公务员行测数学题--工程问题
公务员行测考试工程问题示例
公务员行测考试工程问题示例工程问题在公务员考试行测中考核频率较高,但是难度并不大,大多数考生都是能够做出来的。
下面作者给大家带来关于公务员行测考试工程问题示例,期望会对大家的工作与学习有所帮助。
公务员行测考试工程问题示例对于这种问题常见的情形有两种,一种是显现的都是正效率,另一种是既有正效率也有负效率。
但不管哪种情形,最重要的就是要找到最小循环周期及一个循环周期的效率和。
常见题型1.正效率交替合作例1.一条公路需要铺设,甲单独铺设要20天完成,乙单独铺设要10天完成。
如果甲先铺1天,然后乙接替甲铺1天,再由甲接替乙铺1天……两人如此交替工作。
那么,铺完这条公路共用多少天?A.14B.16C.15D.13【答案】A,解析:设工作总量为20,则甲的工作效率为1,乙的工作效率为2,一个循环周期甲乙共完成工作量1+2=3。
20÷(2+1)=6……2,则经过6×2=12天后还剩下的工作量为2;第13天甲做1份,剩下1份的需要乙连续工作半天才能完成。
即在12天的基础上,还需要甲工作1天,乙工作半天才可以完成。
选项给出的都是整数天,所以乙最后工作的半天按一天来去运算。
故共用14天。
挑选A选项。
例2.单独完成某项工作,甲需要16小时,乙需要12小时,如果依照甲、乙、甲、乙、……的顺序轮番工作,每次1小时,那么完成这项工作需要多长时间?A.13小时40分钟B.13小时45分钟C.13小时50分钟D.14小时【答案】B,解析:设工作总量为48,甲效率为3,乙效率为4,一个循环周期甲乙共完成工作量3+4=7。
48÷7=6……6,则经过6×2=12小时后剩余工作量6,甲再做1小时完成3,乙还需要做全部完成,故完成这项工作共需要13小时45分钟。
挑选B选项。
2.正负效率交替合作例3.一个水池有一进水管A 和一出水管B,单开A需要4小时把空池注满,单开B需要6小时把一池水放空,依照AB循环,每次各开1个小时,经过量长时间空水池第一次注满?A.19B.17C.18D.20【答案】A,解析:设工作总量为12。
公考行测数量关系-工程问题
1.甲、乙两辆卡车运输一批货物,其中甲车每次能运输35箱货物。
甲车先满载运输2次后,乙车加入并与甲车共同满载运输10次完成任务,此时乙车比甲车多运输10箱货物。
问如果乙车单独执行整个运输任务且每次都尽量装满,最后一次运多少箱货物?由题意可知,甲车前两次共运输箱货物,后乙车加入后,共同满载10次完成任务,此时乙车比甲车多运输10箱货物,因此可得,解得箱货物,该批货物总量为,,即全部由乙车运输,最后一次运33箱货物。
2.A、B、C三辆卡车一起运输1次,正好能运完一集装箱的某种货物。
现三辆卡车一起执行该种货物共40集装箱的运输任务,A运7次、B运5次、C运4次,正好运完5集装箱的量。
此时C车休息,而A、B车各运了21次,又完成了12集装箱的量。
问如果此后换为A、C 两车同时运输,至少还需要各运多少次才能运完剩余的该种货物?根据题意列方程:A+B+C=1……①,7A+5B+4C=5……②,21A+21B =12……③,由①和②可得,2A=C。
所以方程③可化为7A+7C+7B+14B =12。
所以得到。
再代入①得到。
所以。
3.甲、乙、丙三个工厂承接A和B两批完全相同的加工订单,如果甲厂和乙厂负责A订单而丙厂负责B订单,则丙厂要比甲厂和乙厂晚15天完成;如在上述条件下甲厂分配1/3的生产资源或者乙厂分配1/5的生产资源用于B订单的生产,则A、B两个订单同时完成。
问如果合并三个工厂的生产能力,第几天可以完成A订单的生产任务:根据条件,在甲分配的生产资源或乙分配的生产资源给丙后,用于两个订单的工作效率相同,可列式:;。
化简后得。
设甲的工作效率为3,乙的工作效率为5,则丙的工作效率为6。
设开始A、B两订单的完工时间分别为天、天,则根据A、B订单量相等,可列式:,解得。
则A的订单量为。
那么三厂合并合力加工A订单,需要:天,即第26天可以完成A订单。
4.甲、乙、丙三村共建一项水利工程,原计划三村派出的劳动力之比为8:5:7,因丙村劳动力紧张,经协调,丙村少出的劳动力由甲、乙两村分担,相应的工钱由丙村承担。
行测数学运算:工程问题
行测数学运算:工程问题核心提示熟练掌握设“1”思想、深刻领悟比例原则,是工程问题解题的关键。
【例1】(陕西2008-16)一项工程,工作效率提高1/4,完成这项工程的时间将由原来的10小时缩短到几小时?()A. 4B. 8C. 12D. 16[答案]B[解析]假设原来工作效率为4,工作总量应该为4×10=40,工作效率提高1/4到5,时间缩短到40÷5=8。
【例2】(广东2008-6)一项任务甲做要半小时完成,乙做要45分钟完成,两人合作需要多少分钟完成?()A. 12B. 15C. 18D. 20[答案]C[解析]假设工作总量为90,则甲、乙工作效率分别为3、2,合作需要90÷(2+3)=18(分钟)。
【例3】(广东2005下-15)一批木材全部用来加工桌子可以做30张,全部用来加工床可以做15张。
