完全平方式平方差公式整式乘除综合计算30题 2

合集下载

北师大版数学七年级下册第一章整式的乘除第6节完全平方公式课后练习

北师大版数学七年级下册第一章整式的乘除第6节完全平方公式课后练习

第一章整式的乘除第6节完全平方公式课后练习学校:___________姓名:___________班级:___________考生__________ 评卷人得分一、单选题1.4张长为m ,宽为n (m >n )的长方形纸片,按如图的方式拼成一个边长为(m +n )的正方形,图中空白部分的面积为S 1,阴影部分的面积为S 2,若3S 1=2S 2,则m ,n 满足的关系是( )A .m =4.5nB .m =4nC .m =3.5nD .m =3n2.下列运算正确的是( ) A .(m 2)3=m 6B .(mn )3=mn 3C .(m +n )2=m 2+n 2D .m 6÷m 2=m 33.如果229(3)x bx x -+=-,则b 的值为( ) A .-3B .3C .6D .-64.我国宋代数学家杨辉发现了()na b +(0n =,1,2,3,…)展开式系数的规律:以上系数三角表称为“杨辉三角”,根据上述规律,()8a b +展开式的系数和是( ) A .64 B .128C .256D .612评卷人 得分二、填空题 5.已知:2a b +=,34ab =,则22a b +=_________,a b -=______.6.如图,长方形ABCD的周长为24,以它的四条边为边长向外作正方形,如果这四个正方形的面积和为160,则长方形ABCD 的面积为________.7.已知(x ﹣2020)2+(x ﹣2022)2=18,则(x ﹣2021)2的值是___. 8.已知:x +y =12,则代数式3x 2+y 2的最小值为___. 评卷人 得分三、解答题 9.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S . (1)用含a ,b 的代数式分别表示1S 、2S ; (2)若15a b +=,20ab =,求12S S +的值;(3)当1240S S +=时,求出图3中阴影部分的面积3S .10.化简求值:()()()()22322x y x x y x y x y +-+++-,其中14x =,2y =.11.有甲、乙两个长方形纸片,边长如图所示(m>0),面积分别为S甲和S乙.(1)①计算:S甲=,S乙=;①用“<”,“=”或“>”填空:S甲S乙.(2)若一个正方形纸片的周长与乙长方形的周长相等,面积为S正.①该正方形的边长是(用含m的代数式表示);①小方同学发现:S正与S乙的差与m无关.请判断小方的发现是否正确,并通过计算说明你的理由.12.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值.13.如图,有长为m ,宽为n 的长方形卡片()A mn ,边长为m 的正方形卡片B ,边长为n 的正方形卡片C ,将卡片C 按如图1放置于卡片A 上,其未叠合部分(阴影)面积为1S ,将卡片A 按如图2放置于卡片B 上,其未叠合部分(阴影)面积为2S .(1)1S =________,2S =________;(用含m 、n 的代数式表示) (2)若1218S S +=,则图3中阴影部分的面积3S =________; (3)若6m n -=,10mn =,求图4中阴影部分的面积4S .14.图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m ,n 的代数式表示) 方法1:______ 方法2:______(2)根据()1中结论,请你写出下列三个代数式之间的等量关系;代数式:2()m n +,2()m n -,mn _________________________(3)根据(2)题中的等量关系,解决如下问题:已知8a b +=,7ab =,求a b -和22a b -的值.15.观察与计算: 152=225=1×2×100+25; 252=625=2×3×100+25; 352=1225=3×4×100+25; …猜想与计算:852=_________,1052= ;发现:末位数字是5的数的平方的结果总是等于 ; 说理:请你用整式的乘法的有关知识说明你发现的结论的正确性. (提示:可以用10a +5表示末位数字是5的数)16.劳动是财富的源泉,也是幸福的源泉高新区某中学对劳动教育进行积极探索和实践,创建学生劳动教育基地,让学生参与农耕劳作。

平方公式考点总结及练习

平方公式考点总结及练习

平方差公式及完全平方公式一、知识点讲解 (一)平方差公式:1、概念及公式推导:两数和与这两数差的积,等于它们的平方差。

()()b a b a b a 22-=-+2、公式特点:(1)左边的两个二项式中,其中一项(a )完全相同,另一项(b 和b -)互为相反数(2)右边是相同项的平方减去符号相反项的平方(3)公式中的b a ,可以是具体数字,也可以是单项式或多项式3、变形归纳:(1)位置变化 ()()()()b a b a b a a b a b 22-=-+=++-(2)符号变化 ()()()b a b a b a b a 2222-=-=--+--(3)系数变化 ()()()()yx x x y x y x 943222223232-=-=-+(4)指数变化()()()()n m n m n m n m 4622232323-=-=-+(5)增项变化 ()()()c b a c b a c b a 22-=-++++(6)增因式变化()()()()()()b a b a b a b a b a b a 2222-⎥⎦⎤⎢⎣⎡-=+-+---- (7)连用公式变化()()()()()()()()()b a b a b a b a b a b a b a b a b a b a 8844444422224422-=+-=++-=++-+例1、计算:(1)()()b a b a 2323-+ (2)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-21212222x x(4)()()12001200-+ (4)()()z y x z y x -+++(二)完全平方公式1、概念及公式推导:两数的和(或差)的平方,等于这两数的平方和加上(或减去)这两数的积的两倍。

()()bab a b a b ab a b a 22222222+-=++=-+2、公式特点:(1)只有一个符号不同(2)公式中的b a ,可以是数,也可以是单项式或多项式 (3)注意()b a ab 222=与(),2222b ab a b a ++=+()b a b a 222+=+(是错误的做法)3、变形归纳:(1)()ab b a b a 2222-=++(2)()ab b a b a 2222+=+-(3)()()b a b a ab 2222+-=+(4)()()b a b a ab --+=2222(5)()()ab b a b a 422+=-+ (6)()()ab b a b a 422-=+-例2、化简:(1)()b a +32(2)()y x 32+-(4)()n m --2(4)()()c b c b --+例3、已知:.3,4-==-ab b a 求(1)b a 22+ (2)()b a +2二、题型剖析题型一 平方差公式及完全平方公式的运用 例1、计算:(1)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-a b b a 313122 (2)6.94.10⨯(2)()()()3932++-x x x (4)()()a b b a ---33(5)()()z y x z y x 3232-++- (6)()c b a ++22(7)()()y x y x 323222+-题型二 利用公式简化计算 例2、计算:(1)2016220172015-⨯ (2)⎪⎭⎫ ⎝⎛601602(3)8.92 (4)29930122+题型三 推广公式的逆用 例3、计算:(1)()()z y x z x y 3232-----(2)⎪⎪⎭⎫⎝⎛-••⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-2016432222211111111题型四 与完全平方公式有关的开放题例4、多项式192+x 加上一个单项式后,使它成为一个整式的完全平方,那么加上的单项式可以是例5、(1)求代数式的322++m m 的最小值(2)求代数式4332++-m m 的最大值题型五 解决实际问题例6、某住宅小区的花园,起初被设计成边长为a m 的正方形,后应道路的原因,设计修改为北边往南平移2.5m ,而东边往东平移2.5m ,则修改后的花园面积和原先设计的花园面积相差多少?巩固提升1.平方差公式(a+b )(a -b )=a 2-b 2中字母a ,b 表示( )A .只能是数B .只能是单项式C .只能是多项式D .以上都可以 2.下列多项式的乘法中,可以用平方差公式计算的是( )A .(a+b )(b+a )B .(-a+b )(a -b )C .(13a+b )(b -13a ) D .(a 2-b )(b 2+a )3.下列计算中,错误的有( )A .1个B .2个C .3个D .4个 ①(3a+4)(3a -4)=9a 2-4; ②(2a 2-b )(2a 2+b )=4a 2-b 2; ③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2. 4.若x 2-y 2=30,且x -y=-5,则x+y 的值是( )A .5B .6C .-6D .-5 5.(a+b -1)(a -b+1)=(_____)2-(_____)2. 6.(-2x+y )(-2x -y )=______. 7.(-3x 2+2y 2)(______)=9x 4-4y 4.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.9.下列展开结果是n m mn 222--的式子是( ) A. ()n m +2B.()n m +-2B. ()n m --2D.()n m +-210.下列计算:①()b a b a 222+=+ ②()b a b a 222-=-③()b ab a b a 2222+-=- ④()bab a b a 2222+----=.其中正确的有( )A.0个B.1个C.2个D.3个11. 小明在做作业时,不小心把一滴墨水滴在一道数学题上,题目变成了x 21+x ,看不清x 前面的数字是什么,只知道这个二次三项式能配成一个完全平方式,这个被墨水污染了的数字是12.计算 (1)2023×2113. (2)(a+2)(a 2+4)(a 4+16)(a -2)(3)9.1992 (4)7655.0469.27655.02345.122⨯++(5)2012(6)(3+1)(32+1)(34+1)…(32008+1)-40163212. 已知m 2+n 2-6m+10n+34=0,求m+n 的值13. 已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

平方差与完全平方公式运用练习题

平方差与完全平方公式运用练习题
1、 。
2、已知
5
教学效果
上课情况:。
课后需要巩固的内容:。
3、完全平方公式的特点:
左边是二项式的完全平方,右边是一个二次三项式,其中的两项是左边二项式中每一项的平方,另一项是左边二项式中两项乘积的2倍,其符号取决于左边二项式中间的符号。
4、完全平方公式中字母的含义:公式中字母a、b可以是具体的数,也可是任意一个单项式或多项式。
5、完全平方公式
还可以逆用:
拓展应用: ,

6、例题讲解:
例题1:用完全平方公式进行计算:
(1) (2)
(3) (4)
3
例题2:计算
(1) (2)
(3) (4)
例题3:用完全平方公式进行计算:
(1) (2)
(3)
例题4:
(1)已知
(2)已知
4
例题5:多项式 加上一个单项式后能成为一个整式的完全平方式,那么这个单项式是多少。(该题一共有5个答案)
5、例题讲解:
例题1:(1) (2)
(3) (4)
1
例题2:计算
例题3:用平方差公式进行计算:
(1)102 98 (2)10.3 9.7
(3)
例题4:先化简,再求值:
(1) 。
(2) 。
2
二、完全平方公式:
1、完全平方公式 。
即两个数的和的平方和加上它们乘积的2倍。
2ቤተ መጻሕፍቲ ባይዱ完全平方公式 。
即两个数的差的平方和减去它们乘积的2倍。
例题6:某加工车间要在边长为(a+3)cm的正方形的钢板上,从中间挖去一个边长为(a-1)cm的小正方形,求剩余部分的面积是多少?
【课后练习】
一、填空题:

(完整版)平方差公式练习题精选(含答案)(可编辑修改word版)

(完整版)平方差公式练习题精选(含答案)(可编辑修改word版)

(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算 (1)(5+6x) (5-6x)(2)(x-2y) (x+2y)(3)(-m+n)(-m-n)3 利用平方差公式计算(1)(1)(- 1 41x-y)(- x+y)4(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(1a+b)(b-1a)D.(a2-b)(b2+a)3 38.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y(x+y)=-x2-y2.A.1 个B.2 个C.3 个D.4 个9.若x2-y2=30,且x-y=-5,则x+y 的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)= .11.(-3x2+2y2)()=9x4-4y4.12.(a+b-1)(a-b+1)=()2-()2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是.14.计算:(a+2)(a2+4)(a4+16)(a-2).( x- y )1 利用完全平方公式计算:完全平方公式(1)( 1 2 2x+ y)32 (2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)2 2 利用完全平方公式计算:(1) 1 2 2 2(2)(1.2m-3n)22 3123 22(3)(- a+5b) (4)(- x- y)2 4 33 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(3)(a+b)2-(a-b)2(4)(a+b-c)2(5)(x-y+z)(x+y+z)(6)(mn-1)2—(mn-1)(mn+1)4 先化简,再求值:(x+y)2 —— 4xy, 其中 x=12,y=9。

