一个菱形,再 依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去. 已知第一个矩形的面积为1,则第n 个矩形的面积为__▲__.三、解答题(一)(本大题3小题,每小题5分,共15分) 17. 计算:84sin 454-︒+-.18. 先化简,再求值:2221x xx x x +⋅-,其中2x =.19.如图8,方格纸中的每个小方格都是边长为1个单位 的正方形,在建立平面直角坐标系后,Rt △ABC 的顶点坐标为点A (-6,1),点B (-3,1),点C (-3,3).(1)将Rt △ABC 沿x 轴正方向平移5个单位得到Rt △A 1B 1C 1,试在图上画出图形 Rt △A 1B 1C 1 ,并写出点A 1的坐标;(2)将原来的Rt △ABC 绕点B 顺时针旋转90°得到Rt △A 2B 2C 2,试在图上画出 图形Rt △A 2B 2C 2.并写出顶点A 从开始到A 2经过的路径长(结果保留π). 四、解答题(二)(本大题3小题,每小题8分,共24分) 20.如图9,已知AB 是⊙O 的直径,AC 是弦,直线EF 经过 点C ,AD ⊥EF 于点D ,∠DAC =∠BAC . (1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为2,∠ACD =30°,求图中阴影部分的面积.…图8 Axy BC 11-1 O 图7图92乙甲乙甲815105 1.510.5Ox /时y/千米图62021. 某镇道路改造工程,由甲、乙两工程队合作20天可完成.已知乙工程队的工作效率是甲工程队的工作效率的两倍.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,那么甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?22. 已知甲、乙两个班级各有50名学生.为了了解甲、乙两个班级学生解答选择题的能力状况,黄老师对某次考试中8道选择题的答题情况进行统计分析,得到统计表如下:0 1 2 3 4 5 6 7 8 甲班 0 1 1 3 4 11 16 12 2 乙班1251215132请根据以上信息解答下列问题: (1)甲班学生答对的题数的众数是__▲__;(2)若答对的题数大于或等于7道的为优秀,则乙班该次考试中选择题答题的 优秀率=__▲__(优秀率=班级优秀人数班级总人数×100%).(3)从甲、乙两班答题全对的学生中,随机抽取2人作选择题解题方法交流,用列举法求抽到的2人在同一个班级的概率.五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 已知关于x 的方程(k -1)x 2-2kx +k +2=0有实数根. (1) 求k 的取值范围;(2) 若y 关于x 的函数y =(k -1)x 2-2kx +k +2的图象过点2(1,4)k --且与x 轴有两个不同的交点.求出k 的值,并请结合函数y =(k -1)x 2-2kx +k +2的图象确定当k ≤x ≤k +2时y 的最大值和最小值.24.如图10-1,已知O 为正方形ABCD的中心,答对的题数(道) 人数(人) 班级分别延长OA 到点F ,OD 到点E ,使OF =2OA ,OE =2OD ,连结EF ,将△FOE 绕点O 逆时针旋转α角得到△''F OE (如图10-2).连结AE ′ 、BF ′. (1)探究AE ′ 与BF ′ 的数量关系, 并给予证明;(2)当α=30°,AB =2时,求: ① ∠'AE O 的度数; ② BF ′ 的长度.25. 如图11,已知抛物线y =ax 2+bx +2交x 轴于A (﹣1,0),B (4,0)两点,交y 轴于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点. (1)求抛物线解析式及点D 的坐标;(2)若点E 在x 轴上,且以A ,E ,D ,P 为顶点的四边形是平行四边形,求点P 的坐标;(3)若点P 在y 轴右侧,过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′. 是否存在点P ,使Q ′恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.四会市2013年初中毕业班第二次模拟测试数学科参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案ACAACBDBDD二、填空题(本大题共6小题,每小题4分,共24分) 题号 1112 131415 16答案 1x <-81-23①②④11()4n -三、解答题(一)(本大题3小题,每小题5分,共15分) 17.解:原式=122212+-⨯+ ---------------------------------------4分人数(单位:人) 项目10AB CD20 30 40 50 448 2820=4 ---------------------------------------5分18.解:由30x -< 得 x <3 ---------------------------------------1分 由 2(1)3x x +≥+ 得 1x ≥ ---------------------------------------2分 所以原不等式的解集为 13x ≤< ---------------------------------------4分 解集在数轴上表示为:(略) ---------------------------------------5分 19.解:(1)如下图所示:(痕迹2分,直线1分) --------------3分(2)由勾股定理,可得AB =5, --------------4分根据面积相等有,AB 错误!未找到引用源。
广东2013年中考数学模拟试卷及答案(5)
