奥数(排列与组合)

合集下载

奥数 数字排列组合解题技巧

奥数 数字排列组合解题技巧

奥数数字排列组合解题技巧在奥数(奥林匹克数学竞赛)中,数字排列组合是一个常见的考查点,涉及到的技巧和方法有很多。

以下是一些常见的解题技巧:1. 全排列与重复排列:-全排列:n个元素的全排列有n!种情况,其中n!表示n的阶乘。

-重复排列:有重复元素时,全排列的总数要除以重复元素的阶乘。

2. 循环置换:-对于n个元素的排列,可以通过循环置换的方式进行计算。

循环置换的计算可以借助循环节的长度和总元素个数。

3. 组合公式:-对于从n个元素中选取m个元素的组合数,使用二项式系数的组合公式:C(n, m) = n! / (m! * (n-m)!)4. 二项式定理:-利用二项式定理展开多项式,特别是在计算特殊值时,如计算(x+y)^n的展开式。

5. 递推关系:-有时候可以通过递推关系,找到某一项与前面项之间的关系,从而简化计算。

6. 逆向思维:-有时候可以从目标结果出发,逆向思考,找到排列组合的解。

7. 利用对称性:-利用对称性质,减少计算量。

例如,当问题中存在对称性时,可以利用对称性简化问题。

8. 鸽巢原理:-当分配的对象多于容器的个数时,至少有一个容器中含有两个或两个以上的对象。

这个原理在一些排列组合问题中经常被使用。

9. 图论中的排列组合:-在一些图论问题中,可以利用排列组合的知识,特别是在解决路径计数等问题时。

10. 二叉树与组合数学的关系:-一些问题可以通过构建二叉树的方式来求解,从而转化为组合数学的问题。

总的来说,对于奥数中的数字排列组合问题,关键是灵活运用数学知识,善于发现问题中的规律,并通过巧妙的思考和计算得到正确的结果。

小学奥数之排列组合问题

小学奥数之排列组合问题
题目:有五本不同的书分给甲、乙、丙三人,其中一人一本,另两人各两本,不同的分配方法有 _______ 种. 答案:90
题目:将5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为 _______. 答案:60
掌握基础概念和公式
理解排列组合的原理和计算方法
理解排列组合的概念和公式
练习题:有5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为多少? 答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。练习题:用数字0,1,2,3,4可以组成多少个无重复数字且大于2000的三位数? 答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。

小学奥数~排列组合

小学奥数~排列组合

奥数解排列组合应用题排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种 B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

初中数学竞赛—奥数讲义计数专题:排列组合及答案

初中数学竞赛—奥数讲义计数专题:排列组合及答案

华杯赛计数专题:排列组合基础知识:1.排列:从n个对象中选出m(不超过n)个并进行排序,共有的方法数称为排列数,写成。

2.排列数的计算:约定:0!=1排列数是由乘法原理得到的,因此排列可以看成是乘法原理的一种应用。

3.组合:从n个对象中选出m(不超过n)个,不进行排序,共有的方法数称为组合数,写成。

4.排列与组合的关系:。

5.组合数的计算:6.排列数与组合数的一些性质:例题:例1.4名男生和3名女生站成一排:(1)一共有多少种不同的站法?(2)甲,乙二人必须站在两端的排法有多少种?(3)甲,乙二人不能站在两端的排法有多少种?(4)甲不排头,也不排尾,有多少种排法?(5)甲只能排头或排尾,有多少种排法?【答案】(1)5040;(2)240;(3)2400;(4)3600;(5)略【解答】例2.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共多少种?【答案】4186种【解答】至少有3件是次品,分两种情况第一种情况:3件是次品的抽法:从4件次品中中抽出3件是种,其中,,然后,从46件正常品中抽2件,总共种。

其中,所以,3件是次品的抽法共种。

第二种情况:4件是次品的抽法共:种。

任意抽出5件产品,至少有3件是次品的抽法,是将上述两种情况加在一起,所以,总共是4×23×45+46=23×182=4186种。

总结:有序是排列,无序是组合。

例3.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种?【答案】540种【解答】可设三所学校为甲、乙、丙,三位医生去3所学校的分配方案:用排列数表示为=3×2×1=6。

用乘法原理表示为3!=6。

六名护士去学校甲有种选法,剩下4名护士去乙学校,有种选法,剩下两名自然去学校丙。

所以,不同的分配方法共有种。

例4.有多少个五位数,满足其数位上的每个数字均至少出现两次?【答案】819【解答】方法一:(1)出现一个数字的情况是9种;(2)出现两个数字,首位不能是0,共有9种情况,(i)首位确定之后,如果首位数总共出现3次,则从后面的4个数位中,选出两位,共种情况,剩下的两个数位,还需要选相同的数,因为可以是0,所以,有9种选择。

四年级奥数排列组合(C级)

四年级奥数排列组合(C级)

1. 了解排列、组合的意义2. 明白排列和组合的联系与区别3. 掌握排列和组合的常用解题方法。

4. 会分析排列组合与其他专题的综合应用,培养学生的逻辑思维能力。

一、 排列与组合在生产生活中,常常用到排列与组合,尤其在计算机研究中。

(一) 排列(1) 从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P .121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘.(2) 一般地,对于m n =的情况,排列数公式变为12321n nP n n n =⋅-⋅-⋅⋅⋅⋅()().表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =⋅-⋅-⋅⋅⋅⋅()() .(二) 组合(1) 从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作mnC .12)112321⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⋅⋅m mn nm m P n n n n m C P m m m ()(()()().这个公式就是组合数公式.(2) 一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤)。

这个公式的直观意义是:m n C 表示从n个元素中取出m 个元素组成一组的所有分组方法.n mn C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元排列组合考试要求知识框架例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =. (3) 规定1n n C =,01nC =.二、 排列与组合的联系与区别联系:所有的排列都可以看做是先取组合,再做全排列;同样组合再补充一个阶段(排列)可转化为排列问题。

奥数难题知识点总结

奥数难题知识点总结

奥数难题知识点总结一、概率1.1 排列与组合在奥数难题中,排列与组合是经常出现的概率问题。

排列是指从n个不同元素中取出m(m≤n)个元素按照一定的顺序排列的方法数。

组合是指从n个不同元素中取出m(m≤n)个元素不考虑顺序排列的方法数。

在解决奥数难题中,排列与组合的计算方法是基础中的基础,需要掌握各种情况下的排列组合公式及其应用。

1.2 概率计算在奥数难题中,概率计算也是一个重要的知识点。

概率是指在一次随机试验中,事件A发生的可能性大小。

概率计算涉及到事件的互斥、独立、条件概率、贝叶斯公式等概念,需要掌握概率计算的基本原理和方法,以及在奥数难题中的应用。

1.3 事件的独立性与互斥性在奥数难题中,事件的独立性与互斥性是常见的概率问题。

事件A与事件B独立是指事件A的发生不影响事件B的发生,事件A与事件B互斥是指事件A的发生排除了事件B的发生。

在解决奥数难题中,需要了解事件的独立性与互斥性的概念,并能够灵活运用这些概念解决实际问题。

1.4 随机变量在奥数难题中,随机变量也是一个重要的概率知识点。

随机变量是指可能取多个值的变量,它的每个值发生的概率可以用概率分布来描述。

在解决奥数难题中,需要掌握随机变量的定义、性质、分布函数及其应用,能够灵活运用随机变量解决实际问题。

二、数学思维2.1 极限思想在奥数难题中,极限思想是一种重要的数学思维。

极限是指一个函数在某一点处的极限,它描述了函数在该点附近的变化情况,是数学分析的一种基本概念。

在解决奥数难题中,需要掌握极限的定义、性质、计算方法及其应用,能够运用极限思想解决实际问题。

2.2 推理思维在奥数难题中,推理思维也是一个重要的数学思维。

推理是利用已知条件得出结论的过程,是数学问题求解的基本方法之一。

在解决奥数难题中,需要灵活运用推理思维分析问题,找出问题的关键,从而找到解决问题的方法。

2.3 抽象思维在奥数难题中,抽象思维是一个不可或缺的数学思维。

抽象思维是指将具体问题抽象为一般性问题,通过建立数学模型对问题进行分析和求解。

四年级奥数排列组合题及答案

四年级奥数排列组合题及答案

四年级奥数排列组合题及答案四年级奥数排列组合题及答案1.排列、组合等问题从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?解答:6×4=24种6×2=12种4×2=8种24+12+8=44种【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。

