6-时序逻辑
《电子技术基础》第6章时序逻辑电路的分析与设计-1
6.1 时序逻辑电路的基本概念
1. 时序电路的一般化模型
I1 Ii
O1
Oj
Sm 特点: Ek 1)时序逻辑电路由组合电路(逻辑门)和存储电路( 一般由触 发器构成) 组成。 2)电路的输出由输入信号和原来的输出状态共同决定.
4/9/2019 12:58:22 PM
… … S1 …
… E1 … …
组合电路
1/0 1/0 1/0
01 01 0/0 10 10
00
11
10
01
0/1 11 11
1/1
0/0
电路进行减1计数 。 电路功能:可逆4进制计数器 Y可理解为进位或借位端。
4/9/2019 12:58:22 PM
D2 Q
n 1
(3) 根据状态方程组和输出方程列出状态表
Sn→Sn+1
S = Q2Q1Q0
Q
n 1 0
Q Q
n 1
n 0
Q
n 1 1
Q
n 0
n 1 Q2 Q1n
状态表
n 1 n n 1 n 1 n Q Q Q Q Q Q 0 1 0 1 2
n 2
(4) 画出状态图 0 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0
存储电路
时序电 路输入 信号
I1
Ii
O1 Oj
组合电路
时序电 路输出 信号
存储电路激 励信号(触发 器的输入)
… …
… …
存储电路输 出信号 (电路状态S) 各触发器的状态Q
S1 Sm …
E1
… Ek
存储电路
各信号之间的逻辑关系方程组为:
O = F1(I,Sn) E = F2
第六章时序逻辑电路-丽水学院
第六章 时序逻辑电路(14课时)本章教学目的、要求:1.掌握时序逻辑电路的分析方法。
2.掌握常用时序逻辑部件:寄存器、移位寄存器、由触发器构成的同步二进制递 增计数器和异步十进制递减计数器,及由集成计数器构成任意进制计数器。
3.熟悉常用中规模集成时序逻辑电路的逻辑功能及使用方法。
4.掌握同步时序逻辑电路的设计方法。
重点:时序逻辑电路在电路结构和逻辑功能上的特点;同步时序逻辑电路的分析方法;常用中规模集成时序逻辑电路的逻辑功能及使用方法;由集成计数器构成任意进制计数器。
难点:同步时序逻辑电路的设计方法第一节 概述(0.5课时)一、定义:1.定义:任一时刻电路的稳定输出不仅取决于当时的输入信号,而且还取决于电路原来的状态。
2.例:串行加法器:指将两个多位数相加时,采取从低位到高位逐位相加的方式完成相加运算。
需具备两个功能:将两个加数和来自低位的进位相加, 记忆本位相加后的进位结果。
全加器执行三个数的相加运算, 存储电路记下每次相加后的运算结果。
CP a i b i c i-1(Q ) s i c i (D )0 a 0 b 0 0 s 0 c 0 1 a 1 b 1 c 0 s 1 c 1 2 a 2 b 2 c 1 s 2 c2 3.结构上的特点:①时序逻辑电路通常包含组合电路和存储电路两部分,存储电路(触发器)是必不可少的;②存储器的输出状态必须反馈到组合电路的输入端,与外部输入信号共同决定组合逻辑电路的输出。
∑CI COCLKC1<1DQ 'Qia ic i-1c ib is 串行加法器电路二、时序电路的功能描述原状态:q1, q2, …, q l新状态:q1*,q2 *,…,q l*1.逻辑表达式。
Y = F [X,Q] 输出方程。
Z = G [X,Q] 驱动方程(或激励方程)。
Q* = H [Z,Q] 状态方程。
2.状态表、状态图和时序图。
三、时序电路的分类1. 按逻辑功能划分有:计数器、寄存器、移位寄存器、读/写存储器、顺序脉冲发生器等。
第6章 时序逻辑电路
J 和 K 接为互反,相当于一个D触发器。时钟相连 是同步时序电路。
电路功能: 有下降沿到来时,所有Q端更新状态。
2、移位寄存器 在计算机系统中,经常要对数据进行串并转换,移 位寄存器可以方便地实现这种转换。
左移移位寄存器
•具有左右移位功能的双向移位寄存器
理解了前面的左移移位寄存器,对右移移位寄存器 也就理解了,因位左右本身就是相对的。实际上,左右 移位的区别在于:N触发器的D端是与 Q N+1相连,还是 与Q N-1相连。
第六章 时序逻辑电路
如前所述,时序逻辑电路的特点是 —— 任一时刻 的输出不仅与当前的输入有关,还与以前的状态有关。
时序电路以触发器作为基本单元,使用门电路加以 配合,完成特定的时序功能。所以说,时序电路是由组 合电路和触发器构成的。
与学习组合逻辑电路相类似,我们仍从分析现成电 路入手,然后进行时序逻辑电路的简单设计。
状态化简 、分配
用编码表示 给各个状态
选择触发器 的形式
确定各触发器 输入的连接及 输出电路
NO 是否最佳 ?
