不等式的基本性质 教学设计

合集下载

不等式的基本性质教学设计教案

不等式的基本性质教学设计教案

不等式的基本性质教学设计-教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解不等号(>,<,≥,≤)的含义举例说明不等式的表示方法1.2 不等式的基本性质性质1:如果a>b,a+c>b+c(加法性质)性质2:如果a>b且c>0,ac>bc(乘法性质,正数)性质3:如果a>b且c<0,ac<bc(乘法性质,负数)性质4:如果a>b且c≥0,a-c>b-c(减法性质)第二章:不等式的运算2.1 不等式的加减法运算展示不等式的加减法运算规则,举例说明练习题:求解下列不等式组的解集2.2 不等式的乘除法运算介绍不等式的乘除法运算规则,注意正负数的处理练习题:求解下列不等式组的解集第三章:不等式的解法3.1 简单不等式的解法介绍简单不等式的解法,如直接解、移项、合并同类项等练习题:求解下列简单不等式的解集3.2 不等式组的解法介绍不等式组的解法,如图像法、区间法等练习题:求解下列不等式组的解集第四章:不等式的应用4.1 实际问题中的不等式举例说明不等式在实际问题中的应用,如距离问题、分配问题等练习题:解决下列实际问题中的不等式4.2 不等式的优化问题介绍不等式在优化问题中的应用,如最大值、最小值问题练习题:解决下列优化问题中的不等式第五章:不等式的综合练习5.1 不等式的综合应用综合运用不等式的基本性质、运算和解法解决实际问题练习题:解决下列综合应用问题中的不等式5.2 复习与总结复习不等式的概念、基本性质、运算和解法总结不等式的重要性和在数学中的应用第六章:不等式的标准形式6.1 不等式的标准形式介绍不等式的标准形式:x ≤a 或x ≥a说明标准形式在解不等式组中的重要性6.2 标准形式的不等式解法展示如何将不等式转换为标准形式练习题:将给定的不等式转换为标准形式并求解第七章:不等式的绝对值7.1 不等式中的绝对值解释绝对值在不等式中的含义和作用举例说明绝对值不等式的解法7.2 绝对值不等式的解法展示绝对值不等式的解法步骤练习题:求解含有绝对值的不等式第八章:不等式的函数关系8.1 不等式与函数的关系探讨不等式与函数之间的关系举例说明如何通过函数图像解决不等式问题8.2 函数图像下的不等式解法介绍如何利用函数图像求解不等式练习题:利用函数图像解决给定的不等式问题第九章:不等式的不等式系统9.1 不等式系统的概念介绍不等式系统的概念及其解法说明不等式系统在实际问题中的应用9.2 不等式系统的解法展示如何解不等式系统练习题:求解给定的不等式系统第十章:不等式的拓展与应用10.1 不等式的拓展探讨不等式在其他数学领域的应用介绍不等式的相关拓展知识10.2 不等式的实际应用分析不等式在现实生活中的应用练习题:解决实际生活中的不等式问题教案总结:本教案涵盖了不等式的基本概念、性质、运算、解法、应用以及拓展等内容。

不等式的基本性质教学设计教案

不等式的基本性质教学设计教案

不等式的基本性质教学设计-教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生解决实际问题的能力,提高学生的数学思维水平。

3. 引导学生运用不等式的基本性质进行证明和解决问题。

二、教学内容:1. 不等式的定义及表示方法。

2. 不等式的基本性质(性质1、性质2、性质3)。

3. 不等式的运算规则。

三、教学重点与难点:1. 教学重点:不等式的概念、表示方法,不等式的基本性质及运算规则。

2. 教学难点:不等式的基本性质的理解与应用。

四、教学方法:1. 采用问题驱动法,引导学生探索不等式的基本性质。

2. 运用案例分析法,让学生在实际问题中体验不等式的应用。

3. 利用多媒体辅助教学,直观展示不等式的性质及运算过程。

五、教学过程:1. 导入新课:通过生活实例引入不等式的概念,让学生感受不等式的实际意义。

2. 自主学习:让学生阅读教材,了解不等式的表示方法。

3. 课堂讲解:讲解不等式的基本性质,通过示例让学生理解并掌握性质1、性质2、性质3。

4. 课堂练习:设计相关练习题,让学生运用不等式的基本性质进行解答。

5. 拓展与应用:让学生运用不等式的基本性质解决实际问题,培养学生的应用能力。

6. 总结与反思:对本节课的内容进行总结,强调不等式的基本性质的重要性。

7. 布置作业:设计适量作业,巩固所学知识。

教学评价:通过课堂讲解、练习和实际应用,评价学生对不等式的基本性质的理解和运用程度。

六、教学策略与辅助工具1. 教学策略:采用问题-探究教学模式,鼓励学生主动发现问题、解决问题。

利用小组合作学习,促进学生之间的交流与合作。

2. 辅助工具:多媒体教学课件,用于展示不等式的图形和动态变化,增强学生对不等式性质的理解。

七、教学准备1. 教材:准备不等式相关教材和教学参考书,为学生提供丰富的学习资源。

2. 课件:制作多媒体课件,包含动画、图形等元素,生动展示不等式的性质。

3. 练习题:准备一系列练习题,涵盖不等式的基本性质和应用问题。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生运用不等式解决实际问题的能力。

3. 提高学生对数学逻辑思维的认知。

二、教学内容1. 不等式的定义及表示方法2. 不等式的基本性质1) 不等式的两边加减同一个数,不等号的方向不变。

2) 不等式的两边乘除同一个正数,不等号的方向不变。

3) 不等式的两边乘除同一个负数,不等号的方向改变。

3. 运用不等式的基本性质解决实际问题。

三、教学重点与难点1. 教学重点:不等式的基本性质及其运用。

2. 教学难点:不等式性质3的理解与应用。

四、教学方法1. 采用启发式教学,引导学生发现不等式的基本性质。

2. 通过例题讲解,让学生学会运用不等式解决实际问题。

3. 利用小组讨论,培养学生合作学习的能力。

五、教学过程1. 导入:复习相关知识点,如实数、比较大小等,为学生学习不等式打下基础。

2. 新课讲解:介绍不等式的定义及表示方法,讲解不等式的基本性质,并通过例题展示运用。

3. 课堂练习:布置练习题,让学生巩固不等式的基本性质。

4. 实际问题解决:引导学生运用不等式解决实际问题,如分配问题、排序问题等。

5. 课堂小结:总结不等式的基本性质及运用方法。

6. 课后作业:布置相关作业,巩固所学知识。

六、教学评估1. 课堂提问:通过提问了解学生对不等式基本性质的理解程度。

2. 练习题解答:检查学生运用不等式解决实际问题的能力。

3. 课后作业:评估学生对课堂所学知识的掌握情况。

七、教学拓展1. 对比等式的性质,引导学生发现等式与不等式的异同。

2. 介绍不等式的其他性质,如不等式的传递性、同向不等式的可加性等。

八、课堂互动1. 小组讨论:让学生分组讨论不等式性质的应用,分享解题心得。

2. 教学游戏:设计有关不等式的游戏,提高学生的学习兴趣。

九、教学策略调整1. 根据学生掌握情况,针对性地讲解不等式的难点知识点。

2. 对于学习困难的学生,提供个别辅导,帮助他们跟上课堂进度。

冀教版数学七年级下册10.2《不等式的基本性质》教学设计

冀教版数学七年级下册10.2《不等式的基本性质》教学设计

冀教版数学七年级下册10.2《不等式的基本性质》教学设计一. 教材分析冀教版数学七年级下册10.2《不等式的基本性质》是学生在掌握了不等式的基本概念和性质之后,进一步研究不等式的基本性质。