当从国画、油画各选一幅有多少种选法时,利用的乘法原理。

由此可知这是一道利用两个原理的综合题。

关键是正确把握原理。

符合要求的选法可分三类:设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。

由乘法原理有6×4=24种选法。

第二类为:国画、水彩画各一幅,由乘法原理有6×2=12种选法。

第三类为:油画、水彩画各一幅,由乘法原理有4×2=8种选法。

这三类是各自独立发生互不相干进行的。

因此,依加法原理,选取两幅不同类型的画布置教室的选法有24+12+8=44种。

2.排列组合从1到100的所有自然数中,不含有数字4的.自然数有多少个?解答:从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数只有100.所以一共有8+8×9+1=81个不含4的自然数.。

小学奥数之排列组合问题

小学奥数之排列组合问题

计 数 问 题教学目标1.使学生正确理解排列、组合的意义;正确区分排列、组合问题;2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合;3.掌握排列组合的计算公式以及组合数与排列数之间的关系;4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等;5.根据不同题目灵活运用计数方法进行计数; 知识点拨: 例题精讲:一、 排 列 组 合 的 应 用【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法1七个人排成一排;2七个人排成一排,小新必须站在中间.3七个人排成一排,小新、阿呆必须有一人站在中间. 4七个人排成一排,小新、阿呆必须都站在两边. 5七个人排成一排,小新、阿呆都没有站在边上. 6七个人战成两排,前排三人,后排四人.7七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排;【解析】 1775040P =种;2只需排其余6个人站剩下的6个位置.66720P =种.3先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440种.4先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ⨯= 种. 5先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ⨯=种.6七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =种.7可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880种.排队问题,一般先考虑特殊情况再去全排列;【例 2】 用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数【解析】 个位数字已知,问题变成从从5个元素中取2个元素的排列问题,已知5n =,2m =,根据排列数公式,一共可以组成255420P =⨯=个符合题意的三位数;【巩固】 用1、2、3、4、5这五个数字可组成多少个比20000大且百位数字不是3的无重复数字的五位数 【解析】 可以分两类来看:⑴ 把3排在最高位上,其余4个数可以任意放到其余4个数位上,是4个元素全排列的问题,有44432124P =⨯⨯⨯=种放法,对应24个不同的五位数;⑵ 把2,4,5放在最高位上,有3种选择,百位上有除已确定的最高位数字和3之外的3个数字可以选择,有3种选择,其余的3个数字可以任意放到其余3个数位上,有336P =种选择.由乘法原理,可以组成33654⨯⨯=个不同的五位数;由加法原理,可以组成245478+=个不同的五位数;【巩固】 用0到9十个数字组成没有重复数字的四位数;若将这些四位数按从小到大的顺序排列,则5687是第几个数【解析】 从高位到低位逐层分类:⑴ 千位上排1,2,3或4时,千位有4种选择,而百、十、个位可以从0~9中除千位已确定的数字之外的9个数字中选择,因为数字不重复,也就是从9个元素中取3个的排列问题,所以百、十、个位可有39987504P =⨯⨯=种排列方式.由乘法原理,有45042016⨯=个.⑵ 千位上排5,百位上排0~4时,千位有1种选择,百位有5种选择,十、个位可以从剩下的八个数字中选择.也就是从8个元素中取2个的排列问题,即288756P =⨯=,由乘法原理,有1556280⨯⨯=个.⑶ 千位上排5,百位上排6,十位上排0,1,2,3,4,7时,个位也从剩下的七个数字中选择,有116742⨯⨯⨯=个.⑷ 千位上排5,百位上排6,十位上排8时,比5687小的数的个位可以选择0,1,2,3,4共5个. 综上所述,比5687小的四位数有20162804252343+++=个,故比5687小是第2344个四位数.【例 3】 用1、2、3、4、5这五个数字,不许重复,位数不限,能写出多少个3的倍数【解析】 按位数来分类考虑:⑴ 一位数只有1个3; ⑵ 两位数:由1与2,1与5,2与4,4与5四组数字组成,每一组可以组成22212P =⨯=个不同的两位数,共可组成248⨯=个不同的两位数;⑶ 三位数:由1,2与3;1,3与5;2,3与4;3,4与5四组数字组成,每一组可以组成333216P =⨯⨯=个不同的三位数,共可组成6424⨯=个不同的三位数;⑷ 四位数:可由1,2,4,5这四个数字组成,有44432124P =⨯⨯⨯=个不同的四位数; ⑸ 五位数:可由1,2,3,4,5组成,共有5554321120P =⨯⨯⨯⨯=个不同的五位数. 由加法原理,一共有182424120177++++=个能被3整除的数,即3的倍数.【巩固】 用1、2、3、4、5、6六张数字卡片,每次取三张卡片组成三位数,一共可以组成多少个不同的偶数 【解析】 由于组成偶数,个位上的数应从2,4,6中选一张,有3种选法;十位和百位上的数可以从剩下的5张中选二张,有255420P =⨯=种选法.由乘法原理,一共可以组成32060⨯=个不同的偶数.【例 4】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试几次【解析】 四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种;第一种中,可以组成多少个密码呢只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择;第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312⨯=种选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择.综上所述,由加法原理,一共可以组成412121212456+++++=个不同的四位数,即确保能打开保险柜至少要试56次.【例 5】 两对三胞胎喜相逢,他们围坐在桌子旁,要求每个人都不与自己的同胞兄妹相邻,同一位置上坐不同的人算不同的坐法,那么共有多少种不同的坐法【解析】 第一个位置在6个人中任选一个,有166C =种选法,第二个位置在另一胞胎的3人中任选一个,有133C =种选法.同理,第3,4,5,6个位置依次有2,2,1,1种选法.由乘法原理,不同的坐法有11111163221163221172P P P P P P ⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯=种;【例 6】 一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有多少个【解析】 设A :BC DE 是满足题意的时刻,有A 为8,B 、D 应从0,1,2,3,4,5这6个数字中选择两个不同的数字,所以有26P 种选法,而C 、E 应从剩下的7个数字中选择两个不同的数字,所以有27P 种选法,所以共有26P ×27P =1260种选法;从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有1260个;【例 7】 一个六位数能被11整除,它的各位数字非零且互不相同的.将这个六位数的6个数字重新排列,最少还能排出多少个能被11整除的六位数 【解析】 设这个六位数为abcdef ,则有()a c e ++、()b d f ++的差为0或11的倍数.且a 、b 、c 、d 、e 、f 均不为0,任何一个数作为首位都是一个六位数;先考虑a 、c 、e 偶数位内,b 、d 、f 奇数位内的组内交换,有33P ×33P =36种顺序; 再考虑形如badcfe 这种奇数位与偶数位的组间调换,也有33P ×33P =36种顺序;所以,用均不为0的a、b、c、d、e、f最少可排出36+36=72个能被11整除的数包含原来的abcdef;所以最少还能排出72-1=71个能被11整除的六位数;【例 8】已知在由甲、乙、丙、丁、戊共5名同学进行的手工制作比赛中,决出了第一至第五名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军.”对乙说:“你当然不会是最差的.”从这个回答分析,5人的名次排列共有多少种不同的情况【解析】这道题乍一看不太像是排列问题,这就需要灵活地对问题进行转化.仔细审题,已知“甲和乙都未拿到冠军”,而且“乙不是最差的”,也就等价于5人排成一排,甲、乙都不站在排头且乙不站在排尾的排法数,因为乙的限制最多,所以先排乙,有3种排法,再排甲,也有3种排法,剩下的人随意排,有333216P=⨯⨯=种排法.