现在加工桌子、椅子和床各2张,恰好用去全部木材的1/4。
剩下的木材全部用来做椅子,还可以做多少张?()A. 40张B. 30张C. 25张D. 5张[答案]B[解析]设木材总量为60单位,则每张桌子需2单位木材,每张床需4单位木材。
又桌子、椅子和床各2张,用去15单位,所以每张椅子需1.5单位木材。
此时还剩余木材45单位,可再生产椅子30张。
【例4】(山东2009-119)某工程项目由甲项目公司单独做需4天完成,由乙项目公司单独做需6天才能完成,甲、乙、丙三个公司共同做2天就可以完成,现因交工日期在即,需多公司合作,但甲公司因故退出,则由乙、丙公司合作完成共需多少天? ()A. 3B. 4C. 5D. 6[答案]B[解析]假设工程总量为“12”,由题意易知:甲的效率为12÷4=3,乙的效率为12÷6=2,甲、乙、丙的效率和为12÷2=6,从而我们知道丙的效率为6-3-2=1。
因此,乙、丙合作完成需要12÷(2+1)=4(天)。
【例5】(河北选调2009-60)甲、乙两队合作收割一块稻田,7小时可以完成。
公务员行测考试工程问题解析
公务员行测考试工程问题解析在公职考试中,行测数量关系部分有时会触及一类题型田鸡跳井问题,各位考生在遇到此类型的题目时,对于题目的解题问题不大,但是在解题进程中依照固有的思维方式以及传统的解题方法去处理,下面作者给大家带来关于公务员行测考试工程问题解析。
公务员行测考试工程问题解析例1.现有一口高10米的井,有一只田鸡坐落于井底,田鸡每次跳的高度为5米,由于井壁比较光滑,田鸡每跳5米下滑3米,这只田鸡跳几次能跳出此井?A.3B.5C.6D.4【答案】D。
解析:分析此题中田鸡从井底向上做周期运动,一个周期上跳下滑1次,一个周期向上跳2米,跳出井口时,它是在上跳的进程中,运算时应预留5米,田鸡到达预留高度需要2.5(向上取整为3)3个周期。
那么此田鸡跳出井口需要4次,因此挑选D选项。
【总结】1.题型特点:周期性运动,一个周期内效率值有正有负。
2.解题方法:(1)找到周期(最小循环周期)内的周期值,周期峰值。
(2)运算总次数总次数=周期所用次数+周期峰值所用次数例2.一水池有甲和乙两根进水管,丙一根排水管。
空池时,单开甲水管,5小时可将水池注满;单开乙水管,6小时可将水池注满;满池水时单开乙管,4小时可排空水池。
如果按甲、乙、丙、甲、乙、丙……的顺序轮番各开1小时,要将水池注满需要多少小时?A.19B.19.6C.12.6D.18.6【答案】B。
解析:此题可设工作总量为60,则甲管的注水效率为12,乙管的注水效率为10,丙管的出水效率为15。
一个循环周期的时间为3,一个循环周期的效率和为12+10-15=7,一个周期的周期峰值是10+12=22,除一个周期峰值外,剩余的工作量需要,即向上取整6个完全的循环周期,题干中所求为完成这项工作,所需要的时间即为一个周期的工作时间乘以完全的周期数,剩余工作量为60-6×7=18,剩余的工作量甲先开小时注入12,余下6的工作量轮到乙水管注入,乙一小时的工作效率为10,注入6的工作量需要0.6,总共所需的时间合计为3×6+1+0.6=19.6h,故而挑选B选项。
最新公务员考试行测:工程问题(一)
最新公务员行测:工程问题(一)华图教育工程问题历来是数学运算中的重点题型,几乎每次考试都会有考到工程问题。
工程问题在考试中一般难易程度居中,但是不排除个别时候会出难度特别大的题,因此,准备工程问题的时候,各位考生可以根据自己的实际情况掌握不同程度的工程问题即可,最起码保证简单常规的工程问题能很快做出来。
工程问题最核心的公式就是:工程总量=工作效率×工作时间,当多个主体同时合作的时候,那么工作效率就可以取他们的效率之和。
在工程问题中,不仅仅要考察最基本的公式,更多的时候就考察赋值法,因为不同的题,我们需要给不同的量赋值,因此,对于工程问题,考生需要重点掌握的就是哪些题型给哪些量赋值。
这次我们来看一类最经典的工程问题,这类工程问题只在题干中告诉了时间,其余量都没有告诉。
当碰到这样一类题的时候,我们就需要给工作总量赋值,而且为了计算方便,我们给工作总量赋值的技巧就是时间的公倍数,这样就可以避免计算过程中的分数运算,从而提高计算速度。
【例1】(2013年北京)一项工程如果交给甲乙两队共同施工,8天能完成;如果交给甲丙两队共同施工,10天能完成;如果交给甲丁两队共同施工,15天能完成;如果交给乙丙丁三队共同施工,6天就可以完成。
如果甲队独立施工,需要多少天完成?()A. 16B. 20C. 24D. 28【解析】题目中只告诉了不同主体合作完成该工程的时间,其余量都没有告诉,因此我们需要给总量赋值,赋值为8、10、15、6的公倍数120.根据效率=工作总量÷时间,可得主体效率之间的关系为:甲+乙=15,甲+丙=12,甲+丁=8,乙+丙+丁=20,解得甲=5,那么甲单独施工完成工程的时间=120÷5=24,因此,本题答案为C。
【例2】(2014年国考)甲、乙两个工程队共同完成A和B两个项目。
已知甲从单独完成A项目需13天,单独完成B项目需7天;乙队单独完成A项目需11天,单独完成B项目需9天。
