第3章 边值问题及静电场的求解
第三章静电场及其边值问题的解法
电路; • 在电力系统中,可利用电容器来改善系统的功率因数,以
减少电能的损失和提高电气设备的利用率;
如何求电容器的电容?
14
电磁场与波
1. 电容 电容是导体系统的一种基本属性,是描述导体系统 储存电荷能
力的物理量。
孤立导体的电容
界条件为
或
ED11tn
s
0
介质1
nˆ
E1
1
1
注:媒质1为介质,媒质2为导体
导体
22
电磁场与波
静电位的边界条件
设P1和P2是介质分界面两侧紧贴界面的相邻两点,其电位分
别为ϕ1和ϕ 2
当两点间距离⊿l→0时,C与D趋于同一 点,取作电位参考点
1 2
媒质1 1
1 A
B 2
媒质2 2
D
l
C
由
和
2
2
n
1
1
n
S
• 若介质分界面上无自由电荷,即 s 0
2
2
n
1
1
n
•
导体表面上电位的边界条件:
常数,
n
S
电磁场与波
例 3.5 无限长同轴线内外导体半径分别为a,b,外导体接地,内
导体电位为U,内外导体间部分填充介电常数为ɛ1的介质,其余部
分介电常数为ɛ2 ,(a)图中二介质层分界面半径为c;(b)图 0 1
孤立导体的电容定义为所带电量q与其电位的比值,即
Cq
电位参考点为 无穷远处
例: 真空中半径a的孤立带电导体球,其表面电荷量为q,则电位?
q 4 0 a
C 40a
第三章 静电场的边值问题
u (1 2 ) 0
积分后 , 1 - 2 C, 该式既满足场域 , 又满足边界 , 故 C 0,1 2 ,得证
若导体边界为第二类边 界条件 , 即已知电荷面密度
1 2 , n n
即
(1 -2 ) u 0 n n
q
1 2 q 1 2
q
2 2 q 1 2
0
( y 0 ,b x a )
0
例 设有电荷均匀分布在半径为a的介质球型区域中,电荷体密度
为 ,试用解微分方程的方法求球体内、外的电位及电场。
解: 采用球坐标系,分区域建立方程 1 d d 21 2 (r 2 1 ) (0 r a ) r dr dr 0
2u 21 2 2
利用矢量恒等式
0 (uu) u2u (u) 2 ( u )2
对场域求体积分, 并利用高斯散度定理
V
(uu )dV uu dS (u ) 2 dV
s V
S为体积 V的边界面 ,即S S0 S , S S1 S2 Sn , 由于在无穷远 S0处电位为零 ,因此有
静电场的边值问题 数学物理方程定解条件通常分为初始条件和边界条件。 静电场与时间无关,因此电位所满足的泊松方程及拉普拉斯
方程的解仅决定于边界条件。根据给定的边界条件求解泊松方程
或拉普拉斯方程就是静电场的边值问题。
边值问题 微分方程
边界条件
2 2 0
场域 边界条件
分界面 衔接条件
S f1 (s)
已知场域边界 上各点电位 的法向导数
布或边界是电力线的条 件是等价的? 边值问题框图
静电场的解法
静电场的解法第三章静电场的解法第三章静电场的解法静电场问题的类型唯一性定理分离变量法镜像法有限差分法第三章静电场的解法静电场问题的类型分布型问题已知全空间的电荷分布利用电场强度或电位的计算公式直接计算场中各点的电场强度或电位这类问题称为分布型问题对此问题有如下几种解法。
、根据电荷分布利用场源积分式直接求解电场。
、根据电荷分布利用场源积分式直接求解电位再根据计算电场。
、若电荷分布具有某种对称性从而判断场的分布也具有某种对称性时可用高斯定理直接求解电场此法主要是要正确选取高斯面一般高斯面上的场强要保持常量并且方向与所在面的法向相同计算才可化简。
第三章静电场的解法边值型问题已知确定区域中的电荷分布和其边界上的电位或电位函数的法向导数分布求解该区域中电位的分布状况这类问题称为边值型问题或简称为边值问题边值问题根据边界条件给出的形式不同可分为以下三种类型。
第一类边值问题:给定整个边界上的电位函数求区域中电位分布这类问题又称为狄利克莱问题。
第二类边值问题:给定整个边界上电位函数的法向导数求区域中电位分布这类问题又称为诺伊曼问题。
第三类边值问题:一部分边界上的电位给定另一部分边界上的法向导数给定求区域中电位分布这类问题又称为混合型边值问题。
如果边界是导体则上述三类问题分别变为:已知导体表面的电位已知各导体的总电量已知一部分导体表面上的电位和另一部分导体表面上的电量。
第三章静电场的解法唯一性定理唯一性定理:满足边界条件的泊松方程或拉普拉斯方程的解必定唯一。
或:如果给定一个区域中的电荷分布和边界上的全部边界条件则这个区域中的解是唯一的。
格林定理格林定理是由散度定理直接导出的数学恒等式。
将散度定理用于闭合面S所包围的体积V内任一矢量场式中参量是在区域内两个任意的标量函数并要求在边界上一阶连续在区域内二阶连续。
第三章静电场的解法则有格林第一恒等式上述两式相减得格林第二恒等式第三章静电场的解法唯一性定理的证明设φφ是同一无源区域的边值问题的解。
第三章作业答案
μ0
μ0
ˆx 10 + e ˆy 20 + e ˆz 20 V / m ,试问该电场能否表示匀强电场?为什么?电场 7、已知电场 A = e ˆx 20 − e ˆy 5 − e ˆz 5 V / m , 大小是多小?方向余弦?如果有另一电场 B = e 试问这两个矢量是否
垂直?为什么?
