高三数学寒假作业冲刺培训班之历年真题汇编复习实战7485
高三数学寒假作业冲刺培训班之历年真题汇编复习实战77256
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的模长为()A.B. C.D.22.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2] C.(1,2)D.(1,2]3.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A. B. C. D.4.(5分)下列关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列是递增数列;p4:数列{an+3nd}是递增数列;其中真命题是()A.p1,p2 B.p3,p4 C.p2,p3 D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C.D.7.(5分)使得(3x+)n(n∈N+)的展开式中含有常数项的最小的n为()A.4 B.5 C.6 D.78.(5分)执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3 B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的较大值,min{p,q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.16 B.﹣16 C.﹣16a2﹣2a﹣16 D.16a2+2a﹣1612.(5分)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值二、填空题:本大题共4小题,每小题5分.13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(Ⅰ)求证:平面PAC⊥平面PBC;(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C﹣PB﹣A的余弦值.19.(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(Ⅰ)求张同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.请考生在21、22、23题中任选一题作答,如果多做,则按所做的第一题计分。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战57880
一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.1.(5分)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱2.(5分)复数z=(3﹣2i)i的共轭复数等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i3.(5分)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.144.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A. B. C.D.5.(5分)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A.18B.20C.21D.406.(5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)8.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)9.(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.610.(5分)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)若变量 x,y满足约束条件,则z=3x+y的最小值为.12.(4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于.13.(4分)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是(单位:元)14.(4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为.15.(4分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是.三、解答题:本大题共4小题,共80分.解答应写出文字说明,证明过程或演算步骤16.(13分)已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.17.(13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.18.(13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.19.(13分)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.在2123题中考生任选2题作答,满分21分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.选修42:矩阵与变换20.(14分)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<cex. 21.(7分)已知矩阵A的逆矩阵A﹣1=().(1)求矩阵A;(2)求矩阵A﹣1的特征值以及属于每个特征值的一个特征向量.五、选修44:极坐标与参数方程22.(7分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.六、选修45:不等式选讲23.已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (2)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.1.5分)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱【分析】直接从几何体的三视图:正视图和侧视图或俯视图判断几何体的形状,即可. 【解答】解:圆柱的正视图为矩形,故选:A.【点评】本题考查简单几何体的三视图,考查逻辑推理能力和空间想象力,是基础题.2.((5分)复数z=(3﹣2i)i的共轭复数等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i【分析】直接由复数代数形式的乘法运算化简z,则其共轭可求.【解答】解:∵z=(3﹣2i)i=2+3i,∴.故选:C.【点评】本题考查了复数代数形式的乘法运算,考查了复数的基本概念,是基础题.3.(5分)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.14【分析】由等差数列的性质和已知可得a2,进而可得公差,可得a6【解答】解:由题意可得S3=a1+a2+a3=3a2=12,解得a2=4,∴公差d=a2﹣a1=4﹣2=2,∴a6=a1+5d=2+5×2=12,故选:C.【点评】本题考查等差数列的通项公式和求和公式,属基础题.4.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A. B. C.D.【分析】由题意可得a=3,由基本初等函数的图象和性质逐个选项验证即可.【解答】解:由题意可知图象过(3,1),故有1=loga3,解得a=3,选项A,y=a﹣x=3﹣x=()x单调递减,故错误;选项B,y=x3,由幂函数的知识可知正确;选项C,y=(﹣x)3=﹣x3,其图象应与B关于x轴对称,故错误;选项D,y=loga(﹣x)=log3(﹣x),当x=﹣3时,y=1,但图象明显当x=﹣3时,y=﹣1,故错误.故选:B.【点评】本题考查对数函数的图象和性质,涉及幂函数的图象,属基础题.5.(5分)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A.18B.20C.21D.40【分析】算法的功能是求S=21+22+…+2n+1+2+…+n的值,计算满足条件的S值,可得答案. 【解答】解:由程序框图知:算法的功能是求S=21+22+…+2n+1+2+…+n的值,∵S=21+22+1+2=2+4+1+2=9<15,S=21+22+23+1+2+3=2+4+8+1+2+3=20≥15.∴输出S=20.故选:B.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.6.(5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件【分析】根据直线和圆相交的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则圆心到直线距离d=,|AB|=2,若k=1,则|AB|=,d=,则△OAB的面积为×=成立,即充分性成立.若△OAB的面积为,则S==×2×==,即k2+1=2|k|,即k2﹣2|k|+1=0,则(|k|﹣1)2=0,即|k|=1,解得k=±1,则k=1不成立,即必要性不成立.故“k=1”是“△OAB的面积为”的充分不必要条件.故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用三角形的面积公式,以及半径半弦之间的关系是解决本题的关键.7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)【分析】由三角函数和二次函数的性质,分别对各个选项判断即可.【解答】解:由解析式可知当x≤0时,f(x)=cosx为周期函数,当x>0时,f(x)=x2+1,为二次函数的一部分,故f(x)不是单调函数,不是周期函数,也不具备奇偶性,故可排除A、B、C,对于D,当x≤0时,函数的值域为[﹣1,1],当x>0时,函数的值域为(1,+∞),故函数f(x)的值域为[﹣1,+∞),故正确.故选:D.【点评】本题考查分段函数的性质,涉及三角函数的性质,属基础题.8.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)【分析】根据向量的坐标运算,,计算判别即可.【解答】解:根据,选项A:(3,2)=λ(0,0)+μ(1,2),则3=μ,2=2μ,无解,故选项A不能;选项B:(3,2)=λ(﹣1,2)+μ(5,﹣2),则3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2,μ=1,故选项B能.选项C:(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C不能. 选项D:(3,2)=λ(2,﹣3)+μ(﹣2,3),则3=2λ﹣2μ,2=﹣3λ+3μ,无解,故选项D不能.故选:B.【点评】本题主要考查了向量的坐标运算,根据列出方程解方程是关键,属于基础题.9.(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.6【分析】求出椭圆上的点与圆心的最大距离,加上半径,即可得出P,Q两点间的最大距离.【解答】解:设椭圆上的点为(x,y),则∵圆x2+(y﹣6)2=2的圆心为(0,6),半径为,∴椭圆上的点(x,y)到圆心(0,6)的距离为==≤5,∴P,Q两点间的最大距离是5+=6.故选:D.【点评】本题考查椭圆、圆的方程,考查学生分析解决问题的能力,属于基础题.10.(5分)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)【分析】根据“1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来”,分别取红球蓝球黑球,根据分步计数原理,分三步,每一步取一种球,问题得以解决.【解答】解:从5个无区别的红球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+a+a2+a3+a4+a5;从5个无区别的蓝球中取出若干个球,由所有的蓝球都取出或都不取出,得其所有取法为1+b5;从5个有区别的黑球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+c+c2+c3+c4+c5=(1+c)5,根据分步乘法计数原理得,适合要求的所有取法是(1+a+a2+a3+a4+a5)(1+b5)(1+c)5.故选:A.【点评】本题主要考查了分步计数原理和归纳推理,合理的利用题目中所给的实例,要遵循其规律,属于中档题.二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)若变量 x,y满足约束条件,则z=3x+y的最小值为 1 .【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最小值. 【解答】解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A(0,1)时,直线y=﹣3x+z的截距最小,此时z最小.此时z的最小值为z=0×3+1=1,故答案为:1【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法. 12.(4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于 2.【分析】利用三角形中的正弦定理求出角B,再利用三角形的面积公式求出△ABC的面积. 【解答】解:∵△ABC中,A=60°,AC=4,BC=2,由正弦定理得:,∴,解得sinB=1,∴B=90°,C=30°,∴△ABC的面积=.故答案为:.【点评】本题着重考查了给出三角形的两边和其中一边的对角,求它的面积.正余弦定理、解直角三角形、三角形的面积公式等知识,属于基础题.13.(4分)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 160 (单位:元)【分析】此题首先需要由实际问题向数学问题转化,设池底长和宽分别为a,b,成本为y,建立函数关系式,然后利用基本不等式求出最值即可求出所求.【解答】解:设池底长和宽分别为a,b,成本为y,则∵长方形容器的容器为4m3,高为1m,故底面面积S=ab=4,y=20S+10[2(a+b)]=20(a+b)+80,∵a+b≥2=4,故当a=b=2时,y取最小值160,即该容器的最低总造价是160元,故答案为:160【点评】本题以棱柱的体积为载体,考查了基本不等式,难度不大,属于基础题.14.(4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为.【分析】利用定积分计算阴影部分的面积,利用几何概型的概率公式求出概率.【解答】解:由题意,y=lnx与y=ex关于y=x对称,∴阴影部分的面积为2(e﹣ex)dx=2(ex﹣ex)=2,∵边长为e(e为自然对数的底数)的正方形的面积为e2,∴落到阴影部分的概率为.故答案为:.【点评】本题考查几何概型,几何概型的概率的值是通过长度、面积、和体积的比值得到.15.(4分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是 6 .【分析】利用集合的相等关系,结合①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,即可得出结论.【解答】解:由题意,a=2时,b=1,c=4,d=3;b=3,c=1,d=4;a=3时,b=1,c=4,d=2;b=1,c=2,d=4;b=2,c=1,d=4;a=4时,b=1,c=3,d=2;∴符合条件的有序数组(a,b,c,d)的个数是6个.【点评】本题考查集合的相等关系,考查分类讨论的数学思想,正确分类是关键.三、解答题:本大题共4小题,共80分.解答应写出文字说明,证明过程或演算步骤16.(13分)已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.【分析】(1)根据题意,利用sinα求出cosα的值,再计算f(α)的值;(2)化简函数f(x),求出f(x)的最小正周期与单调增区间即可.【解答】解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.【点评】本题考查了三角函数的化简以及图象与性质的应用问题,是基础题目.17.(13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.【分析】(1)利用面面垂直的性质定理即可得出;(2)建立如图所示的空间直角坐标系.设直线AD与平面MBC所成角为θ,利用线面角的计算公式sinθ=|cos|=即可得出.【解答】(1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD,又CD⊂平面BCD,∴AB⊥CD.(2)解:建立如图所示的空间直角坐标系.∵AB=BD=CD=1,AB⊥BD,CD⊥BD,∴B(0,0,0),C(1,1,0),A(0,0,1),D(0,1,0),M.∴=(0,1,﹣1),=(1,1,0),=.设平面BCM的法向量=(x,y,z),则,令y=﹣1,则x=1,z=1.∴=(1,﹣1,1).设直线AD与平面MBC所成角为θ.则sinθ=|cos|===.【点评】本题综合考查了面面垂直的性质定理、线面角的计算公式sinθ=|cos|=,考查了推理能力和空间想象能力,属于中档题.18.(13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.【分析】(1)根据古典概型的概率计算公式计算顾客所获的奖励额为60元的概率,依题意得X得所有可能取值为20,60,分别求出P(X=60),P(X=20),画出顾客所获的奖励额的分布列求出数学期望;(2)先讨论,寻找期望为60元的方案,找到(10,10,50,50),(20,20,40,40)两种方案,分别求出数学期望和方差,然后做比较,问题得以解决.【解答】解:(1)设顾客所获取的奖励额为X,①依题意,得P(X=60)=,即顾客所获得奖励额为60元的概率为,②依题意得X得所有可能取值为20,60,P(X=60)=,P(X=20)=,即X的分布列为X 60 20P所以这位顾客所获的奖励额的数学期望为E(X)=20×+60×=40(2)根据商场的预算,每个顾客的平均奖励额为60元,所以先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以数学期望不可能为60元,如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以数学期望也不可能为60元,因此可能的方案是(10,10,50,50)记为方案1,对于面值由20元和40元的组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2,以下是对这两个方案的分析:对于方案1,即方案(10,10,50,50)设顾客所获取的奖励额为X1,则X1的分布列为 X1 60 20 100PX1 的数学期望为E(X1)=.X1 的方差D(X1)==,对于方案2,即方案(20,20,40,40)设顾客所获取的奖励额为X2,则X2的分布列为 X2 40 60 80PX2 的数学期望为E(X2)==60,X2 的方差D(X2)=差D(X1)=. 由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1小,所以应该选择方案2.【点评】本题主要考查了古典概型、离散型随机变量的分布列、数学期望、方差等基础知识,考查了数据处理能力,运算求解能力,应用意识,考查了必然与或然思想与整合思想.19.(13分)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.【分析】(1)依题意,可知=2,易知c=a,从而可求双曲线E的离心率;(2)由(1)知,双曲线E的方程为﹣=1,设直线l与x轴相交于点C,分l⊥x轴与直线l不与x轴垂直讨论,当l⊥x轴时,易求双曲线E的方程为﹣=1.当直线l不与x轴垂直时,设直线l的方程为y=kx+m,与双曲线E的方程联立,利用由S△OAB=|OC|•|y1﹣y2|=8可证得:双曲线E的方程为﹣=1,从而可得答案.【解答】解:(1)因为双曲线E的渐近线分别为l1:y=2x,l2:y=﹣2x,所以=2.所以=2.故c=a,从而双曲线E的离心率e==.(2)由(1)知,双曲线E的方程为﹣=1.设直线l与x轴相交于点C,当l⊥x轴时,若直线l与双曲线E有且只有一个公共点,则|OC|=a,|AB|=4a,所以|OC|•|AB|=8,因此a•4a=8,解得a=2,此时双曲线E的方程为﹣=1.以下证明:当直线l不与x轴垂直时,双曲线E的方程为﹣=1也满足条件.设直线l的方程为y=kx+m,依题意,得k>2或k<﹣2;则C(﹣,0),记A(x1,y1),B(x2,y2),由得y1=,同理得y2=,由S△OAB=|OC|•|y1﹣y2|得:|﹣|•|﹣|=8,即m2=4|4﹣k2|=4(k2﹣4).由得:(4﹣k2)x2﹣2kmx﹣m2﹣16=0,因为4﹣k2<0,所以△=4k2m2+4(4﹣k2)(m2+16)=﹣16(4k2﹣m2﹣16),又因为m2=4(k2﹣4),所以△=0,即直线l与双曲线E有且只有一个公共点.因此,存在总与直线l有且只有一个公共点的双曲线E,且E的方程为﹣=1.【点评】本题考查双曲线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查特殊与一般思想、数形结合思想、分类讨论思想、函数与方程思想.在2123题中考生任选2题作答,满分21分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.选修42:矩阵与变换20.(14分)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<cex. 【分析】(1)利用导数的几何意义求得a,再利用导数的符号变化可求得函数的极值;(2)构造函数g(x)=ex﹣x2,求出导数,利用(1)问结论可得到函数的符号,从而判断g(x)的单调性,即可得出结论;(3)首先可将要证明的不等式变形为x2<ex,进而发现当x>时,x2<x3,因此问题转化为证明当x∈(0,+∞)时,恒有x3<ex.【解答】解:(1)由f(x)=ex﹣ax,得f′(x)=ex﹣a.又f′(0)=1﹣a=﹣1,解得a=2,∴f(x)=ex﹣2x,f′(x)=ex﹣2.由f′(x)=0,得x=ln2,当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增;∴当x=ln2时,f(x)有极小值为f(ln2)=eln2﹣2ln2=2﹣ln4.f(x)无极大值.(2)令g(x)=ex﹣x2,则g′(x)=ex﹣2x,由(1)得,g′(x)=f(x)≥f(ln2)=eln2﹣2ln2=2﹣ln4>0,即g′(x)>0,∴当x>0时,g(x)>g(0)>0,即x2<ex;(3)首先证明当x∈(0,+∞)时,恒有x3<ex.证明如下:令h(x)=x3﹣ex,则h′(x)=x2﹣ex.由(2)知,当x>0时,x2<ex,从而h′(x)<0,h(x)在(0,+∞)单调递减,所以h(x)<h(0)=﹣1<0,即x3<ex,取x0=,当x>x0时,有x2<x3<ex.因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<cex.【点评】该题主要考查导数的几何意义、导数的运算及导数的应用等基础知识,考查学生的运算求解能力、推理论证能力、抽象概括能力,考查函数与方程思想、有限与无限思想、化归与转化思想.属难题.21.(7分)已知矩阵A的逆矩阵A﹣1=().(1)求矩阵A;(2)求矩阵A﹣1的特征值以及属于每个特征值的一个特征向量.【分析】(1)利用AA﹣1=E,建立方程组,即可求矩阵A;(2)先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量.【解答】解:(1)设A=,则由AA﹣1=E得=,解得a=,b=﹣,c=﹣,d=,所以A=;(2)矩阵A﹣1的特征多项式为f(λ)==(λ﹣2)2﹣1,令f(λ)=(λ﹣2)2﹣1=0,可求得特征值为λ1=1,λ2=3,设λ1=1对应的一个特征向量为α=,则由λ1α=Mα,得x+y=0得x=﹣y,可令x=1,则y=﹣1,所以矩阵M的一个特征值λ1=1对应的一个特征向量为,同理可得矩阵M的一个特征值λ2=3对应的一个特征向量为.【点评】本题考查逆变换与逆矩阵,考查矩阵特征值与特征向量的计算等基础知识,属于基础题.六、选修45:不等式选讲23.已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.【分析】(1)由绝对值不等式|a|+|b|≥|a﹣b|,当且仅当ab≤0,取等号;(2)由柯西不等式:(a2+b2+c2)(d2+e2+f2)≥(ad+be+cf)2,即可证得.【解答】(1)解:∵|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,当且仅当﹣1≤x≤2时,等号成立,∴f(x)的最小值为3,即a=3;(2)证明:由(1)知,p+q+r=3,又p,q,r为正实数,∴由柯西不等式得,(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2=(p+q+r)2=32=9,即p2+q2+r2≥3.【点评】本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算求解能力,考查化归与转化思想.五、选修44:极坐标与参数方程22.(7分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.【分析】(1)消去参数,把直线与圆的参数方程化为普通方程;(2)求出圆心到直线的距离d,再根据直线l与圆C有公共点⇔d≤r即可求出.【解答】解:(1)直线l的参数方程为,消去t可得2x﹣y﹣2a=0;圆C的参数方程为,两式平方相加可得x2+y2=16;(2)圆心C(0,0),半径r=4.由点到直线的距离公式可得圆心C(0,0)到直线L的距离d=.∵直线L与圆C有公共点,∴d≤4,即≤4,解得﹣2≤a≤2.【点评】熟练掌握点到直线的距离公式和直线与圆有公共点的充要条件是解题的关键.一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1. 设,a b 是向量,命题“若a b ≠-,则∣a ∣= ∣b ∣”的逆命题是【D 】 (A )若a b ≠-,则∣a ∣≠∣b ∣ (B )若a b =,则∣a ∣≠∣b ∣ (C )若∣a ∣≠∣b ∣,则∣a ∣≠∣b ∣ (D )若∣a ∣=∣b ∣,则a = b2.设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是 【C 】 (A )28y x =- (B )28y x = (C) 24y x =- (D) 24y x = 3.设0a b <<,则下列不等式中正确的是 【B 】(A )2ab a b ab <<<(B )2a b a ab b +<<< (c )2a b a ab b +<<< (D)2a bab a b +<<<4. 函数13y x =的图像是 【B 】5. 某几何体的三视图如图所示,则它的体积是【A 】 (A)283π- (B)83π-(C)82π (D)23π 6.方程cos x x =在(),-∞+∞内【C 】 (A)没有根 (B)有且仅有一个根 (C) 有且仅有两个根 (D )有无穷多个根7.如右框图,当126,9,x x ==8.5p =时,3x 等于 【B 】 (A) 7 (B) 8 (C)10 (D )118.设集合M={y|2cos x —2sin x|,x ∈R},N={x||x —1i|<2,i 为虚数单位,x ∈R},则M∩N 为【C 】(A)(0,1) (B)(0,1] (C)[0,1) (D)[0,1]9.设1122(,),(,),x y x y ···,(,)n n x y 是变量x 和y 的n 次方个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是(A ) (A) 直线l 过点(,)x y(B )x 和y 的相关系数为直线l 的斜率 (C )x 和y 的相关系数在0到1之间(D )当n 为偶数时,分布在l 两侧的样本点的个数一定相同10.植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为(D ) (A )(1)和(20)(B )(9)和(10) (C) (9)和(11) (D) (10)和(11)B. 填空题。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战27883
一、选择题(每题4分,共48分)1、设全集{}6,5,4,3,2,1=U ,集合{}6,4,2=A ,{}3,2=B ,则()=B A C U ( )A 、{}1B 、{}5C 、{}5,1D 、{}6,4,3,22、1>a 是a a >2的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件3、若函数2)1(2)(2+++=x a x x f 在(]2,∞-上是减函数,则a 的取值范围是( )A 、(]3,-∞-B 、[)∞+,1C 、[)∞+-,3D 、(]1,∞-4、若复数i z +=1,则()=⋅+z z 1( )A 、i +3B 、i -3C 、i 31+D 、35、已知向量()3,1=a ,()4,x =b ,若()a b a -⊥2,则x 的值为( )A 、5-B 、6-C 、7-D 、76、已知过点()8,2--A 和()4,m B 的直线与012=-+y x 平行,则m的值为( )A 、22B 、10-C 、12D 、8-7、在ABC ∆中,2=a ,2=b ,︒=∠45B ,则=∠A ( )A 、︒︒12060或B 、︒60C 、︒︒15030或D 、︒308、函数x x y 2cos 2sin 2⋅=是( ) A 、周期为2π的奇函数B 、周期为2π的偶函数 C 、周期为4π的奇函数D 、周期为4π的偶函数9、过点()1,2-M 与圆C :()()53122=++-y x 相切的直线方程为( ) A 、01=-+y x B 、052=--y x C 、042=--y x D 、02=+y x10、有4名男生2名女生共6人排成一排,则女生不相邻的排法种数是( )A 、120B 、720C 、480D 、56011、设a 、b 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题:①若b a ⊥,α⊄b ,α⊥a ,则α//b ;②若α//a ,βα⊥,则β⊥a ;③若β⊥a ,βα⊥,则α//a 或α⊂a ;④若b a ⊥,α⊥a ,β⊥b ,则βα⊥,其中真命题的个数是( )A 、0B 、1C 、2D 、312、定义在R 上的奇函数)(x f y =在[)∞+,0上单调增加,且0)2(=f ,则不等式0)(<⋅x f x 的解集为( )A 、()2,2-B 、()()2,00,2 -C 、()()∞+-∞-,22,D 、()()∞+-,20,2二、填空题(每题4分,共24分)13、数列{}n a 满足11=a ,n n a a 21=+,则数列n a 的前n 项和=n S ____________14、函数()x x y 21-⋅=⎪⎭⎫ ⎝⎛<<210x 的最大值是______________ 15、圆()9122=+-y x 上的点到直线07=+-y x 的最大距离是______________16、已知m 为实数,椭圆13222=+my x 的一个焦点为抛物线x y 42=的焦点,则=m _____17、某篮球运动员在罚球线投中球的概率为32,在某次比赛中罚3球恰好中2球的概率是_____________18、已知抛物线x y 62=,定点()3,2A ,F 为焦点,P 为抛物线上的动点,则PA PF +的最小值为______________三、解答题(本题包括7小题,共78分)19、(本题6分)求函数()2223log xx y --=的定义域20、(本题10分)已知()1tan =-απ,(1)求αtan 的值;(2)求ααα22sin cos 2sin +-的值21、(本题10分)在等差数列{}n a 中,前4项的和204-=S ,前12项的和13212=S ,(1)求数列{}n a 的通项公式;(2)求数列{}n a 前n 项和n S 的最小值22、(本题10分)已知函数22)(2++=ax x x f ,[]5,5-∈x (1)当1-=a 时,求)(x f 的最大值与最小值;(2)求实数a 的取值范围,使)(x f y =在区间[]5,5-上单调增加23、(本题14分)甲袋中装有4个红球,2个白球,乙袋中装有3个红球,3个白球,现从甲袋中取出2个球,从乙袋中取出1个球(1)求从甲袋中取出的2个球中恰有1个白球的概率;(2)记ξ表示抽取的3个球中白球的个数,求ξ的概率分布及数学期望24、(本题14分) 如图,四边形ABCD 是边长为66的正方形,PABCD PA 平面⊥,若106==PD PB(1)求PC 与平面ABCD 所成角的大小(2)求P 到BD 的距离25、(本题14分)设椭圆C :12222=+by a x ()0>>b a 的离心率为22=e ,点A 是椭圆上的一点,且点A 到椭圆C 两焦点的距离之和为4(1)求椭圆C 的方程;(2)椭圆C 上一动点()y x P ,关于直线x y 2=的对称点为()111,y x P ,求1143y x -的取值范围参考答案一、选择题(每题4分,共48分)13、12-n;14、81;15、243+;16、2±;17、94;18、27 三、解答题(共78分)19、()1,3- 20、(1)1-;(2)1-21、(1)154-=n a n ;(2)213-=S22、(1)最小值1,最大值37;(2)5≥a23、(1)158;(2) 67=ξE (2)76;24、(1)︒30;25、(1)12422=+y x ;(2)[]10,10-一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.44.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.728.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.39.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.16810.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=.12.(5分)函数f(x)=log2•log(2x)的最小值为.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(13)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列【分析】利用等比中项的性质,对四个选项中的数进行验证即可.【解答】解:A项中a3=a1•q2,a1•a9=•q8,(a3)2≠a1•a9,故A项说法错误,B项中(a3)2=(a1•q2)2≠a2•a6=•q6,故B项说法错误,C项中(a4)2=(a1•q3)2≠a2•a8=•q8,故C项说法错误,D项中(a6)2=(a1•q5)2=a3•a9=•q10,故D项说法正确,故选:D.【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.【解答】解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选:A.【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2﹣3=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=0'∴2(2k﹣3)+1×(﹣6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>【分析】程序运行的S=××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=××…×,∵输出的k=6,∴S=××=,∴判断框的条件是S>,故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q【分析】由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x>2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.