2016-2017学年新疆高二上学期期末考试数学(理)试题Word版含答案
中学2016-2017学年高二下期末考试数学试卷含解析
2016学年第二学期高二数学期末考试一、填空题(本大题满分54分)本大题共有12题,其中第1题至第6题每小题4分,第7题至第12题每小题5分,考生应在答题纸上相应编号的空格内直接填写结果,否则一律得零分.1. 的展开式中项的系数为______.【答案】【解析】的展开式的通项公式为,令,求得,可得展开式中项的系数为,故答案为10.2. 已知直线经过点且方向向量为,则原点到直线的距离为______.【答案】1【解析】直线的方向向量为,所以直线的斜率为,直线方程为,由点到直线的距离可知,故答案为1.3. 已知全集,集合,,若,则实数的值为___________.【答案】2【解析】试题分析:由题意,则,由得,解得.考点:集合的运算.4. 若变量满足约束条件则的最小值为_________.【答案】【解析】由约束条件作出可行域如图,联立,解得,化目标函数,得,由图可知,当直线过点时,直线在y轴上的截距最小,有最小值为,故答案为. 点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5. 直线上与点的距离等于的点的坐标是_____________.【答案】或.【解析】解:因为直线上与点的距离等于的点的坐标是和6. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_______.【答案】【解析】设“这名学生在上学路上到第二个路口首次遇到红灯”为事件,则所求概率为,故答案为.7. 某学校随机抽取名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.则该校学生上学所需时间的均值估计为______________.(精确到分钟).【答案】34................点睛:本题考查频率分布直方图,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,本题考查了识图的能力;根据直方图求平均值的公式,各个小矩形的面积乘以相应组距的中点的值,将它们相加即可得到平均值.8. 一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种________.【答案】186【解析】试题分析:设取红球个,白球个,则考点:古典概型.9. 如图,三棱锥满足:,,,,则该三棱锥的体积V的取值范围是______.【答案】【解析】由于平面,,在中,,要使面积最大,只需,的最大值为,的最大值为,该三棱锥的体积V的取值范围是.10. 是双曲线的右支上一点,分别是圆和上的点,则的最大值等于_________.【答案】9【解析】试题分析:两个圆心正好是双曲线的焦点,,,再根据双曲线的定义得的最大值为.考点:双曲线的定义,距离的最值问题.11. 棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为___________.【答案】【解析】试题分析:.考点:几何体的表面积.12. 在直角坐标平面中,已知两定点与位于动直线的同侧,设集合点与点到直线的距离之差等于,,记,.则由中的所有点所组成的图形的面积是_______________.【答案】【解析】过与分别作直线的垂线,垂足分别为,,则由题意值,即,∴三角形为正三角形,边长为,正三角形的高为,且,∴集合对应的轨迹为线段的上方部分,对应的区域为半径为1的单位圆内部,根据的定义可知,中的所有点所组成的图形为图形阴影部分.∴阴影部分的面积为,故答案为.二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 已知为实数,若复数是纯虚数,则的虚部为()A. 2B. 0C. -2D. -2【答案】C【解析】∵复数是纯虚数,∴,化为,解得,∴,∴,∴的虚部为,故选C.14. 已知条件:“直线在两条坐标轴上的截距相等”,条件:“直线的斜率等于”,则是的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】B【解析】当直线过原点时,直线在两条坐标轴上的截距相等,斜率可以为任意数,故不成立;当直线的斜率等于,可设直线方程为,故其在两坐标轴上的截距均为,故可得成立,则是的必要非充分条件,故选B.15. 如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()A. 该三棱柱主视图的投影不发生变化;B. 该三棱柱左视图的投影不发生变化;C. 该三棱柱俯视图的投影不发生变化;D. 该三棱柱三个视图的投影都不发生变化.【答案】B【解析】A、该三棱柱主视图的长度是或者在轴上的投影,随点得运动发生变化,故错误;B、设是z轴上一点,且,则该三棱柱左视图就是矩形,图形不变.故正确;C、该三棱柱俯视图就是,随点得运动发生变化,故错误.D、与矛盾.故错误;故选B.点睛:本题考查几何体的三视图,借助于空间直角坐标系.本题是一个比较好的题目,考查的知识点比较全,但是又是最基础的知识点;从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,根据图中C点对三棱柱的结构影响进一步判断.16. 如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:①到、、、四点的距离之和为定值;②曲线关于直线、均对称;③曲线所围区域面积必小于.上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】对于①,若点在椭圆上,到、两点的距离之和为定值、到、两点的距离之和不为定值,故错;对于②,两个椭圆,关于直线、均对称,曲线关于直线、均对称,故正确;对于③,曲线所围区域在边长为6的正方形内部,所以面积必小于36,故正确;故选C.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. 已知复数满足,(其中是虚数单位),若,求的取值范围.【答案】或【解析】试题分析:化简复数为分式的形式,利用复数同乘分母的共轭复数,化简为的形式即可得到,根据模长之间的关系,得到关于的不等式,解出的范围.试题解析:,,即,解得或18. 如图,直四棱柱底面直角梯形,,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1)(2)见解析【解析】试题分析:(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,,10分,.又,平面. 12分考点:(1)异面直线所成的角;(2)线面垂直.19. 如图,圆锥的顶点为,底面圆心为,线段和线段都是底面圆的直径,且直线与直线的夹角为,已知,.(1)求该圆锥的体积;(2)求证:直线平行于平面,并求直线到平面的距离.【答案】(1)(2)【解析】试题分析:(1)利用圆锥的体积公式求该圆锥的体积;(2)由对称性得,即可证明直线平行于平面,到平面的距离即直线到平面的距离,由,求出直线到平面的距离.试题解析:(1)设圆锥的高为,底面半径为,则,,∴圆锥的体积;(2)证明:由对称性得,∵不在平面,平面,∴平面,∴C到平面的距离即直线到平面的距离,设到平面的距离为,则由,得,可得,∴,∴直线到平面的距离为.20. 阅读:已知,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数,,求证:.【答案】(1)9(2)18(3)见解析【解析】试题分析:本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2),7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分考点:阅读材料问题,“1”的代换,基本不等式.21. 设椭圆的长半轴长为、短半轴长为,椭圆的长半轴长为、短半轴长为,若,则我们称椭圆与椭圆是相似椭圆.已知椭圆,其左顶点为、右顶点为.(1)设椭圆与椭圆是“相似椭圆”,求常数的值;(2)设椭圆,过作斜率为的直线与椭圆仅有一个公共点,过椭圆的上顶点为作斜率为的直线与椭圆仅有一个公共点,当为何值时取得最小值,并求其最小值;(3)已知椭圆与椭圆是相似椭圆.椭圆上异于的任意一点,求证:的垂心在椭圆上.【答案】(1)或;(2)当时,取得最小值.(3)见解析【解析】试题分析:(1)运用“相似椭圆”的定义,列出等式,解方程可得s;(2)求得的坐标,可得直线与直线的方程,代入椭圆的方程,运用判别式为,求得,再由基本不等式即可得到所求最小值;(3)求得椭圆的方程,设出椭圆上的任意一点,代入椭圆的方程;设的垂心的坐标为,运用垂心的定义,结合两直线垂直的条件:斜率之积为,化简整理,可得的坐标,代入椭圆的方程即可得证.试题解析:(1)由题意得或,分别解得或.(2)由题意知:,,直线,直线,联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ①联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ②由①②得:.所以,此时,即.(3)由题意知:,所以,且.设垂心,则,即. 又点在上,有,. 则,所以的垂心在椭圆上.。
广东省中山市2016-2017学年高二上学期期末数学试卷(理科)Word版含答案
广东省中山市2016-2017学年高二上学期期末数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.命题“∀x∈R,x3﹣3x>0”的否定为()A.∀x∈R,x3﹣3x≤0 B.∀x∈R,x3﹣3x<0 C.∃x∈R,x3﹣3x≤0 D.∃x∈R,x3﹣3x>02.若集合M={x∈N|x2﹣8x+7<0},N={x|∉N},则M∩N等于()A.{3,6} B.{4,5} C.{2,4,5} D.{2,4,5,7}3.等差数列{an }的前n项和为Sn,且S5=6,a2=1,则公差d等于()A.B.C.D.24.若双曲线的实轴长为4,则此双曲线的渐近线的方程为()A.y=±4x B.y=±2x C.D.5.在△ABC中,A、B、C所对的边分别为a、b、c,若bcosA+acosB=c2,a=b=2,则△ABC的周长为()A.7.5 B.7 C.6 D.56.若实数x,y满足,则目标函数z=﹣x+y的最小值为()A.﹣3 B.﹣2 C.1 D.27.抛物线y2=4x上两点A、B到焦点的距离之和为7,则A、B到y轴的距离之和为()A.8 B.7 C.6 D.58.设Sn 为数列{an}的前n项和,a3=6且Sn+1=3Sn,则a1+a5等于()A.12 B.C.55 D.9.已知空间向量=(0,,﹣),=(x,0,﹣2),则“x=2”是“<,>=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.函数f(x)=的最大值为()A.B.C.D.11.斜率为1的直线与抛物线y=ax2(a>0)交于A、B两点,且线段AB的中点C到y轴的距离为1,则该抛物线焦点到准线的距离为()A.B.C.1 D.212.设A(﹣3,0),B(3,0),若直线y=﹣(x﹣5)上存在一点P满足|PA|﹣|PB|=4,则点P到z轴的距离为()A.B.C.或 D.或二、填空题(共4小题,每小题5分,满分20分)13.命题“若x>1,则x2>1”的逆否命题是.14.椭圆7x2+3y2=21上一点到两个焦点的距离之和为.15.如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为.16.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲知为田几何.”这道题讲的是有一个三角形沙田,三边分别为13里,14里,15里,假设1里按500米计算,则该沙田的面积为平万千米.三、解答题(共6小题,满分70分)17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知acosB+bcosA=2ccosC.(1)求角C的大小;(2)若a=5,b=8,求边c的长.18.设命题p:∃x0∈(﹣2,+∞),6+|x|=5.命题q:∀x∈(﹣∞,0),x2+≥4.命题r:若|x|+|y|≤1,则≤.(1)写出命题r的否命题;(2)判断命题¬p,p∨r,p∧q的真假,并说明理由.19.在如图所示的四棱锥P﹣ABCD中,四边形ABCD为正方形,PA⊥CD,BC⊥平面PAB,且E、M、N分别为PD、CD、AD的中点,.(1)证明:PB∥平面FMN;(2)若PA=AB=2,求二面角E﹣AC﹣B的余弦值.20.设数列{an }的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)都在直线2x+y﹣2=0上.(1)求数列{an}的通项公式;(2)若bn =nan2,数列{bn}的前n项和为Tn,求证:Tn<.21.在平面直角坐标系中,点P 为曲线C 上任意一点,且P 到定点F (1,0)的距离比到y 轴的距离多1.(1)求曲线C 的方程;(2)点M 为曲线C 上一点,过点M 分别作倾斜角互补的直线MA ,MB 与曲线C 分别交于A ,B 两点,过点F 且与AB 垂直的直线l 与曲线C 交于D ,E 两点,若|DE|=8,求点M 的坐标.22.已知椭圆C : +=1(a >b >0)的离心率为,且椭圆C 上的点到椭圆右焦点F 的最小距离为﹣1.(1)求椭圆C 的方程;(2)过点F 且不与坐标轴平行的直线l 与椭圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点,直线OA ,OM ,OB 的斜率为k OA ,k OM ,k OB ,若k OA ,﹣k OM ,k OB 成等差数列,求直线l 的方程.广东省中山市2016-2017学年高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.命题“∀x∈R,x3﹣3x>0”的否定为()A.∀x∈R,x3﹣3x≤0 B.∀x∈R,x3﹣3x<0 C.∃x∈R,x3﹣3x≤0 D.∃x∈R,x3﹣3x>0【考点】命题的否定.【分析】根据全称命题的否定是特称命题进行求解即可.【解答】解:命题是全称命题,则命题的否定是特称命题,即∃x∈R,x3﹣3x≤0,故选:C2.若集合M={x∈N|x2﹣8x+7<0},N={x|∉N},则M∩N等于()A.{3,6} B.{4,5} C.{2,4,5} D.{2,4,5,7}【考点】交集及其运算.【分析】求解一元二次不等式化简M,再由交集运算得答案.【解答】解:∵M={x∈N|x2﹣8x+7<0}={x∈N|1<x<7}={2,3,4,5,6},N={x|∉N},∴M∩N={2,3,4,5,6}∩{x|∉N}={2,4,5},故选:C.3.等差数列{an }的前n项和为Sn,且S5=6,a2=1,则公差d等于()A.B.C.D.2【考点】等差数列的前n项和.【分析】利用等差数列前n项和公式和通项公式,列出方程组,由此能求出公差d.【解答】解:∵等差数列{an }的前n项和为Sn,且S5=6,a2=1,∴,解得,d=.故选:A.4.若双曲线的实轴长为4,则此双曲线的渐近线的方程为()A.y=±4x B.y=±2x C.D.【考点】双曲线的简单性质.【分析】由题意可得m=4,求得双曲线的方程,可得渐近线方程为y=±x.【解答】解:双曲线的实轴长为4,可得2=4,可得m=4,即有双曲线的方程为﹣y2=1,可得双曲线的渐近线方程为y=±x.故选:C.5.在△ABC中,A、B、C所对的边分别为a、b、c,若bcosA+acosB=c2,a=b=2,则△ABC的周长为()A.7.5 B.7 C.6 D.5【考点】正弦定理.【分析】由已知利用余弦定理可求c的值,进而可得周长的值.【解答】解:∵bcosA+acosB=c2,a=b=2,∴由余弦定理可得:b×+a×=c2,整理可得:2c2=2c3,∴解得:c=1,则△ABC的周长为a+b+c=2+2+1=5.故选:D.6.若实数x,y满足,则目标函数z=﹣x+y的最小值为()A.﹣3 B.﹣2 C.1 D.2【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用z的几何意义结合数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:由z=﹣x+y,得y=x+z表示,斜率为1纵截距为z的一组平行直线,平移直线y=x+z,当直线y=x+z经过点C时,直线y=x+z的截距最小,此时z最小,由,解得,即C(3,1),此时zmin=﹣3+1=﹣2.故选:B7.抛物线y2=4x上两点A、B到焦点的距离之和为7,则A、B到y轴的距离之和为()A.8 B.7 C.6 D.5【考点】抛物线的简单性质.【分析】根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A、B到y轴的距离之和.