由乘法原理,一共有33654⨯⨯=种不同的排法;【例 9】4名男生,5名女生,全体排成一行,问下列情形各有多少种不同的排法:⑴甲不在中间也不在两端;⑵甲、乙两人必须排在两端;⑶男、女生分别排在一起;⑷男女相间.【解析】⑴先排甲,9个位置除了中间和两端之外的6个位置都可以,有6种选择,剩下的8个人随意排,也就是8个元素全排列的问题,有888765432140320P=⨯⨯⨯⨯⨯⨯⨯=种选择.由乘法原理,共有640320241920⨯=种排法.⑵甲、乙先排,有22212P=⨯=种排法;剩下的7个人随意排,有7 776543215040P=⨯⨯⨯⨯⨯⨯=种排法.由乘法原理,共有2504010080⨯=种排法.⑶分别把男生、女生看成一个整体进行排列,有22212P=⨯=种不同排列方法,再分别对男生、女生内部进行排列,分别是4个元素与5个元素的全排列问题,分别有4 4432124P=⨯⨯⨯=种和5554321120P=⨯⨯⨯⨯=种排法.由乘法原理,共有2241205760⨯⨯=种排法.⑷先排4名男生,有44432124P=⨯⨯⨯=种排法,再把5名女生排到5个空档中,有5 554321120P=⨯⨯⨯⨯=种排法.由乘法原理,一共有241202880⨯=种排法;【巩固】五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮,排成一排表演节目;如果贝贝和妮妮不相邻,共有种不同的排法;【解析】五位同学的排列方式共有5×4×3×2×1=120种;如果将相邻的贝贝和妮妮看作一人,那么四人的排列方式共有4×3×2×1=24种;因为贝贝和妮妮可以交换位置,所以贝贝和妮妮相邻的排列方式有24×2=48种;贝贝和妮妮不相邻的排列方式有120-48=72种;【例 10】一台晚会上有6个演唱节目和4个舞蹈节目.求:⑴当4个舞蹈节目要排在一起时,有多少不同的安排节目的顺序⑵当要求每2个舞蹈节目之间至少安排1个演唱节目时,一共有多少不同的安排节目的顺序【解析】⑴先将4个舞蹈节目看成1个节目,与6个演唱节目一起排,则是7个元素全排列的问题,有【解析】777!76543215040P==⨯⨯⨯⨯⨯⨯=种方法.第二步再排4个舞蹈节目,也就是4个舞蹈节【解析】目全排列的问题,有444!432124P==⨯⨯⨯=种方法.根据乘法原理,一共有504024120960⨯=种方法.⑵首先将6个演唱节目排成一列如下图中的“□”,是6个元素全排列的问题,一共有6 66!654321720P==⨯⨯⨯⨯⨯=种方法.×□×□×□×□×□×□×第二步,再将4个舞蹈节目排在一头一尾或2个演唱节目之间即上图中“×”的位置,这相当于从7个“×”中选4个来排,一共有477654840P=⨯⨯⨯=种方法.根据乘法原理,一共有720840604800⨯=种方法;【巩固】由4个不同的独唱节目和3个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种【解析】先排独唱节目,四个节目随意排,是4个元素全排列的问题,有44432124P=⨯⨯⨯=种排法;其次在独唱节目的首尾排合唱节目,有三个节目,两个位置,也就是从三个节目选两个进行排列的问题,有2 3326P=⨯=种排法;再在独唱节目之间的3个位置中排一个合唱节目,有3种排法.由乘法原理,一共有2463432⨯⨯=种不同的编排方法.小结排列中,我们可以先排条件限制不多的元素,然后再排限制多的元素.如本题中,独唱节目排好之后,合唱节目就可以采取“插空”的方法来确定排法了.总的排列数用乘法原理.把若干个排列数相乘,得出最后的答案;【例 11】 ⑴从1,2,…,8中任取3个数组成无重复数字的三位数,共有多少个只要求列式⑵从8位候选人中任选三位分别任团支书,组织委员,宣传委员,共有多少种不同的选法 ⑶3位同学坐8个座位,每个座位坐1人,共有几种坐法 ⑷8个人坐3个座位,每个座位坐1人,共有多少种坐法⑸一火车站有8股车道,停放3列火车,有多少种不同的停放方法⑹8种不同的菜籽,任选3种种在不同土质的三块土地上,有多少种不同的种法【解析】 ⑴按顺序,有百位、十位、个位三个位置,8个数字8个元素取出3个往上排,有38P 种.⑵3种职务3个位置,从8位候选人8个元素任取3位往上排,有38P 种.⑶3位同学看成是三个位置,任取8个座位号8个元素中的3个往上排座号找人,每确定一种号码即对应一种坐法,有38P 种.⑷3个坐位排号1,2,3三个位置,从8人中任取3个往上排人找座位,有38P 种. ⑸3列火车编为1,2,3号,从8股车道中任取3股往上排,共有38P 种.⑹土地编1,2,3号,从8种菜籽中任选3种往上排,有38P 种;【巩固】 现有男同学3人,女同学4人女同学中有一人叫王红,从中选出男女同学各2人,分别参加数学、英语、音乐、美术四个兴趣小组: 1共有多少种选法2其中参加美术小组的是女同学的选法有多少种 3参加数学小组的不是女同学王红的选法有多少种4参加数学小组的不是女同学王红,且参加美术小组的是女同学的选法有多少种 【解析】 1从3个男同学中选出2人,有223⨯=3种选法;从4个女同学中选出2人,有234⨯=6种选法;在四个人确定的情况下,参加四个不同的小组有4×3×2×1=24种选法;3×6×24=432,所以共有432种选法;2在四个人确定的情况下,参加美术小组的是女同学时有2×3×2×1=12种选法; 3×6×12=216,所以其中参加美术小组的是女同学的选法有216种;3考虑参加数学小组的是王红时的选法,此时的问题相当于从3个男同学中选出2人,从3个女同学中选出1人,3个人参加3个小组时的选法;3×3×3×2×1=54,所以参加数学小组的是王红时的选法有54种,432-54=378,所以参加数学小组的不是女同学王红的选法有378种;4考虑参加数学小组的是王红且参加美术小组的是女同学时的选法,此时的问题相当于从3个男同学中选出2人参加两个不同的小组,从3个女同学中选出1人参加美术小组时的选法;3×2×3=18,所以参加数学小组的是王红且参加美术小组的是女同学时的选法有18种,216-18=198,所以参加数学小组的不是女同学王红,且参加美术小组的是女同学的选法有198种;【例 12】 某校举行男生乒乓球比赛,比赛分成3个阶段进行,第一阶段:将参加比赛的48名选手分成8个小组,每组6人,分别进行单循环赛;第二阶段:将8个小组产生的前2名共16人再分成4个小组,每组4人,分别进行单循环赛;第三阶段:由4个小组产生的4个第1名进行2场半决赛和2场决赛,确定1至4名的名次.问:整个赛程一共需要进行多少场比赛【解析】 第一阶段中,每个小组内部的6个人每2人要赛一场,组内赛26651521C ⨯==⨯场,共8个小组,有158120⨯=场;第二阶段中,每个小组内部4人中每2人赛一场,组内赛2443621C ⨯==⨯场,共4个小组,有6424⨯=场;第三阶段赛224+=场.根据加法原理,整个赛程一共有120244148++=场比赛;【例 13】 由数字1,2,3组成五位数,要求这五位数中1,2,3至少各出现一次,那么这样的五位数共有________个;2007年“迎春杯”高年级组决赛【解析】 这是一道组合计数问题.由于题目中仅要求1,2,3至少各出现一次,没有确定1,2,3出现的具体次数,所以可以采取分类枚举的方法进行统计,也可以从反面想,从由1,2,3组成的五位数中,去掉仅有1个或2个数字组成的五位数即可.法1分两类:⑴1,2,3中恰有一个数字出现3次,这样的数有135460C ⨯⨯=个;⑵1,2,3中有两个数字各出现2次,这样的数有2234590C C ⨯⨯=个.符合题意的五位数共有6090150+=个. 法2从反面想,由1,2,3组成的五位数共有53个,由1,2,3中的某2个数字组成的五位数共有53(22)⨯-个,由1,2,3中的某1个数字组成的五位数共有3个,所以符合题意的五位数共有5533(22)3150-⨯--=个;【例 14】 10个人围成一圈,从中选出两个不相邻的人,共有多少种不同选法【解析】 法1乘法原理.按题意,分别站在每个人的立场上,当自己被选中后,另一个被选中的,可以是除了自己和左右相邻的两人之外的所有人,每个人都有7种选择,总共就有71070⨯=种选择,但是需要注意的是,选择的过程中,会出现“选了甲、乙,选了乙、甲”这样的情况本来是同一种选择,而却算作了两种,所以最后的结果应该是10111---10235⨯÷=种.法2排除法.可以从所有的两人组合中排除掉相邻的情况,总的组合数为210C ,而被选的两个人相邻的情况有10种,所以共有21010451035C -=-=种; 【例 15】 8个人站队,冬冬必须站在小悦和阿奇的中间不一定相邻,小慧和大智不能相邻,小光和大亮必须相邻,满足要求的站法一共有多少种【解析】 冬冬要站在小悦和阿奇的中间,就意味着只要为这三个人选定了三个位置,中间的位置就一定要留给冬冬,而两边的位置可以任意地分配给小悦和阿奇.小慧和大智不能相邻的互补事件是小慧和大智必须相邻 小光和大亮必须相邻,则可以将两人捆绑考虑只满足第一、三个条件的站法总数为:3212372423P P P 3360C C ⨯⨯⨯⨯=种 同时满足第一、三个条件,满足小慧和大智必须相邻的站法总数为:3222262322P P P P 960C ⨯⨯⨯⨯=种 因此同时满足三个条件的站法总数为:33609602400-=种;【例 16】 小明有10块大白兔奶糖,从今天起,每天至少吃一块.那么他一共有多少种不同的吃法 【解析】 我们将10块大白兔奶糖从左至右排成一列,如果在其中9个间隙中的某个位置插入“木棍”,则将lO 块糖分成了两部分;我们记从左至右,第1部分是第1天吃的,第2部分是第2天吃的,…,如:○○○|○○○○○○○表示第一天吃了3粒,第二天吃了剩下的7粒:○○○○ | ○○○| ○○○表示第一天吃了4粒,第二天吃了3粒,第三天吃了剩下的3粒.