高级计量经济学 广义回归模型.ppt

合集下载

计量经济学课件PPT课件

计量经济学课件PPT课件

非线性模型转换方法
多项式回归
通过引入自变量的高次项,将非线性关系转化为线性 关系进行处理。
变量变换
对自变量或因变量进行某种函数变换,以改善模型的 拟合效果。
非参数回归
不假定具体的函数形式,通过数据驱动的方式拟合非 线性关系。
实例分析:金融时间序列预测
数据准备
收集金融时间序列数据,如股票 价格、交易量等,并进行预处理。
模型选择依据
Hausman检验,LM检验等。
实例分析:经济增长收敛性问题研究
研究背景
探讨不同国家或地区间经济增长差异及其收 敛性。
模型构建
选择合适的面板数据模型,设定经济增长收 敛假设。
实证分析
收集相关数据,运用计量经济学软件进行回 归分析,检验收敛性假设是否成立。
结论与政策建议
根据实证结果得出结论,提出促进经济增长 收敛的政策建议。
机器学习算法与计量经济学模型结合
将机器学习算法与传统计量经济学模型相结合,形成更具解释性和预测能力的混合模型。
大数据背景下计量经济学挑战与机遇
01
大数据背景概述
数据量巨大、类型多样、处理速度快等 特点。
02
计量经济学面临的挑 战
数据质量、计算效率、模型可解释性等 问题。
03
计量经济学面临的机 遇
利用大数据技术挖掘更多信息,提高模 型预测精度和政策评估效果;同时推动 计量经济学理论和方法的发展创新。
Geary's C指数
与Moran's I指数类似,也是用于检验全局空间自相关。
LISA集聚图 用于检验局部空间自相关,可以直观展示空间集聚或异常 值区域。
空间滞后和空间误差模型选择
空间滞后模型(SLM)

计量经济学--几种常用的回归模型课件

计量经济学--几种常用的回归模型课件

计量经济学--几种常用的回归模型
18
• 半对数模型的斜率系数度量了解释变量一个单位 的绝对变化,对应的因变量的相对变化量。
• P166例6.4
计量经济学--几种常用的回归模型
19
对数到线性模型(解释变量对数形式)
计量经济学--几种常用的回归模型
20
Yi 1 2 ln X i i
计量经济学--几种常用的回归模型
9
半对数模型
• 只有一个变量以对数形式出现
计量经济学--几种常用的回归模型
10
2. 半对数模型
• 线性到对数模型(因变量对数形式) • 对数到线性模型(解释变量对数形式)
计量经济学--几种常用的回归模型
11
• 线性到对数模型(因变量对数形式)
计量经济学--几种常用的回归模型
12
Yt Y0(1 r )t
ln Yi 2 ln X i i
计量经济学--几种常用的回归模型
4
2的含义?
• 其测度了Y对X的弹性,即X变动百分之一引起Y变 动的百分数。
• 例如,Y为某一商品的需求量,X为该商品的价格, 那么斜率系数为需求的价格弹性。
计量经济学--几种常用的回归模型
5
证明:
d(ln Y ) dY Y 2 d(ln X ) dX X
计量经济学--几种常用的回归模型
8
ห้องสมุดไป่ตู้意
• 是产出对资本投入的(偏)弹性,度量
在保持劳动力投入不变的情况下资本投入 变化1%时的产出变动百分比;
• 是产出对劳动投入的(偏)弹性,度量
在保持资本投入不变的情况下劳动力投入 变化1%时的产出变动百分比;
• 给出了规模报酬信息

计量经济学导论PPT课件

计量经济学导论PPT课件
• 必须掌握一种应用软件(Spss或Eviews),注意课堂和实 验的软件应用演示。
第一章 导 论
什么是计量经济学 计量经济学研究的步骤 计量经济学模型与数据 计量经济学的产生与发展
第一节 什么是计量经济学
◆ 计量经济学的定义 ◆ 计量经济学与其它学科的关系 ◆ 计量经济学的内容体系
一、计量经济学的定义
▼ 第一届诺贝尔经济学奖得主挪威经济学家R. Frisch将计量经济学定义为经济理论、统计学和 数学的结合;
▼ P.A.Samuelson、T.C.Koopmans、R.Stone将 计量经济学定义为“应用合适的方法对经济理论 和观察到的事实加以联系和推导,对现实经济现 象进行定量分析”。
一、计量经济学的定义
应用计量经济学——运用理论计量经济学所提供的理论
与方法研究 特定领域的具体经济活动的数量关系,侧重于建 立与应用模型过程中的实际问题的处理,除依赖理论计量经 济学外,需要依赖经济理论建立模型,根据具体的经济数据 进行分析、预测、评价等。
宏观计量经济学与微观计量经济学
区分依据:
对应于宏观经济学与微观经济学的划分
(对数学的应用)
第一,对非线性函数进行线性转化的方法和技巧,是 数学在计量经济学中的应用
第二,任何的参数估计归根结底都是数学运算,较复 杂的参数估计方法,或者较复杂的模型的参数估计, 更需要相当的数学知识和数学运算能力
第三,在计量经济理论和方法的研究方面,需要用到 许多的数学知识和原理
计量经济学与其它学科的区别
个人消费C
GDP
1980
2447.1
3776.3
1981
2476.9
3843.1
1982
2503.7