【解答】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.【点评】判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.72【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+×4+×5+3×5=60.故选:B.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.3【分析】不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率.【解答】解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2ex=3b,(ex)2﹣a2=ab∴b2﹣a2=ab,即9b2﹣4a2﹣9ab=0,∴(3b﹣4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.9.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.10.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24【分析】根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论. 【解答】解:∵△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,∴sin2A+sin2B=﹣sin2C+,∴sin2A+sin2B+sin2C=,∴2sinAcosA+2sin(B+C)cos(B﹣C)=,2sinA(cos(B﹣C)﹣cos(B+C))=,化为2sinA[﹣2sinBsin(﹣C)]=,∴sinAsinBsinC=.设外接圆的半径为R,由正弦定理可得:=2R,由S=,及正弦定理得sinAsinBsinC==,即R2=4S,∵面积S满足1≤S≤2,∴4≤R2≤8,即2≤R≤,由sinAsinBsinC=可得,显然选项C,D不一定正确,A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16,不一定正确,故选:A.【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B={7,9}.【分析】由条件利用补集的定义求得∁UA,再根据两个集合的交集的定义求得(∁UA)∩B.【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁UA)={4,6,7,9 },∴(∁UA)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.12.(5分)函数f(x)=log2•log(2x)的最小值为.【分析】利用对数的运算性质可得f(x)=,即可求得f(x)最小值. 【解答】解:∵f(x)=log2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:﹣【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆心C(1,a),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d=,平方得a2﹣8a+1=0,解得a=4±,故答案为:4±【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=4.【分析】由题意,∠PAB=∠C,可得△PAB∽△PCA,从而,代入数据可得结论.【解答】解:由题意,∠PAB=∠C,∠APB=∠CPA,∴△PAB∽△PCA,∴,∵PA=6,AC=8,BC=9,∴,∴PB=3,AB=4,故答案为:4.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x﹣1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.【点评】本题考查直线l的参数方程、曲线C的极坐标方程,考查学生的计算能力,属于中档题.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是[﹣1,].【分析】利用绝对值的几何意义,确定|2x﹣1|+|x+2|的最小值,然后让a2+a+2小于等于它的最小值即可.【解答】解:|2x﹣1|+|x+2|=,∴x=时,|2x﹣1|+|x+2|的最小值为,∵不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,∴a2+a+2≤,∴a2+a﹣≤0,∴﹣1≤a≤,∴实数a的取值范围是[﹣1,].故答案为:[﹣1,].【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α﹣)=.再根据α﹣的范围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得 2×+φ=kπ+,k∈z.结合﹣≤φ<可得φ=﹣.(Ⅱ)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据 0<α﹣<,∴cos(α﹣)==,∴cos(α+)=sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)【分析】第一问是古典概型的问题,要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;第二问应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如1或2)或不同数字(1和2、1和3、2和3三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.【解答】解:(Ⅰ)由古典概型的概率计算公式得所求概率为P=,(Ⅱ)由题意知X的所有可能取值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,所以X的分布列为:X 1 2 3P所以E(X)=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题. 19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.【分析】(Ⅰ)连接AC,BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,分别求出向量,的坐标,进而根据MP⊥AP,得到•=0,进而求出PO的长;(Ⅱ)求出平面APM和平面PMC的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得:二面角A﹣PM﹣C的正弦值.【解答】解:(Ⅰ)连接AC,BD,∵底面是以O为中心的菱形,PO⊥底面ABCD,故AC∩BD=O,且AC⊥BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,∵AB=2,∠BAD=,∴OA=AB•cos(∠BAD)=,OB=AB•sin(∠BAD)=1,∴O(0,0,0),A(,0,0),B(0,1,0),C(﹣,0,0),=(0,1,0),=(﹣,﹣1,0),又∵BM=,∴=(﹣,﹣,0),则=+=(﹣,,0),设P(0,0,a),则=(﹣,0,a),=(,﹣,a),∵MP⊥AP,∴•=﹣a2=0,解得a=,即PO的长为.(Ⅱ)由(Ⅰ)知=(﹣,0,),=(,﹣,),=(,0,),设平面APM的法向量=(x,y,z),平面PMC的法向量为=(a,b,c),由,得,令x=1,则=(1,,2),由,得,令a=1,则=(1,﹣,﹣2),∵平面APM的法向量和平面PMC的法向量夹角θ满足:cosθ===﹣故sinθ==【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.【分析】(Ⅰ)根据函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,构造关于a,b的方程,可得a,b的值;(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)∵函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)∴f′(x)=2ae2x+2be﹣2x﹣c,由f′(x)为偶函数,可得2(a﹣b)(e2x﹣e﹣2x)=0,即a=b,又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,即f′(0)=2a+2b﹣c=4﹣c,故a=b=1;(Ⅱ)当c=3时,f′(x)=2e2x+2e﹣2x﹣3≥2=1>0恒成立,故f(x)在定义域R为均增函数;(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e﹣2x﹣c,而2e2x+2e﹣2x≥2=4,当且仅当x=0时取等号,当c≤4时,f′(x)≥0恒成立,故f(x)无极值;当c>4时,令t=e2x,方程2t+﹣c=0的两根均为正,即f′(x)=0有两个根x1,x2,当x∈(x1,x2)时,f′(x)<0,当x∈(﹣∞,x1)∪(x2,+∞)时,f′(x)>0,故当x=x1,或x=x2时,f(x)有极值,综上,若f(x)有极值,c的取值范围为(4,+∞).【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.【分析】(Ⅰ)若b=1,利用an+1=+b,可求a2,a3;证明{(an﹣1)2}是首项为0,公差为1的等差数列,即可求数列{an}的通项公式;(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.用数学归纳法证明加强命题a2n<c<a2n+1<1即可.【解答】解:(Ⅰ)∵a1=1,an+1=+b,b=1,∴a2=2,a3=+1;又(an+1﹣1)2=(an﹣1)2+1,∴{(an﹣1)2}是首项为0,公差为1的等差数列;∴(an﹣1)2=n﹣1,∴an=+1(n∈N*);(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.下面用数学归纳法证明加强命题a2n<c<a2n+1<1.n=1时,a2=f(1)=0,a3=f(0)=﹣1,∴a2<c<a3<1,成立;设n=k时结论成立,即a2k<c<a2k+1<1∵f(x)在(﹣∞,1]上为减函数,∴c=f(c)>f(a2k+1)>f(1)=a2,∴1>c>a2k+2>a2,∴c=f(c)<f(a2k+2)<f(a2)=a3<1,∴c<a2k+3<1,∴a2(k+1)<c<a2(k+1)+1<1,即n=k+1时结论成立,综上,c=使得a2n<c<a2n+1对所有的n∈N*成立.【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆的半径.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C.由F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,知CP1⊥CP2,又|CP1|=|CP2|,故圆C的半径|CP1|=|P1P2|=|x1|=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战77847
本试卷分选择题和非选择题两部分,共4页,满分为150分.考试用时120分钟.注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封线内相应的位置上,用2B 铅笔将自己的学号填涂在答题卡上。
2、选择题每小题选出答案后,有2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。
3、非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4、考生必须保持答题卡的整洁和平整。
第一部分选择题(共 50 分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数)421sin(2π+=x y 的周期是( )A .4π B .π4 C .π2D .2π 2.函数)10lg(1)(22x x x x f -+-=的定义域为( )A .RB .[1,10]C .(1,10)D .)10,1()1,(⋃--∞3.一个圆锥的侧面展开图是半径为3,圆心角为120的扇形,则圆锥的体积等于A.π322 B.π22 C.π324 D.π4835 4.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .3x y -=)(R x ∈B .x y sin =)(R x ∈C .x y tan -=D .xy )21(=)(R x ∈5.若向量)2,1(=a ,)4,3(-=b ,则)()(b a b a +⋅⋅等于( ) A .20 B .),(3010- C .54 D .),(248-6.如图,平面内的两条相交直线1OP 和2OP 将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界). 若21OP b OP a OP +=,且点P 落在第Ⅲ部分,则实数b a 、满足( ) A . 0,0>>b a . B. 0,0<>b a . C . 0,0><b a . D. 0,0<<b a .y xO6π 2 512π 7.在ABC ∆中,角2120,tan tan 33C A B =+=则tan tan A B 的值为 ( ) A .41 B .13 C .21 D .538.已知函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图象如下图所示.则函数()f x 的解析式为( )A .)621sin(2)(π+=x x fB .)621sin(2)(π-=x x fC .)62sin(2)(π-=x x fD .()2sin(2)6f x x π=+9.在ABC ∆中,有命题①BC AC AB =-;②0=++CA BC AB ;③若0)()(=-⋅+,则ABC ∆为等腰三角形;④若0>⋅AB AC ,则ABC ∆为锐角三角形. 上述命题正确的是 ( )A.①②B.①④C.②③D.②③④100≠=b a ,且关于x 的方程02=⋅++b a a x 有实数根,则a 与b 的夹角的取值范围是 ( ) A.[,]3ππ B.[0,]6π C.2[,]33ππ D.[,]6ππ 第二部分非选择题 (共 100 分)二.填空题:本大题共5小题, 每小题5分, 共25分. 把答案填在答卷的相应位置. 11.=-57sin 333cos 33sin 27sin ;12.已知1:210l x my ++=与2:31l y x =-,若两直线平行,则m 的值为; 13.将函数x y 2sin =的图象按向量)0,6(π-=平移后的图象的函数解析式为;14.函数[]π2,0|,sin |2sin )(∈+=x x x x f 的图象与直线k y =有且仅有两个不同的交点,则k 的取值范围是__________.15.对于任意向量a 、b ,定义新运算“※”:a ※b =||||sin a b θ⋅⋅(其中 θ为a 与b 所的角)。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战48533
高三11月月考试卷(三)数学(理科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟.满分150分.第I 卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集I 是实数集R ,{}()(){}3,310M x x N x x x =≥=--≤都是I 的子集(如图所示),则阴影部分所表示的集合为A.{}13x x <<B .{}13x x ≤<C .{}13x x <≤D .{}13x x ≤≤ 2.设()1+1i x yi =+,其中,x y 是实数,则x yi +=A.1 B .2C.3 D .2 3.已知命题p :函数12x y a +=-的图象恒过定点(1,2);命题q :若函数()1y f x =-为偶函数,则函数()y f x =的图象关于直线1x =对称,则下列命题为真命题的是A.p q ∨ B .p q ∧ C .p q ⌝∧ D .p q ∨⌝4.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是A.56 B .60 C .120D .1405.执行如图所示的程序框图,若输入如下四个函数:①()sin f x x =;②()cos f x x =;③()1f x x =;④()2.f x x =则输出的函数是A.()sin f x x =B.()cos f x x =C.()1f x x =D.()2f x x = 6.若变量,x y 满足222,239,0,x y x y x y x +≤⎧⎪-≤+⎨⎪≥⎩则的最大值是A.4 B .9 C.10 D .127.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法错误的是A. 此人第二天走了九十六里路B .此人第一天走的路程比后五天走的路程多六里C .此人第三天走的路程占全程的18D .此人后三天共走了42里路 8.如图,下列三图中的多边形均为正多边形,M 、N 是所在边上的中点,双曲线均以图中12F F ,为焦点.设图①②③中双曲线的离心率分别为123,,e e e ,则A.123e e e >>B.321e e e >>C.213e e e >=D.132e e e =>9.已知△ABC 是边长为4的等边三角形,P 为△ABC 内一点,则()PA PB PC ⋅+的最小值为A.3-B .6-C .2-D .83-10.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该截面的面积为A.92B .4C .3D.310 11.如图,已知抛物线1C 的顶点在坐标原点,焦点在x 轴上,且过点(2,4),圆222:430C x y x +-+=,过圆心2C 的直线l 与抛物线和圆分别交于P ,Q ,M ,N ,则9PN QM +的最小值为A.36B .42 C.49D .50 12.已知函数()23236,0,34,0,x x x f x A x x x ⎧-+≥⎪==⎨--+<⎪⎩设()({}0x Z x f x a ∈-≥,若A 中有且仅有4个元素,则满足条件的整数a 的个数为A.31B .32 C.33D.34 第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.已知{}n a 是等差数列,n S 是其前n 项和.若212593,10a a S a +=-=,则的值是___________.14.定义在区间[]03π,上的函数sin 2y x =的图象与cos y x =的图象的交点个数是___________.15.若直线1ax by +=(,a b 都是正实数)与圆221x y +=相交于A ,B 两点,当△AOB(O 是坐标原点)的面积最大时,a b +的最大值为________.16.如右图,在棱长为1的正方体1111ABCD A B C D -中,作以A 为顶点,分别以AB ,AD ,AA1为轴,底面圆半径为()01r r <≤的圆锥.当半径r 变化时,正方体挖去三个14圆锥部分后,余下的几何体的表面积的最小值是__________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17.(本小题满分12分)已知△ABC 三个内角A ,B ,C 的对边分别为,,,a b c ABC ∆的面积S 满足2223S a b c -=+-. (1)求角C 的值;(2)求()cos2cos A A B +-的取值范围.18.(本小题满分12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,AD=2BC=2,∠BAD=∠ABC= 90°.(1)证明:PC BC ⊥;(2)若直线PC 与平面PAD 所成角为30°,求二面角B —PC —D 的余弦值.19.(本小题满分12分) 已知椭圆22124x y +=两焦点分别为12,F F P 、是椭圆在第一象限弧上一点,并满足121PF PF =,过P 作倾斜角互补的两条直线PA 、PB 分别交椭圆于A 、B 两点.(1)求P 点坐标;(2)求证:直线AB 的斜率为定值;(3)求△PAB 面积的最大值.20.(本小题满分12分)十九大提出,加快水污染防治,建设美丽中国.根据环保部门对某河流的每年污水排放量X(单位:吨)的历史统计数据,得到如下频率分布表:将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.(1)求在未来3年里,至多1年污水排放量[)270310X ∈,的概率;(2)该河流的污水排放对沿河的经济影响如下:当[)2300X ∈,27时,没有影响;当[)270310X ∈,时,经济损失为10万元;当X ∈[310,350)时,经济损失为60万元.为减少损失,现有三种应对方案: 方案一:防治350吨的污水排放,每年需要防治费3.8万元;方案二:防治310吨的污水排放,每年需要防治费2万元;方案三:不采取措施.试比较上述三种方案,哪种方案好,并请说明理由.21.(本小题满分12分)已知函数()()28ln f x x x a x a R =-+∈. (1)当1x =时,()f x 取得极值,求a 的.(2)当函数()f x 有两个极值点()12121,1x x x x x <≠,且时,总有()()21111ln 2431a x m x x x >-+--成立,求m 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—4:坐标系与参数方程在极坐标系中,曲线1:2cos C ρθ=,曲线22:sin 4cos C ρθθ=.以极点为坐标原点,极轴为x 轴正半轴建立直角坐标系xOy ,曲线C 的参数方程为12,232x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)(1)求12,C C 的直角坐标方程;(2)C 与12,C C 交于不同四点,这四点在C 上的排列顺次为P ,Q ,R ,S ,求PQ RS -的值.23.(本小题满分10分)选修4—5:不等式选讲已知函数()243f x x a x =-++.(1)若2a =时,解不等式:()22f x >;(2)对任意实数x ,不等式()34f x a ≥+恒成立,求实数a 的取值范围.一、填空题(共14题,满分56分)1.(4分)若复数z=1+2i,其中i是虚数单位,则(z+)•=.2.(4分)函数y=1﹣2cos2(2x)的最小正周期是.3.(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程.4.(4分)设f(x)=,若f(2)=4,则a的取值范围为.5.(4分)若实数x,y满足xy=1,则x2+2y2的最小值为.6.(4分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为(结果用反三角函数值表示).7.(4分)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.8.(4分)设无穷等比数列{an}的公比为q,若a1=(a3+a4+…an),则q=.9.(4分)若f(x)=﹣,则满足f(x)<0的x的取值范围是.10.(4分)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).11.(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=.12.(4分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.13.(4分)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E (ξ)=4.2,则小白得5分的概率至少为.14.(4分)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为.二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,Pi(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A.1B.2C.3D.417.(5分)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解18.(5分)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]三、解答题(共5题,满分72分)19.(12分)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.20.(14分)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.21.(14分)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).22.(16分)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.23.(16分)已知数列{an}满足an≤an+1≤3an,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{an}是公比为q的等比数列,Sn=a1+a2+…an,若Sn≤Sn+1≤3Sn,n∈N*,求q的取值范围.(3)若a1,a2,…ak成等差数列,且a1+a2+…ak=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…ak的公差.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(9)参考答案与试题解析一、填空题(共14题,满分56分)1.(4分)若复数z=1+2i,其中i是虚数单位,则(z+)•= 6 .【分析】把复数代入表达式,利用复数代数形式的混合运算化简求解即可.【解答】解:复数z=1+2i,其中i是虚数单位,则(z+)•==(1+2i)(1﹣2i)+1=1﹣4i2+1=2+4=6.故答案为:6【点评】本题考查复数代数形式的混合运算,基本知识的考查.2.(4分)函数y=1﹣2cos2(2x)的最小正周期是.【分析】由二倍角的余弦公式化简,可得其周期.【解答】解:y=1﹣2cos2(2x)=﹣[2cos2(2x)﹣1]=﹣cos4x,∴函数的最小正周期为T==故答案为:【点评】本题考查二倍角的余弦公式,涉及三角函数的周期,属基础题.3.(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程 x=﹣2 .【分析】由题设中的条件y2=2px(p>0)的焦点与椭圆的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p,再由抛物线的性质求出它的准线方程【解答】解:由题意椭圆,故它的右焦点坐标是(2,0),又y2=2px(p>0)的焦点与椭圆右焦点重合,故=2得p=4,∴抛物线的准线方程为x=﹣=﹣2.故答案为:x=﹣2【点评】本题考查圆锥曲线的共同特征,解答此类题,关键是熟练掌握圆锥曲线的性质及几何特征,熟练运用这些性质与几何特征解答问题.4.(4分)设f(x)=,若f(2)=4,则a的取值范围为(﹣∞,2]. 【分析】可对a进行讨论,当a>2时,当a=2时,当a<2时,将a代入相对应的函数解析式,从而求出a的范围.【解答】解:当a>2时,f(2)=2≠4,不合题意;当a=2时,f(2)=22=4,符合题意;当a<2时,f(2)=22=4,符合题意;∴a≤2,故答案为:(﹣∞,2].【点评】本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题.5.(4分)若实数x,y满足xy=1,则x2+2y2的最小值为 2.【分析】由已知可得y=,代入要求的式子,由基本不等式可得.【解答】解:∵xy=1,∴y=∴x2+2y2=x2+≥2=2,当且仅当x2=,即x=±时取等号,故答案为:2【点评】本题考查基本不等式,属基础题.6.(4分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为arccos(结果用反三角函数值表示).【分析】由已知中圆锥的侧面积是底面积的3倍,可得圆锥的母线是圆锥底面半径的3倍,在轴截面中,求出母线与底面所成角的余弦值,进而可得母线与轴所成角.【解答】解:设圆锥母线与轴所成角为θ,∵圆锥的侧面积是底面积的3倍,∴==3,即圆锥的母线是圆锥底面半径的3倍,故圆锥的轴截面如下图所示:则cosθ==,∴θ=arccos,故答案为:arccos【点评】本题考查的知识点是旋转体,其中根据已知得到圆锥的母线是圆锥底面半径的3倍,是解答的关键.7.(4分)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.【分析】由题意,θ=0,可得C与极轴的交点到极点的距离.【解答】解:由题意,θ=0,可得ρ(3cos0﹣4sin0)=1,∴C与极轴的交点到极点的距离是ρ=.故答案为:.【点评】正确理解C与极轴的交点到极点的距离是解题的关键.8.(4分)设无穷等比数列{an}的公比为q,若a1=(a3+a4+…an),则q=. 【分析】由已知条件推导出a1=,由此能求出q的值.【解答】解:∵无穷等比数列{an}的公比为q,a1=(a3+a4+…an)=(﹣a1﹣a1q)=,∴q2+q﹣1=0,解得q=或q=(舍).故答案为:.【点评】本题考查等比数列的公比的求法,是中档题,解题时要认真审题,注意极限知识的合理运用.9.(4分)若f(x)=﹣,则满足f(x)<0的x的取值范围是(0,1) .【分析】直接利用已知条件转化不等式求解即可.【解答】解:f(x)=﹣,若满足f(x)<0,即<,∴,∵y=是增函数,∴的解集为:(0,1).故答案为:(0,1).【点评】本题考查指数不等式的解法,指数函数的单调性的应用,考查计算能力.10.(4分)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).【分析】要求在未来的连续10天中随机选择3天进行紧急疏散演练,选择的3天恰好为连续3天的概率,须先求在10天中随机选择3天的情况,再求选择的3天恰好为连续3天的情况,即可得到答案.【解答】解:在未来的连续10天中随机选择3天共有种情况,其中选择的3天恰好为连续3天的情况有8种,分别是(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),∴选择的3天恰好为连续3天的概率是,故答案为:.【点评】本题考查古典概型以及概率计算公式,属基础题.11.(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b= ﹣1 .【分析】根据集合相等的条件,得到元素关系,即可得到结论.【解答】解:根据集合相等的条件可知,若{a,b}={a2,b2},则①或②,由①得,∵ab≠0,∴a≠0且b≠0,即a=1,b=1,此时集合{1,1}不满足条件.若b=a2,a=b2,则两式相减得a2﹣b2=b﹣a,∵互异的复数a,b,∴b﹣a≠0,即a+b=﹣1,故答案为:﹣1.【点评】本题主要考查集合相等的应用,根据集合相等得到元素相同是解决本题的关键,注意要进行分类讨论.12.(4分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.【分析】先利用两角和公式对函数解析式化简,画出函数y=2sin(x+)的图象,方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,进而求得此时x1,x2,x3最后相加即可.【解答】解:sinx+cosx=2(sinx+cosx)=2sin(x+)=a,如图方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,令sin(x+)=,x+=2kπ+,即x=2kπ,或x+=2kπ+,即x=2kπ+,∴此时x1=0,x2=,x3=2π,∴x1+x2+x3=0++2π=.故答案为:【点评】本题主要考查了三角函数图象与性质.运用了数形结合的思想,较为直观的解决问题.13.(4分)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E (ξ)=4.2,则小白得5分的概率至少为 0.2 .【分析】设小白得5分的概率至少为x,则由题意知小白得4分的概率为1﹣x,由此能求出结果.【解答】解:设小白得5分的概率至少为x,则由题意知小白得1,2,3,4分的概率为1﹣x,∵某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,E(ξ)=4.2,∴4(1﹣x)+5x=4.2,解得x=0.2.故答案为:0.2.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意离散型随机变量的数学期望的合理运用.14.(4分)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为[2,3].【分析】通过曲线方程判断曲线特征,通过+=,说明A是PQ的中点,结合x的范围,求出m的范围即可.【解答】解:曲线C:x=﹣,是以原点为圆心,2 为半径的圆,并且xP∈[﹣2,0],对于点A(m,0),存在C上的点P和l上的Q使得+=,说明A是PQ的中点,Q的横坐标x=6,∴m=∈[2,3].故答案为:[2,3].【点评】本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想. 二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判定.【解答】解:当a=5,b=0时,满足a+b>4,但a>2且b>2不成立,即充分性不成立,若a>2且b>2,则必有a+b>4,即必要性成立,故“a+b>4”是“a>2且b>2”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.16.(5分)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,Pi(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A.1B.2C.3D.4【分析】建立空适当的间直角坐标系,利用坐标计算可得答案.【解答】解:=,则•=()=||2+,∵,∴•=||2=1,∴•(i=1,2,…,8)的不同值的个数为1,故选:A.【点评】本题考查向量的数量积运算,建立恰当的坐标系,运用坐标进行向量数量积运算是解题的常用手段.17.(5分)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解【分析】判断直线的斜率存在,通过点在直线上,推出a1,b1,P2,a2,b2的关系,然后求解方程组的解即可.【解答】解:P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,直线y=kx+1的斜率存在,∴k=,即a1≠a2,并且b1=ka1+1,b2=ka2+1,∴a2b1﹣a1b2=ka1a2﹣ka1a2+a2﹣a1=a2﹣a1,①×b2﹣②×b1得:(a1b2﹣a2b1)x=b2﹣b1,即(a1﹣a2)x=b2﹣b1.∴方程组有唯一解.故选:B.【点评】本题考查一次函数根与系数的关系,直线的斜率的求法,方程组的解和指数的应用.18.