YES
设计完成
下面举例说明如何实现一个时序逻辑的设计:
书例7-9 一个串行输入序列的检测电路,要求当序
列连续出现 4 个“1”时,输出为 1,作为提示。其他情 况输出为 0。
如果不考虑优化、最佳,以我们现有的知识可以很
第二步: 状态简化
前面我们根据前三位可能的所有组合,设定了 8 个
状态A ~ H,其实仔细分析一下,根本用不了这么多状态。
我们可以从Z=1的可能性大小的角度,将状态简化为
4 个状态:
a
b
c
d
A 000
B 100
D 110
第6章_时序逻辑电路 课后答案
第六章 时序逻辑电路【题 6.3】 分析图P6.3时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。
Y图P6.3【解】驱动方程:11323131233J =K =Q J =K =Q J =Q Q ;K =Q ⎧⎪⎨⎪⎩ 输出方程:3YQ =将驱动方程带入JK 触发器的特性方程后得到状态方程为:n+11313131n 12121221n+13321Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q +⎧=+=⎪=+=⊕⎨⎪=⎩ 电路能自启动。
状态转换图如图A6.3【题 6.5】 分析图P6.5时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。
A 为输入逻辑变量。
图A6.3Y图P6.5【解】驱动方程: 1221212()D AQ D AQ Q A Q Q ⎧=⎪⎨==+⎪⎩输出方程: 21Y AQ Q =将驱动方程带入JK 触发器的特性方程后得到状态方程为:n+112n+1212()Q AQQ A Q Q ⎧=⎪⎨=+⎪⎩ 电路的状态转换图如图A6.51图A6.5【题 6.6】 分析图P6.6时序电路的逻辑功能,画出电路的状态转换图,检查电路能否自启动,说明电路能否自启动。
说明电路实现的功能。
A 为输入变量。
AY图P6.6【解】驱动方程: 112211J K J K A Q ==⎧⎨==⊕⎩输出方程: 1212Y AQ Q AQ Q =+将驱动方程带入JK 触发器的特性方程后得到状态方程为:n+111n+1212QQ Q A Q Q ⎧=⎪⎨=⊕⊕⎪⎩ 电路状态转换图如图A6.6。
A =0时作二进制加法计数,A =1时作二进制减法计数。
01图A6.6【题 6.7】 分析图P6.7时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。
精选文档Y图P6.7【解】驱动方程: 001023102032013012301;;;J K J Q Q Q K Q J Q Q K Q Q J Q Q Q K Q==⎧⎪=•=⎪⎨==⎪⎪==⎩ 输出方程: 0123Y Q Q Q Q =将驱动方程带入JK 触发器的特性方程后得到状态方程为:*00*1012301*2023012*3012303()Q ()Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q⎧=⎪=++⎪⎨=++⎪⎪=+⎩ 设初态Q 1Q 3Q 2Q 1 Q 0=0000,由状态方程可得:精选文档状态转换图如图A6.7。
数字电子技术基础-第六章_时序逻辑电路(完整版)
T0 1
行修改,在0000 时减“1”后跳变 T1 Q0 Q0(Q3Q2Q1)
为1001,然后按
二进制减法计数
就行了。T2 Q1Q0 Q1Q0 (Q1Q2Q3 )
T3 Q2Q1Q0
50
能自启动
47
•时序图 5
分 频
10 分 频c
0
t
48
器件实例:74 160
CLK RD LD EP ET 工作状态 X 0 X X X 置 0(异步) 1 0 X X 预置数(同步) X 1 1 0 1 保持(包括C) X 1 1 X 0 保持(C=0) 1 1 1 1 计数
49
②减法计数器
基本原理:对二进 制减法计数器进
——74LS193
异步置数 异步清零
44
(采用T’触发器,即T=1)
CLKi
CLKU
i 1
Qj
j0
CLKD
i 1
Qj
j0
CLK0 CLKU CLKD
CLK 2 CLKU Q1Q0 CLK DQ1Q0
45
2. 同步十进制计数器 ①加法计数器
基本原理:在四位二进制 计数器基础上修改,当计 到1001时,则下一个CLK 电路状态回到0000。
EP ET 工作状态
X 0 X X X 置 0(异步)
1 0 X X 预置数(同步)
X 1 1 0 1 保持(包括C)
X 1 1 X 0 保持(C=0)
1 1 1 1 计数
39
同步二进制减法计数器 原理:根据二进制减法运算 规则可知:在多位二进制数 末位减1,若第i位以下皆为 0时,则第i位应翻转。
Y Q2Q3
第6章-时序逻辑电路
6 时序逻辑电路6.1.1 已知一时序电路的状态表如表题6.1.1所示,A为输入信号,试作出相应的状态图。
解:由状态图的概念及已知的状态表,可画出对应的状态图,如图题解6.1.1所示。
6.1.2已知状态表如表题6.1.2所示,输入为X1X0,试作出相应的状态图。
解:根据表题6.1.2所示的状态表,作出对应的状态图如图题解6.1.2所示。
6.1.3已知状态图如图题6.1.3所示,试列出它的状态表。
解:按图题6.1.3列出的状态表如表题解6.1.3所示。