计量经济学课件 第5章 回归模型的函数形式

计量经济学课件 第5章 回归模型的函数形式
• 2.选择模型的基本准则:
• 模型选择的重点不是在判定系数大小,而是要考 虑进入模型的解释变量之间的相关性(即理论基 础)、解释变量系数的预期符号、变量的统计显 著性、以及弹性系数这样的度量工具。
线性回归模型的弹性系数计算
• 平均弹性:
E

Y X
X Y

B2
X Y
多元对数线性回归模型
• 偏弹性系数的含义: 在其他变量(如,X3)保持不变的条件下,X2 每变动1%,被解释变量Y变动的百分比为B2;
• (3)菲利普斯曲线
被解释变量:英国货币工资变化率,解释变量:失业率 结论:失业率上升,工资增长率会下降。 在自然失业率UN上下,工资变动幅度快慢不同。即失业率低于自然失业率时,工 资随失业率单位变化而上升快于失业率高于自然失业率时工资随失业率单位变化而下 降。
(P113例5-6) 倒数模型: 菲利普斯曲线
依据经济理论,失业率上升,工资增长率会下降;且 当失业率处于不同水平时,工资变动率变动的程度会 不一样,即Y对X 的斜率(Y / X)不会是常数。
Y / X 20.588*(1/ X 2 )
R2 0.6594
模型选择:
1、依据经济理论
以及经验判断;
2、辅助于对拟合
R2 0.5153 Y / X 0.79
1、B1、B2、B4 0; 2、B3 0 3、B32 3B2B4
WHY? —所以经济理论的学习对于模型的建立、选择
和检验有非常关键和重要的意义。 24
四、模型(形式)选择的依据
经济理论
工作经验
1、模型的建立需要正确地理论、合适可用的数据、 对各种模型统计性质的完整理解以及经验判断。
模型选择的基本准则:进入模型中的解释变量的关系(即 理论基础)、解释变量系数的预期符号、弹性系数等经济 指标、统计显著性等

2024版计量经济学(很好用的完整)ppt课件

2024版计量经济学(很好用的完整)ppt课件

贝叶斯计量经济学的定义
基于贝叶斯定理和概率分布理论进行计量分析的经济学分支。
贝叶斯先验分布的设定
根据历史数据、专家经验等因素设定参数的先验分布,作为后续推 断的基础。
贝叶斯计量模型的估计方法
包括马尔科夫链蒙特卡罗方法、变分贝叶斯方法等,用于估计模型 参数和进行统计推断。
机器学习在计量经济学中应用
机器学习算法在计量经济学中的应用场景
广义线性模型介绍
1
定义
广义线性模型是一类用于回归分析的统计 模型,它扩展了线性模型的框架,允许响 应变量遵循非正态分布,并且可以通过一 个链接函数与解释变量建立线性关系。
2
组成
广义线性模型由三部分组成——随机成分、 系统成分和链接函数。随机成分指定响应 变量的分布类型和参数,系统成分描述解 释变量与响应变量之间的线性关系,链接 函数则将随机成分和系统成分连接起来。
06
计量经济学软件应用
EViews软件介绍及操作指南
01
EViews软件概述
EViews是一款功能强大的计量 经济学软件,广泛应用于数据 分析、模型估计和预测等领域。
02
数据导入与预处理
介绍如何在EViews中导入数据、 进行数据清洗和预处理等操作。
03
模型估计与检验
详细讲解EViews中线性回归模 型、时间序列模型等模型的估 计方法,以及模型的检验和诊 断。
THANKS
包括变量选择、模型诊断、预测等。
监督学习在计量经济学中的应用
通过训练数据集学习模型,然后利用测试数据集评估模型性能。
非监督学习在计量经济学中的应用
通过聚类、降维等技术发现数据中的潜在结构和模式。
深度学习在计量经济学中的应用