这部分内容是初中学段数学的重要内容,也是中考的热点。

本节内容主要介绍不等式的加减乘除性质,以及不等式两边同时乘以或除以同一个负数时不等号的方向改变。

这部分内容既是对不等式基本性质的巩固,也为后续不等式组和不等式应用题的学习打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了不等式的基本概念和性质,具备了一定的逻辑思维能力和推理能力。

但学生在解决实际应用题时,对不等式的运用还不够熟练,需要通过本节内容的学习,进一步巩固和提高。

三. 教学目标1.理解并掌握不等式的加减乘除性质。

2.能够运用不等式的性质解决实际问题。

3.培养学生的逻辑思维能力和推理能力。

四. 教学重难点1.不等式的加减乘除性质的推导和理解。

2.不等式两边同时乘以或除以同一个负数时不等号方向的变化。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过问题引导,让学生思考和探索不等式的性质;通过案例分析,让学生理解和运用不等式的性质;通过小组合作学习,让学生互相交流和提高。

六. 教学准备1.PPT课件2.教学案例3.小组合作学习资料七. 教学过程1.导入(5分钟)利用PPT课件展示不等式的问题情境,引导学生思考不等式的问题,激发学生的学习兴趣。

2.呈现(10分钟)呈现不等式的加减乘除性质,让学生观察和思考,引导学生通过推理和证明得出结论。

3.操练(10分钟)让学生通过PPT上的练习题,运用不等式的性质进行计算和解答,教师及时进行点评和指导。

4.巩固(10分钟)通过案例分析,让学生运用不等式的性质解决实际问题,巩固所学知识。

5.拓展(10分钟)让学生小组合作学习,探讨不等式两边同时乘以或除以同一个负数时不等号方向的变化,分享学习成果。

6.小结(5分钟)教师引导学生总结不等式的加减乘除性质,以及解决实际问题的方法。

不等式基本性质教学设计(共5篇)

不等式基本性质教学设计(共5篇)