2023国考四川公务员考试行测题解题技巧810
2023国考四川公务员考试行测题解题技巧(8.10)国考公务员考试行测包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。
[行测题]一、工程问题(1)当题干中给出干同一工程的不同时间,可把该工程的工作总量设为所有时间的最小公倍数,进而得出各自的效率。
例L 一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需要15天。
甲、乙、丙三人共同完成该工程需多少天?()A. 8 天B. 9 天C. 10 天D. 12 天【答案】C解析:此题给了干同一工程的不同时间,可把工作总量设为30、18和15 的最小公倍数90。
则容易得到甲的效率为3,乙的效率为2,丙的效率为4,故他们的和效率为3+2+4=9O因此需要90÷9=10天。
例2.完成某项工程,甲需要18天,乙需要15天,丙需要12天,丁需要9 天。
先按甲、乙、丙、丁的顺序轮班工作,每次轮班的工作时间为一天,则完成该项工作当天是()在轮班。
A.甲B.乙C.丙D. T【答案】A解析:此题给了干同一工程的不同时间,可把工作总量设为18、15、12、9 的最小公倍数180。
则容易得到甲的效率为10,乙的效率为12,丙的效率为15, 丁的效率为20.故他们一个循环的工作量为10+12+15+20=57。
接下来计算180÷ 57=3-9,可知完整循环3次之后还剩下9的工作量,由甲来干,一天能干完。
故答案选择A。
(2)当题干中给出效率之比(有时会给出各队的效率关系,通过转化得出效率之比),可把各自的效率直接设为最简比中所占的份数。
例L甲、乙、丙三个工程队完成一项工作的效率之比为2:3:4。
某项工程,乙先做了1/3后,余下的交由甲与丙合作完成,3天后完成。
问完成此工程共用了多少天?()A. 6B. 7C. 8D.9【答案】C解析:此题给了效率之比,因此可把各自的效率直接设为最简比中所占的份数。
甲的效率设为2,乙的效率设为3,丙的效率设为4。
国家公务员行政数学运算之工程问题
国家公务员行政数学运算之工程问题一般情况下,工程问题是公务员考试的必考题型,此类题型虽无难点,但需要考生掌握一些最基本的概念及数量关系式。
1.关键概念(1)工作量:工作量指的是工作的多少,它可以是全部工作量,一般用数“1”表示,也可以是部分工程量,常用分数表示。
例如,工程的一半表示成,工程的三分之一表示为。
(2)工作效率:工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。
单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。
(3)工作效率的单位:工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。
但在不引起误会的情况下,一般不写工作效率的单位。
2.关键关系式:(1)工作量=工作效率×工作时间(2)工作效率=工作量÷工作时间(3)工作时间=工作量÷工作效率(40总工作量=各分工作量之和例1一项工作,甲单独做10天完成,乙单独做15天完成。
问:两人合作3天完成工作的几分之几?A.1/2 B.1/3 C.1/5 D.1/6 (2002年A类真题)解析:设工作量为1,甲单独做10天完成,甲每天完成总工作量的1/10,乙单独做15天完成,则乙每天完成总工作量的1/15,甲、乙两人一天共完成总工作量为1/10+1/15=1/6,则3天完成工作的1/2。
例2一个游泳池,甲管放满水需6小时,甲、乙两管同时放水,放满需4小时。
如果只用乙管放水,则放满需:A.8小时B.10小时C.12小时D.14小时(2001年A类真题)解析:设游泳池放满水的工作量为1,甲管放满水需6小时,则甲每小时完成工作量的1/6甲、乙两管同时放水,放满需4小时,则甲乙共同注水,每小时可注游泳池的1/4,则乙每小时注水的量为1/4-1/6=1/12,则如果只用乙管放水,则放满需12小时。
例3一个水池有两个排水管甲和乙,一个进水管丙.若同时开放甲、丙两管,20小时可将满池水排空;若同时开放乙、丙两水管,30小时可将满池水排空,若单独开丙管,60小时可将空池注满.若同时打开甲、乙、丙三水管,要排空水池中的满池水,需几小时?解析:工程问题最好采用方程法。
公务员行测:工程问题解题方法及例题详解
