人教版高中数学必修2第二章《点、直线、平面之间的位置

合集下载

人教A版高中数学必修二第二章 点、直线、平面之间的位置关系

人教A版高中数学必修二第二章 点、直线、平面之间的位置关系

的直线与另一个平面垂直
二面角二 范围 面: 角[的0°平,面18角0°]
专题突破
专题一 空间中的位置关系 1.空间中两直线的位置关系:相交、平行、异面. 2.空间中直线与平面的位置关系:直线在平面内、直线 与平面平行、直线与平面相交. 3.两个平面的位置关系:平行、相交.
[例 1] 下面四个命题中,正确命题的个数是( )
如上图,AB∥平面 CDD′C′,BB′∥平
③ × 面 CDD′C′,AB∩BB′=B,即 AB 与
BB′不平行,③不正确
序号 正误
原因分析
如上图,设直线 l 是平面 ABB′A′内与 AB 平行的任一条直线,l 有无数条,即 AB 与 ④× 平面 ABB′A′内的无数条直线平行,但 AB⊂平面 ABB′A′,④不正确
[解析] ∵AB 为⊙O 直径,C 为⊙O 上一点, ∴BC⊥AC,
DBCA⊂⊥平平面面AABBCC⇒DA⊥BC
BC⊥AC
AC∩DA=A
⇒BACF⊂⊥平平面面DDAACC ⇒
BC⊥
AF⊥DC
BC∩DC=C
⇒ABFD⊥⊂平平面面DDCCBB⇒ BD⊥AF
BD⊥AE
AF∩AE=A
判定定理:一个平面内的两条相交直线与另一个平面平行,
则这两个平面平行 平面与平面平行
性质定理:如果两个平行平面同时和第三个平面相交,那么 它们的交线平行
平面与平面之间的位置关系
判定定理:一个平面过另一个平面的垂线,则这两个平面垂直
平面与平面垂直性质定理:两个平面垂直,则一个平面内垂直于交线
[例2] (2011·江苏高考)如图,在四棱锥P-ABCD中,平 面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是 AP,AD的中点.

新人教A版必修2高中数学第二章点、直线、平面之间的位置关系单元总结

新人教A版必修2高中数学第二章点、直线、平面之间的位置关系单元总结
谢谢大家

学习本章应着眼于以下几个方面:(1)从图形入手,学会识 图、画图,并注意图形语言、符号语言及文字语言之间的转 化;(2)整体把握空间点、线、面之间的位置关系,在具体的学 习中,对定理的学习要做到细致入微,从条件到结论,必须做 到准确的表达,论证要严谨,有理有据,计算要有依据,尽量 的追求简便;
(3)把握处理立体几何问题的思想方法,即把空间问题转化 为平面问题去解决,化繁为简,这是解决立体几何问题的基本 方法,也是最重要的思想方法;(4)培养处理立体几何问题必备 的三个方面能力:一是空间想象能力,二是逻辑思维能力,三 是推理论证能力.
9、 人的价值,在招收诱惑的一瞬间被决定 。21.4 .421.4 .4Sun day, April 04, 2021 10、低头要有勇气,抬头要有低气。 08:48 :1308 :48:1 308:4 84/4/ 2021 8:48:13 AM 11、人总是珍惜为得到。21.4.408: 48:13 08:48 Apr-2 14-Apr-21 12、人乱于心,不宽余请。08:48:1 308:4 8:130 8:48Sunday , April 04, 2021 13、生气是拿别人做错的事来惩罚自 己。21 .4.42 1.4.40 8:48: 1308: 48:13 April 4, 2021 14、抱最大的希望,作最大的努力。 2021 年4月4 日星期 日上午 8时48 分13秒 08:48 :1321. 4.4 15、一个人炫耀什么,说明他内心缺 少什么 。。20 21年4 月上午 8时48 分21.4 .408: 48Apri l 4, 2021 16、业余生活要有意义,不要越轨。 2021 年4月4 日星期 日8时4 8分13 秒08:4 8:134 April 2021 17、一个人即使已登上顶峰,也仍要 自强不 息。上 午8时4 8分13 秒上午 8时48 分08: 48:13 21.4.4