6.1.5 图题6.1.5所示是某时序电路的状态图,设电路的初始状态为01,当序列A=100110(自左至右输入)时,求该电路输出Z的序列。
解:由图题6.1.5所示的状态图可知,当初态为01,输入信号的序列A=100110时,该时序电路将按图题解6.1.5所示的顺序改变状态,因而对应的输出序列为Z=011010。
6.1.6已知某时序电路的状态表如表题6.1.6所示,输入A,试画出它的状态图。
如果电路的初始状态在b,输入信号A一次是0、1、0、1、1、1、1,试求出其相应的输出。
解:根据表题6.1.6所示的状态表,可直接画出与其对应的状态图,如图题解6.1.6(a)当从初态b开始,依次输入0、1、0、1、1、1、1信号时,该时序电路将按图题解6.1.6(b)所示的顺序改变状态,因而其对应的输出为1、0、1、0、1、0、1。
6.2 同步时序逻辑电路的分析6.2.1 试分析图题6.2.1(a)所示时序电路,画出其状态表和状态图。
设电路的初始状态为0,试画出6.2.1(b)所示波形作用下,Q和Z的波形图。
解:由所给电路图可写出该电路的状态方程和输出方程,分别为1n nQ A QZAQ+=⊕=其状态表如表题解6.2.1所示,状态图如图题解6.2.1(a)所示,Q和Z的波形图如图题解6.2.1(b)所示。
6.2.2 试分析图题6.2.2(a)所示时序电路,画出其状态表和状态图。
第06章时序逻辑电路习题解
课件主编:徐 梁
习题解
第1题
第8题
第15题
数
字
第2题
第9题
第16题
电
第3题
第10题
第17题
子 技
第4题
第11题
第18题
时序电路分析 时序电路设计 计数器分析设计
术
第5题
第12题
基 础
第6题
第13题
序列信号发生器 VHDL设计
第7题
第14题
★★
A组★ B组★
[题6.1]分析图P 6.1时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程, 画出电路的状态转换图和时序图。
图A 6.4
[题6.5]试分析图P 6.5时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程, 画出电路的状态转换图。A为输入逻辑变量。
解:首先从电路图写出它的驱动方程 D1=AQ2' D2=A(Q1'Q2')'=A(Q1+Q2) 将上式代入D触发器的特性方程后得到电路的状态方程 Q1*=AQ2' Q2*=A(Q1+Q2) 电路的输出方程为 Y=AQ1'Q2 根据状态方程和输出方程画出的状态转换图如图A 6.5所示。
[题6.2]分析图P6.2时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画 出电路的状态转换图,并说明该电路能否自启动。
解:由给定的电路图写出驱动方程为 D1=Q3' D2=Q1 D3=Q1Q2 将驱动方程代入D触发器的特性方程Q*=D,得到电路的状态方程 Q1*=Q3' Q2*=Q1 Q3*=Q1Q2 电路的输出方程为 Y=(Q1'Q3)'=Q1+Q3' 电路的状态转换图如图A 6.2所示,电路能够自启动。
第六章 时序逻辑电路
Y Q* 0 0 0 1 0 1 0 0 0 1 1
0 0 1 0 0
图6.2.2
6.2.时序逻辑电路的分析方法
三、时序图: 在时钟脉冲 序列的作用下, 电路的状态、输 出状态随时间变 化的波形叫做时 序图。由状态转 换表或状态转换 图可得图6.2.3所 示 图6.2.3
6.2.时序逻辑电路的分析方法
K1 1
6.2.时序逻辑电路的分析方法
(2) 状态方程:
JK触发器的特性方程
Q J Q K Q
*
将驱动方程代入JK触发器的特性方程中,得出电 路的状态方程,即
K1 1 J 1 ( Q 2 Q 3 ) , K 2 ( Q 1Q 3 ) J 2 Q1 , J QQ , K 3 Q2 1 2 3
设初态Q3Q2Q1=000,由状态方程可得:
CLK Q3 Q2 Q1 Q *3 0 0 0 0 0 1 0 0 1 0 2 0 1 0 0 3 4 5 6 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0
Q *2 Q *1 Y 0 1 0
Q 1 * ( Q 2 Q 3 ) Q 1 Q 2 * Q 1 Q 2 Q 1Q 3 Q 2 Q * Q Q Q Q Q 1 2 3 2 3 3
1 1 0 0 1 0 0
0 1 0 1 0 0 0
0 0 0 0 0 1 1
由状态转换表可知,为七进制加法计数器,Y为进位 脉冲的输出端。
6.2.时序逻辑电路的分析方法
二、状态转换图: 将状态转换表以图形的方式 直观表示出来,即为状态转换图 由状态转换表可得状态转换图 如图6.2.2所示
CLK Q3 Q2 Q1 0 0 0 0 1 0 0 1 2 0 1 0 3 4 5 6 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1
6时序逻辑电路微机原理课件
0001 0011 0110
1101 1010
经过4个移位脉冲后,串行输入的数据,并行输出。
串行 输出
Q
3
D
Q2 D
Q1 D
Q0 D
DI(1101)
Q
Q
Q
Q
CP
移位
设初态 Q3Q2Q1Q0 = 0000
脉冲
Q3Q2Q1Q0 D3D2D1D0
D3 = Q2 D2 = Q1 D1 = Q0
D0 = DI
如何写状态转换表或图?
