《切线的判定与性质》专题练习题答案唐圣贤
2020年人教版九年级数学上册24.2.2《切线的判定和性质》课后练习 学生版
2020年人教版九年级数学上册24.2.2《切线的判定和性质》课后练习知识点 1 切线的判定1.下列说法中正确的是( )A.与圆有公共点的直线是圆的切线B.到圆心的距离等于圆的半径的直线是圆的切线C.垂直于圆的半径的直线是圆的切线D.过圆的半径的外端的直线是圆的切线2.如图所示,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为____________.3.如图,A,B是⊙O上的两点,AC是过点A的一条直线,如果∠AOB=120°,那么当∠CAB=________°时,AC才能成为⊙O的切线.4.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为E.求证:直线CE是⊙O的切线.知识点 2 切线的性质5.如图,AB,AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为( )A.25°B.30°C.35°D.40°6.如图所示,AB是⊙O的直径,C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是( )A.15°B.30°C.60°D.75°7.如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径为________.8.如图,C为⊙O外一点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接CB.若⊙O的半径为2,∠ABC=60°,则BC=________.9.如图,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,若∠OPA=40°,求∠ABC的度数.10.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面三个结论:①AD=CD;②BD=BC;③AB=2BC.其中正确结论的个数是( )A.3B.2C.1D.011.如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是________.(结果保留π)12.在周长为26π的⊙O中,CD是⊙O的一条弦,AB是⊙O的切线,且AB∥CD,若AB和CD 之间的距离为18,则弦CD的长为________.13.如图,AB是⊙O的直径,C是⊙O上一点,点D在AB的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,CD=4,求BD的长.14.如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O的直径的长.15.已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF是⊙O的切线,还需要添加的一个条件是(要求写出两种情况):________或者________;(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.。
切线的判定与性质练习题
切线的性质及判定练习题1.已知:Rt△ABC中,∠C=90°,BC=5cm,AC=12cm,以C点为圆心,作半径为R的圆,求:(1)当R为何值时,⊙C和直线AB相离?(2)当R为何值时,⊙C和直线AB相切?(3)当R为何值时,⊙C和直线AB相交?2.已知:如图,P是∠AOB的角平分线OC上一点.PE⊥OA于E.以P点为圆心,PE长为半径作⊙P.求证:⊙P与OB相切.3.已知:如图,Rt△ABC中,∠ACB=90°,以AC为直径的半圆O交AB于F,E是BC的中点.求证:直线EF是半圆O的切线.4、如图4,ΔABC中,AB=AC,以AB为直径作⊙O交BC于D,DE⊥AC于E。
求证:DE是⊙O的切线。
5、如图5,AB是⊙O直径,点C在AB的延长线上,CD与⊙O相切于点D,∠C=20°。
求∠CDA的度数。
3、如图6,AB是⊙O直径,CA与⊙O相切于点A,连接CO交⊙O 于D,CO的延长线交⊙O于E。
连接BE、BD,∠ABD=30°.求∠EBO 和∠C的度数.7、如图7,AB为⊙O直径,PA、PC为⊙O的切线,A、C为切点,∠BAC=30°(1)求∠P大小.(2)AB=2,求PA的长。
8.已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E点,直线EF⊥AC于F.求证:EF与⊙O相切.9.已知:如图,PA切⊙O于A点,PO∥AC,BC是⊙O的直径.请问:直线PB是否与⊙O相切?说明你的理由.10.如图,直线PA 交园O 于A 、E 两点,过点A 作园o 的直径AB ,AC 平分∠PAB 交园o 于点C ,作CD 垂直于PA 点D (1) 求证CD 为园O 的切线 (2) 若DC=4,DA=2求园O 的直径11如图园o 的直径为AB ,直线ED 切园O 于点C ,过 B 作BD 垂直ED 于D 求证∠ABC=∠CBD(2)若将直线ED 向上平移其他条件不变,∠CBD 与哪个角相等。
部编版人教数学九上《24.2.2第2课时 切线的判定和性质 测试题(含答案)》最新精品优秀
A.40°B.50°
C.80°D.100°
2.如图24 2 19所示,⊙O与直线AB相切于点A,BO与⊙O交于点C.若∠BAC=30°,则∠B等于( )
图24 2 19
A.29°B.30°
C.31°D.32°
3.如图24 2 20,△ABC是⊙O的内接三角形,下列选项中,能使过点A的直线EF与⊙O相切于点A的条件是( )
6.如图24 2 23所示,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为3,CD=4,求BD的长.
7.如图24 2 24所示,⊙O的直径AB=12 cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.
图24 2 20
A.∠EAB=∠CB.∠B=90°
C.EF⊥ACD.AC是⊙O的直径
4.如图24 2 21,四边形ABCD内接于⊙O,AB是直径,过点C的切线与AB的延长线交于P点.若∠P=40°,则∠D的度数为____.
图24 2 21
5.如图24 2 22,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.求证:直线CE是⊙O的切线.
前言:
该测试题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。以高质量的测试题助力考生查漏补缺,在原有基础上更进一步。
(最新精品测试题)
第2课时 切线的判定和性质
1.如图24 2 18所示,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为 ( )
(1)求证:点P为 的中点;
切线判定与性质练习题
切线的判定、性质练习题知识点梳理:1.切线的性质定理:圆的切线垂直于过切点的直径(遇切点,连半径,得垂直);2.切线的判定定理:经过直径的外.端.,并且垂直..于这条直径的直线是圆的切线.两种题型:(1)“作半径,证垂直”;(2)“作垂线,证半径”即:①通过d=r来证明;②通过垂直来证明1.已知AB是⊙O的直径,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,求证:直线CD为⊙O的切线.2.已知:如图,AB是⊙O的直径,P是⊙O外一点,PA⊥AB,•弦BC∥OP,求证:PC为⊙O的切线.3.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.(1)求证:AC是⊙O的切线;(2)已知AB=10,BC=6,求⊙O的半径r.4.如图,在△ABC中,BA=BC,以AB为直径作半圆⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为点E.求证:DE为⊙O的切线;5.如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D.求证:AC平分BAD6.如图,在Rt△ABC中,∠ACB=900,D是AB边上的一点,以BD为直径的⊙0与边AC 相切于点E,连结DE并延长,与BC的延长线交于点 F .求证:BD = BF(6)证明:连接OE,∵AC是圆的切线,∴OE⊥AC,∵BC⊥AC,∴OE∥BC,∵O是BD的中点,∴OE是△BFD的中位线,∵OE∥BF,∴∠DEO=∠EFB,又∵∠ODE=∠OED,∴∠ODE=∠BFD∴BD=BF;解:(5)如图:连接OC,∵DC切⊙O于C,Array∴AD⊥CD,∴∠ADC=∠OCF=90°,∴AD∥OC,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,即AC平分∠BAD;(4)证明:(如图)∵AB是直径∴BD⊥AD(半圆上的圆周角是直角)∵BA=BC∴∠1=∠2(等腰三角形底边上的高平分顶角)连接OD∵OB=OD∴∠3=∠2∴∠3=∠1∴OD∥BC(内错角相等,两直线平行)∵DE⊥BC∴∠ODE=90°(两直线平行,同旁内角互补)∴DE为⊙o的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线)。
24.2.2 第2课时 切线的判定和性质 人教版数学九年级上册同步练习(含答案)
24.2.2第二课时切线的判定和性质1.下列命题中,真命题是( )A.平分弦的直径垂直于弦B.垂直平分弦的直线平分这条弦所对的弧C.在同圆中,相等的弦所对的弧也相等D.经过半径一端且垂直于这条半径的直线是圆的切线2.如图,点B在⊙A上,点C在⊙A外,以下条件不能判定BC是⊙A切线的是( )A.∠A=50°,∠C=40°B.∠B﹣∠C=∠AC.AB2+BC2=AC2D.⊙A与AC的交点是AC中点3.如图,«Skip Record If...»是⊙O的直径,«Skip Record If...»交⊙O于点«Skip Record If...»,«Skip Record If...»于点«Skip Record If...»,下列说法不正确的是()A.若«Skip Record If...»,则«Skip Record If...»是⊙O的切线B.若«Skip Record If...»,则«Skip Record If...»是⊙O的切线C.若«Skip Record If...»,则«Skip Record If...»是⊙O的切线D.若«Skip Record If...»是⊙O的切线,则«Skip Record If...»4.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连接OD.若∠C=46°,则∠AOD的度数为()A.44°B.88°C.46°D.92°5.如图,菱形ABCD的两边与⊙O分别相切于点A.C,点D在⊙O上,则∠B的度数是( )A.45°B.50°C.60°D.65°6.如图,«Skip Record If...»为⊙O的直径,弦«Skip Record If...»于点E,直线l切⊙O 于点C,延长«Skip Record If...»交l于点F,若«Skip Record If...»,«Skip Record If...»,则«Skip Record If...»的长度为( )A.2B.«Skip Record If...»C.«Skip Record If...»D.47.下面是小石设计的“过圆上一点作圆的切线”的尺规作图的过程.已知:如图1,⊙«Skip Record If...»及⊙«Skip Record If...»上一点«Skip Record If...».求作:直线PN,使得PN与⊙«Skip Record If...»相切.作法:如图2,①作射线OP;②在⊙«Skip Record If...»外取一点Q(点Q不在射线OP上),以Q为圆心,QP为半径作圆,⊙Q与射线OP交于另一点M;③连接MQ并延长交⊙Q于点N;④作直线PN.所以直线PN即为所求作直线.根据小石设计的尺规作图的过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵«Skip Record If...»是⊙«Skip Record If...»的直径,∴«Skip Record If...»=«Skip Record If...»()(填推理的依据).∴«Skip Record If...».又∵«Skip Record If...»是⊙«Skip Record If...»的半径,∴«Skip Record If...»是⊙«Skip Record If...»的切线()(填推理的依据).8.已知:△ABC内接于⊙O,过点A作直线EF.(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况,不需要证明):① 或② ;(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.9.如图,AC是⊙O的直径,OD与⊙O相交于点B,∠DAB=∠ACB.(1)求证:AD是⊙O的切线.(2)若∠ADB=30°,DB=2,求直径AC的长度.10.如图,以等边三角形ABC的BC边为直径画圆,交AC于点D,«Skip Record If...»于点F,连接OF,且«Skip Record If...».(1)求证:DF是«Skip Record If...»的切线;(2)求线段OF的长度.11.如图,AB为«Skip Record If...»的直径,E为«Skip Record If...»上一点,点C为«Skip Record If...»的中点,过点C作直线CD垂直直线AE,垂足为D.(1)求证:DC为«Skip Record If...»的切线;(2)若AB=4,∠CAD=30°,求AC.12.如图,以△ABC的边AB为直径的⊙O交AC边于点D,⊙O的切线DE交BC于E,且点E是BC的中点.(1)求证:BC是⊙O的切线;(2)①当∠BAC= °时,四边形OBED为正方形;②若AB=4,当BC= 时,四边形ODCE是平行四边形.参考答案1.B【分析】根据圆的有关概念和性质、垂径定理进行判断解答.【详解】解:A.平分弦(非直径)的直径垂直于弦,原命题是假命题;B.垂直平分弦的直线平分这条弦所对的弧,是真命题;C.在同圆或等圆中,相等的弦所对的弧也相等,原命题是假命题;D.经过半径外端且垂直于这条半径的直线是圆的切线,原命题是假命题;故选:B.【点拨】本题考查了命题与定理的知识,解题的关键是了解圆的有关概念和性质、垂径定理等知识.2.D【分析】根据切线的判定分别对各个选项进行判断,即可得出结论.【详解】解:A.∵∠A=50°,∠C=40°,∴∠B=180°﹣∠A﹣∠C=90°,∴BC⊥AB,∵点B在⊙A上,∴AB是⊙A的半径,∴BC是⊙A切线;B.∵∠B﹣∠C=∠A,∴∠B=∠A+∠C,∵∠A+∠B+∠C=180°,∴∠B=90°,∴BC⊥AB,∵点B在⊙A上,∴AB是⊙A的半径,∴BC是⊙A切线;C.∵AB2+BC2=AC2,∴△ABC是直角三角形,∠B=90°,∴BC⊥AB,∵点B在⊙A上,∴AB是⊙A的半径,∴BC是⊙A切线;D.∵⊙A与AC的交点是AC中点,∴AB=«Skip Record If...»AC,但不能证出∠B=90°,∴不能判定BC是⊙A切线;故选:D.【点拨】本题考查了切线的判定、勾股定理的逆定理、三角形内角和定理等知识;熟练掌握切线的判定是解题的关键.3.A【分析】根据AB=AC,连接AD,利用圆周角定理以及等腰三角形的性质可以得到点D是BC的中点,OD是△ABC的中位线,OD∥AC,然后由DE⊥AC,得到∠ODE=90°,可以证明DE是⊙O 的切线,可判断B选项正确;若DE是⊙O的切线,同上法倒推可证明AB=AC,可判断D选项正确;根据CD=BD,AO=BO,得到OD是△ABC的中位线,同上可以证明DE是⊙O的切线,可判断C选项正确;若«Skip Record If...»,没有理由可证明DE是⊙O的切线.【详解】解:当AB=AC时,如图:连接AD,∵AB是⊙O的直径,∴AD⊥BC,∴CD=BD,∵AO=BO,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线,所以B选项正确;当DE是⊙O的切线时,如图:连接AD,∵DE是⊙O的切线,∴DE⊥OD,∵DE⊥AC,∴OD∥AC,∴OD是△ABC的中位线,∴CD∥BD,∵AB是⊙O的直径,∴AD⊥BC,∴AD是线段BC的垂直平分线,∴AB=AC,所以D选项正确;当CD=BD时,又AO=BO,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线,所以C选项正确.若«Skip Record If...»,没有理由证明DE是⊙O的切线,所以A选项错误.故选:A.【点拨】本题考查了切线的判定和性质,正确的识别图形是解题的关键.4.B【分析】根据切线的性质得到∠CAB=90°,根据直角三角形的性质求出∠B,根据圆周角定理解答即可.【详解】解:∵AB是⊙O的直径,AC是⊙O的切线,∴∠CAB=90°,∵∠C=46°,∴∠B=90°﹣46°=44°,由圆周角定理得,∠AOD=2∠B=88°,故选B.【点拨】本题主要考查了圆的切线的性质,圆周角定理,解题的关键在于能够熟练掌握相关知识进行求解.5.C【分析】连接OA.OC,由AB,BC与⊙O相切,可得∠BAO=∠BCO=90°,可求∠B+∠AOC=80°,由四边形ABCD为菱形,可得∠B=∠D,,由点D在⊙O上,根据同弧所对圆心角与圆周角∠AOC=2∠D,可得∠B+2∠B =180°求解即可.【详解】解:连接OA.OC,∵AB,BC与⊙O相切,∴OA⊥AB,OC⊥BC,∴∠BAO=∠BCO=90°,∴∠B+∠AOC=360°-∠BAO-∠BCO=180°∵四边形ABCD为菱形,∴∠B=∠D,又∵点D在⊙O上,∴∠AOC=2∠D,∴∠B+2∠B =180°∴∠B=60°.故选:C.【点拨】本题考查圆的切线性质,圆周角定理,菱形的性质,掌握圆的切线性质,圆周角定理,菱形的性质是解题关键.6.B【分析】根据垂径定理求得«Skip Record If...»,AE=DE=2,即可得到∠COD=2∠ABC=45°,则△OED 是等腰直角三角形,得出«Skip Record If...»,根据切线的性质得到BC⊥CF,得到△OCF是等腰直角三角形,进而即可求得CF=OC=OD=«Skip Record If...».【详解】解:∵BC为⊙O的直径,弦AD⊥BC于点E,«Skip Record If...»,«Skip Record If...»,∴«Skip Record If...» AE=DE=2,∴∠COD=2∠ABC=45°,∴△OED是等腰直角三角形,∴OE=ED=2,∴«Skip Record If...»,∵直线l切⊙O于点C,∴BC⊥CF,∴△OCF是等腰直角三角形,∴CF=OC,∵«Skip Record If...»,∴«Skip Record If...»,故选:B.【点拨】本题考查了垂径定理,等弧所对的圆心角和圆周角的关系,切线的性质,勾股定理的应用,求得CF=OC=OD是解题的关键.7.(1)作图见解析;(2)«Skip Record If...»,直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线【分析】(1)根据题意作出图形即可;(2)根据圆周角定理可得∠MPN=90°,根据切线的判定定理即可得结论.【详解】(1)(1)补全图形如下图;(2)证明:∵«Skip Record If...»是⊙«Skip Record If...»的直径,∴«Skip Record If...»=90 «Skip Record If...»(直径所对的圆周角是直角)(填推理的依据).∴«Skip Record If...».又∵«Skip Record If...»是⊙«Skip Record If...»的半径,∴«Skip Record If...»是⊙«Skip Record If...»的切线(经过半径的外端,并且垂直于这条半径的直线是圆的切线)(填推理的依据).故答案为:90,直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【点拨】本题考查了切线的判定及圆周角定理,正确作出图形是解题关键.8.(1)①OA⊥EF;②∠FAC=∠B;(2)见解析;(3)见解析.【分析】(1) 添加条件是:①OA⊥EF或∠FAC=∠B根据切线的判定和圆周角定理推出即可.(2) 作直径AM,连接CM,推出∠M=∠B=∠EAC,求出∠FAC+∠CAM=90°,根据切线的判定推出即可.(3)由同圆的半径相等得到OA=OB,所以点O在AB的垂直平分线上,根据∠FAC=∠B,∠BAC=∠FAC,等量代换得到∠BAC=∠B,所以点C在AB的垂直平分线上,得到OC垂直平分AB.【详解】(1)①OA⊥EF②∠FAC=∠B,理由是:①∵OA⊥EF,OA是半径,∴EF是⊙O切线,②∵AB是⊙0直径,∴∠C=90°,∴∠B+∠BAC=90°,∵∠FAC=∠B,∴∠BAC+∠FAC=90°,∴OA⊥EF,∵OA是半径,∴EF是⊙O切线,故答案为:OA⊥EF或∠FAC=∠B,(2)作直径AM,连接CM,即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠FAC=∠B,∴∠FAC=∠M,∵AM是⊙O的直径,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠FAC+∠CAM=90°,∴EF⊥AM,∵OA是半径,∴EF是⊙O的切线.(3)∵OA=OB,∴点O在AB的垂直平分线上,∵∠FAC=∠B,∠BAC=∠FAC,∴∠BAC=∠B,∴点C在AB的垂直平分线上,∴OC垂直平分AB,∴OC⊥AB.【点拨】本题考查了切线的判定,圆周角定理,三角形的内角和定理等知识点,注意:经过半径的外端且垂直于半径的直线是圆的切线,直径所对的圆周角是直角.9.