最新人教版高中数学必修二第二章点、直线、平面之间的位置关系第三节第4课时平面与平面垂直的性质

最新人教版高中数学必修二第二章点、直线、平面之间的位置关系第三节第4课时平面与平面垂直的性质

2.3.4 平面与平面垂直的性质平面与平面垂直的性质定理文字语言两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直符号语言α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β图形语言性质定理若去掉“一个平面内(a⊂α)”,定理是否成立?提示:不一定成立,如图a⊥α,这时也有a⊥l,但a与β不垂直.1.辨析记忆(对的打“√”,错的打“×”)(1)两个平面垂直,其中一个平面内的任一条直线与另一个平面一定垂直.( ×) 提示:不一定.只有在一个平面内垂直于两平面交线的直线才能垂直于另一个平面.(2)若α⊥β,则α内的直线必垂直于β内的无数条直线. ( √)提示:若设α∩β=l,a⊂α,b⊂β,b⊥l,则a⊥b,故β内与b平行的无数条直线均垂直于α内的任意直线.(3)如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ.( √)提示:设α∩γ=m,β∩γ=n,在平面γ内取一点P不在m,n上,过P作直线a,b,使a ⊥m,b⊥n.因为γ⊥α,a⊥m,则a⊥α.所以a⊥l,同理有b⊥l.又a∩b=P,l⊄γ,所以l⊥γ.故正确.(4)若两个平面互相垂直,一条直线与一个平面垂直,那么这条直线在另一个平面内.( ×) 提示:若α⊥β,l⊥α,在β内作a与α,β的交线垂直,则a⊥α,所以a∥l. 所以l∥β或l⊂β,即直线l与平面β平行或在平面β内.2.在四棱柱ABCD­A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC,AD=CD,则BD与CC1( )A.平行B.相交C.异面且垂直D.异面且不垂直【解析】选C.如图所示,在四边形ABCD中,因为AB=BC,AD=CD.所以BD⊥AC. 因为平面AA1C1C⊥平面ABCD,平面AA1C1C∩平面ABCD=AC,BD⊂平面ABCD,所以BD⊥平面AA1C1C.又CC1⊂平面AA1C1C,所以BD⊥CC1.3.如图所示,三棱锥P­ABC中,平面PAB⊥底面ABC,且PA=PB=PC,则△ABC是________三角形.【解析】设P在平面ABC上的射影为O,因为平面PAB⊥底面ABC,平面PAB∩平面ABC=AB,所以O∈AB.因为PA=PB=PC,所以OA=OB=OC,所以O是△ABC的外心,且是AB的中点,所以△ABC是直角三角形.答案:直角类型一用面面垂直的性质定理解证明问题(逻辑推理、直观想象) 【典例】如图,在三棱锥P­ABC中,PA⊥平面ABC,平面PAB⊥平面PBC.求证:BC⊥AB.【思路导引】面面垂直→线面垂直→线线垂直【证明】如图,在平面PAB内,作AD⊥PB于点D.因为平面PAB⊥平面PBC,且平面PAB∩平面PBC=PB,AD⊂平面PAB,所以AD⊥平面PBC.又BC⊂平面PBC,所以AD⊥BC.又因为PA⊥平面ABC,BC⊂平面ABC,所以PA⊥BC,又因为PA∩AD=A,所以BC⊥平面PAB.又AB⊂平面PAB,所以BC⊥AB.1.应用面面垂直的性质定理的一个意识和三个注意点(1)一个意识若所给题目中有面面垂直的条件,一般要利用面面垂直的性质定理将其转化为线面垂直.(2)三个注意点:①两个平面垂直,是前提条件;②直线必须在其中一个平面内;③直线必须垂直于它们的交线.2.证明线面垂直的常用方法(1)线面垂直的判定定理;(2)面面垂直的性质定理;(3)若a∥b,a⊥α,则b⊥α(a,b为直线,α为平面);(4)若a⊥α,α∥β,则a⊥β(a为直线,α,β为平面).如图,在三棱台ABC­DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2.求证:BF⊥平面ACFD.【证明】延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE⊥平面ABC,平面BCFE∩平面ABC=BC,且AC⊥BC,AC⊂平面ABC,所以AC⊥平面BCK,因此BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.又CK∩AC=C,CK,AC⊂平面ACFD,所以BF⊥平面ACFD.【补偿训练】如图,在三棱锥P­ABC中,E,F分别为AC,BC的中点.(1)求证:EF∥平面PAB.(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°.求证:平面PEF⊥平面PBC.【证明】(1)因为E,F分别为AC,BC的中点,所以EF∥AB.又EF⊄平面PAB,AB⊂平面PAB,所以EF∥平面PAB.(2)因为PA=PC,E为AC的中点,所以PE⊥AC.又因为平面PAC⊥平面ABC,所以PE⊥平面ABC,所以PE⊥BC.又因为F为BC的中点,所以EF∥AB.因为∠ABC=90°,所以BC⊥EF.因为EF∩PE=E,所以BC⊥平面PEF.又因为BC⊂平面PBC,所以平面PBC⊥平面PEF.类型二用面面垂直的性质定理解计算问题(逻辑推理,直观想象)角度1 求空间角【典例】如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求EC与平面ABE所成角的正切值.【思路导引】(1)由正方形ACDE所在的平面与平面ABC垂直可得BC⊥平面ACDE,可得AM⊥平面EBC;(2)根据面面垂直的性质定理作出线面角,在三角形中求出其正切值.【解析】(1)因为平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,BC⊥AC,所以BC⊥平面ACDE.又AM⊂平面ACDE,所以BC⊥AM.因为四边形ACDE是正方形,所以AM⊥CE.又BC∩CE=C,所以AM⊥平面EBC.(2)取AB的中点F,连接CF,EF.因为EA⊥AC,平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,所以EA⊥平面ABC,因为CF⊂平面ABC,所以EA⊥CF.又AC=BC,所以CF⊥AB.因为EA∩AB=A,所以CF⊥平面AEB,所以∠CEF即为EC与平面ABE所成的角.在Rt△CFE中,CF= 2 ,FE= 6 ,tan ∠CEF=26=33.角度2 求体积【典例】如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC.(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q­ABP的体积.【思路导引】(1)转化为证明AB⊥平面ACD.(2)过Q作AC的垂线,得三棱锥Q­ABP底面ABP上的高.【解析】(1)由已知可得,∠BAC=90°,则BA⊥AC.又BA⊥AD,AD∩AC=A,所以AB⊥平面ACD.又AB⊂平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=3 2 .又BP=DQ=23DA,所以BP=2 2 .作QE⊥AC,垂足为E,则QE=13DC=1.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,因此,三棱锥Q ­ABP的体积为VQ­ABP =13×QE×S△ABP=13×1×12×3×2 2 sin 45°=1. 计算问题的解决方法(1)求角、求距离等计算问题一般在三角形中求解.所给条件中的面面垂直首先转化为线面垂直,然后转化为线线垂直.往往把计算问题归结为一个直角三角形中的计算问题.(2)求几何体的体积时要注意应用转换顶点法,求线段的长度或点到平面的距离时往往也应用几何体中的转换顶点(等体积)法.1.如图,α⊥β,AB⊂α,AC⊂β,∠BAD=∠CAD=45°,则∠BAC=( )A.90° B.60° C.45° D.30°【解析】选B.在AB上任意找一点F,过点F作AD的垂线EF,垂足为E,再过点E作EG⊥AD,EG交AC于点G.如图所示.因为∠BAD=∠CAD=45°,EF⊥AE,EG⊥AD,所以EF=AE=EG,所以根据三角形的勾股定理可知,AF2=AE2+FE2,FG2=FE2+EG2,AG2=AE2+EG2,所以AF=AG=FG,所以△AFG是等边三角形,则∠BAC=60°.2.如图,三棱柱ABC­A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.O为AB的中点.(1)证明:AB⊥平面A1OC.(2)若AB=CB=2,平面ABC⊥平面A1ABB1,求三棱柱ABC­A1B1C1的体积.【解析】 (1)连接A1B.,因为CA=CB,OA=OB,所以OC⊥AB,因为AB=AA1,∠BAA1=60°,所以三角形AA1B为等边三角形,所以AA1=A1B,又OA=OB,所以OA1⊥AB,又OC∩OA1=O,所以AB⊥平面A1OC.(2)由题可知,△ABC与△AA1B是边长为2的等边三角形,得OA1= 3 ,因为平面ABC⊥平面A 1ABB1,平面ABC∩平面A1ABB1=AB,由(1)OA1⊥AB,OA1⊂平面A1ABB1,所以OA1⊥面ABC,所以OA1是三棱柱ABC­A1B1C1的高,所以VABC­A1B1C1=S△ABC×OA1=3.类型三折叠问题(逻辑推理、直观想象)【典例】如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD 于点H,将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′;(2)若AB=5,AC=6,AE=54,OD′=2 2 ,求五棱锥D′­ABCFE的体积.【思路导引】(1)HD、HD′与EF的位置关系是不变的;(2)证明OD′是五棱锥D′­ABCFE的高是关键.【解析】(1)由已知得AC⊥BD,AD=CD,又由AE=CF得AEAD=CFCD,故AC∥EF,由此得EF⊥HD,故EF⊥HD′,所以AC⊥HD′.(2)由EF∥AC得OHDO=AEAD=14.由AB=5,AC=6得DO=BO=AB2-AO2=4,所以OH=1,D′H=DH=3,于是OD′2+OH2=(2 2 )2+12=9=D′H2,故OD′⊥OH. 由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H,所以AC⊥平面BHD′,于是AC⊥OD′,又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.又由EFAC=DHDO得EF=92.五边形ABCFE的面积S=12×6×8-12×92×3=694.所以五棱锥D′­ABCFE的体积V=13×69 4×2 2 =2322.解决折叠问题的策略(1)抓住折叠前后的变量与不变量,一般情况下,在折线同侧的量,折叠前后不变,“跨过”折线的量,折叠前后可能会发生变化,这是解决这类问题的关键.(2)在解题时仔细审视从平面图形到立体图形的几何特征的变化情况,注意相应的点、直线、平面间的位置关系,线段的长度,角度的变化情况.如图1所示,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2所示.(1)求证:A1F⊥BE;(2)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【解析】(1)由已知,得AC⊥BC,且DE∥BC.所以DE⊥AC,则DE⊥DC,DE⊥DA1,又因为DC∩DA1=D,所以DE⊥平面A1DC.由于A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE,又BE⊂平面BCDE,所以A1F⊥BE.(2)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图所示,分别取A1C,A1B的中点P,Q,连接PQ,QE,PD,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEQP. 由(1)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰△DA1C底边A1C的中点,所以A1C⊥DP,又DE∩DP=D,所以A1C⊥平面DEQP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.【补偿训练】如图,在矩形ABCD中,AB=3 3 ,BC=3,沿对角线BD把△BCD折起,使C移到C′,且C′在平面ABD内的射影O恰好落在AB上.(1)求证:AC′⊥BC′.(2)求AB与平面BC′D所成的角的正弦值.(3)求二面角C′­BD­A的正切值.【解析】(1)由题意,知C′O⊥平面ABD,因为C′O⊂平面ABC′,所以平面ABC′⊥平面ABD.又因为AD⊥AB,平面ABC′∩平面ABD=AB,所以AD⊥平面ABC′. 所以AD⊥BC′.因为BC′⊥C′D,AD∩C′D=D,所以BC′⊥平面AC′D.所以BC′⊥AC′.(2)因为BC′⊥平面AC′D,BC′⊂平面BC′D,所以平面AC′D⊥平面BC′D.作AH⊥C′D于H,则AH⊥平面BC′D,连接BH,则BH为AB在平面BC′D上的射影,所以∠ABH为AB与平面BC′D所成的角.又在Rt△AC′D中,C′D=3 3 ,AD=3,所以AC′=3 2 .所以AH= 6 .所以sin ∠ABH=AHAB=23,即AB与平面BC′D所成角的正弦值为23 .(3)过O作OG⊥BD于G,连接C′G,则C′G⊥BD,则∠C′GO为二面角C′­BD­A的平面角.在Rt△AC′B中,C′O=AC′·BC′AB= 6 ,在Rt△BC′D中,C′G=BC′·C′DBD=332.所以OG=C′G2-C′O2=32 .所以tan∠C′GO=C′OOG=2 2 ,即二面角C′­BD­A的正切值为2 2 .。

高中数学必修2第二章-空间点、直线、平面之间的位置关系PPT

高中数学必修2第二章-空间点、直线、平面之间的位置关系PPT

a
A
记为:a=A
33
直线与平面
平行直线: 同一平面内,没有公共点;
异面直线: 不同在任何一个平面内,没有公共点
21
平行直线
公理4 平行于同一直线的两条直线互相平行.
如果a//b,b//c,那么a//c
空间中的平行线具有传递性
D
C
F
D
AC
F
B
E
A
三条平行线共面
B
E
三条平行线不共面
22
平行直线
问题
已知三条直线两两平行,任取两条直线能确 定一个平面,问这三条直线能确定几个平面?
第二章
点、直线、平面之 间的位置关系
1
2.1 点、直线、平面 之间的位置关系
2
主要内容
2.1.1 平面 2.1.2空间中直线与直线之间的位置关系 2.1.3空间中直线与平面之间的位置关系
3
2.1.1 平 面
4
构成图形的基本元素
D′ A′
D
A
C′ B′
C
B
点、线、面
点无大小 线无粗细 面无厚薄
D
C
F
D
AC
F
B
E
A
三条平行线共面
B
E
三条平行线不共面
23
等角定理
定理 空间中如果两个角的两边分别对应 平行,那么这两个角相等或互补.
A /A C /C ,•A /A /B B
C
C
A
B
A
B
C
A
B
C
B
A
等角定理:空间中如果两个角的两边分别 对应平行且方向相同,那么这两个角相等.

