人教版八年级下册 第十九章19.1.1变量与函数(第2课时)教案设计
人教版数学八年级下册《19.1.1 变量与函数》教学设计
人教版数学八年级下册《19.1.1 变量与函数》教学设计一. 教材分析人教版数学八年级下册《19.1.1 变量与函数》是初中数学的重要内容,主要让学生了解变量的概念,以及变量与函数的关系。
本节课通过具体的实例,引导学生理解函数的概念,并能够运用函数解决实际问题。
教材内容由浅入深,循序渐进,符合学生的认知发展规律。
二. 学情分析八年级的学生已经掌握了代数的基础知识,对数学概念有一定的理解能力。
但是,对于函数的概念和意义,以及如何运用函数解决实际问题,可能还存在一定的困难。
因此,在教学过程中,要注重引导学生通过实例理解函数的概念,培养学生的动手操作能力和解决问题的能力。
三. 教学目标1.知识与技能:使学生理解变量与函数的概念,能够识别函数关系,并运用函数解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生提出问题、分析问题、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作意识和创新精神。
四. 教学重难点1.重点:理解变量与函数的概念,掌握函数的表示方法。
2.难点:函数概念的理解,以及如何运用函数解决实际问题。
五. 教学方法采用问题驱动法、合作学习法和情境教学法。
通过设置问题情境,引导学生观察、操作、思考,培养学生的动手操作能力和解决问题的能力。
同时,鼓励学生相互讨论、交流,培养学生的团队协作意识和创新精神。
六. 教学准备1.教师准备:熟悉教材内容,了解学生学情,设计教学问题和活动。
2.学生准备:预习教材,了解变量与函数的基本概念。
七. 教学过程1.导入(5分钟)利用生活中的实例,如温度随时间的变化,引出变量与函数的概念。
提问:什么是变量?什么是函数?引导学生思考并回答。
2.呈现(15分钟)呈现教材中的例题和练习题,让学生观察、分析,引导学生发现变量与函数之间的关系。
提问:如何判断两个变量之间存在函数关系?如何表示函数关系?3.操练(15分钟)学生分组讨论,选取一个实例,尝试用函数表示变量之间的关系。
人教版八年级下19.1.1变量与函数教学设计2
变量与函数教学设计一、课程说明函数是数学中最重要的基本概念之一,它揭示了变量之间存在这某种具体的联系。
是研究这种在变化中各个变量的关系的非常重要的工具。
在数学中扮演可十分重要的角色。
这种关系表现在变量之间的对应关系上,函数正是描述了这种关系,使得看似变化没有规律的一些量之间互相关联。
以便我们发现生活中变化事物的规律并寻求方法去解决它。
这些变化通常都具有一些特点:1.世界在不断的变化,变化的世界中存在很多变化的量。
2.在同一种变化之中,各个量的变化并不是孤立的,而是通过某种规律相互联系在一起。
3.在这些量的变化过程中,有一些量的变化受到另外一个量变化的制约,也就是说,一个量的变化是随着另外一个量的变化而变化。
基于以上分析,本课程才从实际生活中的一些常见例子入手,来寻找这种相关联的变化。
二、课程内容本教学内容来源于人教版初中数学义务教育课程标准实验教材八年级下册第十九章《一次函数》第一节内容《变量与函数》。
本节课的内容为:变量与函数,主要讲解了变量与常量及函数的概念。
本节课是函数入门课,首先必须准确认识变量与常量的特征,初步感受到现实世界各种变量之间联系的复杂性,同时感受到数学研究方法的化繁就简,在初中阶段主要研究两个变量之间的特殊对应关系。
课本的引例较为丰富,但有些内容学生较为陌生,本设计只选取了其中较为简单的例子。
从生活中的实际问题入手,寓教于乐,真正把实际生活中的数学和书本中的数学有机结合在一起来。
三、学情分析“变量与函数”同学们初次接触到,学习抽象的知识难免有些难以理解,特别是定义中“唯一确定”的准确含义。
学生在日常生活中也接触过两个变量的关系等生活实例。
在本节教学中,从学生较为熟悉的生活实例入手,引领学生认识变量和函数的意义,体会变量之间的互相依存关系和变化规律,借助生活实例,认识“由哪一个变量确定另一个变量?唯一确定的含义是什么?”,初步理解函数的概念。
四、教案设计【知识与技能】(1)初步感知用常量与变量来刻画简单的数学问题,能指出具体问题中的常量、变量。
人教版八年级下册19.1.1变量与函数教案[精品文档]
《变量与函数》教案【教学目标】1.知识与技能(1)了解变量与常量的意义;(2)体会运动变化过程中的数量变化.2.过程与方法使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识。
3.情感态度和价值观渗透事物是运动的,运动是有规律的辩证思想。
【教学重点】了解常量与变量的意义。
【教学难点】常量与变量的确定及关系。
【教学方法】自学与小组合作学习相结合的方法。
【课前准备】教学课件。
【课时安排】1课时【教学过程】一、情景导入【过渡】在我们生活的世界中,所有的事物都是在不停的变化,行星在宇宙中的位置随时间而变化;气温随海拔而变化;火箭的高度随时间而变化,雄鹰的飞翔也会变化。
在我们周围的事物中,这种一个量随另一个量的变化而变化的现象大量存在。
课件展示图片。
【过渡】对于这些变化,我们从最基本的概念来进行认识。
二、新课教学1.变量与常量【过渡】大家先来思考一下几个问题。
(1)汽车以60 km/h 的速度匀速行驶,行驶时间为t h,行驶路程为s km.(2)每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影票的票房收入各多少元?(3)你见过水中涟漪吗?圆形水波慢慢地扩大.在这一过程中,当圆的半径分别为10 cm,20 cm,30 cm时,圆的面积s分别为多少?s的值随r的值的变化而变化吗?(4)用10 m长的绳子围一个矩形.当矩形的一边长x分别为3 m,3.5 m,4 m,4.5 m时,它的邻边长y分别为多少?y的值随x的值的变化而变化吗?分别指出问题中的变化的量及不变的量。
【过渡】在刚刚的几个问题中,我们知道在事物变化的过程中,有些量的变化的,而有些量则是固定的数值,保持不变。
在数学里,我们把这些变化的量称为变量,不变的量称为常量。
变量:在一个变化过程中,数值发生变化的量为变量。
常量:在一个变化过程中,数值始终不变的量为常量。
【练习】课本P71练习题,说出变量及常量。
数学人教版八年级下册第19章《19.1.1变量与函数》第二课时教学设计
第19章《19.1.1变量与函数》第二课时教学设计教学目标知识与技能:1.经过回顾思考认识变量中的自变量与函数.2.进一步理解掌握确定函数关系式.3.会确定自变量取值范围.过程与方法:1.经历回顾思考过程、提高归纳总结概括能力.2.通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.情感、态度与价值观:1.积极参与活动、提高学习兴趣.2.形成合作交流意识及独立思考的习惯.教学重点1.进一步掌握确定函数关系的方法.2.确定自变量的取值范围.教学难点认识函数、领会函数的意义教学方法回顾思考─探索交流─归纳总结教学准备PPT 学生制作正方形、三角形、圆等图形纸板教学过程设计(含各环节中的教师活动和学生活动以及设计意图)教学过程Ⅰ.提出问题,创设情境我们来回顾一下上节课所研究的每个问题中是否各有两个变量?同一问题中的变量之间有什么联系?也就是说当其中一个变量确定一个值时,另一个变量是否随之确定一个值呢?这将是我们这节研究的内容.Ⅱ.导入新课[师]我们首先回顾一下上节活动一中的两个问题.思考它们每个问题中是否有两个变量,变量间存在什么联系.[生]活动一两个问题都有两个变量.问题(1)中,经计算可以发现:行驶里程s(千米)与行驶时间t(小时)的关系式为:S=60t。