【解答】解:抛物线y2=4x的焦点F(1,0),准线方程x=﹣1设A(x1,y1),B(x2,y2)∴|AF|+|BF|=x1+1+x2+1=7∴x1+x2=5,∴A、B到y轴的距离之和为5,故选:D.8.设Sn 为数列{an}的前n项和,a3=6且Sn+1=3Sn,则a1+a5等于()A.12 B.C.55 D.【考点】数列递推式.【分析】Sn+1=3Sn,可得数列{Sn}为等比数列,公比为3.可得.利用递推关系即可得出.【解答】解:∵Sn+1=3Sn,∴数列{Sn}为等比数列,公比为3.∴.∴a3=S3﹣S2==6,解得S1=1=a1.∴Sn=3n﹣1.∴a5=S5﹣S4=34﹣33=54.∴a1+a5=55.故选:C.9.已知空间向量=(0,,﹣),=(x,0,﹣2),则“x=2”是“<,>=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据空间向量数量积的定义结合向量夹角公式以及充分条件和必要条件的定义进行求解即可.【解答】解:∵ =(0,,﹣),=(x,0,﹣2),∴•=(0,,﹣)•(x,0,﹣2)=×2=,则||==,||=,若<,>=,则cos<,>=cos=,即==,平方得,得x2=4,即x=±2,即“x=2”是“<,>=”的充分不必要条件,故选:A10.函数f(x)=的最大值为()A.B.C.D.【考点】函数的最值及其几何意义.【分析】当x≠0时,f(x)==,结合基本不等式,可得函数的最大值.【解答】解:当x=0时,f(0)=0,当x≠0时,f(x)==≤=,故函数f(x)=的最大值为,故选:B11.斜率为1的直线与抛物线y=ax2(a>0)交于A、B两点,且线段AB的中点C到y轴的距离为1,则该抛物线焦点到准线的距离为()A.B.C.1 D.2【考点】抛物线的简单性质.【分析】设A(x1,y1),B(x2,y2).由于直线斜率为1,可设方程y=x+b,与抛物线的方程联立,化为关于x的一元二次方程,利用根与系数的关系和中点坐标公式可得a的值,再求出抛物线焦点到准线的距离即可.【解答】解:设直线为y=x+b,与y=ax2联立方程组,即为,消y可得ax2﹣x﹣b=0,设A(x1,y1),B(x2,y2).∴x1+x2=,∵线段AB的中点C到y轴的距离为1,∴=1,解得a=,∴y=x2,∴该抛物线焦点到准线的距离a即为,故选:A12.设A(﹣3,0),B(3,0),若直线y=﹣(x﹣5)上存在一点P满足|PA|﹣|PB|=4,则点P到z轴的距离为()A.B.C.或 D.或【考点】双曲线的简单性质.【分析】根据条件得到P的轨迹是以A,B为焦点的双曲线,求出双曲线的方程,联立方程组求出P的坐标即可得到结论.【解答】解:∵A(﹣3,0),B(3,0),P满足|PA|﹣|PB|=4<|AB|,∴P的轨迹是以A,B为焦点的双曲线,其中c=3,2a=4,则a=2,b2=9﹣4=5,即双曲线方程为﹣=1,若直线y=﹣(x﹣5)上存在一点P满足|PA|﹣|PB|=4,则有消去y得16x2+90x﹣325=0,即(2x﹣5)(8x+65)=0,得x=或(x=﹣<0舍),此时y=,即点P到z轴的距离为,故选:A二、填空题(共4小题,每小题5分,满分20分)13.命题“若x>1,则x2>1”的逆否命题是若x2≤1,则x≤1 .【考点】四种命题.【分析】根据已知中的原命题,结合逆否命题的定义,可得答案.【解答】解:命题“若x>1,则x2>1”的逆否命题是命题“若x2≤1,则x≤1”,故答案为:若x2≤1,则x≤114.椭圆7x2+3y2=21上一点到两个焦点的距离之和为2.【考点】椭圆的简单性质.【分析】将椭圆方程转化成标准方程,求得a,b的值,由椭圆的定义可知:椭圆上一点到两个焦点的距离之和2a=2.【解答】解:由题意可知:椭圆的标准方程:,焦点在y轴上,a2=7,b2=3,由c2=a2﹣b2=4,c=2,∴由椭圆的定义可知:椭圆上一点到两个焦点的距离之和2a=2,故答案为:2.15.如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为.【考点】点、线、面间的距离计算.【分析】以D为原点,建立空间直角坐标系,利用向量法能求出点B到平面D1EC的距离.【解答】解:∵在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,以D为原点,建立空间直角坐标系,如图∴B(1,2,0),C(0,2,0)E(1,1,0),D1(0,0,1),=(0,1,0),=(﹣1,1,0),=(﹣1,﹣1,1),设平面D1EC的法向量=(x,y,z),则,取y=1,得=(0,1,1),∴点B到平面D1EC的距离:d==.故答案为:.16.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲知为田几何.”这道题讲的是有一个三角形沙田,三边分别为13里,14里,15里,假设1里按500米计算,则该沙田的面积为21 平万千米.【考点】正弦定理;余弦定理.【分析】由题意画出图象,并求出AB、BC、AC的长,由余弦定理求出cosB,由平方关系求出sinB的值,代入三角形的面积公式求出该沙田的面积.【解答】解:由题意画出图象:且AB=13里=6500米,BC=14里=7000米,AC=15里=7500米,在△ABC中,由余弦定理得,cosB===,所以sinB==,则该沙田的面积:即△ABC的面积S===21000000(平方米)=21(平方千米),故答案为:21.三、解答题(共6小题,满分70分)17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知acosB+bcosA=2ccosC.(1)求角C的大小;(2)若a=5,b=8,求边c的长.【考点】余弦定理;正弦定理.【分析】(1)利用正弦定理、和差公式即可得出.(2)利用余弦定理即可得出.【解答】解:(1)acosB+bcosA=2ccosC,∴sinAcosB+sinBcosA=2sinCcosC∴sin(A+B)=sinC=2sinCcosC,sinC≠0,解得cosC=,C∈(0,π),∴C=.(2)由余弦定理可得:c2=52+82﹣2×5×8cos=49,解得c=7.18.设命题p:∃x0∈(﹣2,+∞),6+|x|=5.命题q:∀x∈(﹣∞,0),x2+≥4.命题r:若|x|+|y|≤1,则≤.(1)写出命题r的否命题;(2)判断命题¬p,p∨r,p∧q的真假,并说明理由.【考点】复合命题的真假.【分析】(1)根据否命题的定义求出r的否命题即可;(2)分别判断p,q,r的真假,从而判断复合命题的真假即可.【解答】解:(1)命题r:若|x|+|y|≤1,则≤.命题r的否命题是:若|x|+|y|>1,则>;(2)命题p:∃x0∈(﹣2,+∞),6+|x|=5,是假命题,命题q:∀x∈(﹣∞,0),x2+≥2=4,是真命题,若|x|+|y|≤1,则则==﹣1+≥﹣1+=,故命题r是假命题;故命题¬p是真命题,p∨r是假命题,p∧q是假命题.19.在如图所示的四棱锥P﹣ABCD中,四边形ABCD为正方形,PA⊥CD,BC⊥平面PAB,且E、M、N分别为PD、CD、AD的中点,.(1)证明:PB∥平面FMN;(2)若PA=AB=2,求二面角E﹣AC﹣B的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)连结BD,分别交AC、MN于点O、G,连结EO、FG,推导出EO∥PB,FG∥EO,PB ∥FG,由此能证明PB∥平面FMN.(2)以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出二面角E﹣AC﹣B的余弦值.【解答】证明:(1)连结BD,分别交AC、MN于点O、G,连结EO、FG,∵O为BD中点,E为PD中点,∴EO∥PB.…又,∴F为ED中点,又CM=MD,AN=DN,∴G为OD中点,∴FG∥EO,∴PB∥FG.…∵FG⊂平面FMN,PB⊄平面FMN,∴PB∥平面FMN.…解:(2)∵BC⊥平面PAB,∴BC⊥PA,又PA⊥CD,BC∩CD=C,∴PA⊥平面ABCD.…如图,以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则A(0,0,0),C(2,2,0),B(2,0,0),E(0,1,1),则,,…∵PA⊥平面ABCD,∴平面ABC的一个法向量n=(0,0,1).…设平面AEC的法向量为n=(x,y,z),则,即,…令x=1,则y=﹣1,z=1,∴n=(1,﹣1,1),…∴.…由图可知,二面角E﹣AC﹣B为钝角,∴二面角E﹣AC﹣B的余弦值为.…20.设数列{an }的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)都在直线2x+y﹣2=0上.(1)求数列{an}的通项公式;(2)若bn =nan2,数列{bn}的前n项和为Tn,求证:Tn<.【考点】数列的求和;数列递推式.【分析】(1)(an+1,Sn)都在直线2x+y﹣2=0上.可得2an+1+Sn﹣2=0,利用递推关系可得:an+1=.再利用等比数列的通项公式即可得出.(2)bn =nan2=.再利用“错位相减法”与等比数列的求和公式即可得出.【解答】(1)解:(an+1,Sn)都在直线2x+y﹣2=0上.∴2an+1+Sn﹣2=0,∴n≥2时,2an +Sn﹣1﹣2=0,可得:2an+1﹣2an+an=0,∴an+1=.∴数列{an}是等比数列,公比为,首项为1.∴an=.(2)证明:bn =nan2=.∴数列{bn }的前n项和为Tn=1+++…+,∴=+…+(n﹣1)×+n,∴=++…+﹣n=﹣n,∴Tn=﹣<.21.在平面直角坐标系中,点P为曲线C上任意一点,且P到定点F(1,0)的距离比到y轴的距离多1.(1)求曲线C的方程;(2)点M为曲线C上一点,过点M分别作倾斜角互补的直线MA,MB与曲线C分别交于A,B 两点,过点F且与AB垂直的直线l与曲线C交于D,E两点,若|DE|=8,求点M的坐标.【考点】抛物线的简单性质.【分析】(1)由已知得:P到点F(1,0)的距离比到直线l:x=﹣1的距离相等,由抛物线的定义得曲线C为抛物线,即可求曲线C的轨迹方程;(2)求出直线AB的斜率,可得直线DE的方程,利用抛物线的定义建立方程,即可得出结论.【解答】解:(1)由已知得:P到点F(1,0)的距离比到直线l:x=﹣1的距离相等∴由抛物线的定义得曲线C 为抛物线, =1 ∴轨迹方程为:y 2=4x .(2)设M (x 0,y 0),直线MA 的斜率为k ,直线MB 的斜率为﹣k ,k ≠0,直线MA 的方程为y ﹣y 0=k (x ﹣x 0),将y 2=4x 代入整理得到ky 2﹣4y+4y 0﹣4kx 0=0, 则y A =﹣y 0,又y A ﹣y 0=k (x A ﹣x 0),整理得到x A =﹣,将其中的k 换成﹣k ,得到x B =+,y B =﹣﹣y 0,那么直线AB 的斜率k=﹣,∴直线DE 的斜率为,方程为y=(x ﹣1),代入y 2=4x ,可得=0,∴x 1+x 2=2+,∵|DE|=8, ∴2++2=8,∴y 0=±2,x 0=1,∴M (1,±2).22.已知椭圆C : +=1(a >b >0)的离心率为,且椭圆C 上的点到椭圆右焦点F 的最小距离为﹣1.(1)求椭圆C 的方程;(2)过点F 且不与坐标轴平行的直线l 与椭圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点,直线OA ,OM ,OB 的斜率为k OA ,k OM ,k OB ,若k OA ,﹣k OM ,k OB 成等差数列,求直线l 的方程.【考点】椭圆的简单性质.【分析】(1)由题意列关于a,b,c的方程组,求解方程组可得a,b的值,则椭圆C的方程可求;(2)由(1)知,F(1,0),设AB:y=k(x﹣1)(k≠0).联立直线方程与椭圆方程,由一元二次方程的根与系数的关系结合kOA ,﹣kOM,kOB成等差数列求得直线的斜率,则直线方程可求.【解答】解:(1)由题意可知,,解得:a2=2,b2=1.∴椭圆C的方程为;(2)由(1)知,F(1,0),设AB:y=k(x﹣1)(k≠0).联立,得(1+2k2)x2﹣4k2x+2k2﹣2=0.设A(x1,y1),B(x2,y2),M(x,y).则.∵kOA ,﹣kOM,kOB成等差数列,∴kOA +kOB+2kOM====4k==.即k=.∴直线l的方程为y=.。
2016-2017学年高二上学期地理期末考试题及答案
2016-2017学年高二上学期地理期末考试题及答案2016-2017学年度上学期期末考试高二地理试题2016-1-04本试卷共分为选择题和非选择题两部分,共43题,共100分,共5页。
考试时间为90分钟。
考试结束后,只需交答题卡。
第Ⅰ卷(选择题,共计60分)一、选择题(本大题共40小题,每小题1.5分)1.关于区域的叙述,以下哪项是错误的?()A。
区域都具有一定的区位特征B。
区域都有一定的面积和形状C。
区域都有一定明确的界线D。
区域的地理环境对区域发展有深刻的影响2.在沙漠中迷路时,以下哪种方法可以获知自己所处的具体位置信息?()A。
指南针B。
GPS设备C。
遥感图像D。
地形图我国江南部分丘陵山区出现大片“红色荒漠”,即在亚热带湿润的岩搭地区,土壤受严重侵蚀,基岩裸露,地表出现类似荒漠化景观的土地退化现象。
据此回答下列各题。
3.“红色荒漠”形成的自然原因主要是()A。
风化作用B。
风力侵蚀作用C。
流水侵蚀作用D。
流水沉积作用4.“红色荒漠”形成的人为原因主要是()A。
乱垦滥伐B。
过度放牧C。
开山取石D。
污染环境5.有关热带雨林分布的叙述,正确的是()A。
中纬度近海地区B。
中高纬度的大陆内部C。
赤道附近的低纬度地区D。
两极地区6.热带雨林被毁的根本原因是()A。
人口快速增长和生活贫困B。
发达国家需要大量木材C。
历史遗留的迁移农业D。
热带雨林的土壤贫瘠7.下图漫画反映的主题是()A。
控制人口B。
发展经济C。
保护森林D。
开发能源8.亚马孙热带雨林被称为“地球之肺”,其所指的生态环境效应是()A。
促进全球水循环,调节水平衡B。
调节全球气候,维护生态平衡C。
吸收二氧化碳,释放大量氧气D。
地球上功能最强大的生态系统煤炭是人类最早认识并加以利用的能源之一,德国鲁尔区丰富的煤炭资源使它成为世界著名的工业区。
山西省是我国主要的煤炭生产地,但尚未成为我国的经济大省。
回答下列问题。
9.与鲁尔区相比,山西省较缺乏的条件是()A。
湖北省武汉市第三十九中学2015-2016学年高二上学期期末考试数学(理)试题Word版含答案
武汉市第三十九中学2015~2016学年度第一学期期末考试高二(理科)数学试题命题人:余仁军审题人:黄鹤临试卷满分:150分考试用时:120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.非选择题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第I卷(选择题,60分)一、选择题:共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1.一个单位有职工160人,其中有业务员104人,管理人员32人,后勤服务人员24人,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,则在20人的样本中应抽取管理人员人数为()A. 3B. 4C. 5D. 62.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品至少有一件是次品”,则下列结论正确的是()A.A与C互斥B.任何两个均互斥C.B与C互斥D.任何两个均不互斥3.已知一个样本中的数据为1,2,3,4,5,则该样本的方差为()A.1B.2C.3D.44.对某商店一个月内每天的顾客人数进行统计,得到样本的茎叶图(如图所示).则该样本的中位数、众数、极差分别是( )A. 46 45 56B. 46 45 53C. 47 45 56D. 45 47 535.如右图所示,程序框图的输出结果是( )A.3B.4C.5D.86.由数字1,2,3,4,5,6可以组成没有重复数字的两位数的个数是( )A .11B .12C .30D .367.(1-2x )4展开式中含x 项的系数为( )A .32B .4C .-8D .-328.若随机变量X ~B (n,0.6),且E (X )=3,则P (X =1)的值是( )A .2×0.44B .2×0.45C .3×0.44D .3×0.649的值为( )A.1B .0.8C .0.3D .0.210.样本(12,,,m x x x )的平均数x ,样本(12,,,n y y y )的平均数为()y x y ≠.若样本(1212,,,,,,m n x x x y y y )的平均数(1)z x y αα=+-,其中102α<≤,则,m n 的大小关系为( )A.m n <B. m n ≤C. m n >D. m n ≥11.设随机变量X 满足两点分布,P (X =1)=p ,P (X =0)=q ,其中p +q =1,则D (X )为( )A .pB .qC .pqD .p +q12.把一枚硬币连续抛掷两次,事件A =“第一次出现正面”,事件B =“第二次出现正面”,则P (B |A )等于( )A.12B.14C.16D.18第II 卷(非选择题,90分)二、填空题:共4小题,每小题5分,共20分。