机密★启用前2013年广东省初中毕业生学业考试数学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,满分30分)1. 当x=1时,代数式2x+5的值为A.3 B. 5 C. 7 D. -22.直角坐标系中,点P(1,4)在A. 第一象限B.第二象限C.第三象限D.第四象限3.据省统计局公布的数据,去年底我省农村居民人均收入约6600元,用科学记数法表示应记为A.0.66×104 B. 6.6×103 C.66×102 D .6.6×1044.下图所示的几何体的主视图是A. B. C. D.5.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是A. B. C. D.6.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是A. 相离B. 外切C. 内切D.相交7.不等式组⎩⎨⎧≤≥+4235x x 的解是 A. -2 ≤x ≤2 B. x ≤2 C. x ≥-2 D. x <2 8.将叶片图案旋转180°后,得到的图形是叶片图案 A B C D 9.下图能说明∠1>∠2的是A B C D10.二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论:①a >0; ②c >0; ③b 2-4a c >0, 其中正确的个数是A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共6小题,每小题4分,满分24分) 11.矩形的对称轴有___ 条. 12.函数y =的自变量x 的取值范围是 . 13. 如图, //AB DC , 要使四边形ABCD 是平行四边形,还需补充 一个条件是 .14. 亮亮想制作一个圆锥模型,这个模型的侧面是用一个半径为9cm ,圆心角为240°的扇形铁皮制作的,再用一块圆形铁皮做底。
广东省2013年中考数学模拟试卷(解析版)
某某省2013年中考数学模拟试卷一、选择题:请把答案填涂在答题卡上.(本大题8小题,每题4分,共32分)1.(4分)(2013•某某模拟)的绝对值是()A.2B.﹣2 C.D.考点:绝对值.专题:常规题型.分析:根据绝对值的定义直接进行计算.解答:解:根据绝对值的概念可知:||=,故选C.点评:本题考查了绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2013•某某模拟)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.专题:应用题.分根据轴对称图形与中心对称图形的概念求解.解答:解:A 、是轴对称图形,不是中心对称图形,故本选项错误,B、既是中心对称图形又是轴对称图形,故本选项正确,C、是轴对称图形,不是中心对称图形,故本选项错误,D、是轴对称图形,不是中心对称图形,故本选项错误,故选B.点评:本题主要考查了如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,难度适中.3.(4分)(2013•某某模拟)一个不透明的布袋装有4个只有颜色的球,其中2个红色,1个白色,1个黑色,搅匀后从布袋里摸出1个球,摸到红球的概率是()A.B.C.D.考点:概率公式.分析:让红球的个数除以球的总个数即为所求的概率.解答:解:因为只有四个球,红球有2个,所以从布袋里摸出1个球摸到红球的概率=.故选A.点评:用到的知识点为:概率等于所求情况数与总情况数之比.4.(4分)(2013•某某模拟)下列各式计算正确的是()A.x+x3=x4B.x2•x5=x10C.(x4)2=x8D.x2+x2=x4(x≠0)考幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据合并同类项;同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.对各选项计算后利用排除法求解.解答:解:A、x与x3不是同类项不能合并,故本选项错误;B、应为x2•x5=x2+5=x7,故本选项错误;C、(x4)2=x4×2=x8,故本选项正确;D、应为x2+x2=2x2,故本选项错误;故选C.点评:本题考查同底数幂的乘法,幂的乘方的性质,合并同类项的法则,熟练掌握性质和法则是解题的关键,要注意不是同类项的一定不能合并.5.(4分)(2013•某某模拟)在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来,如图,则这堆货箱共有()A.6个B.5个C.4个D.3个考点:由三视图判断几何体.分析:易得这个几何体共有1层,那么小正方体的个数就是俯视图中正方形的个数.解答:解:由俯视图易得最底层有4个正方体,再由主视图和左视图可得,共有4个正方体组成,故选C.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.6.(4分)(2013•某某模拟)下列调查适合作普查的是()A.了解某某市居民对废电池的处理情况B.日光灯管厂要检测一批灯管的使用寿命C.了解在校大学生的主要娱乐方式D.对甲型H1N1流感患者的同一车厢的乘客进行医学检查考点:全面调查与抽样调查.分析:选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.解答:解:A、了解某某市居民对废电池的处理情况,人数众多,适于用抽样调查,故此选项错误;B、日光灯管厂要检测一批灯管的使用寿命,破坏性较强,适于用抽样调查,故此选项错误;C、了解在校大学生的主要娱乐方式,人数众多,适于用抽样调查,故此选项错误;D、对甲型H1N1流感患者的同一车厢的乘客进行医学检查,人数较少,适于用普查,故此选项正确;故选:D.点评:本题考查了抽样调查和全面调查的区别,普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.7.(4分)(2013•某某模拟)为了美化环境,某市加大对绿化的投资.2010年用于绿化投资20万元,2012年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x,根据题意所列方程为()A.20x2=25 B.20(1+x)=25 C.20(1+x)2=25 D.20(1+x)+20(1+x)2=25考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),设这两年绿化投资的年平均增长率为x,根据“2010年用于绿化投资20万元,2012年用于绿化投资25万元”,可得出方程.解答:解:设这两年绿化投资的年平均增长率为x,那么依题意得20(1+x )2=25 故选C.点评:本题为平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.8.