人教A版高中数学必修2第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系教案(1)

人教A版高中数学必修2第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系教案(1)

② 两条异面直线所成的
导出异
角 θ∈( 0, π); 2
③ 当两条异面直线所成
面直线 所成的 角的概
的角是直角时,我们就说
念.
这 两条 异面直 线互相 垂 例 3 让
直,记作 a⊥ b;
学生掌
④ 两条直线互相垂直, 有 握了如
共面垂直与异面垂直两种
何求异
情形;
面直线
⑤ 计算中,通常把两条异 所成的
例 3(投影)
2. 利用已有的知识与经验归纳整 理本节所学知识 .
三、情感、态度与价值观
感受空间中图形的基本位置关系,形成严谨的思维品质
.
教学重点、难点
线在此平面内.
师:把一把直尺边缘
A
B
α· C ·
·
上的任意两点放在桌边, 可以看到,直尺的整个边 缘就落在了桌面上,用事 实 引导 学生 归纳出 公理
符号表示为 A∈L
1. 教师引导学生阅读教材
B∈ L ? L ? α. A∈α B∈α
公理 1: 判断直线是否在平
P42 前几行相关内容,并 加以解析.
β
α
P
·
L
平面是有的,而且只有一 个”,也即不共线的三点 确定一个平面 .
“有且只有一个平
面”也可以说成“确定一
符号表示为: P∈ α∩β? α∩β =,L 个平面 . ”
且 P∈ L .
引导学生阅读 P42 的
公理 3 作用:判定两个平面 是否相交的依据 .
思考题,从而归纳出公理 3.
通过类比 探索,培 养学生知 识迁移能 力,加强 知识的系 统性 .
师:生活中,我们看 到三脚架可以牢固地支撑
面内.
照相机或测量用的平板仪

高中数学必修2知识点总结:第二章 直线与平面的位置关系

高中数学必修2知识点总结:第二章 直线与平面的位置关系

高中数学必修2知识点总结第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

人教A版高中数学必修2第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系导学案(1)

人教A版高中数学必修2第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系导学案(1)

空间点、直线、平面之间的位置关系(知识点)一、四个公理公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.符号语言:,,l B l A ∈∈且.,ααα⊂⇒∈∈l B A图形语言:公理2 过不在一条直线上的三点,有且只有一个平面.图形语言:ABC ∆确定一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 符号语言:,,l P P =⋂⇒∈∈βαβα且.l P ∈公理4 平行于同一条直线的两条直线互相平行.符号语言:.////,//c a c b b a ⇒二、三个角的定义三角为:异面直线所成的角,线面角,二面角.1 异面直线所成的角:已知两条异面直线b a ,,经过空间任一点O 作直线,//,//b b a a ''把b a ''与所成的锐角(或直角)叫做异面直线b a ,所成的角(或夹角).2 线面角:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.图形语言:3 二面角: 在二面角βα--l 的棱l 上任取一点O ,以点O 为垂直,在半平面 α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 图形语言:三、判定定理和性质定理1 线面平行的判定定理文字语言:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.符合语言:.//,//,,αααa b a b a ⇒⎪⎩⎪⎨⎧⊂⊄2 面面平行的判定定理文字语言:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.符合语言:.//////αβααββ⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⋂⊂⊂b a P b a b a3 线面平行的性质定理文字语言:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.符合语言:.//,,,//b a b a a ⇒⎪⎩⎪⎨⎧=⋂⊂βαβα图形语言: 定理:平面外两条平行直线中的一条平行于这个平面,则另一条直线也平行于这个平面.符合语言:.//////αααb b a b a ⇒⎪⎭⎪⎬⎫⊄4 面面平行的性质定理文字语言:两个平行平面同时和第三个平面相交,那么它们的交线平行.符合语言:.////b a b a ⇒⎪⎭⎪⎬⎫=⋂=⋂γβγαβα定理:夹在两个平行平面间的平行线段相等.5 线面垂直的判定定理文字语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符合语言:.,αα⊥⇒⎪⎪⎭⎪⎪⎬⎫=⋂⊂⊥⊥a O c b c b c a ba 定理:两平行直线中一条垂直于一个平面,则另一条直线也垂直这个平面. 符合语言:.//αα⊥⇒⎭⎬⎫⊥b a b a6 面面垂直的判定定理文字语言:一个平面过另一个平面的垂线,则这两个平面垂直.符合语言:.βααβ⊥⇒⎭⎬⎫⊂⊥aa7 线面垂直的性质定理文字语言:垂直于同一个平面的两条直线平行.符合语言:.//baba⇒⎭⎬⎫⊥⊥αα定理:垂直于同一条直线的两个平面平行.符合语言:βαβα//⇒⎭⎬⎫⊥⊥aa.定理:一条直线垂直于一个平面,则这条直线垂直这个平面内的任意一条直线.符合语言:.baba⊥⇒⎭⎬⎫⊂⊥αα8 面面垂直的性质定理文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符合语言:βαβαβα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊥⊂=⋂⊥alaal.定理:两个相交平面都垂直第三个平面,则两个相交平面的交线也垂直于第三个平面.符合语言:.γβαγβγα⊥⇒⎪⎭⎪⎬⎫=⋂⊥⊥ll。