不等式根本性质教学设计〔共5篇〕第1篇:不等式性质教学设计 2022-2022学年度第二学期关集中心校七年级数学组导学案专用纸主备人:胡伟审核人:使用人:第11周讨论时间:不等式的根本性质〔1〕教学设计学习目标1、理解、掌握不等式的根本性质;2、能够运用不等式的根本性质解决有关问题.重点难点重点:不等式的三个性质.难点:不等式性质3的探索及运用.解决方法:不等式的根本性质3的导出,采用通过学生自己动手实践、观察、归纳猜测结论、验证等环节来突破的.并在理解的根底上加强练习,以期到达学生稳固所学知识的目的.教学方法先学后教、讨论、探究、讲练结合教具准备多媒体,或小黑板教学设计流程问题:等式有哪些性质?〔学生交流3-5分钟〕学生答复等式的性质:性质1 等式两边同时加〔或减〕同一个数〔或式子〕,结果仍相等.性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.此次活动中教师应重点关注:〔1〕学生对已学过的等式性质内容的记忆,及表达语言的准确性;〔2〕学生对等式性质得出过程的回忆.探讨不等式的根本性质.〔学生读文8-10分钟后,研讨并解决下面问题〕如果a>b,那么,在数轴上表示a的点A位于表示b 的点B的右侧,画图表示.〔一〕做做1.请你在上面的数轴上画出表示a+3和b+3的点来,哪个点在右侧?并用不等号连接下面的式子: a+3______b+3.类似地,应有 a+c______b+c.2.如果在a>b的两边都减去同一个数或同一个整式,你认为应该有怎样的结论? 让学生多举出几组数据,结合数轴来比拟出两组数的大小关系.〔以小组为单位,充分讨论,通过交流得出结论〕.不等式的根本性质1:如果a>b,那么 a+c>b +c,a-c>b-c.就是说,不等式两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变.〔二〕探究1.根据8>3,用“>〞或“ 8×2_______3 × 2; 8×〔-2〕_______3×〔-2〕.8× _______3×; 8×〔-〕_______3×〔-〕.8×0.01______3×0.01; 8×〔-0.01〕_______3×〔-0.01〕.2.对于8>3,在不等式两边乘同一个正数,不等号方向改变吗?3.对于8>3,在不等式两边乘同一个负数,不等号方向改变吗?4.你有什么发现?再举几例,验证你的结论.通过多组数据,观察、思考、一起探究两组数的大小关系.学生在填空的根底上分组探索不等式的性质.教师深入小组参与活动,观察指导学生的探究方法,并倾听学生的讨论.此次活动是本节课的核心活动,对学生有一定的难度,有些学生可能会直接把等式的性质加以修改,推广得到不等式的性质,而忽略了不等式的两边乘或除以同一个正数或同一个负数时的不同结论,此时教师应引导学生注意观察题目,并继续举几个例子让学生观察比照,体会不等式性质与等式性质的异同,用自己的语言描述发现的规律.不等式的根本性质2:如果a>b,并且c>0,那么ac>bc.不等式的根本性质3:如果a>b,并且c 〔三〕例题例根据不等式的根本性质,把以下不等式化成x>a或x2;〔2〕2x20.学生独立完成,举手答复以下问题.教师填写答案,并对学生出现的问题给予指导,进一步稳固不等式的性质.此次活动中教师应重点关注:〔1〕学生能否说出填空根据的是不等式的哪一条性质;〔2〕学生对不等式性质3的掌握情况.解:〔1〕 x-l>2,x-l+l>2+1〔不等式的根本性质1〕, x>3.〔2〕2x 2x-x 〔不等式的根本性质2〕, x20 〔不等式的根本性质3〕, xa或x 〔四〕教后检测1.如果a〞或“a或x8x+1;〔3〕 x>-4;〔4〕-10x 〔五〕当堂训练1.在以下各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式根本性质.〔1〕假设a-3<9,那么 a ______12;〔2〕假设-a<10,那么a______ -10;答:〔1〕a<12,根据不等式根本性质1.〔2〕a>-10,根据不等式根本性质3. 2.a<0,那么〔1〕a+2 ______2;〔2〕a-1 ______ -1;〔3〕3a______ 0;〔4〕a-1______0;〔5〕|a|______0.答:〔1〕a+2<2,根据不等式根本性质1.〔2〕a-1<-1,根据不等式根本性质1.〔3〕3a<0,根据不等式根本性质2.〔4〕因为a<0,两边同加上-1,由不等式根本性质1,得a-1<-1.又,-1<0,所以 a-1<0.〔5〕因为a<0,所以a≠0,所以|a|>0.〔此题除了进一步运用不等式的三条根本性质外,还涉及了一些旧的根底知识.如a<0表示a是负数;a>0表示a是正数;|a| 是非负数等.〕 3.判断以下各题的推导是否正确?为什么?〔投影〕〔请学生口答〕〔1〕因为7.5>5.7,所以-7.5<-5.7;〔2〕因为a+8>4,所以a>-4;〔3〕因为4a>4b,所以a>b;〔4〕因为-1>-2,所以-a-1>-a-2;〔5〕因为3>2,所以3a>2a.答:〔1〕正确,根据不等式根本性质3.〔2〕正确,根据不等式根本性质1.〔3〕正确,根据不等式根本性质2.〔4〕正确,根据不等式根本性质1.〔5〕不对,应分情况逐一讨论.当a>0时,3a>2a.〔不等式根本性质2〕当 a=0时,3a=2a.当a<0时,3a<2a.〔不等式根本性质3〕〔学生在答复此题的过程中,当遇到困难或问题时,教师应做适当引导、启发、帮助〕4.按照以下条件,写出仍能成立的不等式:〔1〕由-2<-1,两边都加-a;〔2〕由7>5,两边都乘以不为零的-a.5.用不等号填空:〔1〕当a-b<0时,a______ b;〔2〕当a<0,b<0时,ab ______0;〔3〕当a<0,b>0时,ab ______0;〔4〕当a>0,b<0时,ab ______ 0;〔5〕假设a ______ 0,b<0,那么ab>0;〔六〕教后反思第2篇:根本不等式教学设计根本不等式一、教学设计理念:注重学生自主、合作、探究学习,用新课程理念打造新的教学模式.二、教学设计思路: 1.教学目标确定这节课的目标定位分为三个层面:第一层面:知识与技能层面,①了解两个正数的算术平均数和几何平均数的概念;②要创设几何和代数两个方面的背景,从数形结合的高度让学生了解根本不等式;③引导学生从不同角度去证明根本不等式;④用根本不等式来证明一些简单不等式.第二层面:过程与方法,通过掌握公式的结构特点,适当运用公式的变形,能够提高学生分析问题和解决问题的能力,加强学生的实践能力,渗透数学的思想方法.第三层面:情感、态度与价值观,①通过具体问题的解决,让学生去感受日常生活中存在大量的不等关系,鼓励学生用数学观点进行归纳,抽象,使学生感受到数学美,走进数学,培养学生严谨的数学学习习惯和良好的思维方式;②通过问题的解决,激发学生探究精神和科学态度,同时去感受数学的运用性,体会数学的微妙,数学的简洁美,激发学生学习数学的兴趣.2.教学过程本节课我设计了五个环节:第一个环节:创设情境,引入新课.我设计了两个情境:一个是天平测量的问题,另一个是让学生动手操作折纸试验,从不同的角度体验和理解根本不等式,让学生能够体会数学与生活紧密联系,激发学生学习兴趣,为后面学习作铺垫.第二个环节:探究交流,发现规律.我在问题的情境中,让学生带着不同的数据去比拟几何平均数和算术平均数的大小,并通过小组折纸试验,通过这样合作交流的方式让学生初步感受到几何平均数和算术平均数之间的大小关系.第三个环节:启发引导、形成结论.本节课的重要任务就是对根本不等式进行严格的证明,包括了比拟法,综合法和分析法,而学生对作差比拟法是比拟熟悉的,综合法和分析法的过程要加强引导,并组织学生去探究这两种方法之间的关系,并标准证明过程,为今后学习证明方法打下根底.第四个环节:训练小结,稳固深化.学习根本不等式最终的目的表达在它的运用上,首先在例题选择上,注重让学生充分认识和间的关系,给出一般的结论,在练习中我选择了题组形式,目的是与让学生强化对根本不等式成立条件包括等号成立的条件.第五个环节:研究拓展,提高能力.我设计了一道关于例题的变式题,目的是让学生感受到,通过适当的变形将其化为例题中出现的形式,表达化归的思想,最后设计三道思考题,两道进一步稳固化归思想及应用根本不等式的条件,一道需要分类讨论,让学有余力的学生提供更好展示自己能力的时机,得到进一步提高.最后我通过问题式的小结,让学生自行归纳我们这节课当中学到的知识,特别是最后一问中,让学生去总结在使用根本不等式的时候要注意哪些条件.虽然我没有点出“一正二定三相等〞这样的结论,但已潜移默化为我们下一节课使用根本不等式求最值问题作了铺垫,起到承前启后的作用.三、本节课重点重点:应用数形结合的思想和日常生活中例子理解根本不等式,并从不同的角度探索不等式的证明过程.难点:灵活使用化归思想把问题转化为运用根本不等式,以及根本不等式成立条件中包括等号成立的条件.在这一节中的主要任务就是让学生从不同的角度去探索根本不等式的证明过程,包括它的成立条件,在这一节课中我的总体想法是通过互动,发现规律,直接猜测,指定验证,得出结论,最后灵活运用这个结论来解决问题.四、本节课亮点:1.积极引导学生自主探究问题,解决问题.2.灵活运用转化与化归的思想.3.实现课堂三大转变:①变教学生学会知识为指导学生会学知识;②变重视结论的记忆为重视学生获取结论的体验和感悟;③变模仿式学习为探究式学习.4.课堂小结采取问题式小结给学生留下满口香.导入新课探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗??〔教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情〕?? 推进新课师同学们能在这个图中找出一些相等关系或不等关系吗?如何找??【三维目标】:一、知识与技能1.能够运用根本不等式解决生活中的应用问题2.进一步掌握用根本不等式求函数的最值问题;3.审清题意,综合运用函数关系、不等式知识解决一些实际问题.4.能综合运用函数关系,不等式知识解决一些实际问题.二、过程与方法本节课是根本不等式应用举例的延伸。

基本不等式的教学设计一等奖4篇

基本不等式的教学设计一等奖4篇

第4篇教学设计一、素质教育目标(一)知识教学点1.使学生理解掌握不等式的三条基本性质,尤其是不等式的基本性质3.2.灵活运用不等式的基本性质进行不等式形.(二)能力训练点培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.(三)德育渗透点培养学生积极主动的参与意识和勇敢尝试、探索的精神.(四)美育渗透点通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操,数学教案-不等式和它的基本性质教学设计方案(二)。