第四章--经典线性回归模型(高级计量经济学-清华大学-潘文清)PPT课件

第四章--经典线性回归模型(高级计量经济学-清华大学-潘文清)PPT课件
(2)由性质(1)与性质(2)还可得出,OLS估计量b依 均方收敛于,因此依概率收敛于,从而是的一 致估计量。
(3)由性质(1)与性质(2)知:
MSE(b|X)=E(b-)(b-)’|X)
=Var(b|X)+[bias(b|X)]2
0
(n)
.
17
四、估计2及Var(b) Estimation of 2 and Var(b)

Y=X+
其中,=(0, 1,…,k)’, =(1,2,…,n)’
注意: 这里的线性性指Y关于参数是线性的。
.
3
假设2(strict Exogeneity): E(i|X)=E(i|X1,X2,…Xn)=0, (i=1,2,…n)
注意:
(1) 由E(i|X)=0 易推出:E()=0, E(Xji)=0 或有: Cov(Xj, i)=0 (i, j=1,2,…n)
求解min SSR(+)。
有约束的(i)的残差平方和不会小于无约束的(ii)的 残差平方和:e+’e+e’e
.
25
为避免将无解释力的解释变量纳入到X中去,引入 调整的决定系数(adjusted coefficient of determination):
(4)决定系数仅是对样本回归线拟合样本数据的程 度给予描述。而CR模型并不要求R2要有多高,CR 模型关心的是对总体回归参数的估计与检验。
如果X是非随机的,则假设2变成
E(i|X)=E(i)=0
(4)假设2的向量形式:
E(|X)=0
.
5
注意:
(1)本假设排除了解释变量间的多重共线性 (multicollinearity)
(2) 本假设意味着X’X是非奇异的,或者说X必须 满秩于k+1。因此应有k+1≤n。

高级计量经济学ppt课件

高级计量经济学ppt课件
p(xi,yj) =the proportion of the 1027 families who reported the combination (X=xi and Y=yj).
Table 2.1 Joint frequency distribution of X=income and Y=saving rate
-用平滑线估计总体均值,要比样本均值估计效 果更好吗? •如果经济理论表明: Y|X=X
- 如何寻找该曲线(curve)? 平滑的样本曲线 m*Y|X 仍 能告知有关 Y|X的相关信息吗?
7
二、条件分布
假设(X,Y)的联合概率密度函数( joint probability density function , pdf) 为 f(x,y) ,则
12.5 0.014 0.008 0.013 0.024 0.042 0.000 0.004 0.006 0.002 0.113
17.5 0.004 0.007 0.006 0.020 0.007 0.000 0.003 0.002 0.003 0.052 4
The conditional mean of Y given X=xi is
mY|xi
j
y j p( y j | xi )
j
yj
p(xi , y j ) p(xi )
Conditional mean function of Y on X
mY|X
Savings Rate
-0.05 0.00 0.05 0.10 0.15 0.20
0.5 1.5 2.5 3.5 4.5 5.5 6.7 8.8 12.5 17.5 Income(thousands of dollars)

高级计量经济学课件 (5)

高级计量经济学课件 (5)

0
Q
1

N
2
i 1
N
2
i 1
(Yi (Yi
0 0
1Xi ) 0 1X i ) X i
0
N


i 1 N
i1
Yi Yi X i
N
N0 1 X i
i 1
N
0 X i 1
i 1
§2.1 总体与总体回归模型
一、总体与总体回归模型的含义
1.总体回归模型
总体回归直线是X的函数,于是,根据条件期 望的定义,Y的总体回归直线可以表述为
E(Y X i ) f ( Xi ) 0 1 Xi
引入随机扰动项U,以描述随机因素对消费Y 的影响, 在给定X的条件下,Ui等于Yi与其总
§2.1 总体与总体回归模型
二.总体回归模型中的 Ui 所包含的内容 2.从实际经济行为看Ui
Yi E (Y X i ) U i
0 1 X i U i
从经济学理论可知, 除收入X外,家庭财富、 通胀、利率,预期等对消费支出产生影响的因 素,包含在U之中
正是U的引入,使Y成为随机变量,总体回归 模型是随机模型
§2.2 样本与样本回归模型
二.样本回归模型的一种估计方法—最小二乘法的 基本原理
2.重复抽样与最小二乘估计
Yi ˆ0 ˆ1 Xi uˆi 24.45455 0.509091Xi uˆi
Yi ˆ0 ˆ1 Xi uˆi 17.1697 0.5760611Xi uˆi
二.样本回归模型的一种估计方法—最小二乘法的 基本原理
1.最小二乘法与样本回归直线