G
G
ˆx 10 + e ˆy 20 + e ˆz 20 是匀强电场,电场的大小是 答:矢量 A = e G 1 2 2 E = 102 + 202 + 202 = 30 V / m ,方向余弦为 cos α = , cos β = , cos γ = ; 3 3 3 G G 两矢量垂直,因为 A ⋅ B = 0 。
μ0
2
c b
(
I 2 c2 − ρ 2 2 μ I2 ) ( 2 2 ) 2 πρ dρ = 0 2 πρ c − b 4π
单位长度内总的磁场能量为
Wm = Wm1 +Wm2 + Wm3
b μ0 I 2 ln + = + 16 Βιβλιοθήκη 4π a 4πμ0 I 2
μ0 I 2
15、 一个点电荷 q 与无限大接地导体平面距离为 d, 如果把它移至无穷远处, 需要做多少功? 解:由镜像法,感应电荷可以用像电荷-q 替代。当电荷 q 移至 x 时,像电荷 q 应位于-x, 则像电荷产生的电场强度
G ˆx 2 + e ˆz 4 ,求电介质中的电场? E =e
解:由在介质表面处 z = 0 , E1t = E2t 即 E1x = E2x = 2 , z = 0 时, D1n = D2 n 即 D1z = D2 z
《电磁场理论》3.1 唯一性定理
第一类边值问题:已知电位函数在全部边界面上的分 布值。 S f 第二类边值问题:已知电位函数在全部边界面上的法 向导数。 f n S 第三类边值问题(混合边值问题):已知一部分边界 面上的电位函数值,和另一部分边界面上电位函数的法 向导数。 S f1 S S1 S2 f 2 1 01:52 2 n S2
+
-
z
+ +++
(r , )
+
+
-
1 (r, ) E0r cos
-
aO
- - -
-
当引入一个不带电的导体小球后, E0 球表面出现感应电荷。 静电平衡下的导体球为等电位体,球内电场为零, r>a空间内的电位由两个部分组成 01:52 12 1 2
1 2
唯一性定理:满足泊松方程或拉普拉斯方程及所给
的全部边界条件的解是唯一的。
利用反证法来证明。假设在一个由表面边界S包围的 体积V内,泊松方程有两个解 1 2 ,则有
2 1 2 * 1 2 2 * 21 22 0 令
01:52 11
例2:一不带电的孤立导体球(半径为a)位于均匀电 场中, E E0 e z ,如图所示,求电位函数。 解:在没有引入导体球时,均匀电场 E 的电位函数为
1 ( z ) E0 e z e z dz C E0 z C
若取z=0为电位参考点,则C=0, 1 ( z) E0 z 在球坐标内,z r cos
常数
n
n
(1)
根据式(1)仍然有
同理,有 C
V
2 ( ) dV 0
第三章 边值问题的解法
解:根据轴对称的特点和无限长的假设, 可确定电位函数满足一维拉普拉斯方程,
R2
采用圆柱坐标系
R1
1 (r ) 0 积分 Aln r B
r r r
由边界条件 U A ln R1 B 0 Aln R2 B
A U ln R1 R2
B
U ln R1
ln
R2
第3章 边值问题的解 法
给定边界条件下求有界空间 的静电场和电源外恒定电场的问 题,称之为边界值问题。
3.1边值问题的提法(分类)
3.1.1边值问题的分类
1 狄利克雷问题:给定整个场域边界面S上各点电位的(函数)
值
f (s)
2 聂曼问题:给定待求位函数在边界面上的法向导数值
/ n f (s)
q
4π0
(r
2
2dr
1
cos
d
)2 1/ 2
(d
2r2
a
2dra2 cos
a4 )1/ 2
导体球不接地:
q a q d
b a2 d
q q a q d
a
—
a
导体球不接地:根据电荷守恒定律,导体球上感应电荷代
数和应为零,就必须在原有的镜像电荷之外再附加另一镜
球壳内:边界为r = a1的导体球面,
边界条件为 (a1, ,) 0
➢ 根据球面镜像原理,镜像电荷
的位置和大小分别为
a1 q1
q
1
b1
a12 d1
q1
q1
《电磁场与电磁波》习题参考答案
8、标量场梯度的旋度恒等于0。( √ ) 9、习题1.12, 1.16。