2016-2017学年江苏省南京市高二(上)期末数学试卷(理科)
2016-2017学年江苏省南京市高二(上)期末数学试卷(理科)1.填空题:本大题共14小题,每小题5分,共70分。
请将答案填写在答题卡相应位置上。
1.(5分) 命题“若a=b,则|a|=|b|”的逆命题是“若|a|≠|b|,则a≠b”。
2.(5分) 双曲线的离心率大于1.3.(5分) 已知复数z=1的渐近线方程是y=x。
4.(5分) 在平面直角坐标系xOy中,点(4,3)到直线3x-4y+a=0的距离为1,则实数a的值是-5.5.(5分) 曲线y=x^4与直线y=4x+b相切,则实数b的值是4.6.(5分) 已知实数x,y满足条件x+y=1,则z=2x+y的最大值是2.7.(5分) 在平面直角坐标系xOy中,抛物线C:y^2=4x的焦点为F,P为抛物线C上一点,且PF=5,则点P的横坐标是9.8.(5分) 在平面直角坐标系xOy中,圆O:x^2+y^2=r^2(r>0)与圆M:(x-3)^2+(y+4)^2=4相交,则r的取值范围是1<r<3.9.(5分) 观察下列等式:sin^(-2)+sin^(-2)+sin^(-2)+。
+sin^(-2)=n(n+1)/2照此规律。
sin^(-2)+sin^(-2)+sin^(-2)+sin^(-2)+sin^(-2)+。
=110.(5分) 若“∃x∈R,x^2+ax+a=0”是真命题,则实数a的取值范围是a≤0.11.(5分) 已知函数f(x)=(x^2+x+m)ex(其中m∈R,e为自然对数的底数)。
若在x=-3处函数f(x)有极大值,则函数f(x)的极小值是f(-2)。
12.(5分) 有下列命题:①“m>0”是“方程x^2+my^2=1表示椭圆”的充要条件;②“a=1”是“直线l1:ax+y-1=0与直线l2:x+ay-2=0平行”的充分不必要条件;③“函数f(x)=x^3+mx单调递增”是“m>0”的充要条件;④已知p,q是两个不等价命题,则“p或q是真命题”是“p 且q是真命题”的必要不充分条件。
福建省龙岩市一级达标校2016-2017学年高二第二学期期末教学质量检查理科数学试卷(扫描版含答案)
福建省龙岩市一级达标校2016-2017学年高二第二学期期末教学质量检查理科数学试卷(扫描版含答案)龙岩市一级达标校2016-2017学年第二学期期末高二教学质量检查数学(理科)试题参考答案一、选择题(每小题5分,共60分)1.B2.A3.C4.C5.D6.B7.A8.C9.B10.A11.D12.D二、填空题(每小题5分,共20分)13.914.2715.a(45,81)16.m≤e+2三、解答题(共70分)17.(本小题满分12分)Ⅰ)列出列联表:男女合计课外体育不达标 60 90 150课外体育达标 30 20 50合计 90 110 200Ⅱ)依表格数据得跳远成绩的平均数x=70,短跑100米成绩的平均数y=66.b=(∑xy-5x·y)/(∑x^2-5x^2)=-5·70·66/2250=0.54b=y-b x=66-0.54·70=28.2所求的回归方程为y=0.54x+28.2.因为k=2200/33≈6.06<6.635,所以在犯错误的概率不超过0.01的前提下不能判断“课外体育达标”与性别有关。
17.(本小题满分12分)Ⅰ)解得z=1+i,所以ω=(2-i)/(2+i)=1-i。
OA=(1,-1),OB=(0,2)。
逆时针旋转5π/4可得到OA的位置,即θ的最小值为5π/4.Ⅱ)由已知可得n=10.设第r+1项的系数最大,则C(10,r+1)=2·C(10,r)。
2(r+2)/(r+1)≥10/(r+1),解得2≥r+1,即1≤r≤3.r=1,2,3.所以3≤n-r≤9,即n-r=3,4,5,6,7,8,9.解得x=1/3或x=-1/2.所求的三项式为3x^2-2x或2x^3-3x^2.答案不唯一。
注:原文章中,解答题的第17题和第18题没有明确区分,已修改。
所以r=7,即系数最大的项为T77.根据分式拆分,2x^2=x^2,化简得x=±24.解:(Ⅰ)由题意得y=(4+202)/(p-10-2p-x)=10+2p-x/(4+x+1)。
重庆市重庆一中2015-2016学年高二上学期期末考试数学理试卷Word版含答案
秘密★启用前2016年重庆一中高2017级高二上期期末考试数 学 试 题 卷(理科) 2016.1(时间:120分钟 分数:150分)一.选择题(本题共12个小题,每小题5分,共60分)1.复数31ii -(i 是虚数单位)的虚部是( )(A )32i (B )32 (C )32i - (D )32-2.定积分()332sin x x dx ππ-+⎰等于( )(A )0 (B )2192π- (C )2219π- (D )2219π+ 3.(原创)已知命题p :R x ∈∀,04223≠+++x x e x ,则⌝p 为( )(A )R x ∈∃0,使得042ln 20300=+++x x x (B )R x ∈∃0,使得04220300≠+++x x e x(C )R x ∈∃,使得04223=+++x x e x (D )R x ∈∀0,使得04220300=+++x x e x4.用反证法证明结论:“曲线()y f x =与曲线()y g x =至少有两个不同的交点”时,要做的假设是( )(A )曲线()y f x =与曲线()y g x =至多有两个不同的交点 (B )曲线()y f x =与曲线()y g x =至多有一个交点 (C )曲线()y f x =与曲线()y g x =恰有两个不同的交点 (D )曲线()y f x =与曲线()y g x =至少有一个交点5.已知直线()R a a ay x ∈+=+2与圆072222=---+y x y x 交于,M N 两点,则线段MN 的长的最小值为( )(A )24 (B )22 (C )2 (D )26.()()830+-<x x 的一个充分不必要条件是( )(A )38<<-x (B )8>x (C )3-<x (D )8-<x 或3>x7.给出以下五个结论:①经过()()1122,,,A x y B x y 两点的直线的方程为112121y y x x y y x x --=--; ②以()()1122,,,A x y B x y 为直径的两个端点的圆的方程为()()()()12120x x x x y y y y --+--=;③平面上到两个定点12,F F 的距离的和为常数2a的点的轨迹是椭圆;④平面上到两个定点12,F F 的距离的差为常数()1222||a a F F <的点的轨迹是双曲线;⑤平面上到定点F 和到定直线l 的距离相等的点的轨迹是抛物线。
陕西省咸阳市实验中学2016-2017学年高二下学期期末检测数学(理)试题 (word版含答案)
2016-2017学年度第二学期高二期末检测数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题)一、选择题(本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若复数满足,则A. B. C. D.2. 设随机变量X~B(8,p),且D(X)=1.28,则概率p的值是A. 0.2B. 0.8C. 0.2或0.8D. 0.163. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;②设有一个回归方程,变量x增加一个单位时,y平均增加3个单位;③线性回归方程必经过点(,);④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是()A. 0B. 1C. 2D. 34. 用反证法证明:若整系数一元二次方程有有理数根,那么中至少有一个是偶数.下列假设正确的是A. 假设都是偶数;B. 假设都不是偶数C. 假设至多有一个偶数D. 假设至多有两个偶数5. 过点O(1,0)作函数f(x)=e x的切线,则切线方程为()A. y=e2(x-1)B. y=e(x-1)C. y=e2(x-1)或y=e(x-1)D. y=x -16. 随机变量ξ服从二项分布ξ~B(n,P),且E(ξ)=300,D(ξ)=200,则等于()A. 3200B. 2700C. 1350D. 12007. 从1,2,3,4,5中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)等于( )A. B. C. D.8. 如图,AB∩α=B,直线AB与平面α所成的角为75°,点A是直线AB上一定点,动直线AP与平面α交于点P,且满足∠PAB=45°,则点P在平面α内的轨迹是()A. 双曲线的一支B. 抛物线的一部分C. 圆D. 椭圆9. 下表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为=0.7x +0.35,则下列结论错误的是( )A. 产品的生产能耗与产量呈正相关B. t的值是3.15C. 回归直线一定过(4.5,3.5)D. A产品每多生产1吨,则相应的生产能耗约增加0.7吨10. 将5件不同的奖品全部奖给3个学生,每人至少一件奖品,则不同的获奖情况种数是A. 150B. 210C. 240D. 30011. 设矩形ABCD,以A、B为左右焦点,并且过C、D两点的椭圆和双曲线的离心率之积为()A. B. 2 C. 1 D. 条件不够,不能确定12. 已知函数f(x)=x3+bx2+cx+d的图象如图,则函数的单调递减区间是()A. (-∞,-2)B. (-∞,1)C. (-2,4)D. (1,+∞)第Ⅱ卷(非选择题)二、填空题(本大题共4小题.把答案直接填在题中的相应横线上.)13. 直线是曲线的一条切线,则实数的值为____________14. 连续掷一枚质地均匀的骰子4次,设事件A=“恰有2次正面朝上的点数为3的倍数”,则P(A)=________.15. 已知,则的值等于________.16. 已知函数,如果存在,使得对任意的,都有成立,则实数a的取值范围是__________.三、解答题(本大题共6小题.解答应写出文字说明、证明过程或演算步骤.)17. 在的展开式中,求:(1)第3项的二项式系数及系数;(2)含的项.18. 设正项数列的前项和为,且,(1)求,并猜想数列的通项公式(2)用数学归纳法证明你的猜想.19. 某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.(Ⅰ)设甲、乙两个班所抽取的10名同学成绩方差分别为、,比较、的大小(直接写出结果,不写过程);(Ⅱ)从甲班10人任取2人,设这2人中及格的人数为X,求X的分布列和期望;(Ⅲ)从两班这20名同学中各抽取一人,在已知有人及格的条件下,求抽到乙班同学不及格的概率.20. 如图,四棱锥P—ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F 是PC的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)若底面ABCD为正方形,,求二面角C—AF—D大小..21. 已知函数(a<0).(Ⅰ)当a=-3时,求f(x)的单调递减区间;(Ⅱ)若函数f(x)有且仅有一个零点,求实数a的取值范围;参考答案:1【答案】C2【答案】C3【答案】D4【答案】B5【答案】A6【答案】B7【答案】B8【答案】D9【答案】B10【答案】A11【答案】C12【答案】A13【答案】14【答案】15【答案】16【答案】17.解:(1)第3项的二项式系数为C=15,又T3=C (2)42=24·Cx,所以第3项的系数为24C=240.(2)T k+1=C (2)6-k k=(-1)k26-k Cx3-k,令3-k=2,得k=1.所以含x2的项为第2项,且T2=-192x2.18.解:(1)当时,,∴或(舍,).当时,,∴.当时,,∴.猜想:.(2)证明:①当时,显然成立.②假设时,成立,则当时,,即∴.由①、②可知,,.19.解:(Ⅰ)由茎叶图可得.(Ⅱ)由题可知X取值为0,1,2.,,,所以X的分布列为:所以.(Ⅲ)由茎叶图可得,甲班有4人及格,乙班有5人及格.设事件A=“从两班这20名同学中各抽取一人,已知有人及格”,事件B=“从两班这20名同学中各抽取一人,乙班同学不及格”.则.20解:(Ⅰ)连接BD,设AC∩BD=O,连结OE,∵四边形ABCD为矩形,∴O是BD的中点,∵点E是棱PD的中点,∴PB∥EO,又PB平面AEC,EO平面AEC,∴PB∥平面AEC.(Ⅱ)由题可知AB,AD,AP两两垂直,则分别以、、的方向为坐标轴方向建立空间直角坐标系.明确平面DAF的一个法向量为,利用二面角公式求角.设由可得AP=AB,于是可令AP=AB=AD=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),F(1,1,1)设平面CAF的一个法向量为.由于,所以,解得x=-1,所以.因为y轴平面DAF,所以可设平面DAF的一个法向量为.由于,所以,解得z=-1,所以.故.所以二面角C—AF—D的大小为60°.点睛:立体几何是高中数学的重要内容之一,也历届高考必考的题型之一.本题考查是空间的直线与平面的平行问题和空间两个平面所成角的范围的计算问题.解答时第一问充分借助已知条件与判定定理,探寻直线PB与EO平行,再推证PB∥平面AEC即可.关于第二问中的二面角的余弦值的问题,解答时巧妙运用建构空间直角坐标系,探求两个平面的法向量,然后运用空间向量的数量积公式求出二面角的余弦值21.解(Ⅰ)∵a=-3,∴,故令f′(x)<0,解得-3<x<-2或x>0,即所求的单调递减区间为(-3,-2)和(0,+∞)(Ⅱ)∵(x>a)令f′(x)=0,得x=0或x=a+1(1)当a+1>0,即-1<a<0时,f(x)在(a,0)和(a+1,+∞)上为减函数,在(0,a+1)上为增函数.由于f(0)=aln(-a)>0,当x→a时,f(x)→+∞.当x→+∞时,f(x)→-∞,于是可得函数f(x)图像的草图如图,此时函数f(x)有且仅有一个零点.即当-1<a<0对,f(x)有且仅有一个零点;(2)当a=-1时,,∵,∴f(x)在(a,+∞)单调递减,又当x→-1时,f(x)→+∞.当x→+∞时,f(x)→-∞,故函数f(x)有且仅有一个零点;(3)当a+1<0即a<-1时,f(x)在(a,a+1)和(0,+∞)上为减函数,在(a+1,0)上为增函数.又f(0)=aln(-a)<0,当x→a时,f(x)→+∞,当x→+∞时,f (x)→-∞,于是可得函数f(x)图像的草图如图,此时函数f(x)有且仅有一个零点;综上所述,所求的范围是a<0.。
高考数学一轮总复习专题2.6对数及对数函数练习(含解析)文(2021年整理)
专题2.6 对数及对数函数真题回放1. 【2017高考天津文第6题】已知奇函数在上是增函数.若,则的大小关系为 (A )(B )(C )(D ) 【答案】【考点】1。
指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,,再比较比较大小。
2.【2017高考全国卷文第9题】已知函数,则 A . 在(0,2)单调递增B .在(0,2)单调递减C .y =的图像关于直线x =1对称D .y =的图像关于点(1,0)对称【答案】C 【解析】试题分析:由题意知,,所以的图象关于直线对称,C 正确,D 错误;又(),在上单调递增,在上单调递减,A ,B 错误,故选C .【考点】函数性质【名师点睛】如果函数,,满足,恒有 ()f x R0.8221(l o g ),(l o g 4.1),(2)5a f b f cf =-==,,abca b c <<b a c <<c b a <<c a b <<C()2l o g5a f =0.822l o g 5,l o g 4.1,2()l nl n (2)fx x x =+-()f x ()f x ()f x ()f x (2)l n (2)l n()fx x x f x -=-+=()f x 1x =112(1)'()2(2)x f x x x x x -=-=--02x <<(0,1)[1,2)()f x x D ∀∈x D ∀∈()()fa x fb x +=-,那么函数的图象有对称轴;如果函数,,满足,恒有,那么函数的图象有对称中心.3。
【2017高考全国卷文第8题】函数的单调递增区间是 A 。
B. C 。
D.【答案】D4。
【2015高考上海卷文第8题】 方程的解为 。
【答案】2【解析】依题意,所以, 令,所以,解得或, 当时,,所以,而,所以不合题意,舍去; 当时,,所以,,,所以满足条件,所以是原方程的解. 【考点定位】对数方程。
2016_2017学年度高二第二学期期末考试理科数学试题与答案