Q* Q
1
1
Q* 2
A
Q Q
1
2
A Q2 Q1 Q2* Q1* Y
00 0 0 1 0
YA Q 1Q 2A Q 1Q 2 0 0 1 1 0 0
Q2Q1
A 00 01 11 10
01 0 01 1
11 0 00 1
0 01/0 10/0 00/1 11/0
10 0 11 1
FF
FF
FF
FF 输出
输 并入-串出 入 多个输入端,一个输出端
输
出
FF
FF
FF
FF
输 并入-并出 入 多个输入端,多个输出端
1. 四位串入 - 串出的左移寄存器
D0 = DI D1 = Q0
D2 = Q1 D3 = Q2
并行输 出
串行
输出 DO
Q 3
D
清零 Q 脉冲 RD
CLR
Q2 D Q
Q1 D Q
右移寄存器:
D0 = Q1
D1 = Q2
D2 = Q3
= D3
DIR
左移寄存器:
= D0
第六章 时序电路
二、时序逻辑电路的分类:
按 动 作 特 点 可 分 为
同步时序逻辑电路
所有触发器状态的变化都是在 同一时钟信号操作下同时发生。
异步时序逻辑电路
触发器状态的变化不是同时发生。
按 输 出 特 点 可 分 为
米利型时序逻辑电路(Mealy)
输出不仅取决于存储电路的状态,而且还 决定于电路当前的输入。
Q2 Q1 Q0
/Y
/0 /0 000→001→011 /1↑ ↓/0
CP Q0 010 Q1 Q2 Y
/0 101 /1 (b) 无效循环
100←110←111 /0 /0 (a) 有效循环
有效循环的6个状态分别是0~5这6个十进制数
字的格雷码,并且在时钟脉冲CP的作用下,这6个
状态是按递增规律变化的,即: 000→001→011→111→110→100→000→… 所以这是一个用格雷码表示的六进制同步加法 计数器。当对第6个脉冲计数时,计数器又重新从 000开始计数,并产生输出Y
Q=0时
LED亮
RD Q0 Q1 D1 Q2 D2 D3 Q3 S1
DIR D0 D1D2D3S0 DIL CLK +5V
74LS194
DIR D0
S0 DIL CLK +5V
清0按键 1秒
S1=0,S0=1
CLK 右移控制
本节小结:
寄存器是用来存放二进制数据或代
码的电路,是一种基本时序电路。任何
画状态转换图
Q3Q2Q1 /Y
000
/1 /1 111
/0
001
/0
010
/0
011 /0
数字电路与逻辑设计微课版(第6章 时序逻辑电路)教案
第6章时序逻辑电路本章的主要知识点时序逻辑电路的基本知识、时序逻辑电路的分析和设计、关于自启动的修正问题、常用的中规模时序电路。
1.参考学时10学时(总学时32学时,课时为48课时可分配12学时)。
2.教学目标(能力要求)●掌握同步时序逻辑电路的分析和设计方法;●掌握电路挂起的修正方法;●掌握常用的中规模时序逻辑电路(计数器、寄存器)的外部特性及使用方法;●掌握脉冲异步时序逻辑电路的分析和设计方法;●掌握中规模时序逻辑电路的分析和设计方法。
3.教学重点●同步时序逻辑电路的设计:包括设计中的原始状态图、状态表、状态化简、状态编码、确定激励函数和输出函数等;●同步时序逻辑电路的自启动的分析:能根据设计好的电路分析电路是否存在自启动的问题,并学会修正它。
●脉冲异步时序逻辑电路的分析和设计方法:了解和同步时序逻辑电路的分析和设计方法的差异性,并熟练掌握脉冲异步时序逻辑电路的分析和设计方法●中规模时序逻辑电路的外部特性及使用方法:通过理论分析来学习常用中规模时序逻辑电路的外部特性及使用方法,通过具体实例来学习中规模时序逻辑电路的分析和设计方法4.教学难点●原始状态图:学生开始不知道如何增加状态,什么时候增加状态●自启动的修正:学生能分析出挂起,但是对于修正比较困难●脉冲异步时序逻辑电路的分析:当脉冲异步时序逻辑电路的存储电路是没用统一时钟端的钟控触发器时,如何分步找到每个触发器的时钟的跳变时刻对学生来说是一大挑战●计数器的使用方法:掌握置数法、清零法、级联法实现任意模的计数器5.教学主要内容(1)时序逻辑电路概述(15分钟)(2)小规模时序逻辑电路分析(120分钟)➢小规模时序逻辑电路的分析方法和步骤➢小规模同步时序逻辑电路的分析➢小规模异步时序逻辑电路的分析(3)小规模时序逻辑电路设计(180分钟)➢小规模时序逻辑电路的设计方法和步骤➢小规模同步时序逻辑电路的设计➢小规模异步时序逻辑电路的设计(4)常用中规模时序逻辑电路(45分钟)➢集成计数器➢寄存器(5)中规模时序逻辑电路的分析和设计(90分钟)➢中规模时序逻辑电路的分析➢中规模时序逻辑电路的设计6.教学过程与方法(1)时序逻辑电路概述(15分钟)简要介绍时序逻辑电路的结构、特点、分类和描述方法等。
数电第六章时序逻辑电路
• 根据简化的状态转换图,对状态进行编码,画出编码形式 的状态图或状态表
• 选择触发器的类型和个数 • 求电路的输出方程及各触发器的驱动方程 • 画逻辑电路图,并检查电路的自启动能力 EWB
典型时序逻辑集成电路
• 寄存器和移位寄存器 – 寄存器 – 移位寄存器 –集成移位寄存器及其应用 • 计数器 – 计数器的定义和分类 – 常用集成计数器 • 74LVC161 • 74HC/HCT390 • 74HC/HCT4017 – 应用 • 计数器的级联 • 组成任意进制计数器 • 组成分频器 • 组成序列信号发生器和脉冲分配器
