精品课件-二次函数图象与各项系数的关系

合集下载

二次函数中各项系数abc与图像的关系

二次函数中各项系数abc与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边; b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式?=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。

一.选择题(共8小题)1.已知二次函数y=ax 2+bx +c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b +2a >02.如果二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是( )A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a +b=0;⑤a ﹣b +c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论::①a <0;②b >0;③b 2﹣4ac >0;④a +b +c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图所示,抛物线y=ax 2+bx +c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b +c <0;③2c﹣b=3;④a+3=c,其中正确的个数()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是()个①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤4a﹣2b+c>0.A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个 B.4个 C.3个 D.2个二.填空题(共4小题)9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为.11.抛物线y=ax2+12x﹣19顶点横坐标是3,则a=.12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三.解答题(共7小题)13.已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.14.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x的增大而减小.15.已知二次函数的图象经过(0,0)(﹣1,﹣1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.(1)将y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?18.如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.19.已知二次函数y=a(x﹣h)2,当x=4时有最大值,且此函数的图象经过点(1,﹣3).(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而增大?。

二次函数的图象与各项字母系数之间的关系

二次函数的图象与各项字母系数之间的关系
二次函数的图象与 各项字母系数之间
的关系
学习目标
1、能由a,b,c,∆的符号确定抛物线的位置;由 抛物线的位置确定a,b,c,∆等式子的符号;
2、经历探究问题的过程,加强推理技能训练, 体验类比、转化、符号表示及数形结合的思 想方法.
1.二次函数图象开口方向、大小和二次项系数a的关系
y
y
的图像如图,则下列a、b、
c间的关系判断正确的是( D )
A.ab < 0
B.bc < 0
C.a+b+c > 0 D.a-b+c < 0
8.(绵阳)二次函数y=ax2+bx+c的
图像如图,则不等式bx+a>0的
解为 A.x > a/b
(D)
B.x > -a/b
C.x < a/b D.x < -a/b

谈收获
1.(天津)已知二次函数y=ax2+bx+c,
且a<0,a-b+c>0,则一定有( A )
A.b2-4ac>0
B. b2-4ac=0
C.b2-4ac<0
D. b2-4ac≤0
2.(重庆)二次函数y=ax2+bx+c的图
像如图所示,则点M(b,c/a)在( D )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
图像如图所示,下列结论:
① a+b+c<0,②a-b+c>0;
③ abc>0;④b=2a
中正确个数为
( A)
A.4个
B.3个
C.2个
D.1个
6、无论m为任何实数,二次函数y=x2-(2-m)x+m

二次函数图像与系数的关系

二次函数图像与系数的关系

二次函数的图象与各项系数之间的关系技巧讲解1. 二次项系数a :a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.二次函数2y ax bx c =++中,a 为二次项系数,显然0a ≠.① 当0a >时,抛物线开口向上;② 当0a <时,抛物线开口向下; ③a 的值越大,函数图象越靠近y 轴,开口越小,反之a 的值越小,函数图象越远离y 轴,开口越大;一次函数图象有类似特点。

2. 一次项系数b :①在a 确定的前提下,b 决定了抛物线对称轴的位置.②ab 的符号的判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在0a >的前提下,①当0b >时,02b a-<,即抛物线的对称轴在y 轴左侧; ②当0b =时,02b a-=,即抛物线的对称轴就是y 轴; ③当0b <时,02b a ->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即①当0b >时,02b a->,即抛物线的对称轴在y 轴右侧; ②当0b =时,02b a-=,即抛物线的对称轴就是y 轴; ③当0b <时,02b a -<,即抛物线对称轴在y 轴的左侧. 3. 常数项c :c 决定了抛物线与y 轴交点的位置.⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.4.特殊形式(1)当x=1时,可以求出a+b+c 的值; 若x=1时,y>0,则a+b+c>0; 若x=1时,y<0,则a+b+c<0; 若x=1时,y=0,则a+b+c=0;(2)当x=-1时,可以求出a-b+c 的值; 若x=-1时,y>0,则a-b+c>0; 若x=-1时,y<0,则a-b+c<0; 若x=-1时,y=0,则a-b+c=0;(3)根的别式b 2-4ac ,可以用来判断抛物线与x 轴的交点个数,当b 2-4ac>0时,方程2y ax bx c =++=0有两个根,也就是说y=0时,函数在x 轴上可以找到2个对应的自变量值,即断抛物线与x 轴有2个交点;同理b 2-4ac=0,二次函数图象与x 轴有一个交点;b 2-4ac <0时,抛物线与x 轴没有交点。