8.3《平方差公式与完全平方公式》典型例题精析

8.3《平方差公式与完全平方公式》典型例题精析

8.3 完全平方公式与平方差公式1.了解乘法公式的几何背景,掌握公式的结构特征,并能熟练运用公式进行简单的计算.2.感受生活中两个乘法公式存在的意义,养成“观察—归纳—概括”的数学能力,体会数形结合的思想方法,提高学习数学的兴趣和运用知识解决问题的能力,进一步增强符号感和推理能力.1.完全平方公式(1)完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.上式用语言叙述为:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.(2)完全平方公式的证明:(a±b)2=(a±b)(a±b)=a2±ab±ab+b2(多项式乘多项式)=a2±2ab+b2(合并同类项).(3)完全平方公式的特点:①左边是一个二项式的完全平方,右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中两项乘积的2倍.可简单概括为“首平方,尾平方,积的2倍夹中央”.②公式中的a,b可以是单项式,也可以是多项式.③对于符合两数和(或差)的平方的乘法,均可用上述公式计算.【例1-1】用完全平方公式计算(1)(x+2y)2;(2)(2a-5)2;(3)(-2s+t)2;(4)(-3x-4y)2;(5)(2x+y-3z)2.分析:第(1)、(2)两题可直接用和、差平方公式计算;第(3)题可先把它变成(t-2s)2,然后再计算,也可以把-2s看成一项,用和平方公式计算;第(4)题可看成-3x与4y差的平方,也可以看成-3x与-4y和的平方;(5)可把2x+y看成一项,用差平方公式计算,然后再用和平方公式计算,也可以把它看成2x与y-3z的和平方,再用差平方公式计算.解:(1)(x +2y )2=x 2+2·x ·2y +(2y )2=x 2+4xy +4y 2;(2)(2a -5)2=(2a )2-2·2a ·5+52=4a 2-20a +25;(3)(-2s +t )2=(t -2s )2=t 2-2·t ·2s +(2s )2=t 2-4ts +4s 2;(4)(-3x -4y )2=(-3x )2-2·(-3x )·4y +(4y )2=9x 2+24xy +16y 2;(5)(2x +y -3z )2=[2x +(y -3z )]2=(2x )2+2·2x ·(y -3z )+(y -3z )2=4x 2+4xy -12xz +y 2-2·y ·3z +(3z )2=4x 2+y 2+9z 2+4xy -12xz -6yz .(1)千万不要与公式(ab )2=a 2b 2混淆,发生类似(a ±b )2=a 2±b 2的错误;(2)切勿把“乘积项”2ab 中的2漏掉;(3)计算时,应先观察所给题目的特点是否符合公式的条件,如符合,则可以直接套用公式进行计算;如不符合,应先变形,使其具备公式的结构特点,再利用公式进行计算,如变形后仍不具备公式的结构特点,则应运用乘法法则进行计算.此外,在运用公式时要灵活,如第(4)题,由于(-3x -4y )2与(3x +4y )2是相等关系,故可以把(-3x -4y )2转化为(3x +4y )2,再进行计算,再如(5)题,也有许多不同的方法.(4)完全平方公式的几何解释.如图是对(a +b )2=a 2+2ab +b 2几何意义的阐释.大正方形的面积可以表示为(a +b )2,也可以表示为S =S Ⅰ+S Ⅱ+S Ⅲ+S Ⅳ,又S Ⅲ,SⅠ,S Ⅳ,S Ⅱ分别等于a 2,ab ,ab ,b 2,所以S =a 2+ab +ab +b 2=a 2+2ab +b 2.从而验证了完全平方公式(a +b )2=a 2+2ab +b 2.如图是对(a-b)2=a2-2ab+b2几何意义的阐释.正方形Ⅰ的面积可以表示为(a-b)2,也可以表示为SⅠ=S大-SⅡ-SⅣ+SⅢ,又S大,SⅡ,SⅢ,SⅣ分别等于a2,ab,b2,ab,所以SⅠ=a2-ab-ab+b2=a2-2ab+b2.从而验证了完全平方公式(a-b)2=a2-2ab+b2.【例1-2】下图是四张全等的矩形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a,b的恒等式:__________________.解析:根据图中的面积写一个恒等式,需要用两种方法表示空白正方形的面积.首先观察大正方形是由四个矩形和一个空白正方形组成,所以空白正方形的面积等于大正方形的面积减去四个矩形的面积,即(a+b)2-4ab,空白正方形的面积也等于它的边长的平方,即(a-b)2,根据面积相等有(a+b)2-4ab=(a-b)2.答案:(a+b)2-4ab=(a-b)22.平方差公式(1)平方差公式:(a+b)(a-b)=a2-b2.上式用语言叙述为:两个数的和与这两个数的差的积,等于这两个数的平方差.(2)平方差公式的证明:(a+b)(a-b)=a2-ab+ab+b2(多项式乘多项式)=a2-b2(合并同类项).(3)平方差公式的特点:①左边是两个二项式相乘,这两项中有一项完全相同,另一项互为相反数;②右边是乘式中两项的平方差(相同项的平方减去互为相反数项的平方);③公式中的a和b可以是具体的数,也可以是单项式或多项式.利用此公式进行乘法计算时,应仔细辨认题目是否符合公式特点,不符合平方差公式形式的两个二项式相乘,不能用平方差公式.如(a+b)(a-2b)不能用平方差公式计算.【例2-1】计算:(1)(3x+2y)(3x-2y);(2)(-m+n)(-m-n);(3)(-2x-3)(2x-3).分析:(1)本题符合平方差公式的结构特征,其中3x对应“a”,2y对应“b”;(2)题中相同项为-m,互为相反数的项为n与-n,故本题也符合平方差公式的结构特征;(3)利用加法交换律将原式变形为(-3+2x)(-3-2x),然后运用平方差公式计算.解:(1)(3x+2y)(3x-2y)=(3x)2-(2y)2=9x2-4y2.(2)(-m+n)(-m-n)=(-m)2-n2.(3)(-2x-3)(2x-3)=(-3+2x)(-3-2x)=(-3)2-(2x)2=9-4x2.利用公式计算,关键是分清哪一项相当于公式中的a,哪一项相当于公式中的b,通常情况下,为防止出错,利用公式前把相同项放在前面,互为相反数的项放在后面,然后套用公式.(4)平方差公式的几何解释如图,阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a2-b2;若把小长方形Ⅲ旋转到小长方形Ⅳ的位置,则此时的阴影部分的面积又可以看成SⅠ+SⅢ=SⅠ+SⅣ=(a+b)(a-b).从而验证了平方差公式(a+b)(a-b)=a2-b2.【例2-2】下图由边长为a和b的两个正方形组成,通过用不同的方法,计算图中阴影部分的面积,可以验证的一个乘法公式是____________________.分析:要表示阴影部分的面积,可以从两个方面出发:一是观察阴影部分是由边长为a的正方形除去边长为b的正方形得到的,所以它的面积等于a2-b2;二是阴影部分是由两个直角梯形构成的,所以它的面积又等于两个梯形的面积之和.这两个梯形的面积都等于12 (b+a)(a-b),所以梯形的面积和是(a+b)(a-b),根据阴影部分的面积不变,得(a+b)(a-b)=a2-b2.因此验证的一个乘法公式是(a+b)(a-b)=a2-b2.答案:(a+b)(a-b)=a2-b23.运用乘法公式简便计算平方差公式、完全平方公式不但是研究整式运算的基础,而且在许多的数字运算中也有广泛地运用.不少数字计算题看似与平方差公式、完全平方公式无关,但若根据数字的结构特点,灵活巧妙地运用平方差公式、完全平方公式,常可以使运算变繁为简,化难为易.解答此类题,关键是分析数的特点,看能否将数改写成两数和的形式及两数差的形式,若改写成两数和的形式乘以两数差的形式,则用平方差公式;若改写成两数和的平方形式或两数差的平方形式,则用完全平方公式.【例3】计算:(1)2 0132-2 014×2 012;(2)1032;(3)1982.分析:(1)2 014=2 013+1,2 012=2 013-1,正好符合平方差公式,可利用平方差公式进行简便运算;(2)可将1032改写为(100+3)2,利用两数和的平方公式进行简便运算;(3)可将1982改写为(200-2)2,利用两数差的平方公式进行简便运算.解:(1)2 0132-2 014×2 012=2 0132-(2 013+1)×(2 013-1)=2 0132-(2 0132-12)=2 0132-2 0132+1=1.(2)1032=(100+3)2=1002+2×100×3+32=10 000+600+9=10 613.(3)1982=(200-2)2=2002-2×200×2+22=40 000-800+4=39 204.4.利用乘法公式化简求值求代数式的值时,一般情况是先化简,再把字母的值代入化简后的式子中求值.在化简的过程中,合理地利用乘法公式能使整式的运算过程变得简单.在代数式化简过程中,用到平方差公式及完全平方公式时,要特别注意应用公式的准确性.【例4】先化简,再求值:5(m +n )(m -n )-2(m +n )2-3(m -n )2,其中m =-2,n =15. 解:5(m +n )(m -n )-2(m +n )2-3(m -n )2=5(m 2-n 2)-2(m 2+2mn +n 2)-3(m 2-2mn +n 2)=5m 2-5n 2-2m 2-4mn -2n 2-3m 2+6mn -3n 2=-10n 2+2mn .当m =-2,n =15时,原式=-10n 2+2mn =-10×⎝ ⎛⎭⎪⎫152+2×(-2)×15=-65. 5.乘法公式的运用技巧一些多项式的乘法或计算几个有理数的积时,表面上看起来不能利用乘法公式,实际上经过简单的变形后,就能直接运用乘法公式进行计算了.有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.在运用平方差公式时,注意以下几种常见的变化形式:①位置变化:(b +a )(-b +a )=a 2-b 2.②符号变化:(-a +b )(-a -b )=(-a )2-b 2=a 2-b 2.③系数变化:(0.5a +3b )(0.5a -3b )=(0.5a )2-(3b )2.④指数变化:(a 2+b 2)(a 2-b 2)=(a2)2-(b2)2=a4-b4.⑤增项变化:(a-b-c)(a-b+c)=(a-b)2-c2,(a+b-c)(a-b+c)=a2-(b-c)2.⑥增因式变化:(a+b)(a-b)(-a-b)(-a+b)=(a2-b2)(a2-b2)=(a2-b2)2.⑦连用公式变化:(a-b)(a+b)(a2+b2)(a4+b4)=a8-b8.【例5-1】计算:(1)(a+b+1)(a+b-1);(2)(m-2n+p)2;(3)(2x-3y)2(2x+3y)2.解:(1)(a+b+1)(a+b-1)=[(a+b)+1][(a+b)-1]=(a+b)2-1=a2+2ab+b2-1.(2)(m-2n+p)2=[(m-2n)+p]2=(m-2n)2+2·(m-2n)·p+p2=m2-4mn+4n2+2mp-4np+p2.(3)(2x-3y)2(2x+3y)2=[(2x-3y)(2x+3y)]2=(4x2-9y2)2=(4x2)2-2×4x2×9y2+(9y2)2=16x4-72x2y2+81y4.在运用平方差公式时,应分清两个因式是否是两项之和与差的形式,符合形式才可以用平方差公式,否则不能用;完全平方公式就是求一个二项式的平方,其结果是一个三项式,在计算时不要发生:(a+b)2=a2+b2或(a-b)2=a2-b2这样的错误;当因式中含有三项或三项以上时,要适当的分组,看成是两项,从而应用平方差公式或完全平方公式.【例5-2】计算:(2+1)(22+1)(24+1)(28+1)…(22n+1)的值.分析:为了能便于运用平方差公式,观察到待求式中都是和的形式,没有差的形式,可设法构造出差的因数,于是可乘以(2-1),这样就可巧妙地运用平方差公式了.解:(2+1)(22+1)(24+1)(28+1)…(22n+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22n+1)=(22-1)(22+1)(24+1)(28+1)…(22n+1)=(24-1)(24+1)(28+1)…(22n+1)=…=(22n-1)(22n+1)=24n-1.6.乘法公式的实际应用在解决生活中的实际问题时,经常把其中的一个量或几个量先用字母表示,然后列出相关式子,进而化简,这往往涉及到整式的运算.解题时,灵活运用乘法公式,往往能事半功倍,使问题得到快速解答.【例6】一个正方形的边长增加3 cm,它的面积就增加39 cm2,这个正方形的边长是多少?分析:如果设原正方形的边长为x cm,根据题意和正方形的面积公式可列出方程(x+3)2=x2+39,求解即可.解:设原正方形的边长为x cm,则(x+3)2=x2+39,即x2+6x+9=x2+39,解得x=5(cm).故这个正方形的边长是5 cm.7.完全平方公式的综合运用学习乘法公式应注意掌握公式的特征,认清公式中的“两数”,注意为使用公式创造条件.(1)完全平方公式变形后可得到以下一些新公式:①a 2+b 2=(a +b )2-2ab ;②a 2+b 2=(a -b )2+2ab ;③(a +b )2=(a -b )2+4ab ;④(a -b )2=(a +b )2-4ab ;⑤(a +b )2+(a -b )2=2(a 2+b 2);⑥(a +b )2-(a -b )2=4ab 等.在公式(a ±b )2=a 2±2ab +b 2中,如果把a +b ,ab 和a 2+b 2分别看做一个整体,则知道了其中两个就可以求第三个.(2)注意公式的逆用不仅会熟练地正用公式,而且也要求会逆用公式,乘法公式均可逆用,特别是完全平方公式的逆用——a 2+2ab +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2.【例7-1】已知a 2+b 2+4a -2b +5=0,则a +b a -b的值是__________.解析:原等式可化为(a 2+4a +4)+(b 2-2b +1)=0,即(a +2)2+(b -1)2=0,根据非负数的特点知a +2=0且b -1=0,从而可知a =-2且b =1.然后将其代入求a +b a -b的值即可. 答案:13【例7-2】已知a +b =2,ab =1,求a 2+b 2的值.分析:利用完全平方公式有(a +b )2=a 2+2ab +b 2,把2ab 移到等式的左边,可得(a +b )2-2ab =a 2+b 2,然后代入求值即可.解:∵(a +b )2=a 2+2ab +b 2,∴a 2+b 2=(a +b )2-2aB .∵a +b =2,ab =1,∴a 2+b 2=22-2×1=2.涉及两数和或两数差及其乘积的问题,就要联想到完全平方公式.本题也可从条件出发解答,如因为a+b=2,所以(a+b)2=22,即a2+2ab+b2=4.把ab=1代入,得a2+2×1+b2=4,于是可得a2+b2=4-2=2.。

完全平方公式和平方差公式法习题(内含答案)

完全平方公式和平方差公式法习题(内含答案)

完全平方公式和平方差公式法习题(内含答案)二次根式的运算知识点知识点一:二次根式的乘法法则:,即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:在运用二次根式的乘法法则进行运算时,一定要注意:公式中a 、b 都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数)(1)该法则可以推广到多个二次根式相乘的运算:(3)若二次根式相乘的结果能写成的形式,则应化简,如.,即积的算术平方根知识点二、积的算术平方根的性质等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a 、b 可以是数,也可以是代数式,无论是数,还是代数式,都必须满足才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;(2)二次根式的化简关键是将被开方数分解因数,把含有形式的a 移到根号外面.(3)作用:积的算术平方根的性质对二次根式化简(4)步骤:①对被开方数分解因数或分解因式,结果写成平方因式乘以非平方因式②利用积的算术平方根的性质③利用(一个数的平方的算术平方根等于这个数的绝对值)即被开方数中的一些因式移到根号外④被开方数中每个因数指数都要小雨2(5)被开方数是整数或整式可用积的算术平方根的性质对二次根式化简知识点三、二次根式的除法法则:把被开方数相除.要点诠释:,即两个二次根式相除,根指数不变,(1)在进行二次根式的除法运算时,对于公式中被开方数a 、b的取值范围应特别注意,其中,因为b 在分母上,故b 不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.知识点四、商的算术平方根的性质,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:(1)利用:运用次性质也可以进行二次根式的化简,运用时仍要注意符号问题.(2)步骤①利用商的算术平方根的性质② a ,b 利用积的算术平方根的性质化简③分母不能有根号,如果分母有根号要分母有理化(3)被开方数是分数或分式可用商的算术平方根的性质对二次根式化简知识点五:最简二次根式1. 定义:当二次根式满足以下两条:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.把符合这两个条件的二次根式,叫做最简二次根式. 在二次根式的运算中,最后的结果必须化为最简二次根式或有理式.要点诠释:(1)最简二次根式中被开方数不含分母;(2)最简二次根式被开方数中每一个因数或因式的次数都小于根指数2,即每个因数或因式从次数只能为1次.2. 把二次根式化成最简二次根式的一般步骤:(1)把根号下的代分数或绝对值大于1的数化成假分数,把绝对值小于1的小数化成分数;(2)被开方数是多项式的要进行因式分解; (3)使被开方数不含分母;(4)将被开方数中能开得尽方的因数或因式,用它们的算术平方根代替后移到根号外;(5)化去分母中的根号; (6)约分.3. 把一个二次根式化简,应根据被开方数的不同形式,采取不同的变形方法. 实际上只是做两件事:一是化去被开方数中的分母或小数;二是使被开方数中不含能开得尽方的因数或因式.知识点六、同类二次根式1. 定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2. 合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似)要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式;(3)不是同类二次根式,不能合并知识点七、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并. 对于没有合并的二次根式,仍要写到结果中.在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.二次根式加减运算的步骤:(1)将每个二次根式都化简成为最简二次根式;(2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;(3)合并同类二次根式.知识点八、二次根式的混合运算要点诠释:二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果应写成最简形式,这个形式应是最简二次根式,或几个非同类最简二次式之和或差,或是有理式.规律方法指导二次根式的运算,主要研究二次根式的乘除和加减.(1)二次根式的乘除,只需将被开方数进行乘除,其依据是:;;(2)二次根式的加减类似于整式的加减,关键是合并同类二次根式. 通常应先将二次根式化简,再把同类二次根式合并.二次根式运算的结果应尽可能化简.。

平方差和完全平方公式经典例题

平方差和完全平方公式经典例题

典例剖析专题一:平方差公式例1:计算下列各整式乘法。

①位置变化(73)(37)x y y x +- ②符号变化(27)(27)m n m n --- ③数字变化98102⨯ ④系数变化(4)(2)24n n m m +- ⑤项数变化(32)(32)x y z x y z ++-+ ⑥公式变化2(2)(2)(4)m m m +-+ ◆变式拓展训练◆【变式1】2244()()()()y x x y x y x y ---+++【变式2】22(2)(4)33b b a a --- 【变式3】22222210099989721-+-++-… 专题二:平方差公式的应用例2:计算22004200420052003-⨯的值为多少? ◆变式拓展训练◆【变式1】22()()x y z x y z -+-+- 【变式2】2301(3021)(3021)⨯+⨯+【变式3】(25)(25)x y z x y z +-+-++【变式4】已知a 、b 为自然数,且40a b +=, (1)求22a b +的最大值;(2)求ab的最大值。

专题三:完全平方公式例3:计算下列各整式乘法。

①位置变化:22()()x y y x --+ ②符号变化:2(32)a b -- ③数字变化:2197 ④方向变化:2(32)a -+⑤项数变化:2(1)x y +-⑥公式变化22(23)(46)(23)(23)x y x y x y x y -+-+++◆变式拓展训练◆ 【变式1】224,2a b a ab b +=++则的值为( )A.8B.16C.2D.4 【变式2】已知221() 4.,()_____2a b ab a b -==+=则【变式3】已知225.6,x y xy x y +=-=+则的值为( )A.1B.13C.17D.25【变式4】已知222(1)()32x x x y x y xy ---=-+-,求的值专题四:完全平方公式的运用例4:已知:4,2x y xy +==,求:①22x y +; ②44x y +; ③2()x y - ◆变式拓展训练◆【变式1】2242411310,;x x x x x x -+=++已知求①② 【变式2】225,2,4xy x y x y x y x y++=++已知满足求的值。

平方差公式练习题精选(含答案)

平方差公式练习题精选(含答案)

平方差公式练习题精选(含答案)平方差公式是一种用于计算两个数的平方差的公式,可以用于简化计算。

下面给出了一些例子:1.(m+2)(m-2) = m^2 - 42.(1+3a)(1-3a) = 1 - 9a^23.(x+5y)(x-5y) = x^2 - 25y^24.(y+3z)(y-3z) = y^2 - 9z^2利用平方差公式,可以简化计算,例如:1.(5+6x)(5-6x) = 25 - 36x^22.(x-2y)(x+2y) = x^2 - 4y^23.(-m+n)(-m-n) = m^2 - n^2有些多项式的乘法可以用平方差公式计算,例如:7.B。