ˆ0

高级计量经济学1.pptx

高级计量经济学1.pptx
• 本课程定位于中级水平上,适当引入高级的内
容。
5
△ 经典计量经济学和非经典计量经济学 • 经典计量经济学(Classical Econometrics)一般
指20世纪70年代以前发展并广泛应用的计量经济学。 R.Frish创立 T.Haavelmo(特吕格韦·哈韦尔莫)建立了它的概率论
基础 L.R.Klein克莱因成为其理论与应用的集大成者
9
△ 微观计量经济学和宏观计量经济学
• 微观计量经济学 于2000年诺贝尔经济学奖公
报中正式提出。
• 微观计量经济学的内容集中于“对个人和家庭
的经济行为进行经验分析”;
• “微观计量经济学的原材料是微观数据”,微
观数据表现为截面数据和平行(penal)数据。
• 赫克曼(J.Heckman)和麦克法登
• 微观计量经济学的主要内容包括:
平行(penal)数据模型的理论方法 离散选择模型的理论方法 选择性样本模型的理论方法
11
• 宏观计量经济学名称由来已久,但是它的主要
内容和研究方向发生了变化。
• 经典宏观计量经济学:利用计量经济学理论方
法,建立宏观经济模型,对宏观经济进行分析、 评价和预测。
• 现代宏观计量经济学的主要研究方向:单位根
检验、协整理论主要内容
• 导论 • 经典计量经济学模型与方法回顾 • 联立方程模型 • 其他回归方法(GMM与2SLS) • 时间序列模型(平稳、非平稳与协整) • 条件异方差模型(ARCH、GARCH模型) • 特殊变量数据模型分析(离散、受限模型) • 向量自回归模型(VAR) • 面板数据模型分析
(D.McFaddan) 对微观计量经济学作出原 创性贡献。
10
• 微观计量经济学教科书和课程有:

第五章 经典线性回归模型(II)(高级计量经济学-清华大学 潘文清)

第五章  经典线性回归模型(II)(高级计量经济学-清华大学 潘文清)

如何解释j为“当其他变量保持不变,Xj变化一个 单位时Y的平均变化”?
本质上: j=E(Y|X)/Xj 即测度的是“边际效应”(marginal effect)
因此,当一个工资模型为 Y=0+1age+2age2+3education+4gender+ 时,只能测度“年龄”变化的边际效应: E(Y|X)/age=1+22age 解释:“当其他变量不变时,年龄变动1个单位时 工资的平均变化量” 2、弹性: 经济学中时常关心对弹性的测度。
X1’X1b1+X1’X2b2=X1’Y (*) X2’X1b1+X2’X2b2=X2’Y (**) 由(**)得 b2=(X2’X2)-1X2’Y-(X2’X2)-1X2’X1b1 代入(*)且整理得: X1’M2X1b1=X1’M2Y b1=(X1’M2X1)-1X1’M2Y=X1-1M2Y=b* 其中,M2=I-X2(X2’X2)-1X2’ 又 M2Y=M2X1b1+M2X2b2+M2e1 而 M2X2=0, M2e1=e1-X2(X2’X2)-1X2’e1=e1 则 M2Y=M2X1b1+e1 或 e1=M2Y-M2X1b1=e* 或
b1是1的无偏估计。
设正确的受约束模型(5.1.2)的估计结果为br,则有 br= b1+ Q1b2
或 b1=br-Q1b2 无论是否有2=0, 始终有Var(b1)Var(br) 多选无关变量问题:无偏,但方差变大,即是无效 的。变大的方差导致t检验值变小,容易拒绝本该纳 入模型的变量。
§5.2 多重共线性
1、估计量的方差 在离差形式的二元线性样本回归模型中: yi=b1x1i+b2x2i+e

计量经济学ppt课件(完整版)