试卷类型:A高二数学(理科)试题2017.7 注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共5页。
2.答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的、号填写清楚,并粘好条形码。
请认真核准条形码上的号、和科目。
3.答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在本试卷上无效。
4.答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域作答。
答在本试卷上无效。
5.第(22)、(23)小题为选考题,请按题目要求从中任选一题作答,并用2B 铅笔在答题卡上把所选题目题号后的方框涂黑。
6.考试结束后,将本试卷和答题卡一并收回。
附:回归方程ˆˆˆybx a =+中斜率与截距的最小二乘估计公式分别为: ∑∑∑∑====--=---=ni ini ii ni ini iixn xy x n yx x x y yx x b1221121)())((ˆ,x b y aˆˆ-= 第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
(1)已知复数iiz +-=122,其中i 是虚数单位,则z 的模等于 (A )2- (B) 3 (C) 4 (D) 2(2)用反证法证明某命题时,对结论:“自然数c b a ,,中恰有一个偶数”正确的反设为 (A) c b a ,,中至少有两个偶数 (B)c b a ,,中至少有两个偶数或都是奇数 (C) c b a ,,都是奇数 (D) c b a ,,都是偶数 (3)用数学归纳法证明:对任意正偶数n ,均有41212111 (41)31211+++=--++-+-n n n n ( )21...n++,在验证2=n 正确后,归纳假设应写成 (A )假设)(*N k k n ∈=时命题成立 (B )假设)(*N k k n ∈≥时命题成立 (C )假设)(2*N k k n ∈=时命题成立 (D )假设))(1(2*N k k n ∈+=时命题成立(4)从3男4女共7人中选出3人,且所选3人有男有女,则不同的选法种数有 (A )30种 (B) 32 种 (C) 34种 (D) 35种 (5)曲线xe y =在点()22e ,处的切线与坐标轴所围三角形的面积为(A)22e (B)2e (C) 22e (D) 492e(6)已知随机变量X 服从正态分布()2,3σN ,且)3(41)1(>=<X P X P ,则)5(<X P 等于(A)81 (B) 85 (C) 43 (D) 87(7)已知⎰≥3sin 2πxdx a ,曲线)1ln(1)(++=ax aax x f 在点())1(,1f 处的切线的斜率为k ,则k 的最小值为 (A)1 (B)23(C)2 (D) 3 (8)甲、乙、丙三人独立参加体育达标测试,已知甲、乙、丙各自通过测试的概率分别为p ,4332,,且他们是否通过测试互不影响.若三人中只有甲通过的概率为161,则甲、丙二人中至少有一人通过测试的概率为 (A)87 (B) 43 (C) 85 (D) 76(9)函数)1(2)(3-'+=f x x x f ,则函数)(x f 在区间[]3,2-上的值域是 (A) ]9,24[- (B) ]24,24[- (C) ]24,4[ (D)[]9,4 (10)设()()5522105)1(...1)1(1x a x a x a a x +++++++=-,则420a a a ++等于(A) 242 (B) 121 (C) 244 (D)122(11)已知函数)()()(2R b x bx x e x f x ∈-=.若存在⎥⎦⎤⎢⎣⎡∈2,21x ,使得0)()(>'+x f x x f ,则实数b 的取值围是(A) ⎪⎭⎫ ⎝⎛∞-65, (B) ⎪⎭⎫ ⎝⎛∞-38, (C) ⎪⎭⎫⎝⎛-65,23 (D) ⎪⎭⎫⎝⎛∞+,38 (12)中国南北朝时期的著作《子算经》中,对同余除法有较深的研究.设)0(,,>m m b a 为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为)(mod m b a =.如9和21被6除得的余数都是3,则记)6(mod 219=.若20202022201200202...22⋅++⋅+⋅+=C C C C a ,)10(mod b a =,则b 的值可以是(A) 2011 (B) 2012 (C) 2013 (D) 2014第II 卷本卷包括必考题和选考题两部分。
2017学年四川省成都七中高二上学期期末数学试卷及参考答案(理科)
2017学年四川省成都七中高二上学期期末数学试卷及参考答案(理科)2016-2017学年XXX(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)命题p:“a=-2”是命题q:“直线ax+3y-1=0与直线6x+4y-3=0垂直”成立的()A。
充要条件 B。
充分非必要条件C。
必要非充分条件 D。
既不充分也不必要条件2.(5分)XXX为了全面落实素质教育,切实有效减轻学生课业负担,拟从林荫、高新两个校区的初高中学生中抽取部分学生进行调查,事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大。
在下面的抽样方法中,最合理的抽样方法是()A。
简单随机抽样 B。
按性别分层抽样C。
按年级分层抽样 D。
系统抽样3.(5分)圆(x+2)²+y²=4与圆(x-2)²+(y-1)²=9的位置关系为()A。
内切 B。
相交 C。
外切 D。
相离4.(5分)已知双曲线的离心率为2,那么双曲线的渐近线方程为()A。
B。
x±y=0C。
2x±y=0 D。
5.(5分)函数f(x)=x²-x-2,x∈[-5,5],在定义域内任取一点x,使f(x)≤0的概率是()A。
B。
C。
D。
6.(5分)设实数x,y满足,则μ=的取值范围是()A。
[,2] B。
[,]C。
[,2] D。
[2,]7.(5分)有5名高中优秀毕业生回母校成都7中参加高2015级励志成才活动,到3个班去做研究经验交流,则每个班至少去一名的不同分派方法种数为()A。
200 B。
180C。
150 D。
2808.(5分)柜子里有3双不同的鞋,随机地取2只,下列叙述错误的是()A。
取出的鞋不成对的概率是0B。
取出的鞋都是左脚的概率是0C。
取出的鞋都是同一只脚的概率是0D。
取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率是1/39.(5分)执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是()A。
2014-2015学年高二上学期期末考试数学(理)试题_Word版含答案
2016级高二期末考试试卷理科数学一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求. 1.i 为虚数单位,则2013i = ( )A .i -B .1-C .iD .1 2.若()e x f x x =,则(1)f '=( )A .0B .eC .2eD .2e3.已知双曲线2219x y m-=的一个焦点坐标是()5,0,则双曲线的渐近线方程是 ( )A .34y x =±B .43y x =±C.y x = D.y x = 4.下列叙述:①若两条直线平行,则它们的方向向量方向相同或相反;②若两个向量均为同一个平面的法向量,则以这两个向量为方向向量的直线一定平行; ③若一条直线的方向向量与某一个平面的法向量垂直,则该直线与这个平面平行. 其中正确的个数是 ( ) A .0个 B .1个 C .2个 D .3个5.学校体育场南侧有4个大门,北侧有3个大门,西侧有2个大门,某学生到该体育场训练,但必须是从南或北门进入,从西门或北门出去,则他进出门的方案有( )A .7个B .12个C .24个D .35个 6.下列推理中属于归纳推理且结论正确的是( )A .设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S ===,…,推断:2n S n =B .由()cos f x x x =满足()()f x f x -=-对∀x ∈R 都成立,推断:()cos f x x x =为奇函数C .由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D .由()()()222123112,212,312,+>+>+>…,推断:对一切n ∈N *,()212n n +>7.已知函数32()393f x x x x =--+,若函数()()g x f x m =-在[]2,5x ∈-上有3个零点,则m 的取值范围为( ) A .(-24,8)B .(-24,1]C .[1,8]D .[1,8)8.抛物线22(0)y px p =>的焦点为F ,已知点,A B 为抛物线上的两个动点,且满足90AFB ∠=.过弦AB的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为ABC .1D二、 75分,共35分.9.204sin xdx π=⎰10.已知01a <<,复数z 的实部为a ,虚部为1,则复数z 对应的点Z 到原点距离的取值范围是 11.曲线C :ln xy x=在点(1,0)处的切线方程是 . 12.棱长均为3的三棱锥S ABC -,若空间一点P 满足(1)SP xSA ySB zSC x y z =++++=,则SP 的最小值为 .13.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼-15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是 .14.椭圆22:143x y C +=的左、右顶点分别为12A A 、,点P 在椭圆C 上,记直线2PA 的斜率为2k ,直线1PA 的斜率为1k ,则 1k ·2k = . 15.函数2()ln(1)f x x a x =++有两个不同的极值点12,x x ,且12x x <,则实数a 的范围是 三、解答题:本大题共6个小题,共75分,解答题写出文字说明、证明过程或演算步骤.16.(本小题满分12分) 设p :实数x 满足22430x ax a -+<, :q 实数x 满足31x -<. (1)若1,a =且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围. 17.(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直底面,90ACB ∠=︒,12AC BC CC ===. (1)求证:11AB BC ⊥;(2)求二面角111C AB A --的大小.18.(本小题满分12分)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y (单位:千套)与销售价格x (单位:元/套)满足的关系式()2462m y x x =+--,其中26x <<,m 为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m 的值;(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数). 19.(本小题满分13分)设数列{}n a 的前n 项和为n S (即123n n S a a a a =++++),且方程20n n x a x a --=有一根为n S -1,n =1,2,3…….(1)求12,a a ;(2)猜想数列{}n S 的通项公式,并用数学归纳法给出严格的证明.20.(本小题满分13分)已知椭圆C :22221x y a b +=(0)a b >>2.(1)求椭圆C 的方程;(2)过点M (0,13-)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以A B 为直径的圆恒过定点T ?若存在,求出点T 的坐标;若不存在,请说明理由. 21.(本小题满分13分)已知),1ln()(+=x x f bx ax x g +=221)( (1)若0=a ,1=b 时,求证:0)()(≤-x g x f 对于),1(+∞-∈x 恒成立; (2)若2=b ,且)()1()(x g x f x h --=存在单调递减区间,求a 的取值范围;(3)利用(1)的结论证明:若y x <<0,则2ln )(ln ln yx y x y y x x ++>+.CCBBDADA 9.4 10.()1,2 11.1y x =- 12.6 13.24 14.-34 15.10,2⎛⎫⎪⎝⎭16.解:(1). 由22430x ax a -+<得(3)()0x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<.……………2分由31x -<, 得131x -<-<, 得24x <<即q 为真时实数x 的取值范围是24x <<,……4分 若p q ∧为真,则p 真且q 真,所以实数x 的取值范围是23x <<.……6分(2) 由22430x ax a -+<得(3)()0x a x a --< p ⌝是q ⌝的充分不必要条件,即p ⌝⇒q ⌝,且q ⌝⇒/p ⌝, ……………8分设A ={|}x p ⌝,B ={|}x q ⌝,则AB ,又A ={|}x p ⌝={|3}x x a x a ≤≥或, B ={|}x q ⌝={x|x≥4或x≤2},……………10分 则02a <≤,且34a ≥所以实数a 的取值范围是423a ≤≤12分 17.解::方法一:(1)∵11,AC BC AC CC BCCC C ⊥⊥=且∴11AC C CBB ⊥平面,又111BC C CBB ⊂平面∴1111,,AC BC B C BC AC B C C ⊥⊥=且 ∴1111BC AB C AB AB C ⊥⊂平面,又平面 ∴11AB BC ⊥(2)取11A B 的中点为H ,在平面11A ABB 内过H 作1HQ AB ⊥于点Q ,连接1C Q 则111C H A ABB ⊥平面,∴11C H AB ⊥,而1C H HQ H =∴1111AB C HQ AB C Q ⊥∴⊥平面,∴1C QH ∠是二面角111C AB A --的平面角,又1162C H A AB HQ ==,在内,解得∴111tan 3,60C HC QH C QH HQ∠==∠=︒∴二面角111C AB A --为60°.18.解:(1)因为4x =时,21y =, 代入关系式()2462m y x x =+--,得16212m +=, 解得10m =.……………………4分 (2)由(1)可知,套题每日的销售量()210462y x x =+--,……………5分 所以每日销售套题所获得的利润()()()()()223210()24610462456240278262f x x x x x x x x x x ⎡⎤=-+-=+--=-+-<<⎢⎥-⎣⎦……………………8分从而()()()()2'121122404310626f x x x x x x =-+=--<<.令()'0f x =,得103x =,且在102,3⎛⎫ ⎪⎝⎭上,0)('>x f ,函数)(x f 单调递增;在10,63⎛⎫⎪⎝⎭上,0)('<x f ,函数)(x f 单调递减, ……………………10分所以103x =是函数)(x f 在()2,6内的极大值点,也是最大值点,所以当103.33x =≈时,函数)(x f 取得最大值. 故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大. …………………12分19.解:(1)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,于是(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.……………3分当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是⎝⎛⎭⎫a 2-122-a 2⎝⎛⎭⎫a 2-12-a 2=0,解得a 2=16.……5分 (2)由题设(S n -1)2-a n (S n -1)-a n =0,即S 2n -2S n +1-a n S n =0. 当n ≥2时,a n =S n -S n -1,代入上式得S n -1S n -2S n +1=0.① 由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23.由①可得S 3=34.由此猜想S n =nn +1,n =1,2,3…. ……………7分下面用数学归纳法证明这个结论. (ⅰ)n =1时已知结论成立.……………8分(ⅱ)假设n =k (k ≥1,k ∈N *)时结论成立,即S k =kk +1,当n =k +1时,由①得S k +1=12-S k,……………10分 即S k +1=k +1k +2,故n =k +1时结论也成立.