公务员⾏测:⼯程问题解题⽅法及例题详解 在⽇常⽣活中,做某⼀件事,制造某种产品,完成某项任务,完成某项⼯程等等,都要涉及到⼯作量、⼯作效率、⼯作时间这三个量,它们之间的基本数量关系是⼯作量=⼯作效率×时间 在数学中,探讨这三个数量之间关系的应⽤题,我们都叫做“⼯程问题” 举⼀个简单例⼦ ⼀件⼯作,甲做10天可完成,⼄做15天可完成.问两⼈合作⼏天可以完成? ⼀件⼯作看成1个整体,因此可以把⼯作量算作1.所谓⼯作效率,就是单位时间内完成的⼯作量,我们⽤的时间单位是“天”,1天就是⼀个单位,再根据基本数量关系式,得到所需时间=⼯作量÷⼯作效率 =6(天) 两⼈合作需要6天 这是⼯程问题中最基本的问题,这⼀讲介绍的许多例⼦都是从这⼀问题发展产⽣的 为了计算整数化(尽可能⽤整数进⾏计算),如第三讲例3和例8所⽤⽅法,把⼯作量多设份额.还是上题,10与15的最⼩公倍数是30.设全部⼯作量为30份.那么甲每天完成3份,⼄每天完成2份.两⼈合作所需天数是30÷(3+ 2)= 6(天) 数计算,就⽅便些∶2.或者说“⼯作量固定,⼯作效率与时间成反⽐例”.甲、⼄⼯作效率的⽐是15∶10=3∶2.当知道了两者⼯作效率之⽐,从⽐例⾓度考虑问题,也 需时间是 因此,在下⾯例题的讲述中,不完全采⽤通常教科书中“把⼯作量设为整体1”的做法,⽽偏重于“整数化”或“从⽐例⾓度出发”,也许会使我们的解题思路更灵活⼀些 ⼀、两个⼈的⼯程问题 标题上说的“两个⼈”,也可以是两个组、两个队等等的两个集体 例1 ⼀件⼯作,甲做9天可以完成,⼄做6天可以完成.现在甲先做了3天,余下的⼯作由⼄继续完成.⼄需要做⼏天可以完成全部⼯作? 答:⼄需要做4天可完成全部⼯作 解⼆:9与6的最⼩公倍数是18.设全部⼯作量是18份。
甲每天完成2份,⼄每天完成3份.⼄完成余下⼯作所需时间是(18- 2 × 3)÷ 3= 4(天) 解三:甲与⼄的⼯作效率之⽐是6∶ 9= 2∶ 3 甲做了3天,相当于⼄做了2天.⼄完成余下⼯作所需时间是6-2=4(天)例2 ⼀件⼯作,甲、⼄两⼈合作30天可以完成,共同做了6天后,甲离开了,由⼄继续做了40天才完成.如果这件⼯作由甲或⼄单独完成各需要多少天? 解:共做了6天后, 原来,甲做 24天,⼄做 24天, 现在,甲做0天,⼄做40=(24+16)天 这说明原来甲24天做的⼯作,可由⼄做16天来代替.因此甲的⼯作效率 如果⼄独做,所需时间是 如果甲独做,所需时间是 答:甲或⼄独做所需时间分别是75天和50天 例3 某⼯程先由甲独做63天,再由⼄单独做28天即可完成;如果由甲、⼄两⼈合作,需48天完成.现在甲先单独做42天,然后再由⼄来单独完成,那么⼄还需要做多少天? 解:先对⽐如下: 甲做63天,⼄做28天; 甲做48天,⼄做48天 就知道甲少做63-48=15(天),⼄要多做48-28=20(天),由此得出甲的 甲先单独做42天,⽐63天少做了63-42=21(天),相当于⼄要做 因此,⼄还要做28+28= 56 (天) 答:⼄还需要做 56天 例4 ⼀件⼯程,甲队单独做10天完成,⼄队单独做30天完成.现在两队合作,其间甲队休息了2天,⼄队休息了8天(不存在两队同⼀天休息)问开始到完⼯共⽤了多少天时间? 解⼀:甲队单独做8天,⼄队单独做2天,共完成⼯作量 余下的⼯作量是两队共同合作的,需要的天数是 2+8+ 1= 11(天) 答:从开始到完⼯共⽤了11天 解⼆:设全部⼯作量为30份.甲每天完成3份,⼄每天完成1份.在甲队单独做8天,⼄队单独做2天之后,还需两队合作(30- 3 × 8- 1× 2)÷(3+1)= 1(天) 解三:甲队做1天相当于⼄队做3天 在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)⼯作量.相当于⼄队要做2×3=6(天)⼄队单独做2天后,还余下(⼄队)6-2=4(天)⼯作量。
公务员考试行测工程问题例题及答案解析
公务员考试行测工程问题例题及答案解析数量关系中的工程问题一直是行测考试中重点的考场题型,接下来,本人为你分享公务员考试行测工程问题例题及答案解析,希望对你有帮助。
公务员考试行测工程问题例题及答案解析公务员考试行测工程问题我们在常规运算的时候一般使用的方法根据题目的类型来确定,比如特值法、比例法以及方程法,那么在一些考试中,其实很多考试都忽视了部分题型的巧算方法,下面专家就带我们来看一道这样的题目。
公务员考试行测工程问题【例题】王师傅打算加工一批零件,如果每天加工20个的话,就会比原计划提前一天完成任务,按照这个效率工作,在工作四天之后,由于技术更新,每天可以多加工5个零件,结果比原计划提前三天完成了任务,问:这批零件共有多少个?A、300B、280C、260D、270公务员考试行测工程问题【例题答案解析】此问题所求的是工作总量,根据我们已知的条件,这个题目不适用特值的办法,所以我们可以考虑使用方程法解题,想要使用方程必然存在等式,我们发现条件中说,如果每天加工20个会比原计划提前一天完成,如果开工四天后提高效率,提前三天完成工作,我们发现这两种办法的总量是一样的,所以我们可以利用这个等量关系来进行列示,需要我们找到的未知量为原计划工作的天数。
所以设原计划这批零件打算a天来完成,所以第一种方式表示出的工作总量为20(a—1)个,第二种方式因为提前了三天,同时按照原来的效率已经工作了4天,所以可以表示工作总量为[80+25(a—7)]个,故可列出等式20(a—1)=80+25(a—7)解这个方程可以求出a=15天,之后从两种方法中任意选一种方法来表示工作总量,以第一种为例20×(15—1)=280个,所以答案为B。