– 各触发器的特性方程组:Q n1 J Q n KQ n CP
2. 将驱动方程组代入相应触发器的特性方程,求出各触发器 的次态方程,即时序电路的状态方程组
n n FF0:Q0 1 Q 0 CP n n n FF1:Q1 1 A Q0 Q1 CP
同步时序逻辑电路分析举例(例6.2.2C)
分析时序逻辑电路的一般步骤
• 根据给定的时序电路图写方程式 – 各触发器的时钟信号CP的逻辑表达式(同步、异步之分) – 时序电路的输出方程组 – 各触发器的驱动(激励)方程组 • 将驱动方程组代入相应触发器的特性方程,求出各触发器 的次态方程,即时序电路的状态方程组 • 根据状态方程组和输出方程组,列出该时序电路的状态 表,画状态图或时序图 • 判断、总结该时序电路的逻辑功能
• 电路中存在反馈
驱动方程、激励方程: E F2 ( I , Q )
状态方程 : Q n1 F3 ( E , Q n ) • 电路状态由当前输入信号和前一时刻的状态共同决定
• 分为同步时序电路和异步时序电路两大类
什么是组合逻辑电路?
6 1 时序逻辑——时序元件(锁存器)1.
24
SR锁存器的激励输入限制
置位端S和复位端R不能同时变为无效
产生信号追逐(race) 输出将产生震荡(oscillate) 必有一个门最终获胜,锁存器达到稳态,但是不能确定
输出的结果。 恢复时间(Recovery Time, trec),复位和置位有效信号间
的最小时间
置位端S和复位端R的有效脉冲不能太短
输入(input)
?
输出(output)
显示字符
当前状态(现态,present state) 现在时间
下一个状态(次态,next state)
下一时刻
状态转换(state transition)
课程内容
锁存器的设计 时序逻辑电路的描述
存储元件之设计思想
数字逻辑电路:0 1
不能确定输出的结果。 应该在设计硬件时,十分注意。
SR锁存器的传播延迟
时序逻辑电路的描述
状态表和状态图 激励表和特征方程 函数表示 框图表示
状态表和状态图
状态图
圆:状态 线:状态变换 线上标注:产生状态变换的输入和相应输出
状态的二进制表示
N个状态可以用n位二进制表示。 N≤2n 状态编码 状态的二进制表示需要优化
R
Q
SR=00 SR=01
SR=10
Q Q'
SR=01
Q Q'
01
10
SR=01
SR=10
SR=11
SR=00 SR=10
Q Q' SR=11 0 0 SR=11
SR=00 SR=01
SR=00 SR=11
SR=10
S
第6章 时序逻辑电路-习题答案
第六章 时序逻辑电路6-1 分析题图6-1所示的同步时序电路,画出状态图。
题图6-1解: 11221211n n n n J K Q T Q Z Q Q ====,,,,11111111212n n n n nn n nQ J Q K Q Q Q Q Q Q +=+=+=+122212n n n n Q T Q Q Q +=⊕=⊕,状态表入答案表6-1所示,状态图如图答案图6-1所示。
答案表6-1答案图6-16-2 分析题图6-2所示的同步时序电路,画出状态图。
题图6-2 解:按照题意,写出各触发器的状态方程入下:11J K A ==,21n J Q =,21K =,1212n n nQ Q Q +=,111n n Q A Q +=⊕状态表入答案表6-2所示,状态图如图答案图6-2所示。
答案表6-2答案图6-2Q 2n Q 1n Q 2n+1 Q 1n+1 Z0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 0 1A Q 2n Q 1n Q 2n+1 Q 1n+1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 0CLK D 1D 2D 3Q 3Q 2Q 1Q 2Q 3Q 1Q 1Q 2Q 3&6-3分析题图6-3所示的同步时序电路,画出状态图。
题图6-3解:按照题意,写出各触发器的状态方程入下:1112213232131n n n nn J K T J K Q Q T J Q Q K Q ========1,,, 133********n n n n n n n nQ J Q K Q Q Q Q Q Q +=+=+ 1222132n n n n nQ T Q Q Q Q +=⊕=⊕ 1111111n n n n Q T Q Q Q +=⊕=⊕=答案表6-3答案图6-36-4 在题图6-4所示的电路中,已知寄存器的初始状态Q 1Q 2Q 3=111。
数字逻辑设计第6章 时序逻辑电路习题与解答
L’/C 为 1 时,装入无效,161 对输入的 CLK 进行计数。 L’/C 为 1 或为 O 时,装入有效,而装入值为 D3=Q2,D2=Q1,D1=Q0,D0=串 行输入数据,所以该电路的功能将数据左移,低位补的是串行输入数据。 6-11 试分析图 6-74 的计数器在 C=1 和 C=0 时各为几进制计数器?