每当行驶时间t取定一个值时,行驶里程s就随之确定一个值.例如当t=1,则s=60;当t=2,则y=120;当t=3,则y=180.问题(2)中,通过试验可以看出:票房收入y元与售票数量x张的关系式:y=10x X=150时y=1500;X=205时y=2050;X=310时y=3100;[师]很好,他说得非常正确.谢谢你.我们再来回顾活动二中的两个问题.看看它们中的变量又怎样呢?[生]活动二中的两个问题也都分别有两个变量.问题(3)中,很容易算出:圆的面积s与半径r的关系式为().当S=10cm2时,r=1.78cm;当S=20cm2时,r=2.52cm.•每当S取定一个值时,r 随之确定一个值,它们的关系为r= .问题(4)中,我们可以根据题意,矩形的邻边长y与x的关系式为:y=5-x每确定一个矩形的一边长,即可得出另一边长,再计算出矩形的面积.如:当x=1cm 时,则S=1×(5-1)=4cm2,当x=2cm时,则S=2×(5-2)=6cm2……它们之间存在关系S=x(5-x)=5x-x2.因此可知,•每当矩形长度x取定一个值时,面积S就随之确定一个值.[师]谢谢你,大家为他鼓掌.由以上回顾我们可以归纳这样的结论:上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应.其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系.我们来看下面两个问题,通过观察、思考、讨论后回答:(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每个确定的年份(x),都对应着个确定的人口数(y)吗?中国人口数统计表年份人口数/亿1984 10.341989 11.061994 11.761999 12.52[生]我们通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.[师]一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每个确定的值,y•都有唯一确定的值与其对应,那么我们就说x是自变量(independentvariable),y是x的函数(function).如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值.据此我们可以认为:上节情景问题中时间t是自变量,里程s是t的函数.t=1时的函数值s=60,t=2时的函数值s=120,t=2.5时的函数值s=150,…,同样地,在以上心电图问题中,时间x是自变量,心脏电流y是x的函数;人口数统计表中,年份x 是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52亿.从上面的学习中可知许多问题中的变量之间都存在函数关系.[活动一]活动内容设计:1.在计算器上按照下面的程序进行操作:填表:x 1 3 -4 0 101y显示的数y是输入的数x的函数吗?为什么?2.在计算器上按照下面的程序进行操作.下表中的x与y是输入的5个数与相应的计算结果:x 1 2 3 0 -1y 3 5 7 2 -1所按的第三、四两个键是哪两个键?y是x的函数吗?如果是,写出它的表达式(用含有x的式子表示y).设计意图:通过在计算器上操作及填表分析,进一步认识函数意义,经过对表中数据分析推理验证以至最后确定按键、写表达式逐步掌握列函数式的方法.教师活动:引导学生正确操作、分析思考、寻求理由证据,确定按键及函数关系式.学生活动:在教师引导下,1.经历操作、填表、分析、推理、确认等一系列过程,更加深刻理解函数意义.2.通过观察、讨论、分析、猜想、验证、确立等一系列过程,进一步掌握建立函数关系式的办法.活动结论:1.从计算结果完全可以看出,每输入一个x的值,操作后都有一个唯五的y值与其对应,所以在这两个变量中,x是自变量、y是x的函数.2.从表中两行数据中不难看出第三、四按键是这两个键,且每个x•的值都有唯一一个y值与其对应,所以在这两个变量中,x是自变量,y是x的函数.关系式是:y=2x+1[师]通过以后活动,我们对函数意义认识更深刻了,并完善掌握了函数关系式确定的方法.为了进一步学好函数,我们再来完成一个问题.[活动二]活动内容设计:一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.1.写出表示y与x的函数关系式.2.指出自变量x的取值范围.3.汽车行驶200km时,油桶中还有多少汽油?设计意图:通过这一活动,加深函数意义理解,熟练掌握函数关系式确立的办法.学会确定自变量的取值范围,并能通过关系式解决一些简单问题.教师活动:注意学生在活动中对函数意义的认识水平,引导其总结归纳自变量取值范围的方法.学生活动:通过活动,感知体会函数意义,学会确立函数关系式及自变量取值范围,并能掌握其一般方法.活动过程及结果:1.行驶里程x是自变量,油箱中的油量y是x的函数.行驶里程x时耗油为:0.1x油箱中剩余油量为:50-0.1x所以函数关系式为:y=50-0.1x2.仅从式子y=50-0.1x上看,x可以取任意实数,但是考虑到x•代表的实际意义是行驶里程,所以不能取负数,并且行驶中耗油量为0.1x,它不能超过油箱中现有汽油50L,即0.1x≤50,x≤500.因此自变量x的取值范围是:0≤x≤5003.汽车行驶200km时,油箱中的汽油量是函数y=50-0.1x在x=200时的函数值,将x=200代入y=50-0.1x得:y=50-0.1×200=30汽车行驶200km时,油箱中还有30升汽油.[师]通过这个活动,我们在巩固函数意义理解认识及确立函数关系式基础上,又学会如何确定自变量取值范围和求函数值的方法.知道了自变量取值范围的确定,不仅要考虑函数关系式的意义,而且还要注意问题的实际意义.Ⅲ.随堂练习下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.1.改变正方形的边长x,正方形的面积S随之改变.2.秀水村的耕地面积是106m2,这个村人均占有耕地面积y随这个村人数n•的变化而变化.解答:1.正方形边长x是自变量,正方形面积S是x的函数.函数关系式:S=x22.这个村人口数n是自变量,人均占有耕地面积y是n的函数.函数关系式:y=Ⅳ.课堂小结本节课我们通过回顾思考、观察讨论,认识了自变量、函数及函数值的概念,并通过两个活动加深了对函数意义的理解,学会了确立函数关系式、自变量取值范围的方法,会求函数值,提高了用函数解决实际问题的能力.本课作业课后P81第1、2题.板书设计课题:《19.1变量与函数》第二课时一、例题展示二、作业。
19.1.1变量与函数(2)教案
变量与函数(2)知识技能目标1.掌握根据函数关系式直观得到自变量取值范围,以及实际背景对自变量取值的限制;2.掌握根据函数自变量的值求对应的函数值.过程性目标1.使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识;2.联系求代数式的值的知识,探索求函数值的方法.教学过程一、创设情境问题1填写如图所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向的加数用y表示,试写出y与x的函数关系式.解如图能发现涂黑的格子成一条直线.函数关系式:y=10-x.问题2 试写出等腰三角形中顶角的度数y与底角的度数x之间的函数关系式.解y与x的函数关系式:y=180-2x.问题3 如图,等腰直角△ABC的直角边长与正方形MNPQ的边长均为10 cm,AC与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N点重合.试写出重叠部分面积y cm2与MA长度x cm之间的函数关系式.解 y 与x 的函数关系式:221x y.二、探究归纳思考 (1)在上面问题中所出现的各个函数中,自变量的取值有限制吗?如果有,写出它的取值范围.(2)在上面问题1中,当涂黑的格子横向的加数为3时,纵向的加数是多少?当纵向的加数为6时,横向的加数是多少?分析 问题1,观察加法表中涂黑的格子的横向的加数的数值范围.问题2,因为三角形内角和是180°,所以等腰三角形的底角的度数x 不可能大于或等于90°. 问题3,开始时A 点与M 点重合,MA 长度为0cm ,随着△ABC 不断向右运动过程中,MA 长度逐渐增长,最后A 点与N 点重合时,MA 长度达到10cm .解 (1)问题1,自变量x 的取值范围是:1≤x ≤9;问题2,自变量x 的取值范围是:0<x <90;问题3,自变量x 的取值范围是:0≤x ≤10.(2)当涂黑的格子横向的加数为3时,纵向的加数是7;当纵向的加数为6时,横向的加数是4. 上面例子中的函数,都是利用解析法表示的,又例如:s =60t , S =πR 2.在用解析式表示函数时,要考虑自变量的取值必须使解析式有意义.在确定函数中自变量的取值范围时,如果遇到实际问题,不必须使实际问题有意义.例如,函数解析式S =πR 2中自变量R 的取值范围是全体实数,如果式子表示圆面积S 与圆半径R 的关系,那么自变量R 的取值范围就应该是R >0.