不难知晓,每一种插入方法对应一种吃法,而9个间隙,每个间隙可以插人也可以不插入,且相互独立,故共有29=512种不同的插入方法,即512种不同的吃法;【巩固】 小红有10块糖,每天至少吃1块,7天吃完,她共有多少种不同的吃法 【解析】 分三种情况来考虑:⑴ 当小红最多一天吃4块时,其余各每天吃1块,吃4块的这天可以是这七天里的任何一天,有7种吃法;⑵ 当小红最多一天吃3块时,必有一天吃2块,其余五天每天吃1块,先选吃3块的那天,有7种选择,再选吃2块的那天,有6种选择,由乘法原理,有7642⨯=种吃法;⑶ 当小红最多一天吃2块时,必有三天每天吃2块,其四天每天吃1块,从7天中选3天,有3776535321C ⨯⨯==⨯⨯种吃法;根据加法原理,小红一共有7423584++=种不同的吃法.还可以用挡板法来解这道题,10块糖有9个空,选6个空放挡板,有639984==C C 种不同的吃法; 【巩固】 把20个苹果分给3个小朋友,每人最少分3个,可以有多少种不同的分法【解析】 法1先给每人2个,还有14个苹果,每人至少分一个,13个空插2个板,有21378C =种分法. 法2也可以按分苹果最多的人分的个数分类枚举;【巩固】 有10粒糖,分三天吃完,每天至少吃一粒,共有多少种不同的吃法 【解析】 如图:○○|○○○○|○○○○,将10粒糖如下图所示排成一排,这样每两颗之间共有9个空,从头开始吃,若相邻两块糖是分在两天吃的,就在其间画一条竖线隔开表示之前的糖和之后的糖不是在同一天吃掉的,九个空中画两条竖线,一共有98236⨯÷=种方法.【例 17】 某池塘中有A B C 、、三只游船,A 船可乘坐3人,B 船可乘坐2人,C 船可乘坐1人,今有3个成人和2个儿童要分乘这些游船,为安全起见,有儿童乘坐的游船上必须至少有个成人陪同,那么他们5人乘坐这三支游船的所有安全乘船方法共有多少种【解析】 由于有儿童乘坐的游船上必须至少有1个成人陪同,所以儿童不能乘坐C 船.⑴若这5人都不乘坐C 船,则恰好坐满A B 、两船,①若两个儿童在同一条船上,只能在A 船上,此时A 船上还必须有1个成人,有133C =种方法;②若两个儿童不在同一条船上,即分别在A B 、两船上,则B 船上有1个儿童和1个成人,1个儿童有122C =种选择,1个成人有133C =种选择,所以有236⨯=种方法.故5人都不乘坐C 船有369+=种安全方法;⑵若这5人中有1人乘坐C 船,这个人必定是个成人,有133C =种选择.其余的2个成人与2个儿童,①若两个儿童在同一条船上,只能在A 船上,此时A 船上还必须有1个成人,有122C =种方法,所以此时有326⨯=种方法;②若两个儿童不在同一条船上,那么B 船上有1个儿童和1个成人,此时1个儿童和1个成人均有122C =种选择,所以此种情况下有32212⨯⨯=种方法;故5人中有1人乘坐C 船有61218+=种安全方法.所以,共有91827+=种安全乘法.【例 18】 从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法 【例 19】 ⑴恰有3名女生入选;⑵至少有两名女生入选;⑶某两名女生,某两名男生必须入选; 【例 20】 ⑷某两名女生,某两名男生不能同时入选;⑸某两名女生,某两名男生最多入选两人;【解析】 ⑴恰有3名女生入选,说明男生有5人入选,应为3581014112C C ⨯=种; ⑵要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:8871181010843758C C C C --⨯=;⑶4人必须入选,则从剩下的14人中再选出另外4人,有4141001C =种; ⑷从所有的选法818C 种中减去这4个人同时入选的414C 种:84181443758100142757C C -=-=.⑸分三类情况:4人无人入选;4人仅有1人入选;4人中有2人入选,共:817261441441434749C C C C C +⨯+⨯=;【巩固】 在6名内科医生和4名外科医生中,内科主任和外科主任各一名,现要组成5人医疗小组送医下乡,按照下列条件各有多少种选派方法【巩固】 ⑴ 有3名内科医生和2名外科医生; 【巩固】 ⑵ 既有内科医生,又有外科医生; 【巩固】 ⑶ 至少有一名主任参加; 【巩固】 ⑷ 既有主任,又有外科医生;【解析】 ⑴ 先从6名内科医生中选3名,有3665420321C ⨯⨯==⨯⨯种选法;再从4名外科医生中选2名,共有2443621C ⨯==⨯种选法.根据乘法原理,一共有选派方法206120⨯=种.⑵ 用“去杂法”较方便,先考虑从10名医生中任意选派5人,有51010987625254321C ⨯⨯⨯⨯==⨯⨯⨯⨯ 种选派方法;再考虑只有外科医生或只有内科医生的情况.由于外科医生只有4人,所以不可能只派外科医生.如果只派内科医生,有51666C C ==种选派方法.所以,一共有2526246-=种既有内科医生又有外科医生的选派方法;⑶ 如果选1名主任,则不是主任的8名医生要选4人,有488765221404321C ⨯⨯⨯⨯=⨯=⨯⨯⨯种选派方法;如果选2名主任,则不是主任的8名医生要选3人,有388761156321C ⨯⨯⨯=⨯=⨯⨯种选派方法.根据加法原理,一共有14056196+=种选派方法. ⑷ 分两类讨论:①若选外科主任,则其余4人可任意选取,有4998761264321C ⨯⨯⨯==⨯⨯⨯种选取方法;②若不选外科主任,则必选内科主任,且剩余4人不能全选内科医生,用“去杂法”有4485876554326543214321C C ⨯⨯⨯⨯⨯⨯-=-=⨯⨯⨯⨯⨯⨯种选取法.根据加法原理,一共有12665191+=种选派方法;【例 21】 在10名学生中,有5人会装电脑,有3人会安装音响设备,其余2人既会安装电脑,又会安装音响设备,今选派由6人组成的安装小组,组内安装电脑要3人,安装音响设备要3人,共有多少种不同的选人方案【解析】 按具有双项技术的学生分类:⑴ 两人都不选派,有3554310321C ⨯⨯==⨯⨯种选派方法;⑵ 两人中选派1人,有2种选法.而针对此人的任务又分两类:若此人要安装电脑,则还需2人安装电脑,有25541021C ⨯==⨯种选法,而另外会安装音响设备的3人全选派上,只有1种选法.由乘法原理,有10110⨯=种选法;若此人安装音响设备,则还需从3人中选2人安装音响设备,有2332321C ⨯==⨯种选法,需从5人中选3人安装电脑,有3554310321C ⨯⨯==⨯⨯种选法.由乘法原理,有31030⨯=种选法.根据加法原理,有103040+=种选法; 综上所述,一共有24080⨯=种选派方法. ⑶ 两人全派,针对两人的任务可分类讨论如下:①两人全安装电脑,则还需要从5人中选1人安装电脑,另外会安装音响设备的3人全选上安装音响设备,有515⨯=种选派方案;②两人一个安装电脑,一个安装音响设备,有22535432602121C C ⨯⨯⨯=⨯=⨯⨯种选派方案;③两人全安装音响设备,有355433330321C ⨯⨯⨯=⨯=⨯⨯种选派方案.根据加法原理,共有5603095++=种选派方案.综合以上所述,符合条件的方案一共有108095185++=种.【例 22】 有11名外语翻译人员,其中5名是英语翻译员,4名是日语翻译员,另外两名英语、日语都精通.从中找出8人,使他们组成两个翻译小组,其中4人翻译英文,另4人翻译日文,这两个小组能同时工作.问这样的分配名单共可以开出多少张【解析】 针对两名英语、日语都精通人员以下称多面手的参考情况分成三类:⑴ 多面手不参加,则需从5名英语翻译员中选出4人,有41555C C ==种选择,需从4名日语翻译员中选出4人,有1种选择.由乘法原理,有515⨯=种选择.⑵ 多面手中有一人入选,有2种选择,而选出的这个人又有参加英文或日文翻译两种可能:如果参加英文翻译,则需从5名英语翻译员中再选出3人,有3554310321C ⨯⨯==⨯⨯种选择,需从4名日语翻译员中选出4人,有1种选择.由乘法原理,有210120⨯⨯=种选择;如果参加日文翻译,则需从5名英语翻译员中选出4人,有41555C C ==种选择,需从4名日语翻译员中再选出3名,有31444C C ==种选择.由乘法原理,有25440⨯⨯=种选择.根据加法原理,多面手中有一人入选,有204060+=种选择.⑶ 多面手中两人均入选,对应一种选择,但此时又分三种情况: ①两人都译英文;②两人都译日文;③两人各译一个语种.情况①中,还需从5名英语翻译员中选出2人,有25541021C ⨯==⨯种选择.需从4名日语翻译员中选4人,1种选择.由乘法原理,有110110⨯⨯=种选择.情况②中,需从5名英语翻译员中选出4人,有41555C C ==种选择.还需从4名日语翻译员中选出2人,有2443621C ⨯==⨯种选择.根据乘法原理,共有15630⨯⨯=种选择.情况③中,两人各译一个语种,有两种安排即两种选择.剩下的需从5名英语翻译员中选出3人,有3554310321C ⨯⨯==⨯⨯种选择,需从4名日语翻译员中选出3人,有31444C C ==种选择.由乘法原理,有1210480⨯⨯⨯=种选择.根据加法原理,多面手中两人均入选,一共有103080120++=种选择. 综上所述,由加法原理,这样的分配名单共可以开出560120185++=张.二、 几何计数【例 23】 下图中共有____个正方形; 【解析】 每个44⨯正方形中有:边长为1的正方形有24个;边长为2的正方形有23个; 边长为3的正方形有22个;边长为4的正方形有21个;总共有2222432130+++=个正方形.现有5个44⨯的正方形,它们重。