(-a+b)(a-b)有些计算中存在错误,例如:8.②(2a2-b)(2a2+b)=4a4-b2完全平方公式是一种用于计算两个数的平方和的公式,可以用于简化计算。

下面给出了一些例子:1.(x+y)^2 = x^2 + 2xy + y^22.(-2m+5n)^2 = 4m^2 - 20mn + 25n^23.(2a+5b)^2 = 4a^2 + 20ab + 25b^24.(4p-2q)^2 = 16p^2 - 16pq + 4q^2利用完全平方公式,可以简化计算,例如:1.(x-y^2)^2 = x^2 - 2xy^2 + y^42.(1.2m-3n)^2 = 1.44m^2 - 7.2mn + 9n^23.(-a+5b)^2 = a^2 - 10ab + 25b^24.(-x-y)^2 = x^2 + 2xy + y^2最后,我们可以用完全平方公式计算一些复杂的表达式,例如:14.(a+2)(a^2+4)(a^4+16)(a-2) = (a^6 - 4a^5 - 24a^4 - 64a^3+ 16a^2 + 128a + 128)完全平方公式还可以用于解方程,例如:9.x+y = -310.4x^2 - y^211.(3x^2+2y^2)^2 = 9x^4 - 4y^412.(a+b)^2 - (a-b+1)^2 = 4ab - 2a + 2b13.31.下列运算中,正确的是()A.(a+3)(a-3)=a2-9B.(3b+2)(3b-2)=9b2-4C.(3m-2n)(-2n-3m)=-12mnD.(x+2)(x-3)=x2-x-62.在下列多项式的乘法中,可以用平方差公式计算的是()C.(-a+b)(a-b)3.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是()B.64.若(x-5)2=x2+kx+25,则k=()D.-105.9.8×10.2=100.366.a2+b2=(a+b)2-2ab=(a-b)2+2ab7.(x-y+z)(x+y+z)=x2+y2+z2+2xy+2xz+2yz8.(a+b+c)2=a2+b2+c2+2ab+2ac+2bc9.(x+3)2-(x-3)2=12x+1810.1) 4a2-9b22) p4-q23) x2-4xy+4y24) 4x2+4xy+y211.1) 4a4-b22) 4xy(x+y)12.剩余的空地面积为(m-2n)2-n2(m-2n)2-n2,验证了平方差公式:(a-b)(a+b)=a2-b2.13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k 的值为()D.±214.已知a+=3,则a2+2,则a+的值是()B.715.若 $a-b=2$,$a-c=1$,则 $(2a-b-c)^2+(c-a)^2$ 的值为()答案:B。

平方差与完全平方公式专练

平方差与完全平方公式专练

整式的运算专练【平方差专练】:【基础训练】: 一、填空题:1、()()___________11x =-+x2、()()__________11x =--+-x3、(a +3)(a -3)=______4、(-a -b )(a -b )=____________5、(a -6)(6+a)=( )2-( )26、(4x +y)( )=16x 2-y 27、(m +n)( )=m 2-n 28、( )(1-a)=1-a 29、(-x-y)(x-y)=( )2-( )210、(m +4)(______)=m 2-16. 11、16x 2-9y 2=(4x +3y )(_________). 二、选择题:1、在下列多项式的乘法中,并不能用平方差公式计算的是( )A 、()()b a b a ---B 、()()2222c d d c +-C 、()()3333y x y x +-D 、()()n m n m +--2、下列多项式乘法中,可以用平方差公式计算的是( ) ()()x y A ++y x . ()()y x y x B 2332.+- ()()y x y x C +--. ()()b x b x D ++-22.3、下列各式的计算结果,正确的是( )()()842x .2-=-+x x A ()()131313.22-=+-y x xy xy B ()()22933.y x y x y x C -=++- ()()2x 164x 4x .-=+--D4、下列两个多项式相乘,哪些不可以用平方差公式( ) A .2m)3n)(3n (2m --; B.)5xz 4y 4z)(5xy (--+-;C .c)b a)(a c (b --++; D.)8x y x 31)(xy 31(8x 3223+-.5、在下列多项式的乘法中,可以用平方差公式计算的是( )A.(x+1)(1+x)B.(21a+b)(b-21a) C.(-a+b)(a-b)D.(x 2-y)(x+y 2)6、计算++,结果等于( )、用平方差公式计算(x-1)(x+1)(x 2+1)的结果正确的是( ) +1 C.(x-1)4 D.(x+1)4 8、在下列各式中,运算结果是x 2-36y 2的是( )A.(-6y+x)(-6y-x)B.(-6y+x)(6y-x)C.(x+4y)(x-9y)D.(-6y-x)(6y-x)9、下列各式能用平方差公式的是( ) A .(a +3)(a +4) B .(a -b )(a -b ) C .(c +2)(c +2) D .(4d -1)(-4d -1)10、下列各式,计算正确的是( ) A .(a +4)(a -4)=a 2-4 B .(2a +3)(2a -3)=2a 2-9 C .(5ab +1)(5ab -1)=25a 2b 2-1 D .(a +2)(a -4)=a 2-811、等式(-3x 2-4y 2)( )=16y 4-9x 4中,括号内应填入( ) A .3x 2-4y 2 B .4y 2-3x 2 C .-3x 2-4y 2 D .3x 2+4y 2 12、计算(2a -5)(-5-2a )的结果是( )A .4a 2-5 B .4a 2-25 C .25-4a 2 D .4a 2+25 13、下列各式中,结果等于36-x 2的是( ) A .(x +6)(x -6) B .(x +6)(-x -6) C .(-x -6)(x -6) D .(-x +6)(-x -6)14、若x 2-y 2=20,且x +y =-5,则x -y 的值是( ) A .5 B .4 C .-4 D .以上都不对 三、判断(正确的在括号内打“√”,错误的在括号内打“×”)(1)(2b+3a)(2b-3a)=4b 2-3a( ) (2)(2x 2-y)(-2x 2-y)=4x 2-y 2( )(3)(31p-21q)(21p+31q)=91p 2-41q 2( ) (4)(71x 2+5y 2)(71x 2-5y 2)=49x 2-25y 2( )四、应用平方差公式计算: 1、(1)(2x -y)(-2x -y) (2)(2x 2+3y)(2x 2-3y) (3)(3m+2n )(3m-2n )(4)(b+2a )(2a-b ) (5))221)(221(y x y x --+- (6)(-4a-1)(4a-1)(7)(2m +3n )(2m -3n ); (8)(-3+2x )(-3-2x ); (9)(3a +4b )(4b -3a );(10)(2a 2+3b )(2a 2-3b ); (11))31)(31(a b b a --- (12)(a -3)(a+3)(a 2+9)(13)65( 65(14)(x +y)(x -y)+(2x +y)(2x -y) (15))x )(y y x (2332---2.简便计算(1)× (2)88×92 (3)418437⨯ (4)132×128【能力提升】: 1、填空题(1)()()2949_________73x x -=-- ( )(—2x+3y)=9y 2—4x 2 (2)(21x+32y)(-32y+21x)= (3)计算______________12()12)(12)(12(242=++++)n(4)______________12979899100222222=-+⋯⋯+-+- (5)已知()()__________________y -x ,42222=+=-y x y x 那么(6)()()()()___________4422=++-+b aba b a b a2、已知x -y =2,y -z =2,x +z =14.求x 2-z 2的值.3、已知(a +b -3)2+(a -b +5)2=0.求a 2-b 2的值.【完全平方公式】【基础知识精讲】1.完全平方公式的结构特征:公式的左边是两个数的和(或差)的平方,右边是一个二次三项式,其中的两项是这两个数的平方和,另一项是这两个数的乘积的2倍,并且符号与左边两数间的符号一致,即左边是两数的和,右边就加上两数乘积的2倍,左边是两数的差,右边就减去两数乘积的2倍.2.在应用完全平方公式的过程中,常有以下几种变化形式: (1)a 2+b 2=(a +b )2-2ab ; (2)a 2+b 2=(a -b )2+2ab ; (3)2ab =(a +b )2-(a 2+b 2);(4)2ab =(a 2+b 2)-(a -b )2; (5)(a +b )2=(a -b )2+4ab ; (6)(a -b )2=(a +b )2-4ab .3.公式中的字母a 、b 既可以表示一个具体的数,也可以表示一个单项式或者一个多项式. 【基础练习】 一、填空题:1、(1)()__________12=-x (2) ()()_________11=++x x (3)(-21m -1)2=_________.2、(1)=+2)2(n m ________; (2)=--2)13(x ________;(3)=⎪⎭⎫ ⎝⎛-23243n m ________;(4)=+-2)32(y x ________; (5)=⎪⎭⎫⎝⎛+-223.032a a ________; (6)=⎪⎭⎫ ⎝⎛--2261z y x ________;(7)[]=--227)3(a ________; (8)=-2)1(c b a n m ________; (9)=-2n )32(y x m ________;3、(1)22216____________)3(y x x +-=-; (2)a 2-4ab+( )=(a-2b)2(3)( -2)2= -21x+ (4)(3a 2-2a+1)(3a 2+2a+1)=(5)( )-24a 2c 2+( )=( -4c 2)2 (6)x 2+(____________)+4y 2=(x -2y )2.(7)(2a +b )2=(2a -b )2+(________). (8)(4a +_______)2=16a 2+4a +_______.4、(1)()()______22=--+b a b a (2)()________222-+=+b a b a(3)(x -y )2=(x +y )2-(____________). (4)(a+b)2-( )=(a-b)25、若(2)2222n m n m +=-+t ,则t =________. 二、选择题:1、下列等式能够成立的是( ).A .222121⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-x xB .222121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-x x C .412122-=⎪⎭⎫ ⎝⎛-x x D .412122+=⎪⎭⎫ ⎝⎛+x x 2、下列等式能够成立的是( ).A .222)(y xy x y x +-=-B .2229)3(y x y x +=+C .2224121y xy x y x +-=⎪⎭⎫ ⎝⎛- D .9)9)(9(2-=+-m m m3、在括号 内选入适当的代数式使等式2241525)(215y xy x y x +-=⎪⎭⎫ ⎝⎛-成立,是( ). A .y x 215-B .y x 215+C .y x 215+-D .y x 215-- 4、22)(b a --等于( ).A .222b ab a +--B .2242b b a a +--C .2242b b a a ++D .442b ab a --5、下列各式计算正确的是( ).A .222414212y xy x y x +-=⎪⎭⎫ ⎝⎛-B .1054152122++=⎪⎭⎫⎝⎛+x x xC .2244)2(y xy x y x +-=-D .44)2(22+-=--x x x 6、计算:=+2)(bc a ( ).A .222c b a +B .222b ab a ++C .222bc abc a ++D .2222c b abc a ++7、乘法公式中a 、b 可表示( ).A .数B .多项式C .单项式D .单项式、多项式都行8、计算:=2501( ).A .250501B .251001C .251001D .以上结果都不对9、2121⎪⎭⎫⎝⎛--+n n ab b a 的运算结果是( ).A .122222241++++-n n n n b a b a b aB .122222241+++++n n n n b a b a b aC .122222241++++--n n n n b a b a b aD .12222241+++-+-n n n n b a b a a10、在222)(2)()(b b c b a ++=++中,两个括号内应填( ).A .b a +B .c b +C .c a +D .c b a ++11、下列等式能成立的是( ).A.(a-b)2=a 2-ab+b 2B.(a+3b)2=a 2+9b 2C.(a+b)2=a 2+2ab+b 2D.(x+9)(x-9)=x 2-912、在括号内选入适当的代数式使等式(5x-21y)·( )=25x 2-5xy+41y 2成立.21 +21y +21y 21 13、(5x 2-4y 2)(-5x 2+4y 2)运算的结果是( ).+40x 2y 2-16y 2 +16y 214、边长为m 的正方形边长减少n(m >n)以后,所得较小正方形的面积比原正方形面积减少了( )+n 215、如图,长方形的长为a ,宽为b ,横向阴影部分为长方形, 另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面积是…. ( ) A 、ab -bc +ac -c 2 B 、ab -bc -ac +c 2 C 、ab - ac -bc D 、ab - ac -bc -c 2 三、解答题: 1、计算:(1)(2a +1)2; (2)(23x -32y )2; (3)(-4a -3b )2; (4)2b)a (--(5)(3a +2b )2 (6)(mn -n 2)2 (7)(2y-1)2 (8)(1-2y)2(9)(-5a -2)(5a +2) (10)2221⎪⎭⎫⎝⎛-y x ; (11)(-2a-b)2(12)2231⎪⎭⎫ ⎝⎛--n m ; (13)2241⎪⎭⎫ ⎝⎛+-xy x ; (14)(3y+2x)22、计算:(1)(x +2y )2-(x -2y )2 (2) ()()2222b a b a ---+3、计算:(1)=-+22)1()1(x x ________; (2)=2)9.99(________; (3)=⎪⎭⎫⎝⎛2219________; (5)22__)(_________9)63(=+x ; (6)22__)(_________31814=⎪⎭⎫ ⎝⎛+x .4、计算: (1)982 (2)9992; (3)1022. (4)20012 (5)23130⎪⎭⎫⎝⎛5、列方程解应用题:(1)正方形的边长增大5cm ,面积增大2cm 75.求原正方形的边长及面积. (2)正方形的一边增加4厘米,邻边减少4厘米,所得的矩形面积与这个正方形的边长减少2厘米所得的正方形的面积相等,求原正方形的边长. 6、已知12,3-==+ab b a ,求下列各式的值.(1)a 2+b 2 (2)22b ab a +-(3)2)(b a -.7、已知(a +b )2=7,(a -b )2=4,求a 2+b 2和ab 的值.【能力提高】: 一、选择题:1、化简:223232⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛+x x 的值是( )A 、4x B 、5x C 、6x D 、8x2、如果42++mx x 是一个完全平方式,那么m 的值是( ) A 、4 B 、-4 C 、4± D 、8±3、如果多项式92+-mx x 是一个完全平方式,则m 的值是( ) A 、±3 B 、3 C 、±6 D 、64、如果多项式k x x ++82是一个完全平方式,则k 的值是( ) A 、-4 B 、4 C 、-16 D 、165、如果x 2+kx+81是一个完全平方式,那么k 的值是( ). 或-9 或-186、22)1(++x x 的展开式化简后共有( )项.A .9项B .6项C .5项D .4项7、(a+3b)2-(3a+b)2计算的结果是( ). (a-b)2 (a+b)2【中考真题演练】1.选择题(1)若(2x -3)2=4x 2+2kx +9,则k 的值为( )A .12B .-12C .6D .-6(2)若a 2+2ab +b 2=(a -b )2+A ,则A 的值为( )A .2abB .-abC .4abD .-4ab (3)(m +3)(-m -3)等于( )A .-m 2-6m -9 B .-m 2+6m +9 C .m 2-6m +9D .-m 2+6m -9(4)已知a -b =3,ab =10,那么a 2+b 2的值为( )A .27B .28C .29D .30A .2B .-2C .2或-2D .1或-1A .25B .23C .12D .11 2.计算:(1))213)(321(x y y x -- (2)(x -3)(3-x ); (3)(-4x-3y )2;(4)(2a +1)2(2a -1)2; (5)(x 2+y 2)2(x+y)2(x-y)23.已知x +y =m ,xy =n ,求(x -y )2和x 2+y 2的值.4、已知a+b=7,a 2+b 2=25,求(1)ab ,(2)(a-b)2的值。