(4分)(2013•某某模拟)如图,在Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,分别以A,C为圆心,以的长为半径作圆,将Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为()cm2.A.24﹣πB.πC.24﹣πD.24﹣π考点:扇形面积的计算;勾股定理.专题:压轴题;转化思想.分析:已知Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,则根据勾股定理可知AC=10cm,阴影部分的面积可以看作是直角三角形ABC的面积减去两个扇形的面积.解答:解:∵Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC==10(cm),∴S阴影部分=×6×8﹣=24﹣(cm2).故选A.点评:阴影部分的面积可以看作是直角三角形ABC的面积减去两个扇形的面积,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.二.填空题:请把答案填在答题卡上.(本大题5小题,每小题4分,共20分)9.(4分)(2013•某某模拟)如图,直线l1∥l2,∠1=120°,则∠2=120 度.考点:平行线的性质;对顶角、邻补角.专题:计算题.分析:由l1∥l2可以得到∠1=∠3=120°,又由∠3=∠2可以得到∠2的度数.解答:解:∵l1∥l2,∴∠1=∠3=120°,∵∠3=∠2,∴∠2=120°.故填空答案:120.点评:此题较简单,根据两直线平行同位角相等,对顶角相等解答.10.(4分)(2013•某某模拟)因式分解:a3﹣4a= a(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再对余下的多项式利用平方差公式进行二次分解因式.解答:解:a3﹣4a,=a(a2﹣4),=a(a+2)(a﹣2).点评:本题主要考查提公因式法分解因式和利用平方差公式分解因式,分解因式要彻底,直到不能再分解为止.11.(4分)(2013•某某模拟)2011年以来,粤东地区外贸经济呈现出进口逆势增长、出口逐步回暖的喜人态势.据统计,2011年某某海关共征收入库税款31.42亿元,用科学记数法表示 3.142×109元.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:31.42亿=3142000000=3.142×109.故答案为:3.142×109.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2013•某某模拟)(4分)为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表所示:尺码(厘米)25 26 27购买量(双) 1 2 3 2 2则这10双运动鞋尺码的众数和中位数分别为26 cm,26 cm.考点:众数;中位数.专题:图表型.分析:本题考查统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解答:解:数据26出现了3次最多,这组数据的众数是26,共10个数据,从小到大排列此数据处在第5、6位的数都为26,故中位数是26.故答案为:26,26.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.要注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.13.(4分)(2013•某某模拟)如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察图形并回答下列问题:在第n个图中,白瓷砖有n2+n 块,黑瓷砖有4n+6 块.(用含n的代数式表示)考点:规律型:图形的变化类.专题:压轴题;规律型.分析:分别清点题目给出的三个图形中的白瓷砖和黑瓷砖的块数,然后通过分析,找出白瓷砖和黑瓷砖的块数与图形数之间的规律,即可解答此题.解答:解:通过观察图形可知,当n=1时,用白瓷砖2块,黑瓷砖10块;当n=2时,用白瓷砖6块,黑瓷砖14块;当n=3时,用白瓷砖12块,黑瓷砖18块;可以发现,需要白瓷砖的数量和图形数之间存在这样的关系,即白瓷砖块数等于图形数的平方加上图形数;需要黑瓷砖的数量和图形数之间存在这样的关系,即黑瓷砖块数等于图形数的4倍加上图形数.所以,在第n个图形中,白瓷砖的块数可用含n的代数式表示为n2+n;白瓷砖的块数可用含n的代数式表示为4n+6.故答案分别为:n2+n;4n+6.点评:此题主要考查学生对图形变化类这个知识点的理解和掌握,此题有一定拔高难度,属于难题,解答此题的关键是通过观察和分析,找出其中的规律.三.解答题:(本大题5小题,每题7分,共35分)14.(7分)(2013•某某模拟)求值:|﹣2|+20110﹣(﹣)﹣1+3tan30°.考点:特殊角的三角函数值;实数的性质;零指数幂;负整数指数幂.专题:计算题.分析:负数的绝对值是它的相反数;任何不等于0的数的0次幂都等于1;一个数的负指数即这个数的正指数次幂的倒数;熟悉特殊角的锐角三角函数值:tan30°=.解答:解:原式=2﹣+1+3+3•=6.点评:注意能够判断﹣2<0,熟练把负指数转换为正指数.15.(7分)(2013•某某模拟)解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:分别解两个不等式,求出其解集,在数轴上表示出来,找出公共部分,即求出了不等式组的解集.解答:解:2x≥x+1,解得x≥1.x+8≥4x﹣1,解得x≤3.(4分)∴原不等式组的解集为1≤x≤3.(5分)不等式组的解集在数轴上表示如图:(6分).点评:不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.16.(7分)(2013•某某模拟)某市为治理污水,需要铺设一条全长为600米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,原计划每天铺设多少米管道?考点:分式方程的应用.分析:先设原计划每天铺设x米管道,则实际施工时,每天的铺设管道(1+20%)x米,由题意可得等量关系:原计划的工作时间﹣实际的工作时间=5,然后列出方程可求出结果,最后检验并作答.