(5分)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]【分析】当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,问题解决.【解答】解;当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,f(0)=a2,由题意得:a2≤x++a,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,∴0≤a≤2,故选:D.【点评】本题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题.三、解答题(共5题,满分72分)19.(12分)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.【分析】利用侧面展开图三点共线,判断△P1P2P3是等边三角形,然后求出边长,利用正四面体的体积求出几何体的体积.【解答】解:根据题意可得:P1,B,P2共线,∵∠ABP1=∠BAP1=∠CBP2,∠ABC=60°,∴∠ABP1=∠BAP1=∠CBP2=60°,∴∠P1=60°,同理∠P2=∠P3=60°,∴△P1P2P3是等边三角形,P﹣ABC是正四面体,∴△P1P2P3的边长为4,VP﹣ABC==【点评】本题考查空间想象能力以及逻辑推理能力,几何体的侧面展开图和体积的求法. 20.(14分)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.【分析】(1)根据反函数的定义,即可求出,(2)利用分类讨论的思想,若为偶函数求出a的值,若为奇函数,求出a的值,问题得以解决.【解答】解:(1)∵a=4,∴∴,∴,∴调换x,y的位置可得,x∈(﹣∞,﹣1)∪(1,+∞).(2)若f(x)为偶函数,则f(x)=f(﹣x)对任意x均成立,∴=,整理可得a(2x﹣2﹣x)=0.∵2x﹣2﹣x不恒为0,∴a=0,此时f(x)=1,x∈R,满足条件;若f(x)为奇函数,则f(x)=﹣f(﹣x)对任意x均成立,∴=﹣,整理可得a2﹣1=0,∴a=±1,∵a≥0,∴a=1,此时f(x)=,满足条件;当a>0且a≠1时,f(x)为非奇非偶函数综上所述,a=0时,f(x)是偶函数,a=1时,f(x)是奇函数.当a>0且a≠1时,f(x)为非奇非偶函数【点评】本题主要考查了反函数的定义和函数的奇偶性,利用了分类讨论的思想,属于中档题.21.(14分)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).【分析】(1)设CD的长为x,利用三角函数的关系式建立不等式关系即可得到结论. (2)利用正弦定理,建立方程关系,即可得到结论.【解答】解:(1)设CD的长为x米,则tanα=,tanβ=,∵0,∴tanα≥tan2β>0,∴tan,即=,解得0≈28.28,即CD的长至多为28.28米.(2)设DB=a,DA=b,CD=m,则∠ADB=180°﹣α﹣β=123.43°,由正弦定理得,即a=,∴m=≈26.93,答:CD的长为26.93米.【点评】本题主要考查解三角形的应用问题,利用三角函数关系式以及正弦定理是解决本题的关键.23.(16分)已知数列{an}满足an≤an+1≤3an,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{an}是公比为q的等比数列,Sn=a1+a2+…an,若Sn≤Sn+1≤3Sn,n∈N*,求q的取值范围.(3)若a1,a2,…ak成等差数列,且a1+a2+…ak=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…ak的公差.【分析】(1)依题意:,又将已知代入求出x的范围;(2)先求出通项:,由求出,对q分类讨论求出Sn分别代入不等式Sn≤Sn+1≤3Sn,得到关于q的不等式组,解不等式组求出q的范围. (3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…ak的公差.【解答】解:(1)依题意:,∴;又∴3≤x≤27,综上可得:3≤x≤6(2)由已知得,,,∴,当q=1时,Sn=n,Sn≤Sn+1≤3Sn,即,成立.当1<q≤3时,,Sn≤Sn+1≤3Sn,即,∴不等式∵q>1,故3qn+1﹣qn﹣2=qn(3q﹣1)﹣2>2qn﹣2>0对于不等式qn+1﹣3qn+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又当1≤q≤2,q﹣3<0,∴qn+1﹣3qn+2=qn(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,当时,,Sn≤Sn+1≤3Sn,即,∴此不等式即,3q﹣1>0,q﹣3<0,3qn+1﹣qn﹣2=qn(3q﹣1)﹣2<2qn﹣2<0,qn+1﹣3qn+2=qn(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴时,不等式恒成立,上,q的取值范围为:.(3)设a1,a2,…ak的公差为d.由,且a1=1,得即当n=1时,﹣≤d≤2;当n=2,3,…,k﹣1时,由,得d≥,所以d≥,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值为1999,k=1999时,a1,a2,…ak的公差为﹣.【点评】本题考查等比数列的通项公式及前n项和的求法;考查不等式组的解法;找好分类讨论的起点是解决本题的关键,属于一道难题.22.(16分)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.【分析】(1)把A、B两点的坐标代入η=(ax1+by1+c)(ax2+by2+c),再根据η<0,得出结论.(2)联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据此方程无解,可得1﹣4k2≤0,从而求得k的范围.(3)设点M(x,y),与条件求得曲线E的方程为[x2+(y﹣2)2]x2=1 ①.由于y轴为x=0,显然与方程①联立无解.把P1、P2的坐标代入x=0,由η=1×(﹣1)=﹣1<0,可得x=0是一条分隔线.【解答】(1)证明:把点(1,2)、(﹣1,0)分别代入x+y﹣1 可得(1+2﹣1)(﹣1﹣1)=﹣4<0,∴点(1,2)、(﹣1,0)被直线 x+y﹣1=0分隔.(2)解:联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据题意,此方程无解,故有 1﹣4k2≤0,∴k≤﹣,或k≥.曲线上有两个点(﹣1,0)和(1,0)被直线y=kx分隔.(3)证明:设点M(x,y),则•|x|=1,故曲线E的方程为[x2+(y﹣2)2]x2=1 ①.y轴为x=0,显然与方程①联立无解.又P1(1,2)、P2(﹣1,2)为E上的两个点,且代入x=0,有η=1×(﹣1)=﹣1<0,故x=0是一条分隔线.若过原点的直线不是y轴,设为y=kx,代入[x2+(y﹣2)2]x2=1,可得[x2+(kx﹣2)2]x2=1,令f(x)=[x2+(kx﹣2)2]x2﹣1,∵k≠2,f(0)f(1)=﹣(k﹣2)2<0,∴f(x)=0没有实数解,k=2,f(x)=[x2+(2x﹣2)2]x2﹣1=0没有实数解,即y=kx与E有公共点,∴y=kx不是E的分隔线.∴通过原点的直线中,有且仅有一条直线是E的分隔线.【点评】本题主要考查新定义,直线的一般式方程,求点的轨迹方程,属于中档题.。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战77295
本试卷共4页,21小题,满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号.用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:球的表面积公式24S R =π,其中R 是球的半径.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.命题“若2x =,则2320x x -+=”的逆否命题是A .若2x ≠,则2320x x -+≠B .若2320x x -+=,则2x = C .若2320x x -+≠,则2x ≠D .若2x ≠,则2320x x -+=2.已知0a b >>,则下列不等关系式中正确的是A .sin sin a b >B .22log log a b <C .1122a b < D .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭3.已知函数()40,1,0,x f x x x x ⎧≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩则()2f f =⎡⎤⎣⎦A .14B .12C .2D .44.函数()sin y A x ωϕ=+()0,0,0A ωϕ>><<π的图象的一部分如图1所示, 则此函数的解析式为A .3sin y x ππ⎛⎫=+ ⎪44⎝⎭B .3sin y x π3π⎛⎫=+ ⎪44⎝⎭C .3sin y x ππ⎛⎫=+ ⎪24⎝⎭D .3sin y x π3π⎛⎫=+ ⎪24⎝⎭5.已知函数()223f x x x =-++,若在区间[]4,4-上任取一个实数0x ,则使()00f x ≥成立的概率为图1A .425B .12C .23D .1 6.如图2,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是A C .3D .27.已知两定点()1,0A -,()1,0B ,若直线l 上存在点M ,使得3MA MB +=,则称直线l 为“M 型直线”.给出下列直线:①2x =;②3y x =+;③21y x =--;④1y =;⑤23y x =+.其中是“M 型直线”的条数为 A .1B .2C .3D .48.设(),P x y 是函数()y f x =的图象上一点,向量()()51,2x =-a ,()1,2y x =-b ,且//a b .数列{}n a是公差不为0的等差数列,且()()()12936f a f a f a ++⋅⋅⋅+=,则129a a a ++⋅⋅⋅+= A.0 B.9 C.18 D.36二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.已知i 为虚数单位,复数1i1iz -=+,则z =. 10.执行如图3所示的程序框图,则输出的z 的值是.11.已知()sin 6f x x =+⎪⎝⎭,若cos 5α=02α<< ⎪⎝⎭,则12f α+= ⎪⎝⎭.12.5名志愿者中安排4人在周六、周日两天参加社区公益活动.若每天安排2人,则不同的安排方案共有_________种(用数字作答). 13.在边长为1的正方形ABCD 中,以A 为起点,其余顶点为终点的向量分别为1a ,2a ,3a ;以C 为起点,其余顶点为终点的向量分别为1c ,2c ,3c .若m 为()()i j s t +•+a a c c 的最小值,其中{}{},1,2,3i j ⊆,{}{},1,2,3s t ⊆,则m =.(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)B ACDEFGAV CB图2如图4,在平行四边形ABCD 中,4AB =,点E 为边DC 的中点,AE 与BC 的延长线交于点F ,且AE 平分BAD ∠,作DG AE ⊥,垂足为G ,若1DG =,则AF 的长为. 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知曲线1C 和2C 的方程分别为32,12x t y t =-⎧⎨=-⎩(t 为参数)和24,2x t y t=⎧⎨=⎩(t 为参数),则曲线1C 和2C 的交点有个.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且::7:5:3a b c =. (1)求cos A 的值;(2)若△ABC 的面积为453,求△ABC 外接圆半径的大小. 17.(本小题满分12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了n 份,统计结果如下面的图表所示. 组号 年龄 分组 答对全卷 的人数 答对全卷的人数 占本组的概率 1 [20,30) 28 b 2 [30,40) 27 0.9 3 [40,50) 5 0.54[50,60] a 0.4(1)分别求出a ,b ,c ,n 的值;(2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环保之星”,记X 为第3组被授予“环保之星”的人数,求X 的分布列与数学期望.18.(本小题满分14分) 如图5,已知六棱柱111111ABCDEF A B C D E F -的侧棱 垂直于底面,侧棱长与底面边长都为3,M ,N 分别 是棱AB ,1AA 上的点,且1AM AN ==. (1)证明:M ,N ,1E ,D 四点共面;(2)求直线BC 与平面1MNE D 所成角的正弦值.19.(本小题满分14分)已知点(),n n n P a b ()n ∈*N 在直线l :31y x =+上,1P 是直线l 与y 轴的交点,数列{}na 是公差为1的等差数列.年龄频率/组距 20 30 40 50 60 0.010c 0.0350.025 0C 1ABA 1B 1D 1 CDMNEFE 1F 1 图5(1)求数列{}n a ,{}n b 的通项公式; (2)求证:22212131111116n PP PP PP ++++<.20.(本小题满分14分)已知圆心在x 轴上的圆C 过点()0,0和()1,1-,圆D 的方程为()2244x y -+=.(1)求圆C 的方程;(2)由圆D 上的动点P 向圆C 作两条切线分别交y 轴于A ,B 两点,求AB 的取值范围.21.(本小题满分14分)已知函数()ln f x a x =-11x x -+,()e xg x =(其中e 为自然对数的底数). (1)若函数()f x 在区间()0,1内是增函数,求实数a 的取值范围;(2)当0b >时,函数()g x 的图象C 上有两点(),e b P b ,(),e b Q b --,过点P ,Q 作图象C 的切线分别记为1l ,2l ,设1l 与2l 的交点为()00,M x y ,证明00x >.广州市普通高中毕业班综合测试(二) 数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.16.(本小题满分12分)解:(1)因为::7:5:3a b c =,所以可设7a k =,5b k =,3c k =()0k >,…………………………………………………………2分由余弦定理得,222cos2b c a A bc+-=()()()222537253k k k k k+-=⨯⨯ (3)分12=-.………………………………………………………………………………………………4分(2)由(1)知,1cos 2A =-,因为A 是△ABC 的内角,所以sin A2=.………………………………………………………………………6分 由(1)知5b k =,3c k =, 因为△ABC 的面积为1sin 2bc A =……………………………………………8分 即1532k k ⨯⨯= 解得k =…………………………………………………………………………………………10分由正弦定理2sin a R A =,即72sin k R A ==,…………………………………………………11分 解得14R =.所以△ABC 外接圆半径的大小为14.…………………………………………………………………12分17.(本小题满分12分)解:(1)根据频率直方分布图,得()0.0100.0250.035101c +++⨯=,解得0.03c =.……………………………………………………………………………………………1分 第3组人数为105.05=÷,所以1001.010=÷=n .…………………………………………………2分第1组人数为1000.3535⨯=,所以28350.8b =÷=.……………………………………………3分 第4组人数为2525.0100=⨯,所以250.410a =⨯=.……………………………………………4分 (2)因为第3,4组答对全卷的人的比为5:101:2=,所以第3,4组应依次抽取2人,4人.…………………………………………………………………5分 依题意X 的取值为0,1,2.……………………………………………………………………………6分()022426C C 20C 5P X ===, (7)分()112426C C 81C 15P X ===,………………………………………………………………………………8分()202426C C 12C 15P X ===,………………………………………………………………………………9分所以X 的分布列为:所以2812012515153EX =⨯+⨯+⨯=. ………………………………………………………………12分 18.(本小题满分14分)第(1)问用几何法,第(2)问用向量法: (1)证明:连接1A B ,11B D ,BD ,11A E ,在四边形1111A B D E 中,1111A E B D 且1111=A E B D , 在四边形11BB D D 中,11BD B D 且11=BD B D ,所以11A E BD 且11=A E BD ,所以四边形11A BDE 是平行四边形. 所以11A BE D .………………………………2分在△1ABA 中,1AM AN ==,13AB AA ==, 所以1AM ANAB AA =, 所以1MNBA .…………………………………………………………………………………………4分………………………………………10分 C 1A BA 1B 1D 1CDMNEFE 1F 1所以1MNDE .所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分(2)解:以点E 为坐标原点,EA ,ED ,1EE 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则()B,9,022C ⎛⎫⎪ ⎪⎝⎭,()0,3,0D , ()10,0,3E,()M ,…………………………8分则3,022BC ⎛⎫=- ⎪ ⎪⎝⎭,()10,3,3DE =-,()32,0DM =-.……………………………………………………………………………………10分设(),,x y z =n 是平面1MNE D 的法向量,则10,0.DE DM ⎧=⎪⎨=⎪⎩nn 即330,20.y z y -+=⎧⎪⎨-=⎪⎩ 取y =2x =,z =所以(=n 是平面1MNE D 的一个法向量.………………………………………………12分设直线BC 与平面1MNE D 所成的角为θ, 则sin BC BCθ=n n==故直线BC 与平面1MNE D ………………………………………………14分 第(1)(2)问均用向量法:(1)证明:以点E 为坐标原点,EA ,ED ,1EE 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则()B,9,022C ⎛⎫⎪ ⎪⎝⎭,()0,3,0D , ()10,0,3E,()M,()N ,……………2分所以()10,3,3DE =-,()0,1,1MN =-. ………………3分 因为13DE MN =,且MN 与1DE 不重合, 所以1DE MN .…………………………………………5分所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分(2)解:由(1)知3,02BC ⎛⎫= ⎪⎪⎝⎭,()10,3,3DE =-,()32,0DM =-.………………10分(特别说明:由于给分板(1)6分(2)8分,相当于把(1)中建系与写点坐标只给2分在此加2分)设(),,x y z =n 是平面1MNE D 的法向量,则10,0.DE DM ⎧=⎪⎨=⎪⎩n n即330,20.y z y -+=⎧⎪⎨-=⎪⎩ 取y =2x=,z =所以(=n 是平面1MNE D 的一个法向量.………………………………………………12分设直线1BC 与平面1MNE D 所成的角为θ, 则sin BC BCθ=n n==故直线BC 与平面1MNE D所成角的正弦值为116.………………………………………………14分 第(1)(2)问均用几何法:(1)证明:连接1A B ,11B D ,BD ,11A E ,在四边形1111A B D E 中,1111A E B D 且1111=A E B D , 在四边形11BB D D 中,11BD B D 且11=BD B D ,所以11A E BD 且11=A E BD ,所以四边形11A BDE 是平行四边形. 所以11A BE D .………………………………2分在△1ABA 中,1AM AN ==,13AB AA ==, 所以1AM ANAB AA =, 所以1MN BA .…………………………………………………………………………………………4分所以1MNDE .所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分(2)连接AD ,因为BCAD ,所以直线AD 与平面1MNE D 所成的角即为直线BC 与平面1MNE D 所成的角.…………………7分 连接DN ,设点A 到平面DMN 的距离为h ,直线AD 与平面1MNE D 所成的角为θ, 则sin hADθ=.……………………………………………………………………………………………8分因为A DMN D AMN V V --=,即1133DMN AMN S h S DB ∆∆⨯⨯=⨯⨯.…………………………………………9分在边长为3的正六边形ABCDEF中,DB =6DA =, 在△ADM 中,6DA =,1AM =,60DAM ∠=,由余弦定理可得,DM =C 1A BA 1B 1 D 1CDMNEFE 1F 1在Rt △DAN 中,6DA =,1AN =,所以DN =. 在Rt △AMN 中,1AM =,1AN =,所以MN =. 在△DMN中,DM =DN =MN =由余弦定理可得,cos DMN ∠=,所以sin DMN ∠=所以1sin 2DMN S MN DM DMN ∆=⨯⨯⨯∠=.…………………………………………………11分 又12AMN S ∆=,……………………………………………………………………………………………12分所以AMN DMN S DB h S ∆∆⨯==.…………………………………………………………………………13分所以sin h AD θ==. 故直线BC 与平面1MNE D所成角的正弦值为116.………………………………………………14分19.(本小题满分14分)(1)解:因为()111,P a b 是直线l :31y x =+与y 轴的交点()0,1,所以10a =,11b =.……………………………………………………………………………………2分 因为数列{}n a 是公差为1的等差数列,所以1n a n =-.……………………………………………………………………………………………4分因为点(),n n n P a b 在直线l :31y x =+上, 所以31n n b a =+32n =-.所以数列{}n a ,{}n b 的通项公式分别为1n a n =-,32n b n =-()*n ∈N .………………………6分(2)证明:因为()10,1P ,()1,32n P n n --,所以()1,31n P n n ++. 所以()222211310n PP n n n +=+=. (7)分所以222121311111n PP PP PP ++++22211111012n ⎛⎫=+++ ⎪⎝⎭.……………………………………8分 因为()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-,……………………………10分 所以,当2n ≥时,222121311111n PP PP PP ++++111111210352121n n ⎡⎤⎛⎫<+-++- ⎪⎢⎥-+⎝⎭⎣⎦……………………………………………………………11分 15110321n ⎛⎫=- ⎪+⎝⎭………………………………………………………………………………………12分 16<. 又当1n =时,212111106PP =<.………………………………………………………………………13分 所以22212131+111116n PP PP PP +++<.……………………………………………………………14分 20.(本小题满分14分)解:(1)方法一:设圆C 的方程为:()222x a y r -+=()0r >,………………………………………1分因为圆C 过点()0,0和()1,1-,所以()22222,11.a r a r ⎧=⎪⎨--+=⎪⎩………………………………………………………………………………3分 解得1a =-,1r =.所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分 方法二:设()0,0O ,()1,1A -,依题意得,圆C 的圆心为线段OA 的垂直平分线l 与x 轴的交点C .………………………………1分 因为直线l 的方程为1122y x -=+,即1y x =+,……………………………………………………2分 所以圆心C 的坐标为()1,0-.…………………………………………………………………………3分 所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分 (2)方法一:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=,即()2200440y x =--≥, 解得026x ≤≤.…………………………………………………………………………………………5分 由圆C 与圆D 的方程可知,过点P 向圆C 所作两条切线的斜率必存在,设PA 的方程为:()010y y k x x -=-,则点A 的坐标为()0100,y k x -,同理可得点B 的坐标为()0200,y k x -, 所以120AB k k x =-,因为PA ,PB 是圆C 的切线,所以1k ,2k1=,即1k ,2k 是方程()()2220000022110x x k y x k y +-++-=的两根,………………………………7分 即()0012200201220021,21.2y x k k x x y k k x x ⎧++=⎪+⎪⎨-⎪=⎪+⎩所以120AB k k x =-x =分 因为()220044y x =--,所以AB =…………………………………………………………………………10分 设()()0020562x f x x -=+,则()()00305222x f x x -+'=+.………………………………………………………………………………11分由026x ≤≤,可知()0f x 在222,5⎡⎫⎪⎢⎣⎭上是增函数,在22,65⎛⎤ ⎥⎝⎦上是减函数,……………………12分 所以()0max 2225564f x f ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭,()()(){}min 0131min 2,6min ,484f x f f ⎧⎫===⎡⎤⎨⎬⎣⎦⎩⎭, 所以AB的取值范围为4⎦.…………………………………………………………………14分 方法二:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=, 即()2200440y x =--≥, 解得026x ≤≤.…………………………………………………………………………………………5分 设点()0,A a ,()0,B b ,则直线PA :00y a y a x x --=,即()0000y a x x y ax --+=, 因为直线PA 与圆C1=,化简得()2000220x a y a x +--=. ① 同理得()2000220x b y b x +--=, ② 由①②知a ,b 为方程()2000220x x y x x +--=的两根,…………………………………………7分 即00002,2.2y a b x x ab x ⎧+=⎪+⎪⎨-⎪=⎪+⎩所以AB a b =-===.……………………………………………………………………9分 因为()220044y x =--,所以AB =分=.………………………………………………………………11分令012t x =+,因为026x ≤≤,所以1184t ≤≤.所以AB ==,………………………………………12分 当532t=时,max AB =, 当14t =时,min AB =所以AB的取值范围为4⎦.…………………………………………………………………14分 21.(本小题满分14分)(1)解法一:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '=-≥+()01x <<.……………………………………………………………1分 即()2120a x x +-≥()01x <<,即()221x a x ≥+……………………………………………………………………………………………2分 212x x=++()01x <<, 因为21122x x<++在()0,1x ∈内恒成立, 所以12a ≥. 故实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.……………………………………………………………………4分 解法二:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '-+≥=()01x <<.……………………………………………………………1分 即()2120a x x +-≥()01x <<,即()2210ax a x a +-+≥()01x <<,…………………………………………………………………2分设()()221g x ax a x a =+-+,当0a =时,得20x -≥,此时不合题意.当0a <时,需满足()()00,10,g g ≥⎧⎪⎨≥⎪⎩即()0,210,a a a a ≥⎧⎪⎨+-+≥⎪⎩解得12a ≥,此时不合题意. 当0a >时,需满足()222140a a --≤⎡⎤⎣⎦或()()00,10,10,g g a a ⎧⎪≥⎪≥⎨⎪-⎪-<⎩或()()00,10,11,g g a a⎧⎪≥⎪≥⎨⎪-⎪->⎩ 解得12a ≥或1a >, 所以12a ≥. 综上所述,实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.……………………………………………………………4分(2)证明:因为函数()e x g x =,所以()e x g x '=. 过点(),e b P b ,(),e b Q b --作曲线C 的切线方程为: 1l :()e e b b y x b =-+,2l :()e e b b y x b --=++,因为1l 与2l 的交点为()00,M x y ,由()()e e ,e e ,b b b b y x b y x b --⎧=-+⎪⎨=++⎪⎩………………………………………………………………………………6分 消去y ,解得()()()0e +e e e e e b b b b b b b x -----=-. ①…………………………………………7分 下面给出判定00x >的两种方法:方法一:设e b t =,………………………………………………………………………………………8分 因为0b >,所以1t >,且ln b t =.所以()()2202+1ln 11t t t x t --=-. (9)分设()()()22+1ln 1h t t t t =--()1t >, 则()12ln h t t t t t'=-+()1t >.………………………………………………………………………10分 令()12ln u t t t t t=-+()1t >, 则()212ln 1u t t t'=+-. 当1t >时,ln 0t >,2110t ->,所以()212ln 10u t t t'=+->,………………………………11分 所以函数()u t 在()1,+∞上是增函数,所以()()10u t u >=,即()0h t '>,…………………………………………………………………12分 所以函数()h t 在()1,+∞上是增函数,所以()()10h t h >=.…………………………………………………………………………………13分 因为当1t >时,210t ->, 所以()()2202+1ln 101t t t x t --=>-.…………………………………………………………………14分方法二:由①得0x ()221+e 11e b b b --=--. 设2eb t -=, (8)分 因为0b >,所以01t <<,且ln 2t b =-. 于是21ln b t -=,……………………………………………………………………………………………9分 所以()01+221ln 1ln 1b t b t x b t t t t +⎛⎫=+=+ ⎪--⎝⎭.…………………………………………………………10分 由(1)知当12a =时,()1ln 2f x x =-11x x -+在区间()0,1上是增函数,…………………………11分 所以()ln 2t f t =-()1101t f t -<=+, 即ln 2t <11t t -+. …………………………………………………………………………………………12分 即210ln 1t t t++>-,………………………………………………………………………………………13分 已知0b >,所以0210ln 1t x b t t +⎛⎫=+>⎪-⎝⎭.…………………………………………………………………………14分一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的模长为()A.B. C.D.22.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2] C.(1,2)D.(1,2]3.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A. B. C. D.4.(5分)下列关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列是递增数列;p4:数列{an+3nd}是递增数列;其中真命题是()A.p1,p2 B.p3,p4 C.p2,p3 D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C.D.7.(5分)使得(3x+)n(n∈N+)的展开式中含有常数项的最小的n为()A.4 B.5 C.6 D.78.(5分)执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3 B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的较大值,min{p,q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.16 B.﹣16 C.﹣16a2﹣2a﹣16 D.16a2+2a﹣1612.(5分)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值二、填空题:本大题共4小题,每小题5分.13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(Ⅰ)求证:平面PAC⊥平面PBC;(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C﹣PB﹣A的余弦值.19.(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(Ⅰ)求张同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.请考生在21、22、23题中任选一题作答,如果多做,则按所做的第一题计分。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战48577