第 6 章 习题
6-1 说明时序电路和组合电路在逻辑功能和电路结构上有何不同?
题 6-1 答:
逻辑功能上,时序电路任一时刻的输出不仅取决于当时的输入,而且与电路 的原状态有关。
结构上的特点有两点: (1)时序电路中包含存储元件,通常由触发器构成。 (2)时序电路的存储元件的输出和电路输入之间存在着反馈连接。
Q2Q1Q0
000
/0
/1
001
/0
010
/0
101
/0
100
/0
011
由状态转换图可画出 Q2Q1Q0 和输出 F 的状态卡诺图如下:
Q1Q0 Q2 00 01 11 10
00
0
10
Q1Q0
Q2
00
01 11 10
00
10
0 10
11 0 X X
(a)Q2 卡诺图
Q1Q0 Q2 00 01 11 10
6-3 试分析图 6-69 所示时序逻辑电路的逻辑功能,写出电路的驱动方程、状态 方程和输出方程,画出电路的状态转换图。
F
FF0
DQ >C 1 Q
CLK
FF1
DQ >C 1 Q
图 6-69
题 6-3 解:根据图 6-69 可写出如下驱动方程:
第六章时序逻辑电路
CLK异0为步计计数数输器入与端、同Q步0为计输数出器端比,二,进具制有计如数下器 特点: CLK* 1电为计路数简输单入;端、Q3为输出端,五进制计数器 CLK* 1速与Q度0慢相连;、CLK0为输入端、Q3为输出端,十进制计数器
四、任意进制计数器的构成方法 设已知计数器的进制为N,要构成的任意进制计数
圆圈表示电路的各个状态,箭头表示状态表示的方向, 箭头旁注明转换前的输入变量取值和输出值
三、状态机流程图(SM图) 采用类似于编写计算机程序时使用的程序流程图的形
式,表示在一系列时钟脉冲作用下时序电路状态的流程以及 每个状态下的输入和输出。
四、时序图 在输入信号和时钟脉冲序列作用下,电路状态、
输出状态随时间变化的波形图。
电路在某一给定时刻的输出
取决于该时刻电路由的触输发入器保存 还取决于前一时刻电路的状态
时序电路: 组合电路 + 触发器
电路的状态与时间顺序有关
例:串行加法器电路
利用D触发器 把本位相加后 的进位结果保 存下来
时序电路在结构上的特点:
(1)包含组合电路和存储电路两个组成部分
(2)存储输出状态必须反馈到组合电路的输入端,与输入 信号共同决定组合逻辑电路的输出
串行进位方式以低位片的进位输出信号作为高位片的时 钟输入信号;
并行进位方式以低位片的进位输出信号作为高位片的 工作状态控制信号(计数的使能信号),两片的CLK同时接 计数输入信号。
二、异步计数器
B、减法计数器
二、异步计数器
B、减法计数器
根据T触发器的翻转规律即可画出在一系列CLK0脉冲信号 作用下输出的电压波形。
2、异步十进制计数器
J K端悬空相当于接逻辑1电平 将4位二进制计数器在计数过程中跳过从1010到1111这6个状态。
第6章 时序逻辑电路
8位二进制数码需几个触发器来存放?
2021/8/5
37
计数器:用以统计输入时钟脉冲CLK个数的电路。 计数器的分类:
1.按计数进制分 二进制计数器:按二进制数运算规律进行计数的 电路称作二进制计数器。 十进制计数器:按十进制数运算规律进行计数的 电路称作十进制计数器。 任意进制计数器:二进制计数器和十进制计数器 之外的其它进制计数器统称为任意进制计数器。
驱动方程代入特性方程得状态方程。 输出方程:输出变量的逻辑表达式。
2021/8/5
7
2. 状态表
反映输出Z、次 态Q*与输入X、现 态Q之间关系的 表格。
2021/8/5
8
3. 状态图
标注:输入/输出
反映时序电路 箭尾: 状态转换规律, 现态
及相应输入、
输出取值关系
的图形。
箭头: 次态
2021/8/5
2021/8/5
时钟方程、 2
驱动方程和
状态方程
输出方程
3
5 状态图、 状态表或
时序图ห้องสมุดไป่ตู้
4
计算
11
例
1 时钟方程:C2 L C K 1 L C K 0 L C K同钟L 步方时程K 序可电省路去的不时写。
写 输出方程: YQ'1Q2 输出仅与电路现态有关,
方
为穆尔型时序电路。
程 式
驱动方程:JJ21
Q1 Q0
K2 Q1' K1 Q0'
2021/8/5
J0 Q2'
K0 Q2
12
2 求状态方程
JK触发器的特性方程:
JJ21
Q1
第6章 时序逻辑电路
n n (3)输出方程 Y = Q2 Q3