第2章 电磁场的基本规律
(电场部分)
1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电
荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:和。 4、静电系统在真空中的基本方程的微分形式是:和。
B. Ht不连续,Bn连续 D. Ht连续,Bn连续
8、磁感应强度在某磁媒质中比无界真空中小,称这种磁媒质是( B
)。 A.顺磁物质 C.永磁物质
B.逆磁物质 D.软磁物质
9、相同尺寸和匝数的空心线圈的电感系数( C )铁心线圈的电感系
数。
A.大于 C.小于
B.等于 D.不确定于
10、恒定电流场是一个无散度场。( √ ) 11、一般说来,电场和磁场是共存于同一空间的,但在静止和恒定的情
3、在两种媒质分界面的两侧,电场的切向分量E1t-E2t=0;而磁场的
法向分量
B1n-B2n=0。
4、微分形式的安培环路定律表达式为,其中的( A )。
A.是自由电流密度
B.是束缚电流密度
C.是自由电流和束缚电流密度
D.若在真空中则是自由电流密度;在介质中则为束缚电流密度
5、两个载流线圈之间存在互感,对互感没有影响的是( A )。
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
第3章静态场的边值问题及解的唯一性定理
l 2π
ln
r0 r
l 2π
ln
1 r
C
1)长直线电荷与接地的长直圆柱导体平行,求圆柱外电位分布
在圆柱与线电荷之间,在圆柱内离轴线的距离b 处,平行放置一
根镜像线电荷 , 代替圆柱导体上的感应电荷. l
第3 章
若令镜像线电荷 产 生的电位也取相同的 l
作r0为参考点,则
及l
在 圆柱面上 P 点共同产生的电位为
R
l
h
R′
x
-h
l ln x2 (z h)2 , z 0
l′
2 x2 (z h)2
均匀带电直线的电位分布
z 0,R R z0 0
l ln R C l ln R0
2
2 R
显然,满足边界条件。所以,原问题不变,所得的解是正确的。
第3 章
例3. 点电荷对相交半无限大接地导体平面的镜像 如图所示,两个相互垂直相连的半无限大接地导体平板,点
3、对于均匀分布在球面上的-q'电荷,可用另一个镜像电荷q"= q' 代替,但必须位于球心。
第3 章
结论:点电荷q对非接地导体球面的镜像电荷有两个:
镜像电荷1: 电量:q ' a q
位置: d ' a2
d
镜像电荷2: d
电量: q '' q ' a q
d
r r'
q O
'' d'
q' d
q
4 0 r
0
q q
即像电荷q'与原点电荷q电量相等,电性相反;用q'代替了
导体上的感应电荷。
在z>0区域内,P点的电位为
第3章 边值问题的解法
第三章 边值问题 的 解 法
无界
场源( / J )
电场( E / )
分布型
电场( )
求解边值问题通常可以转化为归结在给定边界条件下, 求解拉普拉斯方程或泊松方程的问题。
求解边值问题的方法一般分为解析法和数值法。
1
第三章 边值问题 的 解法
3.1 边值问题的分类*
3.2
法求解,镜像电荷的个数为(3600/θ)-1,再加上原电荷总共 3600/θ个,镜像电荷位于与原电荷关于边界对称的位置上,且 大小相等、符号相反;若3600/θ不为偶数,则镜像电荷就会出 现在所求区域,这将改变该区域内电位所满足的方程,不能 用镜像法求解。
镜像电荷的要求:根据唯一性定理,只要镜像电荷和 实际电荷一起产生的电位能满足给定的边界条件,又在所 求的区域内满足拉普拉斯方程即可。
镜像法是求解静电边值问题的一种间接方法,它巧妙应 用唯一性定理,使某些看来难解的边值问题易于解决。主要 用来求解无限大导体附近的电荷(点电荷/线电荷)产生的 场。
11
第三章 边值问题 的 解法
在z >0的上半平面(除点电荷所在点),▽2φ=0; 在z= 0的平面上,φ=0 ,▽2φ=0 。 当z→∞、|x|→∞、|y|→∞时,φ→0。
根据唯一性定理,式(3-1-1)必是所求问题的解。
14
第三章 边值问题 的 解法