高中数学必修2--第二章《直线与平面的位置关系》知识点总结与练习

高中数学必修2--第二章《直线与平面的位置关系》知识点总结与练习

[知识能否忆起]、平面的基本性质 名称图示文子表示 付号表示公理1如果一条直线上的两 点在一个平面内,那么 这条直线在此平面内 A € l , B € l ,且 A €a,B € 0? 1? a公理2过不在一条直线上的 三点,有且只有一个平面\公理3如果两个不重合的平 面有一个公共点,那么 它们有且只有一条过该点的公共直线P € a ,且 P € 3? aCl 3 =l ,且 P € l二、空间直线的位置关系 1. 位置关系的分类相交直线:同一平面内, {共面直线|平行直线:同一平面内,•异面直线:不同在任何一个平面内, 2. 平行公理平行于同一条直线的两条直线互相平行. 3. 等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4. 异面直线所成的角(或夹角)(1) 定义:设a, b 是两条异面直线,经过空间中任一点 0作直线a '// a, b '// b ,把a ' 与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角.I U I空间点、直线、平面间的位置关系基础知iR 襄打牟11 C H U Z H I $ H I Y A 0 A L A 0强取基 固本源 得募础分I 事覆程廈有且只有一个公共点;没有公共点;没有公共点(2)范围:三、直线与平面的位置关系/亠护¥方位置大糸图示付号表示公共点个数直线1在平面a内1? a无数个直线l与平面a相交八/l Cl a= A一个直线l与平面a平行Z / 1 〃a0个四、平面与平面的位置关系/亠护¥方位置大糸图示付号表示公共点个数两个平面平行\Aall 30个7两个平面相交aC 3= l无数个(这些公共点均在交线1上)1•三个公理的作用(1) 公理1的作用:①检验平面;②判断直线在平面内;③由直线在平面内判断直线上的点在平面内.(2) 公理2的作用:确定平面的依据,它提供了把空间问题转化为平面问题的条件.(3) 公理3的作用:①判定两平面相交;②作两相交平面的交线;③证明多点共线.2. 异面直线的有关问题(1) 判定方法:①反证法;②利用结论即过平面外一点与平面内一点的直线与平面内不过该点的直线是异面直线,如图.(2) 所成的角的求法:平移法.師吾点]学技法]得拔高分| 拿握狸度i**-平面的基本性质及应用■典题导入[例1](2012湘潭模拟)如图所示,在正方体ABCD —A i B i C i D i中,E为AB的中点,F 为A i A的中点,求证:CE , D i F, DA三线共点.[自主解答]•EF 綊qCD i,•••直线D i F和CE必相交.设D i F n CE = P,••P Pi F 且D i F?平面AA i D i D,••P € 平面AA i D i D.又P €EC且CE?平面ABCD ,••P € 平面ABCD ,即P是平面ABCD与平面AA i D i D的公共点.而平面ABCD n平面AA i D i D = AD.••P 3D.•CE、D i F、DA三线共点.本例条件不变试证明E , C, D i, F四点共面.证明:••E, F分别是AB和AA i的中点,i•'EF 綊2A i B.又A i D i 綊B i C i 綊BC. •四边形A i D i CB为平行四边形. ••A i B CD i,从而EF CD i.•'EF与CD i确定一个平面. ••E, C i, F, D四点共面.占由题悟法i. 证明线共点问题常用的方法是:先证其中两条直线交于一点,再证交点在第三条直线上.2•证明点或线共面问题一般有以下两种途径:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余线(或点)均在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证平面重合.3以题试法1. (1)(2012江•西模拟)在空间中,下列命题正确的是()A .对边相等的四边形一定是平面图形B .四边相等的四边形- -定是平面图形C.有一组对边平行的四边形一定是平面图形D .有一组对角相等的四边形一定是平面图形⑵对于四面体ABCD,下列命题正确的是 __________ (写出所有正确命题的编号).①相对棱AB与CD所在直线异面;②由顶点A作四面体的高,其垂足是△ BCD三条高线的交点;③若分别作△ ABC和厶ABD的边AB上的高,则这两条高所在的直线异面;④分别作三组相对棱中点的连线,所得的三条线段相交于一点.解析:(1)由“两平行直线确定一个平面”知C正确.(2)由四面体的概念可知,AB与CD所在的直线为异面直线,故①正确;由顶点A作四面体的高,只有当四面体ABCD的对棱互相垂直时,其垂足是厶BCD的三条高线的交点,故②错误;当DA = DB , CA= CB时,这两条高线共面,故③错误;设AB , BC, CD , DA的中点依次为E, F, M , N,易证四边形EFMN为平行四边形,所以EM与FN相交于一点,易证另一组对棱中点的连线也过它们的交点,故④正确.答案:(1)C (2)①④异面直线的判定由典题导入[例2] (2012金华模拟)在图中,G, N , M, H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH , MN是异面直线的图形有___________ .(填上所有正确答案的序号)①②③④[自主解答]图①中,直线GH /MN ;图②中,G , H , N三点共面,但M?面GHN ,因此直线GH与MN异面;图③中,连接MG, GM /HN,因此GH与MN共面;图④中,G , M , N共面,但H?面GMN ,因此GH与MN异面.所以图②④中GH与MN异面.[答案]②④石由题悟法1•异面直线的判定常用的是反证法,先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设肯定两条直线异面. 此法在异面直线的判定中经常用到.2.客观题中,也可用下述结论:过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.&以题试法2. 已知m, n, I为不同的直线,a, B为不同的平面,有下面四个命题:①m, n为异面直线,过空间任一点P, —定能作一条直线I与m, n都相交.②m, n为异面直线,过空间任一点P, —定存在一个与直线m, n都平行的平面.③a丄B, aA 3= I, m? a, n? 3, m, n与I都斜交,则m与n—定不垂直;④m, n是a内两相交直线,则a与3相交的充要条件是m, n至少有一条与3相交.则四个结论中正确的个数为( )A. 1B. 2C. 3D. 4解析:选B①错误,因为过直线m存在一个与直线n平行的平面,当点P在这个平面内且不在直线m上时,就不满足结论;②错误,因为过直线m存在一个与直线n平行的平面,当点P在这个平面内时,就不满足结论;③正确,否则,若m丄n,在直线m上取一点作直线a丄I,由a丄3得a丄n.从而有n丄a,贝U n丄I :④正确.LI 典题导入[例3] (2012大纲全国卷)已知正方体 ABCD — A 1B 1C 1D 1中,E , F 分别为BB i , CC i 的 中点,那么异面直线 AE 与D 1F 所成角的余弦值为 ___________ .[自主解答]连接DF ,则AE/DF , •••D 1FD 即为异面直线 AE 与D 1F 所成的角. 设正方体棱长为a ,则 D 1D = a , DF = ~25a , D 1F = ~25a ,… 3 [答案]5-由题悟法求异面直线所成的角一般用平移法,步骤如下: (1) 一作:即找或作平行线,作出异面直线所成的角; ⑵二证:即证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角,如果求出的角是锐角或直角,则它就是要求的角, 如果求出的角是钝角,则它的补角才是要求的角.初以题试法3. (2012唐山模拟)四棱锥P — ABCD 的所有侧棱长都为.5,底面ABCD 是边长为2的 正方形,则CD 与PA 所成角的余弦值为()D.;解析:选B 如图所示,因为四边形ABCD 为正方形,故CD // AB ,则CD 与PA 所成的角即为 AB 与FA 所成的角/ PAB ,在△ FAB 内,FB = FA = ■.5, AB = 2,利用余弦定理可知:PA 2+ AB 2- PB 2_ 5+ 4— 5 _近 2X FA X AB 2X 2八 55[小题能否全取]A. 2 *5 5B.cos / FAB =1.(教材习题改编)已知a, b是异面直线,直线c平行于直线a,那么c与b()A .异面B.相交C.不可能平行D.不可能相交解析:选C 由已知直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b // c,贝U a// b.与a, b是异面直线相矛盾.2. (2012东北三校联考)下列命题正确的个数为()①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A. 0B. 1C. 2D. 3解析:选C ①④错误,②③正确.3. 已知空间中有三条线段AB, BC和CD,且/ ABC =Z BCD,那么直线AB与CD的位置关系是()A. AB / CDB. AB与CD异面C. AB与CD相交D. AB / CD或AB与CD异面或AB与CD相交解析:选D 若三条线段共面,如果AB, BC, CD构成等腰三角形,则直线AB与CD相交,否则直线AB与CD平行;若不共面,则直线AB与CD是异面直线.4. (教材习题改编)如图所示,在正方体ABCD —A i B i C i D i中,E,F分别是AB , AD的中点,则异面直线B i C与EF所成的角的大小为解析:连接B i D i, D i C,则B i D i/EF,故ZDi B i C 为所求,又B i D i= B i C= D i C,••』i B i C= 60 °答案:60°5. (教材习题改编)平行六面体ABCD —A i B i C i D i中既与AB共面又与CC i共面的棱的条数为________ .解析:如图,与AB和CC i都相交的棱有BC;与AB相交且与CC i平行的棱有AA i,BB i;与AB平行且与CC i相交的棱有CD , C1D1,故符合条件的棱共有5条.答案:5基础MliR靈扫年J I C H U Z H D S H I YAOIRALAO[知识能否忆起]一、直线与平面平行1. 