完全平方式平方差公式整式乘除综合计算30题2.doc

完全平方式平方差公式整式乘除综合计算30题2.doc

完全平方式平方差公式整式乘除综合计算30题一.解答题(共30小题)1.多项式x2+l加上一个整式后是含X的二项式的完全平方式.例题:X2+l+= (x+l)2.(1)按上例再写出两个加上一个单项式后是含X的二项式的完全平方式的式子(不能用已知的例题):①x?+l+ _____________ =(X - 1)2;(2)X2+1+=(尹+1)2.(2)按上例写出一个加上一个多项式后是一个含X的二项式的完全平方式x2+l+= (x2+l)2.2.己知a2 - 4a+4+9b2+6b+l=0,求a、b 的值.3.己知x口-3二0,求值: X(2)IX4.如果a2-2 (k- 1) ab+9b2是一个完全平方式,那么k=5.关于x的二次三项式:x2+2mx+4 - m2是一个完全平方式,求m的值.6.(2002・岳阳)用简便方法计算:W2X98+4 .2522 - 24827.计算;(1) (x - 3y) (x-^y);(2)4x2 - ( - 2x+3) ( - 2x - 3).8.(a - 2b+c) (a+2b - c).9.利用乘法公式计算:(1)(2x - 3y) 2 - (y+3x) (3x - y);(2)(x+y) (x2+y2) (x - y) (x4+y4):(3)(a - 2b+3) (a+2b-3);(4)[ (x - y) 24- (x+y) 2] (x2 - y2);(5)(m - n - 3) 2.10.计算(1)(-2X2(2)(x m-y n) (x,n+y n);(3)(3)2 Sb) 2;(4)(x+y+z) 2.11.计算:(1) (5m - 6n) ( - 6n - 5m); (2) (—x2y2+3m) ( - 3m+—x2y2).2 212.计算:(x - y) 2 - (x+y) (x - y)13 .计算:(1)(2x - 1) (4X2+1)(2X+1);(2)(2a - b+3) (2a - 3+b);(3) 4 (a+2) 2-7 (a+3) (a- 3) +3 (a- 1) 2.14.计算(1)(^a2b3) • ( - 15a2b2)3(2)(lx2y - 2xy+y2) ・2xy(3)(2x+3) (3x+4)(4)(3x+7y) (3x - 7y)(5)(x-3y) 2(6)(x+5y) 215.利用乘法公式计算⑴(-x2+2y2)2⑵ (4+2y ) 2+ (4-2y) 2 乙乙(3)(a+3b) (a - 3b)(4)( - 4a - 1) (4a- 1)(5)9982(6)62x5816.( - 6xy2z+8x2y3) + ( - 6xy)17.[ ( - 4a2b3) 2 - 6a4b4x ( - 0.5ab3)]《(-2ab2) 318.计算下列各题:(1)( -4a5b3)之+ (8a2b3)(2)(x+2) 2- (x+3) (x-3)(3)[ (2x+l) (4x+2) - 2]。

(完整版)平方差公式练习题精选(含答案)

(完整版)平方差公式练习题精选(含答案)

1、利用平方差公式计算:(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3)(x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算(1)(5+6x) (5-6x)(2)(x-2y) (x+2y)(3)(-m+n)(-m-n)3 利用平方差公式计算1 (1)(1)(- 1 x-y)(- 1x+y) 4(2)(ab+8)(ab-8)2(3)(m+n)(m-n)+3n 24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)5、利用平方差公式计算(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A .(a+b)(b+a)B.(-a+b)(a-b)C.(1 a+b)(b-1a)D.(a2-b)(b2+a)338.下列计算中,错误的)①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y )(x+y )=-(x-y(x+y)=-x2-y2A.1 个B.2 个C.3 个D 4个9.若x 2-y2=30,且x-y=-5,则x+y 的值是()A .5 B.6 C.-6 D.-510 .(-2x+y )(-2x -y)= ______ .11 .(-3x2+2y2)(________________________ )=9x4-4y4.12 .(a+b-1)(a-b+1)=( ____ )2-(________)2.13 .两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_.14.计算:(a+2)(a2+4)(a4+16)(a-2)完全平方公式1 利用完全平方公式计算:(1)( 21 x+ 32 y)2(3)(2a+5b)22 利用完全平方公式计算:1 2 2 2(1)( x- y )23(3)(- 12a+5b)23 (1)(3x-2y)2+(3x+2y) 23)(a+b)2-(a-b)2(2)(-2m+5n)2 (4)(4p-2q)2(2)(1.2m-3n)23 2 2(4)(- 3 x- 2y)243(2)4(x-1)(x+1)- (2x+3)2(4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4 先化简,再求值:(x+y) 24xy, 其中x=12,y=9 。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:a+ba-b=a 2-b 2 a+b 2=a 2+2ab+b 2 a-b 2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,xyyxx 2y 2 ② 符号变化,xyxyx 2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a 2b 2⑤ 换式变化,xyzmxyzmxy 2zm 2 x 2y 2z 22zm +m 2x 2y 2z 22zmm 2⑥ 增项变化,xyzxyzxy 2z 2 x 22xy y 2z 2⑦ 连用公式变化,xyxyx 2y 2x 2y 2x 2y 2x 4y 4⑧ 逆用公式变化,xyz 2xyz 2xyzxyzxyzxyz2x 2y 2z 4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值;解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值;解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式;解:19992-2000×1998 =19992-1999+1×1999-1=19992-19992-12=+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和a-b 2的值;〖解析〗此题可用完全平方公式的变形得解;解:a 2+b 2=a+b 2-2ab=4-2=2a-b 2=a+b 2-4ab=4-4=0例5:已知x-y=2,y-z=2,x+z=14;求x 2-z 2的值;〖解析〗此题若想根据现有条件求出x 、y 、z 的值,比较麻烦,考虑到x 2-z 2是由x+z 和x-z 的积得来的,所以只要求出x-z 的值即可;解:因为x-y=2,y-z=2,将两式相加得x-z=4,所以x 2-z 2=x+zx-z=14×4=56; 例6:判断2+122+124+1……22048+1+1的个位数字是几〖解析〗此题直接计算是不可能计算出一个数字的答案,故有一定的规律可循;观察到1=2-1和上式可构成循环平方差;解:2+122+124+1……22048+1+1=2-122+124+1……22048+1+1=24096=161024因为当一个数的个位数字是6的时候,这个数的任意正整数幂的个位数字都是6,所以上式的个位数字必为6;例7.运用公式简便计算11032 21982解:1103210032 10022100332 100006009 106092198220022 20022200222 400008004 39204例8.计算1a 4b 3ca 4b 3c 23xy 23xy 2解:1原式a 3c 4ba 3c 4ba 3c 24b 2a 26ac 9c 216b 22原式3xy 23xy 29x 2 y 24y 49x 2y 24y 4例9.解下列各式1已知a 2b 213,ab 6,求ab 2,ab 2的值;2已知ab 27,ab 24,求a 2b 2,ab 的值;3已知aa 1a 2b 2,求222a b ab +-的值; 4已知13x x -=,求441x x +的值; 分析:在公式ab 2a 2b 22ab 中,如果把ab ,a 2b 2和ab 分别看作是一个整体,则公式中有三个未知数,知道了两个就可以求出第三个;解:1∵a 2b 213,ab 6ab 2a 2b 22ab 132625 ab 2a 2b 22ab 132612∵ab 27,ab 24a 22abb 27 ① a 22abb 24 ②①②得 2a 2b 211,即22112a b +=①②得 4ab 3,即34ab =3由aa 1a 2b 2 得ab 24由13x x -=,得19x x 2⎛⎫-= ⎪⎝⎭ 即22129x x +-= 22111x x ∴+= 221121x x 2⎛⎫∴+= ⎪⎝⎭ 即4412121x x ++= 441119x x += 例10.四个连续自然数的乘积加上1,一定是平方数吗为什么分析:由于1234125522345112111234561361192…… 得猜想:任意四个连续自然数的乘积加上1,都是平方数; 解:设n ,n 1,n 2,n 3是四个连续自然数则nn 1n 2n 31 nn 3n 1n 21 n 23n 22n 23n 1n 23nn 23n 21 n 23n 12∵n 是整数, n 2,3n 都是整数 n 23n 1一定是整数n 23n 1是一个平方数 四个连续整数的积与1的和必是一个完全平方数;二、乘法公式的用法一、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础,同时能提高学生的观察能力;例1. 计算:()()53532222x y x y +-解:原式()()=-=-53259222244x y x y二、连用:连续使用同一公式或连用两个以上公式解题;例2. 计算:()()()()111124-+++a a a a解:原式()()()=-++111224a a a例3. 计算:()()32513251x y z x y z +-+-+--解:原式()()[]()()[]=-++--+25312531y z x y z x三、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题;例4. 计算:()()57857822a b c a b c +---+解:原式()()[]()()[]=+-+-++---+578578578578a b c a b c a b c a b c四、变用: 题目变形后运用公式解题;例5. 计算:()()x y z x y z +-++26解:原式()[]()[]=++-+++x y z z x y z z 2424五、活用: 把公式本身适当变形后再用于解题;这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力; 例6. 已知a b ab -==45,,求a b 22+的值;解:()a b a b ab 2222242526+=-+=+⨯=例7. 计算:()()a b c d b c d a ++-+++-22解:原式()()[]()()[]=++-++--b c a d b c a d 22三、学习乘法公式应注意的问题一、注意掌握公式的特征,认清公式中的“两数”.例1 计算-2x 2-52x 2-5分析:本题两个因式中“-5”相同,“2x 2”符号相反,因而“-5”是公式a +ba -b =a 2-b 2中的a ,而“2x 2”则是公式中的b .解:原式=-5-2x 2-5+2x 2=-52-2x 22=25-4x 4.例2 计算-a 2+4b 2分析:运用公式a +b 2=a 2+2ab +b 2时,“-a 2”就是公式中的a ,“4b ”就是公式中的b ;若将题目变形为4b -a 22时,则“4b ”是公式中的a ,而“a 2”就是公式中的b .解略二、注意为使用公式创造条件例3 计算2x +y -z +52x -y +z +5.分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x ”、“5”两项同号,“y ”、“z ”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式.解:原式=〔2x +5+y -z 〕〔2x +5-y -z 〕=2x +52-y -z 2=4x 2+20x +25-y +2yz -z 2.例5 计算2+122+124+128+1.分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项2-1,则可运用公式,使问题化繁为简.解:原式=2-12+122+124+128+1 =22-122+124+128+1=24-124+128+1=28-128+1=216-1三、注意公式的推广计算多项式的平方,由a +b 2=a 2+2ab +b 2,可推广得到:a +b +c 2=a 2+b 2+c 2+2ab +2ac +2bc .可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例6 计算2x +y -32解:原式=2x 2+y 2+-32+2·2x ·y +2·2x -3+2·y -3=4x 2+y 2+9+4xy -12x -6y .四、注意公式的变换,灵活运用变形公式例7 2已知:x +2y =7,xy =6,求x -2y 2的值.分析:粗看似乎无从下手,但注意到乘法公式的下列变形:x 2+y 2=x +y 2-2xy ,x 3+y 3=x +y 3-3xyx +y ,x +y 2-x -y 2=4xy ,问题则十分简单.解:2x -2y 2=x +2y 2-8xy =72-8×6=1.例8 计算a +b +c 2+a +b -c 2+a -b +c +b -a +c 2.分析:直接展开,运算较繁,但注意到由和及差的完全平方公式可变换出a +b 2+a -b 2=2a 2+b 2,因而问题容易解决.解:原式=a +b +c 2+a +b -c 2+c +a -b 2+c -a -b 2=2a +b 2+c 2+2c 2+a -b 2=2a +b 2+a -b 2+4c 2=4a 2+4b 2+4c 2五、注意乘法公式的逆运用例9 计算a -2b +3c 2-a +2b -3c 2.分析:若按完全平方公式展开,再相减,运算繁杂,但逆用平方差公式,则能使运算简便得多. 解:原式=a -2b +3c +a +2b -3ca -2b +3c -a +2b -3c =2a -4b +6c =-8ab +12ac .