2、列状态转换表 CP的顺序 0 1 2 3 4 5 6 7 0 1 现态 次态 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1
Q1n 1 T1 Q1n X Q0n Q1n n Q0 T0 Q0n 1 Q0n Q0n
3
计算、列状态表
输入 X 0 0 0 0 1 1 1 1 现
n 1
态
n 0
次
态
输出
Q X Q Q n1 Q0 Q0n Y Q1nQ0nCP
5.2.1 同步时序逻辑电路的分析方法
基本步骤:
1.根据给定电路写出其时钟方程、输出方 程、驱动方程 2.求状态方程。
触发器输入信号的逻辑函数式
3.进行状态计算。把电路的输入和现态各种可能取值组 合代入状态方程和输出方程进行计算,得到相应的次态 和输出。 4.画状态图(或时序图)
时序电路分析过程示意图
X
& FF0 1T C1 Q0 FF 1 =1 1T C1 Q1
Y
例
“1”
CP
Q0
Q1
1
同步时序电路,时钟方程省去。 输出方程:
写 方 程 式
Y Q Q CP
n 1 n 0
T1 X Q0n 驱动方程: T0 1
2
求状态方程
T触发器的特性方程:
数字逻辑知识点总结大全
数字逻辑知识点总结大全数字逻辑是一门研究数字电路的科学,是计算机工程和电子工程的基础。
数字逻辑通过对数字信号的处理和处理,来实现各种功能。
数字逻辑的知识点包括布尔代数,逻辑门,编码器,译码器,寄存器,计数器等等。
本文将对数字逻辑的知识点进行系统总结,以便读者更好地理解和掌握数字逻辑的知识。
1. 布尔代数布尔代数是数字逻辑的基础,它用于描述逻辑信号的运算和表示。
布尔代数包括与运算、或运算、非运算、异或运算等逻辑运算规则。
布尔代数中的符号有"∧"、"∨"、"¬"、"⊕"表示与、或、非、异或运算。
布尔代数可以用于构建逻辑方程、化简逻辑表达式、设计逻辑电路等。
2. 逻辑门逻辑门是数字电路的基本组成单元,实现了布尔代数的逻辑运算。
常见的逻辑门包括与门、或门、非门、异或门等,它们分别实现了逻辑与、逻辑或、逻辑非、逻辑异或运算。
逻辑门通过组合和连接可以实现各种复杂的逻辑功能,是数字逻辑电路的基础。
3. 编码器和译码器编码器和译码器是数字逻辑中的重要元件,用于实现数据的编码和解码。
编码器将多个输入信号编码成少量的输出信号,译码器则反之。
常见的编码器包括二进制编码器、BCD编码器等,常见的译码器包括二进制译码器、BCD译码器等。
4. 寄存器寄存器是数字逻辑中的重要存储单元,用于存储二进制数据。
寄存器可以实现数据的暂存、延时、并行传输等功能。
常见的寄存器包括移位寄存器、并行寄存器、串行寄存器等,它们按照不同的存储方式和结构实现了不同的功能。
5. 计数器计数器是数字逻辑中的重要计数单元,用于实现计数功能。
计数器可以按照不同的计数方式实现不同的计数功能,常见的计数器包括二进制计数器、BCD计数器、模数计数器等。
6. 时序逻辑时序逻辑是数字逻辑中的重要内容,它描述数字电路在不同时间点的状态和行为。
时序逻辑包括触发器、时钟信号、同步电路、异步电路等,它们用于描述数字电路的时序关系并实现相关功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
采样
T Tskewtcq tplogic tsu clock
在一个IC上两点j和J之间的时钟偏差为
Tskew (i, j ) ti t j
1. 由寄存器R1在边沿①处采样的一个新输入IN将传播通过组合 逻辑并被寄存器R2在边沿④处采样。 2. 如果时钟偏差为正,那么信号由R1传播到R2的可用时间就增 加了一个时钟偏差值。 3. 组合逻辑的输出必须在clk2上升沿(点④)的一个建立时间之前 有效。
采样
t hold
1. 若组合逻辑块的最小延时很小,那么R2的输入就有可能在时 钟边沿②之前改变.导致求值出错。 2. 为了避免竞争,我们必须保证通过寄存器和逻辑的最小传播 延时足够长,以使R2的输入在边沿②之后的一段维持时间内 保持有效
State Key Lab of ASIC & Systems, Fudan University,Lai
Mux-Based Latches:Transistor implementation
State Key Lab of ASIC & Systems, Fudan University,Lai
Master-Slave (Edge-Triggered) Register 是正沿触发寄存器还是负沿触发寄存器?