二、学法引导1.教学方法:观察法、探究法、尝试指导法、讨论法.2.学生学法:通过观察、分析、讨论,引导学生归纳小结出不等式的三条基本性质,从具体下升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.三、重点·难点·疑点及解决办法(一)重点掌握不等式的三条基本性质,尤其是不等式的基本性质3.(二)难点正确应用不等式的三条基本性质进行不等式变形.(三)疑点弄不清“不等号方向不变”与“所得结果仍是不等式”之间的关系是学生学习的疑点.(四)解决办法讲清“不等式的基本性质”与“等式的基本性质”之间的区别与联系是教好本节内容的关键.四、课时安排一课时五、教具学具准备投影仪或电脑、自制胶片.六、师生互动活动设计1.通过设计的一组比较大小问题,让学生观察并归纳出不等式的三条基本性质.2.通过教师的讲解及学生的质疑,让学生在与等式性质的对比中更加深入、准确地理解不等式的三条基本性质.3.通过教师的板书及学生的互动练习,体现出以学生为主体,教师为主导的教学模式能更好地对学生实施素质教育.七、教学步骤(一)明确目标本节课主要学习不等式的三条基本性质并能熟练地加以应用.(二)整体感知通过具体的事例观察并归纳出不等式的三条基本性质,再反复比较三条性质的异同,从而寻找出在实际应用某条性质时应注意的使用条件,同时注意将不等式的三条基本性质与等式的基本性质1、2进行比较:相同点为不管是对等式还是不等式,都可以在它的两边同加(或减)同一个数或同一个整式.不同点是对于等式来说,在等式的两边乘以(或除以)同一个正数(或同一个负数)的情况下等式仍然对立.但对于不等式来说,却不一样,在用同一个正数去乘(或除)不等式两边时,不等号方向不变;而在用同一个负数去乘(或除)不等式两边时,不等号要改变方向.这是在不等式变形时应特别注意的地方.(三)教学过程1.创设情境,复习引入什么是等式?等式的基本性质是什么?学生活动:独立思考,指名回答.教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.请同学们继续观察习题:(1)用“>”或“<”填空.①7+3____4+3 ②7+(-3)____4+(-3)③7×3____4×3 ④7×(-3)____4×(-3)(2)上述不等式中哪题的不等号与7>4一致?学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.【教法说明】设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.学生活动:观察思考,猜想出不等式的性质.教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”师生活动:师生共同叙述不等式的性质,同时教师板书.不等式基本性质1 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?学生活动:观察③④题,并将题中的3换成5,-3换成一5,按题的要求再做一遍,并猜想讨论出结论.【教法说明】观察时,引导学生注意不等号的.方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?0呢?为什么?师生活动:由学生概括总结不等式的其他性质,同时教师板书.不等式基本性质2 不等式两边都乘(或除以)同一个正数,不等号的方向不变.不等式基本性质3 不等式两边都乘(或除以)同一个负数,不等号的方向改变.师生活动:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.学生活动:看课本第57~58页有关不等式性质的叙述,理解字句并默记.强调:要特别注意不等式基本性质3.实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.不等式的基本性质与等式的基本性质有哪些区别、联系?学生活动:思考、同桌讨论.归纳:只有乘(或除以)负数时不同,此外都类似.下面尝试用数学式子表示不等式的三条基本性质.①若,则,;②若,且,则,;③若,且,则,.师生活动:学生思考出答案,教师订正,并强调不等式性质3的应用.注意:不等式除了上述性质外,还有以下性质:①若,则.②若,且,则,这些先不要向学生说明.2.尝试反馈,巩固知识请学生先根据自己的理解,解答下面习题.例1 根据不等式的基本性质,把下列不等式化成或的形式.(1)(2)(3)(4)学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.解:(l)根据不等式基本性质1,不等式的两边都加上2,不等号的方向不变.所以(2)根据不等式基本性质1,两边都减去,得(3)根据不等式基本性质2,两边都乘以2,得(4)根据不等式基本性质3,两边都除以-4得【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.例2 设,用“<”或“>”填空.(1)(2)(3)学生活动:在练习本上完成例2,由3个学生板演完成后,其他学生判断板演是否正确,最后与书中正确解题格式对照.解:(1)因为,两边都减去3,由不等式性质1,得(2)因为,且2>0,由不等式性质2,得(3)因为,且-4<0,由不等式性质3,得教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.注意问题:例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.3.变式训练,培养能力(1)用“>”或“<”在横线上填空,并在题后括号内填写理由.(不等式基本性质1,2,3分别用A、B、C表示.)①∵∴()②∵∴()③∵∴()④∵∴()⑤∵∴⑥∵∴()学生活动:此练习以学生抢答方式完成,目的是训练学生思维能力,表达能力,烘托学习气氛.答案:①(A)②(B)③(C)④(C)⑤(C)⑥(A)【教法说明】做此练习题时,应启发学生将所做习题与题中已知条件进行对比,观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.(2)单项选择:①由得到的条件是()A.B.C.D.②由由得到的条件是()A.B.C.D.③由得到的条件是()A.B.C.D.是任意有理数④若,则下列各式中错误的是()A.B.C.D.师生活动:教师选出答案,学生判断正误并说明理由.答案:①A ②D ③C ④D(3)判断正误,正确的打“√”,错误的打“×”①∵∴( ) ②∵∴( )③∵∴( ) ④若,则∴,( )学生活动:一名学生说出答案,其他学生判断正误.答案:①√②×③√④×【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错,教师应讲清楚.(四)总结、扩展1.本节重点:(1)掌握不等式的三条基本性质,尤其是性质3.(2)能正确应用性质对不等式进行变形.2.注意事项:(1)要反复对比不等式性质与等式性质的异同点.(2)当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,对于未给定范围的字母,应分情况讨论.3.考点剖析:不等式的基本性质是历届中考中的重要考点,常见题型是选择题和填空题.八、布置作业(一)必做题:P61 A组4,5.(二)选做题:P62 B组1,2,3.参考答案(一)4.(1)(2)(3)(4)5.(1)(2)(3)(4)(5)(6)(二)1.(1)(2)(3)2.(1)(2)(3)(4)3.(1)(2)(3)九、板书设计6.1 不等式和它的基本性质(二)一、不等式的基本性质1.不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变.若,则,.2.不等式两边都乘(或除以)同一个正数,不等号方向不变,若,,则.3.不等式两边都乘(或除以)同一个负数,不等号方向改变,若,,则.二、应用例1 解(1)(2)(3)(4)例2 解(1)(2)(3)三、小结注意不等式性质3的应用.四、背景知识与课外阅读盒子里有红、白、黑三种球,若白球的个数不少于黑球的一半,且不多于红球的,又白球和黑球的和至少是55,问盒中红球的个数最少是多少个?第5篇教学设计初二下册数学16.1.2分式的基本性质说课稿设计16.1.2《分式的基本性质》说课稿今天我说课的内容是《分式的基本性质》。

不等式的基本性质--教学设计

不等式的基本性质--教学设计

《不等式基本性质》教学设计一、教学内容不等式是现实世界中不等关系的一种数学表现形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。