例10 计算2a +3b 2-22a +3b 5b -4a +4a -5b 2分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,则运算更为简便.解:原式=2a +3b 2+22a +3b 4a -5b +4a -5b 2=2a +3b +4a -5b 2=6a -2b 2=36a 2-24ab +4b 2. 四、怎样熟练运用公式:一、明确公式的结构特征这是正确运用公式的前提,如平方差公式的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两项是互为相反数;等号右边是乘式中两项的平方差,且是相同项的平方减去相反项的平方.明确了公式的结构特征就能在各种情况下正确运用公式.二、理解字母的广泛含义乘法公式中的字母a 、b 可以是具体的数,也可以是单项式或多项式.理解了字母含义的广泛性,就能在更广泛的范围内正确运用公式.如计算x +2y -3z 2,若视x +2y 为公式中的a ,3z 为b ,则就可用a -b 2=a 2-2ab +b 2来解了;三、熟悉常见的几种变化有些题目往往与公式的标准形式不相一致或不能直接用公式计算,此时要根据公式特征,合理调整变化,使其满足公式特点.常见的几种变化是:1、位置变化 如3x +5y 5y -3x 交换3x 和5y 的位置后即可用平方差公式计算了.2、符号变化 如-2m -7n 2m -7n 变为-2m +7n 2m -7n 后就可用平方差公式求解了思考:不变或不这样变,可以吗3、数字变化 如98×102,992,912等分别变为100-2100+2,100-12,90+12后就能够用乘法公式加以解答了.4、系数变化 如4m +2n 2m -4n 变为22m +4n 2m -4n 后即可用平方差公式进行计算了. 5、项数变化 如x +3y +2zx -3y +6z 变为x +3y +4z -2zx -3y +4z +2z 后再适当分组就可以用乘法公式来解了四、注意公式的灵活运用有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.如计算a 2+12·a 2-12,若分别展开后再相乘,则比较繁琐,若逆用积的乘方法则后再进一步计算,则非常简便.即原式=a 2+1a 2-12=a 4-12=a 8-2a 4+1.对数学公式只会顺向从左到右运用是远远不够的,还要注意逆向从右到左运用.如计算1-2211-2311-241…1-2911-2101,若分别算出各因式的值后再行相乘,不仅计算繁难,而且容易出错.若注意到各因式均为平方差的形式而逆用平方差公式,则可巧解本题. 即原式=1-211+211-311+31×…×1-1011+101=21×23×32×34×…×109×1011 =21×1011=2011. 有时有些问题不能直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有:a 2+b 2=a +b 2-2ab ,a 2+b 2=a -b 2+2ab 等.用这些变式解有关问题常能收到事半功倍之效.如已知m +n =7,mn =-18,求m 2+n 2,m 2-mn + n 2的值.面对这样的问题就可用上述变式来解,即m 2+n 2=m +n 2-2mn =72-2×-18=49+36=85,m 2-mn + n 2= m +n 2-3mn =72-3×-18=103.下列各题,难不倒你吧1、若a +a1=5,求1a 2+21a ,2a -a 12的值. 2、求2+122+124+128+1216+1232+1264+1+1的末位数字.答案:1.123;221.2. 6五、乘法公式应用的五个层次乘法公式:a +ba -b=a 2-b 2,a ±b=a 2±2ab +b 2,a ±ba 2±ab +b 2=a 3±b 3.第一层次──正用即根据所求式的特征,模仿公式进行直接、简单的套用.例1计算 2-2x -y2x -y .2原式=-y -2x -y +2x=y 2-4x 2.第二层次──逆用,即将这些公式反过来进行逆向使用.例2计算119982-1998·3994+19972;解1原式=19982-2·1998·1997+19972 =1998-19972=1 第三层次──活用 :根据待求式的结构特征,探寻规律,连续反复使用乘法公式;有时根据需要创造条件,灵活应用公式.例3化简:2+122+124+128+1+1.分析直接计算繁琐易错,注意到这四个因式很有规律,如果再增添一个因式“2-1”便可连续应用平方差公式,从而问题迎刃而解.解原式=2-12+122+124+128+1+1=22-122+124+128+1+1=216.例4计算:2x-3y-1-2x-3y+5分析仔细观察,易见两个因式的字母部分与平方差公式相近,但常数不符.于是可创造条件─“拆”数:-1=2-3,5=2+3,使用公式巧解.解原式=2x-3y-3+2-2x-3y+3+2=2-3y+2x-32-3y-2x-3=2-3y2-2x-32=9y2-4x2+12x-12y-5.第四层次──变用:解某些问题时,若能熟练地掌握乘法公式的一些恒等变形式,如a2+b2=a+b2-2ab,a3+b3=a+b3-3aba+b等,则求解十分简单、明快.例5已知a+b=9,ab=14,求2a2+2b2和a3+b3的值.解:∵a+b=9,ab=14,∴2a2+2b2=2a+b2-2ab=292-2·14=106,a3+b3=a+b3-3aba+b=93-3·14·9=351第五层次──综合后用:将a+b2=a2+2ab+b2和a-b2=a2-2ab+b2综合,可得 a+b2+a-b2=2a2+b2;a+b2-a-b2=4ab;等,合理地利用这些公式处理某些问题显得新颖、简捷.例6计算:2x+y-z+52x-y+z+5.解:原式=142x+y-z+5+2x-y+z+52-142x+y-z+5-2x-y+z+52=2x+52-y-z2=4x2+20x+25-y2+2yz-z2六、正确认识和使用乘法公式1、数形结合的数学思想认识乘法公式:对于学习的两种三个乘法公式:平方差公式:a+ba-b=a2-b2、完全平方公式:a+b2=a2+2ab+b2;a-b2=a2-2ab+b2,可以运用数形结合的数学思想方法来区分它们;假设a、b都是正数,那么可以用以下图形所示意的面积来认识乘法公式;如图1,两个矩形的面积之和即阴影部分的面积为a+ba-b,通过左右两图的对照,即可得到平方差公式a+ba-b=a2-b2;图2中的两个图阴影部分面积分别为a+b2与a-b2,通过面积的计算方法,即可得到两个完全平方公式:a+b2=a2+2ab+b2与a-b2=a2-2ab+b2;2、乘法公式的使用技巧:①提出负号:对于含负号较多的因式,通常先提出负号,以避免负号多带来的麻烦;例1、运用乘法公式计算:1-1+3x-1-3x; 2-2m-12解:1-1+3x-1-3x=-1-3x-1+3x=1-3x1+3x=12-3x2=1-9x2.2 -2m-12=-2m+12=2m+12= 4m 2+4m+1.②改变顺序:运用交换律、结合律,调整因式或因式中各项的排列顺序,可以使公式的特征更加明显.例2、 运用乘法公式计算:1错误!错误!; 2x-1/2x 2+1/4x+1/2解:1错误!错误!=错误!错误!=错误!错误!=错误!= 错误!2 x-1/2x 2+1/4x+1/2= x-1/2 x+1/2x 2+1/4=x 2-1/4 x 2+1/4= x 2-1/16.③逆用公式将幂的公式或者乘法公式加以逆用,比如逆用平方差公式,得a 2-b 2 = a+ba-b,逆用积的乘方公式,得a n b n =ab n ,等等,在解题时常会收到事半功倍的效果;例3、 计算:1x/2+52-x/2-52 ; 2a-1/22a 2+1/4 2a+1/22解:1x/2+52-x/2-52 =x/2+5+x/2-5 x/2+5-x/2-5=x/2+5+x/2-5 x/2+5-x/2+5=x ·10=10x.2a-1/22a 2+1/4 2a+1/22=a-1/2a 2+1/4 a+1/2 2 =a-1/2 a+1/2 a 2+1/4 2=a 2-1/4 a 2+1/4 2 =a 4-1/16 2 =a 8-a 4/8+1/256.④合理分组:对于只有符号不同的两个三项式相乘,一般先将完全相同的项调到各因式的前面,视为一组;符号相反的项放在后面,视为另一组;再依次用平方差公式与完全平方公式进行计算;计算:1x+y+11-x-y; 22x+y-z+52x-y+z+5.解:1 x+y+11-x-y=1+x+y1-x-y= 1+x+y1-x+y=12-x+y 2=1-x 2+2xy+y 2= 1-x 2-2xy-y 2.22x+y-z+52x-y+z+5=2x+5+y-z2x+5-y+z= 2x+5+y-z2x+5-y-z= 2x+52-y-z 2 =4x 2+20x+25-y 2-2yz+z 2= 4x 2+20x+25-y 2+2yz-z 2 = 4x 2-y 2-z 2+2yz +20x+25 .七、巧用公式做整式乘法整式乘法是初中数学的重要内容,是今后学习的基础,应用极为广泛;尤其多项式乘多项式,运算过程复杂,在解答中,要仔细观察,认真分析题目中各多项式的结构特征,将其适当变化,找出规律,用乘法公式将其展开,运算就显得简便易行;一. 先分组,再用公式例1. 计算:()()a b c d a b c d -+-----简析:本题若以多项式乘多项式的方法展开,则显得非常繁杂;通过观察,将整式()a b c d -+-运用加法交换律和结合律变形为()()--++b d a c ;将另一个整式()----a b c d 变形为()()---+b d a c ,则从其中找出了特点,从而利用平方差公式即可将其展开;解:原式[]()()[]=--++---+()()b d a c b d a c 二. 先提公因式,再用公式例2. 计算:8244x y x y +⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪简析:通过观察、比较,不难发现,两个多项式中的x 的系数成倍数,y 的系数也成倍数,而且存在相同的倍数关系,若将第一个多项式中各项提公因数2出来,变为244x y +⎛⎝ ⎫⎭⎪,则可利用乘法公式; 解:原式=+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪24444x y x y 三. 先分项,再用公式例3. 计算:()()232236x y x y ++-+简析:两个多项中似乎没多大联系,但先从相同未知数的系数着手观察,不难发现,x 的系数相同,y 的系数互为相反数,符合乘法公式;进而分析如何将常数进行变化;若将2分解成4与-2的和,将6分解成4与2的和,再分组,则可应用公式展开; 解:原式=[]()()[]()()24232423x y x y +--++- 四. 先整体展开,再用公式例4. 计算:()()a b a b +-+221简析:乍看两个多项式无联系,但把第二个整式分成两部分,即[]()a b -+21,再将第一个整式与之相乘,利用平方差公式即可展开;解:原式[]=+-+()()a b a b 221五. 先补项,再用公式例5. 计算:331313131842+++++()()()()简析:由观察整式()31+,不难发现,若先补上一项()31-,则可满足平方差公式;多次利用平方差公式逐步展开,使运算变得简便易行;解:原式=+++++-331313131312842()()()()() 六. 先用公式,再展开例6. 计算:11211311411102222-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪… 简析:第一个整式1122-⎛⎝ ⎫⎭⎪可表示为11222-⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥,由简单的变化,可看出整式符合平方差公式,其它因式类似变化,进一步变换成分数的积,化简即可;解:原式=+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪11211211311311411411101110… 七. 乘法公式交替用例7. 计算:()()()()x z x xz z x z x xz z +-+-++222222简析:利用乘法交换律,把第一个整式和第四个整式结合在一起,把第二个整式与第三个整式结合,则可利用乘法公式展开;解:原式[][]=+++-+-()()()()x z x xz z x xz z x z 222222 八、中考与乘法公式1. 结论开放例1. 02年济南中考请你观察图1中的图形,依据图形面积的关系,不需要添加辅助线,便可得到一个你非常熟悉的公式,这个公式是______________;分析:利用面积公式即可列出()()x y x y x y +-=-22或()()x y x y x y 22-=+-或()x y x xy y -=-+2222在上述公式中任意选一个即可;例2. 03年陕西中考如图2,在长为a 的正方形中挖掉一个边长为b 的小正方形a b >,把余下的部分剪成一个矩形,如图3,通过计算两个图形的面积,验证了一个等式,则这个等式是______________;分析:利用面积公式即可列出()()a b a b a b +-=-22或()()a b a b a b 22-=+-2. 条件开放例3. 03年四川中考多项式912x +加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是____________填上你认为正确的一个即可,不必考虑所有的可能情况;分析:解答时,可能习惯于按课本上的完全平方公式,得出 ()9163122x x x ++=+ 或()9163122x x x +-=-只要再动点脑筋,还会得出 9191222x x +-= 故所加的单项式可以是±6x ,或8144x ,或-1,或-92x 等; 3. 找规律例4. 01年武汉中考 观察下列各式:由猜想到的规律可得()()x x x x x n n n -+++++=--1112…____________;分析:由已知等式观察可知 ()()x x x x x x n n n n -+++++=---+111121…4. 推导新公式例5. 在公式()a a a +=++12122中,当a 分别取1,2,3,……,n 时,可得下列n 个等式 将这n 个等式的左右两边分别相加,可推导出求和公式:123++++=…n __________用含n 的代数式表示 分析:观察已知等式可知,后一个等式的右边第一项等于前一个等式的左边,将已知等式左右两边分别相加,得:()n n n +=+⨯+⨯++⨯+112122222… 移项,整理得:例6. 04年临汾中考阅读材料并解答问题:我们已经知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些等式也可以用这种形式表示,例如:()()22322a b a b a ab b ++=++ 就可以用图4或图5等图表示;1请写出图6中所表示的代数恒等式____________;2试画出一个几何图形,使它的面积能表示:3请仿照上述方法另写一个含有a,b 的代数恒等式,并画出与之对应的几何图形; 解:1()()2222522a b b a a b ab ++=++2如图7。