上面讲的是常规办法遇到这类题目时的思路,那么可以发现这种方法在解题的时候虽然相对来说比较容易想,但是列式子和运算相对也比较耗时,那么为了更好,更快的完成这类题目,我们可以利用题目中给我们数据的特点来解决。
行测数量关系工程问题:工作你得会做会算
⾏测数量关系⼯程问题:⼯作你得会做会算 今天⼩编为⼤家提供⾏测数量关系⼯程问题:⼯作你得会做会算,这类问题可以通过运⽤正确的特值可以使⼯程合作问题的求解变得更加简单。
⾏测数量关系⼯程问题:⼯作你得会做会算 1、当题⽬中给出完成同⼀⼯程的多个时间--设多个时间的最⼩公倍数为⼯作总量。
例1.⼀项⼯程,甲⼀⼈做完需30天,甲、⼄合作完成需18天,⼄、丙合作完成需15天,甲、⼄、丙三⼈共同完成该⼯程需:A.10天B.12天C.8天D.9天 【答案】A。
解析:⽅法⼀:题中给出完成同⼀⼯程的三个时间,故可设30、18、15的最⼩公倍数为⼯作总量90。
甲的⼯作效率为90÷30=3;甲、⼄合作的⼯作效率为90÷18=5,则⼄的⼯作效率为5-3=2;⼄、丙合作的⼯作效率为90÷15=6,则丙的⼯作效率为6-2=4。
知甲、⼄、丙三⼈合作的⼯作效率为3+2+4=9,则甲、⼄、丙三⼈共同完成该⼯程需90÷9=10天,故A选项。
⽅法⼆:题中给出甲、⼄丙完成同⼀⼯程的时间,故可设30、15的最⼩公倍数为⼯作总量30,甲的⼯作效率为30÷30=1,⼄、丙合作的⼯作效率为,30÷15=2,知甲、⼄、丙三⼈合作的⼯作效率为1+2=3,则甲、⼄、丙三⼈共同完成该⼯程需30÷3=10天,故A选项。
2、已知效率间的⽐例关系--设最简⽐的数值为效率值 例2.甲、⼄、丙三个⼯程队效率⽐为6:5:4,现将A、B两项⼯作量相同的⼯程交给这三个⼯程队,甲队负责 A ⼯程,⼄队负责 B ⼯程,丙队参与 A ⼯程若⼲天后转⽽参与 B ⼯程。
两项⼯程同时开⼯,耗时 16 天同时结束。
问丙队在 A ⼯程中参与施⼯多少天?A.6B.7C.8D.9 【答案】A。
解析:题中给出效率间的⽐例关系,故设甲、⼄、丙的效率分别为 6、5、4。
⽅法⼀:丙队参与 A ⼯程 x 天。
根据 A、B ⼯作量相同列⽅程,6×16+4x=5×16+4×(16-x),解得 x=6,故选 A选项。
公考工程问题最全解读
工程问题是历年多省公务员联合考试、国家公务员考试的重点,是近年来最重要、最常考的重点题型之一,需要学生重点掌握。
然而,由于工程问题解题中往往遇到的不是具体的数值,数量关系隐蔽,从而使很多考生解题不得要领。
工程问题围绕着一个公式出题:工程量=工作效率×工作时间。
其中,工作效率是解决工程问题的突破口;而工作总量的具体数值往往对于解题没有影响,所以在解题中常用的方法是赋值法(赋整数):1、已知工作时间,令工作量为时间的最小公倍数;2、已知工作效率的比例关系,则令工作效率为整数。
另外如果赋值法解决不了的问题,则采用方程法。
下面通过真题进一步说明:【例题1】(联考421-2012)一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需15天,甲、乙、丙三人共同完成该工程需:A.10天B.12天C.8天D.9天【解析】A。
已知甲乙的工作时间,假设工作量为时间的最小公倍数90,那么甲效率=3,甲效率+乙效率=5,乙效率+丙效率=6,即甲效率=3,乙效率=2,丙效率=4,所以三人合作所需时间为90÷(3+2+4)=10。
因此答案选择A选项。
【例题2】(联考918-2010)一项工程有甲、乙、丙三个工程队共同完成需要15天。
甲队与乙队的工作效率相同,丙队3天的工作量与乙队4天的工作量相当。
三队同时开工2天后,丙队被调往另一工地,甲、乙两队留下继续工作。
那么开工22天后,这项工程()A.已经完工B.余下的量需甲乙两队共同工作1天C.余下的量需乙丙两队共同工作1天D.余下的量需甲乙丙三队共同工作1天【解析】D。
由条件知乙与丙的工作效率比是3:4,所以设甲、乙、丙的工作效率比是3:3:4,并设工程总量为(3+3+4)×15=150,则开工22天后共完成工作量为10×2+6×20=140,所以剩下的工作量为10,结合选项只能选择D选项。
【例题3】(北京-2007)甲、乙二人2小时共加工54个零件,甲加工3小时的零件比乙加工4小时的零件还多4个。
国家公务员考试行测备考:两种工程问题解题方法
工程问题的核心公式是:工作量=工作效率×时间
一、单人工程问题
工程问题首先是一个研究工作量、工作效率、工作时间三量关系的问题。单人工程问题不存在合作这种情况,熟悉核心公式与三量间的比例关系尤为重要。
(一量与工作效率成正比”这一比例关系。工程问题经常需要用到下面这些根据核心公式得出的结论。
【例题2】三名工人师傅张强、李辉和王充分别加工200个零件,他们同时开工。当李辉加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。当张强加工200个零件的任务全部完成时,王充还有()个零件没有加工。
A.9 B.15 C.10 D.25