计量经济学ppt课件(完整版)
注意事项
在进行模型选择与比较时,需要注意避免过拟合和欠拟合问题,以及确保模型的稳定性和可靠性。此外 ,还需要关注模型的异方差性、共线性等问题,以确保模型的准确性和有效性。
04
时间序列分析及应用
时间序列基本概念及性质
01
时间序列定义
按时间顺序排列的一组数据,反映 现象随时间变化的发展过程。
时间序列类型
03
广义线性模型与非线性模型
广义线性模型介绍
定义
广义线性模型是一类用于描述响 应变量与一组预测变量之间关系 的统计模型,其特点在于响应变 量的期望值通过一个连接函数与 预测变量的线性组合相关联。
连接函数
连接函数是广义线性模型中一个 关键组成部分,它将响应变量的 期望值与预测变量的线性组合连 接起来。常见的连接函数包括恒 等连接、对数连接、逆连接等。
模型的统计性质
深入探讨多元线性回归模型的统计性质,包括无偏性、有效性和一致性等,并解释这些 性质在多元回归分析中的重要性。
多重共线性问题
详细讲解多重共线性的概念、产生原因、后果以及诊断和处理方法,如逐步回归、岭回 归等。
回归模型检验与诊断
模型的拟合优度 介绍衡量模型拟合优度的指标, 如可决系数、调整可决系数等, 并解释这些指标在实际应用中的 意义。
微观计量经济学在因果推断和政策评 估方面发挥着重要作用。目前,研究 者们关注于如何运用实验设计、工具 变量、双重差分等方法识别和处理内 生性问题,以更准确地估计因果关系 和评估政策效果。
高维数据处理与机器 学习
随着大数据时代的到来,高维数据处 理成为微观计量经济学面临的新挑战 。目前,研究者们正在探索如何将机 器学习等先进的数据分析技术应用于 微观计量经济学中,以处理高维数据 和挖掘更多的有用信息。

《计量经济学》ppt课件

《计量经济学》ppt课件

04
时间序列分析
时间序列基本概念与性质
时间序列定义
按时间顺序排列的一组数据,反映现象随时间 变化的发展过程。
时间序列构成要素
现象所属的时间(横坐标)和现象在某一时间 上的指标数值(纵坐标)。
时间序列性质
长期趋势、季节变动、循环变动和不规则变动。
时间序列平稳性检验方法
图形判断法
通过观察时间序列的折线图或散点图,判断 其是否具有明显的趋势或周期性变化。
05
非参数和半参数估计方法
非参数估计方法原理及应用
原理
非参数估计方法不对总体分布做具体假设,而是利用样本数据直接进行推断。其核心思想是通过核密度估计、最 近邻估计等方法,对样本数据的分布进行平滑处理,从而得到总体分布的估计。
应用
非参数估计方法广泛应用于各种实际问题中,如金融市场的波动率估计、生物医学中的生存分析、环境科学中的 气候变化预测等。其优点在于灵活性高,能够适应各种复杂的数据分布,但同时也存在计算量大、对样本量要求 较高等问题。
计量经济学研究方法与工具
研究方法
主要包括理论建模、实证分析和政策评估等方法。
工具
运用数学、统计学和计算机技术等多种工具,如回归分析、时间序列分析、面 板数据分析等。
02
经典线性回归模型
线性回归模型基本概念
线性回归模型定义
描述因变量与一个或多个自变量之间线性关系的数学模型。
回归方程
表示因变量与自变量之间关系的数学表达式,形如 Y=β0+β1X1+β2X2+…+βkXk。
利用指数平滑技术对时间序列进行预测, 适用于具有线性趋势和一定周期性变化的 时间序列。
ARIMA模型
神经网络模型

高级计量经济学 第二章 多元线性回归模型

高级计量经济学  第二章 多元线性回归模型

E[e1e1 X] E[e1e2 X] ... E[e1en X] E[e2e1 X] E[e2e2 X] ... E[e2en X]
...



E[ene1 X] E[ene2 X] ... E[enen X]
利用方差分解公式可以得到: V a r [ e ] E [ V a r [ e X ] ] V a r [ E [ e X ] ]2 I
( X ' X )1 X '[ 2I ]X ( X ' X )1 2 ( X ' X )1
19
对多元回归方程估计结果的解释
多元回归方程估计结果可以表达为
y ˆˆ1 x 1ˆ2 x 2 .. .ˆK x K
由方程可知:
y ˆ ˆ 1 x 1 ˆ 2 x 2 . .ˆ .K x K
E ˆ S 2SY iˆ0ˆ1X 1 iˆ2X 2 i 0
0
E ˆ S 2S Y iˆ0ˆ1 X 1 iˆ2 X 2 iX 1 i 0
1
E ˆ S 2S Y iˆ0ˆ1 X 1 iˆ2 X 2 iX 2 i 0
ˆˆ1 0
N X1i
ˆ2 X2i
X1i X12i X1iX2i
XX 1iX 2i2i1 XY 1iiYi X2 2i X2iYi
思考:如果X1=2X2会出现什么情况?
最小二乘法估计
X' Xˆ X'Y
如果 X'X存在逆矩阵(这是满秩假定所要求的),
那么其解为: ˆ(X'X)1X'Y
最小二乘法估计
(多元回归模型)