数学(文科).3本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共40分)注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.设全集}4,3,2,1{=U ,集合}2,1{=P ,}3,1{=Q ,则=)(Q C P UA .{1}B .{2}C .{4}D .{1,2,4}2.若向量a=(1,—1),b=(—1,1),c=(5,1),则c+a+b=A .aB .bC .cD .a+b 3.抛物线24y x =的焦点坐标为A .(0,2)B .(2,0)C .(0,1)D .(1,0)4.已知1=a ,复数),()2()1(2R b a i a a z ∈-+-=,则“1=a ”是“z 为纯虚数”的 A .充分非必要条件B .必要非充分条件 C .充要条件D .既非充分又非必要条件5.如图,是CCTV 青年歌手大奖赛上某位选手得分的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均 数为 A .85 B .86 C .87 D .88 6.右图,是一个简单空间几何体的三视图,其主视图与左视 图都是边长为2的正三角形,俯视图轮廓为正方形,则 其体积是A 342C 43D .837.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为A .827 B .271 C .2627 D .1527 8.已知数列:1213214321,,,,,,,,,,...,1121231234依它的前10项的规律,这个数列的第项2010a 满足A .20101010a <<B .20101110a ≤< C .2010110a ≤≤ D .201010a >第Ⅱ卷(非选择题 共110分)注意事项:用黑色签字笔将答案写在答题卡上规定的区域内.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.函数y x=的定义域是__. 10.=8cos8sinππ.11.如图,是计算111124620++++的值的一个程序 框图,其中判断框内应填入的条件是. 12.若函数2)(3++-=cx x x f )(R c ∈,则/3()2f -、/(1)f -、/(0)f 的大小关系是_.13.如图,直角POB ∆中,90=∠PBO ,以O 为圆心、OB 为半径作圆弧交OP 于A 点.若圆弧AB 等分△POB 的面积,且∠AOB=α弧 度,则tan α=α.14.已知函数⎩⎨⎧>-≤++-=0,20,)(2x x c bx x x f ,若1)1(=-f ,2)0(-=f ,则函数x x f x g +=)()(的零点个数为____.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分12分)已知函数)2cos(cos )(x x x f -+=π.(Ⅰ)求)3(πf 的值;(Ⅱ)求)(x f 的单调递减区间.16.(本小题满分14分)如图,在三棱锥A —BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 中点,D 为PB 中点,且△PMB 为正 三角形.(Ⅰ)求证:MD//平面APC ;(Ⅱ)求 证:平面ABC ⊥平面APC . 17.(本小题满分13分)已知函数b ax x x f ++=23)(的图象在点)0,1(P 处的切线与直线03=+y x 平行.(Ⅰ)求常数a 、b 的值;(Ⅱ)求函数)(x f 在区间]4,0[上的最小值和最大值.18.(本小题满分13分)某校高三数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图 所示.若130~140分数段的人数为2人.(Ⅰ)估计这所学校成绩在90~140分之间学生的参赛人数;(Ⅱ)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶学习小组.若选出的两人成绩之差大于20,则称这两人为“黄金搭档组”,试求选出的两人为“黄金搭档组”的概率.19.(本小题满分14分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,离心率为21,椭圆的短轴端点和焦点所组成的四边 形周长等于8.(Ⅰ)求椭圆C 的方程;(Ⅱ)若过点(0,—2)的直线l 与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求直线l 的方程.20.(本小题满分14分) 当n p p p ,,,21 均为正数时,称np p p n+++ 21为n p p p ,,,21 的“均倒数”.已知数列{}n a 的各项均为正数,且其前n 项的“均倒数”为121+n . (Ⅰ)试求数列{}n a 的通项公式; (Ⅱ)设12+=n a c nn ,试判断并说明()*1n n c c n N +-∈的符号; (Ⅲ)已知(0)n an b t t =>,记数列{}n b 的前n 项和为n S ,试求1n nS S +的值.怀柔区~度第二学期高三数学期中练习参考答案及评分标准(文科).3 一、选择题:本大题共 8 小题,每小题 5 分,共 40 分. 二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.题号 1 2 3 4 5 6 7 8 答案BCDACCBB9. }0{>x x 10.4211. 20n ≤ 12./(0)f >/(1)f ->/3()2f -13. 2 14. 3三、解答题:本大题共 6 小题,共 80 分. 15.(本小题满分12分)解:(Ⅰ)()coscos()3323f ππππ=+-=4分 (Ⅱ) x x x x x f cos sin )2cos(cos )(+=-+=π2()22coscos sin )44)84x x x x x πππ=+=+=+⋅⋅⋅⋅⋅⋅⋅⋅分由232422πππππ+≤+≤+k x k 得45242ππππ+≤≤+k x k∴)(x f 的递减区间为]452,42[ππππ++k k ,)(Z k ∈12分16.(本小题满分14分)解(Ⅰ)∵M 为AB 中点,D 为PB 中点,∴MD//AP ,又MD ⊄平面ABC , ∴MD//平面APC 。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战78677
注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上.2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}{=22,x A x B y y <==,则A B =( )A.[)0,1B.()0,2C.()1+∞,D.[)0+∞, 2.已知复数z 满足()z 1i i +=-,则z =( ) A.12C.13.在等比数列{}n a 中,2348a a a =,78a =,则1=a ( ) A.1 B. 1± C.2 D.2±4.如图所示的程序框图的运行结果为( ) A. 1- B.12C.1D.2 5.在区间[]0,4上随机取两个实数,x y ,使得28x y +≤的概率为( )6.在平行四边形ABCD 中,4,3,3AB AD DAB π==∠=,点,E F 分别在,BC DC 边上,且2,BE EC DF FC ==,则AE BF ⋅=( )A.83-B.1-C. 2D. 1037.已知圆C 方程为()()22210x y r r -+=>,若p :13r ≤≤;q :圆C 上至多有3个点到直线+30x -=的距离为1,则p 是q 的( )A.充分不必要条件B. 必要不充分条件C.充要条件D.既不充分也不必要条件(第4题图)(第6题图)8.已知函数()22,0lg ,0x x x f x x x ⎧+⎪=⎨>⎪⎩≤,则函数()()11g x f x =--的零点个数为( )A.1B.2C.3D.49.某空间几何体的三视图如图所示,则该几何体的外接球的表面积是( )A.36πB.52πC. 72πD.100π10.若()()()2cos 2+0f x x ϕϕ=>的图像关于直线3x π=对称,且当ϕ取最小值时,00,2x π⎛⎫∃∈ ⎪⎝⎭,使得()0f x a =,则a 的取值范围是( ) A.(]1,2- B. [)2,1-- C.()1,1- D.[)2,1-11.已知F 是抛物线24x y =的焦点,P 为抛物线上的动点,且A 的坐标为()0,1-,则PF PA的最小值是( )A.14 B. 1212.已知函数()2()e x f x x ax b =++,当1b <时,函数()f x 在(),2-∞-,()1,+∞上均为增函数,则2a ba +-的取值范围是( ) A .22,3⎛⎤- ⎥⎝⎦B .1,23⎡⎫-⎪⎢⎣⎭C .2,3⎛⎤-∞ ⎥⎝⎦D .2,23⎡⎤-⎢⎥⎣⎦第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.已知()f x 是定义在R 上的奇函数,当0x >时,()2=log 1f x x -,则2f ⎛- ⎝⎭=.14.若244xy+=,则2x y +的最大值是.第二次八校联考文科数学 第 2 页(共6页) 俯视图正视图 侧视图第9题图)15.已知12,l l 分别为双曲线()222210,0x y a b a b-=>>的两条渐近线,且右焦点关于1l 的对称点在2l 上,则双曲线的离心率为.16.数列{}n a 满足1=1a ,()()1=11n n na n a n n ++++,且2=cos 3n n n b a π,记n S 为数列{}n b 的前n 项和,则120S =.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)如图,在平面四边形ABCD 中,AB AD ⊥,1AB =,AC 23ABC π∠=,3ACD π∠=.(Ⅰ)求sin BAC ∠;(Ⅱ)求DC 的长.18.(本小题满分12分)国内某知名大学有男生14000人,女生10000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如下表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是[]0,3.) (Ⅰ)请根据样本估算该校男生平均每天运动的时间(结果精确到0.1);(Ⅱ)若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生 为“非运动达人”.①请根据样本估算该校“运动达人”的数量;②请根据上述表格中的统计数据填写下面22⨯列联表,并通过计算判断能否在犯错 误的概率不超过0.05参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中.n a b c d =+++A CDB(第17题图)第二次八校联考文科数学 第 3 页(共6页)参考数据:19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,ABC △是等边三角形,14BC CC ==,D 是11A C 中点.(Ⅰ)求证:1A B ∥平面1B CD ;(Ⅱ)当三棱锥11C B C D -体积最大时,求点B 到平面1B CD 的距离.20. (本小题满分12分)定义:在平面内,点P 到曲线Γ上的点的距离的最小值称为点P 到曲线Γ的距离.在平面直角坐标系xOy 中,已知圆M:(2212x y +=及点()A ,动点P 到圆M 的距离与到A 点的距离相等,记P 点的轨迹为曲线W . (Ⅰ)求曲线W 的方程;(Ⅱ)过原点的直线l (l 不与坐标轴重合)与曲线W 交于不同的两点,C D ,点E 在曲线W 上,且CE CD ⊥,直线DE 与x 轴交于点F ,设直线,DE CF 的斜率分别为12,k k ,求12.kk21.(本小题满分12分)已知函数()()ln 4f x ax x a =--∈R .A B 1A C1C D 1B (第19题图) 第二次八校联考文科数学 第 4 页(共6页)(Ⅰ)讨论()f x 的单调性;(Ⅱ)当2a =时,若存在区间[]1,,2m n ⎡⎫⊆+∞⎪⎢⎣⎭,使()f x 在[],m n 上的值域是,11kk m n ⎡⎤⎢⎥++⎣⎦,求k 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答题时请用2B 铅笔在答题卡上把所选题目的题号涂黑. 22. (本小题满分10分)41 :几何证明选讲如图,在锐角三角形ABC 中,AB AC =,以AB 为直径的圆O 与边,BC AC 另外的交点分别为,D E ,且DF AC ⊥于.F (Ⅰ)求证:DF 是O ⊙的切线;(Ⅱ)若3CD =,7=5EA ,求AB 的长.23.(本小题满分10分)44 :坐标系与参数方程已知曲线1C 的参数方程为1cos 3sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0απ<≤),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4πρθ⎛⎫=+ ⎪⎝⎭.(Ⅰ)若极坐标为4π⎫⎪⎭的点A 在曲线1C 上,求曲线1C 与曲线2C 的交点坐标;(Ⅱ)若点P 的坐标为()1,3-,且曲线1C 与曲线2C 交于,B D 两点,求.PB PD ⋅24.(本小题满分10分)选修45:不等式选讲 已知函数()+122f x x x =--. (Ⅰ)求不等式()1f x x -≥的解集;(Ⅱ)若()f x 的最大值是m ,且,,a b c 均为正数,a b c m ++=,求222b c a a b c++的最小值.第二次八校联考文科数学 第 5 页(共6页)第二次八校联考文科数学 第 6 页(共6页)BO(第22题图)八校高三第二次联考文科数学参考答案一、选择题答案:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B A A D CACB DC A二、填空题: 13.32; 14.2; 15.2; 16.7280 三、解答题:17.(Ⅰ)在ABC ∆中,由余弦定理得:2222cos AC BC BA BC BA B =+-⋅,即260BC BC +-=,解得:2BC =,或3BC =-(舍), ………………3分由正弦定理得:sin sin sin sin BC AC BC B BAC BAC B AC =⇒∠==∠………………6分(Ⅱ)由(Ⅰ)有:cos sin CAD BAC ∠=∠=sin CAD ∠=,所以1sin sin 32D CAD π⎛⎫=∠+== ⎪⎝⎭, ………………9分由正弦定理得:sin sin sin sin DC AC AC CADDC CAD D D∠=⇒===∠……………12分(其他方法相应给分)18. (Ⅰ)由分层抽样得:男生抽取的人数为14000120=7014000+10000⨯人,女生抽取人数为1207050-=人,故x =5,y =2, ……………2分则该校男生平均每天运动的时间为:0.2520.7512 1.2523 1.7518 2.2510 2.7551.570⨯+⨯+⨯+⨯+⨯+⨯≈, ……………5分故该校男生平均每天运动的时间约为1.5小时; (Ⅱ)①样本中“运动达人”所占比例是201=1206,故估计该校“运动达人”有 ()1140001000040006⨯+=人; ……………8分 ②由表格可知:运动达人 非运动达人总 计 男 生 15 55 70 女 生 5 45 50 总 计20100120……………9分华师一附中 黄冈中学 黄石二中 荆州中学 襄阳四中 襄阳五中 孝感高中 鄂南高中故2K 的观测值()2120154555596=2.7433.841.20100507035k ⨯-⨯=≈<⨯⨯⨯……………11分 故在犯错误的概率不超过0.05的前提下不能认为“是否为‘运动达人’与性别有关”. ……………12分19.(Ⅰ)连结1BC ,交1B C 于O ,连DO .在三棱柱111ABC A B C -中,四边形11BB C C 为平行四边形,则1BO OC =,又D 是11A C 中点,∴1DO A B ∥,而DO ⊂平面1B CD ,1A B ⊄平面1B CD ,∴1A B ∥平面1B CD . ……………4分(Ⅱ)设点C 到平面111A B C 的距离是h,则11111=3C B C D B C D V S h -△,而14h CC =≤,故当三棱锥11C B C D -体积最大时,1=4h CC =,即1CC ⊥平面111A B C . ……………6分 由(Ⅰ)知:1BO OC =,所以B 到平面1B CD 的距离与1C 到平面1B CD 的距离相等. ∵1CC ⊥平面111A B C ,1B D ⊂平面111A B C ,∴11CC B D ⊥,∵ABC △是等边三角形,D 是11A C 中点,∴111AC B D ⊥,又1111=CC AC C ,1CC ⊂平面11AA C C ,11AC ⊂平面11AA C C ,∴1B D ⊥平面11AA C C ,∴1B D CD ⊥,由计算得:1B D CD =1B CD S ∆ ……………9分设1C 到平面1B CD 的距离为h ',由1111=C B C D C B CD V V --得:114=3B CD S h h ''⇒=△B 到平面1B CD……………12分 (其他方法相应给分)20.(Ⅰ)由分析知:点P在圆内且不为圆心,故PA PM AM +=>=, 所以P 点的轨迹为以A 、M 为焦点的椭圆, ……………2分设椭圆方程为()222210x y a b a b +=>>,则22a a c c ⎧⎧=⎪⎪⇒⎨⎨==⎪⎪⎩⎩,所以21b =,故曲线W 的方程为22 1.3x y +=……………5分(Ⅱ)设111122(,)(0),(,)C x y x y E x y ≠,则11(,)D x y --,则直线CD 的斜率为11CD y k x =,又CE CD ⊥,所以直线CE 的斜率是11CE x k y =-,记11xk y -=,设直线CE 的方程为y kx m =+,由题意知0,0k m ≠≠,由2213y kx mx y =+⎧⎪⎨+=⎪⎩得:()222136330k x mkx m +++-=.∴122613mk x x k +=-+,∴121222()213my y k x x m k+=++=+,由题意知,12x x ≠, 所以1211121133y y y k x x k x +==-=+, ……………9分所以直线DE 的方程为1111()3y y y x x x +=+,令0y =,得12x x =,即1(2,0)F x . 可得121y k x =-. ……………11分 所以1213k k =-,即121=.3k k -……………12分 (其他方法相应给分)21.(Ⅰ)函数()f x 的定义域是()0+∞,,()1ax f x x-'=, 当a ≤0时,()0f x '≤,所以()f x 在()0+∞,上为减函数, ……………2分 当a >0时,令()0f x '=,则1x a =,当10x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,()f x 为减函数, 当1+x a ⎛⎫∈∞ ⎪⎝⎭,时,()0f x '>,()f x 为增函数, ……………4分 ∴当a ≤0时,()f x 在()0+∞,上为减函数;当a >0时,()f x 在10a ⎛⎫ ⎪⎝⎭,上为减函数,在1+a ⎛⎫∞ ⎪⎝⎭,上为增函数.……………5分(Ⅱ)当2a =时,()2ln 4f x x x =--,由(Ⅰ)知:()f x 在1+2⎛⎫∞ ⎪⎝⎭,上为增函数,而[]1,,2m n ⎡⎫⊆+∞⎪⎢⎣⎭,∴()f x 在[],m n 上为增函数,结合()f x 在[],m n 上的值域是,11kk m n ⎡⎤⎢⎥++⎣⎦知:()(),11k k f m f n m n ==++,其中12m n <≤, 则()1k f x x =+在1,2⎡⎫+∞⎪⎢⎣⎭上至少有两个不同的实数根, ……………7分由()1kf x x =+得()2=221ln 4k x x x x --+-,记()()2=221ln 4x x x x x ϕ--+-,1,2x ⎡⎫∈+∞⎪⎢⎣⎭,则()1=4ln 3x x x x ϕ'---,记()()1=4ln 3F x x x x xϕ'=---,则()()2222213410x x x x F x x x -+-+'==>, ∴()F x 在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,即()x ϕ'在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,而()1=0ϕ',∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'<,当()1,x ∈+∞时,()0x ϕ'>,∴()x ϕ在1,12⎛⎫⎪⎝⎭上为减函数,在()1,+∞上为增函数, ……………10分而13ln 2922ϕ-⎛⎫= ⎪⎝⎭,()1=4ϕ-,当x →+∞时,()x ϕ→+∞,故结合图像得:()13ln 291422k k ϕϕ-⎛⎫<⇒-< ⎪⎝⎭≤≤,∴k 的取值范围是3ln 294,.2-⎛⎤- ⎥⎝⎦……………12分 (其他方法相应给分)22.(Ⅰ)连结,.AD OD 则AD BC ⊥,又AB AC =,∴D 为BC 的中点, ……………2分 而O 为AB 中点,∴OD AC ∥,又DF AC ⊥,∴OD DF ⊥, 而OD 是半径,∴DF 是O ⊙的切线.……………5分(Ⅱ)连DE ,则CED B C ∠=∠=∠,则DCF DEF △△≌,∴CF FE =,…………7分设CF FE x ==,则229DF x =-,由切割线定理得:2DF FE FA =⋅,即279+5x x x ⎛⎫-= ⎪⎝⎭,解得:1295=52x x =-,(舍),∴ 5.AB AC ==……………10分 (其他方法相应给分)23.(Ⅰ)点4π⎫⎪⎭对应的直角坐标为()1,1, ……………1分由曲线1C 的参数方程知:曲线1C 是过点()1,3-的直线,故曲线1C 的方程为20x y +-=,……………2分而曲线2C 的直角坐标方程为22220x y x y +--=,联立得2222020x y x y x y ⎧+--=⎨+-=⎩,解得:12122002x x y y ==⎧⎧⎨⎨==⎩⎩,,故交点坐标分别为()()2,0,0,2.……………5分 (Ⅱ)由判断知:P 在直线1C 上,将1+cos 3sin x t y t αα=-⎧⎨=+⎩代入方程22220x y x y +--=得:()24cos sin 60t t αα--+=,设点,B D 对应的参数分别为12,t t ,则12,PB t PD t ==,而126t t =,所以1212==6.PB PD t t t t ⋅=⋅……………10分(其他方法相应给分)24.(Ⅰ)131x x x <-⎧⎨--⎩≥,或11311x x x -⎧⎨--⎩≤≤≥,或131x x x >⎧⎨-+-⎩≥,解得:02x ≤≤故不等式的解集为[]02,; ……………5分 (Ⅱ)()3,131,113,1x x f x x x x x -<-⎧⎪=--⎨⎪-+>⎩ ≤≤,显然当1x =时,()f x 有大值,()1 2.m f ==∴2a b c ++=, ……………7分 而()()2222222222=b c a a b c a b c a bc ⎡⎤⎛⎫⎡⎤++++++++++⎢⎥ ⎪⎢⎥⎣⎦⎢⎥⎝⎭⎣⎦≥ ∴2222b c a a b c a b c ++++=≥,当且仅当2a b c ⎪++=⎩,即23a b c ===时取等号,故222b c a a b c++的最小值是2.……………10分 (其他方法相应给分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的模长为()A.B. C.D.22.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2] C.(1,2)D.(1,2]3.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A. B. C. D.4.(5分)下列关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列是递增数列;p4:数列{an+3nd}是递增数列;其中真命题是()A.p1,p2 B.p3,p4 C.p2,p3 D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C.D.7.(5分)使得(3x+)n(n∈N+)的展开式中含有常数项的最小的n为()A.4 B.5 C.6 D.78.(5分)执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3 B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的较大值,min{p,q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.16 B.﹣16 C.﹣16a2﹣2a﹣16 D.16a2+2a﹣1612.(5分)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值二、填空题:本大题共4小题,每小题5分.13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(Ⅰ)求证:平面PAC⊥平面PBC;(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C﹣PB﹣A的余弦值.19.(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(Ⅰ)求张同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.请考生在21、22、23题中任选一题作答,如果多做,则按所做的第一题计分。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战36583
一.基础题组1.(北京市昌平区高三二模理3)已知等差数列{}n a 的公差是2,若134,,a a a 成等比数列,则1a 等于( ) A. 4- B. 6- C. 8- D. 10- 【答案】C考点:等差数列与等比数列.2.(北京市东城区高三5月综合练习(二)理3)已知{}n a 为各项都是正数的等比数列,若484a a ⋅=,则567a a a ⋅⋅=( )(A )4(B )8(C )16(D )64 【答案】B 【解析】试题分析:由于数列{}n a 是正各项都是正数的等比数列,所以根据等比数列的性质可知:248664,2a a a a ==∴=,356768a a a a ==,所以答案为B.考点:1.等比数列的性质;2.等比数列的求值.3.(北京市丰台区度第二学期统一练习(一)理2)在等比数列}{n a 中,344a a +=,22a =,则公比q 等于( )A .2B .1或2C .1D .1或2 【答案】B 【解析】试题分析:∵344a a +=,∴2224a q a q +=∴解得1q =或2q =-,故选B.考点:等比数列的通项公式.4.(北京市顺义区高三第一次统一练习(一模)理11)已知无穷数列{}n a 满足:1110,2()n n a a a n N *+=-=+∈.则数列{}n a 的前n 项和的最小值为.【答案】30考点:等差数列. 二.能力题组1.(北京市石景山区高三3月统一测试(一模)理6)等差数列{}n a 中,11,m k a a k m==()m k ≠,则该数列前mk 项之和为( ) A .12mk - B .2mk C .12mk + D .12mk+ 【答案】C 【解析】试题分析:设公差为,d 由已知1111111,(1)(1),kk m d a a k d k m k mk m mk mk -===--=--⋅=-所以,1(1)1(1)11,222mk mk mk mk mk mk S mka d mk mk mk --+=+=⋅+⋅=选C .考点:等差数列及其求和公式.2.(北京市西城区高三一模考试理12)若数列{}n a 满足12a =-,且对于任意的*,m n ∈N ,都有m n m n a a a +=⋅,则3a =___;数列{}n a 前10项的和10S =____.【答案】8-,682 【解析】试题分析:由m n m n a a a +=⋅得2113214,8,a a a a a a =⋅==⋅=-由m n m n a a a +=⋅得112n n n a a a a +=⋅=-,所以数列{}n a 为等比数列,因此10102[1(2)]682.1(2)S ---==---考点:等比数列通项与和项3.(北京市朝阳区高三第二次综合练习理13)已知点()11,1a A ,()22,2a A ,⋅⋅⋅,(),n n a n A (n *∈N )在函数13log y x =的图像上,则数列的通项公式为__________;设O 为坐标原点,点,则,中,面积的最大值是__________.【答案】13n⎛⎫ ⎪⎝⎭,16考点:1.对数函数性质;2.求数列通项;3.数列单调性.4.(北京市海淀区101中学高三上学期期中模拟考试理10)在公差为正数的等差数列}{n a 中,n S a a a a ,0,011101110<<+且是其前n 项和,则使n S 取最小值的n 是.【答案】10 【解析】试题分析:因为数列的公差为正数,所以数列为递增数列,又因为0,011101110<<+a a a a 且, 所以0,01110><a a ,所以前10项的和最小,即使n S 取最小值的。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战16599
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.356437-⎛⎫⎪⎝⎭; 2.34; 3.(,1)-∞-; 4.4π; 5.(,0)-∞6.(0,2); 7.13b -≤≤; 8.10082017; 9.π32; 10.16; 11.3; 12.(),1n n -+;13.;14.66a -≤≤. 二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.A ;16. A ; 17.B ;18.D .三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共2小题,第(1)小题6分,第(2)小题6分.19.解:(1)证明:AB PAD ⊥平面,PH PAD ⊆平面,AB PH ⊥又PAD ∆中,PD PA =,点H 为线段AD 的中点,PH AD ⊥PH ADPH ABPH ABCD AD AB A ⊥⎧⎪⊥⇒⊥⎨⎪=⎩平面 (2)1,PH AD AH DH ===,又PH AD ⊥,PA PD ∴== 连结BH ,可得PBH ∠是PB 与平面ABCD 所成角,又PB 与平面ABCD 所成角的大小为45,1BH ∴=,在Rt ABH ∆中,AB =, 1111()3322P ABCDABCD V S PH AB CD AD PH -∴==⨯+⋅⋅=梯形.分 20.(本题满分14分)本题共2小题,第(1)小题6分,第(2)小题8分. 解:(1)因为抛物线24y x =的焦点F 是椭圆M 的一个焦点,即(1,0)F又椭圆M 的对称轴为坐标轴,所以设椭圆方程为22221,0x y a b a b+=>>,且221a b -=又以F 为圆心,以椭圆M的短半轴长为半径的圆与直线20l x -+=:相切即1b ==,所以椭圆M 的方程是2212x y += (2)设11(,)A x y ,22(,)B x y22223422022y x mx mx m x y =+⎧⇒++-=⎨+=⎩ 222(4)12(22)8240m m m ∆=--=-+>m ⇒<<1212,(,)OP OA OB P x x y y =+∴++又121242,33x x m y y m +=-+=, 即42(,)33P m m -在椭圆2212x y +=上,即2242()2()233m m m -+=⇒=21.(本题满分14分)本题共2小题,第(1)小题4分,第(2)小题10分. 解:(1)1212sin12032ABCDS=⨯⨯⨯=当点F 与点D 重合时,由已知134CDEABCDS S ==,又13sin12012CDESCE CD x x =⋅⋅==⇒= ,E 是BC 的中点 (2)①当点F 在CD上,即12x ≤≤时,利用面积关系可得1CF x=, 再由余弦定理可得y =≥1x =时取等号 ②当点F 在DA 上时,即01x ≤<时,利用面积关系可得1DF x =-, (ⅰ)当CE DF <时,过E 作EG ∥CD 交DA 于G ,在EGF ∆中,1,12,60EG GF x EGF ==-∠=,利用余弦定理得y =(ⅱ)同理当CE DF ≥,过E 作EG ∥CD 交DA 于G ,在EGF ∆中,1,21,120EG GF x EGF ==-∠=,利用余弦定理得y =由(ⅰ)、(ⅱ)可得y =,01x ≤<y∴==,01x ≤< ,min y ∴=12x =时取等号 ,由①②可知当12x =时,路EF 的长度最短为2.22.(本题满分16分)本题共3小题,第(1)小题4分,第(2)小题4分,第(3)小题8分.解:(1)因为(,)n n n P a S 、*111(,),n n n P a S n N +++∈都在直线y kx b =+上,所以11n nn nS S k a a ++-=-,即1(1)n n k a ka +-=,又0k ≠,且1k ≠,所以11n n a ka k +=-为非零常数,所以数列{}n a 是等比数列(2)由12log n n b a =得31()22nb n n a -==,即21kk =-得2k =. 由*(,),n n n P a S n N ∈在直线y kx b =+上得n n S ka b =+上,令1n =得111124b S a a =-=-=-(3)由12log n n b a =知1n a >恒成立等价于0n b <恒成立.因为存在*,,t s N s t ∈≠使得点(),s t b 和(),t s b 都在直线在21y x =+上,所以21s b t =+,21t b s =+即2()t s b b s t -=-,另1,2s t t =-≥,易证12(1)2t t b b t t --=--=-,又1(1)(2)21s b b s t =+--=+12()10b t s ⇒=+->,即{}n b 是首项为正,公差为2-的等差数列. 所以一定存在自然数M ,使100M M b b +≥⎧⎨<⎩即2()1(1)(2)02()1(2)0t s M t s M +-+--≥⎧⎨+-+-<⎩,解得1122t s M t s +-<≤++,*M N ∈,M t s ∴=+.存在自然数M ,其最小值为t s +使得当n M >(*n N ∈)时,1n a >恒成立时,1n a >恒成立.23.(本题满分18分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题8分.解:(1) x x x f sin cos )(+=,2πα=∴x x x f sin cos )(-=+α;∴x x g 2cos )(=(2)()2cos (cos )4cos cos()3g x x x x x x π=+=-,若()2cos f x x =,则()()2cos()33f x f x x ππα+=-=-(2)33k ππααπ⇒∴=-=-∈取,k Z 中一个都可以,()2cos f xx =(3)()sin cos f x x x =+,()()()g x f x f x α∴=⋅+=(sin cos )x x +(cos sin )x x -cos 22,2,2sin 212,2,23cos 22,2,2312sin 22,22.2x x k k x x k k k Z x x k k x x k k πππππππππππππππ⎧⎛⎤∈+ ⎪⎥⎝⎦⎪⎪⎛⎤--∈++⎪ ⎥⎪⎝⎦=∈⎨⎛⎤⎪-∈++ ⎥⎪⎝⎦⎪⎛⎤⎪-∈++ ⎥⎪⎝⎦⎩显然,(2)()g x g x π+=即()y g x =的最小正周期是2π,因为存在12,x x R ∈,对任意x R ∈,12()()()g x g x g x ≤≤恒成立, 所以当12x k ππ=+或12,2x k k Z ππ=+∈时,1()()1g x g x ≥=-当272,4x k k Z ππ=+∈时,2()()2g x g x ≤= 所以12121272(2),4x x k k k k Z ππππ-=+-+∈、 或12121272(2),24x x k k k k Z ππππ-=+-+∈、 所以12x x -的最小值是34π. 