不等式的基本性质是本章的教学重点内容之一。

本节课学生经历类比、猜想、试验、归纳的探索过程,从而发现不等式三条基本性质,初步体会不等式与等式的异同,能够将不等式进行简单转化。

教学重点是探索不等式的基本性质,难点是灵活地掌握和应用不等式基本性质。

教学过程培养学生掌握类比的数学方法以及由试验发现规律的数学方法。

二、教学目标1、知识与技能:①、经历类比、猜想、尝试、归纳的不等式基本性质探索过程,初步体会不等式与等式的异同。

②、掌握不等式的基本性质,并能初步运用不等式的基本性质把比较简单的不等式转化为“x>a”或“x<a”的形式。

2、数学思考:学生经历自主探索、合作交流、归纳总结、知识运用的学习过程。

培养学生掌握类比和由试验发现规律的方法。

3、解决问题:会利用不等式的基本性质解决生活中的实际问题,体会学以致用的喜悦,开拓学生的视野。

4、情感与态度:培养学生积极参与、合作交流的意识,勇敢尝试、探索的精神。

三.学生学情分析本章是在学生学习了一元一次方程、二元一次方程组和一次函数的基础上,开始研究简单的不等关系。

通过前面的学习,学生已初步体会到生活中量与量之间的关系是众多而且复杂的,但面对大量的同类量,最容易使人想到的就是它们有大小之分。

此外,八年级学生对知识充满兴趣和渴望,具备一定的合作探究能力。

四、教学策略分析本节课分两个阶段探索不等式的三条基本性质。

首先,学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,采用类比的方式进行教学,通过这样的对比,不但可以复习已学过的等式的基本性质,便于引入新课,而且也有利于掌握不等式的基本性质。

其次,引导学生用试验的方法,归纳出三条基本性质。

数学家欧拉说过:“数学这门科学,需要观察,也需要试验。

”通过教学培养学生掌握由试验发现规律的方法。

湘教版数学八年级上册《4.2 不等式的基本性质》教学设计

湘教版数学八年级上册《4.2 不等式的基本性质》教学设计

湘教版数学八年级上册《4.2 不等式的基本性质》教学设计一. 教材分析《4.2 不等式的基本性质》是湘教版数学八年级上册的重要内容,主要介绍了不等式的性质,包括不等式的两边同时加减同一个数或同一个整式,不等式的两边同时乘除同一个正数,以及不等式的两边同时乘除同一个负数时,不等号的方向如何变化。

这些性质是解决不等式问题的关键,也是初中数学的基础知识。

二. 学情分析八年级的学生已经学习了不等式的基本概念,具备了一定的逻辑思维能力,但对于不等式的性质的理解和应用还不够熟练。

因此,在教学过程中,需要通过实例引导学生理解不等式的性质,并通过大量的练习让学生熟练掌握。

三. 教学目标1.理解不等式的基本性质,并能熟练运用。

2.培养学生的逻辑思维能力和解决问题的能力。

3.提高学生的数学素养,使学生能够更好地理解和应用数学知识。

四. 教学重难点1.不等式的性质的理解和应用。

2.不等式的两边同时乘除同一个负数时,不等号的方向变化。

五. 教学方法采用启发式教学法,通过实例和练习引导学生发现和总结不等式的性质,注重学生的参与和思考,培养学生的逻辑思维能力。

六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的性质,例如:“小明比小红高,如果小明再长高5cm,那么他比小红高多少?”让学生思考并回答,引导学生发现不等式的性质。

2.呈现(10分钟)用PPT呈现不等式的性质,分别是不等式的两边同时加减同一个数或同一个整式,不等式的两边同时乘除同一个正数,以及不等式的两边同时乘除同一个负数时,不等号的方向如何变化。

并用实例进行解释和演示。

3.操练(10分钟)让学生分组进行练习,每组选一个题目进行解答,然后互相交换题目进行批改和讨论。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生独立完成一些不等式性质的题目,教师选取一些题目进行讲解和分析,帮助学生巩固所学知识。

5.拓展(10分钟)让学生思考和探讨不等式的性质在实际问题中的应用,例如:“一个班级有男生和女生,如果男生比女生多10人,那么如果男生减少5人,女生增加5人,男生还是比女生多多少人?”引导学生运用不等式的性质解决问题。

湘教版数学八年级上册4.2《不等式的基本性质3》教学设计

湘教版数学八年级上册4.2《不等式的基本性质3》教学设计

湘教版数学八年级上册4.2《不等式的基本性质3》教学设计一. 教材分析《不等式的基本性质3》是湘教版数学八年级上册第4章第2节的内容。

本节主要引导学生探究不等式的性质,让学生通过观察、思考、归纳等过程,理解不等式的性质,并学会用这些性质解决实际问题。

教材中安排了丰富的例题和练习题,有利于学生巩固所学知识。

二. 学情分析学生在学习本节内容前,已经掌握了不等式的概念、性质1和性质2,具备了一定的数学思维能力。

但在解决实际问题时,仍可能对不等式的性质运用不够熟练。

因此,在教学过程中,要关注学生的学习情况,引导学生积极参与,提高他们运用不等式性质解决问题的能力。

三. 教学目标1.知识与技能:使学生掌握不等式的性质3,并能运用性质3解决实际问题。

2.过程与方法:培养学生观察、思考、归纳的能力,提高他们运用不等式性质解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探究、积极向上的精神。

四. 教学重难点1.重点:不等式的性质3。

2.难点:如何运用不等式的性质3解决实际问题。

五. 教学方法1.引导探究法:引导学生观察、思考、归纳不等式的性质3。

2.例题讲解法:通过典型例题,讲解不等式性质3的应用。

3.练习法:让学生通过练习题,巩固所学知识。

六. 教学准备1.课件:制作课件,展示不等式的性质3的相关内容。

2.练习题:准备一些有关不等式性质3的练习题,用于课堂练习和课后巩固。

七. 教学过程1.导入(5分钟)利用课件展示不等式的性质1和性质2,引导学生回顾这些性质。

然后提出问题:“不等式还有没有其他的性质呢?”从而引出本节课的内容。

2.呈现(10分钟)展示不等式的性质3,引导学生观察、思考并归纳性质3的表达式。

通过讲解典型例题,让学生理解并掌握性质3的应用。

3.操练(10分钟)让学生独立完成一些有关不等式性质3的练习题,教师巡回指导,及时解答学生的疑问。

4.巩固(10分钟)总结不等式性质3的重点和难点,让学生再次回顾所学内容。

青岛版数学八年级下册8.1《不等式的基本性质》教学设计

青岛版数学八年级下册8.1《不等式的基本性质》教学设计

青岛版数学八年级下册8.1《不等式的基本性质》教学设计一. 教材分析《不等式的基本性质》是青岛版数学八年级下册第八章的第一节内容。

本节主要介绍不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,以及不等式的两边同时乘除同一个负数时,不等号的方向变化。

这些性质是解不等式问题的关键,也是初中数学中不等式部分的基础知识。

二. 学情分析学生在学习本节内容前,已经学习了实数、方程等基础知识,对数学概念和运算规则有一定的了解。

但部分学生可能对不等式的性质理解不够深入,解不等式的实际操作能力有待提高。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。

三. 教学目标1.理解不等式的基本性质,并能熟练运用。

2.能够解简单的不等式题目。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.教学重点:不等式的基本性质及其应用。