用电位函数反求感应电荷量。
E 4 q0[ r x 2 3 r x 1 3 a x r y 2 3 r y 1 3 a y r z 2 3 r z 1 3 a z]
例1:地球对架空传输线所产生电场的影响。 例2:发射或接收天线的场分布会因支撑它们的金属 导电体的出现而显著改变。 结论:计算空间的电场,不仅要考虑原电荷的电场, 还要考虑感应电荷的电场,这就必须知道表面电荷的分布。 直接分析这些问题既复杂又困难。
02-静电场的边值问题及求解PDF
静电场的边值问题
及求解
1.ϕ的微分方程
ϕ
∇=-E E D ε=0=⨯∇E ρ=⋅∇
D ρ
=⋅∇)(E ερϕ-=∇⋅∇)(ερ
ϕϕ-=∇⋅∇+∇⋅∇εερϕ-=∇⋅∇εερ
ϕ-
=∇202=∇ϕ⎯泊松方程⎯拉普拉斯方程
ρ=0的无源空间均匀介质0=∇ε
2.边界条件
(1)第一类边界条件:已知场域边界面上各点的电位值,即给定边界上的电位(2)第二类边界条件:已知场域边界面上各点的电位法向导数值,即给定边界上的电位法向导数
(3)第三类边界条件:一部分边界上给定每一点的电位,一部分边界上给定每一点的电位法向导数
3.唯一性定理
满足下述条件的电位函数的解,是给定场域静电场的唯一解:
(1)在给定场域电位满足泊松方程或拉普拉斯方程;
(2)在不同媒质分界面;
(3)在给定场域边界电位满足给定的边界条件。
4.静电场边值问题的求解
(1)直接法:直接求解电位的微分方程得到解析解,如直接积分法、分离变量法;(2)间接法:依据唯一性定理和物理概念间接求解,如镜象法;
(3)数值法:利用数值分析求近似解,如有限差分法、有限元法。
第3章 边值问题的解法
静电场的边值问题
一、泊松方程和拉普拉斯方程
二、松方程和拉普拉斯方程 泊松方程:
v
2
拉普拉斯方程(在 v 0 区域内):
0
2
上述方程为二阶偏微分方程。其中▽2 (拉普拉斯算子)
2 2 2 在直角坐标系下 : 2 2 2 2 x y z
本章小结
主要内容及关键公式:见教材
要掌握的重点:
1. 静电场、恒定电场的基本方程形式 (积分形式、微分形式) ,及其物理意义。 2. 静电场、恒定电场的边界条件(方程、 物理意义、应用) 3. 会计算电场强度、电位函数、电容、 电导、分布电荷密度
三、边值问题的解法
基于唯一性定理,寻求解拉普拉斯方程(或泊松方 程)的方法——解析法,数值法。 镜像法 解析法 分离变量法
镜像法 应用背景:当电荷存在于无限大导电区域附近时, 可用镜像法求解电场。
暂时忽略边界的存在,在所求区域之外,放置虚拟电 荷来代替实际导体表面上复杂的电荷分布。
该虚拟电荷被称为实际电荷的镜像电荷。 即:镜像电荷在求解域之 外,而导体被忽略。
在圆柱坐标,球坐标系中的表示:见 P16
二、唯一性定理
静电场中,在每一类边界条件下(P.50),泊松方程
或拉普拉斯方程的解必定是唯一的。 即:不管采用什么方法,只要能找到一个 既能满足(1)给定的边界条件,
又能满足(2)拉普拉斯方程(或泊松方程)
的电位函数, 则这个解(即此电位函数)一定是正确的。
习题答案 第3章 静电场及其边值问题的解法
第3章 静电场及其边值问题的解法3.1 / 3.1-1 一个半径为a ,壁厚d 极薄的肥皂泡对无穷远点的电位为U 0。
当它破灭时假定全部泡沫集中形成一个球形水滴。
试求此水滴(drop )对无穷远处的电位U d 。
若U 0=20V ,a=3cm ,d=10μm ,则U d =? [解] V d a aUd a aU U d 2001010109320103334436423203200=⨯⨯⨯⨯⨯⨯===---πεπε3.2 / 3.1-2空气中有一半径为a 的球形电荷分布,已知球体内的电场强度为2ˆCr r E =(r<a ),C 为常数。
求:a)球体内的电荷分布;b)球体外的电场强度;c)球内外的电位分布;d)验证静电场的电位方程。