二次函数中各项系数与图像的关系

二次函数中各项系数与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边; b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式?=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。

一.选择题(共8小题)1.已知二次函数y=ax 2+bx+c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b+2a >02.如果二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,那么下列不等式成立的是( )A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a+c ;③4a+2b+c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a+b=0;⑤a ﹣b+c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx+c (a ≠0)的图象如图,给出下列四个结论::①a <0;②b >0;③b 2﹣4ac >0;④a+b+c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图所示,抛物线y=ax 2+bx+c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b+c <0;③2c﹣b=3;④a+3=c,其中正确的个数()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是()个①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤4a﹣2b+c>0.A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个B.4个C.3个D.2个二.填空题(共4小题)9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为.11.抛物线y=ax2+12x﹣19顶点横坐标是3,则a= .12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三.解答题(共7小题)13.已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.14.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x的增大而减小.15.已知二次函数的图象经过(0,0)(﹣1,﹣1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.(1)将y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?18.如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.19.已知二次函数y=a(x﹣h)2,当x=4时有最大值,且此函数的图象经过点(1,﹣3).(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而增大?。

二次函数图像与系数的关系

二次函数图像与系数的关系

二次函数的图象与各项系数之间的关系 技巧讲解1. 二次项系数a :a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.二次函数2y ax bx c =++中,a 为二次项系数,显然0a ≠.① 当0a >时,抛物线开口向上;② 当0a <时,抛物线开口向下; ③a 的值越大,函数图象越靠近y 轴,开口越小,反之a 的值越小,函数图象越远离y 轴,开口越大;一次函数图象有类似特点。

2. 一次项系数b :①在a 确定的前提下,b 决定了抛物线对称轴的位置.②ab 的符号的判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在0a >的前提下,①当0b >时,02b a-<,即抛物线的对称轴在y 轴左侧; ②当0b =时,02b a-=,即抛物线的对称轴就是y 轴; ③当0b <时,02b a ->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即①当0b >时,02b a->,即抛物线的对称轴在y 轴右侧; ②当0b =时,02b a-=,即抛物线的对称轴就是y 轴; ③当0b <时,02b a -<,即抛物线对称轴在y 轴的左侧. 3. 常数项c :c 决定了抛物线与y 轴交点的位置.⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.4.特殊形式(1)当x=1时,可以求出a+b+c 的值; 若x=1时,y>0,则a+b+c>0; 若x=1时,y<0,则a+b+c<0; 若x=1时,y=0,则a+b+c=0;(2)当x=-1时,可以求出a-b+c 的值; 若x=-1时,y>0,则a-b+c>0; 若x=-1时,y<0,则a-b+c<0; 若x=-1时,y=0,则a-b+c=0;(3)根的别式b 2-4ac ,可以用来判断抛物线与x 轴的交点个数,当b 2-4ac>0时,方程2y ax bx c =++=0有两个根,也就是说y=0时,函数在x 轴上可以找到2个对应的自变量值,即断抛物线与x 轴有2个交点;同理b 2-4ac=0,二次函数图象与x 轴有一个交点;b 2-4ac <0时,抛物线与x 轴没有交点。

二次函数的图象与各项字母系数之间的关系(课堂PPT)

二次函数的图象与各项字母系数之间的关系(课堂PPT)
y
•(0,c)
x
0
• x 0 (0,0)
• x 0 (0,c)
交点在x轴上方 c>0
经过坐标原点 交点在x轴下方
c=0
c<0
8
4.二次函数图象与x轴交点的个数和△的关系
y
y
• • 0
(x1,0)

