回复与再结晶

合集下载

回复与再结晶

回复与再结晶

(1)温度 随T↑,晶粒长大 温度一定,晶粒达到一定尺寸后不再长大。 (2)杂质与合金元素 异类原子吸附晶界处,降低晶界能,减少驱动力,阻碍晶粒长大。
第八章: 回复与再结晶
8.4晶粒长大
8.4.1晶粒的正常长大 3.影响晶粒长大的因素 晶粒长大,是通过晶界处的原子扩散迁移实现
(3)分散相粒子 第二相粒子越细小,数量越多,则阻碍晶粒长大能力越强。
8.1.1 显微组织的变化
冷变形金属随加热温度升高组织变化示意图
再结晶后组织恢复到变形前的程度,性能也恢复到变形前的程度 晶粒长大:新晶粒逐渐相互合并长大.
第八章: 回复与再结晶
8.1 冷变形金属及合金在退火过程中的变化
8.1.2 储存能与内应力变化
随T↑,储存能逐渐释放. 再结晶后,形变储存能全部释放.
第八章: 回复与再结晶
8.5 金属的热加工(变形)
8.5.2热加工后的组织与性能
热加工对组织和性能有如下影响: 3.产生带状组织
未热轧的20钢组织:F+P
热轧后的20钢组织:F+P 带状分布
带状组织常在热轧板材、管材中 出现,性能上产生各向异性
第八章: 回复与再结晶
8.3再结晶(recrystallization)
8.3.2 再结晶动力学
第八章: 回复与再结晶
8.3再结晶(recrystallization)
8.3.3 再结晶温度及其影响因素 再结晶温度:经过严重冷变形的金属,在一个小时的退火保温时间内,能完成再结 晶的最低温度(T再).对纯金属T再=0.4T熔 再结晶速度:V再 若T再低,V再快,则再结晶易进行. 影响再结晶的因素如下: 1.加热温度(退火温度) : 退火温度越高,原子扩散越容易进行,V再↑,完成再结晶时间越短. 2.预先变形量 变形度越大,则T再越低 ∵储存能大,再结晶驱动力大.

一文看懂回复和再结晶

一文看懂回复和再结晶

一文看懂回复和再结晶回复和再结晶一、冷变形金属在加热时的组织与性能变化金属和合金经塑性变形后,由于空位、位错等结构缺陷密度的增加,以及畸变能(晶体缺陷所储存的能量)的升高将使其处于热力学不稳定的高自由能状态,具有自发恢复到变形前低自由能状态的趋势,但在室温下,因温度低,原子活动能力小,恢复很慢,一旦受热,温度较高时,原子扩散能力提高,组织、性能会发生一系列变化。

这一变化过程随加热温度的升高可表现为三个阶段:回复:指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。

在此阶段,组织:由于不发生大角度晶界的迁移,晶粒的形状和大小与变形态相同,仍为纤维状或扁平状。

性能:强度与硬度变化很小,内应力、电阻明显下降。

(回复是指冷塑性变形的金属在(较低温度下进行)加热时,在光学显微组织发生改变前(即在再结晶晶粒形成前)所产生的某些亚结构和性能的变化过程。

)再结晶:指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程。

在此阶段,组织:首先在畸变度大的区域产生新的无畸变晶粒的核心,然后逐渐消耗周围的变形基体而长大,直到变形组织完全改组为新的、无畸变的细等轴晶粒为止。

性能:强度与硬度明显下降,塑性提高,消除了加工硬化,使性能恢复到变形前的程度。

晶粒长大:指再结晶结束之后晶粒的继续长大。

在此阶段,在晶界表面能的驱动下,新晶粒相互吞食而长大,最后得到较稳定尺寸的晶粒。

显微组织的变化:回复阶段:显微组织仍为纤维状,无可见变化。

再结晶阶段:变形晶粒通过形核长大,逐渐转变为新的无畸变的等轴晶粒晶粒长大阶段:晶界移动,晶粒粗化,达到相对稳定的形状和尺寸。

性能变化:回复阶段:强度、硬度略有下降,塑性略有提高;密度变化不大,电阻明显下降。

再结晶阶段:强度、硬度明显下降,塑性明显提高;密度急剧升高。

晶粒长大阶段:强度、硬度继续下降,塑性继续提高;粗化严重时下降。

二、回复1. 回复动力学上图同一变形程度的多晶体铁在不同温度退火时,屈服强度的回复动力学曲线特点:(1)没有孕育期;(2)在一定温度下,初期的回复速率很大,随后即逐渐变慢,直至趋近于零;(3)每一温度的恢复程度有一极限值,退火温度越高,这个极限值也越高,而达到此一极限值所需的时间则越短;(4)预变形量越大,起始的回复速率也越快,晶粒尺寸减小也有利于回复过程的加快。