[解] a) ()()Cr Crrdrd rE r v 0222041εεερ=⋅=⋅∇= (r<a)b) 24ˆra C r E = (r>a)c) 取 ∞→r 处为电位参考点,得 ()333332424333:raC CaCr Ca dr ra Cdr Cr Edr a r arar-=+-=+==<⎰⎰⎰∞∞φ⎰∞==>rraCE d r a r 4:φd) 022224331:ερφv Cr r C r r r a r -=-=⎪⎭⎫⎝⎛-⋅∂∂=∇< 得证。
()01:24222=⋅∂∂=∇>-rCa rrra r φ 得证。
3.3 / 3.1.3空气中有一半径为a ,体电荷密度为ρv 的无限长圆柱体。
请计算该圆柱体内外的电场强度。
[解] :a <ρ ρερ02ˆv rE =:a >ρ ρερ022ˆarE v =3.4 / 3.1-4 已知空气中半径为a 的圆环上均匀地分布着线电荷,其密度为ρl ,位于z =0平面,试求其轴线上任意点P (0,0,z )处的电位和电场强度(参看图2.1-7,注意与之不同)。
电动力学 第三章 静态电磁场及其边值问题的解
最后得
所以
第3章 静态电磁场及其边值问题的解
18
3.1.3 导体系统的电容与部分电容
电容器广泛应用于电子设备的电路中: • 在电子电路中,利用电容器来实现滤波、移相、隔直、旁
路、选频等作用; • 通过电容、电感、电阻的排布,可组合成各种功能的复杂
电路; • 在电力系统中,可利用电容器来改善系统的功率因数,以
减少电能的损失和提高电气设备的利用率;
第3章 静态电磁场及其边值问题的解
19
1. 电容 电容是导体系统的一种基本属性,是描述导体系统 储存电荷
能力的物理量。
孤立导体的电容
孤立导体的电容定义为所带电量q与其电位 的比值,即
两个带等量异号电荷(q)的导 体组成的电容器,其电容为
电容的大小只与导体系统的几何尺寸、形状和及周围电介质 的特性参数有关,而与导体的带电量和电位无关。
将
两端点乘 ,则有
上式两边从点P到点Q沿任意路径进行积分,得
电场力做 的功
关于电位差的说明
P、Q 两点间的电位差
P、Q 两点间的电位差等于电场力将单位正电荷从P点移至Q 点 所做的功,电场力使单位正电荷由高电位处移到低电位处;
电位差也称为电压,可用U 表示; 电位差有确定值,只与首尾两点位置有关,与积分路径无关。
第3章 静态电磁场及其边值问题的解
2
3.1 静电场分析
学习内容 3.1.1 静电场的基本方程和边界条件 3.1.2 电位函数 3.1.3 导体系统的电容与部分电容 3.1.4 静电场的能量 3.1.5 静电力
第3章 静态电磁场及其边值问题的解
3
3.1.1 静电场的基本方程和边界条件
1. 基本方程
两点间电位差有定值
第3章静电场及其边值问题的解法
2
y 2
2
z2
0
二维问题 0:
z
2 2
x2 y 2 0
设 因此 即
于是有
(x, y, z) X (x)Y ( y)
YZ d 2 X XZ d 2Y 0
dx2
dy 2
s
n
z0
z
z0
2
qh x2 y2 h2
3 2
导体表面的总感应电荷
Qi
S sds
2
d
0
0
qh 2
(
2
d h2
)3
2
qh
q
2 h2 0
ห้องสมุดไป่ตู้
可见, 镜像电荷 q 代q 替了导体表面所有感应电荷对上半空间的作用。
9
§ 3.6 镜像法
二、导体劈间的点电荷
设有两块接地半无限大导体平板相交成角,且 =n为n,正整数,交角内置一点电荷
11
§3.7 分离变量法The Method of Separation of Variables
* 分离变量法是一种最经典的微分方程解法。
* 采用正交坐标系可用分离变量法得出拉普拉斯方程或波动方程的通解; * 只有当场域边界与正交坐标面重合(或平行)时,才可确定积分常数,
从而得到边值问题的特解。
x2 y2 (z h)2
可见,引入镜像电荷 q q 后保证了边界条件不变;镜像点电荷位于z<0的空间,未改变所
求空间的电荷分布,因而在z>0的空间,电位仍然满足原有的方程。由惟一性定理知结果正确。
注意:仅对上半空间等效。
8
§ 3.6 镜像法
(2)根据静电场的边界条件,求导体表面的感应电荷密度:
第三章静电场边值问题
导体B = 常数
∫ S D ⋅ dS = −τ ,
电荷分布不均匀