小学奥数-排列组合教案

小学奥数-排列组合教案

小学奥数-排列组合教案一、教学目标:1. 让学生理解排列组合的概念,能够运用排列组合的知识解决实际问题。

2. 培养学生逻辑思维能力和创新思维能力。

3. 提高学生解决数学问题的兴趣和自信心。

二、教学内容:1. 排列的概念和排列数公式2. 组合的概念和组合数公式3. 排列组合的应用三、教学重点与难点:1. 教学重点:排列组合的概念、排列数公式、组合数公式及其应用。

2. 教学难点:排列组合问题的解决方法和技巧。

四、教学方法:1. 采用问题驱动法,引导学生主动探究排列组合的知识。

2. 运用案例教学法,让学生通过实际案例理解排列组合的概念和应用。

3. 采用小组合作学习法,培养学生的团队协作能力和沟通能力。

五、教学安排:1. 第一课时:排列的概念和排列数公式2. 第二课时:组合的概念和组合数公式3. 第三课时:排列组合的应用举例4. 第四课时:练习与讲解六、教学过程:1. 导入:通过生活中的实例,如抽签、排座位等,引出排列组合的概念。

2. 新课导入:介绍排列和组合的定义,讲解排列数公式和组合数公式。

3. 案例分析:分析实际问题,运用排列组合知识解决问题。

4. 练习与讲解:学生自主练习,教师讲解疑难问题。

七、课后作业:1. 复习本节课所学内容,掌握排列组合的概念和公式。

2. 完成课后练习题,巩固所学知识。

3. 搜集生活中的排列组合实例,下周分享。

八、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 课后作业:检查学生作业完成情况,评估学生对知识的掌握程度。

3. 生活实例分享:评价学生搜集的排列组合实例的创意性和实用性。

九、教学拓展:1. 深入了解排列组合在实际生活中的应用,如密码学、运筹学等。

2. 探索其他数学领域的知识,如数列、概率等,与排列组合知识相结合。

3. 鼓励学生参加奥数比赛和相关活动,提高数学素养。

十、教学反思:2. 针对学生的学习情况,调整教学策略,提高教学效果。

小学奥数系列:18排列与组合

小学奥数系列:18排列与组合

排列与组合【内容概述】排列数与组合数的计算公式,以及与此相关的计数问题.其中要注意区分排列与组合,它们的差别体现在是有序,还是无序.【典型问题】1.“IMO”是国际数学奥林匹克的缩写,把这3个字母用3种不同颜色来写,现有5种不同颜色的笔,问共有多少种不同的写法?2.从数字0,1,2,3,4,5中任意挑选5个组成能被5除尽且各位数字互异的五位数,那么共可以组成多少个不同的五位数?3.用2,4,5,7这4个不同数字可以组成24个互不相同的四位数,将它们从小到大排列,那么7254是第多少个数?4.有些四位数由4个不为零且互不相同的数字组成,并且这4个数字的和等于12.将所有这样的四位数从小到大依次排列,第24个这样的四位数是多少?5.用0,1,2,3,4这5个数字,组成各位数字互不相同的四位数,例如1023,2341等,求全体这样的四位数之和.6.计算机上编程序打印出前10000个正整数:1,2,3,….10000时,不幸打印机有毛病,每次打印数字3时,它都打印出x.问其中被错误打印的共有多少个数?7.在1000和9999之间,千位数字与十位数字之差(大减小)为2,并且4个数位上的数字各不相同的四位数有多少个?8.如果从3本不同的语文书、4本不同的数学书、5本不I司的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选法?9.某条铁路线上,包括起点和终点在内原来共有7个车站,现在新增了3个车站,铁路上两站之间往返的车票不一样.那么,这样需要增加多少种不同的车票?10.7个相同的球,放在4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?11.从19,20,21,…,93,94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?12.用两个3,一个1,一个2可组成若干不同的四位数,这样的四位数一共有多少个?13.有5个标签分别对应着5个药瓶,恰好贴错3个标签的可能情况共有多少种?14.有9张同样大小的圆形纸片.其中标有数码“1”的有1 张;标有数码“2”的有2张;标有数码“3”的有3张;标有数码“4”的也有3张.把这9张圆形纸片如图18-1所示放置在一起,但标有相同数码的纸片不许靠在一起,问:(1)如果M处放标有数码“3”的纸片,一共有多少种不同的放置方法?(2)如果M处放标有数码图18-1“2”的纸片,一共有多少种不同的放置方法?15.一台晚会上有6个演唱节目和4个舞蹈节目.问: (1)如果4个舞蹈节目要排在一起,有多少种不同的安排顺序?(2)如果要求每两个舞蹈节目之间至少安排一个演唱节目,一共有多少种不同的安排顺序?【参考答案】1.60种.3.第20个.5.259980.7.840个.9.48种.11.1406种.13.20种.15.(1)120960种,(2)604800种.2.216个.4.2631.6.3439个.8.47种.10.20种.12.12个.14.(1)6种,(2)12种.。