对于函数 y =x (30-x ),当自变量x =5时,对应的函数y 的值是y =5×(30-5)=5×25=125.125叫做这个函数当x =5时的函数值.三、实践应用例1 求下列函数中自变量x 的取值范围:(1) y =3x -1; (2) y =2x 2+7;(3)21+=x y ; (4)2-=x y .分析 用数学式子表示的函数,一般来说,自变量只能取使式子有意义的值.例如,在(1),(2)中,x 取任意实数,3x -1与2x 2+7都有意义;而在(3)中,x =-2时,21+x 没有意义;在(4)中,x <2时,2-x 没有意义.解 (1)x 取值范围是任意实数;(2)x 取值范围是任意实数;(3)x 的取值范围是x ≠-2;(4)x 的取值范围是x ≥2.归纳 四个小题代表三类题型.(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是分母中只含有一个自变量的式子;(4)题给出的是只含有一个自变量的二次根式. 例2 分别写出下列各问题中的函数关系式及自变量的取值范围:(1)某市民用电费标准为每度0.50元,求电费y (元)关于用电度数x 的函数关系式;(2)已知等腰三角形的面积为20cm 2,设它的底边长为x (cm),求底边上的高y (cm)关于x 的函数关系式;(3)在一个半径为10 cm 的圆形纸片中剪去一个半径为r (cm)的同心圆,得到一个圆环.设圆环的面积为S (cm 2),求S 关于r 的函数关系式.解 (1) y =0.50x ,x 可取任意正数; (2)xy 40=,x 可取任意正数; (3)S =100π-πr 2,r 的取值范围是0<r <10.例3 在上面的问题(3)中,当MA =1 cm 时,重叠部分的面积是多少?解 设重叠部分面积为y cm 2,MA 长为x cm , y 与x 之间的函数关系式为221x y = 当x =1时,211212=⨯=y 所以当MA =1 cm 时,重叠部分的面积是21cm 2.例4 求下列函数当x = 2时的函数值:(1)y = 2x -5 ; (2)y =-3x 2 ; (3)12-=x y ; (4)x y -=2. 分析 函数值就是y 的值,因此求函数值就是求代数式的值.解 (1)当x = 2时,y = 2×2-5 =-1;(2)当x = 2时,y =-3×22 =-12;(3)当x = 2时,y =122-= 2; (4)当x = 2时,y =22-= 0.四、交流反思1.求函数自变量取值范围的两个依据:(1)要使函数的解析式有意义.①函数的解析式是整式时,自变量可取全体实数;②函数的解析式分母中含有字母时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.(2)对于反映实际问题的函数关系,应使实际问题有意义.2.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相应的函数值.五、检测反馈1.分别写出下列各问题中的函数关系式,并指出式中的自变量与函数以及自变量的取值范围:(1)一个正方形的边长为3 cm ,它的各边长减少x cm 后,得到的新正方形周长为y cm .求y 和x 间的关系式;(2)寄一封重量在20克以内的市内平信,需邮资0.60元,求寄n 封这样的信所需邮资y (元)与n 间的函数关系式;(3)矩形的周长为12 cm ,求它的面积S (cm 2)与它的一边长x (cm)间的关系式,并求出当一边长为2 cm 时这个矩形的面积.2.求下列函数中自变量x 的取值范围:(1)y =-2x -5x 2; (3) y =x (x +3); (3)36+=x x y ; (4)12-=x y . 3.一架雪橇沿一斜坡滑下,它在时间t (秒)滑下的距离s (米)由下式给出:s =10t +2t 2.假如滑到坡底的时间为8秒,试问坡长为多少?4.当x =2及x =-3时,分别求出下列函数的函数值:(1) y =(x +1)(x -2);(2)y =2x 2-3x +2; (3)12-+=x x y .。
人教版八年级下第19章一次函数19.1.1变量与函数教案
3.培养学生合作交流、自主探究的学习习惯,提高数学建模和数学运算的核心素养。
4.激发学生学习兴趣,培养勇于挑战、善于思考的学习态度,提升学生的数学素养和综合素质。
在教学过程中,重点关注学生在以下方面的表现:
1.能否运用所学知识,分析并解决实际问题,体现数学的应用价值。
3.重点难点解析:在讲授过程中,我会特别强调变量与常量的区别以及函数的三要素。对于难点部分,我会通过举例和图示来帮助大家理解一次函数的定义和图像特点。
(三)实践活动(用时10ቤተ መጻሕፍቲ ባይዱ钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如公交车票价与乘车距离的关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如用尺子和直尺绘制一次函数的图像,观察斜率和截距的变化。
五、教学反思
在上完这节课之后,我对自己的一些教学设计和学生的反应进行了思考。我发现,通过生活中的实例引入变量和函数的概念,学生们能够更直观地理解这些抽象的数学概念。他们对于一次函数的应用表现出浓厚的兴趣,尤其是当我将函数与他们的日常生活联系起来时,比如购物打折、手机话费等问题。
我注意到,在教学过程中,有些学生对一次函数的图像绘制感到困惑。我意识到,这里可能需要更多的直观演示和实际操作,让学生亲手尝试,从而更好地理解图像的生成过程。在接下来的课程中,我打算增加一些互动环节,比如让学生分组在教室里用道具来模拟一次函数的图像,这样既能增强他们的动手能力,也能加深对一次函数图像特征的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解变量与函数的基本概念。变量是随着某些条件变化而变化的量,而函数则是描述两个变量之间依赖关系的数学模型。它们在数学和生活中都有着广泛的应用。
人教版数学八年级下册19.1.1《变量与函数》教学设计
人教版数学八年级下册19.1.1《变量与函数》教学设计一. 教材分析《变量与函数》是初中数学的重要内容,人教版八年级下册19.1.1节主要介绍了变量的概念以及函数的定义。
通过本节课的学习,学生能够理解变量、常量的概念,了解函数的定义及表示方法,为后续学习函数的性质、图象等知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了代数基础知识,如代数式、方程等。
但他们对变量的概念及函数的定义还较为模糊,需要通过实例和练习来进一步理解和掌握。
此外,学生可能对函数的表示方法感到陌生,需要通过教师的引导和学生的实践来逐步熟悉。
三. 教学目标1.知识与技能:使学生理解变量、常量的概念,掌握函数的定义及表示方法。
2.过程与方法:通过实例分析,让学生体会变量之间的依赖关系,学会用函数表示实际问题中的变量关系。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:变量、常量的概念,函数的定义及表示方法。
2.难点:函数概念的理解,函数表示方法的运用。
五. 教学方法1.情境教学法:通过生活实例引入变量、常量概念,让学生在具体情境中感受数学与生活的联系。
2.引导发现法:教师引导学生发现变量之间的依赖关系,自主探究函数的定义及表示方法。
3.实践操作法:让学生通过实际操作,加深对函数概念的理解,提高运用函数解决实际问题的能力。
六. 教学准备1.教学课件:制作涵盖实例、练习、拓展等环节的课件,以便于引导学生逐步深入学习。
2.教学素材:收集与生活相关的函数实例,如温度、身高、体重等,用于导入和巩固环节。
3.练习题库:准备不同难度的练习题,以便于针对性地进行操练和巩固。
七. 教学过程1.导入(5分钟)教师通过展示生活中常见的变量关系,如气温随时间的变化、身高与年龄的关系等,引导学生关注变量之间的依赖关系。
在此基础上,提出问题:“你们认为什么是变量?什么是常量?”让学生发表自己的见解。
人教版八年级下册 第十九章:19.1.1 变量与函数(第2课时)教学设计
19.1.1 变量与函数(第2课时)教学分析函数是描述运动变化规律的重要数学模型,是联系方程和不等式及数与形的纽带。
函数概念是中学数学的核心概念,是刻画某一变化过程中两变量间的对应关系的重要模型,也是继续学习一次函数、二次函数、反比例等函数的基础。
学生在小学学过正比、反比关系,知道两个量,一个量随着另一个量的变化而变化。