说明:写出分段函数后画出一个或多个周期上的函数图像,用数形结合的方法解同样给分一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.2.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.3.(5分)如图是一个算法流程图,则输出的n的值是.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.高考模拟题复习试卷习题资料高考数学试卷(附详细答案)参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.【分析】根据集合的基本运算即可得到结论.【解答】解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为 21 .【分析】根据复数的有关概念,即可得到结论.【解答】解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21【点评】本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.(5分)如图是一个算法流程图,则输出的n的值是 5 .【分析】算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.【解答】解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.【分析】首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.【解答】解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.【点评】本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.【分析】由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.【解答】解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.【点评】本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 24 株树木的底部周长小于100cm.【分析】根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.【解答】解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株).故答案为:24.【点评】本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是 4 . 【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{an}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.【点评】本题考查了等比数列的通项公式,属于基础题.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.【分析】设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.【解答】解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.【点评】本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.【分析】求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C 到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.【解答】解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.【点评】本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0) .【分析】由条件利用二次函数的性质可得,由此求得m的范围.【解答】解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3 .【分析】由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.【解答】解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是 22 .【分析】由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.【解答】解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.【点评】本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,) .【分析】在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.【解答】解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).【点评】本题考查函数的图象以函数的零点的求法,数形结合的应用.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.【分析】根据正弦定理和余弦定理,利用基本不等式即可得到结论.【解答】解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.【点评】本题主要考查正弦定理和余弦定理的应用,结合基本不等式的性质是解决本题的关键.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.【分析】(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.【解答】解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.【点评】本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.【分析】(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可. 【解答】证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.【点评】本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.【分析】(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.【解答】解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,﹣),且A,C关于x轴对称,∴C(,),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.【点评】本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?【分析】(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大. 【解答】解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.【点评】本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.【分析】(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.【解答】解:(1)∵f(x)=ex+e﹣x,∴f(﹣x)=e﹣x+ex=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(ex+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴ex+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=ex,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=ex+e﹣x﹣a(﹣x3+3x),则g′(x)=ex﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而ea﹣1<ae﹣1,②当a=e时,ae﹣1=ea﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e ﹣1)lna,从而ea﹣1>ae﹣1.【点评】本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.【分析】(1)利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”即可得到an,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出Sn,对∀n∈N*,∃m∈N*使Sn=am,取n=2和根据d<0即可得出;(3)设{an}的公差为d,构造数列:bn=a1﹣(n﹣1)a1=(2﹣n)a1,cn=(n﹣1)(a1+d),可证明{bn}和{cn}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.【解答】解:(1)当n≥2时,an=Sn﹣Sn﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,Sn=an+1.∴数列{an}是“H”数列.(2)Sn==,对∀n∈N*,∃m∈N*使Sn=am,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{an}的公差为d,令bn=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,bn+1﹣bn=﹣a1,cn=(n﹣1)(a1+d),对∀n∈N*,cn+1﹣cn=a1+d,则bn+cn=a1+(n﹣1)d=an,且数列{bn}和{cn}是等差数列.数列{bn}的前n项和Tn=,令Tn=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使Tn=bm成立,即{bn}为H数列.数列{cn}的前n项和Rn=,令cm=(m﹣1)(a1+d)=Rn,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使Rn=cm成立,即{cn}为H数列.因此命题得证.【点评】本题考查了利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”求an、等差数列的前n项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【分析】利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.【解答】证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D.【点评】本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题. 【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【分析】利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y 的值.【解答】解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=【点评】本题考查矩阵的乘法,考查学生的计算能力,属于基础题.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【分析】直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.【解答】解:直线l的参数方程为(t为参数),化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.故答案为:8.【点评】本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.【分析】由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.【解答】证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.【点评】本题考查不等式的证明,正确运用均值不等式是关键.(二)必做题(本部分包括25、26两题,每题10分,共计20分)26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【分析】(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.【解答】解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵fn(x)为fn﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kfk﹣1(x)+xfk(x)]′=kfk﹣1′(x)+fk(x)+xfk′(x)=(k+1)fk(x)+xfk+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nfn﹣1()+fn()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【点评】本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力. 25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).【分析】(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.【解答】解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X 2 3 4P故X数学期望E(X)=.【点评】本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战35989
高三数学(理科) 第一部分 (选择题 共40分)一、 选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合{1,0,1,2,3}A =-,{|22}B x x =-≤≤,那么A B = (A ){1,0,1}- (B ){1,0,1,2}- (C ){1,0,1,2,3}-(D ){|22}x x -≤≤2.若复数(2i)(i)a -+的实部与虚部互为相反数,则实数a = (A )3(B )13(C )13-(D )3-3.执行如图所示的程序框图,输出的S 的值为(A )34(B )45(C )56 (D )674.已知等差数列{}n a 中,13a =,26a =. 若2n n b a =,则数列{}n b 的前5项和等于 (A )30 (B )45 (C )90(D )1865.某四棱锥的三视图如图所示,则该四棱锥的 棱中,最长的棱的长度为 (A )2 (B(C )(D )6.设a ,b 是非零向量,则“=a b ”是“2=a a b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件俯视图侧(左)视图正(主)视图7.一种画双曲线的工具如图所示,长杆OB 通过O 处的铰链与固定好的短杆OA 连接,取一条定长的细绳,一端固定在点A ,另一端固定在点B ,套上铅笔(如图所示).作图时,使铅笔紧贴长杆OB ,拉紧绳子,移动笔尖M (长杆OB 绕O 转动),画出的曲线即为双曲线的一部分.若||10OA =,||12OB =,细绳长为8,则所得双曲线的离心率为(A )65(B )54(C )32(D )528.如图,在棱长为2的正方体1111ABCD A B C D -中,,,E F G 分 别是棱1,,AB BC CC 的中点,P 是底面ABCD 内一动点,若直线1D P 与平面EFG 不存在公共点,则三角形1PBB 的面积的最小值为(A(B )1 (C(D )2第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战48583
12月调研考试数学理【试卷综析】本试卷是高三理科试卷,以基础知识和基本能力为载体,,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,试题重点考查:集合、不等式、复数、向量、三视图、导数、简单的线性规划、数列、三角函数的性质,统计概率等;考查学生解决实际问题的能力。
【题文】一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
【题文】1.设集合1122M x x ⎧⎫=-<<⎨⎬⎩⎭,{}2N x x x =≤,则M N =( )A .1[0,)2B .1(,1]2-C .1[1,)2-D .1(,0]2-【知识点】集合及其运算A1【思路点拨】解一元二次不等式求得N ,再根据两个集合的交集的定义求得M∩N .【题文】2.复数5)z i i i -+(i 为虚数单位),则复数z 的共轭复数为( ) A .2i -B .2i +C .4i - D .4i +【知识点】复数的基本概念与运算L4 【答案】A【思路点拨】直接利用复数模的公式求复数的模,再利用虚数单位i 的运算性质化简后得z ,则复数z 的共轭复数可求.【题文】3.设向量11(1,0),(,)22a b ==,则下列结论中正确的是( ) A .||||a b =B .22a b =C .//a bD .()a b b -⊥ 【知识点】平面向量基本定理及向量坐标运算F2 【答案】D11(1,0),(,)22a b ==,||||a b =不正12a b ⋅=,故a =(1,0),b =(12,12,易得//a b 不成立,故()0a b b -⋅=则a b-与b垂【思路点拨】本题考查的知识点是向量的模,及用数量积判断两个平面向量的垂直关系,由11(1,0),(,)22a b ==,我们易求出向量的模,结合平面向量的数量坐标运算,对四个答案逐一进行判A .命题“若0232=+-x x ,则1=x ”的逆否命题为“若1≠x ,则0232≠+-x x ”;B .“2a =”是“函数()log a f x x =在区间(0,)+∞上为增函数”的充分不必要条件;C .若命题p :,21000nn N ∃∈>,则p ⌝:,21000nn N ∀∈≤;D .命题“(,0),23x xx ∃∈-∞<”是真命题.【知识点】命题及其关系A2 【答案】D【解析】因为命题“若x23x+2=0,则x=1”的逆否命题为“若x≠1,则x23x+2≠0”,所以A 正确;由a=2能得到函数f (x )=logax 在区间(0,+∞)上为增函数,反之,函数f (x )=logax 在区间(0,+∞)上为增函数,a 不一定大于2,所以“a=2”是“函数f (x )=logax 在区间(0,+∞)上为增函数”的充分不必要条件,所以选项B 正确;命题P :∃n ∈N ,2n >1000,的否定为¬P :∀n ∈N ,2n≤1000,所以C 正确;因为当x <0时恒有2x >3x ,所以命题“∃x ∈(∞,0),2x <3x”为假命题,所以D 不正确【思路点拨】选项A 是写一个命题的逆否命题,只要把原命题的结论否定当条件,条件否定当结论即可;选项B 看由a=2能否得到函数f (x )=logax 在区间(0,+∞)上为增函数,反之又是否成立;选项C 、D 是写出特称命题的否定,注意其否定全称命题的格式.【题文】5.右图是一容量为100的样本的重量的频率分布直方图, 则由图可估计样本的重量的中位数为( ) A .11 B .11.5 C .12 D .12.5【知识点】用样本估计总体I2 【答案】C【解析】由题意,[5,10]的样本有5×0.06×100=30,[10,15]的样本有5×0.1×100=50由于[10,15]的组中值为12.5,由图可估计样本重量的中位数12.【思路点拨】由题意,[5,10]的样本有5×0.06×100=30,[10,15]的样本有5×0.1×100=50,结合[10,15]的组中值,即可得出结论.【题文】6.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③|cos |y x x =⋅;④2xy x =⋅的图象(部分)如下:①y=x•sinx 为偶函数;②y=x•cosx x <0时,③y=x•|cosx|≤0恒成立则从左到右图象对应的函数序号应为:①④②③【思路点拨】从左到右依次分析四个图象可知,第一个图象关于Y 轴对称,是一个偶函数,第二个图象不关于原点对称,也不关于Y 轴对称,是一个非奇非偶函数;第三、四个图象关于原点对称,是奇函数,但第四个图象在Y 轴左侧,函数值不大于0,分析四个函数的解析后,即可得到函数的性质,进而得到答案.【题文】7.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A .若,,,,a m a n m n αα⊥⊥⊂⊂则a α⊥ B .若//,a b b α⊂,则//a αC .若//,,,a b αβαγβγ==则//a bD .若,,//,//a b a b ββαα⊂⊂,则//βα【知识点】空间中的平行关系垂直关系G4 G5【答案】C【解析】A .根据线面垂直的垂直的判定定理可知,m ,n 必须是相交直线,所以A 错误. B .根据直线和平面平行的判定定理可知,a 必须在平面α外,所以B 错误.xC .根据面面平行的性质定理可知,两个平行平面同时和第三个平面相交,则交线平行,所以C 正确.D .根据面面平行的判定定理可知,直线a ,b 必须是相交直线,才能得到面面平行.所以D 错误. 【思路点拨】A .利用线面垂直的定义和判定定理判断.B .利用线面平行的判定定理判断.C .利用面面平行的性质判断.D .利用线面平行的性质和面面平行的判定定理判断. 【题文】8.点)2,4(-P 与圆422=+y x 上任一点连线的中点的轨迹方程是( ) A .22(2)(1)1x y -++=B .22(2)(1)4x y -++= C .22(4)(2)4x y ++-=D .22(2)(1)1x y ++-= 【知识点】圆的方程H3 【答案】A代入x2+y2=4得(2x4)2+(2y+2)2=4,化简得(x2)2+(y+1)2=1.【题文】9.已知函数0x a e ,x f (x )ln x,x ⎧⋅≤=⎨->⎩,其中e 为自然对数的底数,若关于x 的方程0f (f (x ))=,有且只有一个实数解,则实数a 的取值范围为( )A .()0,-∞B .()()001,,-∞ C .()01, D .()()011,,+∞【知识点】函数与方程B9 【答案】B若a≠0,若f (f (x ))=0,可得当x≤0时,a•ex=1无解,进而得到实数a 的取值范围.【题文】10.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为( )A .3πB .π4C .π2D .π25【知识点】空间几何体的三视图和直观图G2 【答案】A【解析】由于正视图、侧视图、俯视图都是边长为1的正方形,所以此四面体一定可以放在正方体中,所以我们可以在正方体中寻找此四面体.如图所示,四面体ABCD 满足题意,所以此四面体的外接球即为此正方体的外接球, 由题意可知,正方体的棱长为1,所以外接球的半径为R=32, 所以此四面体的外接球表面积S=4×π×(32)2=3π. 【思路点拨】由于正视图、侧视图、俯视图都是边长为1的正方形,所以此四面体一定可以放在棱长为1的正方体中,所以此四面体的外接球即为此正方体的外接球,由此能求出此四面体的外接球表面积. 【题文】11.已知b 为如图所示的程序框图输出的结果,则二项式6()bx x-的展开式中的常数项是( )A .20B .20C .540D .540【知识点】算法与程序框图L1 【答案】C【解析】第一次循环:b=3,a=2;第二次循环得:b=5,a=3;第三次循环得:b=7,a=4;第四次循环得:b=9,a=5;不满足判断框中的条件输出b=9.【思路点拨】根据题意,分析该程序的作用,可得b的值,再利用二项式定理求出展开式的通项,分析可得常数项.【题文】12.设等差数列{}n a满足:22222233363645sin cos cos cos sin sin1sin()a a a a a aa a-+-=+,公差(1,0)d∈-.若当且仅当9n=时,数列{}n a的前n项和n S取得最大值,则首项1a的取值范围是( )A.74,63ππ⎛⎫⎪⎝⎭B.43,32ππ⎛⎫⎪⎝⎭C.74,63ππ⎡⎤⎢⎥⎣⎦D.43,32ππ⎡⎤⎢⎥⎣⎦【知识点】等差数列及等差数列前n项和D2【答案】B【思路点拨】利用三角函数的倍角公式、积化和差与和差化积公式化简已知的等式,根据公差d的范围求出公差的值,代入前n项和公式后利用二次函数的对称轴的范围求解首项a1取值范围.第II卷(非选择题,共90分)【题文】二、填空题:本题共4小题,每小题5分,共20分。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战31880
一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>97.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||29.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁UA.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁UA={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.故选:C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即6<c≤9,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=xa(x≥0),g(x)=logax的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:此时答案D满足要求,当a>1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选:A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【分析】根据记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,分别求出I1,I2,I3与1的关系,继而得到答案【解答】解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 6 .【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i 的值.【解答】解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[].【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 60 种(用数字作答).【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,].【分析】画出函数f(x)的图象,由 f(f(a))≤2,可得 f(a)≥﹣2,数形结合求得实数a的取值范围.【解答】解:∵函数f(x)=,它的图象如图所示:由 f(f(a))≤2,可得 f(a)≥﹣2.当a<0时,f(a)=a2+a=(a+)2﹣≥﹣2恒成立;当a≥0时,f(a)=﹣a2≥﹣2,即a2≤2,解得0≤a≤,则实数a的取值范围是a≤,故答案为:(﹣∞,].【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P (m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,设BP′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由a≠b得,A≠B,又A+B∈(0,π),得,即,∴;(2)由,利用正弦定理可得,得,由a<c,得A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{an}的第三项的值,结合首项的值,求出通项an,然后现利用条件求出通项bn;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…an=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{an}为等比数列,且a1=2,∴{an}的公比为q,则=4,由题意知an>0,∴q>0,∴q=2.∴(n∈N*).又由a1a2a3…an=(n∈N*)得:,,∴bn=n(n+1)(n∈N*).(Ⅱ)(i)∵cn===. ∴Sn=c1+c2+c3+…+cn====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,cn<0,综上,对任意n∈N*恒有S4≥Sn,故k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.【分析】(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m(a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,∵f(1)﹣f(﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.【分析】(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,此时点P的横坐标为﹣,代入y=kx+m得点P的纵坐标为﹣k•+m=,∴点P的坐标为(﹣,),又点P在第一象限,故m>0,故m=,故点P的坐标为P(,).(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.时量:120分钟 总分:150分一、选择题(本大题共12个小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.集合{}{}26,30A x N x B x R x x =∈=∈->≤,则AB =( )A .{}3,4,5B .{}4,5,6C .{}36x x <≤D .{}36x x <≤ 2.下列命题中,真命题是 ( )A .0x R ∃∈,使得00xe ≤B .22sin 3(π,)sin x x k k Z x+≠∈≥ C .函数2()2x f x x =-有一个零点 D .1,1a b >>是1ab >的充分不必要条件3.已知1sin ,(,)322ππθθ=∈-,则3sin()sin()2πθπθ--的值是( )A .922 B .922- C .91- D .914.已知向量(1,0)a =, (0,1)b =,若ma b +与2a b -平行,则m 等于()A.2-B.2C.12-D.125.定义在R 上的偶函数f(x)在[0,+∞)上单调递减,且1()02f =,则满足14(log )0f x <的x 的集合为( )A (-∞,12)∪(2,+∞)B(12,1)∪(1,2)C(12,1)∪(2,+∞)D(0,12)∪(2,+∞)6.点P 从(1,0)出发,沿单位圆221x y +=逆时针方向运动23π弧长到达Q 点,则Q 的坐标为( )A.13,22⎛⎫- ⎪ ⎪⎝⎭B.31,22⎛⎫-- ⎪ ⎪⎝⎭C.13,22⎛⎫-- ⎪ ⎪⎝⎭ D.31,22⎛⎫- ⎪ ⎪⎝⎭7.右图是y=sin(ωx+φ) (ω>0,|φ|<2π)在区间[6π,65π]上的图象为了得到y=sin2x 的图象,只需要将此图象( )A.向左平移3π个单位B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位8.如图,AB 是半圆O 的直径,P 是半圆AB 上的任意一点,M 、N 是ABP上关于O 点对称的两点,若|AB|=6,|MN|=4,则PM ·PN =( )A.3B.5C.7D.13 9.已知21()ln(1),()()2x f x x g x m =+=-,若12[0,3],[1,2]x x ∀∈∃∈,使得12()()f x g x ≥则实数m 的取值范围是( )A .1(,]4-∞B .1[,)4+∞C .1[,)2+∞D .1(,]2-∞-10.已知数列{}n a 中满足115a =,12n na a n+-=,则n a n 的最小值为( )A.254B.7C.6D.274 11.函数|1|,1()21,1x a x f x x,若关于x 的方程22()(25)()50f x a f x a有五个不同的实数解, 则a 的取值范围是( ) A. (2,) B.[2,) C. 55(2,)(,)22+∞ D. 55[2,)(,)2212.设函数y=f(x)在区间(a,b)上的导函数为f´(x),f´(x)在区间(a,b)上的导函数为f″(x),如果在区间(a,b)上恒有f″(x)<0,则称函数f(x)是区间(a,b)上的“凸函数”,若f(x)=121x4-61mx3-23x2,当|m|≤2时是区间(a,b)上的凸函数,则b -a 的最大值为( )A.4B.3C.2D.1二、填空题(本大题共4小题,每小题5分,满分20分) 13.如图所示,在正方形OABC 中任取一点,则该点落在阴影部分的概率为14.已知1sin ,123πα⎛⎫+= ⎪⎝⎭则7cos 12πα⎛⎫+ ⎪⎝⎭的值等于15已知函数21()(,g x a x x e e=-≤≤e 为自然对数的底数)与()2ln h x x =的图象上存在关于x 轴对称的点,则实数a 的取值范围是16.定义在(,)-∞+∞上的偶函数()f x 满足:(1)()f x f x +=-,且在[1,0]-上是增函数,下面关于()f x 的判断;①()f x 是周期函数;②()f x 的图象关于直线1x =对称;③()f x 在[0,1]上是增函数;④()f x 在[1,2]上是减函数;⑤(2)(0)f f = 其中正确的判断是(把你认为正确的判断的序号填上). 三.解答题(本大题共6道题,共70分) 17、(本题满分10分)(1)已知1tan()42πα+=;求sin cos sin cos αααα-+的值。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战48545