小学奥数排列组合教案

小学奥数排列组合教案

小学奥数-排列组合教案一、教学目标1. 让学生理解排列组合的概念,掌握排列组合的基本算法。

2. 培养学生分析问题、解决问题的能力,提高学生的逻辑思维能力。

3. 培养学生积极探索、合作交流的学习习惯,增强学生的自信心。

二、教学内容1. 排列的概念和排列数公式2. 组合的概念和组合数公式3. 排列组合的应用三、教学重点与难点1. 教学重点:排列组合的概念,排列数和组合数公式的运用。

2. 教学难点:排列组合问题的理解和解决。

四、教学方法1. 采用问题驱动法,引导学生主动探究、合作交流。

2. 运用实例分析,让学生直观理解排列组合的概念。

3. 练习法:通过适量练习,巩固所学知识。

五、教学准备1. 教学课件或黑板2. 练习题3. 学生分组合作学习所需材料教案内容:一、排列的概念和排列数公式1. 排列的定义:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做一个排列。

2. 排列数公式:An = n! / (n-m)!,其中n!表示n的阶乘。

二、组合的概念和组合数公式1. 组合的定义:从n个不同元素中取出m(m≤n)个元素,但与排列不同的是,组合不考虑元素的顺序。

2. 组合数公式:Cn = n! / [m!(n-m)!],其中n!表示n的阶乘。

三、排列组合的应用1. 题目示例:有红、蓝、绿三色的珠子,从中选出2个珠子,要求红珠子必须选中,求选法的总数。

2. 解题思路:这是一个排列问题,因为红珠子必须选中,只需要从蓝、绿两种颜色中再选一个珠子,按照排列的定义和公式,计算出排列数。

3. 解题步骤:a. 确定n=3(三种颜色),m=2(选两个珠子)。

b. 计算排列数:A3 = 3! / (3-2)! = 3×2 = 6。

c. 得出选法的总数为6种。

四、课堂练习a. A4 = ?b. A5 = ?a. C3 = ?b. C4 = ?五、总结与反思1. 本节课学习了排列和组合的概念及公式。

2. 通过对实例的分析,理解了排列组合的应用。

(信息学奥赛辅导)排列和组合基础知识

(信息学奥赛辅导)排列和组合基础知识

排列与组合基础知识有关排列与组合的基本理论和公式:加法原理:做一件事,完成它可以有n 类办法,在第一类办法中有m 1种不同的方法,在第二类中办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同方法。

那么完成这件事共有N=m 1+m 2+…+m n 种不同的方法,这一原理叫做加法原理。

乘法原理:做一件事,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事共有N =m 1×m 2×…×m n种不同的方法,这一原理叫做乘法原理。

公式:阶乘公式!(1)(2)321n n n n =⋅-⋅-⋅⋅,规定0!=1;全排列公式!n n P n = 选排列公式!(1)(2)(1)()!m n n P n n n n m n m =---+=-、m m m n n m P C P = 圆排列:n 个不同元素不分首位围成一个圆圈达到圆排列,则排列数为:!(1)!n n n =- 组合数公式(1)(2)(1)!!!()!m mn n m m P n n n n m n C P m m n m ---+===-、规定01n C = m n m n n C C -=、11m m m n n n C C C -+=+、0122n n n n n n C C C C ++++=)提示:(1)全排列问题和选排列问题,都可根据乘法原理推导出来。

(2)书写方式:r n P 记为P (n,r );rn C 记为C (n,r )。

加法原理例题:图1中从A 点走到B 点共有多少种方法?(答案:4+2+3=9)乘法原理例题:图2中从A 点走到B 点共有多少种方法?(答案:4×6=24)加法原理与乘法原理综合:图3、图4中从A 走到B 共有多少种方法?(答案:28、42) A B 图1 A B图2A B 图3 A B图4注意:在信息学奥赛中,有许多只需计数而不需具体方案的问题,都可以通过思维转换或方法转换,最后变为两类问题:一类是转变为排列组合问题,另一类是转变为递推公式问题。

学而思奥数网奥数专题 排列组合

学而思奥数网奥数专题 排列组合

学而思奥数网奥数专题排列组合
1、五年级排列组合问题:
难度:中难度
用1、2、3、4、5这五个数字可组成多少个比20000大且百位数字不是3的无重复数答:
2、五年级排列组合问题:
难度:中难度
甲、乙、丙、丁、戊、己六个人站队,要求:甲乙两人之间最多有两个人,问一共有多少种站法?
答:
3、五年级排列组合问题:
难度:中难度
从19、20、21……93、94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?
答:
4、五年级排列组合问题:
难度:高难度
已知在由甲、乙、丙、丁、戊共5名同学进行的手工制作比赛中,决出了第一至第五名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军.”对乙说:“你当然不会是最差的.”从这个回答分析,5人的名次排列共有多少种不同的情况?
答:
5、五年级排列组合问题:
难度:高难度
平面内有12个点,其中6点共线,此外再无三点共线.
答:
学而思奥数网奥数专题(排列组合)
1、五年级排列组合问题答案:
2、五年级排列组合问题答案:
3、五年级排列组合问题答案:
两数之和为偶数时,必须是同奇或同偶,且加法可交换,故不必考虑顺序.因此只须分两类讨论即可.19、20……93、94共有38个奇数,38个偶数.从38个数中任选2个数的方法有
238C 3837(21)703=⨯÷⨯=种.
即 奇加奇、偶加偶各有703种,所以选法共有1406种.
4、五年级排列组合问题答案:
五年级排列组合问题答案:。

小学奥数排列组合解析

小学奥数排列组合解析

小学奥数排列组合解析
介绍
在小学奥数中,排列组合是一个重要的概念。

通过排列组合,我们可以确定不同物品的排列方式或组合方式。

在此文档中,我们将详细解析排列组合的概念和应用。

排列
排列指的是从一组物品中,取出一些物品按照一定的顺序进行排列的方式数。

例如,从A、B、C、D中选出两个,所有可能的排列如下:
AB、AC、AD
BA、BC、BD
CA、CB、CD
DA、DB、DC
因此,从四个不同的物品中选出两个进行排列的方式数为:4 X 3 = 12
组合
组合指的是从一组物品中,取出一些物品进行组合的方式数。

与排列不同,组合不考虑排列顺序。

例如,从A、B、C、D中选出两个,所有可能的组合如下:
AB、AC、AD、BC、BD、CD
因此,从四个不同的物品中选出两个进行组合的方式数为:4! / (2! * (4-2)!) = 6
应用
排列和组合在数学以及现实生活中有广泛应用。