在初一字母表示数中,字母取值变化,式子的值也变化,都感受到生活中两个量的依存关系。
尽管有这些学习和生活经验可以助于理解函数的概念,但学习中还是碰到较大的困难,主要难于发现和形成“一个变量的值的确定导致另一个变量的取值唯一确定”的概括,那怕,最后体会到了这对应关系,也只是容易认为这“唯一确定”指的是可以通过公式求出唯一的值,对不能用公式求出的值的“单值对应关系”难以理解。
因此,本教学设计中采取两个措施来突破:一是先让学生预习,并课堂上提出疑问,做到更有针对性;二是“分步概括”,先抓住学生注意力集中的时间段,由课本上几个有规律的实例抽象出函数概念,并初步巩固概念,再把课本中没规律的两个问题(表和图象)反映的“单值对应关系”以练习题的形式呈现,来达到完善函数概念的目的。
这样使课堂的时间安排更合理,也易于学生掌握和竖立学习信心。
教学目标1、结合具体的实例了解函数及自变量的概念2、会判断一个变量是否是另一个变量的函数和了解函数的呈现方式1 / 93、在函数概念的形成过程中体会运动变化与对应思想、模型思想和数形结合思想。
重难点:理解函数概念中两变量的对应关系教法:先学后教、分步概括、具体到抽象教学过程2 / 93 / 94 / 95 / 9于时间取定一个值时,温度有唯一确定的值与之对应吗?你能根据图象说出某一时刻的气温吗?练习4:你能举出一个函数的实例吗?6 / 97 / 98 / 99 / 9。
人教版八年级下册19.1.1变量与函数(教案)
1.理论介绍:首先,我们要了解变量与函数的基本概念。变量是指数值可变的量,而函数则是一种特殊的关系,描述了一个变量随另一个变量变化而变化的规律。它是数学模型中的重要组成部分,广泛应用于各个领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了函数在描述物体运动中的应用,以及如何帮助我们解决问题。
举例:在解析式y = f(x)中,x为自变量,y为因变量,自变量是独立变量,而因变量随自变量变化。
(2)掌握函数的定义:使学生掌握函数的定义,了解函数的三种表示方法(列表法、解析式法、图象法)。
举例:给出一个具体函数,如y = 2x + 1,让学生学会用列表法、解析式法和图象法表示。
(3)学会绘制函数图像:培养学生通过描点、连线等方式绘制函数图像的能力。
2.教学难点
(1)函数抽象思维的培养:学生在从具体问题中抽象出函数关系时,可能存在一定的困难。
突破方法:通过生活中的实例,如气温随时间变化、物品价格与数量的关系等,引导学生理解函数的抽象概念。
(2)函数性质的判断:如何判断函数的单调性、奇偶性等性质,是学生学习的难点。
突破方法:通过具体函数的图象和解析式,引导学生观察、分析、归纳函数的性质,如奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
5.提高学生的数学运算能力:在学习函数相关知识的过程中,加强学生的运算训练,提高运算速度和准确性。
本节课将紧紧围绕核心素养目标,结合课本内容,注重培养学生的综合运用能力,为学生的全面发展奠定基础。
三、教学难点与重点
1.教学重点
(1)理解变量的概念:强调自变量与因变量的区别,使学生能够准确判断变量之间的关系。
五、教学反思
在今天的教学中,我发现同学们对变量与函数的概念有了初步的认识,但仍然存在一些理解和应用上的困难。首先,对于变量的概念,尽管我通过生活中的实例进行了讲解,但部分同学在区分自变量和因变量时仍然感到困惑。在今后的教学中,我需要进一步强化变量的定义,并通过更多的实例来帮助同学们理解和掌握。
最新人教版八年级数学下册19.1.1变量与函数(2课时)word导学案教学设计
第十九章 函数19.1 函数19.1.1 变量与函数 第1课时 常量与变量学习目标:1.了解常量与变量的概念,掌握常量与变量之间的联系与区别.2.学会用含一个变量的代数式表示另一个变量.重点:能够区分同一个问题中的常量与变量. 难点:用式子表示变量间的关系.一、知识链接1.人们在认识和描述某一事物时,经常会用“量”来具体表达事物的某些特征(属性),如:速度、时间、路程、温度、面积等,请你再写出三个“量”: 、 、 .同时用“数”来表明“量”的大小.2.写出路程(s )、速度(v )、时间(t )之间的关系: . 二、新知预习1.小明去文具店购买一些铅笔,已知铅笔的单价为0.2元/支,总价y 元随铅笔支数x 的变化而变化,在这个问题中,变量是________,常量是________.2.圆的面积S 随着半径r 的变化而变化,已知它们的关系为:2r S π=,在这个问题中,常量是 ,变量是 . 3.自主归纳:变量:在一个变化过程中,数值________的量为变量. 常量:在一个变化过程中,数值________的量为常量. 三、自学自测1.指出下列关系式中的常量和变量.(1)长方形的长为2,长方形面积S 与宽x 之间的关系S=2x ; (2)一批香蕉每千克6元,则总金额y (元)与销售量x (千克)之间的关系式为y=6x.2.一名运动员以8米/秒的速度奔跑,写出他奔跑的路程s (米)与时间t (秒)之间的关系式,并指出其中的变量和常量.四、我的疑惑____________________________________________________________ ____________________________________________________________一、要点探究探究点1:常量与变量问题1:一辆汽车以60千米/时的速度匀速行驶,行驶里程为s 千米.行驶时间为t 小时. (1)请同学们根据题意填写下表:(2)试用含t 的式子表示s,则s= ;(3)在以上这个过程中,变化的量有 ,不变化的量有__________.问题2:每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x 张,票房收入y 元. (1)请同学们根据题意填写:早场电影的票房收入为 元; 日场电影的票房收入为 元; 晚场电影的票房收入为 元;(2)在以上这个过程中,变化的量是_____________,不变化的量是__________.(3)试用含x 的式子表示y,则y= ;这个问题反映了票房收入____随售票张数_____的变化过程.问题3:你见过水中涟漪吗?如图所示,圆形水波慢慢的扩大.在这一过程中,当圆的半径r 分别为10cm,20cm,30cm 时,圆的面积S 分别为多少? (1)填空:当圆的半径为10cm 时,圆的面积为 cm 2; 当圆的半径为20cm 时,圆的面积为 cm 2; 当圆的半径为30cm 时,圆的面积为 cm 2; 当圆的半径为r 时,圆的面积S= ;(2)在以上这个过程中,变化的量是_____________,不变化的量是__________. 要点归纳:在一个变化过程中,数值发生变化的量为 ,数值始终不变的量为 .典例精析例1 指出下列事件过程中的常量与变量 (1)某水果店橘子的单价为5元/千克,买a 千橘子的总价为m 元,其中常量是________,变量是________; (2)周长C 与圆的半径r 之间的关系式是C =r 2π,其中常量是________,变量是________; (3)三角形的一边长5cm ,它的面积S(cm 2)与这边上的高h(cm)的关系式52y h =中,其中常量是________,变量是________. 变式题阅读并完成下面一段叙述:(1)某人持续以a 米/分的速度用t 分钟时间跑了s 米,其中常量是________,变量是________. (2)s 米的路程不同的人以不同的速度a 米/分各需跑的时间为t 分,其中常量是________,变量是________.t/小时 1 2 3 4 5S/千米课堂探究(3)根据上面的叙述,写出一句关于常量与变量的结论:_________________________.方法总结:区分常量与变量,就是看在某个变化过程中,该量的值是否可以改变,即是否可以取不同的值.探究点2:确定两个变量之间的关系 例2.弹簧的长度与所挂重物有关.如果弹簧原长为10cm ,每1kg 重物使弹簧伸长0.5cm ,试填下表: 怎样用含重物质量m (kg )的式子表示受力后的弹簧长度 L(cm)?变式题:如果弹簧原长为12cm ,每1kg 重物使弹簧压缩0.5cm ,则用含重物质量m (kg )的式子表示受力后的弹簧长度 L(cm)为________. . 写出下列问题中的关系式,并指出变量和常量:(1)某市的自来水价为4元/吨.现要抽取若干户居民调查水费支出情况,记某户月用水量为x 吨,月应交水费为y 元.