解答:解:设原计划每天铺设x米管道,由题意得:﹣=5,解得:x=20,经检验:x=20是原方程的解.答:原计划每天铺设20米管道.点评:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规X解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.17.(7分)(2013•某某模拟)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.考点:作图—复杂作图;线段垂直平分线的性质.专题:作图题;证明题;压轴题.分析:(1)分别以A、B为圆心,以大于AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.解答:(1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.点评:本题考查了线段垂直平分线的作法以及线段垂直平分线上的点到线段两端点的距离相等的性质,难度不大,需熟练掌握.18.(7分)(2013•某某模拟)如图,小强在江南岸选定建筑物A,并在江北岸的B处观察,此时,视线与江岸BE所成的夹角是30°,小强沿江岸BE向东走了500m,到C处,再观察A,此时视线AC与江岸所成的夹角∠ACE=60°.根据小强提供的信息,你能测出江宽吗?若能,写出求解过程(结果可保留根号);若不能,请说明理由.考点:勾股定理的应用.专题:压轴题.分析:先过A作AD⊥BE于D,再根据30°和60°判断出∠BAC也是30°,所以AC=BC=500m,在Rt△ADC中,因为∠ACD=60°,所以∠CAD=30°,所以AC=2CD,因此可以求出江宽.解答:解:能.过点A作BE的垂线,垂足为D,∵∠CBA=30°,∠ECA=60°,∴∠CAB=30°,∴CB=CA=500m,在Rt△ACD中,∠ECA=60°,∴∠CAD=30°,∴CD=CA=250m.由勾股定理得:AD2+2502=5002,解得AD=250m,则河流宽度为250m.本题主要考查:30°所对的直角边是斜边的一半和勾股定理.点评:四.解答题:(本大题3小题,每小题9分,共27分)19.(9分)(2013•某某模拟)在改革开放30年纪念活动中,某校学生会就同学们对我国改革开放30年所取得的辉煌成就的了解程度进行了随机抽样调查,并将调查结果绘制成如图所示的统计图的一部分.根据统计图中的信息,解答下列问题:(1)本次抽样调查的样本容量是50 .调查中“了解很少”的学生占50 %;(2)补全条形统计图;(3)若全校共有学生1300人,那么该校约有多少名学生“很了解”我国改革开放30年来取得的辉煌成就?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)由扇形统计图可知,“了解很少”的学生占1﹣10%﹣10%﹣30%=50%,再由条形统计图知,“了解很少”的学生有25人,所以本次抽样调查的样本容量是25÷50%=50;(2)由样本容量是50,知基本了解的学生有50×30%=15,在条形统计图中的“基本了解”对应画出高为15的长方形即可;(3)利用样本估计总体的方法知,该校约有1300×10%=130名学生“很了解”我国改革开放30年来取得的辉煌成就.解答:解:(1)5÷10%=50,1﹣10%﹣10%﹣30%=50%,故答案为:50;50;(2)基本了解的人数:50×30%=15(人),如图所示:(3)1300×10%=130人.答:该校约有130名学生很了解我国改革开放30年来所取得的辉煌成就.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(9分)(2013•某某模拟)如图,AB为半圆O的直径,点C在半圆O上,过点O作BC 的平行线交AC于点E,交过点A的直线于点D,且∠D=∠BAC.(1)求证:AD是半圆O的切线;(2)若BC=2,CE=,求AD的长.考点:切线的判定;相似三角形的判定与性质.专题:综合题.分析:(1)要证AD是半圆O的切线只要证明∠DAO=90°即可;(2)由两组角对应相等的两个三角形相似可得到△DOA∽△ABC,据相似三角形的对应边成比例可得到AD的长.解答:(1)证明:∵AB为半圆O的直径,∴∠BCA=90°.又∵BC∥OD,∴OE⊥AC.∴∠D+∠DAE=90°.∵∠D=∠BAC,∴∠BAC+∠DAE=90°.∴AD是半圆O 的切线.(2)解:∵BC∥OD,∴△AOE∽△ABC,∵BA=2AO,∴==,又CE=,∴AC=2CE=.在Rt△ABC中,AB==,∵∠D=∠BAC,∠ACB=∠DAO=90°,∴△DOA∽△ABC.∴即.∴.此题考查学生对切线的判定及相似三角形的判定方法的掌握情况.点评:21.(9分(2013•某某模拟))阅读下列材料:求函数的最大值.解:将原函数转化成x 的一元二次方程,得.∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y 的最大值为4.根据材料给你的启示,求函数的最小值.一元二次方程的应用.考点:专压轴题.题:分根据材料内容,可将原函数转换为(y﹣3)x2+(2y﹣1)x+y﹣2=0,继而根据△≥0,析:可得出y的最小值.解答:解:将原函数转化成x的一元二次方程,得(y﹣3)x2+(2y﹣1)x+y﹣2=0,∵x为实数,∴△=(2y﹣1)2﹣4(y﹣3)(y﹣2)=16y﹣23≥0,∴y≥,因此y的最小值为.点评:本题考查了一元二次方程的应用,这样的信息题,一定要熟读材料,套用材料的解题模式进行解答.五.解答题:(本大题3小题,每小题12分,共36分)23.(12分)(2013•某某模拟)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC 于D,交AB于E,F在射线DE上,并且EF=AC.(1)求证:AF=CE;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论;(3)四边形ACEF有可能是正方形吗?为什么?考点:相似三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定与性质;菱形的判定;正方形的判定.专题:探究型.