附中高三第五次月考 数 学 试 题 (理)1月本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.卷面共150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设f x x →:是集合A 到集合B 的映射.若{}3,0,3A =-,则AB =( )A .{0}B .{0,3}C .{3}D .{3-,0}2. 已知等差数列{an}满足:35111380a a a a +++=,则a8 =( )A .18B .20C .22D .243. “a = 3”是“直线210ax y --=与直线640x y c -+=平行”的( )条件A .充要B .充分而不必要C .必要而不充分D .既不充分也不必要 4. 00tan15cot15-的值为( )A .-B .CD .5. ,则它的两条渐近线的夹角为( )A .30°B .45°C .60°D .90°6. 若函数()cos21f x x =+的图像按向量a 平移后,得到的图像关于原点对称,则向量a 可以是( ) A .(1,0)B .(1)2π-,C .(1)4π-,D .(1)4π,7. 关于x 的函数y=log 21(a2-ax+2a)在[1,+∞)上为减函数,则实数a 的取值范围是( )A .(-∞,-1)B .(-∞,0)C .(1-,0)D .(0,2]8. 已知数列{an}的通项为*1log (2)()n n a n n N +=+∈,我们把使乘积123n a a a a 为整数的n 叫做“优数”,则在(12010],内的所有“优数”的和为( ) A .1024B .C .2026D .20489. 已知椭圆22221x y a b+=的左、右焦点分别为F1、F2,则12||2F F c =,点A 在椭圆上且2112120AF F F AF AF c ==且,则椭圆的离心率为( )A .3B .2 C .31-D .51- 10. 定义函数()[[]]f x x x =,其中[]x 表示不超过x 的最大整数,如:[1.5]1[ 1.3]2=-=-,,当*[0)()x n n N ∈∈,时,设函数()f x 的值域为A ,记集合A 中的元素个数为an ,则式子90n a n+的最小值为( ) A .10B .13C .14D .16第II 卷 (共100分)二、填空题:本大题共5小题,每题5分,共25分.11. 不等式22log 1x x -≥的解集为______________. 12. 函数sin()(10)()3(1)(0)x x f x f x x π⎧-≤<⎪=⎨⎪-≥⎩,则(1)f =________________. 13. 设Sn 为等差数列{an}的前n 项和,若59611229a S a S ==,则______________.14.x 、y 满足约束条件:225040y x y x y ≥⎧⎪+-≥⎨⎪+-≤⎩,则1|5|2z x y =+-的最小值是______________.15. 已知集合{|18}M x x x N =≤≤∈,,对于它的非空子集A ,将A 中的每个元素k ,都乘以(1)k -再求和,(如A = {1,3,6},可求和得到136(1)1(1)3(1)62-+-+-=),则对M 的所有非空子集,这些和的总和是________________.三、解答题:本题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分13分)已知函数()sin 2sin 2cos 2(66f x x x x a a a ππ⎛⎫⎛⎫=++-++∈ ⎪ ⎪⎝⎭⎝⎭R ,为常数).求函数的最小正周期;求函数的单调递增区间;若02x π⎡⎤∈⎢⎥⎣⎦,时,()f x 的最小值为– 2 ,求a 的值.17. (本小题满分13分)数列{an}中,a1 = 1,当2n ≥时,其前n 项和满足21()2n n n S a S =-求Sn 的表达式;设21nn S b n =+,数列{bn}的前n 项和为Tn ,求Tn . 18. (本小题满分13分)已知圆C :22(1)(2)25x y -+-=,直线l :(21)(1)740()m x m y m m +++--=∈R . 证明:不论m 取什么实数时,直线l 与圆恒交于两点; 求直线l 被圆C 截得的线段的最短长度以及此时直线l 的方程. 19. (本小题满分12分)已知2(1)()(0)2x p x pf x p x p+++=>+若p > 1时,解关于x 的不等式()0f x ≥; 若()2f x >对24x ≤≤时恒成立,求p 的范围. 20. (本小题满分12分)已知点A(– 2,0),B(2,0),动点P 满足:2APB θ∠=,且2||||sin 2PA PB θ=. 求动点P 的轨迹G 的方程;过点B 的直线l 与轨迹G 交于两点M 、N .试问在x 轴上是否存在定点C ,使得CM CN 为常数.若存在,求出点C 的坐标;若不存在,说明理由.21. (本小题满分12分)数列{an}中a1 = 2,111()2n n n a a a +=+,{bn}中*91log 11n n n a b n N a +=∈-,.求证:数列{bn}为等比数列,并求出其通项公式; 当*3()n n N ≥∈时,证明:2312312337444414(1)(1)(1)(1)n nn b b b b ++++<+-+-+-+-. 西南师大附中高级第五次月考数学试题参考答案(理)1月一、选择题:本大题共10小题,每题5分,共50分.1.B 2.B 3.C 4.A 5.D 6.C 7.A 8.C 9.D 10.B 二、填空题:本大题共5小题,每题5分,共25分. 11.[20)-, 12. 13.2 14.3215.512 三、解答题:本题共6小题,共75分.16.解: (1) ()2sin 2coscos 23sin 2cos 22sin 266f x x x a x x a x a ππ⎛⎫=++=++=++ ⎪⎝⎭ ∴()f x 的最小正周期22T ππ== (2) 当222262k x k πππππ-≤+≤+即()36k x k k Z ππππ-≤≤+∈时,函数()f x 单调递增,故所求区间为()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,(3) 02x π⎡⎤∈⎢⎥⎣⎦,时,72666x πππ⎡⎤+∈⎢⎥⎣⎦,2x π=∴时,()f x 取得最小值2sin(2)2126a a ππ⋅++=-=-∴∴ 17.解:(1) 当2n ≥时,1n n n a S S -=-代入已知得211()()2n n n n S S S S -=--化简得:111122n n n n S S S S --=-两边同除以11112n n n n S S S S ---=得∴111(1)212(1)21n n n n S S =+-=+-=- ∴ 121n S n =- (2) ∵ 1111121()2121(21)(21)22121n n S n b n n n n n n -====-++-+-+ ∴ 12n n T b b b =+++111111(1)2335212111(1)221n n n =-+-++--+=-+21nn =+ 18.解:(1) 由(27)(4)0m x y x y +-++-=知直线l 恒过定点又27341x y x x y y +==⎧⎧⇒⎨⎨+==⎩⎩∴ 直线l 恒过定点A (3,1),且22(31)(12)525-+-=<⇒A (3,1)必在圆内,故直线l 与圆恒有两交点. (2) ∵ 圆心为C (1,2),定点为A (3,1) ∴211132AC k -==-- 由平面几何知识知,当直线l 与AC 垂直时所截线段最短,此时2l k = ∴l 方程为:12(3)25y x y x -=-⇒=-,此时||415d AC ==+∴ 最短弦长225545=-19.解:(1) ()(1)()02x p x f x x p++=≥+①12{|1}2pp x p x x <<-≤≤->-时,解集为或②p = 2时,解集为{|21}x x x ≥-≠-且③ p > 2时,解集为{|1}2px p x x -≤<-≥-或(2) 2(1)22x p x p x p+++>+2(1)42x p x p x p +++>+∴2(3)024x p x p x +-->≤≤对恒成立∴232(2)2411x x p x x x x ->=--+≤≤--对恒成立∵2()(2)[24]1g x x x =--+-在,上递减∴max ()(2)2g x g == ∴p > 220.解:(1) 由余弦定理得:222||||||2||||cos 2AB PA PB PA PB θ=+-即16=222||||2||||(12sin )PA PB PA PB θ+--=222||||2||||4||||sin PA PB PA PB PA PB θ+-+2(||||)8PA PB =-+ 所以2(||||)8PA PB -=,即||||||4||PA PB AB -==(当动点P 与两定点A ,B 共线时也符合上述结论)所以动点P 的轨迹为以A ,B 为焦点,实轴长为 所以,轨迹G 的方程为222x y -= (2) 假设存在定点C(m ,0),使CM CN 为常数.①当直线l 不与x 轴垂直时,设直线l 的方程为 22(2)2y k x x y =--=,代入整理得 2222(1)4(42)0k x k x k -+-+=由题意知,1k ≠± 设1122()()M x y N x y ,,,,则212241k x x k +=-,2122421k x x k +=-于是()()()2222121212122224y y k x x k x x k x x k =--=-++∴21122121212()()()CM CN x m y x m y x x m x x y y m ⋅=--=-+++,,=()()()22221212124k x x k m x x m k +-++++=22222222(42)(1)4(2)411k k k k m m k k k +++-++-- 2222222242(24)211k k m k m m m k k -+-+=+=+-- 22222(1)(24)2244(1)2(12)11k m m m m m m k k --++--=+=++--- 要是使得CM CN 为常数,当且仅当1m =,此时1CM CN =-②当直线l 与x轴垂直时,(2(22)M N -,,,当1=m 时1CM CN =-. 故,在x 轴上存在定点C(1,0),使得CM CN 为常数21.证明:(1) 由21191919111()1121log 1log 1log ()11111()12n n n n n n n n n n na a a ab b b a a a a +++++++++=⇒=⇒=--+-1912log 11n n n a b a ++⇒=- 又91log 11nn n a b a +=-∴ 112n n b b += 又n = 1时,119111log 121a b b a +=⇒=-∴ {}n b 为等比数列,b1 = 2,12q =,∴12112()()22n n n b --==(2) ∵21141()4()2122()2n n n n n n b b -==⇒==∴ 42(1)(1)n nnnnn nC b ==+-+- 先证:1(3)2(1)2n nn n n n +<≥+- 当n 为偶数时,显然成立;当n 为奇数时,即证1222121212n n n n n n n n n n n n +<⇔<-+-⇔>+-而当3n ≥时,21n n >+显然也成立,故1(3)2(1)2n n nn n n +<≥+-当4n ≥时,令45645645656712121212(1)2222n n nn n T +=++++<+++++-++- 又令45656712222n n A +=++++①561156122222n n n n A ++=++++② ①-②:4561151111222222n n n A ++=++++-4345111[1()]5111151316212222282412n n n n n n A ---++⇒=++++-=+-<-∴34T <又123123123236412121215735C C C ++=++=++=-+- ∴ 所证式子左边6433693703735414014014<+=<=即2312312337444414(1)(1)(1)(1)n nn b b b b ++++<+-+-+-+-一、填空题(共14题,满分56分)1.(4分)若复数z=1+2i,其中i是虚数单位,则(z+)•=.2.(4分)函数y=1﹣2cos2(2x)的最小正周期是.3.(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程.4.(4分)设f(x)=,若f(2)=4,则a的取值范围为.5.(4分)若实数x,y满足xy=1,则x2+2y2的最小值为.6.(4分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为(结果用反三角函数值表示).7.(4分)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.8.(4分)设无穷等比数列{an}的公比为q,若a1=(a3+a4+…an),则q=.9.(4分)若f(x)=﹣,则满足f(x)<0的x的取值范围是.10.(4分)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).11.(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=.12.(4分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.13.(4分)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E (ξ)=4.2,则小白得5分的概率至少为.14.(4分)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为.二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,Pi(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A.1B.2C.3D.417.(5分)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解18.(5分)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]三、解答题(共5题,满分72分)19.(12分)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.20.(14分)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.21.(14分)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).22.(16分)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.23.(16分)已知数列{an}满足an≤an+1≤3an,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{an}是公比为q的等比数列,Sn=a1+a2+…an,若Sn≤Sn+1≤3Sn,n∈N*,求q的取值范围.(3)若a1,a2,…ak成等差数列,且a1+a2+…ak=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…ak的公差.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(9)参考答案与试题解析一、填空题(共14题,满分56分)1.(4分)若复数z=1+2i,其中i是虚数单位,则(z+)•= 6 .【分析】把复数代入表达式,利用复数代数形式的混合运算化简求解即可.【解答】解:复数z=1+2i,其中i是虚数单位,则(z+)•==(1+2i)(1﹣2i)+1=1﹣4i2+1=2+4=6.故答案为:6【点评】本题考查复数代数形式的混合运算,基本知识的考查.2.(4分)函数y=1﹣2cos2(2x)的最小正周期是.【分析】由二倍角的余弦公式化简,可得其周期.【解答】解:y=1﹣2cos2(2x)=﹣[2cos2(2x)﹣1]=﹣cos4x,∴函数的最小正周期为T==故答案为:【点评】本题考查二倍角的余弦公式,涉及三角函数的周期,属基础题.3.(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程 x=﹣2 .【分析】由题设中的条件y2=2px(p>0)的焦点与椭圆的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p,再由抛物线的性质求出它的准线方程【解答】解:由题意椭圆,故它的右焦点坐标是(2,0),又y2=2px(p>0)的焦点与椭圆右焦点重合,故=2得p=4,∴抛物线的准线方程为x=﹣=﹣2.故答案为:x=﹣2【点评】本题考查圆锥曲线的共同特征,解答此类题,关键是熟练掌握圆锥曲线的性质及几何特征,熟练运用这些性质与几何特征解答问题.4.(4分)设f(x)=,若f(2)=4,则a的取值范围为(﹣∞,2]. 【分析】可对a进行讨论,当a>2时,当a=2时,当a<2时,将a代入相对应的函数解析式,从而求出a的范围.【解答】解:当a>2时,f(2)=2≠4,不合题意;当a=2时,f(2)=22=4,符合题意;当a<2时,f(2)=22=4,符合题意;∴a≤2,故答案为:(﹣∞,2].【点评】本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题.5.(4分)若实数x,y满足xy=1,则x2+2y2的最小值为 2.【分析】由已知可得y=,代入要求的式子,由基本不等式可得.【解答】解:∵xy=1,∴y=∴x2+2y2=x2+≥2=2,当且仅当x2=,即x=±时取等号,故答案为:2【点评】本题考查基本不等式,属基础题.6.(4分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为arccos(结果用反三角函数值表示).【分析】由已知中圆锥的侧面积是底面积的3倍,可得圆锥的母线是圆锥底面半径的3倍,在轴截面中,求出母线与底面所成角的余弦值,进而可得母线与轴所成角.【解答】解:设圆锥母线与轴所成角为θ,∵圆锥的侧面积是底面积的3倍,∴==3,即圆锥的母线是圆锥底面半径的3倍,故圆锥的轴截面如下图所示:则cosθ==,∴θ=arccos,故答案为:arccos【点评】本题考查的知识点是旋转体,其中根据已知得到圆锥的母线是圆锥底面半径的3倍,是解答的关键.7.(4分)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.【分析】由题意,θ=0,可得C与极轴的交点到极点的距离.【解答】解:由题意,θ=0,可得ρ(3cos0﹣4sin0)=1,∴C与极轴的交点到极点的距离是ρ=.故答案为:.【点评】正确理解C与极轴的交点到极点的距离是解题的关键.8.(4分)设无穷等比数列{an}的公比为q,若a1=(a3+a4+…an),则q=. 【分析】由已知条件推导出a1=,由此能求出q的值.【解答】解:∵无穷等比数列{an}的公比为q,a1=(a3+a4+…an)=(﹣a1﹣a1q)=,∴q2+q﹣1=0,解得q=或q=(舍).故答案为:.【点评】本题考查等比数列的公比的求法,是中档题,解题时要认真审题,注意极限知识的合理运用.9.(4分)若f(x)=﹣,则满足f(x)<0的x的取值范围是(0,1) .【分析】直接利用已知条件转化不等式求解即可.【解答】解:f(x)=﹣,若满足f(x)<0,即<,∴,∵y=是增函数,∴的解集为:(0,1).故答案为:(0,1).【点评】本题考查指数不等式的解法,指数函数的单调性的应用,考查计算能力.10.(4分)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).【分析】要求在未来的连续10天中随机选择3天进行紧急疏散演练,选择的3天恰好为连续3天的概率,须先求在10天中随机选择3天的情况,再求选择的3天恰好为连续3天的情况,即可得到答案.【解答】解:在未来的连续10天中随机选择3天共有种情况,其中选择的3天恰好为连续3天的情况有8种,分别是(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),∴选择的3天恰好为连续3天的概率是,故答案为:.【点评】本题考查古典概型以及概率计算公式,属基础题.11.(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b= ﹣1 .【分析】根据集合相等的条件,得到元素关系,即可得到结论.【解答】解:根据集合相等的条件可知,若{a,b}={a2,b2},则①或②,由①得,∵ab≠0,∴a≠0且b≠0,即a=1,b=1,此时集合{1,1}不满足条件.若b=a2,a=b2,则两式相减得a2﹣b2=b﹣a,∵互异的复数a,b,∴b﹣a≠0,即a+b=﹣1,故答案为:﹣1.【点评】本题主要考查集合相等的应用,根据集合相等得到元素相同是解决本题的关键,注意要进行分类讨论.12.(4分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.【分析】先利用两角和公式对函数解析式化简,画出函数y=2sin(x+)的图象,方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,进而求得此时x1,x2,x3最后相加即可.【解答】解:sinx+cosx=2(sinx+cosx)=2sin(x+)=a,如图方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,令sin(x+)=,x+=2kπ+,即x=2kπ,或x+=2kπ+,即x=2kπ+,∴此时x1=0,x2=,x3=2π,∴x1+x2+x3=0++2π=.故答案为:【点评】本题主要考查了三角函数图象与性质.运用了数形结合的思想,较为直观的解决问题.13.(4分)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E (ξ)=4.2,则小白得5分的概率至少为 0.2 .【分析】设小白得5分的概率至少为x,则由题意知小白得4分的概率为1﹣x,由此能求出结果.【解答】解:设小白得5分的概率至少为x,则由题意知小白得1,2,3,4分的概率为1﹣x,∵某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,E(ξ)=4.2,∴4(1﹣x)+5x=4.2,解得x=0.2.故答案为:0.2.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意离散型随机变量的数学期望的合理运用.14.(4分)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为[2,3].【分析】通过曲线方程判断曲线特征,通过+=,说明A是PQ的中点,结合x的范围,求出m的范围即可.【解答】解:曲线C:x=﹣,是以原点为圆心,2 为半径的圆,并且xP∈[﹣2,0],对于点A(m,0),存在C上的点P和l上的Q使得+=,说明A是PQ的中点,Q的横坐标x=6,∴m=∈[2,3].故答案为:[2,3].【点评】本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想. 二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判定.【解答】解:当a=5,b=0时,满足a+b>4,但a>2且b>2不成立,即充分性不成立,若a>2且b>2,则必有a+b>4,即必要性成立,故“a+b>4”是“a>2且b>2”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.16.(5分)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,Pi(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A.1B.2C.3D.4【分析】建立空适当的间直角坐标系,利用坐标计算可得答案.【解答】解:=,则•=()=||2+,∵,∴•=||2=1,∴•(i=1,2,…,8)的不同值的个数为1,故选:A.【点评】本题考查向量的数量积运算,建立恰当的坐标系,运用坐标进行向量数量积运算是解题的常用手段.17.(5分)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解【分析】判断直线的斜率存在,通过点在直线上,推出a1,b1,P2,a2,b2的关系,然后求解方程组的解即可.【解答】解:P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,直线y=kx+1的斜率存在,∴k=,即a1≠a2,并且b1=ka1+1,b2=ka2+1,∴a2b1﹣a1b2=ka1a2﹣ka1a2+a2﹣a1=a2﹣a1,①×b2﹣②×b1得:(a1b2﹣a2b1)x=b2﹣b1,即(a1﹣a2)x=b2﹣b1.∴方程组有唯一解.故选:B.【点评】本题考查一次函数根与系数的关系,直线的斜率的求法,方程组的解和指数的应用.18.(5分)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]【分析】当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,问题解决.【解答】解;当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,f(0)=a2,由题意得:a2≤x++a,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,∴0≤a≤2,故选:D.【点评】本题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题.三、解答题(共5题,满分72分)19.(12分)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.【分析】利用侧面展开图三点共线,判断△P1P2P3是等边三角形,然后求出边长,利用正四面体的体积求出几何体的体积.【解答】解:根据题意可得:P1,B,P2共线,∵∠ABP1=∠BAP1=∠CBP2,∠ABC=60°,∴∠ABP1=∠BAP1=∠CBP2=60°,∴∠P1=60°,同理∠P2=∠P3=60°,∴△P1P2P3是等边三角形,P﹣ABC是正四面体,∴△P1P2P3的边长为4,VP﹣ABC==【点评】本题考查空间想象能力以及逻辑推理能力,几何体的侧面展开图和体积的求法. 20.(14分)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.【分析】(1)根据反函数的定义,即可求出,(2)利用分类讨论的思想,若为偶函数求出a的值,若为奇函数,求出a的值,问题得以解决.【解答】解:(1)∵a=4,∴∴,∴,∴调换x,y的位置可得,x∈(﹣∞,﹣1)∪(1,+∞).(2)若f(x)为偶函数,则f(x)=f(﹣x)对任意x均成立,∴=,整理可得a(2x﹣2﹣x)=0.∵2x﹣2﹣x不恒为0,∴a=0,此时f(x)=1,x∈R,满足条件;若f(x)为奇函数,则f(x)=﹣f(﹣x)对任意x均成立,∴=﹣,整理可得a2﹣1=0,∴a=±1,∵a≥0,∴a=1,此时f(x)=,满足条件;当a>0且a≠1时,f(x)为非奇非偶函数综上所述,a=0时,f(x)是偶函数,a=1时,f(x)是奇函数.当a>0且a≠1时,f(x)为非奇非偶函数【点评】本题主要考查了反函数的定义和函数的奇偶性,利用了分类讨论的思想,属于中档题.21.(14分)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).【分析】(1)设CD的长为x,利用三角函数的关系式建立不等式关系即可得到结论. (2)利用正弦定理,建立方程关系,即可得到结论.【解答】解:(1)设CD的长为x米,则tanα=,tanβ=,∵0,∴tanα≥tan2β>0,∴tan,即=,解得0≈28.28,即CD的长至多为28.28米.(2)设DB=a,DA=b,CD=m,则∠ADB=180°﹣α﹣β=123.43°,由正弦定理得,即a=,∴m=≈26.93,答:CD的长为26.93米.【点评】本题主要考查解三角形的应用问题,利用三角函数关系式以及正弦定理是解决本题的关键.23.(16分)已知数列{an}满足an≤an+1≤3an,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{an}是公比为q的等比数列,Sn=a1+a2+…an,若Sn≤Sn+1≤3Sn,n∈N*,求q的取值范围.(3)若a1,a2,…ak成等差数列,且a1+a2+…ak=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…ak的公差.【分析】(1)依题意:,又将已知代入求出x的范围;(2)先求出通项:,由求出,对q分类讨论求出Sn分别代入不等式Sn≤Sn+1≤3Sn,得到关于q的不等式组,解不等式组求出q的范围. (3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…ak的公差.【解答】解:(1)依题意:,∴;又∴3≤x≤27,综上可得:3≤x≤6(2)由已知得,,,∴,当q=1时,Sn=n,Sn≤Sn+1≤3Sn,即,成立.当1<q≤3时,,Sn≤Sn+1≤3Sn,即,∴不等式∵q>1,故3qn+1﹣qn﹣2=qn(3q﹣1)﹣2>2qn﹣2>0对于不等式qn+1﹣3qn+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又当1≤q≤2,q﹣3<0,∴qn+1﹣3qn+2=qn(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,当时,,Sn≤Sn+1≤3Sn,即,∴此不等式即,3q﹣1>0,q﹣3<0,3qn+1﹣qn﹣2=qn(3q﹣1)﹣2<2qn﹣2<0,qn+1﹣3qn+2=qn(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴时,不等式恒成立,上,q的取值范围为:.(3)设a1,a2,…ak的公差为d.由,且a1=1,得即当n=1时,﹣≤d≤2;当n=2,3,…,k﹣1时,由,得d≥,所以d≥,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值为1999,k=1999时,a1,a2,…ak的公差为﹣.【点评】本题考查等比数列的通项公式及前n项和的求法;考查不等式组的解法;找好分类讨论的起点是解决本题的关键,属于一道难题.22.(16分)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.【分析】(1)把A、B两点的坐标代入η=(ax1+by1+c)(ax2+by2+c),再根据η<0,得出结论.(2)联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据此方程无解,可得1﹣4k2≤0,从而求得k的范围.(3)设点M(x,y),与条件求得曲线E的方程为[x2+(y﹣2)2]x2=1 ①.由于y轴为x=0,显然与方程①联立无解.把P1、P2的坐标代入x=0,由η=1×(﹣1)=﹣1<0,可得x=0是一条分隔线.【解答】(1)证明:把点(1,2)、(﹣1,0)分别代入x+y﹣1 可得(1+2﹣1)(﹣1﹣1)=﹣4<0,∴点(1,2)、(﹣1,0)被直线 x+y﹣1=0分隔.(2)解:联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据题意,此方程无解,故有 1﹣4k2≤0,∴k≤﹣,或k≥.曲线上有两个点(﹣1,0)和(1,0)被直线y=kx分隔.(3)证明:设点M(x,y),则•|x|=1,故曲线E的方程为[x2+(y﹣2)2]x2=1 ①.y轴为x=0,显然与方程①联立无解.又P1(1,2)、P2(﹣1,2)为E上的两个点,且代入x=0,有η=1×(﹣1)=﹣1<0,故x=0是一条分隔线.若过原点的直线不是y轴,设为y=kx,代入[x2+(y﹣2)2]x2=1,可得[x2+(kx﹣2)2]x2=1,令f(x)=[x2+(kx﹣2)2]x2﹣1,∵k≠2,f(0)f(1)=﹣(k﹣2)2<0,∴f(x)=0没有实数解,k=2,f(x)=[x2+(2x﹣2)2]x2﹣1=0没有实数解,即y=kx与E有公共点,∴y=kx不是E的分隔线.∴通过原点的直线中,有且仅有一条直线是E的分隔线.【点评】本题主要考查新定义,直线的一般式方程,求点的轨迹方程,属于中档题.。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战54080