……………12分综上,由(ⅰ)(ⅱ)可知S n =nn +1对所有正整数n 都成立.……………13分1CA BC1A1B20.解:(1)设椭圆的焦距为2c,则由题设可知2221a c ca a cb ⎧-=⎪⎪=⎨⎪⎪=+⎩,解此方程组得a =1b =. 所以椭圆C 的方程是2212x y +=. ……………………5分 (2)解法一:假设存在点T (u, v ). 若直线l 的斜率存在,设其方程为13y kx =-, 将它代入椭圆方程,并整理,得22(189)12160k x kx +--=.设点A 、B 的坐标分别为1122(,),(,)A x y B x y ,则 12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩因为1122(,),(,)TA x u y v TB x u y v =--=--及112211,,33y kx y kx =-=-所以1212()()()()TA TB x u x u y v y v =--+--2221212121(1)()()339v k x x u k kv x x u v =+-+++++++222222(666)4(3325)62u v k ku u v v k +--+++-=+ …………………9分 当且仅当0TA TB =恒成立时,以AB 为直径的圆恒过定点T ,所以2222618180,0,33250.u v u u v v ⎧+-=⎪=⎨⎪++-=⎩解得0, 1.u v ==此时以AB 为直径的圆恒过定点T (0,1). …………………11分 当直线l 的斜率不存在,l 与y 轴重合,以AB 为直径的圆为221x y +=也过点T (0,1). 综上可知,在坐标平面上存在一个定点T (0,1),满足条件. …………………13分解法二:若直线l 与y 轴重合,则以AB 为直径的圆是22 1.x y +=若直线l 垂直于y 轴,则以AB 为直径的圆是22116().39x y ++=……………7分 由22221,116().39x y x y ⎧+=⎪⎨++=⎪⎩解得01x y =⎧⎨=⎩.由此可知所求点T 如果存在,只能是(0,1). ………………8分 事实上点T (0,1)就是所求的点. 证明如下:当直线l 的斜率不存在,即直线l 与y 轴重合时,以AB 为直径的圆为221x y +=,过点T (0,1);当直线l 的斜率存在,设直线方程为13y kx =-,代入椭圆方程,并整理,得22(189)12160.k x kx +--= 设点A 、B 的坐标为1122(,),(,)A x y B x y ,则12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩…………………10分因为1122(,1),(,1)TA x y TB x y =-=-,21212121212416()1(1)()39TA TA x x y y y y k x x k x x =+-++=+-++222216161632160.189k k k k ---++==+所以TA TB ⊥,即以AB 为直径的圆恒过定点T (0,1).综上可知,在坐标平面上存在一个定点T (0,1)满足条件. …………………13分 21.解:(1)设x x x g x f x -+=-=)1ln()()()(ϕ,则.1111)('+-=-+=x x x x ϕ………………….2分当时,)(x 有最大值0 ∴0)(≤x 恒成立。
衡水中学2016-2017学年高二上学期期中数学试卷(理科) 含解析
2016—2017学年河北省衡水中学高二(上)期中数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设a,b∈R,则“(a﹣b)a2<0”是“a<b”的()A.充分而不必要条件B.必要而不充分条件C.充要条件 D.既不充分也不必要条件2.若以双曲线﹣=1(b>0)的左、右焦点和点(1,)为顶点的三角形为直角三角形,则b等于()A.B.1 C.D.23.已知双曲线E:﹣=1(a>0,b>0)的离心率是,则E的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±2x4.已知p:∀m∈R,x2﹣mx﹣1=0有解,q:∃x0∈N,;则下列选项中是假命题的为()A.p∧q B.p∧(¬q)C.p∨q D.p∨(¬q)5.抛物线y=x2上一点到直线2x﹣y﹣4=0的距离最短的点的坐标是( )A.(1,1) B.()C.D.(2,4)6.命题“∀n∈N*,f(n)≤n”的否定形式是()A.∀n∈N*,f(n)>n B.∀n∉N*,f(n)>n C.∃n∈N*,f(n)>n D.∀n∉N*,f(n)>n7.过抛物线y2=2px(p>0)的焦点F,且倾斜角为的直线与抛物线交于A,B两点,若弦AB的垂直平分线经过点(0,2),则p等于()A.B. C. D.8.已知椭圆(a>b>0)的半焦距为c(c>0),左焦点为F,右顶点为A,抛物线与椭圆交于B、C两点,若四边形ABFC 是菱形,则椭圆的离心率是()A.B.C. D.9.焦点在x轴上的椭圆方程为+=1(a>b>0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为,则椭圆的离心率为()A.B. C. D.10.以下有关命题的说法错误的是()A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.命题“在△ABC中,若A>B,则sinA>sinB"的逆命题为假命题D.对于命题p:∃x∈R,使得x2+x﹣1<0,则¬p:∀x∈R,则x2+x+1≥011.过抛物线y2=2px(p>0)的焦点F的直线与双曲线x2﹣=1的一条渐近线平行,并交抛物线于A,B两点,若|AF|>|BF|,且|AF|=2,则抛物线的方程为()A.y2=2x B.y2=3x C.y2=4x D.y2=x12.设F1、F2分别为双曲线C:﹣=1(a>0,b>0)的左、右焦点,A为双曲线的左顶点,以F1F2为直径的圆交双曲线某条渐过线于M,N两点,且满足∠MAN=120°,则该双曲线的离心率为()A.B.C. D.二、填空题若命题“∃x0∈R,x02+mx0+2m﹣3<0”为假命题,则实数m的取值范围是…14.已知直线l:x+3y﹣2b=0过双曲线的右焦点F,则双曲线的渐近线方程为.15.已知以F为焦点的抛物线y2=4x上的两点A、B满足=3,则弦AB的中点到准线的距离为.16.给出下列结论:动点M(x,y)分别到两定点(﹣3,0)、(3,0)连线的斜率之乘积为,设M(x,y)的轨迹为曲线C,F1、F2分别为曲线C的左、右焦点,则下列命题中:(1)曲线C的焦点坐标为F1(﹣5,0)、F2(5,0);(2)若∠F1MF2=90°,则S=32;(3)当x<0时,△F1MF2的内切圆圆心在直线x=﹣3上;(4)设A(6,1),则|MA|+|MF2|的最小值为;其中正确命题的序号是:.三、解答题(本大题共6小题,共70分。
江苏省泰州2016-2017学年高二下学期期末数学试题(理)含答案
江苏省泰州2016-2017学年高二下学期期末数学试题(理)含答案2016-2017学年度第二学期期末考试高二数学(理科)试题一、填空题:共14小题,每小题5分,共70分1.4!的值为 24.2.椭圆的参数方程为{x=2cosθ。
y=sinθ}(θ为参数),则该椭圆的普通方程为 x^2/4+y^2=1.3.已知a=(2,4,-1)。
b=(m,1,0),若a⊥b,则m=-2.4.在[-2,1]上随机取一个数x,使得x<1的概率为3/4.5.某高级中学共有2000名学生,为了了解不同年级学生的眼睛的近视情况,现用分层抽样的方法抽取一个容量为100的样本,高三年级抽取的学生人数为35人,则高三年级学生人数为 175人.6.右图是一个算法的流程图,则输出的k的值是 4.7.极坐标系中,点(1,0)到直线θ=π/4的距离是1/√2.8.一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这颗骰子连续抛掷两次,观察向上的点数,则两点数之和不为5的概率为 11/18.9.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为 20.10.现将5张连号的电影票分给5个人(5人中含甲乙两人),每人一张,且甲、乙两人分得的电影票连号,则共有不同的分法的种数为 12.11.若Cx(x+3)-Cx+2=28,则x的值为 3.12.若点P(ρ,θ)到直线θ=π/3的距离为3,则ρ=3/√3=√3.13.以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,且在两种坐标系中取相同的长度单位,已知平面直角坐标系中,直线l的参数方程为 {x=-1+2t。
y=2+t}(t为参数)在极坐标系中,圆C的圆心的极坐标为C(1,π/4),半径为1.1)求圆C的直角坐标方程;圆C的极坐标方程为ρ=1,θ=π/4,所以C的直角坐标为(√2/2.√2/2).2)判断直线l与圆C的位置关系。
辽宁省大连市第十一中学2016-2017学年高二上学期期末考试数学(理)试题 含答案
2016-2017上学期高二期末考试卷高二数学(理科)时间:120分钟 分数:150分 命题人:刘惠平审核人:高清燕一、选择题:本大题共16小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若110ab<<,则下列不等式①ab b a <+;②||||b a >;③b a <;④2>+ba ab 中,正确的不等式有( ) A 。
1个 B.2个 C.3个D.4个2.设平面α的一个法向量为1(1,2,2)n =-,平面β的一个法向量为2(2,4,)n k =--,若//αβ,则k =()A .2B .4- C .2-D .43.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式24[]36[]450x x -+<成立的x 的取值范围是()A.315(,)22B 。
[2,8]C 。
[2,8)D.[2,7)4。
下列命题中正确的是( ) A .若p q ∨为真命题,则p q ∧为真命题 B .“5x =”是“2450xx --=”的充分不必要条件C .命题“若1x <-,则2230xx -->”的否命题为:“若1x <-,则2230x x --≤”D .已知命题p :x R ∃∈,210xx +-<,则p ⌝:x R ∃∈,210x x +-≥5.设'()fx 是函数)(x f 的导函数,)(x f y '=的图象如图所示,则()y f x =的图象最有可能的是( )6.已知直线y ax =是曲线ln y x =的切线,则实数a =( ) A 。
12B 。
12eC.1eD 。
21e7.已知双曲线()222210,0x y a b a b -=>>的离心率为62,左顶点到一条渐近线的距离为263,则该双曲线的标准方程为( )A .22184x y -=B .221168x y -=C .2211612x y -=D .221128x y -=8.若32()1f x xax =-+在(1,3)内单调递减,则实数a 的范围是()A .(,3]-∞B .9[,)2+∞ C .9(3,)2D .()0,39.已知变量,x y 满足430140x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则x y -的取值范围是( )A .62,5⎡⎤-⎢⎥⎣⎦B .[]2,0-C 。
2016-2017学年高二上学期期末考试数学(文)试题 Word版缺答案
2016-2017学年高二上学期文科数学期末试卷一、选择题(本大题共12小题,每小题5分,共60分)1.若复数(a +i )(1+2i )是纯虚数(i 是虚数单位,a 是实数),则a 等于( ) A.B.2C.-D.-22.已知某物体的运动方程是s =+t ,则当t =3s 时的瞬时速度是( )A.2m /sB.3m /sC.4m /sD.5m /s 3.运行如图程序,则输出的结果是( )A.9B.11C.17D.19 4.“x =1”是“x 2-2x +1=0”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.从装有3个红球、2个白球的袋中任取2个球,则所取的2个球中至少有1个白球的概率是( ) A.B.C.D.6. 为了解1500名学生对学校教改试验的意见,打算从中抽取一个容量为50的样本,考虑采用系统抽样,则分段的间隔k 为( ) A.40 B.20 C.30 D.127.已知△ABC 的顶点B 、C 在椭圆+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) A.2B.4C.6D.128.执行如图所示的程序框图,则输出的k 的值是( )A.3B.4C.5D.6 9.点P 为△ABC 边AB 上任一点,则使S △PBC ≤S △ABC 的概率是( )A.B.C.D.10.若函数y=f(x)的导函数y=f′(x)的图象如图所示,则y=f(x)的图象可能()A. B. C. D.11.过点M(1,1)的直线与双曲线22143x y-=交于A,B两点,且点M平分AB,则直线AB的方程为()A.4x+3y-7=0B.3x+4y+1=0C.3x-4y-7=0D.4x-3y-1=012.若直线y=m与y=3x-x3的图象有三个不同的交点,则实数m的取值范围为()A.(-2,2)B.[-2,2]C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果.已知男员工抽取了16人,则女员工应抽取人数为 ______ .14.设命题p:,则¬p为 ______ .15.函数f(x)=lnx的图象在点x=1处的切线方程是 ______ .16.已知直线2x-y+4=0与抛物线x2=4y相交于A,B两点,O是坐标原点,P是抛物线弧AOB上的一点,则△ABP面积的最大值是 ______ .三、解答题(本大题共6小题,第17题10分,第18-22题各12分,共70分)17.设x,y为实数,且+=,求x+y的值.18.设p:实数x满足x2-4ax+3a2<0,其中a>0;q:实数x满足<0.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.19.某校高中一年级组织学生参加了环保知识竞赛,并抽取了其中20名学生的成绩进行分析.右图是这20名学生竞赛成绩(单位:分)的频率分布直方图,其分组为[100,110),[110,120),…,[130,140),[140,150].(Ⅰ)求图中a的值及成绩分别落在[100,110)与[110,120)中的学生人数;(Ⅱ)学校决定从成绩在[110,120)的学生中任选2名进行座谈,求这2人的成绩都在[110,120)的概率.20.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.附:K2=.21.已知椭圆的焦点为F1、F2,抛物线y2=px(p>0)与椭圆在第一象限的交点为Q,若∠F1QF2=60°.(1)求△F1QF2的面积;(2)求此抛物线的方程.22.已知函数f(x)=x3-(a∈R).(Ⅰ)若a=1,求函数f(x)在[0,2]上的最大值;(Ⅱ)若对任意x∈(0,+∞),有f(x)>0恒成立,求a的取值范围.。
江西省南昌市第二中学2016-2017学年高二上学期期末考试数学(理)试题Word版含答案