(x2,0)
0
•x (x,0) 0

x
与x轴有两个交点 与x轴有一个交点 与x轴无交点
b2-4ac>0
你真棒 29
谈收获
30
1.(天津)已知二次函数y=ax2+bx+c,
且a<0,a-b+c>0,则一定有( A )
A.b2-4ac>0
B. b2-4ac=0
C.b2-4ac<0
D. b2-4ac≤0
2.(重庆)二次函数y=ax2+bx+c的图
像如图所示,则点M(b,c/a)在( D )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
(1)a (2)b
y
(3)c
(4)2a+b (5)2a-b, (6)b2-4ac
-1 0
x 12
(7)a+b+c
(8)a-b+c
(9)4a+2b+c
(10)4a-2b+c
19
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
2020
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
y
y
O
x

二次函数y=ax2+bx+c系数与图像的关系专题优质课 ppt课件

二次函数y=ax2+bx+c系数与图像的关系专题优质课 ppt课件

探究知识点二: a+b+c和a-b+c符号判断
(5)a+b+c的符号 :
由x=1时抛物线上的点的位置确定
点在x轴上方
点在x轴下方 点在x轴上
a+b+c>0
a+b+c<0 a+b+c=0
y
2020/12/27
-1 O 1 x
13
探究知识点二: a+b+c和a-b+c符号判断
(6)a-b+c的符号:
(4)b2-4ac的符号: 由抛物线与x轴的交点个数确定。
与x轴没有交点
与x轴有一个交点
没有实数根b2-4ac<0 有两个相等的实数根b2-4ac=0
与x轴有两个交点
有两个不相等的实数根b2-4ac>0
y
2020/12/27
o
x
11
知识点一:基本符号的判断(自主训练)
根据图象判断a、b、c及b2-4ac的符号
是( C )
y
y
y
y
Ox -3
A
Ox -3
B
Ox -3
C
Ox -3
D
由形定数,再由数定形.
2020/12/27
19
综合训练——形成能力
3、已知:一次函数y=ax+c与二次函数y=ax2+bx+c,它
们在同一坐标系中的大致图象是图中的( C )
y
y
o
x
y (A)
o
x
(B) y
2020/12/、3个
y
C、4个 D、5个
2020/12/27

《二次函数》PPT优秀课件

《二次函数》PPT优秀课件
说一说以上二次函数解析式的各项系数.
链接中考
1.下列函数解析式中,一定为二次函数的是( C )
A.y=3x-1 C.s=2t2-2t+1
B.y=ax2+bx+c
D.y=x2+
1
2
x
链接中考
2.已知函数 y=(m²﹣m)x²+(m﹣1)x+m+1. (1)若这个函数是一次函数,求m的值; (2)若这个函数是二次函数,则m的值应怎样? 解:(1)根据一次函数的定义,得m2﹣m=0,
探究新知
素养考点 1 二次函数的识别
例1 下列函数中是二次函数的有 ①⑤⑥ .
①√ y= 2x2 2
×③y x2(1 x2 ) 1
最高次数是4
⑤√ y=x( x 1)
×②y 2x2 x(1 2x) a=0
×④y
1 x2
x2
√⑥y
x4 x2 x2 1
=x2
二次函数:y=ax²+bx+c(a,b,c为常数,a≠0)
素养目标
2. 能根据实际问题中的数量关系列出二次函数 解析式,并能指出二次函数的项及各项系数.
1.掌握二次函数的定义,并能判断所给函数 是否是二次函数.
探究新知
知识点 1 二次函数的概念
问题1 正方体的六个面是全等的正方形(如下图),设正方
形的棱长为x,表面积为y,显然对于x的每一个值, y都 有一个对应值,即y是x的函数,它们的具体关系可以表 示为 y=6x2①.
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的 步骤: (1)将函数解析式右边整理为含自变量的代 数式,左边是函数(因变量)的形式; (2)判断右边含自变量的代数式是否是整式; (3)判断自变量的最高次数是否是2; (4)判断二次项系数是否不等于0.