(1)见解析;(2)AC=4.【分析】(1)根据«Skip Record If...»和«Skip Record If...»证明«Skip Record If...»,再根据经过半径外端点并且垂直于这条半径的直线是圆的切线来判定;(2)根据(1)中的结论和∠ADB=30°来说明在«Skip Record If...»中,直角边OA等于斜边OD的一半,又因为OA=OB,所以OA=OB=DB=2,所以AC=2OA=4.【详解】(1)证明:∵AC是⊙O的直径,∴«Skip Record If...»,∴«Skip Record If...»,又∵«Skip Record If...»,∴«Skip Record If...»,即«Skip Record If...»,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)解:由(1)可知«Skip Record If...»,∵«Skip Record If...»,∴«Skip Record If...»,∵«Skip Record If...»,«Skip Record If...»,∴«Skip Record If...»,∴«Skip Record If...».【点拨】这道题考察的是切线的判定和30°所对直角边是斜边一半的概念.对圆相关概念、性质,以及特殊直角三角形性质熟练掌握是解题的关键.10.(1)见解析;(2)«Skip Record If...».【分析】(1)连接OD,先说明«Skip Record If...»是等边三角形得到«Skip Record If...»,说明«Skip Record If...»,进而得到«Skip Record If...»即可证明;(2)根据三角形中位线的判定与性质、直角三角形的性质得到«Skip Record If...»,最后运用勾股定理解答即可.【详解】(1)证明:连接OD∵«Skip Record If...»是等边三角形∴«Skip Record If...»∵«Skip Record If...»∴«Skip Record If...»是等边三角形∴«Skip Record If...»∴OD//AB∵«Skip Record If...»∴«Skip Record If...»∴«Skip Record If...»∴DF是«Skip Record If...»的切线;(2)∵OD//AB,«Skip Record If...»∴OD为«Skip Record If...»的中位线∴«Skip Record If...»∵«Skip Record If...»,«Skip Record If...»∴«Skip Record If...»∴«Skip Record If...»由勾股定理,得:«Skip Record If...»∴在«Skip Record If...»中,«Skip Record If...».【点拨】本题主要考查了圆的切线的证明、三角形中位线的判定与性质、勾股定理等知识点,灵活运用相关知识成为解答本题的关键.11.(1)见解析;(2)«Skip Record If...».【分析】(1)利用在同一个圆中等弧对等角得出∠BAC=∠CAD,根据等腰三角形的性质、等量代换以及平行线的判定得到AD∥OC,再根据垂线的性质可以证明出OC⊥DC,根据切线的判定即可得出结论;(2)求«Skip Record If...»可以放在«Skip Record If...»中,结合(1)的结论以及利用勾股定理求解即可.【详解】(1)连接OC,则:∵点C为«Skip Record If...»的中点∴«Skip Record If...»∴∠BAC=∠CAD∴OA=OC∴∠BAC=∠OCA∴∠CAD=∠OCA∴AD∥OC∵AD⊥DC∴∠ADC=90°∴∠OCD=90°∴OC⊥DC又OC是«Skip Record If...»的半径∴DC为«Skip Record If...»的切线;(2)过点«Skip Record If...»作«Skip Record If...»的垂线交于点«Skip Record If...»,«Skip Record If...»,«Skip Record If...»为等腰三角形,«Skip Record If...»,«Skip Record If...»AB=4,∠CAD=30°,«Skip Record If...»,由(1)知«Skip Record If...»,«Skip Record If...»,在«Skip Record If...»中,«Skip Record If...»,«Skip Record If...»«Skip Record If...»【点拨】本题考查了圆的切线、等弧对等角、平行线的判定及性质、勾股定理、等腰三角形的判定及性质,解题的关键是掌握相关知识点、添加适当辅助线进行解答.12.(1)见解析;(2)①45;②4.【分析】(1)连接OD.OE,如图1所示,然后证明△ODE≌△OBE,从而得到OB⊥BC即可;(2)①连接BD.OD,当∠BAC=45°,△ABC是等腰直角三角形,然后得到DE为△ABC的中位线,证得∠DOB=∠OBE=∠ODE=90°,根据OD=OB即可求证;②连接OE,当BC=4,E是BC的中点,则有CE=OD,只需证明CE∥OD即可【详解】解:(1)证明:连接OD.OE,如图1所示:∵点O为AB的中点,点E为BC的中点,∴OE为△ABC的中位线,∴OE∥AC,∴∠DOE=∠ODA,∠BOE=∠A,∵OA=OD,∴∠A=∠ODA,∴∠DOE=∠BOE,在△ODE和△OBE中,«Skip Record If...»∴△ODE≌△OBE(SAS),∴∠ODE=∠OBE,∵DE是⊙O的切线,∴∠ODE=∠OBE=90°,∴OB⊥BC,∴BC是⊙O的切线;(2)解:①当∠BAC=45°时,四边形OBED是正方形,理由如下:如图2,连接BD.OD,∵AB是⊙O的直径,∴∠ADB=90°,∴BD⊥AC,由(1)得:OB⊥BC,∴∠ABC=90°,∵∠BAC=45°,∴△ABC是等腰直角三角形,∴AB=BC,∵BD⊥AC,∴AD=CD,∵E为BC的中点,∴DE为△ABC的中位线,∴DE∥AB,∵DE为⊙O的切线,∴OD⊥DE,∴OD⊥AB,∴∠DOB=∠OBE=∠ODE=90°,∴四边形OBED是矩形,∵OD=OB,∴四边形OBED为正方形,故答案为:45;②当BC=4时,四边形ODCE是平行四边形,理由如下:如图3,∵AB=4,BC=4,∴OD=OA=2,AB=BC,∴∠A=∠ODA,∠A=∠C,∴∠ODA=∠C,∴OD∥CE,∵点E是BC的中点,∴CE=2,∴OD=CE,∴四边形ODCE是平行四边形,故答案为:4.【点拨】本题主要考查了圆的性质,圆切线的性质与判定,等腰直角三角形的性质,三角形中位线定理,平行四边形的判定,正方形的判定等等,解题的关键在于能够熟练掌握相关知识进行求解.。
切线的判定与性质及答案
圆的切线的判定与性质1.(2014•三明)已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.2.(2014•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.3.(2014•长沙)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.4.(2014•咸宁)如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AD⊥CD于点D.(1)求证:AC平分∠DAB;(2)若点E为的中点,AD=,AC=8,求AB和CE的长.5.(2014•潍坊)如图,在梯形ABCD中,AD∥BC,∠B=90°,以AB为直径作⊙O,恰与另一腰CD相切于点E,连接OD、OC、BE.(1)求证:OD∥BE;(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长.6.(2014•常德)如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线.(2)当OA=3,AE=4时,求BC的长度.7.(2014•宁夏)在等边△ABC中,以BC为直径的⊙O与AB交于点D,DE⊥AC,垂足为点E.(1)求证:DE为⊙O的切线;(2)计算.8.(2014•新疆)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.9.(2014•宜宾)如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若CF=5,cos∠A=,求BE的长.10.(2014•营口)如图,在⊙O中,直径AB平分弦CD,AB与CD相交于点E,连接AC、BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线.(2)若AC=4,tan∠ACD=,求⊙O的半径.11.(2014•梅州)如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C.(1)求证:AB与⊙O相切;(2)若∠AOB=120°,AB=4,求⊙O的面积.12.(2014•铜仁)如图所示,△ABC内接于⊙O,AB是⊙O的直径,D是AB延长线上一点,连接DC,且AC=DC,BC=BD.(2)作CD的平行线AE交⊙O于点E,已知DC=10,求圆心O到AE的距离.13.(2014•宿迁)如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为,OP=1,求BC的长.14.(2014•铁岭)如图,⊙O是△ABC外接圆,AB是⊙O的直径,弦DE⊥AB于点H,DE与AC相交于点G,DE、BC的延长线交于点F,P是GF的中点,连接PC.(1)求证:PC是⊙O的切线;(2)若⊙O的半径是1,=,∠ABC=45°,求OH的长.15.(2014•毕节地区)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D点,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.16.(2014•威海)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.1.(2014•三明)已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.2.(2014•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.∴∴x=ACB=(1)求证:AC平分∠DAB;(2)若点E为的中点,AD=,AC=8,求AB和CE的长.∴BC=为OE=OA=AB=5AE==5∴∴AF=4EF=3,CF=AF=4CE=CF+EF=7.5.(2014•潍坊)如图,在梯形ABCD中,AD∥BC,∠B=90°,以AB为直径作⊙O,恰与另一腰CD相切于点E,连接OD、OC、BE.(1)求证:OD∥BE;(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长.∠ABE=COB=∠==(1)求证:ED是⊙O的切线.(2)当OA=3,AE=4时,求BC的长度.∴=.7.(2014•宁夏)在等边△ABC中,以BC为直径的⊙O与AB交于点D,DE⊥AC,垂足为点E.(1)求证:DE为⊙O的切线;(2)计算.AD=BD=ABAE=AD=AC∴8.(2014•新疆)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.∵,∵=,×CD=2AC=2CD=4,AC=×垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若CF=5,cos∠A=,求BE的长.FOD==,,则,R=AB=2OD=.A===AE=﹣=2上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线.(2)若AC=4,tan∠ACD=,求⊙O的半径.∴,ACD=ACD=,∴,==411.(2014•梅州)如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C.(1)求证:AB与⊙O相切;(2)若∠AOB=120°,AB=4,求⊙O的面积.AB=4AC=AB=2A=2×=2BC=BD.(1)求证:DC是⊙O的切线;(2)作CD的平行线AE交⊙O于点E,已知DC=10,求圆心O到AE的距离.CD=10×=5(1)求证:BC是⊙O的切线;(2)若⊙O的半径为,OP=1,求BC的长.,(BC的延长线交于点F,P是GF的中点,连接PC.(1)求证:PC是⊙O的切线;(2)若⊙O的半径是1,=,∠ABC=45°,求OH的长.∴∵,∴OM=,∵,OH=OM=(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.16.(2014•威海)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.。
切线的性质与判定练习题
切线的性质与判定练习题1. (2011无锡市)已知⊙O 的半径为2,直线l 上有一点P 满足PO=2,则直线l 与⊙O 的位置关系是( )A .相切 B.相离 C.相离或相切 D.相切或相交2.如图,AB 与⊙O 切于点B ,AO=6cm ,AB=4cm ,则⊙O 的半径为()A .B .C .D3.如图,已知∠AOB=30°,M 为OB 边上任意一点,以M 为圆心,•2cm •为半径作⊙M ,•当OM=______cm 时,⊙M 与OA 相切. 4.(2012山西 )如图,AB 是⊙O 的直径,C .D 是⊙O 上一点,∠CDB=20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 等于( ) A . 40° B .50° C . 60° D.70° 5.(2012黔西南)如图,⊙O 的半径为2,点A 的坐标为(2,23),直线 AB 为⊙O 的切线,B 为切点,则B 点的坐标为( ). A .(-32,85) B .(-3,1) C .(-45,95) D .(-1,3)6.(2012连云港)如图,圆周角∠BAC=55°,分别过B 、C 两点作⊙O 的切线,两切线相交于点P ,则∠BPC= °。
7.(2012湘潭 )如图,ABC ∆的一边AB 是⊙O 的直径,请你添加一个条件,使BC 是⊙O 的切线,你所添加的条件为 .8.(株洲)如图,已知AD 为o 的直径,B 为AD 延长线上一点,BC 与o 切于C 点,30.A ∠=求证:(1)BD=CD ;(2)△AOC≌△CDB.9、如图,AB 是⊙O 的直径,∠B=45°,AB=AC 。
求证:AC 是⊙O 的切线。
10.(2013•株洲)已知AB 是⊙O 的直径,直线BC 与⊙O 相切于点B ,∠ABC 的平分线BD 交⊙O 于点D ,AD 的延长线交BC 于点C . (1)求∠BAC 的度数; (2)求证:AD=CD .11.(2013•黄冈)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 的过C 点的直线互相垂直,垂足为D ,且AC 平分∠DAB. (1)求证:DC 为⊙O 的切线;(2)若⊙O 的半径为3,AD=4,求AC 的长.12.(2013•内江)如图,AB 是半圆O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点C ,BD⊥PD,垂足为D ,连接BC . (1)求证:BC 平分∠PDB;(2)若PA=6,PC=6,求BD的长.A切线的性质与判定练习题(2)1. (2011淮安)如图,AD 是⊙O 的弦,AB 经过圆心O ,交⊙O 于点C ,∠DAB=∠B=30°. (1)直线BD 是否与⊙O 相切?为什么?(2)连接CD ,若CD=5,求的长.2.(2013•孝感)如图,△ABC 内接于⊙O,∠B=60°,CD 是⊙O 的直径,点P 是CD 延长线上的一点,且AP=AC .(1)求证:PA 是⊙O 的切线; (2)若PD=,求⊙O 的直径.3.(2013•宁夏)在Rt△ABC 中,∠ACB=90°,D 是AB 边上的一点,以BD 为直径作⊙O 交AC 于点E ,连结DE 并延长,与BC 的延长线交于点F .且BD=BF . (1)求证:AC 与⊙O 相切.(2)若BC=6,AB=12,求⊙O 的面积.4.(2013永州)如图,AB 是⊙O 的切线,B 为切点,圆心在AC 上,∠A=30,D 为弧BC 的中点.(1)求证:AB=BC(2)求证:四边形BOC D 是菱形..5.(2013鞍山)如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,OC⊥OB,连接AB 交OC 于点D .(1)AC 与CD 相等吗?问什么?(2)若AC=2,AO=,求OD 的长度.6.(2013•铁岭)如图,△ABC 内接与⊙O,AB 是直径,⊙O 的切线PC 交BA 的延长线于点P ,OF∥BC 交AC 于AC 点E ,交PC 于点F ,连接AF . (1)判断AF 与⊙O 的位置关系并说明理由; (2)若⊙O 的半径为4,AF=3,求AC 的长.C (7.(2013•恩施州)如图所示,AB 是⊙O 的直径,AE 是弦,C 是劣弧AE 的中点,过C 作CD⊥AB 于点D ,CD 交AE 于点F ,过C 作CG∥AE 交BA 的延长线于点G .(1)求证:CG 是⊙O 的切线.(2)若∠EAB=30°,CF=2,求GA 的长.8.(2012温州市)如图,△ABC 中,90ACB ∠=,D 是边AB 上一点,且2.A DCB E ∠=∠是BC 边上的一点,以EC 为直径的O 经过点D 。
中考圆的切线的判定及其性质问题专项训练 - 答案版
中考圆的切线的判定及其性质问题专项训练评卷人得分一.解答题(共50小题)1.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连结DE、OE.(1)判断DE与⊙O的位置关系,并说明理由.(2)求证:BC2=2CD•OE.2.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.3.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EH=3,求BF及AF长.4.如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O 分别交BC,BD于点E,Q,连接EP并延长交AD于点F.(1)求证:EF是⊙O的切线;(2)求证:EF2=4BP•QP.5.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠F AB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.6.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠F AB交⊙O于点C,过点C作CE⊥DF,垂足为点E.(1)求证:CE是⊙O的切线;(2)若AE=1,CE=2,求⊙O的半径.7.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.8.如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.9.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OD⊥AB于点O,分别交AC、CF于点E、D,且DE=DC.(1)求证:CF是⊙O的切线;(2)若⊙O的半径为5,BC=,求DE的长.10.如图,在Rt△ABC中,∠ACB=90°,D是AC上一点,过B,C,D三点的⊙O交AB 于点E,连接ED,EC,点F是线段AE上的一点,连接FD,其中∠FDE=∠DCE.(1)求证:DF是⊙O的切线.(2)若D是AC的中点,∠A=30°,BC=4,求DF的长.11.如图,M,N是以AB为直径的⊙O上的点,且=,弦MN交AB于点C,BM平分∠ABD,MF⊥BD于点F.(1)求证:MF是⊙O的切线;(2)若CN=3,BN=4,求CM的长.12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC.过上一点E作EG∥AC 交CD的延长线于点G,连接AE交CD于点F,且EG=FG.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=2,CH=2,求OM的长.13.如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=,求弦AC的长.14.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且∠CDE=∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.15.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,点F 在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为3,sin∠CBF=,求BC和BF的长.16.如图,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.17.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.18.如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD 的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.19.