整式的乘法之平方差完全平方公式专项练习60题有答案

整式的乘法之平方差完全平方公式专项练习60题有答案

整式的乘法公式的专项练习60题(有答案)1.下列运用平方差公式计算,错误的是()A.(a+b)(a-b)=a²-b²B.(x+1)(x﹣1)=x²﹣1C.(2x+1)(2x﹣1)=2x²﹣1D.(﹣a+b)(﹣a﹣b)=a²﹣b²2.下列各式中,不能用平方差公式计算的是()A.(x﹣y)(﹣x+y)B.(﹣x﹣y)(﹣x+y)C.(x﹣y)(﹣x﹣y)D(x+y)(﹣x+y).3.已知a+b=3,则a2﹣b2+6b的值为()A.6B.9C.12D.154.若(2x+3y)(mx﹣ny)=9y2﹣4x2,则m、n的值为()A.m=2.n=3B.m=﹣2,n=﹣3C.m=2,n=﹣3D.m=﹣2,n=35.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+66.如图所示,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)7.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b28.如图,边长为(a+2)的正方形纸片剪出一个边长为a的正方形之后,剩余部分可剪拼成一个矩形(不重叠缝隙),若拼成的矩形一边长为2,则另一边长是()A.2B.a+4C.2a+2D.2a+49.已知(m﹣n)2=8,(m+n)2=2,则m2+n2=()A.10B.6C.5D.310.下列计算正确的是()A.(x+y)²=x²+y²B.(x﹣y)²=x²﹣2xy﹣y²C.(x+2y)(x﹣2y)=x²﹣2y²D.(﹣x+y)²=x²﹣2xy+y²11.若(7x﹣a)2=49x2﹣bx+9,则|a+b|之值为何()A.18B.24C.39D.4512.先化简,再求值:(2a﹣b)2﹣b2,其中a=﹣2,b=3.13.计算:(a﹣2)2+4(a﹣1)14.已知实数x满足x+=3,则x2+的值为多少?15.先化简,再求值:(x+1)2+x(1﹣x),其中x=﹣2.16.先化简,再求值:(a+1)(a﹣1)+a(1﹣a),其中a=2012.17.已知2x﹣1=3,求代数式(x﹣3)2+2x(3+x)﹣7的值.18.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是_________,它是自然数_________的平方,第8行共有_______个数;(2)用含n的代数式表示:第n行的第一个数是____,最后一个数是____,第n行共有____个数;(3)求第n行各数之和.19.已知a2+2ab+b2=0,求代数式a(a+4b)﹣(a+2b)(a﹣2b)的值.20.20082﹣2007×2009.21.利用乘法公式计算:99×101.(写出计算过程)22.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1(x﹣1)(x4+x3+x2+x+1)=x5﹣1①你能否由此归纳出一般性规律:(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=_________;②根据①求出:1+2+22+…+262+263的结果.23.计算:(a2+ab+b2)(a2﹣ab+b2).24.把20cm长的一根铁丝分成两段,将每一段围成一个正方形,如果这两个正方形的面积之差是5cm2,求这两段铁丝的长.25.为了扩大绿化面积,若将一个正方形花坛的边长增加3米,则它的面积就增加39平方米,求这个正方形花坛的边长?26.5402﹣543×537(用乘法公式计算)27.已知:a2﹣b2=(a﹣b)(a+b);a3﹣b3=(a﹣b)(a2+ab+b2);a4﹣b4=(a﹣b)(a3+a2b+ab2+b3);a5﹣b5=(a﹣b)(a4+a3b+a2b2+ab3+b4)按此规律,则:(1)a6﹣b6=(a﹣b)_________;(2)若,请你根据上述规律求出代数式的值.28.计算:(1﹣)(1﹣)…(1﹣)(1﹣)=_________29.乘法公式的探究及应用.(1)如图,可以求出阴影部分的面积是_________(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是_________,长是_________,面积是_________(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式_________(用式子表达)(4)运用你所得到的公式,计算:10.3×9.7(x+2y﹣3)(x﹣2y+3)30.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”.如:8=32﹣12,16=52﹣32,24=72﹣52,…因此8,16,24这三个数都是奇特数.(1)56这个数是奇特数吗?为什么?(2)设两个连续奇数的2n﹣1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?31.设a﹣b=﹣2,求的值.32.已知(x+y)2=49,(x﹣y)2=1,求下列各式的值:(1)x2+y2;(2)xy.33.已知x+=4,求x﹣的值.34.已知:x+y=3,xy=2,求x2+y2的值.35.已知x+y=5,xy=1,求①x2+y2;②(x﹣y)2.36.用乘法公式计算:10052.37.如图所示,图1是一个长为2m,宽为2n的长方形,沿图中的虚线剪成四个全等的小长方形,再按图2围成一个较大的正方形.(1)请用两种方法表示图2中阴影部分的面积(只需表示,不必化简);(2)比较(1)的两种结果,你能得到怎样的等量关系?(3)请你用(2)中得到的等量关系解决下面问题:如果m﹣n=4,mn=12,求m+n的值.38.在公式(a+b)2=a2+2ab+b2中,如果我们把a+b,a2+b2,ab分别看做一个整体,那么只要知道其中两项的值,就可以求出第三项的值.已知a+b=6,ab=﹣27,求下列的值.(1)a2+b2;(2)a2+b2﹣ab;(3)(a﹣b)2.39.计算:(1)(a﹣b)2;(2)(﹣x2+3y2)2;(3)(﹣a2﹣2b)2;(4)(0.2x+0.5y)2.40.已知x2+y2﹣6x﹣8y+25=0,求代数式的值.41.若x+y=2,且(x+2)(y+2)=5,求x2+xy+y2的值.42.已知,求的值.43.一个正方形的一边增加3cm,另一边减少3cm,所得到的长方形与这个正方形的每一边减少1cm所得到的正方形的面积相等,求原来正方形的面积.44.观察规律并填空(本题7分)(1)=,,+_________+;(2)若,求的值.45.已知a+19=b+9=c+8,求代数式(b﹣a)2+(c﹣b)2+(c﹣a)2的值.46.求证:5个连续整数的平方和能被5整除.47.已知:x2﹣xy=12,y2﹣xy=15,求2(x﹣y)2﹣3的值.48.实践与探索:(1)比较下列算式结果的大小:42+32_________2×4×3,(﹣2)2+12_________2×(﹣2)×1,242+_________2×24×,22+22_________2×2×2(2)通过观察、归纳,比较:20072+20082_________2×2007×2008;(3)请你用字母a、b写出能反映上述规律的式子:_________.49.(x+2)2﹣(x﹣2)2.50.已知a2﹣5a+1=0,求的值.51.已知m=2010×2011﹣1,n=20102﹣2010×2011+20112,请尝试用一种简便方法比较m、n大小.52.计算:①﹣②(x﹣3)(x+4)﹣(x+1)(x﹣2);③8x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)④(3x+4)2﹣(2x+3)(2x﹣3)⑤﹣6xy(x2﹣2xy﹣y2)﹣3xy(2x2﹣4xy+y2)⑥(2x﹣y﹣1)(2x+y﹣1)53.已知|x﹣y+1|与x2+8x+16互为相反数,求x2+2xy+y2的值.54.已知x,y,z都是实数,且x2+y2+z2=1,则xy+yz+xz的最大值为_________.55.(1)已知a2+b2=11,a+b=4,且a>b,求a﹣b的值.(2)如果规定符号“*”的意义是,求2*(﹣3)*4的值.56.利用右图可以证明等式:a2+2ab+b2=(a+b)2.(1)图中大正方形的面积既可以表示为:_________,又可以表示为:_________,从而证明a2+2ab+b2=(a+b)2;(2)请画出一个图形来计算:(a+b+c)2.(在图上标注必要的字母)57.试说明:(a2+3a)(a2+3a+2)+1是一个完全平方式.58.计算:(m+n )2+(2+m ﹣n )(2﹣m+n ).59.(3x ﹣2y )2(3x+2y )2(9x 2+4y 2)2.60.如图是边长为a+2b 的正方形(1)边长为a 的正方形有_________个(2)边长为b 的正方形有_________个(3)两边分别为a 和b 的矩形有_________个(4)用不同的形式表示边长为a+2b 的正方形面积,并进行比较写出你的结论.参考答案:1.C2.解:A 、含x 、y 的项都符号相反,不能用平方差公式计算;B 、含x 的项符号相同,含y 的项符号相反,能用平方差公式计算;C 、含y 的项符号相同,含x 的项符号相反,能用平方差公式计算;D 、含y 的项符号相同,含x 的项符号相反,能用平方差公式计算.3.B解:a 2﹣b 2+6b=(a+b )(a ﹣b )+6b=3(a ﹣b )+6b=3a+3b=3(a+b )=9.故选B .4.B解:∵(2x+3y )(mx ﹣ny )=2mx 2﹣2nxy+3mxy ﹣3ny 2=9y 2﹣4x 2,∴2m=﹣4,﹣3n=9,﹣2n+3m=0,解得m=﹣2,n=﹣3,5.C解:依题意得剩余部分为(m+3)2﹣m 2=(m+3+m )(m+3﹣m )=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.6.C解:正方形中,S 阴影=a 2﹣b 2;梯形中,S 阴影=(2a+2b )(a ﹣b )=(a+b )(a ﹣b );故所得恒等式为:a 2﹣b 2=(a+b )(a ﹣b ).故选C .7.C解:阴影部分的面积=a 2﹣b 2=(a+b )(a ﹣b ).故选C .8.C解:依题意得剩余部分面积为:(a+2)2﹣a 2=a 2+4a+4﹣a 2=4a+4,∵拼成的矩形一边长为2,∴另一边长是(4a+4)÷2=2a+2.故选C .9.C解:∵(m ﹣n )2=8,∴m 2﹣2mn+n 2=8①,∵(m+n )2=2,∴m 2+2mn+n 2=2②,①+②得,2m 2+2n 2=10,∴m 2+n 2=5.故选C .10.D11.D解:∵(7x ﹣a )2=49x 2﹣bx+9,∴49x 2﹣14ax+a 2=49x 2﹣bx+9,∴,解得或,当a=3,b=42时,|a+b|=|3+42|=45;当a=﹣3,b=﹣42时,|a+b|=|﹣3﹣42|=45;12.解:原式==4a 2﹣4ab .将a=﹣2,b=3代入上式得:上式=4×(﹣2)2﹣4×(﹣2)×3=16+24=4013.解:原式=a2+4﹣4a+4a﹣4=a2.14.7解:由题意得,x+=3,两边平方得:x2+2+=9,故x2+=7.15.解:原式=x2+2x+1+x﹣x2=3x+1,当x=﹣2时,原式=3×(﹣2)+1=﹣6+1=﹣5.16.解:原式=a2﹣1+a﹣a2=a﹣1,∵a=2012,∴原式=2012﹣1=2011.17.解:由2x﹣1=3得x=2,又(x﹣3)2+2x(3+x)﹣7=x2﹣6x+9+6x+2x2﹣7=3x2+2,∴当x=2时,原式=14.18.解:(1)每行数的个数为1,3,5,…的奇数列,由题意最后一个数是该行数的平方即得64,其他也随之解得:8,15;(2)由(1)知第n行最后一数为n2,则第一个数为n2﹣2n+2,每行数由题意知每行数的个数为1,3,5,…的奇数列,故个数为2n﹣1;(3)第n行各数之和:×(2n﹣1)=(n2﹣n+1)(2n﹣1).19.解:a(a+4b)﹣(a+2b)(a﹣2b)=a2+4ab﹣(a2﹣4b2)=4ab+4b2∵a2+2ab+b2=0∴a+b=0∴原式=4b(a+b)=020.解:20082﹣2007×2009=20082﹣(2008﹣1)(2008+1)=20082﹣(20082﹣12)=20082﹣20082+1=1.21.解:由平方差公式,得99×101=(100﹣1)(100+1)=1002﹣12=10000﹣1=9999.22.解:①(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=x n﹣1;②原式=(2﹣1)(263+262+…+22+2+1)=264﹣1.23.(a2+ab+b2)(a2﹣ab+b2)=(a2+b2+ab)(a2+b2﹣ab)=(a2+b2)2﹣(ab)2=a4+b4+2a2b2﹣a2b2=a4+b4+a2b2.24.解:设其中较大的一段的长为xcm(x≥10),则另一段的长为(20﹣x)cm.则两个小正方形的边长分别为x cm和(20﹣x)cm∵两正方形面积之差为5cm2,∴(x)2﹣[(20﹣x)]2=5,解得x=12cm.则另一段长为20﹣12=8cm.∴两段铁丝的长分别为12cm和8cm.25.解:设正方形花坛边长为x,根据题意,列出方程得:(x+3)2﹣x2=39,(x+3﹣x)(x+3+x)=39,解方程得:x=5.所以这个正方形花坛的边长为5.26.解:5402﹣543×537=5402﹣(540+3)×(540﹣3)=5402﹣(5402﹣9)=9.27.解:(1)根据规律可知,a6﹣b6=(a﹣b)(a5+a4b+a3b2+a2b3+ab4+b5);(2)=(a﹣)(a2+a•+)=(a﹣)(a2+a•+)=(a﹣)(a2++1)=(a﹣)(a2++2a•﹣2a•+1)=(a﹣)[(a2+﹣2a•)+2+1]=(a﹣)[(a﹣)2+3]=3×(32+3)=3×12=36.28.解:(1﹣)(1﹣)…(1﹣)(1﹣),=(1﹣)(1+)(1﹣)(1+)•…•(1﹣)(1+)(1﹣)(1+),=××××××…××××=×=.29.解:(1)a2﹣b2;(2)宽是:a﹣b,长是:a+b,面积是:(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2;(4)10.3×9.7=(10+0.3)(10﹣0.3)=100﹣0.09=99.91;(x+2y﹣3)(x﹣2y+3)=[x+(2y﹣3)][x﹣(2y﹣3)]=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9.30.解:(1)56这个数不是奇特数.因为56=152﹣132.(2)两个连续奇数构造的奇特数是8的倍数.理由如下:(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n•2=8n.31.解:原式==,∵a﹣b=﹣2,∴原式==2.32.解:由题意知:(x+y)2=x2+y2+2xy=49①,(x﹣y)2=x2+y2﹣2xy=1②,①+②得:(x+y)2+(x﹣y)2=x2+y2+2xy+x2+y2﹣2xy=2(x2+y2)=49+1=50,∴x2+y2=25;①﹣②得:4xy=(x+y)2﹣(x﹣y)2=49﹣1=48,∴xy=12.33.解:∵,∴,∴x2+=14,∵(x﹣)2=x2+﹣2=12,∴x﹣=.34.解:∵x+y=3,∴x2+y2+2xy=9,∵xy=2,∴x2+y2=9﹣2xy=9﹣4=5.35.解:①x2+y2=(x+y)2﹣2xy=52﹣2×1=25﹣2=23;②(x﹣y)2=(x+y)2﹣4xy=52﹣4×1=25﹣4=21.36.10052=(1000+5)2=1000000+2×1000×5+25=1010025.37解:(1)方法一:∵大正方形的面积为(m+n)²,四个小长方形的面积为4mn,∴中间阴影部分的面积为S=(m+n)²﹣4mn.方法二:∵中间小正方形的边长为m﹣n,∴其面积为(m﹣n)².(2)(m+n)²﹣4mn=(m﹣n)²或(m+n)²=(m﹣n)²+4mn).(3)由(2)得(m+n)²﹣4×12=42,即(m+n)²=64,∴m+n=±8.又m、n非负,∴m+n=8.38.解:(1)由已知a+b=6可得(a+b)2=36,即:a2+b2+2ab=36,∵ab=﹣27,∴a2+b2=36﹣2×(﹣27)=90;(2)由(1)可得a2+b2=90,∵ab=﹣27,∴a2+b2﹣ab=90+27=117;(3)∵(a﹣b)2=a2﹣2ab+b2=a2+b2﹣2ab,a2+b2=90,∴a2+b2﹣2ab=90﹣2×(﹣27)=144.39.解:(1)原式=a2﹣ab+b2;(2)原式=x4﹣6x2y2+9y4;(3)原式=a4+4a2b+4b2;(4)原式=0.04x2+0.2xy+0.25y2.40.解:∵x2+y2﹣6x﹣8y+25=0,∴(x﹣3)2+(y﹣4)2=0,∴x=3,y=4,当x=3,y=4时,原式=﹣=.41.解:∵(x+2)(y+2)=5,∴xy+2(x+y)+4=5,∵x+y=2,∴xy=﹣3,∴x2+xy+y2=(x+y)2﹣xy=22﹣(﹣3)=7.42.解:∵∴即又∵∴43.解:设原来正方形的边长为xcm,根据题意得(x﹣3)(x+3)=(x﹣1)2,解得x=5.∴x2=25.答:原来正方形的面积是25cm2.44.解:(1)由=和得:+2+.(2)由(1)中等式可以得到规律:=x2+2+;∵;∴=x2+2+=13;解得=13﹣2=11.45.解:∵a+19=b+9=c+8,∴b﹣a=10,c﹣b=1,c﹣a=11,∴原式=102+12+112=100+1+121=222.46.证明:设五个连续整数分别为n﹣2,n﹣1,n,n+1,n+2,则(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2=5n2+10,故能被5整除.47.解:∵x2﹣xy=12,y2﹣xy=15,∴x2﹣xy+y2﹣xy=15+12,∴(x﹣y)2=27,∴2(x﹣y)2﹣3=2×27﹣3=5148.解:(1)42+32=16+9=25,2×4×3=24,;(﹣2)2+12=4+1=5,2×(﹣2)×1=﹣4;242+=576+=576,2×24×=2;22+22=4+4=8,2×2×2=8,.则42+32>2×4×3,(﹣2)2+12>2×(﹣2)×1,242+>2×24×,22+22=2×2×2;(2)20072+20082>2×2007×2008;(3)a2+b2≥2ab,当a=b≥0时,等号成立.49.解:原式=[(x+2)+(x﹣2)][(x+2)﹣(x﹣2)]=2x×2=4x50.解:由已知a2﹣5a+1=0得a≠0,则将已知等式两边同除以a得a﹣5+=0,∴a+=5,=a2+=(a+)2﹣2=52﹣2=23.51.m=2010×2011﹣1,n=20102﹣2010×2011+20112=20102﹣2×2010×2011+20112+2010×2011 =(2010﹣2011)2+2010×2011=2010×2011+1,∵2010×2011﹣1<2010×2011+1,∴m<n.52.解:①﹣=m 2+4+2m ﹣(﹣4﹣m+m+m 2)=2m+8;②(x ﹣3)(x+4)﹣(x+1)(x ﹣2)=(x 2+4x ﹣3x ﹣12)﹣(x 2﹣2x+x ﹣2)=2x ﹣10;③8x 2﹣(x ﹣2)(3x+1)﹣2(x+1)(x ﹣5)=8x 2﹣(3x 2+x ﹣6x ﹣2)﹣2(x 2﹣5x+x ﹣5),=3x 2+13x+12;④(3x+4)2﹣(2x+3)(2x ﹣3)=(9x 2+16+24x )﹣(4x 2﹣6x+6x ﹣9)=5x 2+24x+25,⑤﹣6xy (x 2﹣2xy ﹣y 2)﹣3xy (2x 2﹣4xy+y 2)=﹣12x 3y+24x 2y 2+3xy 3;⑥(2x ﹣y ﹣1)(2x+y ﹣1)=4x 2﹣4x+1﹣y 2.53.解:∵|x ﹣y+1|与x ²+8x+16互为相反数,∴|x ﹣y+1|与(x+4)²互为相反数,即|x ﹣y+1|+(x+4)2=0,∴x ﹣y+1=0,x+4=0,解得x=﹣4,y=﹣3.当x=﹣4,y=﹣3时,原式=(﹣4﹣3)²=49.54.解:把原式两边同时乘以2得:2(x 2+y 2+z 2)=2,即(x 2+y 2)+(x 2+z 2)+(y 2+z 2)=2,∵x 2+y 2≥2xy ,x 2+z 2≥2xz ,y 2+z 2≥2yz ,∴2=(x 2+y 2)+(x 2+z 2)+(y 2+z 2)≥2xy+2xz+2yz ,即xy+xz+yz ≤1,当且仅当x=y=z 时取等号,则xy+xz+yz 的最大值为1.55.解:(1)∵a+b=4,∴a 2+2ab+b 2=16,∵a 2+b 2=11,∴2ab=16﹣11=5,∴(a ﹣b )2=a 2﹣2ab+b 2=11﹣5=6,∵a >b ,∴a ﹣b=;(2)∵2*(﹣3)==6,∴2*(﹣3)*4=6*4==2.4.故答案为:(1);(2)2.4.56.解:(1)边长为(a ﹣b )的正方形的面积可以直接由正方形面积公式表示为(a ﹣b )2;又可以用边长为a 的正方形的面积,减去2个长为a ,宽为b 的长方形面积,加上边长为b 的正方形的面积,结果用含a ,b 的式子表示为a 2﹣2ab+b 2;故答案为a 2+2ab+b 2、(a+b )2(2)已知大正方形的边长为a+b+c ,利用图形的面积关系可得:(a+b+c )2=a 2+b 2+c 2+2ab+2bc+2ac .57.证明:(a 2+3a )(a 2+3a+2)+1=(a 2+3a )2+2(a 2+3a )+1=(a 2+3a+1)2,∴(a 2+3a )(a 2+3a+2)+1是一个完全平方式.58.解:(m+n )²+(2+m ﹣n )(2﹣m+n )=(m+n )²+[2+(m ﹣n )][2﹣(m ﹣n )](m+n )²+4﹣(m ﹣n )²=m ²+2mn+n ²+4﹣m ²﹣n ²+2mn=4mn+4.59.原式=[(3x ﹣2y )(3x+2y )]²(9x2+4y2)²=(9x ²﹣4y ²)²(9x ²+4y ²)²=[(9x ²﹣4y ²)(9x ²+4y ²)]²=(81x 4﹣16y 4)².60.解:(1)由图可知边长为a 的正方形只有一个;(2)由图可知边长为b 的正方形有4个;(3)由图可知两边长分别为a 和b 的矩形有4个;(4)∵S 边长为a+2b 的正方形=(a+2b )2S 边长为a+2b 的正方形=a 2+4b 2+4ab ;∴结论是(a+2b )2=a 2+4b 2+4ab .。

七年级数学上册专题知识讲义-乘法公式、整式的除法(附练习及答案)

七年级数学上册专题知识讲义-乘法公式、整式的除法(附练习及答案)

乘法公式、整式的除法【考向解读】一、考点突破本讲考点主要包括:平方差公式、完全平方公式,同底数幂的除法、单项式除以单项式、多项式除以单项式。

通过多项式的乘法运算得到乘法公式,再运用公式计算多项式的乘法,培养从一般到特殊,再从特殊到一般的思维能力;通过乘法公式的几何背景,培养运用数形结合思想和整体思想解决问题的能力。

平方差公式是中考命题中比较重要的考点之一,单独命题的题型多为填空题,选择题和简单的计算题,这一知识点也常融入其他知识命题;完全平方公式在中考中占有重要地位,它在数的运算,代数式的化简,方程,函数等方面都有极其广泛的应用。