(2)某地手机通话费为0.2元/分.李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分钟,话费卡中的余额为w 元.(3)水中涟漪(圆形水波)不断扩大,记它的半径为r ,圆周长为C ,圆周率(圆周长与直径的比)为π.(4)把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x 本,第二个抽屉放入y 本.1.若球体体积为V,半径为R,则343V Rπ=,其中变量是________、________,常量是________.2.计划购买50元的乒乓球,所能购买的总数n(个)与单价a(元)的关系式是________,其中变量是________,常量是________.3.汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行使时间t(小时)的关系是________,其中的常量是________,变量是________.4.表格列出了一项实验的统计数据,表示小球从高度x(单位:m)落下时弹跳高度y(单位:m)与下落高的关系,据表可以写出的一个关系式是.5.瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数y与层数x之间的关系式.完成上表,并写出瓶子总数y 与层数x之间的关系式.50 80 100 15025 40 50 75x 123…ny…教学备注配套PPT讲授5.当堂检测(见幻灯片19-21)第十九章 函数) 2.下列式子中:y 是x 的函数的有 .(填序号)①y=|x|;②x+1=|y|;③y=x 2-2;④3.已知函数y=2x2-1.(1)求出当x=2时y的值;(2)求出当y=3时x的值.四、我的疑惑___________________________________________________________________________ ___________________________________________________________________________二、要点探究探究点1:函数的概念问题1:填表并回答问题:x14916y=+2x(1)对于x的每一个值,y都有唯一的值与之对应吗?(2)y是x的函数吗?为什么?问题2:如何判断两个变量间具有函数关系?典例精析例1.下列关于变量x ,y 的关系式:y =2x+3;y =x2+3;y =2|x|;④y=x±;⑤y2-3x=10,其中表示y 是x 的函数关系的是.方法总结:判断一个变量是否是另一个变量的函数,关键是看当一个变量确定时,另一个变量有唯一确定的值与它对应.例2.已知函数421xyx-=+.(1)求当x=2,3,-3时,函数的值;(2)求当x取什么值时,函数的值为0. 课堂探究教学备注配套PPT讲授1.情景引入(见幻灯片3)2.探究点1新知讲授(见幻灯片4-14)1.下列说法中,不正确的是()A.函数不是数,而是一种关系B.多边形的内角和是边数的函数C.一天中时间是温度的函数D.一天中温度是时间的函数2.下列各表达式不是表示y是x的函数的是( )3.设路程为s,时间为t,速度为v,当v=60时,路程和时间的关系式为,这个关系式中,是常量,是变量,是的函数.4.油箱中有油30kg,油从管道中匀速流出,1h流完,则油箱中剩余油量Q(kg)与流出时间t(min)之间的函数关系式是,自变量t的取值范围是 .5.求下列函数中自变量x的取值范围:2(1)2y x x=--;3(2)48yx=+;(3)3y x=+;1(4)11y xx+-.6. 我市白天乘坐出租车收费标准如下:乘坐里程不超过3公里,一律收费8元;超过3公里时,超过3公里的部分,每公里加收1.8元;设乘坐出租车的里程为x(公里)(x为整数),相对应的收费为y(元). (1)请分别写出当0<x≤3和x>3时,表示y与x的关系式,并直接写出当x=2和x=6时对应的y值;(2)当0<x≤3和x>3时,y都是x的函数吗?为什么?八年级数学下册期中综合检测卷一、选择题(每小题3分,共30分)1.3x-x的取值范围是()A.x≥3B.x≤3C.x>3D.x<32.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,12C.6,8,11D.5,12,233.下列各式是最简二次根式的是()97200.34.下列运算正确的是()532149138222(25)-=255.方程|4x-8|x y m--当y>0时,m的取值范围是()A.0<m<1 B.m≥2 C.m≤2 D.m<26.若一个三角形的三边长为6,8,x ,则此三角形是直角三角形时,x 的值是( ) A.8 B.10 C.27 D.10或277.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ) A.可能是锐角三角形 B.不可能是直角三角形 C.仍然是直角三角形 D.可能是钝角三角形8.能判定四边形ABCD 为平行四边形的题设是( ) A.AB ∥CD ,AD=BC B.AB=CD ,AD=BC C.∠A=∠B ,∠C=∠D D.AB=AD ,CB=CD9.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A.当AB=BC 时,它是菱形 B.当AC ⊥BD 时,它是菱形 C.当∠ABC=90°时,它是矩形 D.当AC=BD 时,它是正方形第9题图 第10题图 第13题图 第15题图10.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4) S △AOB =S 四边形DEOF 中正确的有( )A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.43a b +126b a b +-+可以合并,则ab = .12.若直角三角形的两直角边长为a 、b 269a a -+|b -4|=0,则该直角三角形的斜边长为 .13.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S 1=258π,S 2=2π,则S 3= .14.四边形ABCD 的对角线AC ,BD 相交于点O ,AC ⊥BD,且OB=OD,请你添加一个适当的条件 ,使四边形ABCD 成为菱形(只需添加一个即可).15.如图,△ABC 在正方形网格中,若小方格边长为1,则△ABC 的形状是 .16.已知菱形ABCD中,对角线AC与BD相交于点O,∠BAD=120°,AC=4,则该菱形的面积是.17.△ABC中,若AB=15,AC=13,高AD=12,则△ABC的周长是.18.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P点坐标.三、解答题(共66分)19.(8分)计算下列各题:(1)(48-418)-(313-20.5);(2)(2-3)2015·(2+3)2016-2×|-3|-(-3)0.20.(8分)如图是一块地,已知AD=4 m,CD=3 m,AB=13 m,BC=12 m,且CD⊥AD,求这块地的面积.21.(8分)已知9+11与9-11的小数部分分别为a,b,试求ab-3a+4b-7的值.22.(10分)如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D 点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长.23.(10分)如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC的中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.24.(10分)如图,四边形ABCD是一个菱形绿地,其周长为402 m,∠ABC=120°,在其内部有一个四边形花坛EFGH,其四个顶点恰好在菱形ABCD各边的中点,现在准备在花坛中种植茉莉花,其单价为10元/m2,请问需投资金多少元?(结果保留整数)25.(12分)(1)如图①,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹) (2)如图②,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE和CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图③,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.