通过对下面数学模型的研究学习,解决问题.【模型呈现】如图,在Rt△ABC,∠ACB=90°,将斜边AB绕点A顺时针旋转90°得到AD,过点D 作DE⊥AC于点E,可以推理得到△ABC≌△DAE,进而得到AC=DE,BC=AE.我们把这个数学模型称为“K型”.推理过程如下:【模型应用】如图,在Rt△ABC内接于⊙O,∠ACB=90°,BC=2,将斜边AB绕点A顺时针旋转一定的角度得到AD,过点D作DE⊥AC于点E,∠DAE=∠ABC,DE=1,连接DO交⊙O 于点F.(1)求证:AD是⊙O的切线;(2)连接FC交AB于点G,连接FB.求证:FG2=GO•GB.20.如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证:DC为⊙O的切线;(2)线段DF分别交AC,BC于点E,F且∠CEF=45°,⊙O的半径为5,sin B=,求CF的长.21.如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC到点D,连接OA,AD,使得∠F AC=∠AOD,∠D=∠BAF.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为5,CE=2,求EF的长.22.如图,AD是⊙O的直径,弧BA=弧BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.(1)求证:AF是⊙O的切线;(2)求证:△ABE∽△DBA;(3)若BD=8,BE=6,求AB的长.23.如图,AB是⊙O的直径,AC平分∠BAD,交⊙O于点C,过点C分别作CE⊥AD,CF ⊥AB,垂足分别为E,F.(1)求证:直线CE是⊙O的切线;(2)若AE=4,CF=2,求⊙O的直径.24.如图,AB是⊙O的直径,点D是的中点,过点D作DF⊥AE,交AE的延长线于点F,交AB的延长线于点C,连接BE交AD于点G.(1)求证:直线CF是⊙O的切线;(2)若AG=4cm,DG=2cm,求直径AB的长.25.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC 交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=3,CH=4,求EM的值.26.如图,直线AB与⊙O相交于C、D两点,CE是⊙O的直径,CF平分∠BCE交⊙O于点F,过点F作FG⊥AB,垂足为点G,连接DF.(1)求证:FG是⊙O切线;(2)已知⊙O的直径为8,CG=3,求sin∠CDF的值.27.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O切线;(2)求证:△CED∽△ACD;(3)若OA=1,sin D=,求AE的长.28.如图,⊙O是△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=12,BC=5,BE ⊥DC,交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求证:BE是⊙O的切线;(3)求DE的长.29.如图,在△ABE中,AE=AB,以AB为直径的⊙O交AE于点D,交BE于点F,过点B的直线与AE的延长线相交于点C,且∠EBC=∠BAC.(1)判断BC与⊙O有什么位置关系,并说明理由;(2)过点E作EG垂直BC于点G,若AB=8,sin∠EBC=,求EG的长;(3)在满足第(2)问的前提下,求AC的长.30.如图,以AB为直径的半圆O交AC于点D,且点D为AC的中点,DE⊥BC于点E,AE交半圆O于点F,BF的延长线交DE于点G.(1)求证:DE为半圆O的切线;(2)若GE=1,BF=,求EF的长.31.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若CB=2,CE=4,求AE的长.32.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.33.如图,AB是⊙O的弦,点D是半径OA上的动点(与点A,O不重合),过点D垂直于OA的直线交⊙O于点E,F,交AB于点C.(1)点H在直线EF上,如果HC=HB,那么HB是⊙O的切线吗?(2)连接AE,AF,如果,求证:AF2=CF•FE.34.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD交AB 于点E,设⊙O是△BDE的外接圆.(1)求证:AC是⊙O的切线;(2)探究线段BC,BD,BO之间的数量关系,并证明;(3)若DC=2,BC=4,求AD的长.35.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)请判断直线BC与⊙O的位置关系,并说明理由;(2)已知AD=5,CD=4,求BC的长.36.如图,已知AB是⊙O的直径,点C在⊙O上,连接AC、BC,过点C的直线与AB的延长线交于点P,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)若PB=2,PC=4,求AB的长.37.已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.(1)求证:DC是⊙O的切线;(2)如果DM=15,CE=10,,求⊙O半径的长.38.如图,△ABC内接于⊙O,AB是⊙O的直径,弦CD与AB交于点E,连接AD,过点A作直线MN,使∠MAC=∠ADC.(1)求证:直线MN是⊙O的切线.(2)若sin∠ADC=,AB=8,AE=3,求DE的长.39.如图,在△ABC中,以AB为直径作⊙O交BC于点D,∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)点E是AB上一点,若∠BCE=∠B,tan∠B=,⊙O的半径是4,求EC的长.40.已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC =30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.41.如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC相切于点C,过点A作AD⊥BO交BO的延长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.42.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O 于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=2,BC=,求DE的长.43.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D 作DF⊥AC于点F,交AB的延长线于点G.(1)求证:DF是⊙O的切线;(2)已知BD=2,CF=2,求AE和BG的长.44.如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=2,AC=2,求AD的长.45.如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求的长度.(结果保留π)46.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tan B=,求⊙O的半径.47.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线;(2)若BF=2,EF=,求⊙O的半径长.48.如图,在△ABC中,点O为BC边上一点,⊙O经过A、B两点,与BC边交于点E,点F为BE下方半圆弧上一点,FE⊥AC,垂足为D,∠BEF=2∠F.(1)求证:AC为⊙O切线.(2)若AB=5,DF=4,求⊙O半径长.49.如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:EF=BF;(2)求证:BC是⊙O的切线.(3)若AB=4,BC=3,求DE的长.50.如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长.中考圆的切线的判定及其性质问题专项训练参考答案与试题解析一.解答题(共50小题)1.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连结DE、OE.(1)判断DE与⊙O的位置关系,并说明理由.(2)求证:BC2=2CD•OE.【分析】(1)连接OD,由AB为圆O的直径,得到∠ADB为直角,可得出三角形BCD 为直角三角形,E为斜边BC的中点,利用斜边上的中线等于斜边的一半,得到CE=DE,利用等边对等角得到一对角相等,再由OA=OD,利用等边对等角得到一对角相等,由直角三角形ABC中两锐角互余,利用等角的余角相等得到∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为圆O的切线;(2)连接OE,证明OE是△ABC的中位线,则AC=2OE,然后证明△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;【解答】(1)证明:连接OD,∵AB为圆O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,即∠C+∠A=90°,∴∠ADO+∠CDE=90°,即∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为圆O的切线;(2)证明:连接OE,∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC=90°,∴△ABC∽△BDC,∴=,即BC2=AC•CD.∴BC2=2CD•OE;【点评】本题考查了切线的判定,垂径定理以及相似三角形的判定与性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.2.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.【解答】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.3.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EH=3,求BF及AF长.【分析】(1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线;(2)连结DE,先根据AAS证明△CDE≌△HFE,再由全等三角形的对应边相等即可得出CD=HF.(3)先证得△EHF∽△BEF,根据相似三角形的性质求得BF=10,进而根据直角三角形斜边中线的性质求得OE=5,进一步求得OH,然后解直角三角形即可求得OA,得出AF.【解答】证明:(1)如图,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)如图,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF.(3)由(2)得CD=HF,又CD=1,∴HF=1,在Rt△HFE中,EF==,∵EF⊥BE,∴∠BEF=90°,∴∠EHF=∠BEF=90°,∵∠EFH=∠BFE,∴△EHF∽△BEF,∴=,即=,∴BF=10,∴OE=BF=5,OH=5﹣1=4,∴Rt△OHE中,cos∠EOA=,∴Rt△EOA中,cos∠EOA==,∴=,∴OA=,∴AF=﹣5=.【点评】本题主要考查了切线的判定,全等三角形的判定与性质,三角形相似的判定和性质以及解直角三角形等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.4.如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O 分别交BC,BD于点E,Q,连接EP并延长交AD于点F.(1)求证:EF是⊙O的切线;(2)求证:EF2=4BP•QP.【分析】(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD是平行四边形,得到P A=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;(2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到∴P A2=PB•PQ,根据全等三角形的性质得到PF=PE,求得P A=PE=EF,等量代换即可得到结论.【解答】证明:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴P A=PC,∴P A=PC=PE,∴∠P AE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;(2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BP A,∴,∴P A2=PB•PQ,在△AFP与△CEP中,,∴△AFP≌△CEP,∴PF=PE,∴P A=PE=EF,∵PE2=PB•PQ=(EF)2,∴EF2=4BP•QP.【点评】本题考查了切线的判定,平行四边形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.5.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠F AB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠F AD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.【点评】本题考查了切线的判定,平行四边形的性质,直角三角形的性质,等边三角形的判定和性质,连接OB构造等边三角形是解题的关键.6.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠F AB交⊙O于点C,过点C作CE⊥DF,垂足为点E.(1)求证:CE是⊙O的切线;(2)若AE=1,CE=2,求⊙O的半径.【分析】(1)证明:连接CO,证得∠OCA=∠CAE,由平行线的判定得到OC∥FD,再证得OC⊥CE,即可证得结论;(2)证明:连接BC,由圆周角定理得到∠BCA=90°,再证得△ABC∽△ACE,根据相似三角形的性质即可证得结论.【解答】(1)证明:连接CO,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠F AB,∴∠OCA=∠CAE,∴OC∥FD,∵CE⊥DF,∴OC⊥CE,∴CE是⊙O的切线;(2)证明:连接BC,在Rt△ACE中,AC===,∵AB是⊙O的直径,∴∠BCA=90°,∴∠BCA=∠CEA,∵∠CAE=∠CAB,∴△ABC∽△ACE,∴=,∴,∴AB=5,∴AO=2.5,即⊙O的半径为2.5.【点评】本题主要考查了圆周角定理,切线的判定,平行线的性质和判定,勾股定理,相似三角形的判定和性质,熟练掌握切线的判定定理是解决问题的关键.7.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.【分析】(1)连接OD,由AB是⊙O的直径,得到∠ACB=90°,求得∠A+∠ABC=90°,等量代换得到∠BOD=∠A,推出∠ODE=90°,即可得到结论;(2)连接BD,过D作DH⊥BF于H,由弦切角定理得到∠BDE=∠BCD,推出△ACF 与△FDB都是等腰三角形,根据等腰直角三角形的性质得到FH=BH=BF=1,则FH =1,根据勾股定理得到HD==3,然后根据勾股定理列方程即可得到结论.【解答】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠BOD=2∠BCD,∠A=2∠BCD,∴∠BOD=∠A,∵∠AED=∠ABC,∴∠BOD+∠AED=90°,∴∠ODE=90°,即OD⊥DE,∴DE与⊙O相切;(2)解法一:连接BD,过D作DH⊥BF于H,延长DO交⊙O于G,连接BG,则∠G=∠DCB,∵∠G+∠GDB=90°,∵DE与⊙O相切,∴∠GDB+∠BDE=90°,∴∠G=∠BDE,∴∠BDE=∠BCD,∵∠AED=∠ABC,∴∠AFC=∠DBF,而∠AFC=∠ABC+∠BCD,∠DBF=∠AED+∠BDE,∵∠AFC=∠DFB,∴△FDB是等腰三角形,∴FH=BH=BF=1,则FH=1,∴HD==3,在Rt△ODH中,OH2+DH2=OD2,即(OD﹣1)2+32=OD2,∴OD=5,∴⊙O的半径是5.解法二:连接BD,OD,∵∠A=2∠BCD,∴∠BOD=∠BDF,∵∠OBD=∠DBF,∴△BOD∽△BDF,∴==,∵OB=OD,∴BD=DF=,∴OD===5.【点评】本题考查了切线的判定和性质,等腰三角形的判定,直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.8.如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.【分析】(1)由CD=CB,∠BCD=2∠ABD,可证得∠BCE=∠ABD,继而求得∠ABC =90°,则可证得AB是⊙O的切线;(2)由∠A=60°,DF=,可求得AF、BF的长,易证得△ADF∽△ACB,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵CD=CB,∴∠CBD=∠CDB,∵BC是⊙O的直径,∴∠CEB=90°,∴∠CBD+∠BCE=∠CDB+∠DCE,∴∠BCE=∠DCE,即∠BCD=2∠BCE,∵∠BCD=2∠ABD,∴∠ABD=∠BCE,∴∠CBD+∠ABD=∠CBD+∠BCE=90°,∴CB⊥AB,∵CB为直径,∴AB是⊙O的切线;(2)解:∵∠A=60°,DF=,∴在Rt△AFD中,AF===1,AD=2∵DF⊥AB,CB⊥AB,∴DF∥BC,∴∠ADF=∠ACB,∵∠A=∠A,∴△ADF∽△ACB,∴=,设BC=x,则=,解得x=4+6.∴BC=4+6.【点评】此题考查了切线的判定、等腰三角形的性质以及相似三角形的判定与性质.注意证得△ADF∽△ACB是解此题的关键.9.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OD⊥AB于点O,分别交AC、CF于点E、D,且DE=DC.(1)求证:CF是⊙O的切线;(2)若⊙O的半径为5,BC=,求DE的长.【分析】(1)连接OC,欲证明CF是⊙O的切线,只要证明∠OCF=90°.(2)作DH⊥AC于H,由△AEO∽△ABC,得=求出AE,EC,再根据sin∠A=sin∠EDH,得到=,求出DE即可.【解答】证明:连接OC,∵OA=OC,∴∠A=∠OCA,∵OD⊥AB,∴∠A+∠AEO=90°,∵DE=DC,∴∠DEC=∠DCE,∵∠AEO=∠DEC,∴∠AEO=∠DCE,∴∠OCE+∠DCE=90°,∴∠OCF=90°,∴OC⊥CF,∴CF是⊙O切线.(2)作DH⊥AC于H,则∠EDH=∠A,∵DE=DC,∴EH=HC=EC,∵⊙O的半径为5,BC=,∴AB=10,AC=3,∵△AEO∽△ABC,∴=,∴AE==,∴EC=AC﹣AE=,∴EH=EC=,∵∠EDH=∠A,∴sin∠A=sin∠EDH,∴=,∴DE===.解法二:设DE=DC=X,先在Rt△AOE中,求得OE=OA×tan A=,则OD=+x 在Rt△OCD中,由勾股定理得方程(x+)2=x2+5,求得x=.【点评】本题考查切线的性质、相似三角形的判定和性质、三角函数等知识,解题的关键是添加辅助线,构造相似三角形,属于中考常考题型.10.如图,在Rt△ABC中,∠ACB=90°,D是AC上一点,过B,C,D三点的⊙O交AB 于点E,连接ED,EC,点F是线段AE上的一点,连接FD,其中∠FDE=∠DCE.(1)求证:DF是⊙O的切线.(2)若D是AC的中点,∠A=30°,BC=4,求DF的长.【分析】(1)可证得BD是⊙O的直径,∠BCE=∠BDE,则∠BDE+∠FDE=90°,结论得证;(2)先求出AC长,再求DE长,在Rt△BCD中求出BD长,在Rt△BED中求出BE长,证得△FDE∽△DBE,由比例线段可求出DF长.【解答】解:(1)∵∠ACB=90°,点B,D在⊙O上,∴BD是⊙O的直径,∠BCE=∠BDE,∵∠FDE=∠DCE,∠BCE+∠DCE=∠ACB=90°,∴∠BDE+∠FDE=90°,即∠BDF=90°,∴DF⊥BD,又∵BD是⊙O的直径,∴DF是⊙O的切线.(2)如图,∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=2×4=8,∴=4,∵点D是AC的中点,∴,∵BD是⊙O的直径,∴∠DEB=90°,∴∠DEA=180°﹣∠DEB=90°,∴,在Rt△BCD中,==2,在Rt△BED中,BE===5,∵∠FDE=∠DCE,∠DCE=∠DBE,∴∠FDE=∠DBE,∵∠DEF=∠BED=90°,∴△FDE∽△DBE,∴,即,∴.【点评】本题考查了切线的判定、相似三角形的判定与性质、勾股定理等知识,解答本题的关键是正确作出辅助线,综合运用圆的性质解题.11.如图,M,N是以AB为直径的⊙O上的点,且=,弦MN交AB于点C,BM平分∠ABD,MF⊥BD于点F.(1)求证:MF是⊙O的切线;(2)若CN=3,BN=4,求CM的长.【分析】(1)根据等腰三角形的性质和角平分线的定义证得∠OMB=∠MBF,得出OM ∥BF,即可证得OM⊥MF,即可证得结论;(2)由勾股定理可求AB的长,可得AO,BO,ON的长,由勾股定理可求CO的长,通过证明△ACN∽△MCB,可得,即可求CM的长.