南昌二中2016—2017学年度上学期期末考试高二数学(理)试卷命题人:骆 敏 审题人:曹开文一、选择题(本大题共12小题,每小题5分,共60分)1. 命题:“00x ∃>,使002()1xx a ->”,这个命题的否定是( ) A .0x ∀>,使2()1xx a -> B .0x ∀>,使2()1xx a -≤ C .0x ∀≤,使2()1xx a -≤ D .0x ∀≤,使2()1xx a -> 2. “0cos =α”是“1sin =α”的( ).A.充分不必要条件B. 充分必要条件C. 必要不充分条件D.既不充分也不必要条件3.直线00x x at y y bt =+⎧⎨=+⎩(t 为参数)上两点B A ,对应的参数值是21,t t ,则AB 等于( )A .21t t +B .21t t - C12|t t - D4. 用数学归纳法证明3)12(12)1()1(2122222222+=+++-++-+++n n n n n 时,由k n =的假设到证明1+=k n 时,等式左边应添加的式子是( )A. 222)1(k k ++B. 22)1(k k ++ C. 2)1(+kD. ]1)1(2)[1(312+++k k5. 直线x y 4=与曲线3x y =在第一象限内围成的封闭图形的面积为( ) A. 4 B. 2C. 24D. 226. 若直线3450x y -+=与圆()2220x y r r +=>相交于B A ,两点且120o AOB ∠=则r =( ) A.1B. 2C.332 D.3 7. 过原点作曲线ln y x =的切线,则切线斜率为( )A. -1B.1C. eD.e1 8.函数2(21)1=+-+y x a x 在区间(-∞,2]上是减函数,则实数a 的范围是( )A .),23[+∞-B . ),23[+∞C .]23,(--∞D .]23,(-∞ 9. 函数3)2(3123++++=x b bx x y 在R 上不是单调增函数则b 范围为( )A. )2,1(-B. ),2[]1,(+∞⋃--∞C. ]2,1[-D. ),2()1,(+∞⋃--∞10.设函数21()ln(1||)1f x x x=+-+则使)1()2(->x f x f 成立的x 范围为( ) A. ),31()1,(+∞⋃--∞ B. )31,1(-C. ),1()31,(+∞⋃-∞D. )1,31(11. 双曲线2222x y a b-=1)0,0(>>b a 的离心率为2=e ,过双曲线上一点M 作直线MBMA ,交双曲线于B A ,两点,且斜率分别为21,k k ,若直线AB 过原点O 则21k k ⋅值为( ) A. 3 B.2C. 1D.412. 设函数()f x 在R 上存在导函数()f x ',对任意x R ∈,都有2()()f x f x x +-=且(0,)x ∈+∞时,()f x x '>,若(2)()22f a f a a --≥-则实数a 的取值范围为( )A. ),1[+∞B. ]1,(-∞C. ),1()0,(+∞⋃-∞D. ))1,0(二、填空题(本大题共4小题,每小题5分,共20分)13.化极坐标方程0cos 2=-ρθρ为直角坐标方程为_________. 14. 定积分0sin cos x x dx π⎰-=____________.15. 设1e 、2e 分别为具有公共焦点1F 、2F 的椭圆和双曲线的离心率,P 是两曲线的一个公共点,且满足1212P F P F F F +=,则的值为 _______.16. 数列{}n a 的前n 项和为n S .若数列{}n a 的各项按如下规则排列:1121231234121,,,,,,,,,,,2334445555n n n n-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅若存在正整数k ,使110,k S -<10k S >,则_______.k a =三、解答题(本大题共6小题,共70分) 17. (本小题10分)已知命题:p 方程13122=-++my m x 表示焦点在y 轴上的椭圆,命题:q 关于x 的方程03222=+++m mx x 无实根,若“p ∧q ”为假命题,“p ∨q ”为真命题,求实数m 的取值范围.18. (本小题12分)已知221,,2,12x R a x b x c x x ∈=+=-=-+,试用反证法证明:,,a b c 中至少有一 个不小于1.19. (本小题12分)给定直线:216l y x =-,抛物线2:G y ax =(0)a > (1)当抛物线G 的焦点在直线l 上时,求a 的值;(2)若ABC ∆的三个顶点都在(1)所确定的抛物线G 上,且点A 的纵坐标8A y =,ABC ∆的重心恰是抛物线G 的焦点F ,求直线BC 的方程.20. (本小题12分)已知函数1ln )1()(2+++=x x a x f . (Ⅰ)讨论函数)(x f 的单调性;(Ⅱ)若对任意不相等的),0(,21+∞∈x x ,恒有)(4)()(2121x x x f x f -≥-成立,求非负实数a 的取值范围.21. (本小题12分)椭圆22221x y a b+=(0a b >>),其右顶点为()2,0A ,上、下顶点分别为1B ,2B .直线2AB 的斜率为12,过椭圆的右焦点F 的直线交椭圆于M ,N 两点(M ,N 均在y 轴右侧).(1)求椭圆的方程;(2)设四边形12MNB B 面积为S ,求S 的取值范围.22. (本小题12分)设函数()(),bf x ax a b R x=+∈,若()f x 在()()1,1f 处的切线斜率为1. (Ⅰ)用a 表示b ;(Ⅱ)设()()ln g x x f x =-,若()1g x ≤-对定义域内的x 恒成立. (ⅰ)求实数a 的取值范围;(ⅱ)对任意的0,2⎡⎫∈⎪⎢⎣⎭πθ,证明:()()1sin 1sin g g -≤+θθ.南昌二中2016—2017学年度上学期期末考试高二数学(理)试卷参考答案BCCBA BDCDA AB13. 1122==+x y x 或 14. 22 15.2 16. 67k a =17.∵方程表示焦点在y 轴上的椭圆,∴,即即﹣1<m <1,∴若命题p 为真命题,求实数m 的取值范围是(﹣1,1);若关于x 的方程x 2+2mx+2m+3=0无实根,则判别式△=4m 2﹣4(2m+3)<0, 即m 2﹣2m ﹣3<0,得﹣1<m <3.若“p∧q”为假命题,“p∨q”为真命题,则p ,q 为一个真命题,一个假命题, 若p 真q 假,则,此时无解,柔p 假q 真,则,得1≤m<3.综上,实数m 的取值范围是[1,3).18.假设,,a b c 均小于1,即1,1,1a b c <<<则有3a b c ++<而33)21(2272222≥+-=+-=++x x x c b a 矛盾,所以原命题成立 19.(1)∵抛物线2:(0)G y ax a =>的焦点在x 轴上,且其坐标为(,0)4a∴对方程216y x =-令0y =得8x =从而由已知得84a=,32a =.(2)由(1)知:抛物线G 的方程是232y x =,(8,0)F . 又∵点A 在抛物线G 上,且8A y =,∴(2,8)A .延长AF 交BC 于点D ,则由点F 是ABC ∆的重心得:点D 为线段BC 的中点. 设点(,)D x y ,则由2AF FD =得(82,08)2(8,0)x y --=--,解之得:114x y =⎧⎨=-⎩.∴(11,4)D - 设1122(,),(,)B x y C x y ,则由点,B C 在抛物线232y x =上得:2112223232y x y x ⎧=⎪⎨=⎪⎩,两式相减得:211221()32y y y y x x -⨯+=-,又由点D 为线段BC 的中点得128y y +=-,BC k =4-∴直线BC 方程为(4)4(11)y x --=--,即4400x y +-=.20. (Ⅰ)1ln )1()(2+++=x x a x f 定义域为()0,+∞xa x x x a x f 1221)(2++=++='∴当10a +≥时()0f x '>恒成立所以当1a ≥-时()y f x =在区间()0,+∞上单调递增当10a +<,若x >()0f x '>;若0x <<()0f x '<即当1a <-时函数()y f x =在区间⎛⎝上递减;在⎫+∞⎪⎪⎭上递增 (Ⅱ)不妨设21x x >,又0≥a , 若212144)()(x x x f x f -≥-恒成立即22114)(4)(x x f x x f -≥-恒成立,令),0(,4)()(+∞∈-=x x x f x g 则)(x g y =为递增函数即0)(≥'x g 恒成立0142)(2≥++-='xa x x x g 令),0(,142)(2+∞∈++-=x a x x x h 1)1()(min -==a h x h 1≥∴a21. (1)因为21,2==a b a ,所以1=b ,所以椭圆的方程为1422=+y x (2)设),(),,(2211y x N y x M ,直线MN 的方程为3+=my x ,将直线3+=my x代入椭圆方程1422=+y x 得0132)4(22=-++my y m 则 432221+-=+m m y y ,41221+-=m y y ,414||2221++=-m m y y 因0,021>>x x ,且21B M N B 为四边形,所以3<m ,面积OMN ON B OM B S S S S ∆∆∆++=1223)(2121++=x x =-||21y y 3)(221++y y m4142322++⨯+m m 41233222+-+⨯+=m m m 4)21(3222+++=m m令21,12<≤+=t m t则4272327)2(4)2()2(323)2(3222-+++=++-++=++=t t t t t t t S 因21<≤t ,则)423,316[272∈+++t t 所以∈-+++427232t t ]233738,(,即]233738,(∈S 22. (Ⅰ)()2bf x a x'=-,()111f a b b a '=-=⇒=- (Ⅱ)()1ln a g x x ax x -⎛⎫=-+⎪⎝⎭若()1g x ≤-对定义域内x 恒成立则()max 1g x ≤-. (ⅰ)首先一定有()1111g a a a =--+≤-⇒≥,当1a ≥时()()()()22111110a x x ax a x a g x x x ⎡⎤⎛⎫---+- ⎪⎢⎥-+--⎝⎭⎣⎦'===, 解得11,10x x a==-+≤,()()()()0,1,0;1,,0;x g x x g x ''∈>∈+∞< 所以()g x 在()0,1上递增;在()1,+∞上递减所以()()max 1121g x g a ==-≤-成立综上,1a ≥.(ⅱ)由(ⅰ)知()1g x ≤-恒成立,实数a 的取值范围为1a ≥.令[)sin 0,1t =∈θ, 考虑函数]11)1()1[ln(11)1()1ln()1()1()(ta t a t t a t a t t g t g t P -------+--+-+=--+= ])1(1)1(1)[1(212)1(111)1(111)(22222't t a a t t a a t t a a t t P -++-+--=--+--++-+-+=0)0(=P 下面只需证()0P t '≥即可,即()()()222211210111a a t t t ⎡⎤-+-+≥⎢⎥-+-⎢⎥⎣⎦即()()()22221110111t a a t t t +-+-≥-+-而2111t ≥-,只需证()()()222111011t a a t t +-+-≥+-,即证()()2224211130t t t t t +≥+-⇐-≤()2230t t ⇐-≤显然成立.所以()P t 在[)0,1上递增,所以()()()min 000P t P P t ==⇒≥. 得()()11g t g t +≥-成立,则对任意的0,2⎡⎫∈⎪⎢⎣⎭πθ,()()1sin 1sin g g -≤+θθ成立。
新疆乌鲁木齐市第一中学高二数学上学期第一次月考试题
k=1 s=1 WHILE k<4 s=2*s-k k=k+1WEND 鲁木齐市第一中学2015--2016学年第一学期2017届高二年级第一次月考数学试卷(请将答案写在答题纸上)时间:100分钟 满分:100分 一、选择题(每小题3分,共计36分)1. (1)某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了了解社会购买力的某种指标,要从中抽取一个容量为100户的样本;(2)从10名同学中抽取3人参加座谈会。
a 简单随机抽样b 系统抽样c 分层抽样 问题与方法配对正确的是A. (1)a,(2) cB. (1)a,(2) bC. (1)c,(2) aD. (1)c,(2) b 2.下面的程序段结果是A .3-B .10-C .0D .2- 3.如图是一样本的频率分布直方图,由图形中的数据可以估计众数与中位数分别是0到9之间取整数值的随机数,指定1、2、3、4表示下雨, 5、6、7、8、9、0表示不下雨,以3个随机数为一组,经随机模拟产生了20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 根据以上数据估计三天中至少有两天下雨的概率为A .0.25B .0.35C .0.6D .0.755. 在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。
根据过去10天甲、乙、丙、丁四地新增疑似病例数据一定符合该标志的是 A .甲地:总体均值为3,中位数为4100 90 80 110 120 底部周长/cmB .乙地:总体均值为1,总体方差大于0 C. 丙地:中位数为2,众数为3 D. 丁地:总体均值为2,总体方差为36.已知集合M ={x |-2≤x ≤8},N ={x |x 2-3x +2≤0},在集合M 中任取一个元素x ,则“x ∈M ∩N ”的概率是A.110B.16C.310 D.127.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,x 1,x 2分别表示甲、乙两名运动员这项测试成绩的平均数,s 21,s 22分别表示甲、乙两名运动员这项测试成绩的方差,则有A .x 1>x 2,s 21<s 22B .x 1=x 2,s 21>s 22 C .x 1=x 2,s 21=s 22 D .x 1=x 2,s 21<22s8.圆0142:221=++++y x y x C 与圆0144:222=---+y x y x C 的公切线有 A .1条 B. 2条 C. 3条 D. 4条 9.某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 3 5 销售额y (万元)49263954根据上表可得回归方程y =bx +a 中的b 为9.4,据此模型预报广告费用为6 万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元10.已知对于圆0222=-+y y x 上任意一点P ,不等式0≥++m y x 恒成立,则实数m 的取值范围为 A 1-≥m B 12-≥m C 12--≤m D 1212--≤-≥m m 或11.连续抛掷两枚正方体骰子(六个面分别标有数字6,5,4,3,2,1),记所得朝上的面的点数分别为y x ,,过坐标原点和点()y x P ,的直线的倾斜角为θ,则θ>60°的概率为 A.41B .43 C .21 D .61 12.在平面直角坐标系中,A,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线043=-+y x 相切,则圆C 面积的最小值为A.45π B. 52π C. π)526(- D.25π二、填空题(每小题4分,共计16分)13.已知A 是圆上一定点,在圆上其他位置上任取一点B ,则AB 的长度小于半径的概率为__________.14.求直线0552=+-+y x 被圆04222=--+y x y x 截得的弦长为________15.右图给出的是计算201614121++++Λ的值的一个流程图,其中判断框内应填入的条件是_____16.设P 为直线0343=++y x 上的动点,过点P 做圆C :012222=+--+y x y x 的两条切线,切点分别为B A ,,当四边形PACB 的面积最小时,_______=∠APB三、解答题(共计48分)17.(本题8分)袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求:(1) 3个颜色不全相同的概率; (2) 3个颜色全不相同的概率。
重庆市高二数学下学期期中试卷 理(含解析)-人教版高二全册数学试题