八年级数学下期末综合检测卷一、选择题(每小题3分,共30分)1.二次根式0.5、27、30、2x +、240x 、22a b +中,最简二次根式有( ) A.1个 B.2个 C.3个 D.4个2.若式子43x x --有意义,则x 的取值范围为( ) A.x ≥4 B.x ≠3 C.x ≥4或x ≠3 D.x ≥4且x ≠3 3.下列计算正确的是( )A.4×6=46B.4+6=10C.40÷5=22D.2(15)-=-154.在Rt △ABC 中,∠ACB=90°,AC=9,BC=12,则点C 到AB 的距离是( ) A.365 B.1225 C.94D.335.平行四边形ABCD 中,∠B=4∠A,则∠C=( ) A.18° B.36° C.72° D.144°6.如图,菱形ABCD 的两条对角线相交于O,菱形的周长是20 cm ,AC ∶BD=4∶3,则菱形的面积是( )A.12 cm 2B.24 cm 2C.48 cm 2D.96 cm 2第6题图 第8题图 第10题图7.若方程组 的解是 .则直线y =-2x +b 与y =x -a的交点坐标是()A.(-1,3)B.(1,-3)C.(3,-1)D.(3,1)8.甲、乙两人在一次百米赛跑中,路程s(m)与赛跑时间t(s)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多9.在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是()A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,410.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF ⊥AC于F,M为EF中点,则AM的最小值为()A.54B.52C.53D.65二、填空题(每小题3分,共24分)11.当x= 时,二次根式x+1有最小值,最小值为.12.已知a,b,c是△ABC的三边长,且满足关系式222c a b--+|a-b|=0,则△ABC的形状为.13.平行四边形ABCD的两条对角线AC、BD相交于点O,AB=13,AC=10,DB=24,则四边形ABCD的周长为.14.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2-k1)x+b2-b1>0的解集为.第14题图第16题图第18题图15.在数据-1,0,3,5,8中插入一个数据x,使得该组数据的中位数为3,则x的值为.16.如图,□ABCD中,E、F分别在CD和BC的延长线上,∠ECF=60°,AE∥BD,EF ⊥BC,EF=23,则AB的长是.17.(山东临沂中考)某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:则这50名学生一周的平均课外阅读时间是小时.18.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF,②∠AEB=75°,③BE+DF=EF,④S正方形ABCD=3其中正确的序号是.(把你认为正确的都填上)三、解答题(共66分)19.(8分)计算下列各题:(1)2-3|-212-⎛⎫-⎪⎝⎭18(2)先化简,再求值:a ba+÷(-a-22ab ba+),其中a3+1,b3-1.20.(8分)如图,折叠矩形的一边AD,使点D落在BC边上的点F处,折痕为AE.若BC=10cm,AB=8 cm.求EF的长.21.(9分)已知一次函数的图象经过点A(2,2)和点B(-2,-4).(1)求直线AB的解析式;(2)求图象与x轴的交点C的坐标;(3)如果点M(a,-12)和点N(-4,b)在直线AB上,求a,b的值.22.(9分)(湖北黄冈中考)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况做一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?23.(10分)(山东德州中考)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?24.(10分)如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.25.(12分)如图,在平面直角坐标系中,已知直线y=kx+6与x轴、y轴分别交于A、B 两点,且△ABO的面积为12.(1)求k的值;(2)若点P为直线AB上的一动点,P点运动到什么位置时,△PAO是以OA为底的等腰三角形?求出此时点P的坐标;(3)在(2)的条件下,连接PO,△PBO是等腰三角形吗?如果是,试说明理由;如果不是,请在线段AB上求一点C,使得△CBO是等腰三角形.更多全套优质教学课件、教案、习题、试卷,请关注本人主页!教学备注 1.情景引入 配套PPT 讲授 5.当堂检测 (见幻灯片。
八年级数学下册 第19章 一次函数 19.1.1 变量与函数(2)教案 (新版)新人教版
自变量取值范围的确定.
(师生活动:教师引导、学生思考,回答,纠错)
三、当堂训练
1.梯形的上底长2cm,高3cm,下底长x cm大于上底长,但不超过5cm.写出梯形面积 S关于x的函数解析式及自变量x的取值范围.
2.写出下列函数中自变量x的取值范围.
3.当x=-3时,函数y=x2-3x-7的函数值为多少?
(师生活动:教师提醒学生本节课 要学习的内容,承上启下,挑起概念;
2、函数值得概念;
3、概念巩固:
指出下列问题中的自变量以及自变量的函数:
4、概念辨析:
(1)给出自 变量x的一个值,函数y可以有两个以上的值吗 ?
(2)会不会存在自变量x的多个值对应的函数y的值都相同呢?
PPT
A
E
得出结论
10分钟
自制
①媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示范,正确操作;E .呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.其它。
教学重点难点
教学
重点
列函数解析式、求函数自变量的取值范围的依据.
教学
难点
函数的概念的理解,根据问题的实际意义求函数自变量的取值范围.
教学媒体选择分析表
知识点
学习目标
媒体类型
教学作用
使用
方式
所得结论
占用时间
媒体来源
介绍
知识目标
图片
B
G
建立表象
2分钟
自制
讲解
过程与方 法
PPT
A
E
人教版八年级数学下册19.1.1变量与函数(第2课时)优秀教学设计
y 的变化趋势是什么?
二、自主学习 感受新知:阅读教材P72内容,思考并回答下问题
(1)s=60t ,当t=1,则s= 60 ;当t=2,则s=120;……发现:当 t 取定一个值时, s 就
有唯一确定的值。
(2)y=10x ,当x=150,则y=1500 ;当x=205,则y=2050;……发现:当 x 取定一个值时, y 就有唯一确定的值。
(3)2r S π=,当r=10,则S=π100;当r=20,则s= π400 发现:当 取定一个值
时, 就有唯一确定的值。
【归纳总结】上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量 与其对应。
一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有 唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的 函数 .如果当x=a 时y=b ,那么b 叫做当自变量的值为a 时的 函数值。
三、自主交流 探究新知 如图3所示,两副图都能表示变量y 是x 的函数吗?为什么 解析:左图不是函数,右图是函数。
因为确定的x 值只能得到唯一的y 值 【归纳】判断两个变量是否是函数关系的依据是(1)一个变化过程。
(2)两个变量。
(3)确定的x 值只能得到唯一的y 值。
四、自主应用 当堂检测
一辆汽车油箱现有汽油50L ,如果不再加油,那么油箱中的油量y (L )随行驶里程x (km )
的增加而减少,平均耗油量为0.1L/km .
(1).写出表示y 与x 的函数关系式.
(2).指出自变量x 的取值范围.