【解答】证明:(1)连接OM,∵OM=OB,∴∠OMB=∠OBM,∵BM平分∠ABD,∴∠OBM=∠MBF,∴∠OMB=∠MBF,∴OM∥BF,∵MF⊥BD,∴OM⊥MF,即∠OMF=90°,∴MF是⊙O的切线;(2)如图,连接AN,ON∵=,∴AN=BN=4∵AB是直径,=,∴∠ANB=90°,ON⊥AB∴AB==4∴AO=BO=ON=2∴OC===1∴AC=2+1,BC=2﹣1∵∠A=∠NMB,∠ANC=∠MBC∴△ACN∽△MCB∴∴AC•BC=CM•CN∴7=3•CM∴CM=【点评】本题考查了切线的性质,圆的有关知识,相似三角形的判定和性质,勾股定理等知识,求OC的长是本题的关键.12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC.过上一点E作EG∥AC 交CD的延长线于点G,连接AE交CD于点F,且EG=FG.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=2,CH=2,求OM的长.【分析】(1)连接OE,如图,通过证明∠GEA+∠OEA=90°得到OE⊥GE,然后根据切线的判定定理得到EG是⊙O的切线;(2)连接OC,如图,设⊙O的半径为r,则OC=r,OH=r﹣2,利用勾股定理得到(r ﹣2)2+(2)2=r2,解得r=3,然后证明Rt△OEM∽Rt△CHA,再利用相似比计算OM的长.【解答】(1)证明:连接OE,如图,∵GE=GF,∴∠GEF=∠GFE,而∠GFE=∠AFH,∴∠GEF=∠AFH,∵AB⊥CD,∴∠OAF+∠AFH=90°,∴∠GEA+∠OAF=90°,∵OA=OE,∴∠OEA=∠OAF,∴∠GEA+∠OEA=90°,即∠GEO=90°,∴OE⊥GE,∴EG是⊙O的切线;(2)解:连接OC,如图,设⊙O的半径为r,则OC=r,OH=r﹣2,在Rt△OCH中,(r﹣2)2+(2)2=r2,解得r=3,在Rt△ACH中,AC==2,∵AC∥GE,∴∠M=∠CAH,∴Rt△OEM∽Rt△CHA,∴=,即=,∴OM=.【点评】本题考查了切线的判断与性质:圆的切线垂直于经过切点的半径.经过半径的外端且垂直于这条半径的直线是圆的切线.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径.也考查了勾股定理.13.如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=,求弦AC的长.【分析】(1)连接OC,可证得∠CAD=∠BCD,由∠CAD+∠ABC=90°,可得出∠OCD =90°,即结论得证;(2)证明△ABC≌△AFC可得CB=CF,又CB=CE,则CE=CF;(3)证明△DCB∽△DAC,可求出DA的长,求出AB长,设BC=a,AC=a,则由勾股定理可得AC的长.【解答】解:(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,∵CE=CB,∴∠CAE=∠CAB,∵∠BCD=∠CAE,∴∠CAB=∠BCD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB+∠BCD=90°,∴∠OCD=90°,∴CD是⊙O的切线;(2)∵∠BAC=∠CAE,∠ACB=∠ACF=90°,AC=AC,∴△ABC≌△AFC(ASA),∴CB=CF,又∵CB=CE,∴CE=CF;(3)∵∠BCD=∠CAD,∠ADC=∠CDB,∴△DCB∽△DAC,∴,∴,∴DA=2,∴AB=AD﹣BD=2﹣1=1,设BC=a,AC=a,由勾股定理可得:,解得:a=,∴.【点评】本题考查切线的判定、等腰三角形的性质、相似三角形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线.14.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且∠CDE=∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【解答】解:(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=∠BAC,∵∠CDE=∠BAC.∴∠CDE=∠CAD,∵OA=OD,∴∠CAD=∠ADO,∵∠ADO+∠ODC=90°,∴∠ODC+∠CDE=90°∴∠ODE=90°又∵OD是⊙O的半径∴DE是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD==2x,∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴=,即==∴DE=4,x=,∴AC=3x=14,∴⊙O的半径为7.【点评】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.15.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,点F 在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为3,sin∠CBF=,求BC和BF的长.【分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)解直角三角形即可得到结论.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过点C作CH⊥BF于H.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=3,∴BE=AB•sin∠1=3×=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,∵sin∠CBF==,∴CH=2,∵CH∥AB,∴=,即=,∴CF=6,∴AF=AC+CF=9,∴BF==6.【点评】本题考查了圆的综合题:切线的判定与性质、勾股定理、直角所对的圆周角是直角、解直角三角形等知识点.16.如图,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.【分析】(1)连接OD、CD,根据圆周角定理得出∠EDC=90°,根据平行线的性质得出OA⊥CD,根据垂径定理得出OA垂直平分CD,根据垂直平分线的性质得出OD=OC=OE,然后根据等腰三角形的三线合一的性质得出∠AOC=∠AOD,进而证得△AOD≌△AOC(SAS),得到∠ADO=∠ACB=90°,即可证得结论;(2)根据切割线定理求得BE,得到BC,然后根据切线长定理和勾股定理列出关于y的方程,解方程即可.【解答】(1)证明:连接OD、CD,∵CE是⊙O的直径,∴∠EDC=90°,∵DE∥OA,∴OA⊥CD,∴OA垂直平分CD,∴OD=OC,∴OD=OE,∴∠OED=∠ODE,∵DE∥OA,∴∠ODE=∠AOD,∠DEO=∠AOC,∴∠AOD=∠AOC,∵AC是切线,∴∠ACB=90°,在△AOD和△AOC中∴△AOD≌△AOC(SAS),∴∠ADO=∠ACB=90°,∵OD是半径,∴AB是⊙O的切线;(2)解:连接OD,CD,∵BD是⊙O切线,∴∠ODB=90°,∴∠BDE+∠ODE=90°,∵CE是⊙O的直径,∴∠CDE=90°,∴∠ODC+∠ODE=90°,∴∠BDE=∠ODC,∵OC=OD,∴∠OCD=∠ODC,∴∠BDE=∠OCD,∵∠B=∠B,∴△BDE∽△BCD,∴∴BD2=BE•BC,设BE=x,∵BD=4,EC=6,∴42=x(x+6),解得x=2或x=﹣8(舍去),∴BE=2,∴BC=BE+EC=8,∵AD、AC是⊙O的切线,∴AD=AC,设AD=AC=y,在Rt△ABC中,AB2=AC2+BC2,∴(4+y)2=y2+82,解得y=6,∴AC=6,故AC的长为6.【点评】本题考查了切线的判定和性质,平行线的性质,垂径定理,切线长定理,切割线定理,三角形全等的判定和性质,熟练掌握性质定理是解题的关键.17.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.【分析】(1)连接OB,由AB=AC得∠ABC=∠ACB,由OP=OB得∠OPB=∠OBP,由OA⊥l得∠OAC=90°,则∠ACB+∠APC=90°,而∠APC=∠OPB=∠OBP,所以∠OBP+∠ABC=90°,即∠OBA=90°,于是根据切线的判定定理得到直线AB是⊙O 的切线;(2)根据勾股定理求得AB=4,PC=2,过O作OD⊥PB于D,则PD=DB,通过证得△ODP∽△CAP,得到,求得PD,即可求得PB.【解答】(1)证明:如图,连结OB,则OP=OB,∴∠OBP=∠OPB=∠CP A,AB=AC,∴∠ACB=∠ABC,而OA⊥l,即∠OAC=90°,∴∠ACB+∠CP A=90°,即∠ABP+∠OBP=90°,∴∠ABO=90°,OB⊥AB,故AB是⊙O的切线;(2)解:由(1)知:∠ABO=90°,而OA=5,OB=OP=3,由勾股定理,得:AB=4,过O作OD⊥PB于D,则PD=DB,∵∠OPD=∠CP A,∠ODP=∠CAP=90°,∴△ODP∽△CAP,∴,又∵AC=AB=4,AP=OA﹣OP=2,∴,∴,∴.【点评】本题考查了切线的判定和性质,勾股定理的应用研究三角形相似的判定和性质,熟练掌握性质定理是解题的关键.18.如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD 的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.【分析】(1)连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可证得;(2)先证△OBC是等边三角形得∠COB=60°,再由(1)中所证切线可得∠OCF=90°,结合半径OC=5可得答案.【解答】解:(1)连接OC,∵OD⊥AC,OD经过圆心O,∴AD=CD,∴P A=PC,在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP∵P A是⊙O的切线,∴∠OAP=90°.∴∠OCP=90°,即OC⊥PC∴PC是⊙O的切线.(2)∵OB=OC,∠OBC=60°,∴△OBC是等边三角形,∴∠COB=60°,∵AB=10,∴OC=5,由(1)知∠OCF=90°,∴CF=OC tan∠COB=5.【点评】本题考查了切线的性质定理以及判定定理,以及直角三角形三角函数的应用,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题.19.通过对下面数学模型的研究学习,解决问题.【模型呈现】如图,在Rt△ABC,∠ACB=90°,将斜边AB绕点A顺时针旋转90°得到AD,过点D 作DE⊥AC于点E,可以推理得到△ABC≌△DAE,进而得到AC=DE,BC=AE.我们把这个数学模型称为“K型”.推理过程如下:【模型应用】如图,在Rt△ABC内接于⊙O,∠ACB=90°,BC=2,将斜边AB绕点A顺时针旋转一定的角度得到AD,过点D作DE⊥AC于点E,∠DAE=∠ABC,DE=1,连接DO交⊙O 于点F.。
2020年人教版九年级数学上册24.2.2《切线的判定和性质》课后练习(含答案)
2020年人教版九年级数学上册24.2.2《切线的判定和性质》课后练习知识点 1 切线的判定1.下列说法中正确的是( )A.与圆有公共点的直线是圆的切线B.到圆心的距离等于圆的半径的直线是圆的切线C.垂直于圆的半径的直线是圆的切线D.过圆的半径的外端的直线是圆的切线2.如图所示,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为____________.3.如图,A,B是⊙O上的两点,AC是过点A的一条直线,如果∠AOB=120°,那么当∠CAB=________°时,AC才能成为⊙O的切线.4.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为E.求证:直线CE是⊙O的切线.知识点 2 切线的性质5.如图,AB,AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为( )A.25°B.30°C.35°D.40°6.如图所示,AB是⊙O的直径,C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是( )A.15°B.30°C.60°D.75°7.如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径为________.8.如图,C为⊙O外一点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接CB.若⊙O的半径为2,∠ABC=60°,则BC=________.9.如图,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,若∠OPA=40°,求∠ABC的度数.10.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面三个结论:①AD=CD;②BD=BC;③AB=2BC.其中正确结论的个数是( )A.3B.2C.1D.011.如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是________.(结果保留π)12.在周长为26π的⊙O中,CD是⊙O的一条弦,AB是⊙O的切线,且AB∥CD,若AB和CD 之间的距离为18,则弦CD的长为________.13.如图,AB是⊙O的直径,C是⊙O上一点,点D在AB的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,CD=4,求BD的长.14.如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O的直径的长.15.已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF是⊙O的切线,还需要添加的一个条件是(要求写出两种情况):________或者________;(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.参考答案1.B2.答案不唯一,如∠ABC=90°3.60 [解析] ∵在△AOB 中,OA=OB ,∠AOB=120°,∴∠OAB=30°,∴当∠CAB=60°时,OA ⊥AC ,此时AC 为⊙O 的切线.4.证明:连接OD ,∵OA=OD ,∴∠2=∠3.∵AD 平分∠CAE ,∴∠1=∠2,∴∠1=∠3,∴AE ∥OD ,∴∠E=∠ODC.∵AE ⊥CD ,∴∠E=90°,∴∠ODC=90°,∴OD ⊥CE.又∵OD 是⊙O 的半径,∴CE 是⊙O 的切线.5.D6.D [解析] 连接OD.∵CA ,CD 是⊙O 的切线,∴OA ⊥AC ,OD ⊥CD ,∴∠OAC=∠ODC=90°.∵∠ACD=30°,∴∠AOD=360°-∠C -∠OAC -∠ODC=150°.∵OB=OD ,∴∠DBA=∠ODB=12∠AOD=75°.7.5 [解析] 连接OB ,根据切线的性质可知OB ⊥AB.设圆的半径为r ,根据勾股定理可得r2+AB 2=(r +AC)2,即r 2+122=(r +8)2,解得r=5.8.8 [解析] ∵CA 与⊙O 相切,∴AB ⊥AC.∵在Rt △ABC 中,∠ABC=60°,∴∠C=30°,∴BC=2AB=8.故答案为8.9.解:∵AB 是⊙O 的直径,PA 与⊙O 相切于点A ,∴∠BAP=90°.∵∠OPA=40°,∴∠AOP=180°-90°-40°=50°.∵OB=OC ,∴∠ABC=∠BCO.又∵∠AOP=∠ABC +∠BCO ,∴∠ABC=12∠AOP=12×50°=25°. 10.A [解析] 连接OD ,根据切线的性质定理可得OD ⊥CD.由于AB 是⊙O 的直径,根据“直径所对的圆周角等于90°”,可得∠ADB=90°,结合已知条件“∠A=30°”可以说明①②的正确性;在Rt △ADB 中,利用“30°角所对的直角边等于斜边的一半”,可得AB=2BD ,从而AB=2BC.11.16π [解析] 如图, 设AB 与小圆切于点C ,连接OC ,OB.∵AB 与小圆切于点C ,∴OC ⊥AB ,∴BC=AC=12AB=12×8=4. ∵在Rt △OBC 中,OB 2=OC 2+BC 2,∴圆环(阴影)的面积=π·OB 2-π·OC 2=π(OB 2-OC 2)=π·BC 2=16π.故答案是16π.12.24 [解析] 如图,设AB 与⊙O 相切于点F ,连接OF ,OD ,延长FO 交CD 于点E.∵2πR=26π,∴R=13,∴OF=OD=13.∵AB 是⊙O 的切线,∴OF ⊥AB.∵AB ∥CD ,∴EF ⊥CD ,即OE ⊥CD ,∴CE=ED.∵EF=18,OF=13,∴OE=5.在Rt △OED 中,∵∠OED=90°,OD=13,OE=5,∴ED=OD 2-OE 2=132-52=12,∴CD=2ED=24.13.解:(1)证明:如图,连接OC.∵AB 是⊙O 的直径,C 是⊙O 上一点,∴∠ACB=90°,即∠ACO +∠OCB=90°.∵OA=OC ,∠BCD=∠A ,∴∠ACO=∠A=∠BCD ,∴∠BCD +∠OCB=90°,即∠OCD=90°,∴OC ⊥CD.又∵OC 是⊙O 的半径,∴CD 是⊙O 的切线.(2)由(1)及已知得∠OCD=90°,OB=OC=3,CD=4,在Rt △OCD 中,根据勾股定理得OD=5,∴BD=OD -OB=5-3=2.14.解:(1)证明:如图,连接OD ,CD.∵AC 是⊙O 的直径,∴∠ADC=90°,∴∠BDC=90°.又∵E 为BC 的中点,∴DE=12BC=CE , ∴∠EDC=∠ECD.∵OD=OC ,∴∠ODC=∠OCD ,∴∠EDC +∠ODC=∠ECD +∠OCD=∠ACB=90°,∴∠ODE=90°,即OD ⊥DE.又∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.(2)设⊙O 的半径为x.在Rt △ODF 中,根据勾股定理,得OD 2+DF 2=OF 2,即x 2+42=(x +2)2,解得x=3.∴⊙O 的直径的长为6.15.解:(1)答案不唯一,如①∠BAE=90°,②∠EAC=∠ABC.理由:①∵∠BAE=90°,∴AE ⊥AB.又∵AB 是⊙O 的直径,∴EF 是⊙O 的切线.②∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠ABC +∠BAC=90°.∵∠EAC=∠ABC ,∴∠BAE=∠BAC +∠EAC=∠BAC +∠ABC=90°,即AE ⊥AB.又∵AB 是⊙O 的直径,∴EF 是⊙O 的切线.(2)EF 是⊙O 的切线.证明:如图,作直径AM ,连接CM ,则∠ACM=90°,∠M=∠B ,∴∠M +∠CAM=∠B +∠CAM=90°.∵∠CAE=∠B ,∴∠CAE +∠CAM=90°,即AE ⊥AM.∵AM 是⊙O 的直径,∴EF 是⊙O 的切线.。
切线的性质与判定练习题及答案
切线的性质与判定练习题及答案1. 已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是A.相切 B.相离C.相离或相切D.相切或相交2.如图,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O 的半径为A.B.C.D3.如图,已知∠AOB=30°,M为OB边上任意一点,以M为圆心,?2cm?为半径作⊙M,?当OM=______cm时,⊙M 与OA相切.4.如图,AB是⊙O的直径,C.D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于A.0°B.50°C.0° D.70°5.如图,⊙O的半径为2,点A的坐标为,直线 AB为⊙O的切线,B为切点,则B点的坐标为.A. B. C.5556.如图,圆周角∠BAC=55°,分别过B、C两点作⊙O的切线,两切线相交于点P,则∠BPC=°。
7.如图,?ABC的一边AB是⊙O的直径,请你添加一个条件,使BC 是⊙O的切线,你所添加的条件为 .A30.8.如图,已知AD为?o的直径,B为AD延长线上一点,BC与?o 切于C点,求证:BD=CD;△AOC≌△CDB.9、如图,AB是⊙O的直径,∠B=45°,AB=AC。
求证:AC是⊙O的切线。
10.已知AB是⊙O的直径,直线BC与⊙O相切于点B,∠ABC的平分线BD交⊙O于点D,AD的延长线交BC于点C.求∠BAC的度数;求证:AD=CD.11.如图,AB为⊙O的直径,C为⊙O上一点,AD的过C点的直线互相垂直,垂足为D,且AC平分∠DAB.求证:DC为⊙O的切线;若⊙O的半径为3,AD=4,求AC的长.12.如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.求证:BC平分∠PDB;若PA=6,PC=6,求BD的长.切线的性质与判定练习题1. 如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C,∠DAB=∠B=30°.直线BD是否与⊙O相切?为什么?连接CD,若CD=5,求的长.2.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.求证:PA是⊙O的切线;若PD=,求⊙O的直径.3.在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.求证:AC与⊙O相切.若BC=6,AB=12,求⊙O的面积.A4.如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30,D为弧BC 的?中点.求证:AB=BC求证:四边形BOCD是菱形.. C5.如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.AC与CD相等吗?问什么?若AC=2,AO=,求OD的长度.6.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.判断AF与⊙O的位置关系并说明理由;若⊙O的半径为4,AF=3,求AC的长.7.如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE 的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE 交BA的延长线于点G.求证:CG是⊙O的切线.若∠EAB=30°,CF=2,求GA的长.8.如图,△ABC中,?ACB?90,D是边AB上一点,且?A?2?DCB.E是BC边上的一点,以EC为直径的?O经过点D。