判定定理文字语言图形语言符号语言判定定理平面外一条直线与此平—面内的一条直线平行, 则直线与此平面平行—a?a、b? a b //a」^ ? a / a2.性质定理文字语言图形语言付号语言性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行a/ a '卜? a // baCl 6= b j二、平面与平面平行直线、平面平行的判定及性质1.判定定理判定定理一个平面内的两条相交直线与另一个平面平 行,则这两个平面平行a? a 、 b? aa Ab = P » ? a// a / 3 b / 3' 32.两平面平行的性质定理文字语言图形语言付号语言性质定理如果两个平行平面同时 和第三个平面相交,那 么它们的交线平行a// 3、aA Y a * ? a // b 3A Y b J7,心/IX1.平行问题的转化关系:2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化, 即从“线线平行”到“线面平行”,再到“面面平行”;而在性质定理的应用中,其顺序恰好相反, 但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3•辅助线(面)是求证平行问题的关键,注意平面几何中位线,平行四边形及相似中有 关平行性质的应用.由典题导入[例1] (2011福建高考)如图,正方体 ABCD — A i B i C i D i 中,AB = 2, 点E 为AD 的中点,点F 在CD 上•若EF //平面ABQ ,则线段EF 的长 度等于 _______________ .线//线判定判定 ------------- 判定 -------------- 性质 |线/面—质勺面/面性质[自主解答] 因为直线 EF //平面AB i C , EF?平面ABCD ,且平面 AB i C Q 平面ABCD = AC ,所以EF /AC.又因为点E 是DA 的中点,所以F 是DC 的中点,由中位线定理可得 EF1=2AC.又因为在正方体 ABCD — A i B i C i D i 中,AB = 2,所以AC = 2 2•所以EF = 2.[答案],2本例条件变为“ E 是AD 中点,F , G , H , N 分别是AA i , A i D i , DD i 与D i C i 的中点,解:如图,••G N //平面AA i C i C , EG //平面 AA i C i C , 又 GN n EG = G ,•••平面EGN //平面AA i C i C.•••当M 在线段EG 上运动时,恒有 MN //平面AA i C i C.呂由题悟法解决有关线面平行、面面平行的基本问题要注意:(i)判定定理与性质定理中易忽视的条件,如线面平行的判定定理中条件线在面外易忽 视.⑵结合题意构造或绘制图形,结合图形作出判断. (3)举反例否定结论或用反证法推断命题是否正确.&以题试法i . (i)(20i2浙江高三调研)已知直线I //平面a, P € a,那么过点P 且平行于直线I 的直 线() A •只有一条,不在平面 a 内 B .有无数条,不一定在平面 a 内C .只有一条,且在平面 a 内D .有无数条,一定在平面a 内解析:选C 由直线I 与点P 可确定一个平面 3,且平面a, B 有公共点,因此它们有若M 在四边形EFGH 及其内部运动”,则M 满足什么条件时,有 MN //平面A i C i CA.一条公共直线,设该公共直线为m ,因为I // a,所以I // m ,故过点P且平行于直线I的直线只有一条,且在平面a内.(2)(2012潍坊模拟)已知m, n, l i, I2表示直线,a, B表示平面.若m? a, n? a, l i? B, 12? B IE 12= M,贝U all B的一个充分条件是()A. m l B且l i l a B • m // B且n// BC. m l B 且n l I2 D . m l l i 且n l I2解析:选D 由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D可推知al B-直线与平面平行的判定与性质[例2] (2012辽宁高考)如图,直三棱柱ABC —A' B ' C', / BAC= 90° AB= AC =羽,AA' = 1,点M , N 分别为A' B 和B' C'的中点.(1) 证明:MN l 平面A' ACC ';1(2) 求三棱锥A' —MNC的体积.(锥体体积公式V = §Sh,其中S为底面面积,h为高)[自主解答](1)证明:法一:连接AB'、AC ',因为点M , N 分别是A' B和B' C'的中点,所以点M为AB'的中点.又因为点N为B ' C'的中点,所以MN /AC'又MN?平面A' ACCAC' ?平面A' ACC',因此MN l平面A' ACC'.法二:取A' B '的中点P.连接MP.而点M, N分别为AB '与B ' C'的中点,所以MP/AA ' , PN/A ' C '.所以MP l 平面A ' ACC ' , PN l 平面A ' ACC ' •又MP n PN= P,因此平面MPN l平面A ' ACC ' •而MN?平面MPN ,因此MN //平面A ' ACC(2)法一:连接 BN ,由题意得 A ' N IB ' C ',平面 A B ' C 'Q 平面 B ' BCC '=B 'C ',所以A ' N 丄平面NBC. 又 A ' N = 1B ' C ' = 1 ,吕由题悟法利用判定定理证明线面平行的关键是找平面内与已知直线平行的直线,可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过 已知直线作一平面找其交线.畐以题试法2. (2012淄博模拟)如图,在棱长为2的正方体 ABCD — A 1B 1C 1D 1中,E , F 分别是BD , BB 1的中点.(1) 求证:EF //平面 A 1B 1CD ; (2) 求证:EF 丄 AD 1.解:(1)在正方体ABCD — A 1B 1C 1D 1中,连接B 1D , 在平面BB 1D 内,E , F 分别为BD , BB 1的中点, ••EF BD.又•••B 1D?平面 A 1B 1CD. EF?平面 A 1B 1CD , ••EF //平面A 1B 1CD.⑵'-ABCD — A 1B 1C 1D 1 是正方体,•'AD 1 ^A 1 D , AD 1 JA 1B 1. 又 A 1D n A 1B 1 = A 1, ••AD 1 丄平面 A 1B 1D.故 V A ' - MNC = V N -A ' MC = 2V N -A ' BC = gV A '—NBC = 16.法二:V A ' -MNC = V A-NBC —V M — NBC =1V A '— NBC =••AD1I B1D.又由(1)知,EF B1D , /-EF_LAD1.平面与平面平行的判定与性质i典题导入[例3]如图,已知ABCD —A i B i C i D i是棱长为3的正方体,点E 在AA i 上,点 F 在CC i 上,G 在BB i 上,且AE = FC i = B i G= 1, H 是B i C i的中点.⑴求证:E, B, F , D i四点共面;⑵求证:平面A i GH //平面BED i F.5[自主解答](i)在正方形AA i B i B中,'•AE = B i G= i,••BG = A i E= 2,••BG 綊A i E.•四边形A i GBE是平行四边形.•■AiG /BE.又C i F 綊B i G,•四边形C i FGB i是平行四边形.••FG 綊C i B i 綊D i A i.•四边形A i GFD i是平行四边形.• A i G 綊D i F.•D i F 綊EB.故E, B, F, D i四点共面.3⑵--H是B i C i的中点,• B i H = 2厂B i G 2又B i G= i, /B1H= 3.又EC = f,且/FCB = /GB i H = 90 ° BC 3•••△i HG s/CBF.•••启i GH = ZCFB = ZFBG.••HG /FB.••GH ?面FBED i, FB?面FBED i ,「GH //面BED i F.由⑴知A i G/BE, A i G?面FBED i, BE?面FBED i,AG //面BED i F.且HG A A i G = G ,•平面A i GH //平面BED i F.占由题悟法常用的判断面面平行的方法(1) 利用面面平行的判定定理;(2) 面面平行的传递性(all 3,训Y all Y;⑶利用线面垂直的性质(I丄a, I丄3? a// 3 .血以题试法3. (20i2北京东城二模)如图,矩形AMND所在的平面与直角梯形MBCN 所在的平面互相垂直,MB // NC , MN丄MB.(1) 求证:平面AMB //平面DNC ;(2) 若MC丄CB,求证:BC丄AC.证明:(i)因为MB /NIC , MB?平面DNC , NC?平面DNC ,所以MB //平面DNC.又因为四边形AMND为矩形,所以MA /DN.又MA?平面DNC, DN?平面DNC.所以MA //平面DNC.又MA A MB = M,且MA, MB?平面AMB ,所以平面AMB //平面DNC.(2)因为四边形AMND是矩形,所以AM丄/IN.因为平面AMND丄平面MBCN,且平面AMND A平面MBCN = MN ,所以AM丄平面MBCN.因为BC?平面MBCN ,所以AM JBC.因为MC _LBC, MC A AM = M , 所以BC丄平面AMC.因为AC? 平面AMC,所以BC JAC.[ 小题能否全取]1.(教材习题改编)下列条件中,能作为两平面平行的充分条件的是()A •一个平面内的一条直线平行于另一个平面B .一个平面内的两条直线平行于另一个平面C. 一个平面内有无数条直线平行于另一个平面D •一个平面内任何一条直线都平行于另一个平面解析:选D 由面面平行的定义可知,一平面内所有的直线都平行于另一个平面时,两平面才能平行,故D正确.2. 已知直线a, b,平面a,则以下三个命题:①若a// b, b? a,贝U a// a;②若 a / b, a // a,贝U b // a;③若a/ a, b// a,贝U all b.