时钟偏差小结
正偏差能够增加电路的数据通量,即时钟周期可以缩短。但这 一改进的范围是有限的,因为较大的偏差会导致对保持时间的 约束 负偏差提高了抗竞争的能力,可以避免出错。但时钟周期要增 加,会降低电路的性能 一般的逻辑电路中数据可以在两个方向上流动(如具有反馈的 电路)。使时钟布线发生负偏差是不现实的。因此,设计一个 偏差小的 时钟网络才是最重要的
Master-Slave Register – propagation delay
Propagation delay
QM值传播到输出Q所需要的时间。
建立时间中已经包含了I2 延迟, ,output I4 and I2 valid at the same time, I4的输出在时钟上升沿之前 已有效, propagation delay is time to travel T3, I6
触发器的触发
Triggering can be done in two ways
切断反馈环路:一旦反馈环路打开,一个新的值就能很容易 地写入。非常普遍。 触发强度超过反馈环:因其强度超过存储值而迫使一个新的 值进入该单元。它是实现静态后台存储器的主要方法。
CLK=1
State Key Lab of ASIC & Systems, Fudan University,Lai
进一步减少时钟负载
NMOS门实现的正锁存器 (仅用NMOS实现)
正锁存器
NMOS only → less load to the clock, But VA limited to VDD-Vtn → degraded noise margin(NMH) 在VDD值较低而Vth值较高,造成在第一个反相器中的 PMOS器件不能完全关断 → static power in first invertor
Setup time: 建立时间是输人数据D在时钟上升沿之前必须保持稳定 的时间。或在时钟上升沿之前输入D必须稳定多长时间 才能使QM采样的值是可靠的? D在时钟上升沿之前必须传播通过I1,T1,I3,I2
State Key Lab of ASIC & Systems, Fudan University,Lai
State Key Lab of ASIC & Systems, Fudan University,Lai
Latch versus register
正锁存器(高电平透明) 负锁存器(低电平透明)
正沿触发寄存器 负沿触发寄存器
State Key Lab of ASIC & Systems, Fudan University,Lai
State Key Lab of ASIC & Systems, Fudan University,Lai
双稳态原理
这一电路具有两个稳定状态:A,B, 分别代表0或 1 用正反馈来建立双稳电路
C亚稳态
State Key Lab of ASIC & Systems, Fudan University,Lai
实际的时钟周期与理想 的时钟周期的差别 State Key Lab of ASIC & Systems, Fudan University,Lai Irwin&Vijay, PSU, 2002
时序逻辑设计
引言 静态寄存器
多路开关型 减少时钟负载 非理想时钟信号
动态寄存器 其他寄存器
Slave Master 0 1 D 0 QM 1 CLK Q D QM Q CLK CLK
保持 采样 采样 保持
负锁存器 (主级)
正锁存器 (从级)
State Key Lab of ASIC & Systems, Fudan University,Lai
Master-Slave Register – Setup time
State Key Lab of ASIC & Systems, Fudan University,Lai
时序逻辑设计
引言 静态寄存器
多路开关型 减少时钟负载 非理想时钟信号
动态寄存器 其他寄存器
State Key Lab of ASIC & Systems, Fudan University,Lai
时序逻辑设计
引言 存储单元的分类 时序电路的时间参数 静态寄存器 动态寄存器 其他寄存器
State Key Lab of ASIC & Systems, Fudan University,Lai
寄存器保持系统的状态 寄存器可以是静态的 也可以是动态的
State Key Lab of ASIC & Systems, Fudan University,Lai
时序逻辑设计
引言 存储单元的分类 时序电路的时间参数 静态寄存器 动态寄存器 其他寄存器
State Key Lab of ASIC & Systems, Fudan University,Lai
Timing Definitions
1. 2. 3. 4.
tsetup= setup time: time data must be valid before clock edge thold = hold time: time data must be valid after clock edge tc-q = 最坏条件下的传播延迟 (ref. to the clock edge) tcd = 最好条件下的传播延迟(Contamination Delay)
动态寄存器 其他寄存器
State Key Lab of ASIC & Systems, Fudan University,Lai
是静态的还是动态的? 静态的(满足低阻抗原则)
时钟负载:2n+2p个晶体管
CLK D CLK
T1 CLK
I1 I2
T2 CLK
I3 I4
Q
直接用交叉藕合反相器来省去反馈传输门
State Key Lab of ASIC & Systems, Fudan University,Lai
Clock jitter
• Clock jitter :指芯片的某一个点上时钟周期发生暂时的变 •
化,称为时钟抖动 时钟周期起始于边沿② 而结束于边沿5,周期为TCLK,最坏 情况下,上升沿因抖动而延后(边沿3),而下一个时钟周 期的上升沿又因抖动而提前(边沿4),最坏情况下可用来 完成操作的总时间减少了2tjitter
时序逻辑设计
引言 静态寄存器 多路开关型 减少时钟负载 非理想时钟信号 动态寄存器 动态传输门边沿触发寄存器 改善抗噪声的能力 其他寄存器 时钟控制CMOS寄存器 真单相钟控寄存器 脉冲寄存器 流水线
State Key Lab of ASIC & Systems, Fudan University,Lai
Hold time violation
min propagation delay
目标寄存器的维持时间
该要求一般不难满足! 但当寄存器之间存在很 少或没有逻辑电路时这 会成为一个问题
1. Minimum delay presented by register and logic must be larger than hold time 2. A violation of this condition is a hold time violation
存储单元的分类
Foreground vs Background memory Foreground :嵌入在逻辑中的存储器。如:单个寄存器或寄存器 组( register banks) Background :大量的集中存储内核(使用阵列结构),称为后 台存储器,高密度,高性能,如RAM, ROM,需要解决的关键 是单元面积尽可能小、速度尽可能快,可以牺牲噪声容限 Static versus dynamic memory Static :稳态时信号节点是通过一个低阻路径连接到 VDD 或 VSS 上的存储器。例如:用正反馈或再生原理构成的存储器,只要 一上电,就会一直保持其状态。 Dynamic:信号暂存在高阻节点电容上,必须周期性地刷新以弥 补泄漏的电荷的存储器,不满足低阻路径原则。性能高、面积小 Latches versus registers latches are level sensitive registers are edge triggered