八年级数学下册 16.2 二次根式的乘除教案 (新版)新人教版

合集下载

人教版八年级数学下册_16.2二次根式的乘除

人教版八年级数学下册_16.2二次根式的乘除

特别提醒 进行二次根式的除法运算时,若两个被开方数可以
整除,就直接运用二次根式的除法法则进行计算;若两 个被开方数不能整除,可以对二次根式化简或变形后再 相除.
感悟新知
例 3 如果
a a-8
a a-8
成立,那么( D )
A.a ≥ 8
B.0 ≤ a ≤ 8
C.a ≥ 0
知3-练
D.a>8
解题秘方:紧扣“二次根式除法法则”成立的条
(式)移到根号外时,要注意应写在分母的位置上;
(3)“三化”,即化去被开方数中的分母.
感悟新知
知5-讲
特别提醒 判断一个二次根式是否是最简二次根式,要紧扣两个条件: 1. 被开方数不含分母; 2. 被开方数中每个因数(式)的指数都小于根指数2,即每个因
数(式)的指数都是1. 注意:分母中含有根式的式子不是最简二次根式.
感悟新知
知5-练
例8 下列各式中,哪些是最简二次根式?哪些不是最简二
次根式?不是最简二次根式的,请说明理由.
(1)
1 ;(2)
x2+y2 ;(3)
0.2;
3
(4)
24 x;(5)
2 .
3
解题秘方:紧扣“最简二次根式的定义”进行判断.
感悟新知
知5-练
解:(1)不是最简二次根式,因为被开方数中含有分母; (3) 不是最简二次根式,因为被开方数是小数(即含有分母); (4)不是最简二次根式,因为被开方数24x 中含有能开得尽 方的因数4,4=22; (2)(5)是最简二次根式.
感悟新知
知3-讲
(2)当二次根式根号外有因数(式)时,可类比单项式除以单 项式的法则进行运算,将根号外的因数(式)之商作为商 的根号外因数(式) ,被开方数(式)之商作为商的被开方 数(式) ,即a b÷c d = (a÷c ) b d ( b ≥ 0,d > 0,c ≠ 0 ).

人教版八年级下册16.2《二次根式的乘除》教案

人教版八年级下册16.2《二次根式的乘除》教案
三、教学难点与重点
1.教学重点
a.掌握二次根式的乘法法则:$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$($a \geq 0$,$b \geq 0$)
b.掌握二次根式的除法法则:$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$($a \geq 0$,$b > 0$)
五、教学反思
在今天的教学中,我们探讨了二次根式的乘除运算。通过这节课的学习,我发现学生们在理解乘除法则和应用这些法则解决实际问题时,普遍存在一些挑战。首先,学生们在从理论到实际应用的转换上存在一定的难度。他们能够理解乘法法则和除法法则的概念,但在将法则应用到具体题目中时,往往不知道如何下手。
例如,在计算$\sqrt{12} \times \sqrt{18}$时,部分学生未能首先将根式化简,而是直接相乘,导致计算错误。这让我意识到,在讲解乘除法则时,需要更加强调化简的步骤,让学生形成自动化的解题流程。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式乘除的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二次根式乘除的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
d.了解二次根式乘除运算在实际问题中的应用。
教学内容涵盖以下例题与练习:
1.计算下列二次根式的乘积:
$\sqrt{3} \times \sqrt{5}$,$2\sqrt{6} \times 3\sqrt{2}$,$5\sqrt{2} \times \sqrt{18}$

人教版数学八年级下册16.2第1课时《二次根式的乘法》说课稿

人教版数学八年级下册16.2第1课时《二次根式的乘法》说课稿

人教版数学八年级下册16.2第1课时《二次根式的乘法》说课稿一. 教材分析《二次根式的乘法》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行教授的。

二次根式的乘法是数学中基本的运算之一,它在数学问题的解决中有着广泛的应用。

通过学习这部分内容,可以使学生进一步理解和掌握二次根式的性质,提高他们的数学运算能力。

二. 学情分析在八年级的学生已经具备了一定的数学基础,对于二次根式的性质和加减法运算已经有了一定的了解。

但是,学生在进行二次根式的乘法运算时,可能会对如何正确处理根号下的乘法运算感到困惑。

因此,在教学过程中,需要引导学生正确理解二次根式的乘法运算规则,并通过大量的练习来巩固他们的理解。

三. 说教学目标1.知识与技能目标:使学生理解和掌握二次根式的乘法运算规则,能够正确进行二次根式的乘法运算。

2.过程与方法目标:通过教师的引导和学生的自主探究,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极的学习态度和良好的学习习惯。