2021年人教版数学九年级上册《切线的性质与判定》证明题专项练习(含答案)
人教版数学九年级上册《切线的性质与判定》证明题专项练习1.如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是弧DE的中点.(1)求证:直线l是⊙O的切线;(2)若PA=6,求PB的长2.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F(1)求证:AC是⊙O的切线;(2)若CF=2,CE=4,求⊙O的半径.3.如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D,求证:AC与⊙D相切.4.如图,Rt△ADB中,∠ADB=90°,∠DAB=30°,⊙O为△ADB的外接圆,DH⊥AB于点H,现将△AHD沿AD翻折得到△AED,AE交⊙O于点C,连接OC交AD于点G.(1)求证:DE是⊙O的切线;(2)若AB=10,求线段OG的长.5.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.6.如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AC=4,CE=2,求⊙O半径的长.7.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.8.如图(1),在△ABC中,∠ACB=90°,以AB为直径作⊙O;过点C作直线CD交AB的延长线于点D,且BD=OB,CD=CA.(1)求证:CD是⊙O的切线.(2)如图(2),过点C作CE⊥AB于点E,若⊙O的半径为8,∠A=30°,求线段BE.9.如图,AB是⊙O的直径,C是⊙O上一点,点D在AB的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,CD=4,求BD的长.10.如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O的直径的长.11.如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.12.如图,AB是半圆O上的直径,E是的中点,OE交弦BC于点D,过点C作⊙O的切线交OE 的延长线于点F,已知BC=8,DE=2.(1)求⊙O的半径;(2)求CF的长.13.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.14.如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.15.已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(Ⅰ)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.16.如图,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB的长度.17.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)已知:CD=1,EH=3,求AF的长.18.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;(3)求证:CD=HF.参考答案1.(1)证明:连接DE,OA.∵PD是直径,∴∠DEP=90°,∵PB⊥FB,∴∠DEP=∠FBP,∴DE∥BF,∵,∴OA⊥DE,∴OA⊥BF,∴直线l是⊙O的切线.(2)作OH⊥PA于H.∵OA=OP,OH⊥PA,∴AH=PH=3,∵OA∥PB,∴∠OAH=∠APB,∵∠AHO=∠ABP=90°,∴△AOH∽△PAB,2.(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°,∴AC是⊙O的切线;(2)解:设⊙O的半径为r.过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE=4,CH=OE=r,∴BH=FH=CH-CF=r-2,在Rt△BHO中,∵OH2+BH2=OB2,∴42+(r-2)2=r2,解得r=5.∴⊙O的半径为5.3.解:过D作DH⊥AC于H,由角平分线的性质可证DB=DH,∴AC与⊙D相切4.解:(1)连接OD,∵OA=OD,∴∠OAD=∠ODA,由翻折得:∠OAD=∠EAD,∠E=∠AHD=90°,∴∠ODA=∠EAD,∴OD∥AE,∴∠E+∠ODE=180°,∴∠ODE=90°,∴DE与⊙O相切;(2)∵将△AHD沿AD翻折得到△AED,∴∠OAD=∠EAD=30°,∴∠OAC=60°,∵OA=OD,∴△OAC是等边三角形,∴∠AOG=60°,∵∠OAD=30°,∴∠AGO=90°,∴OG=2.5.5.(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.6.解:(1)连接OA,∵∠ADE=25°,∴由圆周角定理得:∠AOC=2∠ADE=50°,∵AC切⊙O于A,∴∠OAC=90°,∴∠C=180°﹣∠AOC﹣∠OAC=180°﹣50°﹣90°=40°;(2)设OA=OE=r,在Rt△OAC中,由勾股定理得:OA2+AC2=OC2,即r2+42=(r+2)2,解得:r=3,答:⊙O半径的长是3.7.(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.8.(1)证明:如图1,连结OC,∴OC=OA=OB.∴点C 在⊙O 上,∵BD=OB ,∴AB=DO ,∵CD=CA ,∴∠A=∠D ,∴△ACB ≌△DCO ,∴∠DCO=∠ACB=90°,∴CD 是⊙O 的切线;(2)解:如图2,在Rt △ABC 中,BC=ABsin ∠A=2×8×sin30°=8,∵∠ABC=90°﹣∠A=90°﹣30°=60°,∴BE=BCcos60°=8×=4.9.解:(1)证明:如图,连接OC.∵AB 是⊙O 的直径,C 是⊙O 上一点,∴∠ACB=90°,即∠ACO +∠OCB=90°.∵OA=OC ,∠BCD=∠A ,∴∠ACO=∠A=∠BCD ,∴∠BCD +∠OCB=90°,即∠OCD=90°,∴OC ⊥CD.又∵OC 是⊙O 的半径,∴CD 是⊙O 的切线.(2)由(1)及已知得∠OCD=90°,OB=OC=3,CD=4,在Rt △OCD 中,根据勾股定理得OD=5,∴BD=OD -OB=5-3=2.10.解:(1)证明:如图,连接OD ,CD.∵AC 是⊙O 的直径,∴∠ADC=90°,∴∠BDC=90°.又∵E 为BC 的中点,∴DE=12BC=CE ,∴∠EDC=∠ECD.∵OD=OC,∴∠ODC=∠OCD,∴∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°,∴∠ODE=90°,即OD⊥DE.又∵OD是⊙O的半径,∴DE是⊙O的切线.(2)设⊙O的半径为x.在Rt△ODF中,根据勾股定理,得OD2+DF2=OF2,即x2+42=(x+2)2,解得x=3.∴⊙O的直径的长为6.11.解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°.12.解:(1)设⊙O的半径为x,∵E点是的中点,O点是圆心,∴OD⊥BC,DC==4,在Rt△ODC中,OD=x﹣2,∴OD2+DC2=OC2∴(x﹣2)2+42=x2∴x=5,即⊙O的半径为5;(2)∵FC是⊙O的切线,∴OC⊥CF又∵E是的中点.∴OD⊥BC,∴OC2=OD•OF,即52=3•OF,∴在Rt△OCF中,OC2+CF2=OF2∴13.解:(1)如图,连接OD,∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD与⊙O相切于点D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;(2)∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN=.14.解:15.解:(Ⅰ)如图①,连接OC,∵直线l与⊙O相切于点C,∴OC⊥l,∵AD⊥l,∴OC∥AD,∴∠OCA=∠DAC,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°﹣∠B,∴∠AEF=∠ADE+∠DAE=90°+18°=108°,在⊙O中,四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°,∴∠B=180°﹣108°=72°,∴∠BAF=90°﹣∠B=90°﹣72°=18°.16. (1)证明:连接OC,∵点C在⊙0上,0A=OC,∴∠OCA=∠OAC,∵CD⊥PA,∴∠CDA=90°,有∠CAD+∠DCA=90°,∵AC平分∠PAE,∴∠DAC=∠CAO。
切线的判定与性质精选题22道
切线的判定与性质精选题22道一.选择题(共6小题)1.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个B.3个C.2个D.1个2.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A'B'CD'的边A'B'与⊙O相切,切点为E,边CD'与⊙O相交于点F,则CF的长为()A.2.5B.1.5C.3D.43.如图,在矩形ABCD中AB=10,BC=8,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A1B1C1D1的边A1B1与⊙O相切于点E,则BB1的长为()A.B.2C.D.4.如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F,下列结论:①CE =CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④若点F恰好落在弧BC上,则AD=2.其中正确结论的序号是()A.①③B.②③C.①②③D.①②③④5.已知半圆O的直径AB=8,沿弦EF折叠,当折叠后的圆弧与直径AB相切时,折痕EF 的长度m为()A.m=4B.m=4C.4≤m≤4D.4≤m≤4 6.如图,圆心P(﹣5,0),⊙P的半径为3,将⊙P沿x轴的正方向平移,使得⊙P与y轴相切,则平移的距离为()A.2B.8C.3或8D.2或8二.填空题(共8小题)7.如图,直线y=﹣x﹣3交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是.8.如图,△ABC中,∠ACB=90°,sin A=,AC=8,将△ABC绕点C顺时针旋转90°得到△A′B′C,P为线段A′B′上的动点,以点P为圆心,P A′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为.9.如图,点C在以AB为直径的半圆上,AB=10,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.有下列结论:①CE=CF;②线段EF的最小值为5;③当AD=3时,EF与半圆相切;④若点F恰好落在弧BC上,则AD=5;⑤当点D从点A运动到点B时,线段EF扫过的面积是25,其中正确结论的序号是.10.如图,已知AC为⊙O的直径,BC为⊙O的切线,且BC=AC,连接线段AB,与⊙O 交于点D,若AC=4cm,则阴影部分的面积为.11.判断对错(在题后的小括号里,对的打√,错的打×).(1)两个半圆是等弧;(2)过圆心的线段是半径;(3)一个三角形有唯一的一个外接圆;(4)相等的圆心角所对的弧相等;(5)长度相等的两条弧是等弧;(6)顶点在圆上的角是圆周角;(7)圆周角是圆心角的一半;(8)圆的切线只有一条;(9)直线a上一点到圆心的距离等于半径,则a和圆有公共点;(10)若直线与圆有一个公共点,则直线是圆的切线;(11)经过半径外端的直线是圆的切线;(12)能完全重合的两个图形成中心对称;(13)直径所对的角是直角;(14)抛物线y=﹣(x﹣2)2与y轴不相交;(15)二次函数y=2x2+4x﹣1的最小函数值是﹣3 .12.如图,已知扇形AOB的半径为6,圆心角为90°,E是半径OA上一点,F是弧AB上一点.将扇形AOB沿EF对折,使得折叠后的圆弧A′F恰好与半径OB相切于点G,若OE=5,则折痕EF的长为.13.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为.14.如图,在四边形ABCD中,∠A=∠B=90°,AB=12,BC=14,AD=9,点P为线段BC上的一动点,连接DP,以DP为直径的圆M,当圆M与直角梯形ABCD的边相切时,线段BP的最小值为.三.解答题(共8小题)15.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC 的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.16.如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD 的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.17.如图,M,N是以AB为直径的⊙O上的点,且=,弦MN交AB于点C,BM平分∠ABD,MF⊥BD于点F.(1)求证:MF是⊙O的切线;(2)若CN=3,BN=4,求CM的长.18.如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.19.如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=2,AC=2,求AD的长.20.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sin C=时,求⊙O的半径.21.如图,已知直线P A交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC 平分∠P AE,过C作CD⊥P A,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.22.如图,在△ABC中,∠B=90°,点D为AC上一点,以CD为直径的⊙O交AB于点E,连接CE,且CE平分∠ACB.(1)求证:AE是⊙O的切线;(2)连接DE,若∠A=30°,求.切线的判定与性质精选题22道参考答案与试题解析一.选择题(共6小题)1.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个B.3个C.2个D.1个【分析】(1)利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;(2)利用(1)所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案;(3)利用全等三角形的判定得出△PCO≌△BCA(ASA),进而得出答案;(4)利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可.【解答】解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故(1)正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故(2)正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故(3)正确;(4)∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故(4)正确;正确个数有4个,故选:A.【点评】此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键.2.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A'B'CD'的边A'B'与⊙O相切,切点为E,边CD'与⊙O相交于点F,则CF的长为()A.2.5B.1.5C.3D.4【分析】连接OE并延长交CF于点H,可证四边形EB′CH是矩形,再根据勾股定理和垂径定理即可求得CF的长.【解答】解:如图,连接OE并延长交CF于点H,∵矩形ABCD绕点C旋转得矩形A'B'C'D',∴∠B′=∠B′CD′=90°,A′B′∥CD′,BC=B′C=4,∵边A'B'与⊙O相切,切点为E,∴OE⊥A′B′,∴四边形EB′CH是矩形,∴EH=B′C=4,OH⊥CF,∵AB=5,∴OE=OC=AB=,∴OH=EH﹣OE=,在Rt△OCH中,根据勾股定理,得CH===2,∴CF=2CH=4.故选:D.【点评】本题考查了圆中的计算问题和矩形,解决本题的关键是掌握切线的判定与性质、圆周角定理、垂径定理、旋转的性质.3.如图,在矩形ABCD中AB=10,BC=8,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A1B1C1D1的边A1B1与⊙O相切于点E,则BB1的长为()A.B.2C.D.【分析】连接EO并延长交线段CD1于点F,过点B1作B1G⊥BC于点G,由题意可得:四边形B1EFC为矩形,则EF=B1C=8,由勾股定理可求线段CF的长;由旋转的性质可得:∠OCF=∠B1CG,则sin∠OCF=sin∠B1CG=,cos∠OCF=cos∠B1CG=;利用直角三角形的边角关系可求B1G和CG,最后利用勾股定理可得结论.【解答】解:连接EO并延长交线段CD1于点F,过点B1作B1G⊥BC于点G,如图,∵边A1B1与⊙O相切于点E,∴OE⊥A1B1.∵四边形A1B1C1D1是矩形,∴A1B1⊥B1C,B1C⊥CD1.∴四边形B1EFC为矩形.∴EF=B1C=8.∵CD为⊙O的直径,∴OE=DO=OC=AB=5.∴OF=EF﹣OE=3.∵A1B1∥CD1,OE⊥A1B1,∴OF⊥CD1.∴CF==4.由旋转的性质可得:∠OCF=∠B1CG.∴sin∠OCF=sin∠B1CG=,cos∠OCF=cos∠B1CG=.∵sin∠OCF=,cos∠OCF=,∴,.∴B1G=,CG=.∴BG=BC﹣CG=.∴BB1===.故选:C.【点评】本题主要考查了矩形的判定与性质,圆的切线的性质,勾股定理,直角三角形的边角关系,旋转的性质,连接EO,利用切线的性质得到OE⊥A1B1,是解决此类问题常添加的辅助线.4.如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F,下列结论:①CE =CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④若点F恰好落在弧BC上,则AD=2.其中正确结论的序号是()A.①③B.②③C.①②③D.①②③④【分析】①连接DC,根据题意可得:CE=CD,从而可得∠E=∠CDE,再利用等角的余角相等可得∠F=∠CDF,进而可得CD=CF,即可判断;②由①可得EF=2CD,所以当CD最小时,则EF最小,所以当CD⊥AB时,先在Rt△ABC中求出AC,再在Rt△ACD中求出CD,即可判断;③连接OC,先证明△AOC是等边三角形,从而可得∠ACO=60°,然后利用等腰三角形的三线合一性质可得∴∠ACD=30°,进而可得∠ECA=30°,然后再证∠OCE=90°,即可判断;④连接AF、BF,根据题意可得DE⊥AC,从而可得DE∥BC,进而可得FH=DH,∠BHD=90°,从而证明BC是DF的垂直平分线,然后再利用等腰三角形的三线合一性质可得∠FBA=60°,最后在Rt△AFB中求出BF,即可求出BD,即可判断.【解答】解:连接DC,∵点E与点D关于AC对称,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∵∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,故①正确;∵CE=CD=CF,∴EF=2CD,当CD最小时,则EF最小,∴当CD⊥AB时,CD最小,∵AB是半⊙O的直径,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴AC=AB=4,∠CAB=90°﹣∠CBA=60°,在Rt△ADC中,CD=AC sin60°=4×=2,∴EF=2CD=4,∴线段EF的最小值为4,故②不正确;连接OC,∵OA=OC,∠A=60°,∴△AOC是等边三角形,∴∠ACO=60°,∵AD=2,OA=4,∴OD=OA﹣AD=4﹣2=2,∴AD=OD,∴∠ACD=∠ACO=30°,∵点E与点D关于AC对称,∴∠ECA=∠ACD=30°,∴∠OCE=∠ECA+∠ACO=90°,∵OC是半⊙O的半径,∴EF与半⊙O相切,∴当AD=2时,EF与半圆相切,故③正确;当点F恰好落在弧BC上时,连接AF、BF,∵点E与点D关于AC对称,∴AC⊥DE,∴∠AGD=90°,∵∠ACB=90°,∴∠ACB=∠AGD=90°,∴DE∥BC,∵CF=CE,∴FH=DH,∵∠EDF=90°,BC∥DE,∴∠BHD=∠EDF=90°,∴BC是DF的垂直平分线,∴BF=BD,∴∠FBA=2∠CBA=60°,∵AB是半⊙O的直径,∴∠AFB=90°,∴FB=AB cos60°=8×=4,∴BD=BF=4,∴AD=AB﹣BD=8﹣4=4,故④不正确,所以,正确结论的序号是①③,故选:A.