高级计量经济学系统回归模型

高级计量经济学系统回归模型
9
系统模型的一般形式
由于造成系统回归模型估计问题的根源不 同,因而相应的处理方法也不同。 现有的计量经济学软件提供了多种解决问 题的办法,从事应用研究的人员需要了解 各种方法所针对的问题,从而有能力选择 适当的技术,并对其做出正确的解释。

10
联立方程组模型的形式

结构形式(Structural form)
16
联立方程组模型产生的问题

在联立方程的结构式中,解释变量不仅包含前定 变量,而且包含内生变量,因而产生下列问题:
用作解释变量的内生变量与方程误差项出现相关;
此时用OLS得到的结构参数估计量是有偏的,并且是不
一致的; 方程间的误差项可能出现相关。
17
联立方程组模型产生的问题

下面用一个简单的联立方程模型来证明上述结论。 考虑由两个方程组成的方程组模型 Y1i 0 1Y2i 2 X i u1i Y2i 0 1Y1i 2 X i u2i
13
结构形式与简化形式的比较



简化形式参数是结构形式参数的函数,简化形式误差项是 结构形式误差项的函数。 简化形式参数考虑了内生变量之间的相互依存性,可以度 量前定变量的变化对内生变量的综合影响,包括直接和间 接影响。结构形式参数只表示单一自变量变化的直接影响。 简化形式本身是模型解的表达式,根据已知的外生变量值 和内生变量滞后值,可以由简化形式直接计算出内生变量 的值。 简化形式可以直接用于做政策分析和预测,但是结果的含 义不同于用结构模型做的预测。
22
模型识别的条件

设:
G=模型中内生变量(方程)的个数 K=模型中前定变量的个数; Gi=第i个方程中内生变量的个数; ki=第i个方程中前定变量的个数;

高级计量经济学 广义回归模型

高级计量经济学 广义回归模型

普通最小二乘法估计模型(7.3),得到 ˆ1 ,然后再利用(7.1)式求出 ˆ2 。
下面以道格拉斯(Douglass)生产函数为例,做进一步说明。
Yt = K Lt Ct eut
(7. 4)
其中 Yt 表示产出量,Lt 表示劳动力投入量,Ct 表示资本投入量。两侧取自
然对数后,
LnYt = LnKt + LnLt + LnCt + ut
但却使1、2的组合1+2的估计量的方差变小, 因此使该组合的估计变得更准确。
6.多重共线性的检验 (1)初步观察。当模型的拟合优度(R 2)很高,F 值很高,而每个回归
参数估计值的方差 Var(j) 又非常大(即 t 值很低)时,说明解释变量间可
能存在多重共线性。 (2)Klein 判别法。计算多重可决系数 R2 及解释变量间的简单相关系数
这里,X2’M1X2恰为如下辅助回归的残差平方和SSR X2=X1B+v
于是: Var(b2)=2/SSR
表明:第k个解释变量参数估计量的方差,由 模型随机扰动项的方差2 第k个解释变量的样本方差SXk2 第k个解释变量与其他解释变量的相关程度Rk2 样本容量n
四个方面的因素共同决定。
四个因素共同影响着bj方差的大小。 Rj2为Xj关于其他解释变量这一辅助回归的决定系数 1/(1-Rj2)称为方差膨胀因子(variance inflation factor)
3.多重共线性的经济解释
(1)经济变量在时间上有共同变化的趋势。如在经济上升 时期,收入、消费、就业率等都增长,当经济收缩期,收入、 消费、就业率等又都下降。当这些变量同时进入模型后就会 带来多重共线性问题。 (2)解释变量与其滞后变量同作解释变量。

高级计量经济学 广义回归模型PPT共140页

高级计量经济学 广义回归模型PPT共140页
高,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
140

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

高级计量经济学系统回归模型68页PPT

高级计量经济学系统回归模型68页PPT

60、人民的幸福是至高无个的法。— —西塞 罗
ห้องสมุดไป่ตู้ 66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
高级计量经济学系统回归模型
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档