中公解析:张强完成160个时,王充完成了200-48=152个,二者效率比为160∶152=20∶19。时间一定时,工作量之比等于效率之比,故当张强加工200个时,王充加工了190个零件,还有10个没加工。应选择C。
行测数量关系——工程问题交替工作问题
行测数量关系——工程问题交替工作问题【答题妙招】解决若干人轮流交替完成一份工作的题目,思路如下:(1)明确工作总量、每个人的效率;(2)找到作业周期,明确周期内的工作量、工作时间;(3)计算所有工作需要多少个周期,剩下多少个工作量(不足一周期的);(4)明确剩下的工作量需要如何分配。
【例1】一条隧道,甲单独挖要20天完成,乙单独挖要10天完成。
如果甲先挖1天,然后乙接替甲挖1天,再有甲接替乙挖1天……,两人如此交替工作,那么,挖完这条隧道共用多少天()A.13B.14C.15D.16【答案】B。
交替工作问题,只知道时间,(由设最小公倍数法)则设工作总量为20,则甲乙的工作效率分别为1、2,则由题意周期为2天,周期工作量为甲乙之和1+2=3,则20/3=6余2,即完成6个周期之后还余2个工作量(3),则第13天甲做1个工作量还剩1个工作量,则第十四天乙才能将工程做完。
【例2】单独完成某项工作,甲需要16小时,乙需要12小时,如果按照甲乙甲乙的顺序轮流工作,每次一小时,那么完成这项工作需要多长时间()A.13小时40分钟B.13小时45分钟C.13小时50分钟D.14小时【答案】B。
交替工作问题,只知道时间,则设工作总量为48,则甲乙的工作效率分别为3和4,2小时为一个周期,一个周期可以完成7个工作量,则需要48÷7=6……6,即需要做6个周期,还剩下6个工作量,6个周期是12小时,则第13小时是甲来做,甲能做3个,还剩下3个工作量,第14小时乙来做,3÷4=45分钟,答案选B。
【例3】一个水池有一进水管A和一出水管B,单开A需要4小时把空池注满,单开B需要6小时把一池水放空,按照AB循环,每次各开1个小时,经过多长时间空水池第一次注满()A.18B.20C.19D.17【答案】C。
交替工作问题,设工作总量为12,则P A=3,P B=-2,以AB各开1小时为一个周期,一个周期内完成的工作量为3-2=1,所用时间为2个小时,经过若干个整数个周期,在最后一个周期肯定是在注水,那么此时可能已经注满不需要进行之后的周期了,而这里的临界值为3,经过n个周期最后一个周期不需要再循环则有12-1×n≤3,有n≥9,n最小取为9,最后一个循环需完成工作量为12-9=3,则只需要A管工作1个小时即可,则共用时间为2×9+1=19个小时。
行测-工程问题全部秒杀
工程问题工程问题是公务员考试的热点题型之一,在历年公考中频频出现,公务员考试中占据很重要的位置,通过对历年经典真题的研读以及45道实战练习题,大家可以通杀所有工程问题。
一、工程问题本质:工程问题,是将一般的工作问题分数化,换句话说就是研究工作总量、工作效率、工作时间三者之间的关系问题。
二、常用数量关系式为:工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率三、核心思维:在解答具体工程问题的时候,往往以工作总量一定作为解题的突破口,利用列方程和比例法等方法综合进行求解,其中工作总量既可以是某一具体的数值,也可以是特值“1”。
四、核心要点:方程问题,用比例不用方程,用份数不用分数。
五、题型分类单人完成工程问题 全程合作问题 分阶段工程问题 轮流合作型 水管问题 时间效率比例转化工程问题【灰兔-题目一】一项工程,工作效率提高1/4,完成这项工程的时间将由原来的10小时缩短成几小时?(陕西2008-16)A.4B. 8C.12D.16【灰兔-正确答案】【灰兔-思路点拨】【灰兔-题目二】一项工程原计划需要用20天完成,实际只用了16天,工作效率提高了()%(江苏2007)A.20B.25C.50D.60【灰兔-正确答案】【灰兔-思路点拨】【灰兔-题目三】某蓄水池有一进水口A和一个出水口B,池中无水时,打开A管关闭B口,加满整个蓄水池需要2小时;池中满水时,打开B口关闭A口,放干池中水需要1时30分,现在池中有总量1/3水,问同时打开AB两口,需要多长时间讲蓄水池的水放干?(山东2012)A.90分钟B.100分钟C.110分钟D.120分钟【灰兔-正确答案】【灰兔-思路点拨】【灰兔-实战四】加工一批零件,原计划每天加工15个,若干天可以完成。
当完成加工任务的60%时,采用新技术,效率提高20%。
结果,完成任务的时间提前10天,这批零件共有几个?( )A. 1500B. 2250C. 1800D. 2700【灰兔-正确答案】【灰兔-思路点拨】【灰兔-题目五】某工程项目由甲项目公司单独做需要4天完成,由乙项目公司单独做需要6天才能完成,甲乙丙三个公司共同做了2天就可以完成,现因交工日期在即,许多公司合作,但甲公司因故退出,则有乙丙公司合作完成此项目共需要多少天?(山东2009-119)A.3B. 4C.5D.6【灰兔-正确答案】【灰兔-思路点拨】【灰兔-题目六】甲、乙、丙三个工程队的效率比为6:5:4,现将A、B 两项工作量相同的工程交给这三个工程队,甲队负责A 工程,乙队负责B 工程,丙队参与A 工程若干天后转而参与B 工程。