【点评】本题考查了相似三角形的判定与性质,圆周角定理,切线的判定与性质,轴对称的性质,直线与圆的位置关系,点与圆的位置关系,直角三角形斜边上的中线性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.已知半圆O的直径AB=8,沿弦EF折叠,当折叠后的圆弧与直径AB相切时,折痕EF 的长度m为()A.m=4B.m=4C.4≤m≤4D.4≤m≤4【分析】分别求得折痕EF的长的最小值与最大值可得答案.【解答】解:如图,当半圆以点B为圆心顺时针旋转90°时,折痕EF的有最小值,∵半圆O的直径AB=8,∴OF=O1F=O1E=OE=4,在Rt△EO1F中,∴EF最小值==4.如图1﹣3,当半圆沿垂直于直径AB进行折叠时,折痕EF有最大值,∴O1M=OM=2,∠OMF=90°,EM=FM,OF=OB=4,∴FM===2,∴EF有最大值=2×2=4,∴折痕EF的长度m为:4≤m,故选:D.【点评】此题考查的是切线的判定与性质、圆周角定理、翻折的性质等知识,掌握其性质定理是解决此题的关键.6.如图,圆心P(﹣5,0),⊙P的半径为3,将⊙P沿x轴的正方向平移,使得⊙P与y轴相切,则平移的距离为()A.2B.8C.3或8D.2或8【分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【解答】解:当圆P在y轴的左侧与y轴相切时,平移的距离为5﹣3=2,当圆P在y轴的右侧与y轴相切时,平移的距离为5+3=8,故选:D.【点评】本题考查的是切线的判定、坐标与图形的变化﹣平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.二.填空题(共8小题)7.如图,直线y=﹣x﹣3交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(﹣,0)或P(﹣,0).【分析】根据函数解析式求得A(﹣4,0),B(0.﹣3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.【解答】解:∵直线y=﹣x﹣3交x轴于点A,交y轴于点B,∴令x=0,得y=﹣3,令y=0,得x=﹣4,∴A(﹣4,0),B(0,﹣3),∴OA=4,OB=3,∴AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,∵∠ADP=∠AOB=90°,∠P AD=∠BAO,∴△APD∽△ABO,∴=,∴=,∴AP=,∴OP=或OP=,∴P(﹣,0)或P(﹣,0),故答案为:(﹣,0)或P(﹣,0).【点评】本题考查了切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意是解题的关键.8.如图,△ABC中,∠ACB=90°,sin A=,AC=8,将△ABC绕点C顺时针旋转90°得到△A′B′C,P为线段A′B′上的动点,以点P为圆心,P A′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为或.【分析】分两种情形分别求解:如图1中,当⊙P与直线AC相切于点M时,如图2中,当⊙P与AB相切于点N时,解直角三角形即可得到结论.【解答】解:∵,∴设BC=3x,则AB=5x,在Rt△ABC中,由勾股定理得,AB2=AC2+BC2,即:(5x)2=(3x)2+82,∴x=2,∴AB=10,BC=6,∴,①若⊙P与AC相切,如图1,设切点为M,连接PM,则PM⊥AC,且PM⊥P A′,∵PM⊥AC,A′C⊥AC,∴∠B′PM=∠A′,由旋转性质可知∠A′=∠A,∴∠B′PM=∠A,∴,设PM=4x,则P A′=PM=4x,B′P=5x,又∵A′B′=AB,即:4x+5x=10,解得,∴;②若⊙P与AB相切,延长PB′交AB于点N,如图2,∵∠A′+∠B=∠A+∠B=90°,∵∠A′NB=90°,即N为AB与⊙O切点,又∴A'B=BC+A'C=BC+AC=14,∴A′N=A′B•cos∠A′=A′B•cos A,即,∴.综上,⊙P的半径为或,故答案为:或.【点评】本题考查切线的性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9.如图,点C在以AB为直径的半圆上,AB=10,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.有下列结论:①CE=CF;②线段EF的最小值为5;③当AD=3时,EF与半圆相切;④若点F恰好落在弧BC上,则AD=5;⑤当点D从点A运动到点B时,线段EF扫过的面积是25,其中正确结论的序号是①②④⑤.【分析】①由点E与点D关于AC对称可得CE=CD,再根据DF⊥DE即可证到CE=CF.②根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.③连接OC,易证△AOC是等边三角形,AD=OD,根据等腰三角形的“三线合一”可求出∠ACD,进而可求出∠ECO=90°,从而得到EF与半圆相切.④利用相似三角形的判定与性质可证到△DBF是等边三角形,只需求出BF就可求出DB,进而求出AD长.⑤首先根据对称性确定线段EF扫过的图形,然后探究出该图形与△ABC的关系,就可求出线段EF扫过的面积.【解答】解:①连接CD,如图1所示.∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.∴CD=CF.∴CE=CD=CF.故①正确.②当CD⊥AB时,如图2所示.∵AB是半圆的直径,∴∠ACB=90°.∵AB=10,∠CBA=30°,∴∠CAB=60°,AC=5,BC=5.∵CD⊥AB,∠CBA=30°,∴CD=BC=.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为5.故②正确.③当AD=3时,连接OC,如图3所示.∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=5,AD=3,∴DO=2.∴AD≠DO.∴∠ACD>∠OCD≠30°.∵点E与点D关于AC对称,∴∠ECA=∠DCA.∴∠ECA≠30°.∴∠ECO≠90°.∴OC不垂直EF.∵EF经过半径OC的外端,且OC不垂直EF,∴EF与半圆不相切.故③错误.④当点F恰好落在上时,连接FB、AF,如图4所示.∵点E与点D关于AC对称,∴ED⊥AC.∴∠AGD=90°.∴∠AGD=∠ACB.∴ED∥BC.∴△FHC∽△FDE.∴.∵FC=EF,∴FH=FD.∴FH=DH.∵DE∥BC,∴∠FHC=∠FDE=90°.∴BF=BD.∴∠FBH=∠DBH=30°.∴∠FBD=60°.∵AB是半圆的直径,∴∠AFB=90°.∴∠F AB=30°.∴FB=AB=5.∴DB=4.∴AD=AB﹣DB=5.故④正确.⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图5中阴影部分.∴S阴影=2S△ABC=2×AC•BC=AC•BC=5×5=25.∴EF扫过的面积为25.故⑤正确.故答案为①②④⑤.【点评】本题考查了等边三角形的判定与性质、平行线的判定与性质、相似三角形的判定与性质、切线的判定、轴对称的性质、含30°角的直角三角形、垂线段最短等知识,熟练掌握几何图形的性质是解题的关键.10.如图,已知AC为⊙O的直径,BC为⊙O的切线,且BC=AC,连接线段AB,与⊙O 交于点D,若AC=4cm,则阴影部分的面积为(6﹣π)cm2.【分析】由切线的性质和圆周角定理可得∠ACB=90°,∠ADC=90°,由等腰直角三角形的性质可得AD=DB=CD,AO=CO=DO,AC⊥OD,由面积和差关系可求解.【解答】解:如图,连接OD,CD,∵BC为⊙O的切线,AC为⊙O的直径,∴∠ACB=90°,∠ADC=90°,又∵AC=BC,∴AD=DB=CD,∵AO=CO=2cm,∴AC⊥OD,OD=AO=CO=2cm,∴∠COD=90°,∴S阴影=S△ACB﹣S△AOD﹣S扇形COD=×4×4﹣×2×2﹣=(6﹣π)cm2,故答案为:(6﹣π)cm2.【点评】本题考查了切线的性质,圆周角定理,扇形的面积公式等知识,灵活运用这些性质解决问题是解题的关键.11.判断对错(在题后的小括号里,对的打√,错的打×).(1)两个半圆是等弧×;(2)过圆心的线段是半径×;(3)一个三角形有唯一的一个外接圆√;(4)相等的圆心角所对的弧相等×;(5)长度相等的两条弧是等弧×;(6)顶点在圆上的角是圆周角×;(7)圆周角是圆心角的一半×;(8)圆的切线只有一条×;(9)直线a上一点到圆心的距离等于半径,则a和圆有公共点√;(10)若直线与圆有一个公共点,则直线是圆的切线×;(11)经过半径外端的直线是圆的切线×;(12)能完全重合的两个图形成中心对称×;(13)直径所对的角是直角×;(14)抛物线y=﹣(x﹣2)2与y轴不相交×;(15)二次函数y=2x2+4x﹣1的最小函数值是﹣3 √.【分析】根据切线的判定和性质定理,二次函数的性质,三角形的外接圆的性质进行判断即可.【解答】解:(1)两个半圆是等弧×;(2)过圆心的线段是半径×;(3)一个三角形有唯一的一个外接圆√;(4)相等的圆心角所对的弧相等×;(5)长度相等的两条弧是等弧×;(6)顶点在圆上的角是圆周角×;(7)圆周角是圆心角的一半×;(8)圆的切线只有一条×;(9)直线a上一点到圆心的距离等于半径,则a和圆有公共点√;(10)若直线与圆有一个公共点,则直线是圆的切线×;(11)经过半径外端的直线是圆的切线×;(12)能完全重合的两个图形成中心对称×;(13)直径所对的角是直角×;(14)抛物线y=﹣(x﹣2)2与y轴不相交×;(15)二次函数y=2x2+4x﹣1的最小函数值是﹣3√,故答案为:×、×、√、×、×、×、×、×、√、×、×、×、×、×、√.【点评】本题考查了圆的性质,切线的判定和性质定理,二次函数的性质,三角形的外接圆的性质,熟练掌握切线的判定和性质定理、三角形的外接圆的性质是解题的关键.12.如图,已知扇形AOB的半径为6,圆心角为90°,E是半径OA上一点,F是弧AB上一点.将扇形AOB沿EF对折,使得折叠后的圆弧A′F恰好与半径OB相切于点G,若OE=5,则折痕EF的长为+.【分析】过点G作O′G⊥OB于点G,过点A作AO′⊥O′G于点O′,连接OO′交EF于H,连接OF,易证四边形AOGO′为矩形,根据题意可得OO′⊥EF,OH=HO′,易证Rt△OEH∽Rt△OO′A,根据相似三角形的性质即可求出OH,再根据勾股定理即可求出EH和FH,进一步求EF的值即可.【解答】解:过点G作O′G⊥OB于点G,过点A作AO′⊥O′G于点O′,连接OO′交EF于H,连接OF,如图所示:∴∠AO′G=∠O′GO=90°,∵∠AOB=90°,∴四边形AOGO′为矩形,∴O′G=AO=6,根据题意,得点O′为所在圆的圆心,∴点O与点O′关于EF对称,∴OO′⊥EF,OH=HO′,设OH=x,则OO′=2x,∵∠EOH=∠O′OA,∠OHE=∠OAO′,∴Rt△OEH∽Rt△OO′A,∴OE:OH=OO′:OA,∵OE=5,OA=6,∴5:x=(2x):6,解得x=,∴OH=,∵OE=5,OF=6,根据勾股定理,得EH=,FH=,∴EF=+,故答案为:+.【点评】本题考查了圆的综合,涉及切线的性质,折叠的性质,相似三角形的性质与判断,勾股定理等,本题综合性较强,难度较大.13.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为2﹣2或2+2.【分析】根据直线l:y=﹣x+1由x轴的交点坐标A(0,1),B(2,0),得到OA=1,OB=2,求出AB=;设⊙M与AB相切于C,连接MC,则MC=2,MC⊥AB,通过△BMC∽△BAO,即可得到结果.【解答】解:在y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,∴A(0,1),B(2,0),∴AB=;如图,设⊙M与AB相切于C,连接MC,则MC=2,MC⊥AB,∵∠MCB=∠AOB=90°,∠ABO=∠CBM,∴△BMC∽△BAO,∴=,即=,∴BM=2,∴OM=2﹣2,或OM=2+2.∴m=2﹣2或m=2+2.故答案为:2﹣2或2+2.【点评】本题考查了直线与圆的位置关系,一次函数的性质,相似三角形的判定和性质,注意分类讨论是解题的关键.14.如图,在四边形ABCD中,∠A=∠B=90°,AB=12,BC=14,AD=9,点P为线段BC上的一动点,连接DP,以DP为直径的圆M,当圆M与直角梯形ABCD的边相切时,线段BP的最小值为4或9.【分析】分两种情形:如图2﹣1中,当⊙M与AB相切时,连接QM.如图2﹣2中,当⊙M与BC(AD)相切时,分别求解即可.【解答】解:如图2﹣1中,当⊙M与AB相切时,连接QM.∵MQ=MP,∴∠MQP=∠MPQ,∵∠QPM=∠QPB,∴∠MQP=∠QPB,∴MQ∥PB,∵DM=PM,∴AQ=QB=6,∵∠A=∠B=∠DQP=90°,∴∠AQD+∠BQP=90°,∠BQP+∠QPB=90°,∴∠AQD=∠BPQ,∴△DAQ∽△QBP,∴,∴,∴BP=4.如图2﹣2中,当⊙M与BC(AD)相切时,四边形ABPD是矩形,∴BP=AD=9.综上所述,满足条件的BP的值为4或9.故答案为:4或9.【点评】本题属于四边形综合题,考查了直角梯形的性质,平行线的性质,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会寻找特殊位置解决问题,属于中考压轴题.三.解答题(共8小题)15.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC 的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.【分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴∴BF==【点评】本题考查常见的几何题型,包括切线的判定,角的大小及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.16.如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD 的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.【分析】(1)连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可证得;(2)先证△OBC是等边三角形得∠COB=60°,再由(1)中所证切线可得∠OCF=90°,结合半径OC=5可得答案.【解答】解:(1)连接OC,∵OD⊥AC,OD经过圆心O,∴AD=CD,∴P A=PC,在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP∵P A是⊙O的切线,∴∠OAP=90°.∴∠OCP=90°,即OC⊥PC∴PC是⊙O的切线.(2)∵OB=OC,∠OBC=60°,∴△OBC是等边三角形,∴∠COB=60°,∵AB=10,∴OC=5,由(1)知∠OCF=90°,∴CF=OC tan∠COB=5.【点评】本题考查了切线的性质定理以及判定定理,以及直角三角形三角函数的应用,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题.17.如图,M,N是以AB为直径的⊙O上的点,且=,弦MN交AB于点C,BM平分∠ABD,MF⊥BD于点F.(1)求证:MF是⊙O的切线;(2)若CN=3,BN=4,求CM的长.【分析】(1)根据等腰三角形的性质和角平分线的定义证得∠OMB=∠MBF,得出OM ∥BF,即可证得OM⊥MF,即可证得结论;(2)由勾股定理可求AB的长,可得AO,BO,ON的长,由勾股定理可求CO的长,通过证明△ACN∽△MCB,可得,即可求CM的长.【解答】证明:(1)连接OM,∵OM=OB,∴∠OMB=∠OBM,∵BM平分∠ABD,∴∠OBM=∠MBF,∴∠OMB=∠MBF,∴OM∥BF,∵MF⊥BD,∴OM⊥MF,即∠OMF=90°,∴MF是⊙O的切线;(2)方法一、如图,连接AN,ON∵=,∴AN=BN=4∵AB是直径,=,∴∠ANB=90°,ON⊥AB∴AB==4∴AO=BO=ON=2∴OC===1∴AC=2+1,BC=2﹣1∵∠A=∠NMB,∠ANC=∠MBC∴△ACN∽△MCB∴∴AC•BC=CM•CN∴7=3•CM∴CM=方法二、∵,∴∠ABN=∠BMN,∵∠BNC=∠BNM,∴△BCN∽△MBN,∴=,∴BN2=NC•MN,∴MN=,∴CM=.【点评】本题考查了切线的性质,圆的有关知识,相似三角形的判定和性质,勾股定理等知识,求OC的长是本题的关键.18.如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.【分析】(1)连接OF,易证∠DBC+∠C=90°,由等腰三角形的性质得∠DBC=∠OFB,∠C=∠EFC,推出∠OFB+∠EFC=90°,则∠OFE=90°,即可得出结论;(2)连接AF,则∠AFB=90°,求出BD=3OD=3,CD=AB=4,BC==5,证明△FBA∽△DBC,得出=,求出BF=,由CF=BC﹣BF即可得出结果.【解答】(1)证明:连接OF,如图1所示:∵CD⊥AB,∴∠DBC+∠C=90°,∵OB=OF,∴∠DBC=∠OFB,∵EF=EC,∴∠C=∠EFC,∴∠OFB+∠EFC=90°,∴∠OFE=180°﹣90°=90°,∴OF⊥EF,∵OF为⊙O的半径,∴EF是⊙O的切线;(2)解:连接AF,如图2所示:∵AB是⊙O的直径,∴∠AFB=90°,∵D是OA的中点,∴OD=DA=OA=AB=×4=1,∴BD=3OD=3,∵CD⊥AB,CD=AB=4,∴∠CDB=90°,由勾股定理得:BC===5,∵∠AFB=∠CDB=90°,∠FBA=∠DBC,∴△FBA∽△DBC,∴=,∴BF===,∴CF=BC﹣BF=5﹣=.【点评】本题考查了切线的判定、等腰三角形的性质、圆周角定理、勾股定理、相似三角形的判定与性质等知识;熟练掌握切线的判定和相似三角形的判定与性质是解题的关键.19.如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=2,AC=2,求AD的长.【分析】(1)连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.【解答】证明:(1)连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,(2分)∵BD是⊙O的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,(3分)∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE与⊙O相切于点A;(4分)(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,(5分)∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,(7分)∴BD=8,∴在Rt△ABD中,AD====2.(8分)【点评】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.20.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sin C=时,求⊙O的半径.【分析】(1)连接OE,根据等腰三角形性质求出BD⊥AC,推出∠ABE=∠DBE和∠OBE =∠OEB,得出∠OEB=∠DBE,推出OE∥BD,得出OE⊥AC,根据切线的判定定理推出即可;(2)根据sin C=求出AB=BC=10,设⊙O的半径为r,则AO=10﹣r,得出sin A=sin C=,根据OE⊥AC,得出sin A===,即可求出半径.【解答】(1)证明:连接OE,∵AB=BC且D是AC中点,∴BD⊥AC,∵BE平分∠ABD,∴∠ABE=∠DBE,∵OB=OE∴∠OBE=∠OEB,∴∠OEB=∠DBE,∴OE∥BD,∵BD⊥AC,∴OE⊥AC,∵OE为⊙O半径,∴AC与⊙O相切.(2)解:∵BD=6,sin C=,BD⊥AC,∴BC=10,∴AB=BC=10,设⊙O的半径为r,则AO=10﹣r,∵AB=BC,∴∠C=∠A,∴sin A=sin C=,∵AC与⊙O相切于点E,∴OE⊥AC,∴sin A===,∴r=,答:⊙O的半径是.【点评】本题考查了平行线的性质和判定,等腰三角形的性质和判定,解直角三角形,切线的性质和判定的应用,解(1)小题的关键是求出OE∥BD,解(2)小题的关键是得出关于r的方程,题型较好,难度适中,用了方程思想.21.如图,已知直线P A交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC 平分∠P AE,过C作CD⊥P A,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【分析】(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线;(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5﹣x)2+(6﹣x)2=25,从而求得x的值,由勾股定理得出AB的长.【解答】(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠P AE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥P A,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)解:过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6﹣x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5﹣x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5﹣x)2+(6﹣x)2=25,化简得x2﹣11x+18=0,解得x1=2,x2=9.∵CD=6﹣x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5﹣2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.【点评】本题考查了切线的判定和性质、勾股定理、矩形的判定和性质以及垂径定理,是基础知识要熟练掌握.22.如图,在△ABC中,∠B=90°,点D为AC上一点,以CD为直径的⊙O交AB于点E,连接CE,且CE平分∠ACB.(1)求证:AE是⊙O的切线;(2)连接DE,若∠A=30°,求.【分析】(1)连接OE,证明OE∥BC,得∠AEO=∠B=90°,即可得出结论;(2)连接DE,先证明△DCE∽△ECB,得出=,易证∠ACB=60°,由角平分线定义得∠DCE=∠ACB=×60°=30°,由此可得的值,即可得出结果.【解答】(1)证明:连接OE,如图1所示:∵CE平分∠ACB,。