二次函数系数与图像的关系(共32张PPT)

二次函数系数与图像的关系(共32张PPT)

⑤、a-b+c>0,⑥、4a+2b+c<0,⑦、4a-2b+c<0.
小结:二次函数y=ax2+bx+c(a≠0)的系数a,b,c,△与
抛物线的关系


a a决定开口方向:a>0时开口向上,
a<0时开口向下
a、b同时决定对称轴位置:a、b同号时对称轴在y轴左侧
b
a、b异号时对称轴在y轴右侧
b=0时对称轴是y轴
由抛物线捕捉对称信息的方式有:
抛物线y=ax2+bx+c如图所示,试确定a、b、c的符号:
⑤、a-b+c>0,⑥、4a+2b+c<0,⑦、4a-2b+c<0.
3个
对称轴是y轴: b=0
三、随堂演练
1.根据图象判断a、b、c的符号
y
a _>___0
y
b__<__0
0
c__<___0
0
x
a _<___0
抛物线的关系


a决定开口方向:a>0时开口向上,
a
a<0时开口向下
a、b同时决定对称轴位置:a、b同号时对称轴在y轴左侧
b
a、b异号时对称轴在y轴右侧
b=0时对称轴是y轴
c决定抛物线与y轴的交点:c>0时抛物线交于y轴的正半轴
c
c=0时抛物线过原点
c<0时抛物线交于y轴的负半轴
△决定抛物线与x轴的交点:△>0时抛物线与x轴有两个交点
y
2、当x=-1时, y=a-b+c
3、当x=2时,
y=4a+2b+c
4、当x=-2时, y=4a-2b+c

二次函数图象与字母系数的关系 ppt课件

二次函数图象与字母系数的关系  ppt课件

ppt课件
28
• 17.(烟台中考)二次函数y=ax2+bx+c(a≠0)的部 分图象如图所示,图象过点(-1,0),对称轴 为直线x=2.下列结论:
• ①4a+b=0;②9a+c>3b;③8a+7b+2c>0; ④当x>-1时,y的值随x值的增大而增大.
• 其中正确的结论有(B)
• A.1个
B.2个 C.3个 D.4个
8
范例研讨运用新知
例2 已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的
增大而减小,则实数b的取值范围是( D )
A.b≥-1
B.b≤-1
C.b≥1
D.b≤1
解析:∵二次项系数为-1<0,∴抛物线开口向下,在对称轴
右侧,y的值随x值的增大而减小,由题设可知,当x>1时,y的
值随x值的增大而减小,∴抛物线y=-x2+2bx+c的对称轴应在直 线x=1的左侧而抛物线y=-x2+2bx+c的对称轴 x b b ,
O 2x x=-1
ppt课件
30
ppt课件
7
例3 已知二次函数y=ax2+bx+c的图象如图所示,下
列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④
(a+c)2<b2. 其中正确的个数是
( D)
A.1
B.2
C.3
D.4
【解析】由图象开口向下可得a<0,由对称轴在 y轴左侧可得b<0,由图象与y轴交于正半轴可得 c>0,则abc>0,故①正确;
二次函数 图象与字母系数的关系
ppt课件
1
二次函数y=ax2+bx+c的图象与a、b、c的关系
字母符号