分析:(1)先根据FD⊥BC,∠ACB=90°得出DF∥AC,再由EF=AC可知四边形EFAC是平行四边形,故可得出结论;(2)由点E在BC的垂直平分线上可知DB=DC=BC,BE=EC,由直角三角形的性质可求出∠B=∠ECD=30°,再由相似三角形的判定定理可知BDE∽△BCA,进而可得出AE=CE,再求出∠ECA的度数即可得出△AEC是等边三角形,进而可知CE=AC,故可得出结论;(3)若四边形EFAC是正方形,则E与D重合,A与C重合,故四边形ACEF不可能是正方形.解答:解:(1)∵∠ACB=90°,FD⊥BC,∴∠ACB=∠FDB=90°,∴DF∥AC,又∵EF=AC,∴四边形EFAC是平行四边形,∴AF=CE;(2)当∠B=30° 时四边形EFAC是菱形,∵点E在BC的垂直平分线上,∴DB=DC=BC ,BE=EC ,∴∠B=∠ECD=30°,∵DF∥AC,∴△BDE∽△BCA,∴==,即BE=AB,∴AE=CE又∵∠ECA=90°﹣30°=60°,∴△AEC是等边三角形∴CE=AC,∴四边形EFAC是菱形;(3)不可能.若四边形EFAC是正方形,则E与D重合,A与C重合,不可能有∠B=30°.点评:本题考查的是相似三角形的判定与性质、菱形的判定与性质、线段垂直平分线及直角三角形的性质、正方形的判定与性质,涉及面较广,难度适中.24.(12分)(2013•某某模拟)我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?考点:一次函数的应用;二元一次方程组的应用;分段函数.分析:(1)由图中可知,10吨水出了15元,那么a=15÷10=1.5元,用水8吨,应收水费1.5×8元;(2)由图中可知当x>10时,有y=b(x﹣10)+15.把(20,35)代入一次函数解析式即可.(3)应先判断出两家水费量的X围.解答:解:(1)a=15÷10=1.5.(1分)用8吨水应收水费8×1.5=12(元).(2分)(2)当x>10时,有y=b(x﹣10)+15.(3分)将x=20,y=35代入,得35=10b+15.b=2.(4分)故当x>10时,y=2x﹣5.(5分)(3)∵假设乙用水10吨,则甲用水14吨,∴水费是:1.5×10+1.5×10+2×4<46,∴甲、乙两家上月用水均超过10吨.(6分)设甲、乙两家上月用水分别为x吨,y吨,则甲用水的水费是(2x﹣5)元,乙用水的水费是(2y﹣5)元,则(8分)解得:(9分)故居民甲上月用水16吨,居民乙上月用水12吨.(10分)点评:本题主要考查了一次函数与图形的结合,应注意分段函数的计算方法.25.(12分(2013•某某模拟))如图1,把两个全等的三角板ABC、EFG叠放在一起,使三角板EFG的直角边FG经过三角板ABC的直角顶点C,垂直AB于G,其中∠B=∠F=30°,斜边AB和EF均为4.现将三角板EFG由图1所示的位置绕G点沿逆时针方向旋转α(0<α<90°),如图2,EG交AC于点K,GF交BC于点H.在旋转过程中,请你解决以下问题:(1)GH:GK的值是否变化?证明你的结论;(2)连接HK,求证:KH∥EF;(3)设AK=x,请问是否存在x,使△CKH的面积最大?若存在,求x的值;若不存在,请说明理由.考点:相似形综合题.专题:压轴题.分析:(1)GH :GK的值没发生变化,根据已知条件证明△AGK∽△CGH,由相似三角形的性质可得:,又因为在Rt△ACG中,tan∠A=,所以GH:GK的比值是一个的值;(2)连接HK,由(1)可知在Rt△KHG中,tan∠GKH=,所以∠GKH=60°,再根据三角形的内角和证明,∠E=∠EGF﹣∠F=90°﹣30°=60°,即可证得∠GKH=∠E=60°,利用同位角相等两线平行即可证明KH∥EF;(3)设AK=x,存在x=1,使△CKH 的面积最大,由(1)得△AGK∽△CGH,所以CH=AK=x,根据三角形的面积公式表示出S△CHK=CK•CH=(2﹣x)•x,再把二次函数的解析式化为顶点式即可求出x的值.解答:(1)解:GH:GK的值不变,GH:GK=.证明如下:∵CG⊥AB,∴∠AGC=∠BGC=90°.∵∠B=30°,∠ACB=90°,∴∠A=∠GCH=60°.∵∠AGC=∠BGC=90°,∴∠AGK=∠CGH.∴△AGK∽△CGH.∴.∵在Rt△ACG中,tan∠A=,∴GH:GK=.(2)证明:连接HK,如图2,由(1)得,在Rt△KHG中,tan∠GKH=,∴∠GKH=60°.∵在△EFG中,∠E=∠EGF﹣∠F=90°﹣30°=60°,∴∠GKH=∠E.∴KH∥EF;(3)解:存在x=1,使△CKH的面积最大.理由如下:由(1)得△AGK∽△CGH,∴,∴CH=AK=x,在Rt△EFG中,∠EGF=90°,∠F=30°,∴AC=EF=2,∴CK=AC﹣AK=2﹣x.∴S△CHK=CK•CH=(2﹣x)•x,=﹣(x﹣1)2+,∴当x=1时,△CKH的最大面积为.点评:本题考查的是相似三角形的判定与性质及图形旋转的性质、平行线的判定和性质、三角形的面积公式、二次函数的最值问题,题目的综合性很强,难度中等.。
2013年广东省中考数学模拟试卷
2013年广东省中考数学模拟试卷(二)一、选择题(本大题8小题,每小题4分,共32分)在每小题列出的四个选项中,只有一个是正确的,请将答题卡上对应的小题所选的选项涂黑. 1.(4分)(2008•梅州)下列各组数中,互为相反数的是( ) A . 2和 B . ﹣2和﹣ C . ﹣2和|﹣2| D .和 2.(4分)股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95 000 000,正向1亿挺进,95 000 000用科学记数法表示为( )户. A . 9.5×106 B . 9.5×107 C . 9.5×108 D . 9.5×109 3.(4分)(2005•哈尔滨)下列各式正确的是( ) A . a 4×a 5=a 20 B . a 2×2a 2=2a 4 C . (﹣a 2b 3)2=a 4b 9 D . a 4÷a=a 24.(4分)下面的图形中,既是轴对称图形又是中心对称图形的是( ) A . B .C .D .5.(4分)如图,在一本书上放置一个乒乓球,则此几何体的俯视图是( )A .B .C .D .6.(4分)下列事件中是必然事件的是( ) A . 打开电视机,正在播广告B . 今年10月1日,潮南区的天气一定是晴天C . 小沈阳一定能上2010年春节联欢晚会D .从一个只装有白球的缸里摸出一个球,摸出的球是白球7.