2016-2017学年某某市高二(下)期中数学试卷(理科)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.将5封信投入3个邮筒,不同的投法有()A.53种 B.35种 C.3种D.15种3.下面四个推导过程符合演绎推理三段论形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数4.有5盆互不相同的玫瑰花,其中黄玫瑰2盆、白玫瑰2盆、红玫瑰1盆,现把它们摆放成一排,要求2盆白玫瑰不能相邻,则这5盆玫瑰花的不同摆放种数是()A.120 B.72 C.12 D.365.曲线f(x)=在点(1,f(1))处的切线的倾斜角为()A.B.C. D.6.函数f(x)在其定义域内可导,其图象如图所示,则导函数y=f′(x)的图象可能为()A.B.C. D.7.已知点集,则由U中的任意三点可组成()个不同的三角形.A.7 B.8 C.9 D.108.已知函数f(x)=x2+cosx,f′(x)是函数f(x)的导函数,则f′(x)的图象大致是()A.B.C.D.9.若(x3+)n展开式中只有第6项系数最大,则展开式的常数项是()A.210 B.120 C.461 D.41610.从0,1,2,3,4,5这六个数字中任取四个数字,其中奇数偶数至少各一个,组成没有重复数字的四位数的个数为()A.1296 B.1080 C.360 D.30011.设过曲线f(x)=﹣e x﹣x(e为自然对数的底数)上任意一点处的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则实数a的取值X围为()A.[﹣1,2] B.(﹣1,2)C.[﹣2,1] D.(﹣2,1)12.已知函数:,,设函数F(x)=f(x+3)•g(x﹣5),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b﹣a的最小值为()A.8 B.9 C.10 D.11二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡上相应位置. 13.若=1+i,i为虚数单位,则z的虚部为.14.有10个零件,其中6个一等品,4个二等品,若从10个零件中任意取3个,那么至少有1个一等品的不同取法有种.15.曲线y=2x﹣x3在x=﹣1的处的切线方程为.16.函数f(x)=x2﹣2lnx的单调减区间是.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值﹣2.求f(x)的单调区间和极大值.18.已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和.19.某某师大附中高二年级将于4月中旬进行年级辩论赛,每个班将派出6名同学分别担任一辩、二辩、三辩、四辩、五辩和六辩.现某班已有3名男生和3名女生组成了辩论队,按下列要求,能分别安排出多少种不同的辩论顺序?(要求:先列式,再计算,最后用数字作答)(1)三名男生和三名女生各自排在一起;(2)男生甲不担任第一辩,女生乙不担任第六辩;(3)男生甲必须排在第一辩或第六辩,3位女生中有且只有两位排在一起.20.设函数f(x)=x3﹣x2+bx+c(a>0),曲线y=f(x)在点(0,f(0))处的切线方程为y=1(1)求b,c的值;(2)若函数f(x)有且只有两个不同的零点,某某数a的值.21.在数列{a n}中,a1=6,且a n﹣a n﹣1=+n+1(n∈N*,n≥2),(1)求a2,a3,a4的值;(2)猜测数列{a n}的通项公式,并用数学归纳法证明.22.已知f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然常数,a∈R.(Ⅰ)当a=1时,研究f(x)的单调性与极值;(Ⅱ)在(Ⅰ)的条件下,求证:f(x)>g(x)+;(Ⅲ)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.2016-2017学年某某市大学城一中高二(下)期中数学试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则解答.【解答】解:原式=2i﹣i2=2i﹣(﹣1)=1+2i;故选:A.2.将5封信投入3个邮筒,不同的投法有()A.53种 B.35种 C.3种D.15种【考点】D9:排列、组合及简单计数问题.【分析】本题是一个分步计数问题,首先第一封信有3种不同的投法,第二封信也有3种不同的投法,以此类推每一封信都有3种结果,根据分步计数原理得到结果.【解答】解:由题意知本题是一个分步计数问题,首先第一封信有3种不同的投法,第二封信也有3种不同的投法,以此类推每一封信都有3种结果,∴根据分步计数原理知共有35种结果,故选B.3.下面四个推导过程符合演绎推理三段论形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数【考点】F5:演绎推理的意义.【分析】根据三段论推理的标准形式,逐一分析四个答案中的推导过程,可得出结论.【解答】解:对于A,小前提与大前提间逻辑错误,不符合演绎推理三段论形式;对于B,符合演绎推理三段论形式且推理正确;对于C,大小前提颠倒,不符合演绎推理三段论形式;对于D,大小前提及结论颠倒,不符合演绎推理三段论形式;故选:B4.有5盆互不相同的玫瑰花,其中黄玫瑰2盆、白玫瑰2盆、红玫瑰1盆,现把它们摆放成一排,要求2盆白玫瑰不能相邻,则这5盆玫瑰花的不同摆放种数是()A.120 B.72 C.12 D.36【考点】D3:计数原理的应用.【分析】先把除了2盆白玫瑰花以外的三盆花任意排,再从那三盆花形成的4个空中选出2个空插入这2盆白玫瑰,再根据分步计数原理求得结果.【解答】解:先把2盆白玫瑰挑出来,把剩下的三盆花任意排,方法有=6种,再从那三盆花形成的4个空中选出2个空插入这2盆白玫瑰,方法有=12种,再根据分步计数原理求得满足条件的不同摆放种数是6×12=72种,故选B.5.曲线f(x)=在点(1,f(1))处的切线的倾斜角为()A.B.C. D.【考点】6H:利用导数研究曲线上某点切线方程;I2:直线的倾斜角.【分析】求出函数的导数,利用导数的几何意义求切线的斜率,进而利用斜率和倾斜角之间的关系求切线的倾斜角.【解答】解:因为f(x)=,所以,所以函数在点(1,f(1))处的切线斜率k=f'(1)=﹣1,由k=tanα=﹣1,解得,即切线的倾斜角为.故选D.6.函数f(x)在其定义域内可导,其图象如图所示,则导函数y=f′(x)的图象可能为()A.B.C. D.【考点】3O:函数的图象.【分析】根据函数的单调性确定f'(x)的符号即可.【解答】解:由函数f(x)的图象可知,函数在自变量逐渐增大的过程中,函数先递增,然后递减,再递增,当x>0时,函数单调递增,所以导数f'(x)的符号是正,负,正,正.对应的图象为C.故选C.7.已知点集,则由U中的任意三点可组成()个不同的三角形.A.7 B.8 C.9 D.10【考点】D3:计数原理的应用.【分析】先求出点集U,在任选三点,当取(﹣1,1),(0,0),(1,1)时,三点在同一条直线上,不能构成三角形,故要排除,问题得以解决.【解答】解:点集,得到{(﹣1,﹣1),(0,0),(1,1),(2,8),(3,27)},从中选选3点,有C53=10种,当取(﹣1,1),(0,0),(1,1)时,三点在同一条直线上,不能构成三角形,故要排除,故则由U中的任意三点可组成10﹣1=9个不同的三角形.故选:C.8.已知函数f(x)=x2+cosx,f′(x)是函数f(x)的导函数,则f′(x)的图象大致是()A.B.C.D.【考点】3O:函数的图象.【分析】由于f(x)=x2+cosx,得f′(x)=x﹣sinx,由奇函数的定义得函数f′(x)为奇函数,其图象关于原点对称,排除BD,取x=代入f′()=﹣sin=﹣1<0,排除C,只有A适合.【解答】解:由于f(x)=x2+cosx,∴f′(x)=x﹣sinx,∴f′(﹣x)=﹣f′(x),故f′(x)为奇函数,其图象关于原点对称,排除BD,又当x=时,f′()=﹣sin=﹣1<0,排除C,只有A适合,故选:A.9.若(x3+)n展开式中只有第6项系数最大,则展开式的常数项是()A.210 B.120 C.461 D.416【考点】DB:二项式系数的性质.【分析】(x3+)n展开式中只有第6项系数最大,可得n=10.再利用通项公式即可得出.【解答】解:(x3+)n展开式中只有第6项系数最大,∴n=10.∴的通项公式为:T r+1=(x3)10﹣r=x30﹣5r,令30﹣5r=0,解得r=6.∴展开式的常数项是=210.故选:A.10.从0,1,2,3,4,5这六个数字中任取四个数字,其中奇数偶数至少各一个,组成没有重复数字的四位数的个数为()A.1296 B.1080 C.360 D.300【考点】D3:计数原理的应用.【分析】①若这个四位数中有一个奇数三个偶数,利用分步计数原理求得满足条件的四位数的个数;②若这个四位数中有二个奇数二个偶数,分当偶数不包含0和当偶数中含0两种情况,分别求得满足条件的四位数的个数,可得此时满足条件的四位数的个数;③若这个四位数中有三个奇数一个偶数,分当偶数不包含0和当偶数中含0两种情况,分别求得满足条件的四位数的个数,可得此时满足条件的四位数的个数.再把以上求得的三个值相加,即得所求.【解答】解:①若这个四位数中有一个奇数三个偶数,则有•=3种;先排0,方法有3种,其余的任意排,有=6种方法,再根据分步计数原理求得这样的四位数的个数为 3×3×6=54个.②若这个四位数中有二个奇数二个偶数,当偶数不包含0时有C22C32A44=72,当偶数中含0时有C21C32C31A33=108,故组成没有重复数字的四位数的个数为72+108=180个.③若这个四位数中有三个奇数一个偶数,当偶数不包含0时有••A44=48,当偶数中含0时有1××A33=18个.故此时组成没有重复数字的四位数的个数为48+18=66个.综上可得,没有重复数字的四位数的个数为 54+180+66=300个,故选D.11.设过曲线f(x)=﹣e x﹣x(e为自然对数的底数)上任意一点处的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则实数a的取值X围为()A.[﹣1,2] B.(﹣1,2)C.[﹣2,1] D.(﹣2,1)【考点】6H:利用导数研究曲线上某点切线方程.【分析】求出函数f(x)=﹣e x﹣x的导函数,进一步求得∈(0,1),再求出g(x)的导函数的X围,然后把过曲线f(x)=﹣e x﹣x上任意一点的切线为l1,总存在过曲线g (x)=ax+2cosx上一点处的切线l2,使得l1⊥l2转化为集合间的关系求解.【解答】解:由f(x)=﹣e x﹣x,得f′(x)=﹣e x﹣1,∵e x+1>1,∴∈(0,1),由g(x)=ax+2cosx,得g′(x)=a﹣2sinx,又﹣2sinx∈[﹣2,2],∴a﹣2sinx∈[﹣2+a,2+a],要使过曲线f(x)=﹣e x﹣x上任意一点的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则,解得﹣1≤a≤2.即a的取值X围为﹣1≤a≤2.故选:A.12.已知函数:,,设函数F(x)=f(x+3)•g(x﹣5),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b﹣a的最小值为()A.8 B.9 C.10 D.11【考点】52:函数零点的判定定理.【分析】利用导数分别求出函数f(x)、g(x)的零点所在的区间,然后再求F(x)=f(x+3)•g(x﹣4)的零点所在区间,即求f(x+3)的零点和g(x﹣4)的零点所在区间,根据图象平移即可求得结果.【解答】解:∵f(0)=1>0,f(﹣1)=1﹣1﹣+﹣…+<0,∴函数f(x)在区间(﹣1,0)内有零点;当x∈(﹣1,0)时,f′(x)=>0,∴函数f(x)在区间(﹣1,0)上单调递增,故函数f(x)有唯一零点x∈(﹣1,0);∵g(1)=1﹣1+﹣+…﹣>0,g(2)=1﹣2+﹣+…+﹣<0.当x∈(1,2)时,g′(x)=﹣1+x﹣x2+x3﹣…+x2013﹣x2014=>0,∴函数g(x)在区间(1,2)上单调递增,故函数g(x)有唯一零点x∈(1,2);∵F(x)=f(x+3)•g(x﹣4),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,∴f(x+3)的零点在(﹣4,﹣3)内,g(x﹣4)的零点在(5,6)内,因此F(x)=f(x+3)•g(x﹣3)的零点均在区间[﹣4,6]内,∴b﹣a的最小值为10.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡上相应位置. 13.若=1+i,i为虚数单位,则z的虚部为﹣1 .【考点】A5:复数代数形式的乘除运算.【分析】直接由=1+i,得,然后利用复数代数形式的乘除运算化简,则z的虚部可求.【解答】解:由=1+i,得=,则z的虚部为:﹣1.故答案为:﹣1.14.有10个零件,其中6个一等品,4个二等品,若从10个零件中任意取3个,那么至少有1个一等品的不同取法有116 种.【考点】D9:排列、组合及简单计数问题.【分析】考虑其对立事件“3个都是二等品”,用间接法可得结论.【解答】解:考虑其对立事件“3个都是二等品”,用间接法,得至少有1个一等品的不同取法有C103﹣C43=116.故答案为:116.15.曲线y=2x﹣x3在x=﹣1的处的切线方程为x+y+2=0 .【考点】6H:利用导数研究曲线上某点切线方程.【分析】根据导数的几何意义求出函数在x=﹣1处的导数,从而得到切线的斜率,再利用点斜式方程写出切线方程即可.【解答】解:y'=2﹣3x2y'|x=﹣1=﹣1而切点的坐标为(﹣1,﹣1)∴曲线y=2x﹣x3在x=﹣1的处的切线方程为x+y+2=0故答案为:x+y+2=016.函数f(x)=x2﹣2lnx的单调减区间是(0,1).【考点】6B:利用导数研究函数的单调性.【分析】依题意,可求得f′(x)=,由f′(x)<0即可求得函数f(x)=x2﹣2lnx的单调减区间.【解答】解:∵f(x)=x2﹣2lnx(x>0),∴f′(x)=2x﹣==,令f′(x)<0由图得:0<x<1.∴函数f(x)=x2﹣2lnx的单调减区间是(0,1).故答案为(0,1).三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值﹣2.求f(x)的单调区间和极大值.【考点】6D:利用导数研究函数的极值.【分析】由条件f(1)=2,f′(1)=0求得a、b,再利用导数求出单调区间,从而求解.【解答】解.由奇函数定义,有f(﹣x)=﹣f(x),x∈R.即﹣ax3﹣cx+d=﹣ax3﹣cx﹣d,∴d=0因此,f(x)=ax3+cx,f′(x)=3ax2+c由条件f(1)=2为f(x)的极值,必有f′(1)=0故,解得 a=1,c=﹣3因此f(x)=x3﹣3x,f′(x)=3x2﹣3=3(x﹣1)(x+1)当x∈(﹣∞,﹣1)时,f′(x)>0,故f(x)在单调区间(﹣∞,﹣1)上是增函数.当x∈(﹣1,1)时,f′(x)<0,故f(x)在单调区间(﹣1,1)上是减函数.当x∈(1,+∞)时,f′(x)>0,故f(x)在单调区间∈(1,+∞)上是增函数.所以,f(x)的极大值为f(﹣1)=2.18.已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和.【考点】DB:二项式系数的性质.【分析】(1)根据题意,令x=1求出n的值,再利用通项公式求出展开式的常数项;(2)令x=1,即可求出展开式中所有项的系数和.【解答】解:(1)对(+)n,所有二项式系数和为2n=512,解得n=9;设T r+1为常数项,则:T r+1=C9r••=C9r2r,由﹣r=0,得r=3,∴常数项为:C93•23=672;(2)令x=1,得(1+2)9=39.19.某某师大附中高二年级将于4月中旬进行年级辩论赛,每个班将派出6名同学分别担任一辩、二辩、三辩、四辩、五辩和六辩.现某班已有3名男生和3名女生组成了辩论队,按下列要求,能分别安排出多少种不同的辩论顺序?(要求:先列式,再计算,最后用数字作答)(1)三名男生和三名女生各自排在一起;(2)男生甲不担任第一辩,女生乙不担任第六辩;(3)男生甲必须排在第一辩或第六辩,3位女生中有且只有两位排在一起.【考点】D8:排列、组合的实际应用.【分析】(1)根据题意,分3步分析:①、用捆绑法将3名男生看成一个元素,并考虑其3人之间的顺序,②、同样方法分析将3名女生的情况数目,③、将男生、女生两个元素全排列,由分步计数原理计算可得答案;(2)根据题意,分2种情况讨论:①、男生甲担任第六辩,剩余的5人进行全排列,分别担任一辩、二辩、三辩、四辩、五辩,由排列数公式计算即可,②、男生甲不担任第六辩,分别分析男生甲、女生乙、其他4人的情况数目,进而由乘法原理可得此时的情况数目;最后由分类计数原理计算可得答案.(3)根据题意,分2步进行分析:①、男生甲必须排在第一辩或第六辩,则甲有2种情况,②、用间接法分析“3位女生中有且只有两位排在一起”的情况数目,由分步计数原理计算可得答案.【解答】解:(1)根据题意,分3步分析:①、将3名男生看成一个元素,考虑其顺序有A33=6种情况,②、将3名女生看成一个元素,考虑其顺序有A33=6种情况,③、将男生、女生两个元素全排列,有A22=2种情况,则三名男生和三名女生各自排在一起的排法有6×6×2=72种;(2)根据题意,分2种情况讨论:①、男生甲担任第六辩,剩余的5人进行全排列,分别担任一辩、二辩、三辩、四辩、五辩,有A55=120种情况,②、男生甲不担任第六辩,则甲有4个位置可选,女生乙不担任第六辩,有4个位置可选,剩余的4人进行全排列,担任其他位置,有A44=24种情况,则男生甲不担任第六辩的情况有4×4×24=384种;故男生甲不担任第一辩,女生乙不担任第六辩的顺序有120+384=504种;(3)根据题意,分2步进行分析:①、男生甲必须排在第一辩或第六辩,则甲有2种情况,②、剩下的5人进行全排列,分别担任一辩、二辩、三辩、四辩、五辩,有A55=120种情况,其中3名女生相邻,则有A33•A33=36种情况,3名女生都不相邻,则有A33•A22=12种情况,则3位女生中有且只有两位排在一起的情况有120﹣36﹣12=72种;故男生甲必须排在第一辩或第六辩,3位女生中有且只有两位排在一起有2×72=144种不同的顺序.20.设函数f(x)=x3﹣x2+bx+c(a>0),曲线y=f(x)在点(0,f(0))处的切线方程为y=1(1)求b,c的值;(2)若函数f(x)有且只有两个不同的零点,某某数a的值.【考点】6H:利用导数研究曲线上某点切线方程;6B:利用导数研究函数的单调性.