二次函数的图像与系数的关系

二次函数的图像与系数的关系

二次函数的图像与系数的关系1.已知二次函数y=ax 2+bx+c (a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b 2>4ac.其中正确的结论的有( ) A.1个B.2个C.3个D.4个2.如图,二次函数y =ax 2+bx +c (a ≠0)的大致图象,关于该二次函数下列说法正确的是( )A.a >0,b <0,c >0B.b 2﹣4ac <0C.当﹣1<x <2时,y >0D.当x >2时,y 随x 的增大而增大3.如图,二次函数y =ax 2+bx +c 图象,过点A (3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是() A.2a+b=0B.ac>0C.a?b +c?0D.b 2?4ac 4.已知函数y=mx 2-6x+1(m 是常数),若该函数的图象与x 轴只有一个交点,则m 的值为()A.9B.0C.9或0D.9或15.如图,二次函数2y ax bx c =++的图象的对称轴是直线1x =,则下列理论:①0a <,0b <②20a b ->,③0a b c ++>,④0a b c -+<,⑤当1x >时,y 随x 的增大而减小,其中正确的是(). A.①②③B.②③④C.③④⑤D.①③④6.已知y=ax+b 的图象如图所示,则y=ax 2+bx 的图象有可能是( )A. B. C. D. 7.二次函数y=ax 2+bx+c (a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论: ①4a+b=0; ②9a+c<3b ; ③25a+5b+c=0;④当x >2时,y 随x 的增大而减小. 其中正确的结论有( ) A.1个B.2个C.3个D.4个8.如下图,已知经过原点的抛物线y=ax 2+bx+c (a ≠0)的对称轴是直线x=-1,下列结论中①ab >0,②a +b +c >0,?③当-2<x <0时,y <0.正确的个数是( ) A.0个B.1个C.2个D.3个9.二次函数y =ax 2+bx +c 与一次函数y=ax+c 在同一直角坐标系内的大致图象是()A. B. C. D.10.如图是二次函数()20y ax bx c a =++≠图象的一部分,对称轴为12x =,且经过点()2,0,有下列说法:①0abc <;②0a b +=;③420a b c ++<;④若()()120,,1,y y 是抛物线上的两点,则12y y =,上述说法正确的是()A.①②④B.③④C.①③④D.①②11.在同一坐标系中,一次函数2y ax =+与二次函数2y x a =+的图象可能是()A. B. C. D. 12.如图是二次函数y =ax 2+bx +c 的图象,则点(a ,bc )在( ) A.第一象限B.第二象限 C.第三象限D.第四象限13.二次函数y =ax 2+bx +c (a ≠0)图象上部分点的对应值如下表:x -3 -2 -1 0 1 2 3 4 y6-4-6-6-46则使y <0的x 的取值范围为_____________________________.14.已知二次函数2y ax bx c =++的图象与x 轴交于点()20-,,()10x ,,且112x <<,与y 轴的正半轴的交点在()02,的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+<.其中正确结论有_______________.(填序号)15.已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++>;②1a b c -+>;③0abc >;④420a b c -+<;⑤20b a -=其中所有正确结论的序号是__________(填序号)16.如图,二次函数2y ax bx c =++的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴。

(完整word版)二次函数图象与各项系数之间关系知识点,文档

(完整word版)二次函数图象与各项系数之间关系知识点,文档

二次函数的图象与各项系数之间的关系1.二次项系数 a二次函数y ax2bx c 中, a 作为二次项系数,显然 a 0.⑴当 a0 时,抛物线张口向上, a 的值越大,张口越小,反之 a 的值越小,张口越大;⑵当 a0 时,抛物线张口向下, a 的值越小,张口越小,反之 a 的值越大,张口越大.总结起来, a 决定了抛物线张口的大小和方向, a 的正负决定张口方向, a 的大小决定张口的大小.2.一次项系数 b在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.⑴在 a0的前提下,当 b0时,b0,即抛物线的对称轴在y 轴左侧;2a当 b0时,b0,即抛物线的对称轴就是y 轴;2a当 b0时,b0,即抛物线对称轴在 y 轴的右侧.2a⑵在 a0的前提下,结论恰巧与上述相反,即当 b0时,b0,即抛物线的对称轴在y 轴右侧;2a当 b0时,b0,即抛物线的对称轴就是y 轴;2a当 b0时,b0,即抛物线对称轴在 y 轴的左侧.2a总结起来,在 a 确定的前提下, b 决定了抛物线对称轴的地址.ab 的符号的判断:对称轴xb0 ,在 y 轴左侧那么 ab 0 ,在 y 轴的右侧那么 ab2a概括的说就是“左同右异〞总结:3.常数项 c⑴当 c0 时,抛物线与y 轴的交点在x轴上方,即抛物线与y 轴交点的纵坐标为正;⑵当 c0 时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为 0 ;⑶当 c0 时,抛物线与y 轴的交点在x轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来, c 决定了抛物线与y 轴交点的地址.总之,只要 a ,b ,c 都确定,那么这条抛物线就是唯一确定的.二次函数图象的对称二次函数图象的对称一般有四种情况,可以用一般式或极点式表达1.关于 x 轴对称y ax2bx c 关于 x 轴对称后,获取的剖析式是y ax2bx c ;y a x h 2y a x h2 k 关于 x 轴对称后,获取的剖析式是k ;2.关于 y 轴对称y ax2bx c 关于y轴对称后,获取的剖析式是y ax2bx c ;y a x h 2y a x h2 k 关于y轴对称后,获取的剖析式是k ;3.关于原点对称y ax2bx c 关于原点对称后,获取的剖析式是y ax2bx c ;y a x h 2ya x h2 k 关于原点对称后,获取的剖析式是k ;依照对称的性质,显然无论作何种对称变换,抛物线的形状必然不会发生变化,因此 a永远不变.求抛物线的对称抛物线的表达式时,可以依照题意或方便运算的原那么,选择合适的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的极点坐标及张口方向,再确定其对称抛物线的极点坐标及张口方向,尔后再写出其对称抛物线的表达式.。