一、选择题:本小题共8小题,每小题5分,共40分.1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4iB.3+4iC.﹣3﹣4iD.﹣3+4i2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2}C.{﹣1,0,2}D.{﹣1,0,1}3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5B.6C.7D.84.(5分)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,107.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定8.(5分)设集合A={(x1,x2,x3,x4,x5)|xi∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60B.90C.120D.130二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)不等式|x﹣1|+|x+2|≥5的解集为.10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为.11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则=.13.(5分)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=.(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n1 f1(45,50] n2 f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.19.(14分)设数列{an}的前n项和为Sn,满足Sn=2nan+1﹣3n2﹣4n,n∈N*,且S3=15. (1)求a1,a2,a3的值;(2)求数列{an}的通项公式.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为. (1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P 的轨迹方程.21.(14分)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (3)参考答案与试题解析一、选择题:本小题共8小题,每小题5分,共40分.1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4iB.3+4iC.﹣3﹣4iD.﹣3+4i【分析】根据题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得z 的值.【解答】解:∵复数z满足(3+4i)z=25,则z====3﹣4i,故选:A.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2}C.{﹣1,0,2}D.{﹣1,0,1}【分析】根据集合的基本运算即可得到结论.【解答】解:∵集合M{﹣1,0,1},N={0,1,2},∴M∪N={﹣1,0,1,2},故选:B.【点评】本题主要考查集合的基本运算,比较基础.3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5B.6C.7D.8【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A,直线y=﹣2x+z的截距最小,此时z最小,由,解得,即A(﹣1,﹣1),此时z=﹣2﹣1=﹣3,此时n=﹣3,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B,直线y=﹣2x+z的截距最大,此时z最大,由,解得,即B(2,﹣1),此时z=2×2﹣1=3,即m=3,则m﹣n=3﹣(﹣3)=6,故选:B.【点评】本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.4.(5分)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等【分析】根据k的取值范围,判断曲线为对应的双曲线,以及a,b,c的大小关系即可得到结论.【解答】解:当0<k<9,则0<9﹣k<9,16<25﹣k<25,即曲线﹣=1表示焦点在x轴上的双曲线,其中a2=25,b2=9﹣k,c2=34﹣k,曲线﹣=1表示焦点在x轴上的双曲线,其中a2=25﹣k,b2=9,c2=34﹣k,即两个双曲线的焦距相等,故选:A.【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a,b,c是解决本题的关键.5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)【分析】根据空间向量数量积的坐标公式,即可得到结论.【解答】解:不妨设向量为=(x,y,z),A.若=(﹣1,1,0),则cosθ==,不满足条件.B.若=(1,﹣1,0),则cosθ===,满足条件.C.若=(0,﹣1,1),则cosθ==,不满足条件.D.若=(﹣1,0,1),则cosθ==,不满足条件.故选:B.【点评】本题主要考查空间向量的数量积的计算,根据向量的坐标公式是解决本题的关键.6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,10【分析】根据图1可得总体个数,根据抽取比例可得样本容量,计算分层抽样的抽取比例,求得样本中的高中学生数,再利用图2求得样本中抽取的高中学生近视人数.【解答】解:由图1知:总体个数为3500+2000+4500=10000,∴样本容量=10000×2%=200,分层抽样抽取的比例为,∴高中生抽取的学生数为40,∴抽取的高中生近视人数为40×50%=20.故选:A.【点评】本题借助图表考查了分层抽样方法,熟练掌握分层抽样的特征是关键.7.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【分析】根据在空间中垂直于同一直线的二直线的位置关系是平行、相交或异面可得,∴l1与l4的位置关系不确定.【解答】解:∵l1⊥l2,l2⊥l3,∴l1与l3的位置关系不确定,又l4⊥l3,∴l1与l4的位置关系不确定.故A、B、C错误.故选:D.【点评】本题考查了空间直线的垂直关系的判定,考查了学生的空间想象能力,在空间中垂直于同一直线的二直线的位置关系是平行、相交或异面.8.(5分)设集合A={(x1,x2,x3,x4,x5)|xi∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60B.90C.120D.130【分析】从条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”入手,讨论xi所有取值的可能性,分为5个数值中有2个是0,3个是0和4个是0三种情况进行讨论.【解答】解:由于|xi|只能取0或1,且“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”,因此5个数值中有2个是0,3个是0和4个是0三种情况:①xi中有2个取值为0,另外3个从﹣1,1中取,共有方法数:;②xi中有3个取值为0,另外2个从﹣1,1中取,共有方法数:;③xi中有4个取值为0,另外1个从﹣1,1中取,共有方法数:.∴总共方法数是++=130.即元素个数为130.故选:D.【点评】本题看似集合题,其实考察的是用排列组合思想去解决问题.其中,分类讨论的方法是在概率统计中经常用到的方法,也是高考中一定会考查到的思想方法.二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)不等式|x﹣1|+|x+2|≥5的解集为(﹣∞,﹣3]∪[2,+∞) .【分析】把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.【解答】解:由不等式|x﹣1|+|x+2|≥5,可得①,或②,或③.解①求得x≤﹣3,解②求得 x∈∅,解③求得x≥2.综上,不等式的解集为(﹣∞,﹣3]∪[2,+∞),故答案为:(﹣∞,﹣3]∪[2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为 y=﹣5x+3. .【分析】利用导数的几何意义求得切线的斜率,点斜式写出切线方程.【解答】解;y′=﹣5e﹣5x,∴k=﹣5,∴曲线y=e﹣5x+2在点(0,3)处的切线方程为y﹣3=﹣5x,即y=﹣5x+3.故答案为:y=﹣5x+3【点评】本题主要考查利用导数的几何意义求曲线的切线方程,属基础题.11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.【分析】根据条件确定当中位数为6时,对应的条件即可得到结论【解答】解:从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,有C107种方法,若七个数的中位数是6,则只需从0,1,2,3,4,5,选3个,从7,8,9中选3个不同的数即可,有C63种方法,则这七个数的中位数是6的概率P==,故答案为:.【点评】本题主要考查古典概率的计算,注意中位数必须是按照从小到大的顺序进行排列的.比较基础.12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则= 2 .【分析】已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式化简,再利用正弦定理变形即可得到结果.【解答】解:将bcosC+ccosB=2b,利用正弦定理化简得:sinBcosC+sinCcosB=2sinB,即sin(B+C)=2sinB,∵sin(B+C)=sinA,∴sinA=2sinB,利用正弦定理化简得:a=2b,则=2.故答案为:2【点评】此题考查了正弦定理,以及两角和与差的正弦函数公式,熟练掌握正弦定理是解本题的关键.13.(5分)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=50 .【分析】直接由等比数列的性质结合已知得到a10a11=e5,然后利用对数的运算性质化简后得答案.【解答】解:∵数列{an}为等比数列,且a10a11+a9a12=2e5,∴a10a11+a9a12=2a10a11=2e5,∴a10a11=e5,∴lna1+lna2+…lna20=ln(a1a2…a20)=ln(a10a11)10=ln(e5)10=lne50=50.故答案为:50.【点评】本题考查了等比数列的运算性质,考查对数的运算性质,考查了计算能力,是基础题.(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为(1,1) .【分析】首先运用x=ρcosθ,y=ρsinθ,将极坐标方程化为普通方程,然后组成方程组,解之求交点坐标.【解答】解:曲线C1:ρsin2θ=cosθ,即为ρ2sin2θ=ρcosθ,化为普通方程为:y2=x,曲线ρsinθ=1,化为普通方程为:y=1,联立,即交点的直角坐标为(1,1).故答案为:(1,1).【点评】本题考查极坐标方程和普通方程的互化,考查解方程的运算能力,属于基础题【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则= 9 .【分析】利用ABCD是平行四边形,点E在AB上且EB=2AE,可得=,利用△CDF∽△AEF,可求.【解答】解:∵ABCD是平行四边形,点E在AB上且EB=2AE,∴=,∵ABCD是平行四边形,∴AB∥CD,∴△CDF∽△AEF,∴=()2=9.故答案为:9.【点评】本题考查相似三角形的判定,考查三角形的面积比,属于基础题.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).【分析】(1)由函数f(x)的解析式以及f()=,求得A的值.(2)由(1)可得f(x)=sin(x+),根据f(θ)+f(﹣θ)=,求得cosθ 的值,再由θ∈(0,),求得sinθ 的值,从而求得f(﹣θ)的值.【解答】解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=.∴Asin(+)=Asin=A•=,∴A=.(2)由(1)可得 f(x)=sin(x+),∴f(θ)+f(﹣θ)=sin(θ+)+sin(﹣θ+)=2sin cosθ=cosθ=,∴cosθ=,再由θ∈(0,),可得sinθ=.∴f(﹣θ)=sin(﹣θ+)=sin(π﹣θ)=sinθ=.【点评】本题主要考查三角函数的恒等变换,同角三角函数的基本关系,属于中档题. 17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n1 f1(45,50] n2 f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.【分析】(1)利用所给数据,可得样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,可得样本频率分布直方图;(3)利用对立事件可求概率.【解答】解:(1)(40,45]的频数n1=7,频率f1=0.28;(45,50]的频数n2=2,频率f2=0.08;(2)频率分布直方图:(3)设在该厂任取4人,没有一人的日加工零件数落在区间(30,35]为事件A,则至少有一人的日加工零件数落在区间(30,35]为事件,已知该厂每人日加工零件数落在区间(30,35]的概率为,∴P(A)==,∴P()=1﹣P(A)=,∴在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率为.【点评】本题考查了频数分布表,频数分布直方图和概率的计算,属于中档题.18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.【分析】(1)结合已知又直线和平面垂直的判定定理可判PC⊥平面ADF,即得所求;(2)由已知数据求出必要的线段的长度,建立空间直角坐标系,由向量法计算即可.【解答】解:(1)∵PD⊥平面ABCD,∴PD⊥AD,又CD⊥AD,PD∩CD=D,∴AD⊥平面PCD,∴AD⊥PC,又AF⊥PC,∴PC⊥平面ADF,即CF⊥平面ADF;(2)设AB=1,在RT△PDC中,CD=1,∠DPC=30°,∴PC=2,PD=,由(1)知CF⊥DF,∴DF=,AF==,∴CF==,又FE∥CD,∴,∴DE=,同理可得EF=CD=,如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E(,0,0),F(,,0),P(,0,0),C(0,1,0)设向量=(x,y,z)为平面AEF的法向量,则有,,∴,令x=4可得z=,∴=(4,0,),由(1)知平面ADF的一个法向量为=(,1,0),设二面角D﹣AF﹣E的平面角为θ,可知θ为锐角,cosθ=|cos<,>|===∴二面角D﹣AF﹣E的余弦值为:【点评】本题考查用空间向量法求二面角的余弦值,建立空间直角坐标系并准确求出相关点的坐标是解决问题的关键,属中档题.19.(14分)设数列{an}的前n项和为Sn,满足Sn=2nan+1﹣3n2﹣4n,n∈N*,且S3=15. (1)求a1,a2,a3的值;(2)求数列{an}的通项公式.【分析】(1)在数列递推式中取n=2得一关系式,再把S3变为S2+a3得另一关系式,联立可求a3,然后把递推式中n取1,再结合S3=15联立方程组求得a1,a2;(2)由(1)中求得的a1,a2,a3的值猜测出数列的一个通项公式,然后利用数学归纳法证明.【解答】解:(1)由Sn=2nan+1﹣3n2﹣4n,n∈N*,得:S2=4a3﹣20 ①又S3=S2+a3=15 ②联立①②解得:a3=7.再在Sn=2nan+1﹣3n2﹣4n中取n=1,得:a1=2a2﹣7 ③又S3=a1+a2+7=15 ④联立③④得:a2=5,a1=3.∴a1,a2,a3的值分别为3,5,7;(2)∵a1=3=2×1+1,a2=5=2×2+1,a3=7=2×3+1.由此猜测an=2n+1.下面由数学归纳法证明:1、当n=1时,a1=3=2×1+1成立.2、假设n=k时结论成立,即ak=2k+1.那么,当n=k+1时,由Sn=2nan+1﹣3n2﹣4n,得,,两式作差得:.∴==2(k+1)+1.综上,当n=k+1时结论成立.∴an=2n+1.【点评】本题考查数列递推式,训练了利用数学归纳法证明与自然数有关的命题,考查了学生的灵活应变能力和计算能力,是中档题.21.(14分)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).【分析】(1)利用换元法,结合函数成立的条件,即可求出函数的定义域.(2)根据复合函数的定义域之间的关系即可得到结论.(3)根据函数的单调性,即可得到不等式的解集.【解答】解:(1)设t=x2+2x+k,则f(x)等价为y=g(t)=,要使函数有意义,则t2+2t﹣3>0,解得t>1或t<﹣3,即x2+2x+k>1或x2+2x+k<﹣3,则(x+1)2>2﹣k,①或(x+1)2<﹣2﹣k,②,∵k<﹣2,∴2﹣k>﹣2﹣k,由①解得x+1>或x+1,即x>﹣1或x,由②解得﹣<x+1<,即﹣1﹣<x<﹣1+,综上函数的定义域为(﹣1,+∞)∪(﹣∞,﹣1﹣)∪(﹣1﹣,﹣1+).(2)f′(x)===﹣,由f'(x)>0,即2(x2+2x+k+1)(x+1)<0,则(x+1+)(x+1﹣)(x+1)<0 解得x<﹣1﹣或﹣1<x<﹣1+,结合定义域知,x<﹣1﹣或﹣1<x<﹣1+,即函数的单调递增区间为:(﹣∞,﹣1﹣),(﹣1,﹣1+),同理解得单调递减区间为:(﹣1﹣,﹣1),(﹣1+,+∞).(3)由f(x)=f(1)得(x2+2x+k)2+2(x2+2x+k)﹣3=(3+k)2+2(3+k)﹣3,则[(x2+2x+k)2﹣(3+k)2]+2[(x2+2x+k)﹣(3+k)]=0,∴(x2+2x+2k+5)(x2+2x﹣3)=0即(x+1+)(x+1﹣)(x+3)(x﹣1)=0,∴x=﹣1﹣或x=﹣1+或x=﹣3或x=1,∵k<﹣6,∴1∈(﹣1,﹣1+),﹣3∈(﹣1﹣,﹣1),∵f(﹣3)=f(1)=f(﹣1﹣)=f(﹣1+),且满足﹣1﹣∈(﹣∞,﹣1﹣),﹣1+∈(﹣1+,+∞),由(2)可知函数f(x)在上述四个区间内均单调递增或递减,结合图象,要使f(x)>f (1)的集合为:()∪(﹣1﹣,﹣3)∪(1,﹣1+)∪(﹣1+,﹣1+).【点评】本题主要考查函数定义域的求法,以及复合函数单调性之间的关系,利用换元法是解决本题的关键,综合性较强,难度较大.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为. (1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P 的轨迹方程.【分析】(1)根据焦点坐标和离心率求得a和b,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△=0,整理出关于k的一元二次方程,利用韦达定理表示出k1•k2,进而取得x0和y0的关系式,即P点的轨迹方程.【解答】解:(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)①当两条切线中有一条斜率不存在时,即A、B两点分别位于椭圆长轴与短轴的端点,P的坐标为(±3,±2),符合题意,②当两条切线斜率均存在时,设过点P(x0,y0)的切线为y=k(x﹣x0)+y0,+=+=1,整理得(9k2+4)x2+18k(y0﹣kx0)x+9[(y0﹣kx0)2﹣4]=0,∴△=[18k(y0﹣kx0)]2﹣4(9k2+4)×9[(y0﹣kx0)2﹣4]=0,整理得(x02﹣9)k2﹣2x0×y0×k+(y02﹣4)=0,∴﹣1=k1•k2==﹣1,∴x02+y02=13.把点(±3,±2)代入亦成立,∴点P的轨迹方程为:x2+y2=13.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x和y关系.一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1} C.{0,2} D.{0,1,2}2.(5分)复数的模长为()A.B. C.D.23.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A. B. C. D.4.(5分)下列关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列是递增数列;p4:数列{an+3nd}是递增数列;其中真命题是()A.p1,p2 B.p3,p4 C.p2,p3 D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C.D.7.(5分)已知函数f(x)=ln(﹣3x)+1,则f(lg2)+f(lg)=()A.﹣1 B.0 C.1 D.28.(5分)执行如图所示的程序框图,若输入n=8,则输出S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3 B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知椭圆C:的左焦点F,C与过原点的直线相交于A,B两点,连结AF,BF,若|AB|=10,|AF|=6,,则C的离心率为()A.B.C.D.12.(5分)已知函数f(x)满足f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的较大值,min(p,q)表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.a2﹣2a﹣16 B.a2+2a﹣16 C.﹣16 D.16二、填空题13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知F为双曲线C:的左焦点,P,Q为C上的点,若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.19.(12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)(1)证明:当x∈[0,1]时,;(2)若不等式对x∈[0,1]恒成立,求实数a的取值范围.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战38415
补习数学月考(4)试题——文科数学第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合2{|10}A x R ax ax =∈++=中只有一个元素,则a =( )A .4B .2C .0D .0或42、已知,,a b c R ∈,命题”若3a b c ++=,则2223a b c ++≥”的否命题是( )A .若3a b c ++≠,则2223a b c ++<B .若3a b c ++=,则2223a b c ++<C .若3a b c ++≠,则2223a b c ++≥D .若2223a b c ++≥,则3a b c ++≠3、下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+B .1y x =-+C .1()2x y =D .1y x x=+ 4、已知定义在R 上的奇函数()f x 满足()(4)f x f x -=-,且在区间[]0,2上是增函数,则( )A .()()()251180f f f -<<B .()()()801125f f f <<-C .()()()118025f f f <<-D .()()()258011f f f -<<5、如果函数()2f x x bx c =++对任意的实数x ,都有()(1)f x f x +=-,那么( ) A .()()()202f f f -<<B .()()()012f f f <-<C .()()()202f f f <<-D .()()()022f f f <<-6、函数22x xy -=-是( )A .奇函数,在(0,)+∞上单调递增B .奇函数,在(0,)+∞上单调递减C .偶函数,在(,0)-∞上单调递增D .偶函数,在(,0)-∞上单调递减[来源:]7、函数()2lg(1)f x x =+的大致图象是( )8、设0x 是方程ln 4x x +=的解,则0x 属于( )A .()0,1B .()1,2C .()2,3D .()3,49、已知曲线213ln 4y x x =-的一条切线的斜率为12-,则切点的横坐标为( ) A .2 B .3 C .2或3 D .210、计算cos 42cos18cos 48sin18-的结果等于( )[来源:]A .12B .33C .22D .32 11、已知向量(1,1),(3,),//()a b m a a b =-=+,则m =( )A .2B .2C .3D .312、向量(1,2),(0,2)a b ==,则a b ⋅=( )[来源:Z+xx+]A .2B .(0,4)C .4D .(1,4)[来源:学,科,网]第Ⅱ卷[来源:Z 。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战45518
一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)2.((5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.8405.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S18.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=时,{an}的前n项和最大.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)参考答案与试题解析(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)【分析】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【解答】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.【点评】本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.2.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【分析】解出集合A,再由交的定义求出两集合的交集.【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.【点评】本题考查交的运算,理解好交的定义是解答的关键.3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上【分析】曲线(θ为参数)表示圆,对称中心为圆心,可得结论.【解答】解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x 上,故选:B.【点评】本题考查圆的参数方程,考查圆的对称性,属于基础题.4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.840【分析】算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的值.【解答】解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.5.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【解答】解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{an}不是递增数列,充分性不成立.若an=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{an}为递增数列”的既不充分也不必要条件,故选:D.【点评】本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣【分析】对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【解答】解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,当y=0,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【分析】分别求出三棱锥在各个面上的投影坐标即可得到结论.【解答】解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=.在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3=,则S3=S2且S3≠S1,故选:D.【点评】本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【分析】分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数.【解答】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.【点评】本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2= ﹣1 .【分析】由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案. 【解答】解:()2=.故答案为:﹣1.【点评】本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=. 【分析】设=(x,y).由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可.【解答】解:设=(x,y).∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5.解得.故答案为:.【点评】本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为 y=±2x .【分析】利用双曲线渐近线之间的关系,利用待定系数法即可得到结论.【解答】解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m≠0),∵双曲线C经过点(2,2),∴m=,即双曲线方程为﹣x2=﹣3,即,对应的渐近线方程为y=±2x,故答案为:,y=±2x.【点评】本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n= 8 时,{an}的前n项和最大.【分析】可得等差数列{an}的前8项为正数,从第9项开始为负数,进而可得结论.【解答】解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{an}的前8项为正数,从第9项开始为负数,∴等差数列{an}的前8项和最大,故答案为:8.【点评】本题考查等差数列的性质和单调性,属中档题.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有 36 种.【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足B、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.【点评】本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π .【分析】由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()可得函数的半周期,则周期可求.【解答】解:由f()=f(),可知函数f(x)的一条对称轴为x=,则x=离最近对称轴距离为.又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π.故答案为:π.【点评】本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).【分析】(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,(2)根据互斥事件的概率公式,计算即可.(3)求出平均数和EX,比较即可.【解答】解:(1)设李明在该场比赛中投篮命中率超过0.6为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;(3)=(12+8+12+12+8+7+8+15+20+12)=11.4EX=【点评】本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题.17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.【分析】(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.【解答】(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为=(x,y,z),则即,令z=1,则y=﹣1,∴=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos<,>|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵是平面ABF的法向量,∴=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2.【点评】本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.【分析】(1)求出f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,判定出在区间∈(0,)上f′(x)=﹣xsinx<0,得f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”构造函数g(x)=sinx﹣cx,通过求函数的导数讨论参数c求出函数的最值,进一步求出a,b的最值.【解答】解:(1)由f(x)=xcosx﹣sinx得f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,此在区间∈(0,)上f′(x)=﹣xsinx<0,所以f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”令g(x)=sinx﹣cx,则g′(x)=cosx﹣c,当c≤0时,g(x)>0对x∈(0,)上恒成立,当c≥1时,因为对任意x∈(0,),g′(x)=cosx﹣c<0,所以g(x)在区间[0,]上单调递减,从而,g(x)<g(0)=0对任意x∈(0,)恒成立,当0<c<1时,存在唯一的x0∈(0,)使得g′(x0)=cosx0﹣c=0,g(x)与g′(x)在区间(0,)上的情况如下:x (0,x0) x0 (x0,)g′(x)+ ﹣g(x)↑↓因为g(x)在区间(0,x0)上是增函数,所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,)恒成立,当且仅当综上所述当且仅当时,g(x)>0对任意x∈(0,)恒成立,当且仅当c≥1时,g(x)<0对任意x∈(0,)恒成立,所以若a<<b对x∈(0,)上恒成立,则a的最大值为,b的最小值为1 【点评】本题考查利用导数求函数的单调区间;利用导数求函数的最值;考查解决不等式问题常通过构造函数解决函数的最值问题,属于一道综合题.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).【分析】(Ⅰ)利用T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),可求T1(P),T2(P)的值;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(Ⅲ)根据新定义,可得结论.【解答】解:(Ⅰ)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);∴无论m=a和m=d,T2(P)≤T2(P′);(Ⅲ)数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小;T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52.【点评】本题考查新定义,考查学生分析解决问题的能力,正确理解与运用新定义是解题的关键.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.【分析】(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB 与圆x2+y2=2相切.【解答】解:(1)由x2+2y2=4,得椭圆C的标准方程为.∴a2=4,b2=2,从而c2=a2﹣b2=2.因此a=2,c=.故椭圆C的离心率e=;(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.∵OA⊥OB,∴,即tx0+2y0=0,解得.当x0=t时,,代入椭圆C的方程,得.故直线AB的方程为x=,圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为,即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.圆心O到直线AB的距离d=.又,t=.故=.此时直线AB与圆x2+y2=2相切.【点评】本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.一、选择题(本大题共12小题,每小题5分)1.(5分)设z=,则z的共轭复数为()A.﹣1+3i B.﹣1﹣3i C.1+3i D.1﹣3i2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4] B.[0,4)C.[﹣1,0)D.(﹣1,0]3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2 B.C.1 D.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=17.(5分)曲线y=xex﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2 D.18.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16π C.9πD.9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C. D.10.(5分)等比数列{an}中,a4=2,a5=5,则数列{lgan}的前8项和等于()A.6 B.5 C.4 D.311.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B. C. D.12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f (x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为.(用数字作答)14.(5分)设x、y满足约束条件,则z=x+4y的最大值为.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.16.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.18.(12分)等差数列{an}的前n项和为Sn,已知a1=13,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.22.(12分)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,an+1=ln(an+1),证明:<an≤(n∈N*).全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设z=,则z的共轭复数为()A.﹣1+3i B.﹣1﹣3i C.1+3i D.1﹣3i【分析】直接由复数代数形式的除法运算化简,则z的共轭可求.【解答】解:∵z==,∴.故选:D.【点评】本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础题.2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4] B.