四. 说教学重难点1.教学重点:使学生理解和掌握二次根式的乘法运算规则。

2.教学难点:如何引导学生正确理解二次根式的乘法运算规则,并能够灵活运用。

五. 说教学方法与手段在教学过程中,我将采用讲授法和探究法相结合的教学方法。

在讲解二次根式的乘法运算规则时,我将通过生动的例子和清晰的解释,帮助学生理解和掌握。

同时,我将引导学生进行自主探究,通过解决实际问题,来加深他们对二次根式乘法运算的理解。

此外,我还将运用多媒体教学手段,如PPT等,来辅助教学,使教学内容更加生动和直观。

六. 说教学过程1.导入:通过一个实际问题,引发学生对二次根式乘法运算的思考,激发他们的学习兴趣。

2.讲解:讲解二次根式的乘法运算规则,并通过大量的例子来解释和巩固。

3.练习:让学生进行二次根式乘法运算的练习,及时发现和纠正他们的错误。

新人教版,八年级下册数学第十六章二次根式教案,第十二章全等三角形教案

新人教版,八年级下册数学第十六章二次根式教案,第十二章全等三角形教案

新人教版,八年级下册数学第十六章二次根式教案,第十二章全等三角形教案八年级下册数学 教案16.1 二次根式(1) 教学目的:1、了解二次根式的概念;2、了解二次根式的基本性质;3、通过二次根式原概念和性质的探究,提高数学探究能力和归纳表达能力。

重点:二次根式的概念和基本性质难点:二次根式的基本性质的灵活运用。

教学过程:例1.(1)当x 是怎样的实数时,2-x 在实数范围内有意义?(2)当x 是怎样的实数时,2x 在实数范围内有意义? (3)当x 是怎样的实数时,3x 在实数范围内有意义? 归纳总结:n x :当n 为奇数时,x ≥0时nx 有意义当n 为偶数时,x 为任意实数时n x 都有意义1. 求下列二次根式中字母k 的取值范围:(1 (2 (3 (42. 当x 分别取下列值时,的值:()10x =; ()21x =; ()31x =-.检测:求二次根式中x 的取值范围: (1)4-x (2)12+x (3)25+x (4)xx -42附加题:(5)22x x - (6)42-x (7)42+-x x 教学目的:1、理解二次根式的性质:(1)a (a ≥0)是非负数;(2)(a )2=a (a ≥0);(3)2a =a (a ≥0) 2、会运用其进行相关计算。

重点:会运用a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)进行相关运算。

难点:理解a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)。

教学过程:阅读P69-P71内容,完成两个探究填空,理解、识记两个公式。

公式1 : 公式2 : 例1计算:(1)(5.1)2 (2)(52)2练习:1、(32)2 2、(23)2 3、(52)2 4、(25)2例2化简:(1)16 (2)2)5(-16.1 二次根式(2)教学目的:复习二次根式的概念、二次根式的基本性质a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0),能熟练运用其进行相关计算。

八年级数学下册 16.2 二次根式的乘除教案 (新版)新人教版

八年级数学下册 16.2 二次根式的乘除教案 (新版)新人教版

二次根式的乘除教案总序号:4 时间:教学内容教学目标进行计算和化简(a≥0,b≥0)并运用它进行计算;•教学重难点关键用.a≥0,b≥0).关键:要讲清(a<0,b<0)=b,如=或教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1=______;(2.(3.参考上面的结果,用“>、<或=”填空.×_____,×_____,×2.利用计算器计算填空(1,(2(3(4(5.老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来例1.计算(1(2(3(4分析:a≥0,b≥0)计算即可.解:(1(2(3(4例2 化简(1(2(3(4(5a≥0,b≥0)直接化简即可.解:(1×4=12(2×9=36(3×10=90(4(5×三、巩固练习(1)计算(学生练习,老师点评)①②2(2) 化简教材P11练习全部四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1=(2=4解:(1)不正确.×3=6(2)不正确.==五、归纳小结本节课应掌握:(1=(a≥0,b≥0)(a≥0,b≥0)及其运用.六、布置作业1.课本P11 1,4,5,6.(1)(2).2.选用课时作业设计.第一课时作业设计一、选择题1.化简).A..211x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-13.下列各等式成立的是().A..C..二、填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:===(2)验证:==同理可得:==通过上述探究你能猜测出:(a>0),并验证你的结论.答案:一、1.B 2.C 3.A 4.D二、1..12s三、1.设:底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,2.验证:==。