专题三 二次函数的图象与系数之间的关系

专题三  二次函数的图象与系数之间的关系

专题四、二次函数的图象与系数a,b,c 的关系1222、如果2y ax bx c =++与x 轴交于A (1x ,0)、B (2x ,0)两点,则AB 3、特殊值当x 1=时,y a b c =++; 当x -1=时,y -a b c =+; 当x 2=时,y 42a b c =++; 当x -2=时,y 4-2a b c =+;a b c ++的符号由x 1=时,抛物线上的点的位置确定即点在x 轴上方,则有__________________;点在x 轴上,则有__________________ 点在x 轴下方,则有__________________a-b c +的符号由x -1=时,抛物线上的点的位置确定即点在x 轴上方,则有__________________点在x 轴上,则有__________________ 点在x 轴下方,则有__________________例1、如图,一次函数y 1=x 与二次函数y 2=ax 2+bx+c 图象相交于P 、Q 两点,则函数y=ax 2+(b ﹣1)x+c 的图象可能是( )A. B. C. D.变式练习:1、二次函数y=ax 2与一次函数y=ax +a 在同一坐标系中的图象大致为( )2、函数y=ax 2+bx +c 和y=ax +b 在同一坐标系中,如图所示,则正确的是( )例2、(1)抛物线2y ax bx c =++的图象在x 轴上方时,应满足什么条件? (2)不论x 取何值,抛物线2y m 21x x =++的值永远都是非负数,应满足什么条件变式练习:1、抛物线2y ax bx c =++的图象在x 轴下方时,应满足什么条件?2、不论x 取何值,抛物线2y 1-m)43x x =-+(的值永远都是负数,应满足什么条件?例3、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①2a+b=0;②a+c >b ;③抛物线与x 轴的另一个交点为(3,0);④abc >0.其中正确的结论是 (填写序号).图2x图1变式练习:1、二次函数2(0)y ax bx c a =++≠的图象如图3所示,则 ①20a b +>②20a b +<③02ba-< ④20a b -<⑤20a b ->中正确的有________________________.(请写出序号即可)2、已知二次函数(0a ≠)的图象如图所示, 有下列4个结论:①0abc >;②b a c <+;③420a b c ++>; ④240b ac ->;其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个自检互评1、若二次函数c bx ax y ++=2中,a <0,b >0,c <0,042>-ac b ,则此二次函数图像不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2、当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax 2+bx+c 的是( )3、二次函数c bx ax y ++=2的图象如图1所示,则下列结论中,正确的个数是( )①0<++c b a ;②0>+-c b a ;③0>abc ;④a b 2=(A )4(B )3(C )2 (D )1 4、已知二次函数c bx ax y ++=2的图象如图2所示,那么下列判断不正确的是( )(A)abc >0; (B )ac b 42->0;(C)2a+b >0; (D )<05、二次函数c bx ax y ++=2的图象如图所示,则 abc ,ac b 42-,b a +2,c b a ++这四个式子中,值为正数的有( )A .4个 B .3个 C .2个 D .1个6、二次函数y =ax 2+bx +c 的图象如图3所示,则下列关于a ,b ,c 间 关系的判断正确的是( ) A .ab <0B .bc <0C .a +b +c >0D .a -b +c <07、如图为二次函数y=ax 2+bx +c 的图象,在下列说法中:① ac <0; ②方程ax 2+bx +c=0的根是x 1= -1, x 2= 3 ② a +b +c >0 ④当x >1时,y 随x 的增大而增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档