【新课标】最新华东师大版九年级数学下册《切线的判定和性质》同步练习题及答案
2017-2018学年(新课标)华东师大版九年级下册第27章 圆 27.2.3.1 切线的判定和性质 同步练习题1.下列直线中能判定为圆的切线的是( )A .与圆有公共点的直线B .过圆的半径外端的直线C .垂直于圆的半径且与圆有公共点的直线D .过半径的外端且与半径垂直的直线2.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点D 1(0,3)B .点D 2(2,3)C .点D 3(5,1) D .点D 4(6,1)3. 如图,AB 是⊙O 的直径,BC 交⊙O 于点D ,DE ⊥AC 于点E ,要使DE 是⊙O 的切线,还需补充一个条件,则补充的条件不正确的是( )A .DE =DOB .AB =AC C .CD =DB D .AC ∥OD4. 如图,△ABC 的边AC 与⊙O 相交于C ,D 两点,且经过圆心O ,边AB 与⊙O 相切,切点为B.已知∠A =30°,则∠C 的大小是( )A.30°B.45°C.60°D.40°5.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为( )A.40°B.50°C.65°D.75°6. 如图,AB是⊙O直径,点C在AB的延长线上,CD切⊙O于点D,连接AD,若∠A=25°,则∠C的大小为____°.7. 如图,点A在⊙O上,下列条件不能说明PA是⊙O的切线的是( )A.OA2+PA2=OP2B.PA⊥OA C.∠P=30°,∠O=60°D.OP =2OA8. 如图,P是⊙O外一点,PA是⊙O的切线,PO=26 cm,PA=24 cm,则⊙O的周长为( )A.18πcm B.16πcm C.20πcm D.24πcm9. 如图,AB是⊙O的直径,C,D是⊙O上的点,∠CDB=20°,过点C作⊙O 的切线交AB的延长线于点E,则∠E等于( )A.40°B.50°C.60°D.70°10. 如图,点A,B,D在⊙O上,∠A=25°,OD的延长线交直线BC于点C,且∠OCB=40°,直线BC与⊙O的位置关系为___________________.11.如图,A,B是⊙O上的两点,AC是过A点的一条直线,如果∠AOB=120°,那么当∠CAB的度数等于___________________度时,AC才能成为⊙O的切线.12. 如图,一个边长为4 cm的等边三角形ABC的高与⊙O的直径相等.⊙O与BC 相切于点C,与AC相交于点E,则CE的长为_________cm.13. 如图,在△ABC中,AB=AC,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F,求证:直线EF是⊙O的切线.14. )如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O 的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.答案:1. D2. C3. A4. A5. C6. 407. D8. C9. B10. 相切11. 6012. 313. 解:连接OE ,DE ,∵BD 是⊙O 的直径,∴∠DEB =90°,∵AB =AC ,∴∠ABC =∠C ,又∵OB =OE ,∴∠ABC =∠OEB ,∵∠FEC +∠C =90°,∴∠FEC +∠OEB =90°,∴OE ⊥EF ,∵OE 是⊙O 半径,∴直线EF 是⊙O 的切线 14.解:(1)如图,连接OD ,∵BD 是⊙O 的切线,D 为切点,∴OD⊥BC.∵AC ⊥BD ,∴OD ∥AC ,∴∠3=∠2.又∵OD =OA ,∴∠1=∠3,∴∠1=∠2.∴AD 平分∠BAC. (2)∵OD ∥AC ,∴△BOD ∽△BAC.∴OD AC =BO BA ∴4AC =610,∴AC =203.。
中考数学专题复习《切线的判定与性质综合》测试卷-附带答案
中考数学专题复习《切线的判定与性质综合》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________1.下列说法中正确的是()A.垂直于半径的直线是圆的切线B.圆的切线垂直于半径C.经过半径的外端的直线是圆的切线D.圆的切线垂直于过切点的半径2.如图∠APB=300点O在射线PA上⊙O的半径为2 当⊙O与PB相切时OP的长度为()A.3B.4C.2√3D.2√53.如图等边三角形ABC的边长为8 以BC上一点O为圆心的圆分别与边AB AC相切则⊙O的半径为()A.2√3B.3C.4D.4−√34.如图在⊙O中AB、AC是弦CD切⊙O于点C交射线OB于点D若∠BAC=25°则∠D的度数为()A.50∘B.40∘C.30∘D.20∘5.如图AB是⊙O的直径C D是⊙O上的点∠CDB=15∘过点C作⊙O的切线交AB的延长线于点E则sinE的值为()A.12B.√22C.√33D.√326.如图AC为⊙O的直径过圆上一点B作⊙O的切线与AC的延长线交于点P连接AB BC若∠A=30°BC=2则线段BP的长度是()A.3B.72C.2√3D.3√37.如图所示点A是半径为2的⊙O外一点OA=4 AB是⊙O的切线B为切点弦BC⊙OA 连接AC则图中阴影部分的面积为()A.2B.2√2C.3D.√38.如图⊙ABC周长为20cm BC=6cm 圆O是⊙ABC的内切圆圆O的切线MN与AB CA相交于点M N则⊙AMN的周长为()A.14cm B.8cm C.7cm D.9cm9.如图以Rt△ABC的直角边AB为直径作半圆⊙O与边BC交于点D过D作半圆的切线与边AC交于点E过E作EF⊙AB与BC交于点F.若AB=20 OF=7.5 则CD的长为()A.7B.8C.9D.1010.如图PQ PB QC是⊙O的切线切点分别为A B C点D在BC上若⊙D=100° 则⊙P与⊙Q的度数之和是()A.160°B.140°C.120°D.100°11.如图AB是⊙O的直径⊙O交BC的中点于D DE⊙AC于E 连接AD 则下列结论:①AD⊙BC ②⊙EDA=⊙B ③OA=1AC ④DE是⊙O的切线正确的个数是()2A.1 个B.2个C.3 个D.4个12.如图在Rt△AOB中OA=OB=4√2⊙O的半径为2 点P是AB边上的动点过点P作⊙O的一条切线PQ(点Q为切点)则线段PQ长的最小值为()A.2√3B.√3C.1D.213.如图在矩形ABCD中AB=5 BC=4 以CD为直径作⊙O.将矩形ABCD绕点C旋转使所得矩形A'B'CD'的边A'B'与⊙O相切切点为E边CD'与⊙O相交于点F则CF的长为()A.2.5B.1.5C.3D.414.如图点A的坐标为(﹣3 2)⊙A的半径为1 P为坐标轴上一动点PQ切⊙A于点Q在所有P点中使得PQ长最小时点P的坐标为()A.(0 2)B.(0 3)C.(﹣2 0)D.(﹣3 0)15.如图在直角坐标系中以点O为圆心半径为4的圆与y轴交于点B点A(8,4)是圆外一点直线AC与⊙O切于点C与x轴交于点D则点C的坐标为()A.(2√32√3)B.(125−85)C.(165−125)D.(2√3−2)16.如图在Rt⊙ABC中⊙C=90° BC=6cm AC=8cm D是边BC上一点且BD﹕CD=1﹕2 点O在AD上⊙O与AB BC相切则⊙O的面积为()A.πcm2B.43πcm2C.169πcm2D.2πcm217.如图在△ABC中AB=AC以AC边为直径作⊙O交BC于点D过点D作⊙O的切线交AB于点E交AC的延长线于点F若半径为3 且sin∠CFD=35则线段AE的长是()A.245B.5C.194D.22518.已知:如图AB=BC⊙ABC=90° 以AB为直径的⊙O交OC于点D AD的延长线交BC于点E过D作⊙O的切线交BC于点F.下列结论:①CD2=CE⋅CB②4EF2=ED⋅EA③∠OCB=∠EAB④DF=12CD.其中正确的有()A.①②③B.②③④C.①②④D.①③④19.如图AB为半圆O的直径AD BC分别切⊙O于A B两点CD切⊙O于点E连接OD OC下列结论:①⊙DOC=90° ②AD+BC=CD③S△AOD:S△BOC=AD2:AO2④OD:OC=DE:EC⑤OD2=DE•CD正确的有()A.①②③④B.②③④⑤C.①②③⑤D.①②⑤20.如图⊙O的直径AB垂直于弦CD垂足为点E P为⊙O上一动点P从A→D→B在半圆上运动(点P不与点A重合)AP交CD所在的直线于点F已知AB=10CD=8记PA=x AF为y则y关于x的函数图象大致是()A.B.C.D.参考答案1.解:根据圆的切线的性质定理得:圆的切线垂直于经过切点的半径切线的判定定理得:经过半径的外端且垂直于半径的直线是圆的切线.故选D.2.解:设⊙O与PB的切点为点Q 连接OQ OQ为半径∴OQ⊥PQ∴ΔOPQ是直角三角形且有一锐角∠OPQ=∠APB=300∴OP=2OQ=4.故答案为:B.3.解:设⊙O与AC的切点为E连接AO OE⊙等边三角形ABC的边长为8⊙AC=8∠C=∠BAC=60°⊙圆分别与边AB AC相切∠BAC=30°⊙∠BAO=∠CAO=12⊙∠AOC=90°AC=4⊙OC=12⊙OE⊥ACOC=2√3⊙OE=√32⊙⊙O的半径为2√3故选A.4.解:连接CO ⊙∠BAC=25°⊙∠BOC=2∠BAC=50°⊙CD切⊙O于点C⊙∠OCD=90°故∠D=90°−∠BOC=40°故选B.5.解:如图连接OC由题意知OC⊥CE∠COB=2∠CDB=30°⊙∠OCE=90°⊙∠E=180°−∠COE−∠OCE=60°⊙sin∠E=sin60°=√32故选:D.6.解:⊙AC为⊙O的直径⊙⊙ABC=90°⊙⊙A=30°⊙⊙ACB=60°⊙OB=OC⊙⊙BOC是等边三角形⊙OB=BC=2 ⊙BOC=60°⊙BP是⊙O的切线⊙⊙OBP=90°⊙⊙P=90°-⊙BOP=90°-60°=30°⊙OP=2OB=2×2=4在Rt⊙OBP中根据勾股定理得BP=√OP2−OB2=√42−22=2√3.故选C.7.解:连接OB OC⊙AB是圆的切线⊙⊙ABO=90°在直角⊙ABO中OB=2 OA=4⊙⊙OAB=30° ⊙AOB=60°⊙OA⊙BC⊙⊙CBO=⊙AOB=60° 且S阴影部分=S△BOC⊙⊙BOC是等边三角形边长是2⊙图中阴影部分的面积=12×2×√3=√3故选:D.8.解:⊙圆O是⊙ABC的内切圆圆O的切线MN与AB CA相交于点M N ⊙BF=BE CF=CD DN=NG EM=GM AD=AE⊙⊙ABC周长为20cm BC=6cm⊙AE=AD=AB+AC−BC2=20−BC−BC2=20−122=4(cm)⊙⊙AMN的周长为AM+MG+NG+AN=AM+ME+AN+ND=AE+AD=4+4=8(cm)故选:B.9.解:连结AD 如图⊙⊙BAC=90° AB为直径⊙AC是⊙O的切线⊙DE为⊙O的切线⊙ED=EA⊙⊙ADE=⊙2⊙AB为直径⊙⊙ADB=90°⊙⊙1+⊙ADE=90° ⊙2+⊙C=90°⊙⊙1=⊙C⊙ED=EC⊙CE=AE⊙EF⊙AB⊙EF为⊙ABC的中位线⊙BF=CF而BO=AO⊙OF为⊙ABC的中位线⊙OF⊙AE⊙AE=OF=7.5⊙AC=2AE=15在Rt⊙ACD中BC=√AB2+AC2=√202+152=25⊙⊙DCA=⊙ACB⊙CD AC =ACBC即CD15=1525⊙CD=9.故选:C.10.解:连接OA OB OC AB AC⊙⊙D=100°⊙⊙BAC=180°−⊙D=80°⊙⊙BOC=2⊙BAC=160°⊙⊙AOB+⊙AOC=360°−160°=200°⊙PQ PB QC是⊙O的切线⊙⊙PBO=⊙PAO=⊙QAO=⊙QCO=90°⊙⊙P+⊙Q=2×360°−⊙PBO−⊙PAO−⊙QAO−⊙QCO−⊙AOB−⊙AOC=720°−4×90°−200°=160°故选:A.11.解:⊙AB是⊙O直径⊙⊙ADB=90°⊙AD⊙BC 故结论①正确连接OD 如图⊙点D是BC的中点AD⊙BC⊙AC=AB⊙⊙C=⊙B⊙⊙B=⊙ODB⊙⊙ODB=⊙C OD⊙AC⊙⊙ODE=⊙CED⊙ED是圆O的切线故结论④正确又OB=OD⊙⊙ODB=⊙B⊙AB为圆O的直径⊙⊙ADB=90°⊙⊙EDA+⊙ADO=90° ⊙BDO+⊙ADO=90°⊙⊙EDA=⊙BDO⊙⊙EDA=⊙B 故结论②正确由D为BC中点且AD⊙BC⊙AD垂直平分BC⊙AC=AB⊙OA=1AB2AC 故结论③正确⊙OA=12则正确结论的个数为4个.故选:D.12.解:连接OQ.⊙PQ是⊙O的切线⊙OQ⊙PQ根据勾股定理知PQ2=OP2-OQ2⊙当PO⊙AB 时 线段PQ 最短⊙在Rt △AOB 中 OA=OB=4√2⊙AB=√2OA=8⊙OP=OA•OB AB =4⊙PQ=√OP 2−OQ 2=2√3.故选:A .13.解:如图 连接EO 并延长交CF 于点H⊙矩形ABCD 绕点C 旋转得矩形A 'B 'C 'D '⊙⊙B ′=⊙B ′CD ′=90° A ′B ′∥CD ′BC =B ′C =4⊙边A 'B '与⊙O 相切 切点为E⊙OE ⊙A ′B ′⊙四边形EB ′CH 是矩形⊙EH =B ′C =4OH ⊙CF⊙AB =5⊙OE =OC =12AB =52⊙OH =EH ﹣OE =32 在Rt⊙OCH 中 根据勾股定理 得CH =√0C 2−OH 2=√(52)2−(32)2=2, ⊙CF =2CH =4.故选:D .14.解:连接AQ P A 如图⊙PQ切⊙A于点Q⊙AQ⊙PQ⊙⊙AQP=90°⊙PQ=√AP2−AQ2=√AP2−1当AP的长度最小时PQ的长度最小⊙AP⊙x轴时AP的长度最小⊙AP⊙x轴时PQ的长度最小⊙A(﹣3 2)⊙此时P点坐标为(﹣3 0).故选:D.15.解:如图作AE⊥x轴于E CH⊥x轴于H连接OC⊙B(0,4)A(8,4)⊙AB=8AE=OB=OC=4AB⊥y轴⊙AB为⊙O的切线⊙直线AC与⊙O切于点C⊙OC⊥AC AC=AB=OE=8在△OCD和△AED中{∠ODC=∠ADE ∠OCD=∠AED OC=AE⊙△OCD ≌△AED⊙OD =AD ED =CD设 OD =x 则AD =x DE =OE −OD =8−x在 Rt △ADE 中 DE 2+AE 2=AD 2 即(8−x)2+42=x 2 解得x =5⊙OD =5 DE =CD =3⊙ △OCD ≌△AED⊙12 CH ⋅OD = 12 OC ⋅CD⊙CH = 3×45=125在 Rt △OCH 中 OH = √OC 2−CH 2=√42−(125)2 =165 ⊙C 点坐标为(165 −125 ). 故选:C .16.解:过点O 作OE⊙AB 于点E OF⊙BC 于点F . ⊙AB BC 是⊙O 的切线⊙点E F 是切点⊙OE OF 是⊙O 的半径⊙OE=OF在△ABC 中 ⊙C=90° AC=8 BC=6⊙由勾股定理 得AB=10又⊙BD ﹕CD=1﹕2 BC=6⊙BD=2 CD=4又⊙S △ABD =S △ABO +S △BOD⊙ 12AB•OE+12BD•OF=12BD•AC解得OE=43⊙⊙O的半径是43由此⊙O的面积是169π.故选:C.17.解:连接OD如图⊙AB=AC∴∠B=∠ACB∵OC=OD∴∠OCD=∠ODC∴∠B=∠ODC∴OD∥AB⊙DF为切线∴OD⊥DF∴AE⊥EF在Rt△ODF中∵sin∠CFD=ODOF=35,OD=3∴OF=5在Rt△AEF中∵sin∠F=AEAF=35∴AE=35(3+5)=245故选:A.18.解:连接BD⊙AB为直径⊙⊙ADB=90° 即⊙ADO+⊙ODB=90°⊙OD=OB⊙⊙OBD=⊙ODB⊙⊙ABC=90°⊙⊙CBD+⊙OBD=90°⊙⊙CBD=⊙ADO=⊙CDE⊙⊙BCD=⊙DCE⊙⊙CDE⊙⊙CBD⊙CD CB =CECD⊙CD2=CE⋅CB故①正确⊙⊙ABC=90° AB为直径⊙BC为⊙O的切线⊙DF为⊙O的切线⊙FD=FB⊙⊙FBD=⊙FDB⊙⊙EDF+⊙FDB=⊙DEB+⊙EBD=90°⊙⊙EDF=⊙DEB⊙EF=FD=FB⊙⊙EAB=⊙EBD⊙⊙EAB⊙⊙EBD同理EB2=ED⋅EA⊙EB=2EF⊙4EF2=ED⋅EA故②正确⊙⊙ODF=⊙OBF=90°⊙⊙DOB+⊙DFB=180°而⊙DFC+⊙DFB=180°⊙⊙DFC=⊙COB⊙CDF⊙⊙CBO⊙DF BO =CDCB⊙DF CD =BOCB=12⊙DF=12CD.故④正确⊙AO=DO⊙⊙OAD=⊙ADO假设③⊙OCB=⊙EAB成立则⊙OCB=12⊙COB⊙⊙OCB=30°而BOBC =BOAB=12与tan30°=BOAB=√33矛盾故③⊙OCB=⊙EAB不成立故③不正确综上正确的有①②④.故选:C.19.解:连接OE 如图所示:⊙AD与圆O相切DC与圆O相切BC与圆O相切⊙⊙DAO=⊙DEO=⊙OBC=90°⊙DA=DE CE=CB AD⊙BC⊙CD=DE+EC=AD+BC 选项②正确在Rt⊙ADO 和Rt⊙EDO 中{OD =OD DA =DE⊙Rt⊙ADO⊙Rt⊙EDO (HL )⊙⊙AOD =⊙EOD同理Rt⊙CEO⊙Rt⊙CBO⊙⊙EOC =⊙BOC又⊙AOD +⊙DOE +⊙EOC +⊙COB =180°⊙2(⊙DOE +⊙EOC )=180° 即⊙DOC =90° 选项①正确 ⊙⊙DOC =⊙DEO =90° 又⊙EDO =⊙ODC⊙⊙EDO⊙⊙ODC⊙OD CD =DE OD 即OD 2=DC•DE 选项⑤正确⊙⊙AOD +⊙COB =⊙AOD +⊙ADO =90° ⊙A =⊙B =90° ⊙⊙AOD⊙⊙BOC⊙S ΔAODS ΔBOC =(AD OB )2=(AD AO )2=AD 2AO 2 选项③正确同理⊙ODE⊙⊙OEC⊙OD OC =DE OE 选项④错误 故选:C .20.解:如图 分别连结OC AC CP BP在Rt⊙OCE 中 OC =5 CE =4⊙OE =3在Rt⊙ACE 中 AE =5+3=8 CE =4⊙AC =√82+42=4√5⊙⊙AFE =⊙ABP =⊙ACP ⊙CAP =⊙FAC⊙⊙ACP⊙⊙FAC⊙AC 2=AP•AF 即xy =80⊙y =80x (0<x≤10)⊙函数图象为第一象限内的双曲线的一部分故选:A .。
2023学年九年级数学上册重要考点题(人教版)切线的判定与性质及切线长定理(10大题型(解析版)
切线的判定与性质及切线长定理(答案版)切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:切线的判定方法:(1)定义:直线和圆有唯一公共点时这条直线就是圆的切线;(2)定理:和圆心的距离等于半径的直线是圆的切线;(3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点二是直线与过交点的半径垂直缺一不可).题型1:切线的判定-连半径证垂直1.如图AB为⊙O的直径AC平分∠BAD交⊙O于点C CD⊥AD垂足为点D.求证:CD是⊙O 的切线.【答案】证明:连接OC∵AC平分∠DAB∴∠DAC=∠BAC∵OC=OA∴∠BAC=∠ACO∴∠DAC=∠ACO∴OC∠AD∵CD∠AD∴OC∠DC∵OC过圆心O∴CD是∠O的切线.【解析】【分析】连接OC 根据角平分线的定义和等腰三角形的性质得出∠DAC=∠BAC 根据平行线的判定得出OC∠AD 根据平行线的性质得出OC∠DC 再根据切线的判定得出结论。
【变式1-1】如图在∠O中AB为直径BP为∠O的弦AC与BP的延长线交于点C 且AB=AC PE⊥AC于点E 求证:PE是∠O的切线.【答案】解:连接AP OP∵AB为∠O直径∴∠APB=90°即AP⊥BC又∵AB=AC∴点P是BC的中点又∵O是AB的中点∴OP是△ABC的中位线∴OP∠AC∴∠OPE=∠PEC又∵PE⊥AC∴∠PEC=90°∴∠OPE=90°∴OP⊥PE.∴PE是∠O的切线.【解析】【分析】连接AP OP 由AB为直径可知AP⊥BC结合AB=AC可得点P为BC的中点而O是AB的中点可得OP是△ABC的中位线可知OP∠AC 进而∠OPE=∠PEC 然后结合PE⊥AC可得OP⊥PE即可得到结论。
【变式1-2】如图D为∠O上一点点C在直径BA的延长线上且∠CDA=∠CBD.求证:CD是∠O 的切线.【答案】证明:连接OD∵AB为直径∴∠ADO+∠BDO=90°又∵∠CDA=∠CBD∴∠CDA=∠BDO∴∠ADC+∠ADO=90°∴OD⊥CD∴CD是∠O的切线.【解析】【分析】连接OD 由圆周角定理可得∠ADO+∠BDO=90° 由已知条件以及等腰三角形的性质可得∠CDA=∠BDO 进而得到∠ADC+∠ADO=90° 据此证明.题型2:切线的判定-作垂直证半径2.ΔABC为等腰三角形O为底边BC的中点腰AB与⊙O相切于点D.求证:AC是⊙O的切线.【答案】证明:过点O作OE∠AC于点E 连结OD OA∵AB与O相切于点D∴AB∠OD∵∠ABC为等腰三角形O是底边BC的中点∴AO是∠BAC的平分线∴OE=OD 即OE是O的半径∵AC经过O的半径OE的外端点且垂直于OE∴AC是O的切线。
部编数学九年级下册专项21切线的判定与性质的综合应用(解析版)含答案