最新人教版八年级数学下册十六章二次根式16.2二次根式的乘除教学设计

最新人教版八年级数学下册十六章二次根式16.2二次根式的乘除教学设计

16.2 二次根式的乘除第一课时教学内容二次根式的乘法法则以及二次根式的乘法法则的逆用教学目标理解·=(a≥0,b≥0),=·(a≥0,b≥0),并利用它们进行计算和化简由具体数据,发现规律,导出·=(a≥0,b≥0)并运用它进行计算;•利用逆向思维,得出=·(a≥0,b≥0)并运用它进行解题和化简.教学重难点关键重点:·=(a≥0,b≥0),=·(a≥0,b≥0)及它们的运用.难点:发现规律,导出·=(a≥0,b≥0).关键:要讲清(a<0,b<0)=,如=或==×.教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1)×=_______,=______;(2)×=_______,=________.(3)×=________,=_______.参考上面的结果,用“>、<或=”填空.×_____,×_____,×________2.观察计算结果,你能发现什么规律?老师点评(纠正学生练习中的错误)二、探索新知(学生活动)选三个小组里面的一名同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数. 一般地,对二次根式的乘法规定为·=.(a ≥0,b ≥0)反过来: =·(a ≥0,b ≥0)例1.计算(1)× (2)× (3)× (4)×分析:直接利用·=(a ≥0,b ≥0)计算即可.解:(1)×=(2)×==(3)×==9(4)×==例2 化简(1) (2) (3)(4) (5) (6)32b a 4 分析:利用=·(a ≥0,b ≥0)直接化简即可.各小组四号完成上面的题目,然后教师进行点评三、展示交流(1)完成例3计算(学生练习,老师点评)利用乘法的交换律和结合律,将两个系数和两个二次根式分别相乘,同时注意符号四、堂清巩固判断下列各式是否正确,不正确的请予以改正: (1)(2)×=4××=4×=4=8完成书上的练习题1和2五、课堂小结本节课应掌握:(1)·==(a≥0,b≥0),=·(a≥0,b≥0)及其运用.六、布置作业1.课本P7练习题3习题16.2第1题6题2.课后作业:《练习册》中的相关内容七、板书设计16.2 二次根式的乘除(1)(1)·==(a≥0,b≥0)(2)=·(a≥0,b≥0).八、课后回顾16.2 二次根式的乘除第二课时教学内容二次根式除法法则和除法法则的逆用教学目标理解=(a≥0,b>0)和=(a≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1.重点:理解=(a≥0,b>0),=(a≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空(1)=________,=_________;(2)=________,=________;(3)=________,=_________;(4)=________,=________.规律:______;______;_______;_______.3.观察计算结果,你能发现什么规律?每组推荐一名学生上台阐述运算结果.(老师点评)二、探索新知刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:一般地,对二次根式的除法规定:=(a≥0,b>0),反过来,=(a≥0,b>0)下面我们利用这个规定来计算和化简一些题目.完成例4并计算:(1)(2)(3)(4)完成例5.并化简:(1)(2)(3)(4)分析:直接利用=(a ≥0,b>0)就可以达到化简之目的.三、展示交流 例6 计算: (1)53(注意本题可以有不同的解法,解法2采用分母有理化的方法) (2)2723 (3)a28四、堂清巩固例7 设长方形的面积为S ,相邻两边长分别为a ,b ,已知S=32,b=10,求a 完成习题16.2的第10题11题五、课堂小结本节课要掌握=(a ≥0,b>0)和=(a ≥0,b>0)及其运用.六、布置作业1.教材P 10 练习题 习题16.2 4、5、7、11. 拓展题12题2.课后作业:《练习册》中的相关内容 七、板书设计16.2 二次根式的乘除(2)(1)=(a ≥0,b>0)(2)=(a ≥0,b>0)八、课后回顾第二课时作业设计一、选择题1.计算的结果是( ).A .B .C .D .2.阅读下列运算过程:,数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简的结果是().A.2 B.6 C. D.二、填空题1.分母有理化:(1)=_________;(2)=________;(3)=______.2.已知x=3,y=4,z=5,那么的最后结果是_______.三、综合提高题1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为:1,•现用直径为3cm的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算(1)·(-)÷(m>0,n>0)(2)-3÷()×(a>0)答案:一、1.A 2.C二、1.(1) ;(2);(3)2.三、1.设:矩形房梁的宽为x(cm),则长为xcm,依题意,得:(x)2+x2=(3)2,4x2=9×15,x=(cm),x·x=x2=(cm2).2.(1)原式=-÷=-=-=-(2)原式=-2=-2=-a16.2 二次根式的乘除(3)第三课时教学内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.教学过程一、复习引入(学生活动)请同学们完成下列各题(请三位同学上台板书)1.计算(1),(2),(3)老师点评:=,=,=2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那么它们的传播半径的比是_________.它们的比是.二、探索新知再观察例4例5和例6中各小题的最终结果,可以发现哪些特点?观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.学生分组讨论,推荐3~4个人到黑板上板书.老师点评:不是.=.例1.(1); (2); (3)三、展示交流教材P14练习2、3四、堂清巩固例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:==-1,==-,同理可得:=-,……从计算结果中找出规律,并利用这一规律计算(+++……)(+1)的值.分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.解:原式=(-1+-+-+……+-)×(+1)=(-1)(+1)=2002-1=2001五、课堂小结本节课应掌握:最简二次根式的概念及其运用.六、布置作业1.教材P15习题16.2 相关习题.2.课后作业:《练习册》中的相关内容七、板书设计16.2 二次根式的乘除(3)最简二次根式八、课后回顾第三课时作业设计一、选择题1.如果(y>0)是二次根式,那么,化为最简二次根式是().A.(y>0) B.(y>0) C.(y>0) D.以上都不对 2.把(a-1)中根号外的(a-1)移入根号内得().A. B. C.- D.-3.在下列各式中,化简正确的是()A.=3 B.=±C.=a2 D.=x4.化简的结果是()A.- B.- C.- D.-二、填空题1.化简=_________.(x≥0)2.a化简二次根式号后的结果是_________.三、综合提高题1.已知a为实数,化简:-a,阅读下面的解答过程,请判断是否正确?若不正确,•请写出正确的解答过程:解:-a=a-a·=(a-1)2.若x、y为实数,且y=,求的值.答案:一、1.C 2.D 2.C 4.C二、1.x 2.-三、1.不正确,正确解答:因为,所以a<0,原式=-a·=·-a·=-a+=(1-a)2.∵∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=∴.。

16.2二次根式的乘除法(教案)