其中真命题的个数是()A. 0B. 1C. 2D. 3解析:选A 对于命题①,若a// b, b? a ,贝U应有a// a或a? a,所以①不正确;对于命题②,若a// b , a// a ,则应有b// a或b? a,因此②也不正确;对于命题③,若a//a, b // a,则应有a // b或a与b相交或a与b异面,因此③也不正确.3. (教材习题改编)若一直线上有相异三个点A , B , C到平面a的距离相等,那么直线I与平面a的位置关系是()A . I // a B. I 丄aC. I与a相交且不垂直D. I // a或I? a解析:选D 由于I上有三个相异点到平面a的距离相等,贝U I与a可以平行,I? a时也成立.4. ___________________________________________________________ 平面a//平面3, a? a, b? 3,则直线a, b的位置关系是______________________________________________ 解析:由a//3可知,a, b的位置关系是平行或异面.答案:平行或异面5. (2012衡阳质检)在正方体ABCD —A1B1C1D1中,E是DD 1的中点,则BD i与平面ACE 的位置关系为_________解析:如图.连接AC, BD交于O点,连接OE,因为OE /BD1,而OE?平面ACE,BD1?平面ACE,所以BD1 /平面ACE.答案:平行基础知MW1 I C M U Z H I S H I Y A 0[知识能否忆起]一、直线与平面垂直1. 直线和平面垂直的定义直线I与平面a内的任意一条直线都垂直,就说直线I与平面a互相垂直.2.直线与平面垂直的判定定理及推论文字语言图形语言付号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直1心k a, b? a] a A b = O.r ? I 丄a1丄aI丄b 」推论如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面ab7 a / b、\? b丄aa丄a_直线、平面垂直的判定与性质3.直线与平面垂直的性质定理文字语言图形语言付号语言性质定理垂直于冋一个平面的两条直线平行a匚—b7a丄ab丄a€ a// b、平面与平面垂直1.平面与平面垂直的判定定理文字语言图形语言付号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直□a 丄3l丄aa j2.平面与平面垂直的性质定理文字语言图形语言付号语言性质定理a_L 3 、》? 1丄a ad 3= a1丄a」两个平面垂直,则一个平面内垂直于父线的直线垂直于另一个平面L71•在证明线面垂直、面面垂直时,一定要注意判定定理成立的条件. 同时抓住线线、线面、面面垂直的转化关系,即:线血垂百线线垂直、一…厂:面面垂直-------- 性质---------------2•在证明两平面垂直时,一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决,如有平面垂直时,一般要用性质定理.3•几个常用的结论:(1) 过空间任一点有且只有一条直线与已知平面垂直.(2) 过空间任一点有且只有一个平面与已知直线垂直.垂直关系的基本问题高频考点3EIB美GAOP1N K.AOI>IAN YAOLI典题导入[例1](2012襄州模拟)若m, n为两条不重合的直线,a, B为两个不重合的平面,给出下列命题:①若m,n都平行于平面a,则m,n—定不是相交直线;②若m、n都垂直于平面a,贝U m, n—定是平行直线;③已知a, B互相垂直,m, n互相垂直,若m丄a,则n丄④m,n在平面a内的射影互相垂直,则m,n互相垂直.其中的假命题的序号是________________ .[自主解答]①显然错误,因为平面a//平面平面a内的所有直线都平行所以3内的两条相交直线可同时平行于a;②正确;如图1所示,若aCl 3= I,且n/,当m丄a时,mln,但n//3,所以③错误;如图2显然当m' Jn'时,m不垂直于n,所以④错误.[答案]①③④-由题悟法解决此类问题常用的方法有:①依据定理条件才能得出结论的,可结合符合题意的图形作出判断;②否定命题时只需举一个反例. ③寻找恰当的特殊模型(如构造长方体)进行筛选.初以题试法1. (2012长春模拟)设a, b是两条不同的直线,a, 3是两个不同的平面,则下列四个命题:①若a丄b, a丄a, b? a,贝U b // a;②若a // a, a丄3贝U a丄3;③若a丄3, a丄3,贝U a// a或a? a;④若a丄b ,a丄a, b丄3,贝U a丄3-其中正确命题的个数为()A. 1B.2C. 3D.4解析:选D对于①,由b不在平面a内知,直线b或者平行于平面a,或者与平面相交,若直线b与平面a相交,则直线b与直线a不可能垂直,这与已知"a丄b”相矛盾, 因此①正确.对于②,由 a // a知,在平面a内必存在直线a1 // a,又a丄3,所以有a j丄3, 所以a丄3,②正确.对于③,若直线a与平面a相交于点A,过点A作平面a 3的交线的垂线m,则m丄3,又a丄3,则有a / m,这与"直线a、m有公共点A”相矛盾,因此③正确.对于④,过空间一点O分别向平面a、3引垂线a1、b1 ,则有a // a1 , b / B ,又a丄b , 所以a1丄b1 ,所以a丄3,因此④正确•综上所述,其中正确命题的个数为 4.直线与平面垂直的判定与性质LI典题导入[例2](2012广东高考)如图所示,在四棱锥P—ABCD中,AB 丄平面PAD , AB // CD, PD = AD , E 是PB 的中点,F 是DC1上的点且DF = 2AB, PH PAD中AD边上的高.(1)证明:PH丄平面ABCD ;⑵若PH = 1 , AD = 2, FC = 1,求三棱锥E—BCF的体积;(3)证EF丄平面[自主解答](1)证明:因为AB丄平面FAD, PH?平面FAD ,所以PH JAB.因为PH为APAD中AD边上的高,所以PH 1AD.因为PH?平面ABCD , AB A AD = A, AB,AD?平面ABCD , 所以PH丄平面ABCD.连接EG.⑵如图,连接BH,取BH的中点G,因为E是PB的中点,所以EG PH ,1 1且EG = -PH = 2.因为PH丄平面ABCD , 所以EG丄平面ABCD.因为AB丄平面PAD , AD?平面PAD,所以AB丄\D.所以底面ABCD为直角梯形.所以V E-BCF = 3S Z SCF EG =1• FC AD EG =鲁.(3) 证明:取PA中点M,连接MD , ME.1 因为E是PB的中点,所以ME綊T^AB.1又因为DF綊^AB,所以ME綊DF,所以四边形MEFD是平行四边形,所以EF /MID.因为PD = AD,所以MD _LPA.因为AB丄平面PAD,所以MD 1AB.因为PA A AB = A,所以MD丄平面FAB,所以EF丄平面FAB.呂由题悟法证明直线和平面垂直的常用方法有:(1)利用判定定理.⑵利用判定定理的推论(a// b, a丄a? b丄汰⑶利用面面平行的性质(a丄a, a// 3? a± 3).(4) 利用面面垂直的性质.当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.EJ以题试法2. (2012启东模拟)如图所示,已知PA丄矩形ABCD所在平面, M , N分别是AB, PC的中点.(1) 求证:MN丄CD ;(2) 若/ PDA = 45°求证:MN丄平面PCD.证明:(1)连接AC, AN, BN,••PA丄平面ABCD , /PA1AC,1在Rt△AC 中,N 为PC 中点,••• AN = ^PC.••PA丄平面ABCD,/PAJBC,又BC _1AB,PA A AB= A,••BC 丄平面PAB./BC1PB.从而在RtAPBC中,BN为斜边PC上的中线,1「BN = ?PC.••AN = BN. •△BN为等腰三角形,又M为AB的中点,• MN _LAB,又TAB CD , AMN JCD.⑵连接PM , MC ,Vz PDA = 45 °PAAAD, A AP = AD.• •四边形ABCD 为矩形,• AD = BC,「AP = BC./?又为AB的中点,••• AM = BM.而/PAM = ZCBM = 90°• △AM 也/CBM .•'PM = CM.又N为PC的中点,• MN JPC.由⑴知,MN _LCD , PC A CD = C,/MN 丄平面PCD.面面垂直的判定与性质[例3] (2012江苏高考)如图,在直三棱柱ABC —A i B i C i中,"B!=A i C i, D, E分别是棱BC, CC i上的点(点D不同于点C),且AD丄DE , F为B iC i的中点.求证:⑴平面ADE丄平面BCC i B i;(2)直线A i F //平面ADE.ti [自主解答](i)因为ABC —A i B i C i是直三棱柱,所以CC i丄平面ABC,又AD?平面ABC,所以CC i L AD.又因为AD IDE , CC i, DE?平面BCC i B i,CC i A DE = E,所以AD丄平面BCC i B i.又AD?平面ADE ,所以平面ADE丄平面BCC i B i.⑵因为A i B i= A i C i, F为B i C i的中点,所以A i F _LBi C i.因为CC i丄平面A i B i C i,且A i F?平面A i B i C i,所以CC il A i F.又因为CC i, B i C i?平面BCC i B i, CC i A B i C i= C i,所以A i F丄平面BCC i B i.由⑴知AD 丄平面BCC i B i ,所以A i F/AD. 又AD?平面ADE , A i F?平面ADE , 所以A i F //平面ADE.呂由题悟法1. 判定面面垂直的方法: (i )面面垂直的定义.⑵面面垂直的判定定理(a 丄B, a? a a 丄2. 在已知平面垂直时,一般要用性质定理进行转化,转化为线面垂直或线线垂直. 转化方法:在一个平面内作交线的垂线, 转化为线面垂直,然后进一步转化为线线垂直.$以题试法3. (20i2泸州一模)如图,在四棱锥P — ABCD 中,底面ABCD 为 菱形,/ BAD = 60° Q 为AD 的中点.⑴若PA = PD ,求证:平面 PQB 丄平面PAD ;⑵若点M 在线段PC 上,且PM = tPC (t>0),试确定实数t 的值, 使得FA //平面MQB.解:(1)因为FA = PD , Q 为AD 的中点,所以 PQ 丄AD. 连接BD ,因为四边形 ABCD 为菱形,/ BAD = 60° 所以AB = BD. 所以BQ 丄\D.因为BQ?平面PQB , PQ?平面PQB , BQ A PQ = Q , 所以AD 丄平面PQB.因为AD?平面PAD ,所以平面 PQB 丄平面PAD.证明如下:连接AC ,设AC n BQ = O ,连接 OM •在△AOQ 与△COB 中, 因为 AD BC ,所以/OQA=ZOBC,ZOAQ = ZOCB. 所以…。