能否用高斯定理求解? 能否用高斯定理求解? 根据唯一性定理,寻找等效线电荷 电轴。 根据唯一性定理,寻找等效线电荷——电轴。 电轴
y p ρ1 +τ b o ρ2 b −τ x
2. 两根细导线产生的电场
h
图3.2.10
h
两根细导线的电场计算
q1 = − q q2 = − q q3 = q
d2 y
F = F1 + F 2+ F3
d1
q2
d2 d2
d1 o
q
d2 d2
q2 F1 = − y 4πε 0 (2d 2 ) 2 q2 F2 = − x 4πε 0 (2d1 ) 2 x
∧ ∧ F3 = 2d1 x + 2d 2 y 2 2 3/ 2 4πε 0 (2d1 ) + (2d 2 ) ∧
0≤r≤a a≤r≤∞
电场强度(球坐标梯度公式):
∂ϕ 1 ρr E 1 ( r ) = −∇ ϕ 1 = − er = er ∂r 3ε 0
0≤r≤a
ρa 2 ∂ϕ 2 E 2 ( r ) = −∇ ϕ 2 = − er = e 2 r ∂r 3ε 0 r
a≤r≤∞
对于一维场(场量仅仅是一个坐标变量的函数),只要对二阶常系数微分 方程积分两次,得到通解;然后利用边界条件求得积分常数,得到电位的解; 再由 E = −∇ϕ 得到电场强度E的分布。
∇ 2ϕ = 0
点外的导体球外空间) ( 除 q 点外的导体球外空间)
ϕ
p r2 +q' +q R
o
r→ ∞ 球面 s
静电场及其边值问题的解法.pptx
2 L2 L
l 0
ln
2 L2 L
l 0
ln 2L
4π0 2 L2 L 2π0
2π0
L
当
时,上式变为无穷大,这是因为电荷不是分布在有限区域内,而将电位参考点
选在无穷远点之故。这时可在上式中加上一个任意常数,则有
(r ) l0 ln 2L C 2π0
并选择有限远处为电位参考点。例如,选择ρ= a 的点为电位参 考点,则有
静态场
➢静电场是指由静止的且其电荷量不随时间变化的电荷产生的电场。 ➢恒定电场是指导电媒质中,由恒定电流产生的电场。 ➢恒定磁场是指由恒定电流或永久磁体产生的磁场,亦称为静磁场。
第2页/共49页
第3章 静电场及其边值问题解法
The Electrostatic Field and Solution Techniques for
结论:静电场中电场力作的功与路径无关, 只取决于始点和终点的位置;
静电场是保守场, 也称位场;
第11页/共49页
利用斯托克斯公式, 可得其微分形式为
cA dl s A ds
l E (r ) dl 0
E (r) 0
上式说明任何静电荷产生的电场, 其电场强度矢量 E 的旋度恒
等于零, 静电场是无旋场。
(P) l 1n 2 0
x
d
2
y2
2
x
d
2
y2
2
l 4
0
1n
x x
d 2 d
2
2
y2 y2
(V )
2
第38页/共49页
✓ 一维电位方程的求解
电位的微分方程
在均匀介质中,有
D E
E
第三章_静电场的边值问题
在圆柱轴线与线电荷之
r l
间,离轴线的距离d 处, 平行放置一根镜像线电 荷
l 。
f
已知无限长线电荷产生的电场
E ,l er 2π r
因此,离线电荷 r 处,以 r 0 为参考点的电位为
r l 0 Er d l n r 2 π r
E E 1 t 1 t E 2 t
D D D 1n 1n 2 n
已知各个点电荷产生的电场强度分别为
q E1 e 2 r 4π1r
q E e 1 2 r 4 π 1(r)
q E e 2 2 r ) 4 π 2(r
代入上述边界条件,求得镜像电荷如下:
x
x
利用格林函数可以求出泊松方程在有限空间的通解。
3
数学物理方程描述物理量随时间和空间的变化特性。 定解条件 初始条件
边界条件 静电场与时间无关,因此电位所满足的泊松方程及拉 普拉斯方程的解仅决定于边界条件。 根据给定的边界条件求解空间任一点的电位就是静电 场的边值问题。 此处边界条件实际上是指给定的边值,它不同于前一 章描述静电场的边界上场量变化的边界条件。
10
(1)点电荷与无限大的导体平面
r q 介质
导体
P q h h q
r
r
P
介质 介质