16.2二次根式的乘除法(教案)
三、教学难点与重点
1.教学重点
本节课的教学重点主要包括以下内容:
a.掌握二次根式乘法的运算法则,特别是\( \sqrt{a} \times \sqrt{b} = \sqrt{ab} \)的形式,以及如何将其他形式的二次根式乘法转化为这一形式;
b.理解并应用二次根式除法的运算法则,特别是\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)和\( \frac{\sqrt{a}}{b} = \frac{\sqrt{a}}{\sqrt{b^2}} \)的形式,以及如何处理分母中含有二次根式的情况;
(3)\( \sqrt{a^2} \times \sqrt{b^2} = |a||b| \)(a、b为任意实数)
2.掌握二次根式除法的运算法则,能够正确计算以下形式的除法:
(1)\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)(a≥0,b>0)
2.培养学生的逻辑思维能力,使其能够理解并运用二次根式乘除法的性质,解决实际问题;
3.培养学生的数学建模能力,通过解决实际情境中的问题,让学生体会数学知识在实际生活中的应用;
4.培养学生的数学抽象能力,让学生从具体的二次根式乘除运算中抽象出一般性规律,形成数学认知结构;
5.培养学生的合作交流意识,鼓励学生在小组讨论和交流中,共同探索二次根式乘除法的运算规律,提高解决问题的能力。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式乘除法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示二次根式乘除法的基本原理,如使用尺子和直角三角形模型来计算对角线长度。

人教版数学八年级下册16.2《二次根式的乘除》教学设计3

人教版数学八年级下册16.2《二次根式的乘除》教学设计3

人教版数学八年级下册16.2《二次根式的乘除》教学设计3一. 教材分析《二次根式的乘除》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行学习的。

二次根式的乘除法运算是初中数学中的重要内容,也是后续学习高中数学的基础。

本节内容主要让学生掌握二次根式的乘除法运算规则,理解并掌握二次根式乘除法运算的性质和规律,提高学生的数学运算能力。

二. 学情分析学生在学习本节内容之前,已经掌握了二次根式的性质和加减法运算,但对于二次根式的乘除法运算可能还存在一定的困难。

因此,在教学过程中,需要教师引导学生理解二次根式的乘除法运算规则,通过大量的练习,让学生熟练掌握二次根式的乘除法运算。

三. 教学目标1.让学生掌握二次根式的乘除法运算规则。

2.提高学生的数学运算能力。

3.培养学生的逻辑思维能力。

四. 教学重难点1.二次根式的乘除法运算规则。

2.二次根式的混合运算。

五. 教学方法1.讲解法:教师通过讲解,让学生理解二次根式的乘除法运算规则。

2.练习法:让学生通过大量的练习,熟练掌握二次根式的乘除法运算。

3.小组合作法:让学生通过小组合作,共同探讨二次根式的乘除法运算,培养学生的团队协作能力。

六. 教学准备1.PPT课件:教师需要准备PPT课件,用于展示二次根式的乘除法运算规则。

2.练习题:教师需要准备适量的练习题,用于让学生进行练习。

七. 教学过程1.导入(5分钟)教师通过复习二次根式的性质和加减法运算,引导学生进入二次根式的乘除法运算学习。

2.呈现(10分钟)教师通过PPT课件,呈现二次根式的乘除法运算规则,让学生初步了解二次根式的乘除法运算。

3.操练(10分钟)教师让学生进行二次根式的乘除法运算练习,引导学生掌握二次根式的乘除法运算规则。

4.巩固(10分钟)教师通过讲解和练习,让学生巩固二次根式的乘除法运算规则。

5.拓展(10分钟)教师引导学生进行二次根式的混合运算,提高学生的数学运算能力。

八年级数学下册16.2 二次根式的乘除导学案(新版)新人教版

八年级数学下册16.2 二次根式的乘除导学案(新版)新人教版

八年级数学下册16.2 二次根式的乘除导学案(新版)新人教版16、2二次根式的乘除二次根式的乘法一、学习目标理解=(a≥0,b≥0),=(a≥0,b≥0),并利用它们进行计算和化简二、学习重点、难点重点:掌握和应用二次根式的乘法法则和积的算术平方根的性质。

难点:正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。

3、课前预习(一)复习引入1、填空:(1)=____,=____; __(2)=____,=___; __ (3)=___,=___、 __(二)、探索新知1、学生交流活动总结规律、2、一般地,对二次根式的乘法规定为=、(a≥0,b≥0 反过来: =(a≥0,b≥0)四、课内探究例1、计算(1)(2)(3)32 (4)例2、化简(1)(2)(3)(4)(5)五、拓展延伸(1)计算:① ②52 ③(2)化简: ; ; ; ;5、当堂检测判断下列各式是否正确,不正确的请予以改正:(1)(2)=4=4=4=8 展示学习成果后,请大家讨论:对于的运算中不必把它变成后再进行计算,你有什么好办法?注:1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数。

2、化简二次根式达到的要求:(1)被开方数进行因数或因式分解。

(2)分解后把能开尽方的开出来。

七、课后反思八、课后训练1、选择题(1)等式成立的条件是()A、x≥1B、x≥-1C、-1≤x≤1D、x≥1或x≤-1(2)下列各等式成立的是()、A、42=8B、54=20C、43=7D、54=20(3)二次根式的计算结果是()A、2C、6D、122、化简:(1);(2);3、计算:(1);(2);4、选择题(1)若,则=()A、4B、2C、-2D、1(2)下列各式的计算中,不正确的是()A、=(-2)(-4)=8B、C、D、5、计算:(1)6(-2);(2);(3)(4)(5)(6)(7)(8)6、不改变式子的值,把根号外的非负因式适当变形后移入根号内。