人教版高中数学必修二第二章《点、直线、平面之间位置关系》(内含解析)

人教版高中数学必修二第二章《点、直线、平面之间位置关系》(内含解析)

人教版高中数学必修二第二章《点、直线、平面之前的位置关系》(内含解析)一、选择题1.△ABC所在的平面为α,直线l⊥AB,l⊥AC,直线m⊥BC,m⊥AC,则直线l,m的位置关系是()A.相交 B.异面C.平行 D.不确定【解析】因为l⊥AB,l⊥AC且AB∩AC=A,所以l⊥平面ABC.同理可证m⊥平面ABC,所以l∥m,故选C.【答案】C2.设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β【解析】A中,m,n可能为平行、垂直、异面直线;B中,m,n可能为异面直线;C中,m应与β中两条相交直线垂直时结论才成立.【答案】D3.已知平面α、β和直线m、l,则下列命题中正确的是()A.若α⊥β,α∩β=m,l⊥m,则l⊥βB.若α∩β=m,l⊂α,l⊥m,则l⊥βC.若α⊥β,l⊂α,则l⊥βD.若α⊥β,α∩β=m,l⊂α,l⊥m,则l⊥β【解析】选项A缺少了条件l⊂α;选项B缺少了条件α⊥β;选项C缺少了条件α∩β=m,l⊥m;选项D具备了面面垂直的性质定理的全部条件.故选D.【答案】D4.如图2342,P A⊥矩形ABCD,下列结论中不正确的是()图2342A.PD⊥BD B.PD⊥CDC.PB⊥BC D.P A⊥BD【解析】若PD⊥BD,则BD⊥平面P AD,又BA⊥平面P AD,则过平面外一点有两条直线与平面垂直,不成立,故A不正确;因为P A⊥矩形ABCD,所以P A⊥CD,AD⊥CD,所以CD⊥平面P AD,所以PD⊥CD,同理可证PB⊥BC.因为P A⊥矩形ABCD,所以由直线与平面垂直的性质得P A⊥BD.故选A.【答案】A5.如图2343所示,三棱锥P ABC的底面在平面α内,且AC⊥PC,平面P AC⊥平面PBC,点P,A,B是定点,则动点C的轨迹是()图2343A.一条线段B.一条直线C.一个圆D.一个圆,但要去掉两个点【解析】∵平面P AC⊥平面PBC,AC⊥PC,平面P AC∩平面PBC=PC,AC⊂平面P AC,∴AC⊥平面PBC.又∵BC⊂平面PBC,∴AC⊥BC.∴∠ACB=90°.∴动点C的轨迹是以AB为直径的圆,除去A和B两点.【答案】D二、填空题6.如图239,平面α∩β=CD,EA⊥α,垂足为A,EB⊥β,垂足为B,则CD与AB的位置关系是________.图239【解析】∵EA⊥α,CD⊂α,根据直线和平面垂直的定义,则有CD⊥EA.同样,∵EB⊥β,CD⊂β,则有EB⊥CD.又EA∩EB=E,∴CD⊥平面AEB.又∵AB⊂平面AEB,∴CD⊥AB.【答案】CD⊥AB7.如图2310所示,P A ⊥平面ABC ,在△ABC 中,BC ⊥AC ,则图中直角三角形的个数有________.图2310【解析】 BC ⊂平面ABC PA ⊥平面ABC ⇒PA ∩AC =A AC ⊥BC ⇒BC ⊥平面P AC ⇒BC ⊥PC ,∴直角三角形有△P AB 、△P AC 、△ABC 、△PBC .【答案】 4三、解答题8.如图2311,四边形ABCD 为矩形,AD ⊥平面ABE ,F 为CE 上的点,且BF ⊥平面ACE .求证:AE ⊥BE .图2311【证明】 ∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE .又AE ⊂平面ABE ,∴AE ⊥BC .∵BF ⊥平面ACE ,AE ⊂平面ACE ,∴AE ⊥BF .又∵BF ⊂平面BCE ,BC ⊂平面BCE ,BF ∩BC =B , ∴AE ⊥平面BCE .又BE ⊂平面BCE ,∴AE ⊥BE .9.如图2312所示,三棱锥ASBC 中,∠BSC =90°,∠ASB =∠ASC=60°,SA=SB=SC.求直线AS与平面SBC所成的角.图2312【解】因为∠ASB=∠ASC=60°,SA=SB=SC,所以△ASB与△SAC都是等边三角形.因此AB=AC.如图所示,取BC的中点D,连接AD,SD,则AD⊥BC.设SA=a,则在Rt△SBC中,BC=a,CD=SD=22a.在Rt△ADC中,AD==22a.则AD2+SD2=SA2,所以AD⊥SD.又BC∩SD=D,所以AD⊥平面SBC.因此∠ASD即为直线AS与平面SBC所成的角.在Rt△ASD中,SD=AD=22a,所以∠ASD=45°,即直线AS与平面SBC所成的角为45°.10.(2015·淮安高二检测)如图2313,四棱锥SABCD的底面ABCD 为正方形,SD⊥底面ABCD,则下列结论中正确的有________个.图2313①AC⊥SB;②AB∥平面SCD;③SA与平面ABCD所成的角是∠SAD;④AB与SC所成的角等于DC与SC所成的角.【解析】因为SD⊥底面ABCD,所以AC⊥SD.因为ABCD是正方形,所以AC⊥BD.又BD∩SD=D,所以AC⊥平面SBD,所以AC⊥SB,故①正确.因为AB∥CD,AB⊄平面SCD,CD⊂平面SCD,所以AB∥平面SCD,故②正确.因为AD是SA在平面ABCD内的射影,所以SA与平面ABCD所成的角是∠SAD.故③正确.因为AB∥CD,所以AB与SC所成的角等于DC与SC所成的角,故④正确.【答案】411.如图2314,AB为⊙O的直径,P A垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.(1)求证:AN⊥平面PBM;(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.图2314【证明】(1)∵AB为⊙O的直径,∴AM⊥BM.又P A⊥平面ABM,∴P A⊥BM.又∵P A∩AM=A,∴BM⊥平面P AM.又AN⊂平面P AM,∴BM⊥AN.又AN⊥PM,且BM∩PM=M,∴AN⊥平面PBM.(2)由(1)知AN⊥平面PBM,PB⊂平面PBM,∴AN⊥PB.又∵AQ⊥PB,AN∩AQ=A,∴PB⊥平面ANQ.又NQ⊂平面ANQ,∴PB⊥NQ.。

人教A版高中数学必修2第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系教案

人教A版高中数学必修2第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系教案

平面与平面的位置关系1、木工师傅用气泡式水准仪在桌面上交叉放两次,如果水准仪的气泡都是居中的,就可以判定这个桌面和水平面平行.想一想,这是依据什么道理?【知识导引】2.平面与平面平行的判定定理:判定定理:。

定理的符号语言:定理的图形语言:由教师引导判定定理的文字语言,启发学生积极参与思考,师生共同完成其符号语言及图形语言【典型例题】例1、判断下列说法是否正确1.平面α内有无数条直线都平行于平面β,则α∥β.2.过平面外一点有且只有一个平面与已知平面平行.3.过平面外的一条直线一定能做出一个平面与已知平面平行.4.平行于同一条直线的两平面平行.例2、如图:在长方体ABCD-A1B1C1D1中,求证:平面C1BD∥平面AB1D1学生动手,安排个别学生起来说明错误理由。

教师引导学生分析,主意书写规范。

课堂小结:同学们总结一下,这节课学习了什么?需要注意什么?1.平面和平面的位置关系;2.平面和平面的判定定理。

课堂检测:在正方体ABCD —A 1B 1C 1D 1中,E ,F ,G ,M ,N 分别为棱B 1C 1,C 1D 1,A 1B 1,A 1D 1的中点.求证:平面AMN ∥平面BDFEAA 1BB 1CC 1D D 1板书 设计平面与平面的位置关系位置关系 公共点符号表示 图形表示平面与平面的判定定理:两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

符号表示:a β⊂b β⊂a b p ⋂= αβ⇒∥a α∥b α∥例2 课后反思。

人教A版高中数学必修2第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系课件(1)

人教A版高中数学必修2第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系课件(1)

E
F HG
A ,同理D ,
AD ,同理BC ,
E , E 点E在面与的交线上,
同理,G, H , F也在面与的交线上
点E, G, H , F四点共线。精品PPT
4.已知:正方体 ABCD ABCD, E是C1C的中点,
F是B1C 的中点,
D
C
求证:DE , D1C1, A1F必交于一点 证明: A1D // EF,且EF A1D
平面公理
公理3 如果两个不重合的平面有一个公共点, 那么它们有且只有一条过该点的公共直线.
P l,且P l
l
P
作用:
①判断两个平面相交的依据.
②判断点在直线上.