(4分)(2008•佛山)如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )A . BM >DNB . BM <DNC . BM=DND . 无法确定8.(4分)(2006•莱芜)如图,B 是线段AC 的中点,过点C 的直线l 与AC 成60°的角,在直线L 上取一点P ,使∠APB=30°,则满足条件的点P 的个数是( )A . 3个B . 2个C . 1个D . 不存在二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答卷相应的位置上.9.(4分)3减去﹣2的结果是_________.10.(4分)已知反比例函数的图象过点(6,﹣),则k=_________.11.(4分)(2008•梅州)如图,AB是⊙O的直径,∠COB=70°,则∠A=_________度.12.(4分)(2003•滨州)如图,点O是正△ACE和正△BDF的中心,且AE∥BD,则∠AOF=_________度.13.(4分)(2003•十堰)将正方形A的一个顶点与正方形B的对角线交叉重合,如图1位置,则阴影部分面积是正方形A面积的,将正方形A与B按图2放置,则阴影部分面积是正方形B面积的_________.三、解答题(一)(本大题5小题,每小题7分,共35分)14.(7分)(2008•湛江)计算:(﹣1)2008﹣(π﹣3)0+15.(7分)(2008•安徽)解不等式组,并将解集在数轴上表示出来.16.(7分)(2007•梅州)如图,AC是平行四边形ABCD的对角线.(1)请按如下步骤在图中完成作图(保留作图痕迹):①分别以A,C为圆心,以大于AC长为半径画弧,弧在AC两侧的交点分别为P,Q.②连接PQ,PQ分别与AB,AC,CD交于点E,O,F;(2)求证:AE=CF.17.(7分)如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求一次函数y=kx+b解析式.18.(7分)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.四、解答题(二)(本大题3小题,每小题9分,共27分)19.(9分)商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)问商场经营该商品原来一天可获利润多少元?(2)若商场经营该商品一天要获利润2160元,则每件商品售价应为多少元?20.(9分)透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字以外都相同.(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.21.(9分)(2006•菏泽)我市在城市建设中,要折除旧烟囱AB(如图所示),在烟囱正西方向的楼CD的顶端C,测得烟囱的顶端A的仰角为45°,底端B的俯角为30°,已量得DB=21m.(1)在原图上画出点C望点A的仰角和点C望点B的俯角,并分别标出仰角和俯角的大小;(2)拆除时若让烟囱向正东倒下,试问:距离烟囱正东35m远的一棵大树是否被歪倒的烟囱砸着?请说明理由.(≈1.732)五、解答题(三)(本大题3小题,每小题12分,共36分)22.(12分)(2008•湛江)先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=_________;(2)探究=_________;(用含有n的式子表示)(3)若的值为,求n的值.23.(12分)(2008•安徽)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.24.(12分)(2007•双柏县)如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,点P不与点0、点A重合.连接CP,过点P作PD交AB于点D.(1)求点B的坐标;(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;(3)当点P运动什么位置时,使得∠CPD=∠OAB,且,求这时点P的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图3ECBA广东省四会市2013年数学中考第二次模拟测试说明:全卷共4页,考试时间为100分钟,满分120分.请在答题卡上作答.一、选择题:(本题共10个小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的.) 1. (-2)2的算术平方根是A .2B .±2C .-2D .2 2. 小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约 为12 500 000,这个数用科学记数法表示为A . 51.2510⨯ B .61.2510⨯ C .71.2510⨯ D .81.2510⨯ 3. 一个几何体的主视图、左视图、俯视图完全相同,它一定是A . 球体B .圆锥C . 圆柱D .长方体4. 在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为 A .4 B .8 C .12 D .16 5. 如图1,直线l 1∥l 2, ∠1=40°,∠2=75°,则∠3等于A . 55°B .60°C .65°D . 70° 6. 下列计算,正确的是 A .623a a a ÷= B .()32628x x = C .222326a a a ⨯= D .()01a a -⨯=-7. 关于反比例函数4y x=的图象,下列说法正确的是 A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称8. 如图2,直径为8的⊙A 经过点C (0,4)和点O (0,0),B 是y 轴右侧 ⊙A 优弧上一点,则∠OBC 等于A . 15°B .30°C .45°D . 60° 9. 已知一次函数y =x +b 的图象经过一、二、三象限,则b 的值可以是 A .2- B .1- C .0 D .2 10. 如图3,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角 线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为 A .3 B .4 C .5 D .6 二、填空题:(本题共6个小题,每小题4分,共24分) 11. 