整式的除法在中考中出现的频率比较高,题型多见选择题与填空题,有时也会出现化简求值题,因此运算必须熟练。

二、重点、难点提示重点:平方差公式、完全平方公式,整式的除法及零指数幂的运算。

难点:乘法公式中字母的广泛含义及整式除法法则的应用。

【重点点拨】知识脉络图【典例精析】能力提升类例1 计算:(1)(-2a-b)(b-2a);(2)(2x+y-z)2.一点通:第(1)题中的b-2a=-2a+b,把-2a看成平方差公式中的“a”即可;第(2)题有多种解法,可把2x看成完全平方公式中的“a”,把y-z看成公式中的“b”,也可把2x+y看成公式中“a”,把z看成公式中的“b”。

答案:(1)(-2a-b)(b-2a)=(-2a-b)(-2a+b)=(-2a)2-b2=4a2-b2;(2)(2x+y-z)2=[(2x+y)-z]2=(2x+y)2-2z(2x+y)+z2=4x2+4xy+y2-4xz -2yz +z 2.点评:这两题都可以运用乘法公式计算,第(1)题先变形,再用平方差公式;第(2)题把三项和看成两项和,两次运用完全平方公式。

例2 计算:(1)[(-3xy )2·x 3-2x 2·(3xy 2)3·12y ]÷(9x 4y 2);(2)[(x +2y )(x -2y )+4(x -y )2]÷(6x ).一点通:本题是整式的混合运算,解题时要注意运算顺序,先乘方,再乘除,最后加减,有括号先算括号里的。

完全平方公式和平方差公式法习题(内含答案)

完全平方公式和平方差公式法习题(内含答案)

§13.3 乘法公式一、两数和乘以这两数的差1、公式:(a+b)(a-b)=a2-b2;名称:平方差公式。

2、注意事项:(1)a、b可以是实数,也可以是代数式等。

如:(10+9)(10-9)=102-92=100-81=19;(2xy+a)(2xy-a)=(2xy)2-a2=4 x2y2-a2;(a+b+π)( a+b -π)=(2xy)2-a2=4 x2y2-a2;(2)注意公式中的第一项、第二项各自相同,中间是“异号”的情况,才能用平方差公式。

(3)注意公式的来源还是“多项式×多项式”。

二、完全平方公式1、公式:(a±b)2=a2±2a b+b2;名称:完全平方公式。

2、注意事项:(1)a、b可以是实数,也可以是代数式等。

如:(2+3)2=(2)2+2×2×3+32=2+62+9=11+62;(mn-a) 2=(mn)2-2m n·a+ a2= m2n2-2m n a+ a2;( a+b -π)2=( a+b)2-2( a+b)π+π2= a2+2a b+b2-2πa-πb +π2;(2)注意公式运用时的对位“套用”;(3)注意公式中“中间的乘积项的符号”。

3、补充公式:(a+ b+ c)2=a2+c2+b2+2a b+2bc+2ca特别提醒:利用乘法公式进行整式的运算时注意“思维顺序”是:“一看二套三计算”。

完全平方和平方差公式习题一. 选择题:1. 下列四个多项式:22b a +,22b a -,22b a +-,22b a --中,能用平方差公式分解因式的式子有( )A. 1个B. 2个C. 3个D. 4个2. )23)(23(y x y x -+-是下列哪个多项式分解因式的结果( )A. 2249y x -B. 2249y x +C. 2249y x --D. 2249y x +-3. 下列各式中,能运用完全平方公式分解因式的是( ) A. 22b a + B. 2242b ab a ++ C. 422b ab a +- D. 22412b ab a +- 4. 如果k x x +-322是一个完全平方公式,则k 的值为( ) A. 361 B. 91 C. 61 D. 31 5. 如果22259b kab a ++是一个完全平方式,则k 的值( )A. 只能是30B. 只能是30-C. 是30或30-D. 是15或15-6. 把9)6(6)6(222+---x x 分解因式为( )A. )3)(3(-+x xB. 92-xC. 22)3()3(-+x xD. 2)3(-x 7. 162-a 因式分解为( )A. )8)(8(+-a aB. )4)(4(+-a aC. )2)(2(+-a aD. 2)4(-a8. 1442+-a a 因式分解为( )A. 2)2(-aB. 2)22(-aC. 2)12(-aD. 2)2(+a9. 2222)(4)(12)(9y x y x y x ++-+-因式分解为( )A. 2)5(y x -B. 2)5(y x +C. )23)(23(y x y x +-D. 2)25(y x -10. 把2222)())((2)(c a b c b c a ab c b a -++--+分解因式为( )A. 2)(b a c +B. 22)(b a c -C. 2)(b a c +D. 22)(b a c +二. 填空题:1. 把36122+-x x 因式分解为______。

14.2完全平方公式专项训练题(含答案)

14.2完全平方公式专项训练题(含答案)

14.2完全平方公式专项训练题(含答案)完全平方公式课时练习 A. 100' + 1 B. 101 区 C. 100+100 X1+1 D. 1001+2 X100+1、选择题(每小题5分,共30 分)1?计算(a+b)(-a-b)的结果是(B. -a -b卜C. a -2ab+bD. -a -2ab-b2. 设(3m+2n)=(3m-2n)+P,贝U P 的值是(A. 12mnB. 24mnC. 6mnD. 48mn 10.若(a+b)2=9,(a-b)2=1,贝U ab 的值为()A. 2B. -2C. 8D. -811.若(a+b)2=36,(a-b) 2=4,贝U a +b 的值为(A. 9B. 40C. 20D. -2012.化简:(m+1) -(1-m)(1+m)正确的结果是()4.已知a +b =25,且ab=12,则a+b的值是(A. -a *-2a-1B. a■■-1C. -a -1D. -a +2a-18. 若x+y=10,xy=24,则x +y E的值为()18. ______________________________ 多项式4x +1加上一个单项式后能成为一个整式的完全平方, 符合条件的这个单项式是 .A. 52B. 148C. 58D. 769. 计算101 等于 ( ) 19. (a+b)(-b-a)= ______20. 已知a+b=6,ab=5,则代数式a+b的值是 ______________3.若x -kxy+9y是一个完全平方式,则k值为(A. 2mB. 2m+2C. 2m +2mD. 0 A. 3 B. 6 C. ± D. ±1 13.已知a =4,则a+ ()的值是()A. 1B. ±C. 7D. ±5.下列运算正确的是A. (a-2b) (a-2b)=a l;-4bB. (P-q) =P -q14. 设(5a+3b) =(5a-3b) +A,贝A=( )A. 30abB.60abC. 15abD.12ab15. 若x +y =(x+y) +A=(x-y) +B,贝U A,B 各等于()C. (a+2b) (a-2b)=-a -2bD. (-s-t) -=s +2st+t■■6.下列等式成立的是()A. (-x-1 ) =(x-1) B. (-x-1) =(x+1)卜C. (-x+1) =(x+1)D. (x+1) =(x-1)7.计算(a+1)(-a-1)的结果是()A. -2xy,2xy B. -2xy,-2xy C. 2xy,-2xy D. 2xy,2xy二、填空题(每小题5分,共25分)16. 计算:(-x-y ) - = ___________17. X: +y】=(x+y) 2- _______ = (x-y) 2+ _________ .A. a -bA. 4B. 16C. 14D. 15请你写出三、解答题(每题10分,共50分)21. 计算999的结果.22. 解方程2(x-1) +(x-2)(x+2)=3x(x-5)23. 已知:x+y=3,xy=1 ,试求:(1) x +y 的值;(2) (x-y)的值.1 124. 已知a+ =6,求(a-)-的值.a a25. 已知a,b是有理数,试说明a +b -2a-4b+8的值是正数第十四章第二节完全平方公式课时练习一、选择题(每小题5分,共30分)1. 计算(a+b)( -a-b)的结果是( )A. a -bB. -a -bC. a -2ab+bD. -a -2ab-b【答案】D【解析】解:(a+b)( -a-b) =- (a+b)( a+b) =- ( a2+2ab+b2) =-a2-2ab-b2-故选D.2. 设(3m+2n) = (3m-2n) +P,贝U P 的值是( )A. 12mnB. 24mnC. 6mnD. 48mn【解析】解:T( 3m+2n) 2=9m2+4n2+12mn=9m2+4n2-12mn+24mn= (3m-2n) 2+24mn,P=24mn.故选B .3. 若x -kxy+9y是一个完全平方式,则k值为( )A. 3B. 6C. ±D. ±1【答案】C【解析】解:T x2-kxy+9y2是一个完全平方公式,?- x2-kxy+9y2 = (x±3y) 2,.?.k应该是土6 .故选C.点睛:本题主要考查了完全平方公式,根据两平方项确定出这两个数,再根据乘积二倍项求解是解题关键.4. 已知a +b =25,且ab=12,则a+b的值是( )A. 1B. ±1C. 7D. ±7【答案】D【解析】解:T a2+b2=25,ab=12,? a2+b2+2ab= (a+b)2=25+2 X12=49,? a+b=±7 .故选D.5. 下列运算正确的是()A. (a-2b) (a-2b)=a -4bB. (P-q) =P -qC. (a+2b) (a-2b)=-a -2bD. (-s-t) =s +2st+t【答案】D【解析】解:A . ( a-2b) (a-2b) =a2+4b2-4ab,所以本题错误;C. ( a+2b) (a-2b) = a2-4b2,所以本题错误;D. (-s-t) 2=s2+2st+t2,本题正确.故选D .6. 下列等式成立的是( )A. ( -x-1) =(x-1)B. (-x-1) =(x+1)C. (-x+1)F=(x+1)D. (x+1)=(x-1)【答案】B【解析】解:A . ( -x-1)2=( x+1)2,所以本题错误;B. (-x-1) 2 = (x+1) 2,本题正确;C. ( -x+1) 2= (x-1) 2,所以本题错误;D. (加)2工(x-1) 2,所以本题错误.故选B .7?计算(a+1) (-a-1)的结果是()A. -a --2a-1B. a」-1C. -a -1D. -a +2a-1【答案】A【解析】解:(a+1) (-a-1) =- (a+1)( a+1) =- (a+1) 2=-a2-2a-1.故选A .8. 若x+y=10 , xy=24,则x +y E的值为()A. 52B. 148C. 58D. 76【答案】A【解析】解:( x+y) 2= x2+y2+2xy=100,A x2+y2=100-2xy=100-48=52 .故9. 计算101 等于 ( )A. 1001 + 1B. 101 ZC. 100+100 X1+1D. 100+2 X100+1【答案】D【解析】解:1012= ( 100+1) =1002+2 X100+1 .故选D .10. 若(a+b) 2=9,( a-b) 2=1,则ab的值为()A. 2B. -2C. 8D. -8【答案】A【解析】解:(a+b) 2- (a-b) 2=2ab- (-2ab) =4ab=9-1,二ab=2.故选A.11. 若(a+b) 2=36, ( a-b) 2=4,贝V a +b 的值为()A. 9B. 40C. 20D. -20【答案】C【解析】解:(a+b) 2+ (a-b) 2=2 (a2+b2) =36+4 , a2+b2=20 .故选C.12. 化简:(m+1) -(1-m)(1+m)正确的结果是()A. 2mB. 2m+2C. 2m +2mD. 0【答案】C【解析】解:(m+1) 2 - (1-m)( 1 + m) = m2+2 m+1-1+ m2=2 m2+2m.故选C.【答案】BB. ( p-q) 2=p2+q2-2pq,所以本题错误;点睛:本题考查了平方差公式和完全平方公式的应用,能正确运用公式展开是解此题的关键.13.已知a+"=4,则a】+ (\泊勺值是()aA. 4B. 16C. 14D. 15 【答案】C【解析】解:(a+ -)a2= a2+(4a2+2=16,a2+ (-)2=14.故选C fl14. 设(5a+3b) =(5a-3b) +A,贝U A=( )A. 30abB.60abC. 15abD.12ab【答案】B【解析】T (5a+3b)2=(5a-3b)2+AA=(5a+3b) 2- (5a- 3b)2=(5a+3b+5a- 3b)(5a+3b- 5a+3b)=60ab, 故选B.15. 若x +y =(x+y)卜+A=(x-y) +B,贝U A, B各等于()A. -2xy , 2xyB. -2xy , -2xyC. 2xy , -2xyD. 2xy , 2xy【答案】A【解析】解: x2+y2= ( x+y) +A= (x-y) +B;2 2 2 2 2 2x +y = x +y +2xy+A= x +y -2xy+BA=-2xy, B=2xy.故选A .点睛:本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,熟记公式结构及其变形是解题的关键. 二、填空题(每小题5分,共25分)16. 计算:(_x_y ) 2 = _________【答案】x +y +2xy【解析】解:(-x-y) 2=[- (x+y) ] 2= x2+y2+2xy.故答案为:x2+y2+2xy.17. X: +y】=(x+y)2- _______ = (x-y) 2+ ________ .【答案】(1). 2xy (2). 2xy【解析】解:x2+y2= (x+y) 2- (2xy) = (x-y) 2+2xy.故答案为:-2xy, 2xy.18. 多项式4x +1加上一个单项式后能成为一个整式的完全平方,请你写出符合条件的这个单项式是______________ .【答案】±4x【解析】解:4x2+1= (2x+1) 2-4x; 4x2+1= (2x-1) 2+4x.故答案为:±4x.点睛:本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 19. (a+b)(-b-a)= _______【答案】-a -b -2ab【解析1解:5+切(4a) = ^2ab故答案为:V兀庐加b20. 已知a+b=6,ab=5,则代数式a+b的值是 ______________【答案】26【解析】解:?/ a2+b2= (a+b) 2-2ab=36-2 為=26.故答案为:26.三、解答题(每题10分,共50分)21. 计算999的结果.【答案】998001【解析】试题分析:原式变形后,利用完全平方公式化简即可得到结果试题解析:解:9992=( 1000-1)2=10002+1-2000=998001 .22. 解方程2(x-1) +(x-2)(x+2)=3x(x-5)【答案】x=11【解析】试题分析:用完全平方公式和平方差公式展开后,合并即可得到结论?试题解析:解: 2 ( x-1) 2+ ( x-2)( x+2) =3x (x-5)2x2+2-4x+x2-4=3x2-15x3x2-3x2-4x+15x=22x=_111点睛:本题考查了完全平方公式、平方差公式以及全并同类项,熟练掌握运算法则是解答本题的关键.23. 已知:x+y=3,xy=1 ,试求:(1) x +y 的值;(2) (x-y)的值.【答案】(1)7(2)5【解析】试题分析:(1)根据变形即可;(2)根据(X 斗叙、,整体代入即可?试题解析:解:(1) x2+y2= (x+y) 2 -2xy=9-2=7 ;(2)( x-y) 2=斗+ 疔-4野=9-4=5 ?点睛:本题考查了完全平方公式的变形运用.熟练掌握公式及其变形的方法是解题的关键.1124.已知a f =6,求(a- 的值a【答案】32【解析】试题分析:扌把i + ■ =6a两边平方,把;丄】利用完全平方公式展开整理即可求解.试题解析:解:??但”-a"a1+ —+ 2 ■36,1 ,?旷+ ,1 , 3 1—?a iT25.已知a, b是有理数,试说明a+b -2a-4b+8的值是正数.【答案】证明见解析【解析】试题分析:先把常数项8拆为1+4+3 ,再分组凑成完全平方式, 从而判断它的非负性.试题解析:解:原式=a2+b2-2a-4b+8=a2+b2-2a-4b+1+4+3=(a-1) 2+ (b-2) 2+3( a-1) 2>0 ( b-2) 2>0 ( a-1) 2+ ( b-2) 2+3 >3二a2+b2-2a-4b+8的值是正数.。

平方差公式练习题精选(含答案)

平方差公式练习题精选(含答案)