(3).汽车行驶200km 时,油桶中还有多少汽油
x。
人教版八年级数学下册19章19.1.1变量与函数(教案)
(二)新课讲授(用时10分钟)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示函数的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
3.在小组讨论中,要注意问题的设置,引导学生正确地思考和解决问题。
4.课后要加强作业和练习的布置,帮助学生巩固所学知识。
在今后的教学中,我会根据这节课的反思,不断调整和优化教学方法,以提高学生的学习效果。
在总结回顾环节,我强调了对函数概念和三要素的掌握,希望学生们能够在日常生活中运用所学知识。然而,我也意识到,仅仅依靠课堂上的讲解和练习是远远不够的,还需要在课后布置一些相关的作业和练习,以巩固所学知识。
1.在理论讲解时,要尽量用简单明了的语言,结合实际案例,让学生更好地理解抽象的概念。
2.在实践活动前,要进行充分的讲解和演示,确保学生能够顺利地进行实验操作。
-举例:在函数y = 2x + 3中,2和3是常量,x和y是变量。
2.教学难点
-函数关系式的建立:学生需要学会从实际问题中பைடு நூலகம்象出函数关系,并用数学符号进行表达。
人教版数学八年级下册教学设计:第19章 变量与函数(二)
人教版数学八年级下册教学设计:第19章变量与函数(二)一. 教材分析人教版数学八年级下册第19章“变量与函数(二)”是在学生已经掌握了函数的概念、一次函数和二次函数的基础上进行教学的。
本章主要内容有正比例函数和反比例函数的性质和图像、函数的周期性、函数的奇偶性等。
本章内容在学生的日常生活和工农业生产中有着广泛的应用,对于提高学生的数学应用能力具有重要意义。
二. 学情分析学生在八年级上册已经学习了函数的基本概念和一次函数、二次函数,对于函数的认识已经有了一定的基础。
但是,对于函数的性质和图像的理解还有待提高,特别是对于反比例函数的理解和应用,需要通过本章的学习来进一步巩固。
三. 教学目标1.理解正比例函数和反比例函数的性质和图像。
2.掌握函数的周期性和奇偶性的定义和判断方法。
3.能够运用函数的性质和图像解决实际问题。
四. 教学重难点1.正比例函数和反比例函数的性质和图像。
2.函数的周期性和奇偶性的理解和应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设计富有挑战性的问题,引导学生主动探究,通过具体的案例让学生理解函数的性质和图像,通过小组合作学习,培养学生的团队协作能力。
六. 教学准备1.正比例函数和反比例函数的图像资料。
2.函数的周期性和奇偶性的案例资料。
3.教学课件和板书设计。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾一次函数和二次函数的性质和图像,为新知识的学习做好铺垫。
2.呈现(10分钟)利用课件和板书,呈现正比例函数和反比例函数的性质和图像,引导学生观察和分析,理解并掌握正比例函数和反比例函数的性质。
3.操练(15分钟)通过具体的案例,让学生运用所学的正比例函数和反比例函数的性质解决问题,巩固所学知识。
4.巩固(10分钟)通过课堂提问和小组讨论,检查学生对正比例函数和反比例函数的性质的理解和掌握程度,对学生的疑问进行解答。
5.拓展(10分钟)引导学生探究函数的周期性和奇偶性的定义和判断方法,通过具体的案例,让学生理解和掌握函数的周期性和奇偶性。
人教版八年级数学下册 第19章 19.1.1 变量与函数 教案
19.1.1变量与函数学习目标:1、运用丰富的实例,使学生在具体情境中领悟变量与常量概念的意义,能分清实例中的常量与变量。
2、引导学生探索实际问题中的数量关系,培养对学习的兴趣和积极参与数学活动的热情。
在解决问题的过程中体会数学的应用价值。
学习重点:认识变量与常量学习难点:对变量的判断学习过程:一情境引入这张图片上的这座山是乞力马扎罗山。
我们可以看到,在山下树的叶子还是绿色的,但同时山顶上有白色的雪。
同一座山在同一个位置我们可以发现在不同的海拔高度有不同的景色。
我们都知道赤道附近是热带,那为什么热带也会有雪山呢?2下面我们看这样一个表格这是书上的一个表格,这个表格描述的是某座山海拔与气温的关系。
问:观察这个表格有没有发现有什么问题?(海拔不同气温也不同)问:请一位同学找一找,这座山有什么变化的量还有什么不变的量二问题探究问题一:一辆汽车以60千米/小时的速度行驶,行驶里程为s 千米,行驶时间为t 小时,先填下面的表,再试用含t的式子表示s .请一位同学填表格并写出式子问题二:弹簧的长度与所挂重物有关.如果弹簧原长为10cm,每1千克重物使弹簧伸长0.5cm,试填下表。
再请一位同学填写下表并写出关系式问题三:每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影售出票x 张,票房收入为y元,怎样用含x 的式子表示y?请一位同学分别算出,早场,日场和晚场的票房收入并列式子表示x和y的关系。
三思考找出上面三个问题中变化的量与不变的量四给出变量与不变量的定义在一个变化过程中,我们称数值发生变化的量为变量,数值是始终不变的,我们称它们为常量.五练习指出下列变化过程中的变量和常量:(1)汽油的价格是7.4元/升,加油x L,车主加油付油费y 元;(2)小明看一本200 页的小说,看完这本小说需要t 天,平均每天所看的页数为n;(3)用长为40 cm 的绳子围矩形,围成的矩形一边长为x cm,其面积为S cm2.书P71 练习(1)(2)(3)(4)六小结(1)请同学们再回忆一下:什么叫变量?什么叫常量?(2)刚才我们看了那么多的例子,同学们能不能再举一个运动变化的例子并指出其变量和常量.(3)你认为本节课所学的几个变化过程中的变量之间有联系吗?。
八年级数学下册第十九章一次函数19.1函数19.1.1变量与函数(2)教案(新版)新人教版
变量与函数( 2)知识技术目标1.掌握依据函数关系式直观获得自变量取值范围,以及实质背景对自变量取值的限制;2.掌握依据函数自变量的值求对应的函数值.过程性目标1.使学生在研究、概括求函数自变量取值范围的过程中,加强数学建模意识;2.联系求代数式的值的知识,研究求函数值的方法.教课过程一、创建情境问题 1 填写如下图的加法表,而后把全部填有10的格子涂黑,看看你能发现什么?假如把这些涂黑的格子横向的加数用x 表示,纵向的加数用y 表示,试写出 y 与 x 的函数关系式.解如图能发现涂黑的格子成一条直线.函数关系式: y=10- x.问题 2 试写出等腰三角形中顶角的度数y 与底角的度数x 之间的函数关系式.解 y 与 x 的函数关系式:y=180-2x.问题 3 如图,等腰直角△ABC的直角边长与正方形MNPQ的边长均为10 cm,AC与MN在同一直线上,开始时A点与点重合,让△向右运动,最后A点与N点重合.试写出重叠部M ABC分面积 y cm2与 MA长度 x cm之间的函数关系式.解 y 与 x 的函数关系式:.二、研究概括思虑 (1) 在上边 问题中所出现的各个函数中,自变量的取值有限制吗?假如有,写出它的取值范围.(2) 在上边问题 1 中,当涂黑的格子横向的加数为 3 时,纵向的加数是多少?当纵向的加数为 6 时,横向的加数是多少?剖析 问题 1,察看加法表中涂黑的格子的横向的加数的数值范围.问题 2,由于三角形内角和是 180° , 所以等腰三角形的底角的度数x 不行能大于或等于90°.问题 3,开始时A 点与 点重合, 长度为 0cm ,跟着△ 不停向右运动过程中,长度M MA ABCMA渐渐增加,最后 A 点与 N 点重合时, MA 长度达到10cm .解 (1) 问题 1,自变量 x 的取值范围是 : 1≤ x ≤ 9; 问题 2,自变量 x 的取值范围是: 0< x <90; 问题 3,自变量 x 的取值范围是: 0≤ x ≤10.(2) 当涂黑的格子横向的加数为3 时,纵向的加数是 7;当纵向的加数为 6 时,横向的加数是 4.上边例子中的函数 , 都是利用分析法表示的, 又比如:s =60 t , =π 2.S R在用分析式表示函数时, 要考虑自变量的取值一定使分析式存心义. 在确立函数中自变量的取值范围时,假如碰到实质问题,不用须使实质问题存心义.比如,函数分析式S =π R 2中自变量 R 的取值范围是全体实数,假如式子表示圆面积 S 与圆半径 R 的关系,那么自变量 R的取值范围就应当是 > 0.R对于函数y = x (30 - x ) ,当自变量 = 5时,对应的函数y 的值是xy = 5×(30 - 5) = 5× 25= 125.125叫做这个函数当 x = 5时的 函数值 .