【分析】(1)先求f(x)的导数f'(x),再求f(0),由题意知f(0)=1,f'(0)=0,从而求出b,c的值;(2)求导数,利用f(a)=0,即可求出实数a的值.【解答】解:(1)因为函数f(x)=x3﹣x2+bx+c,所以导数f'(x)=x2﹣ax+b,又因为曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,所以f(0)=1,f'(0)=0,即b=0,c=1.(2)由(1),得f'(x)=x2﹣ax=x(x﹣a)(a>0)由f'(x)=0得x=0或x=a,∵函数f(x)有且只有两个不同的零点,所以f(0)=0或f(a)=0,∵f(0)=1,∴f(a)=a3﹣+1=0,∴a=.21.在数列{a n}中,a1=6,且a n﹣a n﹣1=+n+1(n∈N*,n≥2),(1)求a2,a3,a4的值;(2)猜测数列{a n}的通项公式,并用数学归纳法证明.【考点】RG:数学归纳法;8H:数列递推式.【分析】(1)分别取n=2,3,4即可得出;(2)由(1)猜想a n=(n+1)(n+2),再利用数学归纳法证明即可.【解答】解:(1)n=2时,a2﹣a1=+2+1,∴a2=12.同理可得a3=20,a4=30.(2)猜测a n=(n+1)(n+2).下用数学归纳法证明:①当n=1,2,3,4时,显然成立;②假设当n=k(k≥4,k∈N*)时成立,即有a k=(k+1)(k+2),则当n=k+1时,由且a n﹣a n﹣1=+n+1,得+n+1,故==(k+2)(k+3),故n=k+1时等式成立;由①②可知:a n=(n+1)(n+2)对一切n∈N*均成立.22.已知f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然常数,a∈R.(Ⅰ)当a=1时,研究f(x)的单调性与极值;(Ⅱ)在(Ⅰ)的条件下,求证:f(x)>g(x)+;(Ⅲ)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.【考点】6E:利用导数求闭区间上函数的最值.【分析】(Ⅰ)求导函数,确定函数的单调性,从而可得函数f(x)的极小值;(Ⅱ)f(x)在(0,e]上的最小值为1,令h(x)=g(x))+,求导函数,确定函数的单调性与最大值,即可证得结论;(Ⅲ)假设存在实数a,使f(x)的最小值是3,求导函数,分类讨论,确定函数的单调性,利用f(x)的最小值是3,即可求解.【解答】(Ⅰ)解:f(x)=x﹣lnx,f′(x)=…∴当0<x<1时,f′(x)<0,此时f(x)单调递减当1<x<e时,f′(x)>0,此时f(x)单调递增…∴f(x)的极小值为f(1)=1 …(Ⅱ)证明:∵f(x)的极小值为1,即f(x)在(0,e]上的最小值为1,∴f(x)>0,f(x)min=1…令h(x)=g(x))+=+,,…当0<x<e时,h′(x)>0,h(x)在(0,e]上单调递增…∴h(x)max=h(e)=<=1=|f(x)|min…∴在(1)的条件下,f(x)>g(x)+;…(Ⅲ)解:假设存在实数a,使f(x)的最小值是3,f′(x)=①当a≤0时,x∈(0,e],所以f′(x)<0,所以f(x)在(0,e]上单调递减,f(x)=f(e)=ae﹣1=3,∴a=(舍去),所以,此时f(x)无最小值.…min②当0<<e时,f(x)在(0,)上单调递减,在(,e]上单调递增,f(x)min=f()=1+lna=3,∴a=e2,满足条件.…③当时,x∈(0,e],所以f′(x)<0,所以f(x)在(0,e]上单调递减,f(x)min=f(e)=ae﹣1=3,∴a=(舍去),所以,此时f(x)无最小值.…综上,存在实数a=e2,使f(x)的最小值是3.…。
2016-2017学年北师大版七年级数学下册期末试题及答案
2016-2017学年北师大版七年级数学下册期末试题及答案2016-2017学年度第二学期期末测试题七年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分。
本试题共8页,满分为120分。
考试时间为120分钟。
答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置。
考试结束后,将本试卷和答题卡一并交回。
本考试不允许使用计算器。
第Ⅰ卷(选择题共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案写在试卷上无效。
一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列各式计算正确的是()A.x+x=2xB.xy^4/48=x^3yC.x^2=x^5D.(-x)^5=(-x)^82.下列各式中,不能用平方差公式计算的是( )A.(4x-3y)(-3y-4x)B.(2x-y)(2x+y)C.(a+b-c)(-c-b+a)D.(-x+y)(x-y)3.PM2.5是大气压中直径小于或等于0.xxxxxxxm的颗粒物,将0.xxxxxxx用科学记数法表示为()A.0.25×10^-5B.0.25×10^-6C.2.5×10^-5D.2.5×10^-64.如图,∠1与∠2互补,∠3=135°,则∠4的度数是()A、45°B、55°C、65°D、75°5.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间t(时)变化的图象(全程)如图所示。
有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y与时间t的关系式为y=10t;④第1.5小时,甲跑了12千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年新疆高二上学期期末考试数学(理)试题一、选择题(每小题5分,共60分) 1.抛物线241x y =的准线方程是( )A .1-=yB .1=yC .161-=xD .161=x2.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 ( ) A .(0,+∞) B .(0,2)C .(1,+∞)D .(0,1)3.若双曲线E :116922=-y x 的左、右焦点分别为F 1、F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于 ( ) A .11 B .9C .5D .3或94.已知命题p :∀x ∈R ,2x 2+2x +21<0,命题q :∃x 0∈R ,sinx 0-cosx 0=2,则下列判断中正确的是 ( ) A .p 是真命题B .q 是假命题C .⌝p 是假命题D . ⌝q 是假命题5.一动圆P 过定点M (-4,0),且与已知圆N :(x -4)2+y 2=16相切,则动圆圆心P 的轨迹方程是 ( ) A .)2(112422≥=-x y xB .)2(112422≤=-x y xC .112422=-y xD .112422=-x y 6.已知向量a=(1,0,-1),则下列向量中与a 成60°夹角的是 ( ) A .(-1,1,0)B .(1,-1,0)C .(0,-1,1)D .(-1,0,1)7.已知椭圆E 的中心为坐标原点,离心率为21,E 的右焦点与抛物线C :y 2=8x 的焦点重合,点A 、B 是C 的准线与E 的两个交点,则|AB |= ( ) A .3 B .6 C .9 D .128.若ab ≠0,则ax -y +b =0和bx 2+ay 2=ab 所表示的曲线只可能是下图中的 ( )9.设Q P ,分别为圆()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( )A. 25B.246+C.27+D.2610.若AB 是过椭圆22221(0)x y a b a b+=>>中心的一条弦,M 是椭圆上任意一点,且AM ,BM 与两坐标轴均不平行,k AM ,k BM 分别表示直线AM ,BM 的斜率,则k AM ·k BM =( )A. 22c a -B. 22b a-C. 22c b-D. 22a b-11.已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( ) A .34B .32C .1D .212.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,C 与过原点的直线相交于A 、B 两点,连接AF 、BF . 若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为 ( ) A.35B.57C.45D.67二、填空题(每小题5分,共20分)13.若抛物线y ²=-2px (p >0)上有一点M ,其横坐标为-9,它到焦点的距离为10,则点M 的坐标为________.14.过椭圆22154x y +=的右焦点作一条斜率为2的直线与椭圆 交于A ,B 两点,O 为坐标原点,则△OAB 的面积为______ 15.如图,M 、N 分别是四面体OABC 的棱AB 与OC 的中点,已知向量MN xOA yOB zOC =++,则xyz=_________.16.已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是________. 三、解答题(共70分) 17. (本小题满分10分)(1)是否存在实数m ,使2x +m <0是x 2-2x -3>0的充分条件? (2)是否存在实数m ,使2x +m <0是x 2-2x -3>0的必要条件?N MC 1B 1A 1CBA在三棱柱ABC-A 1B 1C 1中,AA 1⊥平面ABC ,AB=AC=AA 1,∠CAB=90°,M 、N 分别是AA 1和AC 的中点.(1) 求证:MN ⊥BC 1(2) 求直线MN 与平面BCC 1B 1所成角.19. (本小题满分12分)双曲线C 的中心在原点,右焦点为⎪⎪⎭⎫⎝⎛0,332F ,渐近线方程为 x y 3±=.(1)求双曲线C 的方程;(2)设点P 是双曲线上任一点,该点到两渐近线的距离分别为m 、n .证明n m ⋅是定值.20. (本小题满分12分)已知抛物线C 的顶点在坐标原点O ,对称轴为x 轴,焦点为F ,抛物线上一点A 的横坐标为2,且10=⋅OA FA .(1)求此抛物线C 的方程.(2)过点(4,0)作直线l 交抛物线C 于M 、N 两点,求证:OM ⊥ON21. (本小题满分12分)如图,已知ABCD 是正方形,PD⊥平面ABCD ,PD=AD. (1)求二面角A-PB-D 的大小;(2)在线段PB 上是否存在一点E,使PC⊥平面ADE?若存在, 确定E 点的位置,若不存在,说明理由.如图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D在椭圆上,12112121,F F DF F F DF F DF ⊥=∆. (1)求椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程,若不存在,请说明理由.2016-2017学年新疆高二上学期期末考试数学(理)试题答案一.选择题(每小题5分,共60分) 1-6 ADBDCB 7-12 BCDBDB二.填空题(每小题5分,共20分)13. (-9,6)或(-9,-6) 14. 35 15. 8116. ⎥⎦⎤⎢⎣⎡3333-, 三.解答题(共70分) 17. (1)欲使得是的充分条件, 则只要或,则只要即,故存在实数时, 使是的充分条件.(2)欲使是的必要条件,则只要或,则这是不可能的,故不存在实数m 时, 使是的必要条件.18.(1)解:接连A 1C 、AC 1在平面AA 1C 1C 内,∵AA 1⊥平面ABC AA 1=AC ∴A 1C ⊥AC 1 又∵∠CAB=90︒即AB ⊥AC 、AA 1⊥AB且 AA 1∩AC=A∴AB ⊥平面AA 1C 1C又∵A 1C 在平面AA 1C 1C 内 ∴A 1C ⊥AB又∵AB∩AC 1=A ∴A 1C ⊥平面ABC 1 又∵BC 1在平面ABC 1内 ∴A 1C ⊥BC 1又∵M,N 分别是AA 1和AC 的中点. ∴A 1C∥MN ∴MN ⊥BC 1. (2)解:取C 1B 1的中点D ,连接CD∵A 1B 1=A 1C 1 ∴A 1D ⊥B 1C 1 又∵CC 1∥AA 1 AA 1⊥平面ABC ∴CC 1⊥平面ABC 即CC 1平面A 1B 1C 1 又∵A 1D 在平面A 1B 1C 1内 ∴A 1D ⊥CC 1 且CC 1∩C 1B 1=C CD 在平面CBB 1C 1内 ∴A 1D ⊥CD ∴cos ∠A 1CD=C A CD 1=23∴∠A 1CD=30°又∵MN∥A 1C 即MN 与平面BCC 1B 1所成角为30°19. (1)易知 双曲线的方程是1322=-y x . (2)设P ()00,y x ,已知渐近线的方程为:x y 3±= 该点到一条渐近线的距离为:13300+-=y x m到另一条渐近线的距离为13300++=y x n412232020=⨯-=⋅y x n m 是定值.20. (1)根据题意,设抛物线的方程为(),因为抛物线上一点的横坐标为,设,因此有, ......1分 因为,所以,因此,......3分解得,所以抛物线的方程为; ......5分(2)当直线的斜率不存在时,此时的方程是:,因此M,N,因此NO M O⋅,所以OM ⊥ON ; ......7分1A B当直线的斜率存在时,设直线的方程是,因此,得,设M,N,则,,, ......9分所以N O M O⋅,所以OM ⊥ON 。
......11分综上所述,OM ⊥ON 。
21. (1)以向量,,DA DC DP 为正交基底,建立空间直角坐标系. 联结AC,交BD 于点O,取PA 中点G,联结DG. ∵ABCD 是正方形,∴AC⊥DB. 又PD⊥平面ABCD,AC ⊂平面ABCD, ∴AC⊥PD, ∴AC⊥平面PBD. ∵PD⊥平面ABCD ,AB⊥AD,∴PA⊥AB. ∴AB⊥平面PAD.∵PD=AD,G 为PA 中点, ∴GD⊥平面PAB.故向量与分别是平面PBD 与平面PAB 的法向量.令PD=AD=2,则A(2,0,0),C(0,2,0),∴AC =(-2,2,0). ∵P(0,0,2),A(2,0,0), ∴G(1,0,1),∴=(1,0,1). ∴向量与的夹角余弦为212222cos -=⋅-==θ,∴0120=θ,∴二面角A-PB-D 的大小为060. (2)∵PD⊥平面ABCD ,AD⊥CD,∴AD⊥PC.设E 是线段PB 上的一点,令)10(<<=λλ.∴=(-2,0,2),=(2,2,-2),=PC (0,2,-2).∴)2,2,2(λλλ-=. ∴)22,2,22(λλλ-+-=+=. 令得,0=⋅PC AE 222-⋅λ(2-λ2)=0,得21=λ. ∴当21=λ,即点E 是线段PB 中点时,有AE⊥PC.22如图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,12112121,F F DF F F DF F DF ⊥=∆ .(1)求椭圆的标准方程;(2)是否存在设圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程,若不存在,请说明理由.【解题提示】(1)直接根据椭圆的定义及题设条件可求出椭圆的标准方程.(2)直接设出交点坐标然后根据椭圆与圆的对称性列出方 程组求解.【解析】(1)设12(,0),(,0),F c F c -其中222.c a b =-由121F F DF =得1.DF ==从而1221121222DF F S DF F F ∆=== 故 1.c =从而12DF =由112DF F F ⊥得22221129,2DF DF F F =+=因此22DF =所以122a DF DF =+=故a =222 1.b a c =-=因此,所求椭圆的标准方程为22 1.2x y +=(2)如图,设圆心在y 轴上的圆C 与椭圆2212xy +=相交,()()111222,,,P x y P x y 是两个交点,1211220,0,,y y FP F P >> 是圆C 的切线, 且1122.F P F P ⊥由圆和椭圆的对称性,易知,2112,.x x y y =-=由(1)知12(1,0),(1,0),F F -所以11112211(1,),(1,).FP x y F P x y =+=-- 再由1122.F P F P ⊥得2211(1)0.x y -++=由椭圆方程得22111(1),2x x -=+ 即211340.x x +=解得143x =-或10.x =当10x =时,12,P P 重合,此时题设要求的圆不存在.当143x =-时, 过12,P P 分别与1122,F P F P 垂直的直线的交点即为圆心.C 设0(0,)C y 由111,F P CP ⊥得10111 1.1y y y x x -∙=-+ 而1111,3y x =+= 故05.3y =圆C的半径1CP == 综上,存在满足题设条件的圆,其方程为22532.39x y ⎛⎫+-= ⎪⎝⎭。