2.教学难点:不等式性质的理解和运用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究不等式的性质。

2.利用实例讲解,让学生直观地感受不等式性质的应用。

3.采用小组合作学习,培养学生的团队协作能力。

4.运用练习题进行巩固,及时发现并解决学生在学习中的问题。

六. 教学准备1.准备相关的不等式题目,用于课堂练习和巩固。

2.制作课件,展示不等式的基本性质。

七. 教学过程1.导入(5分钟)利用实际生活中的例子,如温度、身高等,引出不等式的概念,进而导入本节课的内容。

2.呈现(10分钟)通过课件展示不等式的基本性质,并用实例进行讲解,让学生直观地感受不等式性质的应用。

3.操练(10分钟)让学生分组讨论,每组选取一道题目,运用不等式的性质进行解答。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)针对每组选题进行讲解,让学生再次回顾不等式的性质,并强调其在解题中的应用。

5.拓展(10分钟)出示一些有关不等式性质的综合题目,让学生独立解答。

初中数学_8.1 不等式的基本性质教学设计学情分析教材分析课后反思

初中数学_8.1 不等式的基本性质教学设计学情分析教材分析课后反思

不等式的基本性质——教学设计教学目标:(一)知识与技能1.掌握不等式的三条基本性质。

2.运用不等式的基本性质对不等式进行变形。

(二)过程与方法1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。

2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。

(三)情感态度与价值观通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。

二、教学重难点教学重点:探索不等式的三条基本性质并能正确运用它们将不等式变形。

教学难点:不等式基本性质3的探索与运用。

三、教学方法:自主探究——合作交流四、教学过程:情景引入:通过比较两个学生的高矮,引出不等式的定义。

不等式的定义像a>b,>1,-1<-4+ ,3x+6<0,5x+2>2x+4这样,用不等号“>”或“<”表示不等关系的式子叫做不等式。

210判断下列式子是不是不等式:(1)-3<0 (2)4x+3y>0(3)x=3 (4)x2+xy+y2(5)x+2>y+5是是不是不是是温故知新问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是等式。

估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。

教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,<,具有方向性,我们应该重点研究它在方向上的变化。

问题2.你能通过实验、猜想,得出进一步的结论吗?思考下面的问题,1、甲的年龄为a 岁,乙的年龄为b 岁,如果甲的年龄比乙的年龄大,请你用不等式表示出a 与b 的大小关系。

c 年后,他们二人谁的年龄大?你能用不等式表示出来吗?c 年前呢a>b ;甲的年龄大,a+c>b+c2、在数轴上,点A 与B 分别对应实数a 、b ,并且点A 在点B 的右边,请你用不等式表示a 、b 之间的大小关系。

不等式的基本性质教学设计

不等式的基本性质教学设计

不等式的基本性质教学设计教学设计一:引入不等式基本概念(适用于初中数学)一、教学目标:1.理解不等式的概念和符号表示;2.掌握不等式的基本性质;3.能够解决简单的不等式问题。

二、教学重难点:1.引入不等式的概念和符号表示;2.不等式的基本性质的掌握。

三、教学准备:1.教师准备PPT课件;2.学生准备教材和笔记。

四、教学过程:步骤一:复习1.复习正数、负数、绝对值等概念,为引入不等式基本概念做铺垫。

步骤二:引入不等式概念1.引导学生思考「6大于4」和「6小于4」这两个陈述之间的关系;2.提示学生不等式符号的意义,大于号和小于号的表示方法;3.介绍不等式的定义:一个数与另一个数之间的大小关系用不等号表示,这种关系叫做不等式;4.通过几个例子引导学生理解不等式的概念。

步骤三:符号表示法1.掌握不等式的基本符号表示法:大于号、「大于等于」号、小于号和「小于等于」号;2.通过实例让学生练习不等式的符号表示法。

步骤四:不等式的基本性质1.介绍不等式的基本性质:不等式两边同时加(减)一个数,不等号方向不变;不等式两边同时乘(除)一个正数,不等号方向不变,乘以(除以)一个负数,不等号方向翻转。