专项21 切线的判定与性质的综合应用ìïìïííîïïî圆的切线的性质--三角形内切圆应用:d=r 圆的切线的判定判定定理圆的切线性质与判定综合应用【类型一: 有公共点:连半径,证垂直】【典例1】(2021秋•吉林期末)已知:如图,△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点P ,PD ⊥AC 于点D .(1)求证:PD 是⊙O 的切线;(2)若∠CAB =120°,AB =6,求BC 的值.【解答】(1)证明:∵AB =AC ,∴∠B =∠C ,∵OP =OB ,∴∠B =∠OPB ,∴∠OPB =∠C ,∴OP ∥AC ,∵PD ⊥AC ,∴OP ⊥PD ,∴PD 是⊙O的切线;(2)解:连接AP,如图,∵AB为直径,∴∠APB=90°,∴BP=CP,∵∠CAB=120°,∴∠BAP=60°,在Rt△BAP中,AB=6,∠B=30°,∴AP=AB=3,∴BP=AP=3,∴BC=2BP=6.【变式1-1】(2021秋•西城区校级期中)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求CE的长.【解答】(1)证明:连接OD,如图,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴AC是⊙O的切线;(2)解:过O作OG⊥BC,连接OE,则四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∵OG⊥BE,OB=OE,∴BE=2BG=12.解得:BE=12,∵AC是⊙O的切线,∴CD2=CE•CB,即82=CE(CE+12),解得:CE=4或CE=﹣16(舍去),即CE的长为4.【变式1-2】(2021秋•温岭市期末)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)若AC=8,CD=12,求半径的长度.【解答】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,∴∠CDO=90°,∵OD是⊙O的半径,∴CD是⊙O的切线;(2)解:在Rt△CDO中,CD2+OD2=OC2,∴122+r2=(8+r)2,∴r=5,∴半径的长度为5.【典例2】(2020•中宁县一模)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=1,求⊙O的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)设该圆的半径为x.在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴1+x=2x,解得:x=1∴OA=PD=1,所以⊙O的直径为2【变式2-1】(2021秋•甘井子区期末)如图,△ABC中,AB=AC,以AB为直径的⊙O与AC,BC分别交于点D和点E,过点E作EF⊥AC,垂足为F.(1)求证:EF是⊙O的切线;(2)若CD=4,EF=3,求⊙O半径.【解答】(1)证明:连接OE,∵EF⊥AC,∴∠EFD=∠EFC=90°,∵AB=AC,∴∠B=∠C,∴∠B=∠OEB,∴∠OEB=∠C,∴OE∥AC,∴∠OEF=∠EFC=90°,∵OE是⊙O的半径,∴EF是⊙O的切线;(2)解:过点O作OG⊥AD,垂足为G,∴∠OGF=90°,∵∠OEF=∠EFG=90°,∴四边形OEFG是矩形,∴OG=EF=3,设⊙O的半径为x,∴AB=AC=2x,∵CD=4,∴AD=AC﹣CD=2x﹣4,∵OG⊥AD,∴AG=AD=x﹣2,在Rt△OAG中,AG2+OG2=OA2,∴(x﹣2)2+9=x2,∴x=,∴⊙O的半径为.【变式2-2】(2021秋•天津期末)如图,已知AB是⊙O的直径,AC是弦,∠BAC的角平分线交⊙O于点D,DE⊥AC于E.(1)求证:DE是⊙O的切线;(2)若AB=10,AC=6,求ED的长.【解答】(1)证明:连接OD,∵DE⊥AE,∴∠AED=90°,∵AD平分∠BAE,∴∠CAD=∠DAB,∵OA=OD,∴∠ADO=∠DAB,∴∠CAD=∠ADO,∴AC∥DO,∴∠EDO=180°﹣∠E=90°,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ECB=180°﹣∠ACB=90°,∵∠E=∠EDO=90°,∴四边形ECFD是矩形,∴DE=CF,∠CFD=90°,∵AB=10,AC=6,∴BC===8,∵OD⊥BC,∴CF=BC=4,∴DE=CF=4,∴ED的长为4【典例3】(2022•东明县一模)已知,在Rt△ABC中,∠BAC=90°,以AB为直径的⊙O 与BC相交于点E,在AC上取一点D,使得DE=AD,(1)求证:DE是⊙O的切线.(2)当BC=10,AD=4时,求⊙O的半径.【解答】(1)证明:连接OE、OD,在△AOD和△EOD中,,∴△AOD≌△EOD(SSS),∴∠OED=∠BAC=90°,∴DE是⊙O的切线;(2)解:∵△AOD≌△EOD,∵OB=OE,∴∠B=∠OEB,∵∠AOE=∠B+∠OEB,∴∠BEO=∠EOD,∴OD∥BC,又AO=BO,∴OD=BC=5,由勾股定理得,AO==3,则⊙O的半径为3.【变式3-1】(2021秋•金湖县期末)如图,四边形OAEC是平行四边形,以O为圆心,OC 为半径的圆交CE于D,延长CO交⊙O于B,连接AD、AB,AB是⊙O的切线.(1)求证:AD是⊙O的切线.(2)若⊙O的半径为4,AB=8,求平行四边形OAEC的面积.【解答】(1)证明:连接OD,∵AB与⊙O相切于点B,∴∠OBA=90°,∵四边形OAEC是平行四边形,∴AO∥EC,∴∠AOD=∠ODC,∠AOB=∠OCD,∵OD=OC,∴∠ODC=∠OCD,又∵OA=OA,OD=OB,∴△AOB≌△AOD(SAS),∴∠OBA=∠ODA,∴∠ODA=90°,∵OD是⊙O的半径,∴AD为⊙O的切线;(2)解:∵OB=4,AB=8,∴S=AB•OB=×4×8=16,△ABO∵△AOB≌△AOD,∴S=16,△AOD=32.∴平行四边形OAEC的面积=2S△AOD【类型一:没有公共点:作垂直,证半径】【典例4】(2020•八步区一模)如图,在Rt△ABC中,∠BAC的角平分线交BC于点D,E 为AB上一点,DE=DC,以D为圆心,DB的长为半径作⊙D,AB=5,BE=3.(1)求证:AC是⊙D的切线;(2)求线段AC的长.【解答】(1)证明:过点D作DF⊥AC于F;∵AB为⊙D的切线,∴∠B=90°,∴AB⊥BC,∵AD平分∠BAC,DF⊥AC,∴BD=DF,∴AC与⊙D相切;(2)解:在△BDE和△DCF中;,∴Rt△BDE≌Rt△DCF(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC,∴AC=5+3=8.【变式4-1】(2021秋•莆田期末)如图,半圆O的直径是AB,AD、BC是两条切线,切点分别为A、B,CO平分∠BCD.(1)求证:CD是半圆O的切线.(2)若AD=20,CD=50,求BC和AB的长.【解答】(1)证明:过点O作OE⊥CD,垂足为点E,∵BC是半圆O的切线,B为切点,∴OB⊥BC,∵CO平分∠BCD,∴OE=OB,∵OB是半圆O的半径,∴CD是半圆O的切线;(2)解:过点D作DF⊥BC,垂足为点F,∴∠DFB=90°,∵AD是半圆O的切线,切点为A,∴∠DAO=90°,∵OB⊥BC,∴∠OBC=90°,∴四边形ADFB是矩形,∴AD=BF=20,DF=AB,∵AD,CD,BC是半圆O的切线,切点分别为A、E、B,∴DE=AD=20,EC=BC,∵CD=50,∴EC=CD﹣DE=50﹣20=30,∴BC=30,∴CF=BC﹣BF=10,在Rt△CDF中,由勾股定理得:DF===20,∴AB=DF=20,∴BC的长为30,AB的长为20.1.(2021秋•龙沙区期末)如图,以点O为圆心,AB长为直径作圆,在⊙O上取一点C,延长AB至点D,连接DC,∠DCB=∠DAC,过点A作AE⊥AD交DC的延长线于点E.(1)求证:CD是⊙O的切线;(2)若CD=4,DB=2,求AE的长.【解答】(1)证明:连接OC,OE,如图,∵AB为直径,∴∠ACB=90°,即∠BCO+∠1=90°,又∵∠DCB=∠CAD,∵∠CAD=∠OCA,∴∠OCA=∠DCB,∴∠DCB+∠BCO=90°,即∠DCO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵∠DCO=90°,OC=OB,∴OC2+CD2=OD2,∴OB2+42=(OB+2)2,∴OB=3,∴AB=6,∵AE⊥AD,AB是⊙O的直径,∴AE是⊙O的切线,∵CD是⊙O的切线;∴AE=CE,∵AD2+AE2=DE2,∴(6+2)2+AE2=(4+AE)2,解得AE=6.2.(2021秋•聊城期末)如图,点C在以AB为直径的⊙O上,AC平分∠BAD,且AD⊥CD 于点D.(1)求证:DC是⊙O的切线;(2)若AD=4,CD=2,求⊙O的半径.【解答】(1)证明:如图中,连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠CAB=∠ACO,∴AD∥OC,∵AD⊥CD,∴OC⊥DC,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:如图,过点O作OE⊥AD于点E,得矩形OEDC,∴OE=CD=2,DE=OC,∴AE=AD﹣DE=4﹣OC=4﹣OA,在Rt△AEO中,根据勾股定理,得OA2=AE2+OE2,∴OA2=(4﹣OA)2+22,解得OA=.∴⊙O的半径为.3.(2022春•长兴县月考)如图,已知等边△ABC的边长为6,点O是AB边上的一点,以OA为半径的⊙O与边AC,AB分别交于点D,E,过点D作DF⊥BC于点F.(1)求证:DF是⊙O的切线;(2)连结EF,当EF是⊙O的切线时,求⊙O的半径.【解答】(1)证明:连结OD,如图所示:∵△ABC是等边三角形,∴∠BAC=∠C=∠B=60°,∵∠DAO=60°,OD=OA,∴△DOA是等边三角形,∴∠ODA=∠C=60°,∴OD∥BC,又∵∠DFC=90°,∴∠ODF=90°,∴OD⊥DF,∵OD是⊙O的半径,∴DF是⊙O的切线;(2)解:设半径为r,等边△ABC的边长为6,由(1)可知:AD=r,则CD=6﹣r,BE=6﹣2r在Rt△CFD中,∠C=60°,CD=6﹣r,∴CF=(6﹣r),∴BF=a﹣(6﹣r),又∵EF是⊙O的切线,∴△FEB是直角三角形,且∠B=60°,∠EFB=30°,∴BF=2BE,∴6﹣(6﹣r)=2(6﹣2r),解得:r=2,∴⊙O的半径为2.4.(2022•西湖区校级开学)如图,已知AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC.(1)求证:DE是⊙O的切线.(2)若∠C=30°,CD=10cm,求⊙O的半径.【解答】(1)证明:连接OD.∵D是BC的中点,O是AB的中点,∴OD∥AC,∴∠CED=∠ODE,∵DE⊥AC,∴∠CED=∠ODE=90°,∴OD⊥DE,∵OD是圆的半径,∴DE是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ADB=90°,∵D是BC的中点,∴AB=AC,∵∠C=30°,∴∠B=30°,∴AB=2AD,∵CD=10cm,∴BD=10cm,设AD=xcm,则AB=2xcm,∴x2+102=4x2,∴x=或x=﹣(舍去),∴AD=(cm),AB=(cm),∴⊙O的半径为cm.5.(2021秋•曲靖期末)如图,在Rt△ABC中,∠C=90°,点D是AC上一点,DQ⊥AB,DQ=DC,点O在AB上,以点O为圆心,OB长为半径的圆经过点D,交BC于点E、交AB于点F.(1)求证:AC是⊙O的切线;(2)若⊙O的半径为5,CD=4,求CE的长.【解答】(1)证明:如图,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵∠C=90°,DQ⊥AB,DQ=DC,∴BD是△ABC的角平分线,∴∠OBD=∠DBC,∴∠ODB=∠DBC,∴OD∥BC,∴∠ODA=∠C=90°,∵AC经过⊙为的半径OD的端点D,且AC⊥OD,∴AC是⊙O的切线;(2)解:如图,作OG⊥BE于点G,则BG=EG,∠OGB=90°,∵∠ODC=∠C=∠OGC=90°,∴四边形ODCG是矩形,∵CD=4,OB=OD=5,∴OG=CD=4,GC=OD=5,在Rt△BOG中,OB2=OG2+BG2,∴BG===3,∴EG=3,∴CE=GC﹣EG=5﹣3=2.6.(2021秋•海淀区期末)如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线;(2)若∠DFA=30°,DF=4,求FG的长.【解答】(1)证明:∵C,A,D,F在⊙O上,∠CAF=90°,∴∠D=∠CAF=90°.∵AB⊥CE,BG⊥DF,∴∠BED=∠G=90°.∴四边形BEDG中,∠ABG=90°.∴半径OB⊥BG.∴BG是⊙O的切线.(2)解:连接CF,∵∠CAF=90°,∴CF是⊙O的直径.∴OC=OF.∵直径AB⊥CD于E,∴CE=DE.∴OE是△CDF的中位线.∴OE==2.∵=,∠AFD=30°,∴∠ACD=∠AFD=30°.∴∠CAE=90°﹣∠ACE=60°.∵OA=OC,∴△AOC是等边三角形.∵CE⊥AB,∴E为AO的中点,∴OA=2OE=4,OB=4.∴BE=OB+OE=6.∵∠BED=∠D=∠G=90°,∴四边形BEDG是矩形.∴DG=BE=6.∴FG=DG﹣DF=2.7.(2021秋•淮安区期末)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作DE⊥AC,交AC于点E.(1)求证:DE是⊙O的切线;(2)若⊙O的直径为5,BC=8,求DE的长.【解答】(1)证明:如图1,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴DE⊥半径OD,∴DE是⊙O的切线;(2)解:如图2,连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴BD=CD==4,∴AD==3,∵DE⊥AC,∴S=,△ACD∴5•DE=3×4,∴DE=,∴DE的长是.8.(2021秋•平罗县期末)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若DE=2,CE=1,求BD的长度.【解答】(1)证明:如图,连接OD,CD,则∠OAD=∠ODA.∵AD平分∠CAB,∴∠OAD=∠EAD.∴∠ODA=∠EAD.∴OD∥AE,∵AB为直径,∴∠ACB=90°.∵DE∥BC,∴∠E=90°,∴∠ODE=90°,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:∵AD平分∠CAB,∴=,∴CD=BD,在Rt△CDE中,DE=2,CE=1,根据勾股定理,得CD===,∴BD=.9.(2021秋•博白县期末)如图,在△ABC中,AB=AC,以AC边为直径作⊙O交BC边于点D,过点D作DE⊥AB于点E,ED、AC的延长线交于点F.(1)求证:EF是⊙O的切线;(2)若AC=10,CD=6,求DE的长.【解答】(1)证明:连接OD,如图所示:∵AB=AC,∴∠B=∠ACD,∵OC=OD,∴∠ODC=∠OCD,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴EF⊥OD,又∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:连接AD,∵AC为⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=CD=6.在Rt△ACD中,AC=10,CD=6,∴AD===8,又∵DE⊥AB,AB=AC=10,=AB•DE=AD•BD,∴S△ABD即×10×DE=×8×6,∴DE=4.8.10.(2022•任城区三模)如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF;(1)判断AF与⊙O的位置关系并说明理由.(2)若⊙O的半径为4,AF=3,求AC的长.【解答】(1)解:AF是⊙O的切线,理由如下:连接OC,如图所示:∵AB是⊙O直径,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OB,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切线;(2)∵⊙O的半径为4,AF=3,∠OAF=90°,∴OF===5∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面积=AF•OA=OF•AE,∴3×4=5×AE,解得:AE=,∴AC=2AE=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.下列说法中,正确的是( )
A.与圆有公共点的直线是圆的切线
B.经过半径外端的直线是圆的切线
C.经过切点的直线是圆的切线
D.圆心到直线的距离等于半径的直线是圆的切线
2.如图,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.
3.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________________.
4.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.求证:AC是⊙O的切线.
5. 如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( )
A.70°B.35°C.20°D.40°
6.如图,线段AB是⊙O的直径,点C,D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于( )
A.20°B.25°C.30°D.40°
7.如图,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为( )
A.8 B.6 C.5 D.4
8.如图,AB是⊙O的直径,O是圆心,BC与⊙O切于点B,CO交⊙O于点D,且BC=8,CD =4,那么⊙O的半径是______.
9.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD 的延长线于点E.求证:∠BDC=∠A.
10.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )
A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC
11. 如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.
12. 如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC,BE.若AE=6,OA=5,则线段DC的长为______.
13.如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=
30°,则∠B=________度.
半径作⊙D,求证:AC与⊙D相切.
15.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.
(1)求∠D的度数;
(2)若CD=2,求BD的长.
16.已知△ABC内接于⊙O,过点A作直线EF.
(1)如图①,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两
种):__________________________或者_______________________;
(2)如图②,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的
判断.
17.如图,已知直线PA交⊙O于A,B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长.
答案:
1. D
2. 相切
3. ∠ABC=90°
4. 解:连接OD,∵BD为∠ABC平分线,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为⊙O的切线
5. D
6. A
7. D
8. 6
9. 解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠ODB+∠BDC=90°,∵AB是⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A
10. C
11. 45
12. 4
13. 60
14. 解:过D作DH⊥AC于H,由角平分线的性质可证DB=DH,∴AC与⊙D相切
15. 解:(1)∵∠COD=2∠CAD,∠D=2∠CAD,∴∠D=∠COD.∵PD与⊙O相切于点C,∴OC⊥PD,即∠OCD=90°,∴∠D=45°
(2)由(1)可知△OCD是等腰直角三角形,∴OC=CD=2,由勾股定理,得OD=22+22=22,∴BD=OD-OB=22-2
16. (1) ∠BAE=90°∠EAC=∠ABC
(2) (2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线
17. 解:(1)连接OC,证∠DAC=∠CAO=∠ACO,∴PA∥CO,又∵CD⊥PA,∴CO⊥CD,∴CD为⊙O的切线
(2)过O作OF⊥AB,垂足为F,∴四边形OCDF为矩形.∵DC+DA=6,设AD=x,则OF=CD =6-x,AF=5-x,在Rt△AOF中,有AF2+OF2=OA2,即(5-x)2+(6-x)2=25,解得x1=2,x2=9,由AD<DF知0<x<5,故x=2,从而AD=2,AF=5-2=3,由垂径定理得AB=2AF =6。