[0,4)C.[﹣1,0)D.(﹣1,0]【分析】求解一元二次不等式化简集合M,然后直接利用交集运算求解.【解答】解:由x2﹣3x﹣4<0,得﹣1<x<4.∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<4},又N={x|0≤x≤5},∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4).故选:B.【点评】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b【分析】可得b=sin35°,易得b>a,c=tan35°=>sin35°,综合可得.【解答】解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知b>a,而c=tan35°=>sin35°=b,∴c>b>a故选:C.【点评】本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题.4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2 B.C.1 D.【分析】由条件利用两个向量垂直的性质,可得(+)•=0,(2+)•=0,由此求得||.【解答】解:由题意可得,(+)•=+=1+=0,∴=﹣1;(2+)•=2+=﹣2+=0,∴b2=2,则||=,故选:B.【点评】本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积等于零,属于基础题.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=1【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.7.(5分)曲线y=xex﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2 D.1【分析】求函数的导数,利用导数的几何意义即可求出对应的切线斜率.【解答】解:函数的导数为f′(x)=ex﹣1+xex﹣1=(1+x)ex﹣1,当x=1时,f′(1)=2,即曲线y=xex﹣1在点(1,1)处切线的斜率k=f′(1)=2,故选:C.【点评】本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础.8.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16π C.9πD.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C. D.【分析】根据双曲线的定义,以及余弦定理建立方程关系即可得到结论.【解答】解:∵双曲线C的离心率为2,∴e=,即c=2a,点A在双曲线上,则|F1A|﹣|F2A|=2a,又|F1A|=2|F2A|,∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,则由余弦定理得cos∠AF2F1===.故选:A.【点评】本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.10.(5分)等比数列{an}中,a4=2,a5=5,则数列{lgan}的前8项和等于()A.6 B.5 C.4 D.3【分析】利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10.再利用对数的运算性质即可得出.【解答】解:∵数列{an}是等比数列,a4=2,a5=5,∴a1a8=a2a7=a3a6=a4a5=10.∴lga1+lga2+…+lga8=lg(a1a2•…•a8)=4lg10=4.故选:C.【点评】本题考查了等比数列的性质、对数的运算性质,属于基础题.11.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B. C. D.【分析】首先作出二面角的平面角,然后再构造出异面直线AB与CD所成角,利用解直角三角形和余弦定理,求出问题的答案.【解答】解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,∵AE⊥l∴∠EAC=90°∵CD∥AF又∠ACD=135°∴∠FAC=45°∴∠EAF=45°在Rt△BEA中,设AE=a,则AB=2a,BE=a,在Rt△AEF中,则EF=a,AF=a,在Rt△BEF中,则BF=2a,∴异面直线AB与CD所成的角即是∠BAF,∴cos∠BAF===.故选:B.【点评】本题主要考查了二面角和异面直线所成的角,关键是构造二面角的平面角和异面直线所成的角,考查了学生的空间想象能力和作图能力,属于难题.12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f (x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)【分析】设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,代入解析式变形可得.【解答】解:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,又∵函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,∴P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,∴必有﹣y=g(﹣x),即y=﹣g(﹣x)∴y=f(x)的反函数为:y=﹣g(﹣x)故选:D.【点评】本题考查反函数的性质和对称性,属中档题.二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为70.(用数字作答)【分析】先求出二项式展开式的通项公式,再令x、y的幂指数都等于2,求得r的值,即可求得展开式中x2y2的系数.【解答】解:的展开式的通项公式为Tr+1=•(﹣1)r••=•(﹣1)r••,令 8﹣=﹣4=2,求得 r=4,故展开式中x2y2的系数为=70,故答案为:70.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.14.(5分)设x、y满足约束条件,则z=x+4y的最大值为5.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战45511
一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4)C.[﹣1,0)D.(﹣1,0]2.(5分)设z=,则z的共轭复数为()A.﹣1+3iB.﹣1﹣3iC.1+3iD.1﹣3i3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>cB.b>c>aC.c>b>aD.c>a>b4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2B.C.1D.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=17.(5分)曲线y=xex﹣1在点(1,1)处切线的斜率等于()A.2eB.eC.2D.18.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.10.(5分)等比数列{an}中,a4=2,a5=5,则数列{lgan}的前8项和等于()A.6B.5C.4D.311.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f (x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为.(用数字作答)14.(5分)设x、y满足约束条件,则z=x+4y的最大值为.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.16.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.18.(12分)等差数列{an}的前n项和为Sn,已知a1=13,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.22.(12分)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,an+1=ln(an+1),证明:<an≤(n∈N*).全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4)C.[﹣1,0)D.(﹣1,0]【考点】1E:交集及其运算.【专题】5J:集合.【分析】求解一元二次不等式化简集合M,然后直接利用交集运算求解.【解答】解:由x2﹣3x﹣4<0,得﹣1<x<4.∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<4},又N={x|0≤x≤5},∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4).故选:B.【点评】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.2.(5分)设z=,则z的共轭复数为()A.﹣1+3iB.﹣1﹣3iC.1+3iD.1﹣3i【考点】A1:虚数单位i、复数;A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】直接由复数代数形式的除法运算化简,则z的共轭可求.【解答】解:∵z==,∴.故选:D.【点评】本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础题.3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>cB.b>c>aC.c>b>aD.c>a>b【考点】HF:正切函数的单调性和周期性.【专题】56:三角函数的求值.【分析】可得b=sin35°,易得b>a,c=tan35°=>sin35°,综合可得.【解答】解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知b>a,而c=tan35°=>sin35°=b,∴c>b>a故选:C.【点评】本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题.4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2B.C.1D.【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由条件利用两个向量垂直的性质,可得(+)•=0,(2+)•=0,由此求得||.【解答】解:由题意可得,(+)•=+=1+=0,∴=﹣1;(2+)•=2+=﹣2+=0,∴b2=2,则||=,故选:B.【点评】本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积等于零,属于基础题.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【考点】D9:排列、组合及简单计数问题.【专题】5O:排列组合.【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1【考点】K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.7.(5分)曲线y=xex﹣1在点(1,1)处切线的斜率等于()A.2eB.eC.2D.1【考点】62:导数及其几何意义.【专题】52:导数的概念及应用.【分析】求函数的导数,利用导数的几何意义即可求出对应的切线斜率.【解答】解:函数的导数为f′(x)=ex﹣1+xex﹣1=(1+x)ex﹣1,当x=1时,f′(1)=2,即曲线y=xex﹣1在点(1,1)处切线的斜率k=f′(1)=2,故选:C.【点评】本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础.8.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【考点】LG:球的体积和表面积;LR:球内接多面体.【专题】11:计算题;5F:空间位置关系与距离.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的定义,以及余弦定理建立方程关系即可得到结论.【解答】解:∵双曲线C的离心率为2,∴e=,即c=2a,点A在双曲线上,则|F1A|﹣|F2A|=2a,又|F1A|=2|F2A|,∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,则由余弦定理得cos∠AF2F1===.故选:A.【点评】本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.10.(5分)等比数列{an}中,a4=2,a5=5,则数列{lgan}的前8项和等于()A.6B.5C.4D.3【考点】89:等比数列的前n项和.【专题】54:等差数列与等比数列.【分析】利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10.再利用对数的运算性质即可得出.【解答】解:∵数列{an}是等比数列,a4=2,a5=5,∴a1a8=a2a7=a3a6=a4a5=10.∴lga1+lga2+…+lga8=lg(a1a2•…•a8)=4lg10=4.故选:C.【点评】本题考查了等比数列的性质、对数的运算性质,属于基础题.11.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】5G:空间角.【分析】首先作出二面角的平面角,然后再构造出异面直线AB与CD所成角,利用解直角三角形和余弦定理,求出问题的答案.【解答】解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,∵AE⊥l∴∠EAC=90°∵CD∥AF又∠ACD=135°∴∠FAC=45°∴∠EAF=45°在Rt△BEA中,设AE=a,则AB=2a,BE=a,在Rt△AEF中,则EF=a,AF=a,在Rt△BEF中,则BF=2a,∴异面直线AB与CD所成的角即是∠BAF,∴cos∠BAF===.故选:B.【点评】本题主要考查了二面角和异面直线所成的角,关键是构造二面角的平面角和异面直线所成的角,考查了学生的空间想象能力和作图能力,属于难题.12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f (x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,代入解析式变形可得.【解答】解:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,又∵函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,∴P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,∴必有﹣y=g(﹣x),即y=﹣g(﹣x)∴y=f(x)的反函数为:y=﹣g(﹣x)故选:D.【点评】本题考查反函数的性质和对称性,属中档题.二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为 70 .(用数字作答)【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】先求出二项式展开式的通项公式,再令x、y的幂指数都等于2,求得r的值,即可求得展开式中x2y2的系数.【解答】解:的展开式的通项公式为Tr+1=•(﹣1)r••=•(﹣1)r••,令 8﹣=﹣4=2,求得 r=4,故展开式中x2y2的系数为=70,故答案为:70.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.14.(5分)设x、y满足约束条件,则z=x+4y的最大值为 5 .【考点】7C:简单线性规划.【专题】31:数形结合.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时zmax=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【考点】IV:两直线的夹角与到角问题.【专题】5B:直线与圆.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果.【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.16.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是(﹣∞,2].【考点】HM:复合三角函数的单调性.【专题】51:函数的性质及应用;57:三角函数的图像与性质.【分析】利用二倍角的余弦公式化为正弦,然后令t=sinx换元,根据给出的x的范围求出t 的范围,结合二次函数的图象的开口方向及对称轴的位置列式求解a的范围.【解答】解:由f(x)=cos2x+asinx=﹣2sin2x+asinx+1,令t=sinx,则原函数化为y=﹣2t2+at+1.∵x∈(,)时f(x)为减函数,则y=﹣2t2+at+1在t∈(,1)上为减函数,∵y=﹣2t2+at+1的图象开口向下,且对称轴方程为t=.∴,解得:a≤2.∴a的取值范围是(﹣∞,2].故答案为:(﹣∞,2].【点评】本题考查复合函数的单调性,考查了换元法,关键是由换元后函数为减函数求得二次函数的对称轴的位置,是中档题.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】58:解三角形.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.18.(12分)等差数列{an}的前n项和为Sn,已知a1=13,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.【考点】8E:数列的求和.【专题】55:点列、递归数列与数学归纳法.【分析】(1)通过Sn≤S4得a4≥0,a5≤0,利用a1=13、a2为整数可得d=﹣4,进而可得结论;(2)通过an=13﹣3n,分离分母可得bn=(﹣),并项相加即可.【解答】解:(1)在等差数列{an}中,由Sn≤S4得:a4≥0,a5≤0,又∵a1=13,∴,解得﹣≤d≤﹣,∵a2为整数,∴d=﹣4,∴{an}的通项为:an=17﹣4n;(2)∵an=17﹣4n,∴bn===﹣(﹣),于是Tn=b1+b2+……+bn=﹣[(﹣)+(﹣)+……+(﹣)]=﹣(﹣)=.【点评】本题考查求数列的通项及求和,考查并项相加法,注意解题方法的积累,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】记Ai表示事件:同一工作日乙丙需要使用设备,i=0,1,2,B表示事件:甲需要设备,C表示事件,丁需要设备,D表示事件:同一工作日至少3人需使用设备(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(Ⅱ)X的可能取值为0,1,2,3,4,分别求出PXi,再利用数学期望公式计算即可.【解答】解:由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)X的可能取值为0,1,2,3,4P(X=0)=(1﹣0.6)×0.52×(1﹣0.4)=0.06P(X=1)=0.6×0.52×(1﹣0.4)+(1﹣0.6)×0.52×0.4+(1﹣0.6)×2×0.52×(1﹣0.4)=0.25 P(X=4)=P(A2•B•C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)﹣P(X=4)=0.25,P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)﹣P(X=4)=1﹣0.06﹣0.25﹣0.25﹣0.06=0.38.故数学期望EX=0×0.06+1×0.25+2×0.38+3×0.25+4×0.06=2【点评】本题主要考查了独立事件的概率和数学期望,关键是找到独立的事件,计算要有耐心,属于难题.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【考点】KH:直线与圆锥曲线的综合.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得 p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px(p >0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得 p=2,或 p=﹣2(舍去).故C的方程为 y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为 x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为 x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为 x﹣y﹣1=0,或 x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.22.(12分)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,an+1=ln(an+1),证明:<an≤(n∈N*).【考点】6B:利用导数研究函数的单调性;RG:数学归纳法.【专题】53:导数的综合应用.【分析】(Ⅰ)求函数的导数,通过讨论a的取值范围,即可得到f(x)的单调性;(Ⅱ)利用数学归纳法即可证明不等式.【解答】解:(Ⅰ)函数f(x)的定义域为(﹣1,+∞),f′(x)=,①当1<a<2时,若x∈(﹣1,a2﹣2a),则f′(x)>0,此时函数f(x)在(﹣1,a2﹣2a)上是增函数,若x∈(a2﹣2a,0),则f′(x)<0,此时函数f(x)在(a2﹣2a,0)上是减函数,若x∈(0,+∞),则f′(x)>0,此时函数f(x)在(0,+∞)上是增函数.②当a=2时,f′(x)≥0,此时函数f(x)在(﹣1,+∞)上是增函数,③当a>2时,若x∈(﹣1,0),则f′(x)>0,此时函数f(x)在(﹣1,0)上是增函数,若x∈(0,a2﹣2a),则f′(x)<0,此时函数f(x)在(0,a2﹣2a)上是减函数,若x∈(a2﹣2a,+∞),则f′(x)>0,此时函数f(x)在(a2﹣2a,+∞)上是增函数.(Ⅱ)由(Ⅰ)知,当a=2时,此时函数f(x)在(﹣1,+∞)上是增函数,当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1)>,(x>0),又由(Ⅰ)知,当a=3时,f(x)在(0,3)上是减函数,当x∈(0,3)时,f(x)<f(0)=0,ln(x+1)<,下面用数学归纳法进行证明<an≤成立,①当n=1时,由已知,故结论成立.②假设当n=k时结论成立,即,则当n=k+1时,an+1=ln(an+1)>ln(),ak+1=ln(ak+1)<ln(),即当n=k+1时,成立,综上由①②可知,对任何n∈N•结论都成立.【点评】本题主要考查函数单调性和导数之间的关系,以及利用数学归纳法证明不等式,综合性较强,难度较大.一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)2.((5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.8405.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S18.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=时,{an}的前n项和最大.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)参考答案与试题解析(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)【分析】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【解答】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.【点评】本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.2.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【分析】解出集合A,再由交的定义求出两集合的交集.【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.【点评】本题考查交的运算,理解好交的定义是解答的关键.3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上【分析】曲线(θ为参数)表示圆,对称中心为圆心,可得结论.【解答】解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x 上,故选:B.【点评】本题考查圆的参数方程,考查圆的对称性,属于基础题.4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.840【分析】算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的值.【解答】解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.5.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【解答】解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{an}不是递增数列,充分性不成立.若an=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{an}为递增数列”的既不充分也不必要条件,故选:D.【点评】本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣【分析】对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【解答】解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,当y=0,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【分析】分别求出三棱锥在各个面上的投影坐标即可得到结论.【解答】解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=.在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3=,则S3=S2且S3≠S1,故选:D.【点评】本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【分析】分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数.【解答】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.【点评】本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2= ﹣1 .【分析】由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案. 【解答】解:()2=.故答案为:﹣1.【点评】本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=. 【分析】设=(x,y).由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可.【解答】解:设=(x,y).∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5.解得.故答案为:.【点评】本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.填空题1.已知集合}|{},,02|{2a x x B R x x x x A ≥=∈≤-=,若B B A =⋃,则实数a 的取值范围是_______________2.已知i b i i a -=+3,其中R b a ∈,,i 为虚数单位,则b a +=_____________ 3.某单位从4名应聘者A,B,C,D 中招聘2人,如果这4名应聘者被录用的机会均等,则A,B 两人中至少有1人被录用的概率是________________4.某日用品按行业质量标准分为五个等级,等级系数X 依次为1,2,3,4,5,现从一批该日用品中随机抽取200件,对其等级系数进行统计分析,得到频率f 的分布表如下:则在所抽取的200件日用品中,等级系数X=1的件数为_______________5.已知变量x,y 满足约束条件⎪⎩⎪⎨⎧≤≤-≥+.2,1,2y y x y x 则目标函数y x z +-=2的取值范围是_________6.已知双曲线1222=-y ax 的一条渐近线方程为02=-y x ,则该双曲线的离心率e=_______7.已知圆C 经过直线022=+-y x 与坐标轴的两个交点,又经过抛物线x y 82=的焦点,则圆C 的方程为________________8.设n S 是等差数列}{n a 的前n 项和,若3163=S S ,则=76S S _____________ 9.已知函数)2||,0,0)(sin(πϕωϕω<>>+=A x A y 的部分图像如图所示,则ω的值为___10.在如果所示的流程图中,若输入n 的值为11.则输出A 的值为______11.一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点P 为顶点,加工成一个如图所示的正四棱锥容器,当x=6cm 时,该容器的容积为__________________3cm .12.下列四个命题:(1)“01,2≤+-∈∃x x R x ”的否定;(2)“若2,062>≥-+x x x 则”的否命题;(3)在ABC ∆中,“o A 30>”是“21sin >A ”的充分不必要条件; (4)“函数)tan()(ϕ+=x x f 为奇函数”的充要条件是“)(Z k k ∈=πϕ”.其中真命题的序号是____________________(真命题的序号都填上)13.在面积为2的ABC ∆中,E,F 分别是AB ,AC 的中点,点P 在直线EF 上,则2BC PB PC +⋅的最小值是______________14.已知关于x 的方程03)2(log 22222=-+++a x a x 有唯一解,则实数a 的值为________二、解答题15.(本题满分14分)设向量a =(2,sinθ),b =(1,cosθ),θ为锐角(1)若a·b=613,求sinθ+cosθ的值; (2)若a//b,求sin(2θ+3π)的值. 16.(本题满分14分)如图,四边形ABCD 是矩形,平面ABCD ⊥平面BCE ,BE ⊥EC.(1) 求证:平面AEC ⊥平面ABE ;(2) 点F 在BE 上,若DE//平面ACF ,求BEBF 的值。
17.(本题满分14分)如图,在平面直角坐标系xoy 中,椭圆C :22221(0)x y a b a b+=>>的离心率为23,以原点为圆心,椭圆C 的短半轴长为半径的圆与直线xy+2=0相切.(1)求椭圆C 的方程;(2)已知点P(0,1),Q(0,2),设M,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T 。
求证:点T 在椭圆C 上。
18.(本小题满分16分)某单位设计一个展览沙盘,现欲在沙盘平面内,布设一个对角线在l 上的四边形电气线路,如图所示,为充分利用现有材料,边BC,CD 用一根5米长的材料弯折而成,边BA,AD 用一根9米长的材料弯折而成,要求A ∠和C ∠互补,且AB=BC,(1) 设AB=x 米,cosA=()f x ,求()f x 的解析式,并指出x 的取值范围.(2) 求四边形ABCD 面积的最大值。
.19.(本小题满分16分)已知函数|,|)(bx e x f x -=其中e 为自然对数的底.(1)当1=b 时,求曲线y=f(x)在x=1处的切线方程;(2)若函数y=f(x)有且只有一个零点,求实数b 的取值范围;(3)当b>0时,判断函数y=f(x)在区间(0,2)上是否存在极大值,若存在,求出极大值及相应实数b 的取值范围.20.(本小题满分16分)已知数列{an}满足:),0(2 (2123)21*-∈>+=++++N n n n a a a a n n λλλλ其中常数(1)求数列{an}的通项公式;(2)当λ=4时,是否存在互不相同的正整数r,s,t,使得t s r a a a ,,成等比数列?若存在,给出r,s,t 满足的条件;若不存在,说明理由;(3)设S n 为数列{an}的前n 项和,若对任意*∈N n ,都有n n n a S λλλ2)1(≥+-恒成立,求实数λ的取值范围。
数学附加题1.设矩阵⎥⎦⎤⎢⎣⎡=3421M (1)求矩阵M 的逆矩阵1-M;(2)求矩阵M 的特征值. 2.在平面直角坐标系xoy 中,判断曲线C:为参数)θθθ(sin cos 2⎩⎨⎧==y x 与直线⎩⎨⎧-=+=t y t x l 121:(t 为参数)是否有公共点,并证明你的结论3.甲、乙两班各派三名同学参加青奥知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是32,乙班三名同学答对的概率分别是21,32,32,且这六名同学答题正确与否相互之间没有影响.(1)用X 表示甲班总得分,求随机变量X 的概率分布和数学期望;(2)记“两班得分之和是30分”为事件A ,“甲班得分大于乙班得分”为事件B ,求事件A,B 同时发生的概率.4.记)21()21)(21(2n x x x +⋅⋅⋅++的展开式中,x 的系数为n a ,2x 的系数为n b ,其中*N n ∈ (1)求n a(2)是否存在常数p,q(p<q),使)21)(21(31n n n q p b ++=,对*N n ∈,2≥n 恒成立?证明你的结论.注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷二. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m=(A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2 (5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18(C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为 (A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12(k ∈Z) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图, 若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34(9)若cos(π4–α)=35,则sin 2α= (A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2mn (11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.(2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是。