不等式213x -<-的解集是 ▲ .l 1 l 2123图1图2图412. 如图4,在△ABC 中,AB = 5cm ,AC = 3cm ,BC 的垂直平分 线分别交AB 、BC 于点D 、E ,则△ACD 的周长为 ▲ .13. 若x ,y 为实数,且011=-++y x ,则2013()xy 的值是 ▲ .14.如图5,菱形ABCD 的边长是2㎝,E 是AB 的中点,且DE ⊥AB , 则菱形ABCD 的面积为 ▲ .(结果保留根号).15. 在全民健身环城越野赛中,甲、乙两选手的行程y (千米) 随时间(时)变化的图象(全程)如图6所示.有下列说法: ① 起跑后1小时内,甲在乙的前面;②第1小时两人都跑 了10千米;③甲比乙先到达终点;④两人都跑了20千米. 其中正确的说法的序号是 ▲ .16. 如图7,依次连结第一个矩形各边的中点得到一个菱形,再 依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去. 已知第一个矩形的面积为1,则第n 个矩形的面积为__▲__.三、解答题(一)(本大题3小题,每小题5分,共15分) 17. 4sin 454︒+-.18. 先化简,再求值:2221xxx x x +⋅-,其中2x =.19.如图8,方格纸中的每个小方格都是边长为1个单位 的正方形,在建立平面直角坐标系后,Rt △ABC 的顶点坐标为点A (-6,1),点B (-3,1),点C (-3,3).(1)将Rt △ABC 沿x 轴正方向平移5个单位得到Rt △A 1B 1C 1,试在图上画出图形 Rt △A 1B 1C 1 ,并写出点A 1的坐标;(2)将原来的Rt △ABC 绕点B 顺时针旋转90°得到Rt △A 2B 2C 2,试在图上画出 图形Rt △A 2B 2C 2.并写出顶点A 从开始到A 2经过的路径长(结果保留π). 四、解答题(二)(本大题3小题,每小题8分,共24分) 20.如图9,已知AB 是⊙O 的直径,AC 是弦,直线EF 经过 点C ,AD ⊥EF 于点D ,∠DAC =∠BAC . (1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为2,∠ACD =30°,求图中阴影部分的面积.…图8 图7图9图621. 某镇道路改造工程,由甲、乙两工程队合作20天可完成.已知乙工程队的工作效率是甲工程队的工作效率的两倍.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,那么甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?22. 已知甲、乙两个班级各有50名学生.为了了解甲、乙两个班级学生解答选择题的能力状况,黄老师对某次考试中8道选择题的答题情况进行统计分析,得到统计表如下:请根据以上信息解答下列问题: (1)甲班学生答对的题数的众数是__▲__;(2)若答对的题数大于或等于7道的为优秀,则乙班该次考试中选择题答题的 优秀率=__▲__(优秀率=班级优秀人数班级总人数×100%).(3)从甲、乙两班答题全对的学生中,随机抽取2人作选择题解题方法交流,用列举法求抽到的2人在同一个班级的概率.五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 已知关于x 的方程(k -1)x 2-2kx +k +2=0有实数根. (1) 求k 的取值范围;(2) 若y 关于x 的函数y =(k -1)x 2-2kx +k +2的图象过点2(1,4)k --且与x 轴有两个不同的交点.求出k 的值,并请结合函数y =(k -1)x 2-2kx +k +2的图象确定当k ≤x ≤k +2时y 的最大值和最小值.24.如图10-1,已知O为正方形ABCD的中心,分别延长OA到点F,OD到点E,使OF =2OA,OE=2OD,连结EF,将△FOE绕点O逆时针旋转α角得到△''F OE(如图10-2).连结AE′、BF′.(1)探究AE′与BF′的数量关系,并给予证明;(2)当α=30°,AB=2时,求:①∠'AE O的度数;②BF′的长度.25. 如图11,已知抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.(1)求抛物线解析式及点D的坐标;(2)若点E在x轴上,且以A,E,D,P为顶点的四边形是平行四边形,求点P的坐标;(3)若点P在y轴右侧,过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出点P的坐标;若不存在,说明理由.四会市2013年初中毕业班第二次模拟测试数学科参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分)二、填空题(本大题共6小题,每小题4分,共24分)三、解答题(一)(本大题3小题,每小题5分,共15分)17.解:原式=122212+-⨯+ ---------------------------------------4分 =4 ---------------------------------------5分18.解:由30x -< 得 x <3 ---------------------------------------1分 由 2(1)3x x +≥+ 得 1x ≥ ---------------------------------------2分 所以原不等式的解集为 13x ≤< ---------------------------------------4分 解集在数轴上表示为:(略) ---------------------------------------5分 19.解:(1)如下图所示:(痕迹2分,直线1分) --------------3分(2)由勾股定理,可得AB =5, --------------4分根据面积相等有,AB ⨯CD =AC ⨯BC 所以CD =125--------------5分 四、解答题(二)(本大题3小题,每小题8分,共24分)20. 解:(1)20%, 72° -------------2分 (2)样本数为 44÷44%=100 -------------3分 最喜欢B 项目的人数为 100×20%=20 ----------4分统计图补充如右图所示. -------------6分 (3)1200×44% = 528 -------------8分21. 