16.2二次根式的乘除 (教学课件)- 初中数学人教版八年级下册

16.2二次根式的乘除  (教学课件)-   初中数学人教版八年级下册

解: ( 思考】乘法法则是如何得出的?二次根式的除法该怎样算呢2 除法有没有类似的法则?
学习 目标 3. 理解最简二次根式的概念,能熟练地将二 次根式化为最简二次根式。
2. 会运用除法法则及商的算术平方根进行简 单运算.
1. 掌 握二次根式的除法法则,会用法则进行计算.
探究新知 知识点1
二次根式的除法
探究新知
归纳总结 二次根式的乘法法则的推广: ①多个二次根式相乘时此法则也适用,即
√a·√b .....√n=√ab...n(a≥0,b≥0....n≥0)
②当二次根号外有因数(式)时,可以类比单项式乘单 项式的法则计算,即根号外的因数(式)的积作为根号 外的因数(式),被开方数的积作为被开方数,即
化简:
(1)√ 16×81;(2)√4a²b³(a≥0,b≥0).
解:(1)√ 16×81
(2)√4a²b³
(2 ) 中4 ²ab³ 含有 像 4 a²,b²,, 这
= √16×√81
=√4O√a²O√b³
样开的尽方的因 数或因式,把它
=4×9
=36;
=2OaO√b²Ob
们开方后移到根 号外.
巩固练习
计算:
(1)
(2)

解: (1) (2)
提示:像(2)中除式是分数或分(1)
(2)
(3)

解:(1)
探究新知
考点② 利用二次根式的除法法则计算根号外因数不是1的 二次根式
计算: (1) 解:(1)
假分数,再运用二次根式除法法则进行运算.
巩固练习 计算,看谁算的既对又快.

探究新知
方法点拨
化简二次根式的步骤:
1.把被开方数分解因式(或因数);

【精品学习】八年级数学下册16.2二次根式的乘除教案新版新人教版

【精品学习】八年级数学下册16.2二次根式的乘除教案新版新人教版

16.2二次根式的乘除一、教学目标1. 理解• =(a≥0,b≥0),=• (a≥0,b≥0),并利用它们进行计算和化简;2. 理解= (a≥0,b>0)和=(a≥0,b>0)及利用它们进行计算;3.了解最简二次根式的概念。

二、课时安排1课时三、教学重点1.• =(a≥0,b≥0),=• (a≥0,b≥0)及它们的运用。

2. 理解 = (a≥0,b>0)和=(a≥0,b>0)及利用它们进行计算。

四、教学难点发现规律,导出• =(a≥0,b≥0)。

发现规律,归纳出二次根式的除法规定五、教学过程(一)新课导入上节课我们学习了什么是二次根式以及二次根式的特点,现在,我们一起来复习一下这些基本的知识吧。

(引导学生复习基本知识)二次根式的特点及性质。

在有理数的运算中,我们学习了加、减、乘、除四则运算,那么,在我们学习了二次根式之后,大家有没有考虑过,两个二次根式能否进行加、减、乘、除运算?怎样运算?让我们从研究乘法开始。

(二)讲授新课二次根式的乘法:【探究】现在,大家来看一下课本的探究内容,研究一下二次根式的乘法吧。

课本P6探究内容。

从刚刚的结果中,我们可以看到,分别有这样的等式,× =,× =,× =。

大家能用字母表示你所发现的规律吗?(学生讨论回答)将字母表示规律,就得到二次根式的乘法法则:一般地,对二次根式的乘法规定为从这个乘法法则中,我们需要知道:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数。

在这里,如果没有特殊要求,我们的被开方数都是正数。

现在,我们来练习一下利用乘法法则计算吧。

课本例1。

例1只是简单的利用公式进行计算,大家想一想,根据等式的定义,把式子反过来同样成立。

=(a)根据这个式子,我们可以利用它对二次根式进行化简。

大家思考这样一个问题,= ×成立吗?为什么?(学生回答)大家回答的很正确,这样是不正确的,原因呢,就是=(a)。

人教版数学八年级下册16.2《二次根式的乘除》教案

人教版数学八年级下册16.2《二次根式的乘除》教案
人教版数学八年级下册16.2《二次根式的乘除》教案
一、教学内容
人教版数学八年级下册16.2《二次根式的乘除》教案:
1.章节内容:本节课主要学习二次根式的乘除运算。
2.教学内容:
a.理解二次根式的乘法法则,并能正确运用;
b.掌握二次根式的除法法则,并能熟练进行混合运算;
c.能够将二次根式乘除运算与其他数学知识相结合,解决实际问题;
3.重点难点解析:在讲授过程中,我会特别强调乘法法则和除法法则这两个重点。对于难点部分,如根号内同类项的合并和化简,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式乘除相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量并计算正方形对角线长度,演示二次根式乘除的基本原理。
(3)熟练进行二次根式的混合运算,解决实际问题;
举例:计算\( \frac{\sqrt{45} \times \sqrt{20}}{\sqrt{5} \times \sqrt{9}} \),并应用于实际情境。
2.教学难点
(1)理解并运用二次根式乘法法则时,根号内同类项的识别与合并;
难点举例:\( \sqrt{12} \times \sqrt{8} = \sqrt{12 \times 8} \)转化为\( 2\sqrt{3} \times 2\sqrt{2} = 4\sqrt{6} \)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式的乘除》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或长度的问题?”(如计算正方形对角线长度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式乘除的奥秘。