2.通过实例让学生练习应用不等式的基本性质。

步骤五:解决不等式问题1.引导学生分析和解决简单的不等式问题:如不等式的解集表示法、不等式的图形表示等;2.给学生一些简单的不等式问题进行解答和讨论。

步骤六:总结归纳1.通过回顾,总结不等式的基本概念和基本性质;2.向学生提供一份复习材料,巩固所学内容。

五、教学反思:通过本节课的教学,引导学生初步了解不等式的概念和符号表示,掌握不等式的基本性质,并能够通过解决简单的不等式问题来加深理解。

在教学过程中,可以通过多个实例的讲解和练习,培养学生的观察和分析问题的能力。

课后可以布置一些相关练习题,帮助学生进一步巩固所学内容。

同时,教师还可以结合实际生活中的问题,设计一些有趣的不等式问题,激发学生的学习兴趣和主动参与。

不等式的基本性质教学设计教案

不等式的基本性质教学设计教案

不等式的基本性质教学设计-教案第一章:不等式的概念1.1 不等式的定义介绍不等式的概念,举例说明。

解释不等式中的“大于”、“小于”、“大于等于”、“小于等于”等符号的含义。

1.2 不等式的表示方法介绍不等式的标准形式和斜线形式。

演示如何书写不等式,并强调箭头和斜线的区别。

1.3 不等式的解集解释不等式的解集的概念。

演示如何表示不等式的解集,包括用数轴表示解集的方法。

第二章:不等式的基本性质2.1 不等式的传递性质介绍不等式的传递性质,即如果a < b且b < c,则a < c。

通过示例解释传递性质的应用。

2.2 不等式的同向加减性质介绍不等式的同向加减性质,即如果a < b,则a + c < b + c(c为正数)和a c > b c(c为负数)。

通过示例解释同向加减性质的应用。

2.3 不等式的反向乘除性质介绍不等式的反向乘除性质,即如果a < b,且c为正数,则ac < bc和a/c > b/c (c不为零)。

通过示例解释反向乘除性质的应用。

第三章:不等式的解法3.1 简单不等式的解法介绍解简单不等式的方法,如直接解不等式、同向加减、反向乘除等。

通过示例演示如何解简单不等式。

3.2 复合不等式的解法介绍解复合不等式的方法,如先解不等式组、利用不等式的传递性质等。

通过示例演示如何解复合不等式。

3.3 不等式的应用介绍不等式的应用,如解决实际问题、求解最值等。

通过示例演示不等式在实际问题中的应用。

第四章:不等式的性质练习4.1 简单不等式的性质练习提供一些简单不等式,让学生练习解题,并解释解题过程。

强调解题中的关键步骤和常见错误。

4.2 复合不等式的性质练习提供一些复合不等式,让学生练习解题,并解释解题过程。

强调解题中的关键步骤和常见错误。

第五章:不等式的综合应用5.1 不等式的综合应用问题提供一些不等式的综合应用问题,让学生解决问题,并解释解题过程。

高中高一数学上册《不等式的基本性质》教案、教学设计

高中高一数学上册《不等式的基本性质》教案、教学设计
在课堂尾声,我将带领学生进行以下总结归纳:
1.回顾本节课所学的不等式性质,让学生用自己的语言总结这些性质的特点和作用。
2.强调不等式性质在实际问题中的应用,鼓励学生在日常生活中多观察、多思考,将所学知识运用到实际中。
3.提醒学生课后复习,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学知识,检验学生对不等式基本性质的理解和应用能力,特布置以下作业:
4.小组合作题:以小组为单位,共同完成教材第chapter页的习题6,此题需要学生互相讨论、共同分析,培养学生的团队合作精神和交流表达能力。
5.思考题:请同学们思考以下问题:“如何运用不等式的性质分析函数的单调性和最值问题?”并将思考结果以书面形式提交。
作业要求:
1.请同学们认真完成作业,确保作业质量,字迹清晰,表述准确。
在此基础上,大部分学生对数学学科具有一定的兴趣和热情,但学习积极性、主动探究能力等方面存在差异。因此,在教学过程中,教师应注重激发学生的学习兴趣,引导他们积极参与课堂讨论和实践活动,培养其自主学习能力。
此外,学生在团队合作、交流表达方面有待提高。教师在教学过程中应创造更多的小组合作、讨论交流的机会,帮助学生克服心理障碍,提升他们的沟通能力和团队协作精神。
(三)学生小组讨论
讲授新知识后,我将组织学生进行小组讨论,以加深对知识的理解和应用。
1.分组讨论:将学生分成若干小组,每组选取一个实际问题,运用不等式的性质进行分析和求解。
2.各小组分享讨论成果,展示解题过程,其他小组进行评价和补充。
3.针对学生在讨论过程中遇到的问题和困惑,进行解答和指导,帮助学生突破难点。
(二)过程与方法
1.通过启发式教学,引导学生自主探究不等式的基本性质,培养学生的逻辑思维能力和抽象思维能力;

《不等式的基本性质》教学设计

《不等式的基本性质》教学设计

《不等式的基本性质》教学设计一、教学目标知识目标:掌握不等式的三个基本性质,并能正确运用。

能力目标:经历探索不等式的基本性质的过程,体会不等式与等式的异同点,发展学生的分析问题、解决问题的能力。

情感目标:开展研究性学习,使学生初步体会学习不等式基本性质的价值。

通过让学生学习用不等式的基本性质解决相关问题,获得成功体验,增强学好数学的信心。

二、重点:理解不等式的三个基本性质。

难点:对不等式的基本性质3的重点认识。

三、教法通过观察、分析、讨论,引导学生归纳总结出不等式的三条基本性质,从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握。

二、教学过程(一)创设情景,引入新课通过上节课的学习,我们认识了不等式,那么谁能告诉老师什么叫做“不等式”呢?(生口答:用不等号连接的式子)比如2<3,a<b。

那么,这样的式子有什么样的性质呢?这就是我们本节课要研究的课题。

要研究不等式的性质,先让我们通过一组习题,回想一下等式的性质。

(二)探索新知1.挑战记忆,回顾等式的性质。

先看下面一组习题,左边是如何得到右边的呢,用了什么方法呢?由a+5=b+5,能得到a=b?由a-5=b-5,能得到a=b?由5a=5b,能得到a=b?由-8a=-8b,能得到a=b?由2x+a=y+a,能得到a=b?由上面的题目,回顾提问等式的两条基本性质:等式的两边都加上或减去同一个整式,等式仍然成立。

等式的两边都乘以(或除以)同一个不为0的数,等式仍然成立。

不等式和等式只有一字之差,不等式是不是也有类似的性质呢?2.探索不等式的性质1出示一组题目:填空:3〈7那么,3+5___7+53-5___7-53+a___7+a如果a<b,那么a+c__b+c,a-c___b-c。

小组交流,由以上题组,你受到什么启发,发现不等式有什么性质?学生归纳出不等式的基本性质1:不等式的两边都加上或减去同一个整式,不等号的方向不变。

湘教版数学八年级上册4.2《不等式的基本性质》教学设计1

湘教版数学八年级上册4.2《不等式的基本性质》教学设计1

湘教版数学八年级上册4.2《不等式的基本性质》教学设计1一. 教材分析《不等式的基本性质》是湘教版数学八年级上册4.2节的内容,主要包括不等式的性质1、性质2和性质3。

这部分内容是学生学习不等式的重要基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

教材通过具体的例子和练习题,引导学生探索不等式的性质,并运用这些性质解决问题。

二. 学情分析八年级的学生已经掌握了实数、方程等基础知识,具备一定的学习能力和逻辑思维能力。

他们对不等式有一定的了解,但对其性质的深入理解还不够。

在学习本节内容时,学生需要通过实例和练习,进一步理解不等式的性质,并能运用性质解决问题。

三. 教学目标1.理解不等式的性质1、性质2和性质3。

2.能够运用不等式的性质解决实际问题。

3.培养学生的逻辑思维和解决问题的能力。

四. 教学重难点1.性质1:不等式的两边同时加上或减去同一个数,不等号的方向不变。

2.性质2:不等式的两边同时乘以或除以同一个正数,不等号的方向不变。

3.性质3:不等式的两边同时乘以或除以同一个负数,不等号的方向改变。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过实例和练习,探索不等式的性质。

2.运用多媒体辅助教学,展示实例和练习题,帮助学生直观地理解不等式的性质。

3.采用小组合作学习的方式,让学生在讨论和交流中,共同解决问题,培养团队合作能力。

六. 教学准备1.多媒体教学设备。

2.教学PPT。

3.练习题和答案。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生运用已学过的知识解决。

例如,两个人比赛跑步,一个人跑了100米,另一个人跑了120米,问谁跑得快?让学生意识到问题的解决需要比较两个数的大小,从而引入不等式的概念。

2.呈现(10分钟)展示不等式的性质1、性质2和性质3的定义,并通过具体的例子进行解释。

让学生观察和思考,总结出性质1、性质2和性质3的规律。

3.操练(10分钟)让学生分组讨论,每组设计一些练习题,运用不等式的性质解决问题。

八年级数学下册《不等式的基本性质》教案、教学设计

八年级数学下册《不等式的基本性质》教案、教学设计
2.教学过程:
-引导学生回顾已学的方程知识,为新课的学习做好铺垫。
-创设问题情境,让学生感受不等式的实际意义,激发学习动机。
-通过典型例题,引导学生发现不等式的基本性质,总结规律。
-设计分层练习,针对不同学生的学习需求,提供适当的难度和挑战,提高他们的解题能力。
-对学生进行个别辅导,关注他们的学习困惑,及时解答问题,帮助他们克服难点。
八年级数学下册《不等式的基本性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解不等式的定义,了解不等式的表示方法,能够识别并写出常见的不等式。
2.掌握不等式的基本性质,包括但不限于:传递性、对称性、加法和乘法性质。
3.学会利用不等式的基本性质解决实际问题,能够运用不等式求解线性方程组的解集。
4.能够运用不等式解决生活中的实际问题,如比较大小、求解范围等。
4.通过解决实际问题,让学生体会数学的价值,增强他们对数学学科的兴趣和信心,培养他们热爱数学的情感。
二、学情分析
八年级学生已经具备了一定的数学基础,掌握了基本的代数运算,对于方程和方程组有了一定的了解。在此基础上,他们对不等式的概念和性质的学习将更加顺利。然而,由于不等式的抽象性和性质的多样性,学生可能会在理解上遇到困难,特别是在运用性质解决实际问题时可能会感到困惑。因此,在教学过程中,应关注以下几点:
1.教师给出几个关于不等式的实际问题,要求学生以小组为单位进行讨论。
2.学生通过讨论,总结出解决不等式问题的一般步骤和方法。
3.每个小组分享他们的讨论成果,其他小组进行评价和补充。
(四)课堂练习
在这一阶段,教师将布置一些具有代表性的练习题,帮助学生巩固所学知识。
1.教师出示练习题,包括基础题和提高题,要求学生在规定时间内完成。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.1 不等式的基本性质
一、学情分析
本章是在学生学习了一元一次方程、二元一次方程组和一次函数的基础上,开始研究简单的不等关系。