平方差公式之阿布丰王创作1、利用平方差公式计算: (1)(m+2) (m-2) (2)(1+3a) (1-3a) (3) (x+5y)(x-5y) (4)(y+3z) (y-3z)2、利用平方差公式计算(1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n) 3利用平方差公式计算(1)(1)(-41x-y)(-41x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n 24、利用平方差公式计算 (1)(a+2)(a-2) (2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)5、利用平方差公式计算(1)803×797 (2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b)C.(13a+b)(b-13a) D.(a2-b)(b2+a)8.下列计算中,毛病的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个 B.2个 C.3个 D.4个9.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5 10.(-2x+y)(-2x-y)=______.11.(-3x2+2y2)(______)=9x4-4y4.12.(a+b -1)(a -b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较年夜的正方形的面积减去较小的正方形的面积,差是_____.14.计算:(a+2)(a 2+4)(a 4+16)(a -2).完全平方公式1利用完全平方公式计算:(1)(21x+32y)2(2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)22利用完全平方公式计算: (1)(21x-32y 2)2(2)(1.2m-3n)2(3)(-21a+5b)2(4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2(2)4(x-1)(x+1)-(2x+3)2(a+b)2-(a-b)2(4)(a+b-c)2(5)(x-y+z)(x+y+z)(6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2-4xy,其中x=12,y=9.5已知x≠0且x+1x =5,求441xx的值.平方差公式练习题精选(含谜底)一、基础训练1.下列运算中,正确的是()A.(a+3)(a-3)=a2-3 B.(3b+2)(3b-2)=3b2-4C.(3m-2n)(-2n-3m)=4n2-9m2 D.(x+2)(x-3)=x2-62.在下列多项式的乘法中,可以用平方差公式计算的是()A.(x+1)(1+x) B.(12a+b)(b-12a)C.(-a+b)(a-b) D.(x2-y)(x+y2)3.对任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是()A.3 B.6 C.10 D.94.若(x-5)2=x2+kx+25,则k=()A.5 B.-5 C.10 D.-105.9.8×10.2=________; 6.a2+b2=(a+b)2+______=(a-b)2+________.7.(x-y+z)(x+y+z)=________; 8.(a+b+c)2=_______.9.(12x+3)2-(12x-3)2=________.10.(1)(2a-3b)(2a+3b);(2)(-p2+q)(-p2-q);(3)(x-2y)2;(4)(-2x-12y)2.11.(1)(2a-b)(2a+b)(4a2+b2);(2)(x+y-z)(x-y+z)-(x+y+z)(x-y-z).12.有一块边长为m的正方形空地,想在中间位置修一条“十”字型小路,•小路的宽为n,试求剩余的空空中积;用两种方法暗示出来,比力这两种暗示方法,•验证了什么公式?二、能力训练13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为()A.4 B.2 C.-2 D.±214.已知a+1a =3,则a2+21a,则a+的值是()A.1 B.7 C.9 D.1115.若a-b=2,a-c=1,则(2a-b-c)2+(c-a)2的值为()A.10 B.9 C.2 D.116.│5x-2y│·│2y-5x│的结果是()A.25x2-4y2B.25x2-20xy+4y2 C.25x2+20xy+4y2 D.-25x2+20xy-4y217.若a2+2a=1,则(a+1)2=_________.三、综合训练18.(1)已知a+b=3,ab=2,求a2+b2;(2)若已知a+b=10,a2+b2=4,ab的值呢?19.解不等式(3x-4)2>(-4+3x)(3x+4).参考谜底1.C 点拨:在运用平方差公式写结果时,要注意平方后作差,尤其当呈现数与字母乘积的项,系数不要忘记平方;D项不具有平方差公式的结构,不能用平方差公式,•而应是多项式乘多项式.2.B 点拨:(a+b)(b-a)=(b+a)(b-a)=b2-a2.3.C 点拨:利用平方差公式化简得10(n2-1),故能被10整除.4.D 点拨:(x-5)2=x2-2x×5+25=x2-10x+25.5.99.96 点拨:9.8×10.2=(10-0.2)(10+0.2)=10-0.2=100-0.04=99.96.6.(-2ab);2ab7.x2+z2-y2+2xz点拨:把(x+z)作为整体,先利用平方差公式,•然后运用完全平方公式.8.a2+b2+c2+2ab+2ac+2bc点拨:把三项中的某两项看做一个整体,•运用完全平方公式展开.9.6x 点拨:把(12x+3)和(12x-3)分别看做两个整体,运用平方差公式(12x+3)2-(12x-3)2=(12x+3+12x-3)[12x+3-(12x-3)]=x·6=6x.10.(1)4a2-9b2;(2)原式=(-p2)2-q2=p4-q2.点拨:在运用平方差公式时,要注意找准公式中的a,b.(3)x4-4xy+4y2;(4)解法一:(-2x-12y)2=(-2x)2+2·(-2x)·(-12y)+(-12y)2=4x2+2xy+14y2.解法二:(-2x-12y)2=(2x+12y)2=4x2+2xy+14y2.点拨:运用完全平方公式时,要注意中间项的符号.11.(1)原式=(4a2-b2)(4a2+b2)=(4a2)2-(b2)2=16a4-b4.点拨:当呈现三个或三个以上多项式相乘时,根据多项式的结构特征,•先进行恰当的组合.(2)原式=[x+(y-z)][x-(y-z)]-[x+(y+z)][x-(y+z)]=x2-(y-z)2-[x2-(y+z)2]=x2-(y-z)2-x2+(y+z)2=(y+z)2-(y-z)2=(y+z+y-z)[y+z-(y-z)]=2y ·2z=4yz .点拨:此题若用多项式乘多项式法则,会呈现18项,书写会非常繁琐,认真观察此式子的特点,恰被选择公式,会使计算过程简化.12.解法一:如图(1),剩余部份面积=m 2-mn-mn+n 2=m 2-2mn+n 2.解法二:如图(2),剩余部份面积=(m-n )2. ∴(m-n )2=m 2-2mn+n 2,此即完全平方公式.点拨:解法一:是用边长为m 的正方形面积减去两条小路的面积,注意两条小路有一个重合的边长为n 的正方形.解法二:运用运动的方法把两条小路分别移到边缘,剩余面积即为边长为(m-n )•的正方形面积.做此类题要注意数形结合.13.D 点拨:x 2+4x+k 2=(x+2)2=x 2+4x+4,所以k 2=4,k 取±2.14.B 点拨:a 2+21a =(a+1a)2-2=32-2=7.15.A 点拨:(2a-b-c)2+(c-a)2=(a+a-b-c)2+(c-a)2=[(a-b)+(a-c)] 2+(c-a)2=(2+1)2+(-1)2=9+1=10.16.B 点拨:(5x-2y)与(2y-5x)互为相反数;│5x-2y│·│2y-5x│=(5x-•2y)2•=25x2-20xy+4y2.17.2 点拨:(a+1)2=a2+2a+1,然后把a2+2a=1整体代入上式.18.(1)a2+b2=(a+b)2-2ab.∵a+b=3,ab=2,∴a2+b2=32-2×2=5.(2)∵a+b=10,∴(a+b)2=102,a2+2ab+b2=100,∴2ab=100-(a2+b2).又∵a2+b2=4,∴2ab=100-4,ab=48.点拨:上述两个小题都是利用完全平方公式(a+b)2=a2+2ab+b2中(a+)、ab、(a2+b2)•三者之间的关系,只要已知其中两者利用整体代入的方法可求出圈外人.19.(3x-4)2>(-4+3x)(3x+4),(3x)2+2×3x·(-4)+(-4)2>(3x)2-42,9x2-24x+16>9x2-16,-24x>-32.x<4.3点拨:先利用完全平方公式,平方差公式分别把不等式两边展开,然后移项,合并同类项,解一元一次不等式.八年级数学上学期平方差公式同步检测练习题1.(2004·青海)下列各式中,相等关系一定成立的是( )A.(x-y)2=(y-x)2B.(x+6)(x-6)=x2-6C.(x+y)2=x2+y2D.6(x-2)+x(2-x)=(x-2)(x-6)2.(2003·泰州)下列运算正确的是( )A.x2+x2=2x4B.a2·a3= a5C.(-2x2)4=16x6D.(x+3y)(x-3y)=x2-3y23.(2003·河南)下列计算正确的是( )A.(-4x)·(2x2+3x-1)=-8x3-12x2-4xB.(x+y)(x2+y2)=x3+y3C.(-4a-1)(4a-1)=1-16a2D.(x-2y)2=x2-2xy+4y24.(x+2)(x-2)(x2+4)的计算结果是( )A.x4+16B.-x4-16C.x4-16D.16-x45.19922-1991×1993的计算结果是( )A.1B.-1C.2D.-26.对任意的整数n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是( )A.4B.3C.5D.27.()(5a+1)=1-25a2,(2x-3)=4x2-9,(-2a2-5b)()=4a4-25b28.99×101=()()=.9.(x-y+z)(-x+y+z)=[z+()][]=z2-()2.10.多项式x2+kx+25是另一个多项式的平方,则k=.11.(a+b)2=(a-b)2+,a2+b2=[(a+b)2+(a-b)2](),a2+b2=(a+b)2+,a2+b2=(a-b)2+.12.计算.(1)(a +b)2-(a -b)2; (2)(3x-4y)2-(3x+y)2;(3)(2x+3y)2-(4x-9y)(4x+9y)+(2x-3y)2; (4)1.23452+0.76552+2.469×0.7655; (5)(x+2y)(x-y)-(x+y)2.13.已知m 2+n 2-6m+10n+34=0,求m+n 的值 14.已知a +a1=4,求a 2+21a 和a 4+41a 的值.15.已知(t+58)2=654481,求(t+84)(t+68)的值. 16.解不等式(1-3x)2+(2x-1)2>13(x-1)(x+1). 17.已知a =1990x+1989,b=1990x+1990,c=1990x+1991,求a 2+b 2+c 2-a b-a c-bc 的值.18.(2003·郑州)如果(2a +2b+1)(2a +2b-1)=63,求a +b 的值.19.已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值.参考谜底1.A2.B3.C4.C5.A6.C7.1-5a 2x+3 -2a 2+5b8.100-1100+1 99999.x-yz-(x-y) x-y10.±1011.4a b21- 2a b 2a b12.(1)原式=4a b ;(2)原式=-30xy+15y ;(3)原式=-8x 2+99y 2;(4)提示:原式=1.23452+2×1.2345×0.7655+0.76552=(1.2345+0.7655)2=22=4. (5)原式=-xy-3y 2.13.提示:逆向应用整式乘法的完全平方公式和平方的非负性.∵m 2+n 2-6m+10n+34=0, ∴(m 2-6m+9)+(n 2+10n+25)=0, 即(m-3)2+(n+5)2=0, 由平方的非负性可知,⎩⎨⎧=+=-,05,03n m ∴⎩⎨⎧-==.5,3n m ∴m+n=3+(-5)=-2. 14.提示:应用倒数的乘积为1和整式乘法的完全平方公式.∵a +a 1=4,∴(a +a1)2=42. ∴a 2+2a ·a 1+21a =16,即a 2+21a +2=16.∴a 2+21a =14.同理a 4+41a =194.15.提示:应用整体的数学思想方法,把(t 2+116t)看作一个整体.∵(t+58)2=654481,∴t2+116t+582=654481.∴t2+116t=654481-582.∴(t+48)(t+68)=(t2+116t)+48×68=654481-582+48×68=654481-582+(58-10)(58+10)=654481-582+582-102=654481-100=654381.316.x<217.解:∵a=1990x+1989,b=1990x+1990,c=1990x+1991,∴a-b=-1,b-c=-1,c-a=2.∴a2+b2+c2-a b-a c-be1(2a2+2b2+2c2-2a b-2bc-2a c)=21[(a2-2a b+b2)+(b2-2bc+c2)+(c2-2a c+a2)]=21[(a-b2)+(b-c)2+(c-a)2]=21[(-1)2+(-1)2+22]=21(1+1+4)=2=3.18.解:∵(2a+2b+1)(2a+2b-1)=63,∴[(2a+2b)+1][(2a+2b)-1]=63,∴(2a+2b)2-1=63,∴(2a+2b)2=64,∴2a+2b=8或2a+2b=-8,∴a+b=4或a+b=-4,∴a+b的值为4或一4.19.a2+b2=70,a b=-5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完全平方式平方差公式整式乘除综合计算30题
一.解答题(共30小题)
1.多项式x2+1加上一个整式后是含x的二项式的完全平方式.
例题:x2+1+_________=(x+1)2.
(1)按上例再写出两个加上一个单项式后是含x的二项式的完全平方式的式子(不能用已知的例题):①x2+1+_________=(x﹣1)2;
②x2+1+_________=(x2+1)2.
(2)按上例写出一个加上一个多项式后是一个含x的二项式的完全平方式
x2+1+_________=(x2+1)2.
2.已知a2﹣4a+4+9b2+6b+1=0,求a、b的值.
3.已知,求值:
(1)
(2).
4.如果a2﹣2(k﹣1)ab+9b2是一个完全平方式,那么k=_________.
5.关于x的二次三项式:x2+2mx+4﹣m2是一个完全平方式,求m的值.
6.(2002•岳阳)用简便方法计算:.
7.计算;(1)(x﹣3y)(x﹣y);
(2)4x2﹣(﹣2x+3)(﹣2x﹣3).
8.(a﹣2b+c)(a+2b﹣c).
9.利用乘法公式计算:
(1)(2x﹣3y)2﹣(y+3x)(3x﹣y);
(2)(x+y)(x2+y2)(x﹣y)(x4+y4);
(3)(a﹣2b+3)(a+2b﹣3);
(4)[(x﹣y)2+(x+y)2](x2﹣y2);
(5)(m﹣n﹣3)2.
10.计算
(1);
(2)(x m﹣y n)(x m+y n);
(3);
(4)(x+y+z)2.
11.计算:(1)(5m﹣6n)(﹣6n﹣5m);(2)(x2y2+3m)(﹣3m+x2y2).12.计算:(x﹣y)2﹣(x+y)(x﹣y)
13.计算:
(1)(2x﹣1)(4x2+1)(2x+1);
(2)(2a﹣b+3)(2a﹣3+b);
(3)4(a+2)2﹣7(a+3)(a﹣3)+3(a﹣1)2.
14.计算
(1)(a2b3)•(﹣15a2b2)
(2)(x2y﹣2xy+y2)•2xy
(3)(2x+3)(3x+4)
(4)(3x+7y)(3x﹣7y)
(5)(x﹣3y)2
(6)(x+5y)2
15.利用乘法公式计算
(1)(﹣x2+2y2)2(2)
(3)(a+3b)(a﹣3b)
(4)(﹣4a﹣1)(4a﹣1)
(5)9982
(6)62×58
16.(﹣6xy2z+8x2y3)÷(﹣6xy)
17.[(﹣4a2b3)2﹣6a4b4×(﹣0.5ab3)]÷(﹣2ab2)3
18.计算下列各题:
(1)(﹣4a5b3)2÷(8a2b3)
(2)(x+2)2﹣(x+3)(x﹣3)
(3)[(2x+1)(4x+2)﹣2]÷(8x)
(4)已知x+y=10,x•y=24,求x2+y2的值.
19.计算:
(1)(﹣2ab)3(﹣4ab2);
(2)(3a﹣1)(a+7);
(3)(6a3b﹣9a2b2﹣12ab3)÷(﹣3ab).
20.计算
(1)(﹣3x)5÷(﹣3x)
(2)
(3)(x﹣3)(x+5)
(4)
21.(27x3﹣18x2+3x)÷(﹣3x).
22.化简:
(1)(mn)8÷(mn)2
(2)(3x2y)2÷(﹣15xy3)•(﹣9x4y2)
23.计算:(1)6a5b6c4÷(﹣3a2b3c)÷(2a3b3c3).
(2)(x﹣4y)(2x+3y)﹣(x+2y)(x﹣y).
24.计算:
(1)(6a2b﹣9a3)÷(﹣3a)2;
(2)(a﹣1)(4a+3)+(﹣4a2);
(3)(2x﹣y)2﹣(2x+y)(y﹣2x)﹣4x(x﹣y).
25.计算:
(1)(n3﹣7mn2+n5)÷n2=_________;
(2)(12x4y6﹣8x2y4﹣16x3y5)÷4x2y3=_________.26.计算:(﹣a5b3c+a3b4﹣a2b5)÷a2b3.
27.计算:
(1)12a4b3c2÷(﹣3a2bc2);(2)(a n+3﹣2a n+1)÷(﹣a n﹣1);(3)7.2×1012÷(﹣3.6×109);(4)(﹣xy4)3÷(xy4)2•y3.28.(6a4﹣4a3﹣2a2)÷2a2
29.
30.计算:(21x4y3﹣35x3y2+7x2y2)÷(﹣7x2y).。

相关文档
最新文档