公务员工程问题20道及答案
公务员工程问题20道及答案在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是工作量=工作效率×时间在数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”举一个简单例子一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,再根据基本数量关系式,得到所需时间=工作量÷工作效率=6(天)两人合作需要6天这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的为了计算整数化(尽可能用整数进行计算),如第三讲例3和例8所用方法,把工作量多设份额.还是上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是30÷(3+ 2)= 6(天)数计算,就方便些∶2.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也需时间是因此,在下面例题的讲述中,不完全采用通常教科书中“把工作量设为整体1”的做法,而偏重于“整数化”或“从比例角度出发”,也许会使我们的解题思路更灵活一些一、两个人的工程问题标题上说的“两个人”,也可以是两个组、两个队等等的两个集体例1 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?答:乙需要做4天可完成全部工作解二:9与6的最小公倍数是18.设全部工作量是18份。
甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是(18- 2 ×3)÷3= 4(天)解三:甲与乙的工作效率之比是6∶9= 2∶3甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天)例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?解:共做了6天后,原来,甲做24天,乙做24天,现在,甲做0天,乙做40=(24+16)天这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率如果乙独做,所需时间是如果甲独做,所需时间是答:甲或乙独做所需时间分别是75天和50天例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?解:先对比如下:甲做63天,乙做28天;甲做48天,乙做48天就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做因此,乙还要做28+28= 56 (天)答:乙还需要做56天例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息)问开始到完工共用了多少天时间?解一:甲队单独做8天,乙队单独做2天,共完成工作量余下的工作量是两队共同合作的,需要的天数是2+8+ 1= 11(天)答:从开始到完工共用了11天解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作(30- 3 ×8- 1×2)÷(3+1)= 1(天)解三:甲队做1天相当于乙队做3天在甲队单独做8天后,还余下(甲队)10-8= 2(天)工作量.相当于乙队要做2×3=6(天)乙队单独做2天后,还余下(乙队)6-2=4(天)工作量。
工程问题练习题及答案解析
工程问题练习题及答案解析答案解析重庆公务员考试《行政职业能力测验》主要测查从事公务员职业必须具备的基本素质和潜在能力,通过测试选拔出能够胜任公共管理工作的优秀人才。
测试内容包括言语理解与数量关系、逻辑判断推理能力、资料分析和常识应用能力。
更具体的,我们来看看重庆公务员考试课程是如何设置教学的。
点击这里可以进行 >>>重庆地区在线咨询。
1. 某行政村计划15天完成春播任务1500亩,播种5天后,由于更新机械,工作效率提高25%,问这个行政村会提前几天完成这1500亩的春播计划?A. B. C. D.12. 某工厂的一个生产小组,当每个工人在自己的工作岗位上工作时,9小时可以完成一项生产任务。
如果交换工人甲和乙的工作岗位,其他人的工作岗位不变时,可提前1小时完成任务;如果交换工人丙和丁的工作岗位,其他人的工作岗位不变时,也可提前1小时完成任务。
如果同时交换甲和乙、丙和丁的工作岗位,其他人的工作岗位不变,可以提前多少小时完成这项任务?A.1.6B.1.8C.2.0D.2.43. 有20人修筑一条公路,计划15天完成。
动工3天后抽出5人植树,留下的人继续修路。