通过前面的学习,学生已初步体会到生活中量与量之间的关系是众多而且复杂的,但面对大量的同类量,最容易使人想到的就是它们有大小之分。

学习时可以类比七年级上册学习的等式的基本性质。

二、教学任务分析
不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。

经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同,掌握不等式的基本性质。

三、教学目标
(1)掌握不等式的基本性质。

(2)经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。

(3)能说出一个不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。

(4)进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。

四、教学过程分析
一、创设情境复习引入
(设计说明:设置以下习题是为了温故而知新,为学习本节内容提供必要的知识准备.)
问题:1、什么是等式?等式的基本性质是什么?
2、什么是不等式?
3、用“>”或“<”填空.
(1)3<7 (2)2<3 (3) 2<3
3+1 7+1 2× 5 3× 5 2×(-1) 3×(-1) 3-5 7-5 2÷2 3÷2 2×(-5) 3×(-5)
3+a 7+a 2÷(-2) 3÷(-2)
(教学说明:复习等式的基本性质后学生自然会联想到,不等式是否有与等式相类似的性质,从而引起学生的探究欲望.接着问题3为学生探究不等式的性质提供了载体,通过观察,寻找规律,得出不等式的性质.)
二、师生互动,探索新知
1、不等式的基本性质
问题1:观察思考问题3,猜想出不等式的性质
先让学生独立思考,后合作交流,通过充分讨论,类比等式性质得出不等式的性质.
观察时,引导学生注意不等号的方向,通过(1)题学生容易得出不等式性质1:不等式基本性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.
比较(2)、(3)题,注意观察不等号方向,并思考不等号方向的改变与什么有关?由学生概括总结,教师补充完善得出:
不等式基本性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式基本性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变.问题2:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.
教师强调指出:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.
问题3:尝试用数学式子表示不等式的三条基本性质.
学生思考出答案,教师订正,最后得出:
(1) 如果a>b,那么a±c>b±c
(2) 如果a>b,c>0那么ac>bc(或 > )
(3) 如果a>b,c<0那么ac<bc(或 < )
问题4:不等式的基本性质与等式的基本性质有哪些区别、联系?
学生独立思考、小组交流讨论,师生归纳得出:
区别:等式两边都乘以(或除以)同一个数(除数不为0)时,结果仍相等;不等式两边都乘以(或除以)同一个数(除数不为0)时,会出现两种情况,若是正数,不等号方向不改变,若是负数不等号方向要改变,而且不等式两边同乘以0,结果相等.
联系:不等式性质和等式性质都讨论的是两边都加上或减去同一个数的情况和两边都乘以或除以同一个数(除数不为0)的情况,即研究“形式”一致.
(教学说明:通过观察具体数字运算的大小比较,联系已学过的等式的性质,让学生归纳出不等式的三条基本性质,并分别用式子的形式表示它们.用式子表示是个抽象概括的过程,只有理解了相关内容才会概括表示它们.研究不等式的基本性质与等式的基本性质的区别与联系可以帮助学生用类比的方法来记忆与学习.)
2、不等式性质的应用
例1:利用不等式的性质,把下列不等式化成“x>a”或“x<a”的形式:
(1)x-7>26; (2)3x<2x+1;
(3)x>50; (4)-4x>3.
解:(l)根据不等式基本性质1,不等式的两边都加上7,不等号的方向不变.得 x-7+7>26 +7.
x>33
(2)根据不等式基本性质1,两边都减去2x ,不等号的方向不变,得
3x-2x<2x+1-2x
x<1
(3)根据不等式基本性质2,两边都乘以,不等号的方向不变,得
x>75
(4)根据不等式基本性质3,两边都除以-4,不等号的方向改变,得
x< -
(教学说明:这些不等式比较简单,可以利用不等式的性质直接求解,从而加深对这些性质的认识. 教师板书(1)题解题过程.(2)(3)(4)题由学生在练习本上完成,指定三个学生板演,然后师生共同判断板演是否正确.解题时要引导学生与解一元一次方程的思路进行对比,有助于加强知识之间的前后联系,突出新知识的特点,并将原题与“x>a”或“x<a”对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别.)
例2:三角形中任意两边之差与第三边有什么大小关
系? a b
师生共析:三角形的两边之和与第三边有什么关系? c
三角形的任意两边之和大于第三边,如图,我们设三角形三边长分别为a,b,c,那么用式子如何表示前面的结果? a +b>c, a+c>b, b+c>a
我们现在求的是两边之差与第三边的关系,所以由不等式的性质1将上式变形为:由a +b>c得a >c-b, b>c-a.
同理,由a+c>b, b+c>a可得c>b-a, b >a-c,c>a-b, a >b-c.
这就是说,三角形中任意两边之差小于第三边.
(教学说明:此问题应用不等式的性质由“三角形的任意两边之和大于第三边”得出“三角形中任意两边之差小于第三边”这个与已有结论等价的新结论. “三角形的任意两边之和大于第三边”对应的是三个形式一样的不等式,而不是一个不等式.由这三个不等式再推出“三角形中任意两边之差小于第三边”.为了加深学生的感性认识,可以通过测量的方法验证这个结论.)
三、巩固训练,熟练技能:
1、如果a>b,那么 (1) a-3 b-3 , (2) 2a 2b
(3) -3a -3b, (4) a-b 0
(5)(6)(6)-b_____-a.
2、在下列各题横线上填入不等号,并说明是根据不等式的哪一条基本性质.
(1)若a–3<9,则a_____12;(2)若-a<10,则a_____–10;
(3)若 a>–1,则a_____–4;(4)若- a>0,则a_____0.
五、课堂小结
内容:学生自己总结今天这节课有什么收获,思考后对全班说出,与全班同学讨论交流。

目的:学生说出自己的收获与感想与全班交流,若有任何疑问可以当堂提出供大家讨论。

教师要学会倾听并鼓励学生的回答,关注学生对问题的实质性认识与理解,尊重学生的个体差异,关注学生的学习情感和自信心的建立。

预期效果:学生自我总结本节课所学到的知识和重点注意的问题,畅所欲言自己的切身感受与实际收获,除了今天所学新的内容之外,还复习巩固了等式的基本性质,体会新旧知识的联系与区别。

六、板书设计
不等式的三个性质表达式
七、作业。

相关文档
最新文档