以一个镜像点电荷q'代替边界的影响,使整个空间变
成均匀的介电常数为 的空间,则空间任一点 P 的电位 由 q 及 q' 共同产生,即
Qm n ( x)
11
q q
无限大导体平面的电位为零
电场线与等位面的分布特性与电偶极子的上半部分 完全相同。
镜像法
p v R
则区域2中任一点的电位为:
2
q q
4π 2 R
q q
2
2
在分界面(R = R′= R″)上,应满足电位的边界条件:
1
1
设想用镜像电荷 代替界面上极化 电荷的作用,并 使镜像电荷和点 电荷共同作用, 满足界面上的边
界条件。
当待求区域为介质1所在区域时,在边界之外设一镜像电荷 q′
介质1中任一点的电位为:
1
q q
4π1R 4π1R
电磁场
第3章 静电场及其边值问题的解法
当待求区域为介质2所在区域时,
* 此时要保证z=0平面边界条件不变,即应为零电位。
q q 4R 4R
故对z=0平面上任意点有R R R0 :
于是,
q 4
1 R
1 R
q 4
q q 0 4 R0
1
x2 y2 (z h)2
电位的法向导数
n
s
f2 s
一、二类边界条件的 线性组合,即
n
s2
f4 s
电磁场
一、静电场边值问题及其分类
第3章 静电场及其边值问题的解法
1. 边值问题的分类----根据场域边界条件的不同
狄利克雷问题:给定整个场域边界上的电位函数值 s f1s
(第一类)
聂曼问题:给定待求位函数在边界上的法向导数值 (第二类)
U0
O
ax
第3章 静电场及其边值问题的解法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r r
Q Q
const.
若镜像位置满足
OQ ~ P OPQ
r r
R0 a
const .
由三角形相似,
b R0 R0 a
2 R0 b a Q R0 Q a
导体球外部空间的电势为
Q R 0Q 4 0 r ar 1 4 0 1 Q R a 2 Ra cos
sin d
(sin
sin
0
该方程的解有两种情况
■
1 d
2
d
2
m
2
的解
0,
当电位与方位角无关时,
2 即: m 0
( ) A
■
1 d R dr
(r
2
2
dR dr
) n ( n 1) 的解
1
(1) n 0 时, R ( r ) A0 B 0 r
n
|S f 2 ( S )
称为第二类边界条件或“诺伊曼”条件。 这类问题称为第 二类边值问题。 (3)已知场域边界面S上各点电位和电位法向导数的线性 组合值, 即给定
( N ) |S f 3 ( S )
称为第三类边界条件或“混合边界条件”。 这类问题称为 第三类边值问题。
P
Q Q 4 0 r r 1
考察空间:导体球外部空间。 镜像电荷:用位于对称轴上的等效代
替导体球面上的感应电荷。
球面上任意点P 的电势
Q Q ( P) 0 4 0 r r 1
r r
Q Q
镜像电荷不应随P 变化,
3.1.2 唯一性定理
在静电场中,在每一类边界条件下,泊松方程或 拉普拉斯方程的解必定是唯一的,即静电场的唯 一性定理。
求解边值问题的方法,都基于唯一性定理,一般 可以分为解析法和数值法两大类。解析法中的镜 像法和分离变量法。 3.2.1. 镜像法 镜像法是解静电场问题的一种间接方法,它巧 妙地应用唯 一性定理, 使某些看来难解的边值 问题容易地得到解决。 使用镜像法时要注意以下三点: (1)镜像电荷是虚拟电荷; (2)镜像电荷置于所求区域之外的附近区域; (3)导电体是等位面。
若kx=0, 则微分方程的解为 f(x)=C1x+C2 g(x)和h(z)的情况类似。
2) 球坐标系中的分离变量法
1 r
2
r
(r
2
r
)
1
2
r sin
(sin
)
1
2
2 2
r sin
0
( r , , ) R ( r ) ( ) ( )
2
x
2
2
y
2
2
z
2
0
• 将待求的电位函数φ用三个单变量函数的乘积来表示, 即
φ(x, y, z)=f(x)g(y)h(z)
整理 得
1 d f f dx
2 2
2
kx ky k
2 z 2
2
1 d g g dy
2 2
1 d h h dz
2 2 2