如果每人工作效率不变,那么修完这段公路实际用多少天?A.16B.17C.18D.194. 单独完成某项工作,甲需要16小时,乙需要12小时,如果按照甲、乙、甲、乙、……的顺序轮流工作,每次1小时,那么完成这项工作需要多长时间?A.13小时40分钟B.13小时45分钟C.13小时50分钟D.14小时5. 甲、乙两车运一堆货物。
若单独运,则甲车?a href=“http:///fanwen/shuoshuodaquan/”target=“_blank” class=“keylink”>说拇问纫页瞪?次;如果两车合运,那么各运6次就能运完,甲车单独运完这堆货物需要多少次?A.B.10 C.1D.156. 某计算机厂要在规定的时间内生产一批计算机,如果每天生产140台,可以提前3天完成;如果每天生产120台,就要再生产3天才能完成,问规定完成的时间是多少天?更多重庆公务员考试真题 A.30 B.3C.3 D.397. 甲、乙两单位合做一项工程,8天可以完成。
行测数学运算技巧:工程问题
行测数学运算技巧:工程问题例1:手工制作一批元宵节花灯,甲、乙、丙三位师傅单独做,分别需要40小时、48小时、60小时完成。
如果三位师傅共同制作4小时后,剩余任务由乙、丙一起完成,则乙在整个花灯制作过程中所投入的时间是:A.24小时B.25小时C.26小时D.28小时【解析】A。
根据题目知道乙和丙从头到尾一直在干活,且用时一样,所以这个题目可以看作是甲干了一部分,乙和丙共同完成了剩下的部分。
因为甲40h 的量=丙60h的量,所以甲干了4h相当于干了丙6h的量,那么这个工程剩余的部分相当于丙54h的量,而这部分由乙和丙共同完成。
完成相同的工作量,乙和丙时间比为48:60=4:5,所以工作量一定时,效率之比为5:4。
因为乙和丙所用时间一样,所以完成的工作量比值也为5:4,9份对应丙54h的工作量,所以5份对应丙30h的工作量,而这份工作量乙只需要24h完成。
所以答案选A。
总结:其实上述题目没用到以前常用的特值法去求解,主要用的是比例法,把时间当作工作总量去分配,这样做会更快捷有效。
例2:一批商品,师傅制作的效率是徒弟的2.5倍,若师徒二人合作加工需要4天完成。
现在徒弟单独加工,工作6天后,由于技术不断熟练,工作效率提高了1/2,剩下的商品师徒合作加工还需要多少天?A.2B.3C.4D.5【解析】A。
师傅和徒弟的效率是5:2的关系,工作量一定时,时间比为2:5,也即师傅2天的工作量相当于徒弟5天的工作量。
徒弟干了6天,相当于徒弟干了1天,并且师傅干了2天的工作量。
又因为师傅和他徒弟共同干4天才能干完工作,所以剩余的工作需要徒弟干三天,并且师傅干两天。
接下来徒弟工作效率提高1/2,所以效率前后比为2:3,时间比值3:2,所以原来徒弟三天工作量,现在只需要两天就干完。
故剩余的工作,师徒合作加工2天就可以完成。
答案选A。
例3:一部门主管带领一名业务骨干和一名新员工加班完成一项紧急任务。
业务骨干的工作效率最高,其3小时工作量相当于主管4小时的工作量,新员工工作效率最低,其4小时的工作量相当于主管3小时的工作量。
行测数学运算16种题型之工程问题
行测数学运算16种题型之工程问题1.由于工程问题解题中遇到的不是具体数量,与学生的习惯性思维相逆,同学们往往感到很抽象,不易理解。
2.比较难的工程问题,其数量关系一般很隐蔽,工作过程也较为复杂,往往会出现多人多次参与工作的情况,数量关系难以梳理清晰。
3.一些较复杂的分数应用题、流水问题、工资分配、周期问题等,其实质也是工程问题,但同学们易受其表面特征所迷惑,难以清晰分析、理解其本质结构特征是工程问题,从而未按工程问题思路解答,误入歧途。
工程问题是从分率的角度研究工作总量、工作时间和工作效率三个量之间的关系,它们有如下关系:工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率。
那我们应该怎样分析工程问题呢?1.深刻理解、正确分析相关概念。
对于工程问题,要深刻理解工作总量、工作时间、工作效率,简称工总、工时、工效。
通常工作总量的具体数值是无关紧要的,一般利用它不变的特点,把它看作单位“1”;工作时间是指完成工作总量所需的时间;工作效率是指单位时间内完成的工作量,即用单位时间内完成工作总量的几分之一或几分之几来表示工作效率。
分析工程问题数量关系时,运用画示意图、线段图等方法,正确分析、弄请题目中哪个量是工作总量、工作时间和工作效率。
2.抓住基本数量关系。
解题时,要抓住工程问题的基本数量关系:工作总量=工作效率×工作时间,灵活地运用这一数量关系提高解题能力。
这是解工程问题的核心数量关系。
3.以工作效率为突破口。
工作效率是解答工程问题的要点,解题时往往要求出一个人一天(或一个小时)的工作量,即工作效率(修路的长度、加工的零件数等)。
如果能直接求出工作效率,再解答其他问题就较容易,如果不能直接求出工作效率,就要仔细分析单独或合作的情况,想方设法求出单独做的工作效率或合作的工作效率。
工程问题中常出现单独做、几人合作或轮流做的情况,分析时要梳理、理顺工作过程,抓住完成工作的几个过程或几种变化,通过对应工作的每一阶段的工作量、工作时间来确定单独做或合作的工作效率。