三、实践应用例 1 求以下函数中自变量x 的取值范围: (1)y = 3x - 1;(2) y = 2x 2+7;(3);(4) yx 2 .剖析 用数学式子表示的函数,一般来说,自变量只好取使式子存心义的值.比如,在(1) ,(2) 中,x 取随意实数, 3x - 1 与 2x 2+ 7 都存心义; 而在 (3) 中,x =- 2 时, 没存心义;在(4) 中, x < 2 时,x 2 没存心义.解 (1)x 取值范围是随意实数;(2)x 取值范围是随意实数;(3)x 的取值范围是 x≠-2;(4)x 的取值范围是 x≥2.概括四个小题代表三类题型. (1),(2) 题给出的是只含有一个自变量的整式;(3) 题给出的是分母中只含有一个自变量的式子;(4) 题给出的是只含有一个自变量的二次根式.例 2 分别写出以下各问题中的函数关系式及自变量的取值范围:(1)某市民用电费标准为每度 0.50 元,求电费y( 元 ) 对于用电度数x的函数关系式;(2)已知等腰三角形的面积为 20cm2,设它的底边长为x(cm) ,求底边上的高y(cm) 对于x的函数关系式;(3) 在一个半径为10 cm的圆形纸片中剪去一个半径为r (cm)的齐心圆,获得一个圆环.设圆环的面积为 S(cm2) ,求S对于r的函数关系式.解 (1)y=0.50 x, x 可取随意正数;(2), x 可取随意正数;(3)=100π -π2,r 的取值范围是0<< 10.S r r例 3 在上边的问题(3) 中,当MA= 1 cm 时,重叠部分的面积是多少 ?解设重叠部分面积为y cm2, MA长为 x cm, y 与 x 之间的函数关系式为当 x=1时,所以当MA=1 cm时,重叠部分的面积是cm2.例 4求以下函数当x = 2时的函数值:(1)y = 2x-5 ;(2)y=- 32;x(3);(4) y2x .剖析函数值就是y 的值,所以求函数值就是求代数式的值.解 (1) 当x = 2 时,y = 2 × 2- 5 = - 1;(2)当 x = 2时, y =-3×22=-12;(3) 当x = 2时,y== 2 ;(4) 当x = 2时,y=2 2 = 0.四、沟通反省1.求函数自变量取值范围的两个依照:(1)要使函数的分析式存心义.①函数的分析式是整式时,自变量可取全体实数;②函数的分析式分母中含有字母时,自变量的取值应使分母≠0;③函数的分析式是二次根式时,自变量的取值应使被开方数≥0.(2) 对于反应实质问题的函数关系,应使实质问题存心义.2.求函数值的方法:把所给出的自变量的值代入函数分析式中,即可求出相应的函数值.五、检测反应1.分别写出以下各问题中的函数关系式,并指出式中的自变量与函数以及自变量的取值范围:(1)一个正方形的边长为 3 cm,它的各边长减少x cm后,获得的新正方形周长为 y cm.求y 和 x 间的关系式;(2)寄一封重量在20 克之内的市内平信,需邮资0.60 元,求寄n封这样的信所需邮资y (元)与 n 间的函数关系式;(3)矩形的周长为 12 cm,求它的面积S(cm2) 与它的一边长x(cm) 间的关系式,并求出当一边长为 2 cm 时这个矩形的面积.2.求以下函数中自变量 x 的取值范围:(1)y=-2x-5x2;(3)y= x( x+3);(3);(4)y2x 1.3.一架雪橇沿一斜坡滑下,它在时间 t(秒)滑下的距离 s(米)由下式给出: s=10t +2t 2.若是滑到坡底的时间为 8 秒,试问坡长为多少?4.当 x=2及 x=-3时,分别求出以下函数的函数值:(1)y=( x+1)( x-2);(2) y=2x2-3x+2;(3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章19.1.1变量与函数(第2课时)
教学内容:初中数学人教版八年级下册第十九章一次函数P72-P75。
一、教学目标:
(一)、知识与技能目标
1、理解函数的概念,能准确识别出函数关系中的自变量和函数;
2、理解掌握并确定函数解析式;
3、会确定自变量取值范围。
(二)、过程与方法目标
1、通过从图表来寻找两个变量间的关系,提高识图及读表能力;
2、体会函数的不同表达方式;
(三)、情感、态度与价值观目标
1、积极参与活动、提高数学的学习兴趣;
2、形成合作交流意识及独立思考的习惯。
二、教学重点、难点
重点:函数的概念;确定自变量的取值范围。
难点:认识函数,深刻领会函数的意义。
三、教学过程:
(一)、创设情境,引出问题
通过上一节课的研究我们发现每个问题中都有两个变化的量,同一问题中的两个变量之间都有一定的联系,也就是说当其中一个变量确定为某一个数值时,另一个变量也随之确定一个数值。
那么它们之间的联系究竟是什么呢?我们本节课将解决这个问题。
(二)、新课导入
我们先看上节课的
例1中有两个变量,经计算可以发现:每当售票数量x取定一个值时,票房收入y就随之确定一个值。
例如早场x=150,则y=1500;日场x=205,则y=2050;晚场x=310,则y=3100,它们之间的关系式为y=10x。
例2中也有两个变量,经计算可以发现:每当售票数量r取定一个值时,面积s就随之确定一个值。
例如r=10时,则s=100∏;r=20时,则s=400∏;r=30时,则y=900∏,它们之间的关系式为s=πr2。
由上节课的这两个例题我们可以归纳结论:
上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应。
其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系。
下面我们来看教材P73思考中的两个问题,通过观察、思考、讨论后回答:
(1)下图是体检时的心电图,其中横坐标x表示时间,纵坐标y 表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?
(2)下面的我国人口数统计表中,年份与人口数可以分别记作
两个变量x与y,对于表中每一个确定的年份x,都对应着一个确定的人口数y吗?
中国人口数统计表
通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y。
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x 是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
可以认为:在以上心电图问题中,时间x是自变量,心脏电流y 是x的函数;人口数统计表中,年份x是自变量,人口数y是x的函数,当x=2010时,函数值y=13.71。
从上面的学习中可知,函数是刻画变量之间对应关系的数学模型,许多问题中的变量之间都可以用函数来表示。
(三)、例题
例1汽车油箱有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km。
(1)、写出表示y与x的函数关系式;
(2)、指出自变量x的取值范围;
(3)、汽车行驶200km时,油桶中还有多少汽油?
解析:
通过这一例题,加深对函数意义理解,熟练确立函数关系式,学会确定自变量的取值范围,并能通过关系式解决一些实际问题。
解:(1)、行驶里程x是自变量,油箱中的油量y是x的函数。
行驶里程x时耗油为:0.1x
油箱中剩余油量为:50-0.1x
所以函数关系式为:y=50-0.1x
(2)、仅从式子y=50-0.1x上看,x可以取任意实数,但是考虑到x代表的实际意义是行驶里程,所以不能取负数,并且行驶中耗油量为0.1x,它不能超过油箱中现有汽油50L,即0.1x≤50,x≤500.因此自变量x的取值范围是:
0≤x≤500
(3)、汽车行驶200km时,油箱中的汽油量是函数y=50-0.1x 在x=200时的函数值,将x=200代入y=50-0.1x得:y=50-0.1×200=30,
汽车行驶200km时,油箱中还有30升汽油。
(四)、随堂练习
下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子。
(1)、改变等腰直角三角形的腰长x ,该三角形的面积S随之改变。
(2)、青山村的耕地面积是1.0×106m2,该人均占有耕地面积y 随该村人数a 的变化而变化。
解答:
(1)、等腰直角三角形的腰长x 是自变量,等腰直角三角形的面积S是x 的函数。
函数关系式:S=12x 2; (2)、该村人口数a 是自变量,人均占有耕地面积y 是a 的函数。
函数关系式:y=106a 。
四、回顾与总结:
(一)、本节课我们通过回顾思考、观察讨论,认识了自变量、函数及函数值的概念;
(二)、学习了确定事物变化中的变量与常量;
(三)、学习了确定事物变化中的变量与常量之间的关系。
五、作业:
(一)、P 74−75练习1、2小题。
(二)、学习指要19.1.1余下部分。