kx ky kz 0
3.1静电场边值问题
在以上各节中,主要讨论了电荷分布已知的情况 下求无界空间的静电场问题。然而,实际中还会 遇到在给定边界条件下求有界空间的静电场和电 源外恒定电场的问题,这类问题通称为边界值问 题(Boundary Value Problem)。 边值问题可以归结为三类: (1)已知场域边界面S上各点电位值即给定 φ|S=f1(S)称为第一类边界条件或“狄利克莱”条 件。 返回 (2)已知场域边界面S上各点电位法向导数的值, 即给定
2 2
2 2 a R b 2 Rb cos R 0Q
3.2.2 分离变量法
分离变量法是把一个多变量的函数表示成几 个单变量函数乘积的方法。它首先要求给定 边界与一个适当坐标系的坐标面相合;其次 要求在坐标系中,待求偏微分方程的解可表 示为三个函数的乘积,且其中的每个函数仅 是一个坐标的函数。在直角、圆柱、球等坐 标系中都可以应用分离变量法。 1).如果待求问题的边界面形状适合用直 角坐标系表示, 则用直角坐标系中的分离变 量法求解。在直角坐标系中,电位函数的拉 普拉斯方程为:
sin d
2
(r
2
dR dr
)
sin d
R 1 d
2
dr
2
d
(sin
d d
)
1 d
2
d
2
0
d
1 d R dr
1
2
m
dR dr
d
该方程只讨论电位与方位角无关的情况 该方程的解有两种情况
m
2 2
(r
2
) n ( n 1)
d d ) n ( n 1)
(2) n 2 0 时, R ( r ) An r n B n r ( n 1 )
2 n 0 的情况不存在。
■
1
d
sin d
(sin
1 d
d d
) n ( n 1)
d d
m
2 2
sin
0
的解 ——勒让德方程
sin d
(sin
) n ( n 1) 0
(1) n 2 0 时, ( ) A0 P0 (cos ) B 0 Q 0 (cos ) (2) n 2 0 时, ( ) An Pn (cos ) B n Q n (cos ) 当
0
或
π
时,Q n 是发散的。而电位应为有限值,所以
Φ的解中不含有 Q n 项。 通过以上分析,电位 ( r , ) 的通解为
( r , )
An
n
[ An r B n r
n
( n 1 )
]Pn (c os )
n0
和 B 根据给定的边界条件来确定。
Pn cos
为Legendre函数。
P0 (cos ) 1 1 P (cos ) cos 1 2 P2 (cos ) (3 cos 1) 2 1 2 P3 (cos ) (5 cos 3 cos ) 2 ...........................
2
以f(x)为例。若kx为实数,则微分方程的解为 f(x)=A1 sinkxx+A2 coskxx 若kx为虚数,令kx=jαx(αx为实数),则微分方 程的解为 f (x)=B1 sinhαxx+B2 coshαxx 或
f ( x ) B1 exp( x x ) B 2 exp( x x )
3.2 静电场边界值问题的求解
用镜像法求解电场,应遵循的原则:
在考察空间(无自由电荷分布),电势满足Laplace方程; 电势在边界面满足边界条件。
用镜像法求解电场的理论根据是唯一性定理。
考察空间:导体板上部空间(导体板接地,
所以电场仅存在于导体板上部空间。 镜像电荷:用等效电荷代替导体板上的 感应电荷。 Q Q 且分布在对称位置。 在导体板上部空间,电势为
如果场域伸展到无限远处,必须提出所谓 无限远处的边界条件。对于电荷分布在有 限区域的情况,则在无限远处电位为有限 值,即
lim r 有限值
r
称之为自然边界条件。
3.1.1 泊松方程和拉普拉斯方程
在线性、 各向同性、 均匀的电介质 中,
2ห้องสมุดไป่ตู้V
称之为静电场的泊松方程(Poisson‘s Equation),它表示求解区 域的电位分布取决于当地的电荷分布。 电荷分布在导体表面的静电场问题,在感兴趣的区域内多数点 的体电荷密度等于零, 即ρV=0,因而有 ▽2φ=0 称为拉普拉斯 方程(Laplace's Equation)。