解:如图,作BG ⊥AD 于G ,作EF ⊥AD 于F ,-----1分 ∵Rt △ABG 中,∠BAD =60︒,AB =40,∴ BG =AB ·sin60︒=203,AG = AB ·cos60︒=20 -------------4分同理在Rt △AEF 中,∠EAD =45︒, ∴AF =EF =BG =203, -------------6分 ∴BE =FG =AF -AG =20(13-)米. -------------8分 22. 解:(1)∵B (1,4)在反比例函数y =mx上,∴m =4, -------------1分 又∵A (n ,-2)在反比例函数y =mx的图象上,∴n =-2,-------------2分 又∵A (-2,-2),B (1,4)是一次函数y =kx +b 的上的点,联立方程组解得, k =2,b =2,图10∴y =4x,y =2x +2; -------------5分 (2)过点A 作AD ⊥y 轴,交y 轴于D 点,∵一次函数y =2x +2的图象交y 轴于C 点可得,C (0,2), --------6分 ∴AD =2,CO =2, ∴△AOC 的面积为:S =12AD •CO =12×2×2=2; -------------8分 五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 解:(1)由二次函数212y x bx c =++与x 轴交于(4,0)A -、(1,0)B 两点可得: 221(4)4021102b c b c ⎧--+=⎪⎪⎨⎪⋅++=⎪⎩,. -------------2分解得: 322b c ⎧=⎪⎨⎪=-⎩,.故所求二次函数的解析式为213222y x x =+-. ----------3分(2) 由抛物线与y 轴的交点为C ,则C 点的坐标为(0,-2). -------------4分若设直线AC 的解析式为y kx b =+,则有20,04b k b -=+⎧⎨=-+⎩. 解得:1,22k b ⎧=-⎪⎨⎪=-⎩.故直线AC 的解析式为122y x =--.-------------5分若设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭, -------------6分又Q 点是过点P 所作y 轴的平行线与直线AC 的交点,则Q 点的坐标为(1,2)2a a --.则有:2131[(2)](2)222PQ a a a =-+----=2122a a -- -------------7分=()21222a -++ -------------8分即当2a =-时,线段PQ 的长取最大值,此时P 点的坐标为(-2,-3)-------------9分24.(1)证明:∵∠AEF =90o ,∴∠FEC +∠AEB =90o . ---------------------------------------1分 在Rt △ABE 中,∠AEB +∠BAE =90o ,∴∠BAE =∠FEC ; ---------------------------------------3分(2)证明:∵G ,E 分别是正方形ABCD 的边AB ,BC 的中点,∴AG=GB=BE=EC ,且∠AGE =180o -45o =135o . 又∵CF 是∠DCH 的平分线,∠ECF =90o +45o =135o . ---------------------------------------4分在△AGE 和△ECF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠=FEC GAE ECF AGE EC AG o,135, ∴△AGE ≌△ECF ; ---------------------------------------6分 (3)解:由△AGE ≌△ECF ,得AE=EF .又∵∠AEF =90o ,∴△AEF 是等腰直角三角形. ---------------------------------------7分由AB=a ,BE =21a ,知AE =25a , ∴S △AEF =85a 2. ---------------------------------------9分25. 解:(1)∵ 四边形EFPQ 是矩形,∴ EF ∥QP .∴△AEH ∽△ABD ,△AEF ∽△ABC , ---------------------------------------1分∴ AH AD =AE AB =EFBC---------------------------------------2分(2)由(1)得AH 8=x 10. AH =45x .∴ EQ =HD =AD -AH =8-45x , --------------------------------------3分∴ S 矩形EFPQ =EF ·EQ =x (8-45x ) =-45x 2+8 x =-45(x -5)2+20. -----------4分∵ -45<0, ∴ 当x =5时,S 矩形EFPQ 有最大值,最大值为20. -----------5分(3)如图1,由(2)得EF =5,EQ =4.∴ ∠C =45°, ∴ △FPC 是等腰直角三角形.∴ PC =FP =EQ =4,QC =QP +PC =9. -----------6分分三种情况讨论:① 如图2.当0≤t <4时,设EF 、PF 分别交AC 于点M 、N ,则△MFN 是等腰直角三角形.∴ FN =MF =t .∴S =S 矩形EFPQ -S Rt △MF N =20-12t 2=-12t 2+20; -----------7分②如图3,当4≤t <5时,则ME =5-t ,QC =9-t .∴ S =S 梯形EMCQ =12[(5-t )+(9-t )]×4=-4t +28; -----------8分③如图4,当5≤t ≤9时,设EQ 交AC 于点K ,则KQ =QC =9-t .∴S=S△K QC=12(9-t)2=12( t-9)2.第25题图2 第25题图3 第25题图4 综上所述:S与t的函数关系式为:S=221204)24285)1(9)9)2t tt tt t⎧-+<⎪⎪--<⎨⎪⎪-<⎩ (0, (4, (5.≤≤≤。