例如,从一组球员中选出不同的首发阵容,从一组物品中选出特定的组合等等。

在小学奥数研究中,排列组合也是其他数学概念研究的基础,是培养逻辑思维和解决问题能力的关键部分。

结论
在小学奥数中,排列组合是重要的数学概念和应用,通过学习和理解排列组合可以帮助我们更好地理解其他有关概率和统计学的概念。

排列组合小学奥数

排列组合小学奥数

排列与组合(一)排列例1、张华、李明等七个同学照相,分别求出在下列条件下有多少种站法。

(1)、七个人排成一排;(2)、七个人排成一排,张华必须站在中间;(3)、七个人站成一排,张华,李明必须有一人站在中间;(4)、七个人站成一排,张华,李明必须站在两边;(5)、七个人站成一排,张华,李明都没有站在边上;(6)、七个人排成两排,前排三人,后排四人;(7)、七个人排成两排,前排三人,后排四人,张华,李明不在同一排。

例2、用0,1,2,3四个数码可以组成()个没有重复数字的四位偶数。

例3、某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0的数字组成,且四个数字之和是9,为确保打开保险柜,至少要试()次。

例4、从1,3,5中任选两个数字,从0,2,4中任选两个数字,共可组成()个没有重复数字的四位数,其中偶数有()个。

例5、在前10000个自然数中,不含数码“1”的数有()个。

练习:1、甲、乙、丙、丁四人各有一个作业本混放在一起,四人每人随便拿了一本。

(1)、甲拿到自己作业本的拿法有()种;(2)、恰有一人拿到自己作业本的拿法有()种;(3)、至少有一人没拿到自己作业本的拿法有()种;(4)、谁也没拿到自己作业本的拿法有()种。

2、用0,1,2,3,4,可以组成()个小于1000的没有重复数字的自然数。

3、自然数8336,8545,8782有一些共同特征,每个数都是以8开头的四位数,且每个数中恰好有两个数字相同,这样的数有()个。

4、由1000到1999这1000个自然数中,有()个千位,百位,十位,个位数字中恰有两个相同的数。

5、从1,3,5中任选两个数字,从2,4,6中任选两个数字,共可组成()个没有重复数字的四位数。

6、用1,2,3,4,5这五个数字可以组成120个没有重复数字的四位数,将它们从小到大排列起来,4125是第()个。

7、在所有的三位自然数中,组成数的三个数码既有大于5的数码,又有小于5的数码的自然数共有()个。

奥数试题二数字组合的排列与组合

奥数试题二数字组合的排列与组合

奥数试题二数字组合的排列与组合数字组合的排列与组合数字组合的排列与组合在奥数考试中占有重要的地位。

掌握数字组合的排列与组合的知识,可以帮助我们高效地解决各种复杂问题。

本文将详细介绍数字组合的排列和组合的概念和应用。

一、数字组合的排列数字组合的排列特指从 n 个不同的元素中取出 k 个元素,然后按照一定的顺序排列的方案数。

排列的公式为:A(n, k) = n! / (n - k)!其中,n! 表示前 n 个正整数的乘积。

例如,从 4 个不同的元素中取出 2 个元素,进行排列的方案数为:A(4, 2) = 4! / (4 - 2)! = 12二、数字组合的组合数字组合的组合特指从 n 个不同的元素中取出 k 个元素,不考虑元素之间的顺序,不同排列算作同一种方案的情况。

组合的公式为:C(n, k) = n! / [(n - k)! * k!]其中,n! 表示前 n 个正整数的乘积。

例如,从 4 个不同的元素中取出 2 个元素,不考虑元素之间的顺序,不同排列算作同一种方案的情况,组合的方案数为:C(4, 2) = 4! / [(4 - 2)! * 2!] = 6三、数字组合的应用数字组合的排列和组合有广泛的应用场景,下面列举一些常见的应用:1. 组合优化问题组合优化问题是指从大量可能的组合中找出最优的一种方案,例如,在生产线上,如何安排机器的使用以最小化生产成本或最大化生产效率,就是一个组合优化问题。

数字组合的排列和组合可以用来解决这类问题。

2. 组合数学问题组合数学问题是指在满足某些限制条件的前提下计算满足某一条件的组合数。

例如,在一个 5 x 5 的矩阵中,从某一格出发走 k 步,走过的路径不可重复,问一共有多少种走法,就是一个组合数学问题。

数字组合的排列和组合可以用来解决这类问题。

3. 概率统计问题在概率统计中,数字组合的排列和组合经常被用来计算事件发生的概率。

例如,在一堆彩球中,从 n 个不同的颜色中抽出 k 个球,求出抽出的球是某一种颜色的概率,就可以使用数字组合的排列和组合求解。

奥数排列统筹问题

奥数排列统筹问题

1、有6名同学参加象棋决赛,得冠军和亚军的名单有几种可能的情况?2、一个口袋装有6个小球,另一个口袋装有5个小球,所有小球的颜色都不相同。

(1)从两个口袋中任取一个小球,有多少种不同的取法?(2)从两个口袋中各取一个小球,有多少种不同的取法?3、某市电话号码是五位数,每一数位上的数码可以是0,l,2,…8,9中的任意一个(数字可以重复出现,如00000也算一个电话号码)那么这个城市最多有多少个电话号码?4、在“希望杯”足球赛中,共有27支小足球队参赛。

(l)如果这27个队进行单循环赛(两队间只比赛一次,称作一场),需要比赛多少场?(2)如果这27个队进行淘汰赛,最后决出冠军,共需比赛多少场?5、有四封不同的信,随意投入三个信筒里,有多少种不同投法?6、下图中共有4×4=16个小方格,要把A,B,C,D四个不同的棋子放在方格里,每行和每列只能出现一个棋子,共有多少种放法?7、如右图,从甲地到乙地有2条路,从乙地到丙地有4条路,从甲地到丁地有3条路,从丁地到丙地也有3条路。

问:从甲地到丙地共有多少种不同的走法?1、计算:①C315;②C19982000;③C34×C28;④P28-C68.2、从分别写有1、2、3、4、5、6、7、8的八张卡片中任取两张作成一道两个一位数的加法题.问:①有多少种不同的和?②有多少个不同的加法算式?3、某班毕业生中有10名同学相见了,他们互相都握了一次手,问这次聚会大家一共握了多少次手?4、在圆周上有12个点.①过每两个点可以画一条直线,一共可以画出多少条直线?②过每三个点可以画一个三角形,一共可以画出多少个三角形?5、如图,图上一共有六个点,且六个点中任意三个点不共线,问:①从这六个点中任意选两点可以连成一条线段,这些点一共可以连成多少条线段?②从这六个点中任意选两点可以作一条射线,这些点一共可以作成多少条射线?(射线是一端固定,经另一点可以无限延长的.)6、A、B、C、D、E,5件不同的商品陈列在橱窗内,排成一排。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合应用题的教学设计致远高中朱英 2007.3解决排列组合应用题的基础是:正确应用两个计数原理,分清排列和组合的区别。

引例1 现有四个小组,第一组7人,第二组8人,第三组9人,第四组10人,他们参加旅游活动:(1)选其中一人为负责人,共有多少种不同的选法。

(2)每组选一名组长,共有多少种不同的选法4评述:本例指出正确应用两个计数原理。

引例2(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?评述:本例指出排列和组合的区别。

求解排列组合应用题的困难主要有三个因素的影响:1、限制条件。

2、背景变化。

3、数学认知结构排列组合应用题可以归结为四种类型:第一个专题排队问题重点解决:1、如何确定元素和位置的关系元素及其所占的位置,这是排列组合问题中的两个基本要素。

以元素为主,分析各种可能性,称为“元素分析法”;以位置为主,分析各种可能性,称为“位置分析法”。

例:3封不同的信,有4个信箱可供投递,共有多少种投信的方法?分析:这可以说是一道较简单的排列组合的题目了,但为什么有的同学能做出正确的答案34(种),而有的同学则做出容易错误的答案43(种),而他们又错在哪里呢?应该是错在“元素”与“位置”上了!法一:元素分析法(以信为主)第一步:投第一封信,有4种不同的投法;第二步:接着投第二封信,亦有4种不同的投法;第三步:最后投第三封信,仍然有4种不同的投法。