人教版数学八年级下册16.2二次根式的乘除(教案)

人教版数学八年级下册16.2二次根式的乘除(教案)
2.教学难点
(1)根号内乘除运算的简化:在二次根式乘除运算过程中,学生往往难以把握根号内乘除运算后的简化步骤。
-难点解释:如\(\sqrt{2} \times \sqrt{8} = \sqrt{2 \times 8}\),需简化根号内的结果为\(\sqrt{16}\),进而得到最终答案4。
(2)混合运算中乘除法则的运用:在二次根式乘除混合运算中,学生容易混淆乘除法则,导致计算错误。
-练习:计算\(\sqrt{18} \times \sqrt{2}\)、\(\sqrt{12} \times \sqrt{27}\)等。
2.二次根式的除法法则:理解二次根式除法的运算规律,能够熟练进行除法运算。
-例子:\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\)(其中\(b \neq 0\),\(a \geq 0\),\(b > 0\))
人教版数学八年级下册16.2二次根式的乘除(教案)
一、教学内容
本节课选自人教版数学八年级下册16.2节,主要内容包括:
1.二次根式的乘法法则:掌握二次根式乘法的运算规律,能够正确进行乘法运算。
-例子:\(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\)(其中\(a \geq 0\),\(b \geq 0\))
-练习:计算\(\frac{\sqrt{48}}{\sqrt{3}}\)、\(\frac{\sqrt{54}}{\sqrt{9}}\)等。
3.二次根式的乘除混合运算:学会运用乘除法则,解决二次根式的乘除混合运算问题。
-例子:\(\sqrt{18} \div \sqrt{2} \times \sqrt{12}\)
5.设计不同难度的练习题,帮助学生巩固所学知识,逐步突破难点。

人教版初中数学八年级下册《二次根式的乘法》教学设计

人教版初中数学八年级下册《二次根式的乘法》教学设计

人教版初中数学八年级下册《二次根式的乘法》教学设计一. 教材分析人教版初中数学八年级下册《二次根式的乘法》是本册教材中的一个重要内容,它涉及了二次根式的乘除运算,为学习二次根式的进一步运算奠定了基础。

此章节通过引入实际问题,引导学生探究二次根式的乘法运算规律,从而让学生掌握二次根式的乘法运算方法。

教材通过丰富的例题和练习题,使学生在实践中巩固所学知识,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数和无理数的基本概念,具备了一定的数学运算能力。

同时,学生对二次根式的概念、性质和加减法运算已经有了一定的了解。

因此,在教学过程中,可以充分利用学生已有的知识基础,通过启发式教学,引导学生探究二次根式的乘法运算规律。

三. 教学目标1.知识与技能:使学生掌握二次根式的乘法运算方法,能正确进行二次根式的乘法运算。

2.过程与方法:通过小组合作、讨论交流等方法,培养学生的合作意识和团队精神。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.重点:二次根式的乘法运算方法。

2.难点:理解并掌握二次根式乘法运算的规律,能灵活运用所学知识解决实际问题。

五. 教学方法1.启发式教学:通过设置疑问,引导学生主动探究二次根式的乘法运算规律。

2.小组合作:学生进行小组讨论,培养学生的团队协作能力。

3.实践性教学:让学生在实际操作中感受二次根式乘法运算的方法,提高运算能力。

六. 教学准备1.教学PPT:制作涵盖本节课主要内容的教学PPT。

2.例题及练习题:准备适量的例题和练习题,以便进行课堂练习和巩固。

3.教学素材:准备一些与生活实际相关的问题,引导学生运用所学知识解决实际问题。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生思考如何进行二次根式的乘法运算。

例如,计算下列式子:√2×√3√4×√9通过这些问题,激发学生的学习兴趣,引出本节课的主题。

人教版八年级数学下册第十六章 二次根式(全章)教案

人教版八年级数学下册第十六章  二次根式(全章)教案

16.1 二次根式[学习目标]理解二次根式的概念,并利用(a≥0)的意义解答具体题目.教学重点:形如(a≥0)的式子叫做二次根式的概念教学难点:利用“(a≥0)”解决具体问题.教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法、2、阅读的方法、3、分组讨论法4、练习法[学习过程]一、板书课题(一)讲述:同学们,我们来学习 16.1 二次根式二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P2全部内容:1.思考“思考1、2”中的问题,完成思考1中的问题,理解二次根式的概念及二次根式有无意义的条件。

2.注意例题1的格式和步骤。

3.讨论回答思考2中的问题。

.如有疑问,可请教同桌或举手问老师.5分钟后,比谁能做对与例题类似的题.四、先学(一)学生看书,教师巡视,师督促每一位学生认真、紧张的自学,鼓励学生质疑问难.(二)过渡语:同学们,看完的请举手?懂了的请举手?好,下面就比一比,看谁能正确做出检测题.(三)检测 : P.3 练习1、2题。