精品PPT
典型例题
例1 如图,用符号表示下列图形中点、直线、平面 之间的位置关系.
a
B
A l
(1)
al
P
b
(2)
解:在(1)中, l,a A,a B. 在(2)中, l,a ,b ,a l P,b l P.
③四条线段顺次首尾连接,所得的图形一定是平面图形吗? 为什么?
④用符号表示下列语句,并画出图形: ⑴点A在平面α内,点B在平面α外;
⑵直线 l 在平面α内,直线m不在平面α内; ⑶平面α和β相交于直线 ;l ⑷直线 l 经过平面α外一点P和平面α内一点Q ; ⑸直线 l 是平面α和β的交线,直线m在平面α内,
只有一个平面 推论:经过一条直线和这条直线外一点(两
条相交直线,两条平行直线),有且只 有一个平面
作用 确定平面的依据 3.公理3:如果两个不重合的平面有一个公共点,那
么它们有且只有一条过该点的公共直线
作用 ①判断:两个平面相交的依据.②判断点在直线上. 精品PPT

高中数学必修2知识点总结:第二章-直线与平面的位置关系

高中数学必修2知识点总结:第二章-直线与平面的位置关系

高中数学必修2知识点总结第二章 直线与平面的位置关系空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

高中数学必修2第二章-空间点、直线、平面之间的位置关系

高中数学必修2第二章-空间点、直线、平面之间的位置关系
两个平面的位置关系有且只有两种 ①两个平面平行——没有公共点 ②两个平面相交——有一条公共直线.
分类的依据是什么?
公理3 如果两个不重合的平面有一个公共 点,那么它们有且只有一条过该点的公共直线.
两个平面平行或相交的画法及表示


m


//
=m
2.1
直线、平面平行的 判定及其性质
主要内容
平面内两条相交直线 空间中两条异面直线
已知两条异面直线a,b,经过空间任一点O作直
线 a // a, •b // b ,把 与a 所b 成的锐角(或直角)叫
做异面直线a与b所成的角.
b

a
b
b
O
a
O aa
异面直线所成的角
探究
我们规定两条平行直线的夹角为0°,那么 两条异面直线所成的角的取值范围是什么?
两条直线的位置关系
空间中的直线与直线之间有三种位置关系:
共面直线
相交直线: 同一平面内,有且只有一 个公共点;
平行直线: 同一平面内,没有公共点;
异面直线: 不同在任何一个平面内,没有公共点
平行直线
公理4 平行于同一直线的两条直线互相平行.
如果a//b,b//c,那么a//c
空间中的平行线具有传递性
定理的应用
A
例1. 如图,空间四边形ABCD中, F
E、F分别是 AB,AD的中点. E
D
求证:EF∥平面BCD.
B
C
分析:要证明线面平行只需证明线线平行,
即在平面BCD内找一条直线 平行于EF,由已
知的条件怎样找这条直线?
定理的应用
A
例1. 如图,空间四边形ABCD中, F

【人教A版】高中数学必修二第二章:点、直线、平面之间的位置关系 复习

【人教A版】高中数学必修二第二章:点、直线、平面之间的位置关系 复习
数 1, 2 ,使
a 1e1 2e2
四、数量积的主要应用
2
1、计算向量的模:a a a , a a a
坐标表示: a x2 y2
2、两点间距离公式:
AB (x1 x2 )2 ( y1 y2 )2
3、计算两个向量的夹角:
cos a b
x1x2 y1y2
ab
x12 y12 x22 y22
DAC为等腰三角形 DO AC
平面DAC 平面ABC, A
o
C
600
平面DAC 平面ABC AC,
DO 平面ABC
B
例题2.(2015年全国Ⅰ卷) 如图,四边形 ABCD 为菱形,∠ABC=120°,E,F 是平面 ABCD 同一侧的两点,BE⊥平面ABCD, DF⊥平面 ABCD,BE=2DF,AE⊥EC.
直线和平面垂直的判定与性质
1.直线与平面垂直的概念
如果直线 l 与平面 内的任意一条直线都 垂直,我们说直线 l 与平面 互相垂直,
2.直线与平面垂直的判定定理
一条直线与一个平面内的两条相交直线都垂直, 则该直线与此平面垂直.
简记为:线线垂直,则线面垂直。
3.直线与平面垂直的另一种判定方法
两条平行直线中的一条垂直一个平面,则另 一条直线也垂直这个平面.
直线和平面平行的判定与性质
1.判定定理:平面外的一条直线和平面内的一 条直线平行,则该直线和这个平面平行。 简记为:线线平行,则线面平行。
2.性质定理:如果一条直线和一个平面平行, 经过这条直线的平面和这个平面相交,那么 这条直线就和交线平行。
简记为:线面平行,则线线平行。
平面和平面平行的判定与性质
3、使三线共点,确定坐标原点(以 垂足或者面内线线垂直的交点为原 点)

高中数学必修二课件:空间点、直线、平面之间的位置关系

高中数学必修二课件:空间点、直线、平面之间的位置关系

5.若点M是两条异面直线a,b外的一点,则过点M且与a,b都平行的平面 有__0_或__1___个.
解析 当点M在过a且与b平行的平面或过b且与a平行的平面内时,没有满足 条件的平面;当点M不在上述两个平面内时,满足题意的平面只有1个.
那么这两个平面的位置关系一定是( C )
A.平行
B.相交
C.平行或相交
D.以上都不对
(2)已知平面α,β ,且α∥β ,直线a⊂α,直线b⊂β,则直线a与直线b具
有怎样的位置关系?画出图形.
【思路】 由α∥β,a⊂α,b⊂β,可知直线a,b无公共点.
【解析】 由题意得直线a,b无公共点,所以直线a,直线b可能平行或异 面.如图所示,在长方体模型中若直线AC就是直线a,B1D1就是直线b,则直线a 与直线b异面;若直线BD就是直线a,B1D1就是直线b,则直线a与直线b平行.
综合①②可知c与b相交或异面.
探究1 判断两直线的位置关系,不能局限于平面内,要把直线置身于空间 考虑,有时可分为平面和空间两种情形讨论.
思考题1 (1)正方体ABCD-A1B1C1D1中和AB平行的棱有_A_1_B_1,__C_D_,_C_1_D_1; 和AB异面的棱有__C_C_1_,_D_D_1_,_A_1_D_1,__B_1C_1___.
平面α与β平行,记作α∥β.
1.如何画异面直线?
答:画异面直线时,为了充分显示出它们既不平行又不相交的特点,即不 共面的特点,常常需要以辅助平面作为衬托,以加强直观性,如下图①②③, 若画成如图④的情形,就区分不开了,因此千万不能画成如图④的图形.
2.如何判断异面直线? 答:①定义法.②两直线既不平行也不相交.
③直线a不平行于平面α,则a不平行于α内任何一条直线.

人教A版高中数学必修二 第二章 点、直线、平面之间的位置关系 2.1.1

人教A版高中数学必修二 第二章 点、直线、平面之间的位置关系 2.1.1
的_公__共__直___线__
图形
符号 A∈l,B∈l 且 A∈α,B
∈α⇒__l_⊂_α__
A,B,C 三点不共线⇒ 存在唯一的平面 α 使 A,B,C∈α
P∈α 且 P∈β⇒
_α__∩__β_=__l且___P_∈__l_
[化解疑难] 1.公理 1 的作用:①用直线检验平面(常被应用于实践,如泥瓦工用直的木 条刮平地面上的水泥浆);②判断直线是否在平面内(经常被用于立体几何的说理 中). 2.公理 2 的作用:①确定平面;②证明点、线共面. 公理 2 中要注意条件“不在一条直线上的三点”,事实上,共线的三点是不 能确定一个平面的.同时要注意经过一点、两点或在同一条直线上的三点可能有 无数个平面;过不在一条直线上的四点,不一定有平面.因此,要充分重视“不 在一条直线上的三点”这一条件的重要性.
解析: (1)点 P∈直线 AB; (2)点 C∉直线 AB; (3)点 M∈平面 AC; (4)点 A1∉平面 AC; (5)直线 AB∩直线 BC=点 B; (6)直线 AB⊂平面 AC; (7)平面 A1B∩平面 AC=直线 AB.
[归纳升华] 三种语言的转换方法
1.用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、 几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.
解析: ∵M、N 是 AA1、AB 中点, ∴MN∥A1B,A1B∥CD1, ∴MN∥CD1,∴D1M 与 CN 在一个面内 ∴D1M∩CN=P,∴P∈CN,CN⊂平面 ABCD, ∴P∈面 ABCD 同理 P∈平面 ADD1A1 ∴P 在平面 ABCD 与平面 ADD1A1,∴P∈DA. 答案: 共点
点、线共面问题 多维探究型 证明两两相交且不共点的三条直线在同一平面内.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档