因此,投信的方法共有:34(种)。

法二:位置分析法(以信箱为主)第一类:四个信箱中的某一个信箱有3封信,有投信方法1C(种);4第二类:四个信箱中的某一个信箱有2封信,另外的某一个信箱有1封信,有投信方法 2234C P 种 。

第三类:四个信箱中的某三个信箱各有1封信,有投信方法 34P (种)。

因此,投信的方法共有:64 (种)小结:以上两种方法的本质还是“信”与“信箱”的对应问题。

2、如何处理特殊条件——特殊条件优先考虑。

例:7位同学站成一排,按下列要求各有多少种不同的排法;甲站某一固定位置;②甲站在中间,乙与甲相邻;③甲、乙相邻; ④甲、乙两人不能相邻; ⑤甲、乙、丙三人相邻;⑥甲、乙两人不站在排头和排尾;⑦甲、乙、丙三人中任何两人都不相邻;⑧甲、乙两人必须相邻,且丙不站在排头和排尾。

第二个专题 排列、组合交叉问题重点解决:1、先选元素,后排序。

例:3个大人和2个小孩要过河,现有3条船,分别能载3个、2个和1个人,但这5个人要一次过去,且小孩要有大人陪着,问有多少种过河的方法? 分析:设1号船载3人,2号船载2人,3号船载2人,小孩显然不能进第3号船,也不能二个同时进第2号船。

法一:从“小孩”入手。

第一类:2个小孩同时进第1号船,此时必须要有大人陪着另外2个大人同时进第2号船或分别进第2、3号船,先选3个大人之一进1号船,有()1213219N C P =+= (种)过河方法第二类:2个小孩分别进第1、2号船,此时第2号船上的小孩必须要有大人陪着,另外2个大人同时进第1号船或分别进第1、3号船,有过河方法()2122232118N P C P =+= (种)。

因此,过河的方法共有: (种)。

法二:从“船”入手第一类:第1号船空一个位,此时3条船的载人数分别为2、2、1,故2个小孩只能分别进第1、2号船,有过河方法 2312312N P P == (种);第二类:第2号船空一个位,此时3条船的载人数分别为3、1、1,故2个小孩只能同时进第1号船,有过河方法 3236N P == (种);1291827N N N =+=+=第三类:第3号船空一个位,此时3条船的载人数分别为3、2、0,故2个小孩同时进第1号船或分别进第1、2号船,有过河方法122332390N C P C=+= (种)。

因此,过河的方法共有:(种)。

2、怎样界定是排列还是组合例:①身高不等的7名同学排成一排,要求中间的高,从中间看两边,一个比一个矮,这样的排法有多少种?②身高不等的7名同学排成一排,要求中间的高,两边次高,再两边次高,如此下去,这样的排法共有有多少种?答:①3620c=种②111222p p p=8 种本来①是组合题,与顺序无关,但有些学生不加分析,看到排队就联想排列,这是一个误区。

至于②也不全是排列问题,只是人自然有高低,按人的高低顺次放两边就是了。

又例:7名同学排成一排,甲、乙、丙这三人的顺序定,则不同排法有多少种?分析,三人的顺序定,实质是从7个位置中选出三个位置,然后按规定的顺序放置这三人,其余4人在4个位置上全排列。

故有排法3474c p=840种。

3、枚举法三人互相传球,由甲开始传球,并作为第一次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有(A)6 种(B)8 种(C)0 种(D)12 种解:(枚举法)该题新颖,要在考试短时间内迅速获得答案,考虑互传次数不多,所得选择的答案数字也不大,只要按题意一一列举即可。

甲丙丙甲丙乙丙乙丙丙乙甲甲甲乙甲甲甲乙123126927 N N N N=++=++=第三个专题 分堆问题 重点解决:1、均匀分堆和非均匀分堆关于这个问题,课本P146练习10如此出现:8个篮球队有2个强队,先任意将这8各队分成两个组,(每组4个队)进行比赛,这两个强队被分成在一个小组的概率是多少?由于课本后面出现这样的练习题,所以前面应对这些问题有所分析,尤其为什么均匀分堆有出现重复?应举例说明。

例:有六编号不同的小球, ① 分成3堆,每堆两个② 分成3堆,一堆一个,一堆两个,一堆三个 ③ 分成3堆,一堆一个,一堆一个,一堆四个在①、②、③的条件下,再分别给三个小朋友玩,每人一堆,有多少种分法? 分析:①、②、③都是分堆,其中①是三个均匀分堆,有3!重复,③是两个均匀分堆,有2!重复,如此类推。

②是非均匀分堆,不可能出现重复。

在教学中应用数字表示球,通过列举法说明重复的可能,以及避免重复。

例:有六编号不同的小球, ① 分成3堆,每堆两个② 分成3堆,一堆一个,一堆两个,一堆三个 ③ 分成3堆,一堆一个,一堆一个,一堆四个在①、②、③的条件下,再分别给三个小朋友玩,每人一堆,有多少种分法? 分析:①、②、③都是分堆,其中①是三个均匀分堆,有3!重复,③是两个均匀分堆,有2!重复,如此类推。

②是非均匀分堆,不可能出现重复。

在教学中应用数字表示球,通过列举法说明重复的可能,以及避免重复。

答案:① ② ③ ④再乘以33P2、为什么有重复,怎样避免重复例:从4名男生、5名女生中任选3人参加学代会,至少男生、女生各一名的不同选法有多少种?有些学生这样想:先从4人中选一人,再从5人中选一人,最后在剩下的7人中选一人, 结果是 结果是错误的。

因为后面的7人与前面已选的人可能出现重复,正确的答案是 。

又例:有4个唱歌节目,4个舞蹈节目,2个小品排成一个节目单,但舞蹈和小品要相隔,不同的编排有多少种方法?22643!C C 1265C C 46C 111457140C C C =2112454570C C C C +=有些学生这样想,先定位4个唱歌,有5个位插入小品两个位,此时有7个位再插入4个舞蹈,故的表达式是 424457P P P 。

其实,这里又出现了重复,正确的列式是 645467572P P P P -第四个专题 直接法和间接法的区别及运用 重点解决:1、选择集合的元素有交集问题;例:七人并坐一排,要求甲不坐首位,乙不坐末位,共有几种不同的坐法? 法一:直接法第一类:甲在第2-6号位中选一而坐,接着乙在第1-6位中余下的5个位中择一而坐,剩下的任意安排 (种); 第二类:甲在第7号坐,剩下的任意安排,有坐法数626720N P ==(种)。

因此,不同的坐法数共有 (种)。

法二:间接法七人并坐,共有坐法数 77P (种)。

甲坐首位,有 66P 种方法;乙坐末位,亦有66P 种方法。

甲坐首位、乙坐末位都不符合题目要求,所以应该从扣除,但在扣除的过程中,甲坐首位且乙坐末位的情况被扣除了2次,因此还须补回一个 55P 。

因此,不同的坐法数有 76576523720N PP P =-+=(种) 2、选择元素中有至少、至多等问题。

在100件产品中,有98件合格品,2件次品,从100见产品中任意抽取3件,(1)至少有一件是次品的抽法有多少种?(2)至多有一件次品的抽法有多少种?答:(1)解法1: 解法2 : (2)以上的处理,主要有如下几个好处:①教学比较自然、流畅,容易对近似概念进行比较,找到其相同点和不同点,更深刻的从外延到内涵掌握概念及其数学意义。

②把相关概念弄清楚后,能给学生有足够的工具,使学生解决应用题时不在被工具而困扰,形成良好知识结构,解决问题的思路容易畅通③重点突出,学生就比较容易把每一个难点和重点给予突破,减轻学生的负担又能实现学生的学习落到实处。

④在提高教学质量的前提下,又能提高效率。

11515553000N C C P==123000 7203720N N N =+=+=22100989604C C -=12212972979604C C C C +=31298298161602C C C +=。

相关文档
最新文档