学生练习,教师巡视。

(收集错误进行二次备课)五、后教教师引导学生评议、订正。

归纳小结:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.五、当堂训练:一、选择题1.下列各式中①;②;③;④;⑤;⑥一定是二次根式的有()个。

A . 1 个 B. 2个 C. 3个 D. 4个2. 若,则b的值为()A.0 B.0或1 C.b≤3 D.b≥33.已知一个正方形的面积是5,那么它的边长是()A .5BC D.以上皆不对二、填空题1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根.三、综合提高题1.若+有意义,则=_______.2.使式子有意义的未知数x有()个.A.0 B.1 C.2 D.无数3.当x是多少时,+在实数范围内有意义?4. 已知y=++5,求的值.教学反思:16.1 二次根式(2)[学习目标]理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.教学重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.教学难点:导出(a≥0)是一个非负数;•用探究()2=a(a≥0).教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法[学习过程]一、板书课题:16.1 二次根式(2)讲述:同学们,我们来学习16.1 二次根式(2)二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P.3“探究”至例2结束。

人教初中数学八年级下册16-2 二次根式的乘除(第1课时)教案

人教初中数学八年级下册16-2 二次根式的乘除(第1课时)教案

16.2 二次根式的乘除(第1课时)内容解析二次根式是初中阶段“数与式”内容的最后一章,因此承担着整理“数与式”的内容、方法和基本思想的任务.本节研究二次根式的乘法运算.运算法则是运算的依据,因此教材通过“探究”栏目,引导学生利用二次根式的性质,从具体数字运算中发现规律,进而归纳得出二次根式的乘法法则.学习目标1.会进行简单的二次根式的乘法运算.2.学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.学习重点a·b=ab(a≥0,b≥0),a·b=a·b(a≥0,b≥0)及它们的运用.学习难点利用逆向思维,导出a·b=a·b(a≥0,b≥0).教学设计1.探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1什么叫二次根式?二次根式有哪些性质?问题2 教材第6页“探究”栏目,计算结果如何?有何规律?2.观察比较,理解法则问题3 成立的条件是什么?等式反过来有什么价值?3.例题示范,学会应用例1 化简:(1);(2).例2 计算:(1);(2);(3)学生计算,教师检验.总结(1)在被开方数相乘的时候,就可以考虑因数或因式分解,由直接可得而不必先写成再分解;(2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;(3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的性质,得到,然后利用二次根式的乘法法则,变成,由于可以判断,因此直接将x 移出根号外.4.巩固概念,学以致用a练习:课本第7页练习第1题. 第10页习题16.2第1题.5.拓展延伸1.下列各式中,一定能成立的是()A. B.C. D.2.化简 ______________________________.3.已知,化简二次根式的结果是( ) A . B . C . D ..6.布置作业:1、.化简: (1)54 (2) 160(3))0,0(35≥≥y x y x (4) 224y x x +)0,0(≥≥y x 2、计算: (1)73⋅(2)183⋅(3))0,0(3≥≥⋅b a ab a3、把根号外面的因式移到根号里面:;34)1(-;21)2)(2(--a a .)3(x x --。

分式乘除教学设计

分式乘除教学设计

分式乘除教学设计第1篇:分式乘除教学设计《16.2 二次根式的乘除》教学设计一.教材分析二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.二、学情分析本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.三、目标和目标解析1.教学目标(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;(2)会进行简单的二次根式的除法运算;(3)理解最简二次根式的概念.2.目标解析(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.四、教学过程设计1.复习提问,探究规律问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?师生活动学生回答。

【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.2.观察思考,理解法则问题2 教材第8页“探究”栏目,计算结果如何?有何规律?师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:.问题3 对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?师生活动学生思考,回答。

16.2 二次根式的乘除 课件2024-2025学年人教版数学八年级下册

16.2 二次根式的乘除 课件2024-2025学年人教版数学八年级下册

D.20
(2) 12b ∙
93
4
.
课堂引入
问题1.一个长方形的长为 6,宽为 3 ,请求长方形的面积.
追问1:像 6, 3这样表示一个数的算术平方根的数字是实数吗?
如何进行二次根式的加、减、乘、除运算?运算的过程中要遵循怎样的
运算法则?
一、二次根式的乘法
问题2.像 6 × 3这样,是两个二次根式的积,怎样计算?
因式的二次根式.
化简时通常要求最终结果中的分母不含根号,而且各个二次根式都是最简二次
根式.
特别注意:(1)分母中含根号的要化简成没根号;
(2)根号中有分数的也要化简;
(3)根号中有小数的也要化简.
合作学习
2.说出二次根式的乘除法则,并用字母表示.
二次根式的乘法法则公式: × = ( ≥ 0, ≥ 0);
(
1
1
1
+
+
+
2+1
3+ 2
4+ 3
⋯+
1
)(
2018+ 2017
2018 + 1)的值.
例题精析
(
1
2+1
+
1
1
+
3+ 2
4+ 3
+⋯+
1
)(
2018+ 2017
2018 + 1)
解:
原式= (
1
1
1
+
+
+
2+1
3+ 2
4+ 3
⋯+

八年级数学下册二次根式的乘除教案新版新人教版

八年级数学下册二次根式的乘除教案新版新人教版

第十六章二次根式16.2二次根式的乘除(第1课时)●教学目标1.会进行简单的二次根式的除法运算.2.使学生能利用商的算术平方根的性质进行二次根式的化简与运算.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.●过程与方法1.在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则.2.引导学生用从特殊到一般的方法及类比的方法,解决数学问题.●情感、态度与价值观在经历探索二次根式除法运算法则的过程中,认识到事物之间的相互联系,获得成就感,建立学习数学的信心和兴趣.●重点与难点【重点】会进行简单的二次根式的除法运算,会用商的算术平方根的性质进行二次根式的化简与运算.【难点】二次根式的除法与商的算术平方根的关系及应用.●教学准备【教师准备】教学中出示的教学插图和例题.【学生准备】复习二次根式的乘法法则.●新课导入:学生回忆二次根式乘法的运算法则的推导过程,并总结学习方法.这些式子的计算涉及我们这节课要学习的二次根式的除法等相关内容,让我们一起来探究一下.1.二次根式的除法教材8页探究计算下列各式,观察计算结果,你能发现什么规律?(1)=,=;(2)=,=;(3)=,=.老师纠正学生练习中的错误后,引导学生观察运算结果,发现和总结式子有什么规律,指出几名学生回答,其余学生补充.提问:二次根式的除法法则是什么?字母表达式是怎样的?学生总结二次根式除法的法则即两个二次根式相除,把被开方数相除,根指数不变.追问:a,b的取值范围为什么不同?学生思考,交流:因为分母不能为0,所以b≠0.当a<0,b<0时,,无意义,因此a≥0,b>0.由此可以看出两个二次根式相除,把被除数的被开方数除以除数的被开方数,根指数不变.明确二次根式的除法法则尝试练习:(教材例4)计算:●课堂小结师生共同回顾本节课所学主要内容:1.即两个二次根式相除,把被开方数相除,根指数不变.2,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.3.如果一个二次根式满足以下两个条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们称这样的二次根式为最简二次根式.●布置作业【必做题】教材第10页练习第1,2,3题;教材第10页习题16.2第2,3,4题.【选做题】教材第11页习题16.2第7,8,9,10题.●教学后记:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的乘除
教案总序号:4 时间:
教学内容
·=(a≥0,b≥0),反之=·(a≥0,b≥0)及其运用.
教学目标
理解·=(a≥0,b≥0),=·(a≥0,b≥0),并利用它们进行计算和化简
由具体数据,发现规律,导出·=(a≥0,b≥0)并运用它进行计算;•利用逆向思维,得出=·(a≥0,b≥0)并运用它进行解题和化简.
教学重难点关键
重点:·=(a≥0,b≥0),=·(a≥0,b≥0)及它们的运用.
难点:发现规律,导出·=(a≥0,b≥0).
关键:要讲清(a<0,b<0)=,如=或==×.
教学过程
一、复习引入
(学生活动)请同学们完成下列各题.
1.填空
(1)×=_______, =______;
(2)×=_______, =________.
(3)×=________, =_______.
参考上面的结果,用“>、<或=”填空.
×_____,×_____,×________
2.利用计算器计算填空
(1)×______,(2)×______,
(3)×______,(4)×______,
(5)×______.
老师点评(纠正学生练习中的错误)
二、探索新知
(学生活动)让3、4个同学上台总结规律.
老师点评:(1)被开方数都是正数;
(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.
一般地,对二次根式的乘法规定为
反过来
例1.计算
(1)×(2)×(3)×(4)×
分析:直接利用·=(a≥0,b≥0)计算即可.
解:(1)×=
(2)×==
(3)×==9
(4)×==
例2 化简
(1)(2)(3)
(4)(5)
分析:利用=·(a≥0,b≥0)直接化简即可.
解:(1)=×=3×4=12
(2)=×=4×9=36
(3)=×=9×10=90
(4)=×=××=3xy
(5)==×=3
三、巩固练习
(1)计算(学生练习,老师点评)
①×②3×2 ③·
(2) 化简:;; ; ;
教材P11练习全部
四、应用拓展
例3.判断下列各式是否正确,不正确的请予以改正:
(1)
(2)×=4××=4×=4=8
解:(1)不正确.
改正: ==×=2×3=6
(2)不正确.
改正:×=×====4
五、归纳小结
本节课应掌握:(1)·==(a≥0,b≥0),=·(a≥0,b≥0)及其运用.
六、布置作业
1.课本P11 1,4,5,6.(1)(2).
2.选用课时作业设计.
第一课时作业设计
一、选择题
1.化简a的结果是().
A. B. C.- D.-
2.等式成立的条件是()
A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1
3.下列各等式成立的是().
A.4×2=8 B.5×4=20
C.4×3=7 D.5×4=20
二、填空题
1. =_______.
2.自由落体的公式为S=gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.
三、综合提高题
1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?
2.探究过程:观察下列各式及其验证过程.
(1)2=
验证:2=×==
==
(2)3=
验证:3=×==
==
同理可得:4
5,……
通过上述探究你能猜测出: a=_______(a>0),并验证你的结论.答案:
一、1.B 2.C 3.A 4.D
二、1.13 2.12s
三、1.设:底面正方形铁桶的底面边长为x,
则x2×10=30×30×20,x2=30×30×2,
x=×=30.
2. a=
验证:a=
===.。

相关文档
最新文档