回复与再结晶

回复与再结晶

微观机理:相邻亚晶界上的位错网络通过解离、拆解, 位错的滑移和攀移,转移到其他晶界上,导致相邻亚晶 界消失与亚晶合并。 合并后:尺寸增大,晶界转化成大角度晶界,比小角度 晶界相比迁移率高的多,可以迅速移动,清除移动路径 上的位错,使其后面留下无畸变 的晶体,从而构成再结晶的核心。 在变形度大且具有高层错能的 金属中发生,高层错能金属 易发生交滑移而形成位错胞。
1 lg ln
1 R
lg t

直线斜率为K,直线的截距为 lg B
等温温度对再结晶速率v的影响,可用阿累尼乌斯公式
表示,即
v AeQ/ RT
而再结晶速率和产生某一体积分数φR所需的时间t成反
比,即
v
1 t

1 A'eQ / RT
t
式中 为常数,Q为再结晶的激活能;R为气体常数,T
为绝对温度 两边取对数
弓出形核时所需能量条件为:
G=
Es
dA dV
dA 若弓出的曲面为球面,dV
=
2 r
G=
Es
2
r
自发形核的能量条件为:
Es
2
L
再结晶的形核将在晶界上两点距离为2L,且弓出距离大
于L的凸起处进行。使弓出距离大于L所需的时间为再结
晶的孕育期(晶界弓出形核必经的过程)。
(2) 亚晶长大形核机制
该机制一般在大变形度下发生。 变形时位错增殖、聚集、缠结形成位错胞(胞内位错密 度很低),加热时胞壁平直化,形成亚晶,借助亚晶作 为再结晶核心。 ①亚晶合并形核
黄铜再结晶和晶粒长大的各个阶段
(e)580ºC保温15分后的金相 (f)700ºC保温10分后晶粒长 组织,晶粒已有所长大。 大的金相组织。

回复与再结晶

回复与再结晶
第九章 回复与再结晶
• 回复 • 再结晶 • 晶粒长大 • 再结晶后的组织 • 金属的热加工
引言
冷变形金属在加热时组织性能会发生变化。 冷变形时较高的弹性畸变能、高位错密度、空
位等储存能量是促使冷变形金属发生变化的驱 动力。 微观组织处于不稳定状态。一旦加热,原子具 有足够的扩散能力,将发生一系列变化,从而 导致性能的变化。 变化时从储能释放及组织结构和性能的变化来 分析,可分为回复、再结晶和晶粒长大三个阶 段。
• 3. 形核与长大
4.再结晶的转变不是相变
• 冷塑性变形后的发生再结晶,晶粒以形核和 晶核长大来进行,但再结晶过程不是相变
• 原因有:
1.变化前后的晶粒成分相同,晶体结构并未发生变化, 因此它们是属于同一个相。
2.再结晶不像相变那样,有转变的临界温度点,即没 有确定的转变温度。
3.再结晶过程是不可逆的。相变过程在外界条件变化 后可以发生可逆变化。
经验公式 工业纯金属:T再=(0.35~0.45)Tm。 合金:T再=(0.4~0.9)Tm。
注:再结晶退火温度一般比上述温度高100~200℃。
四. 影响再结晶的因素
(1)退火温度。 温度越高,再结晶速度越大。 (2)变形量。 变形量越大,再结晶温度越低 随变形量增大,再结晶温度趋于稳定 变形量低于一定值,再结晶不能进行。 (3)原始晶粒尺寸。 晶粒越小,驱动力越大;晶界越多,有利于形核。 (4)微量溶质元素。 阻碍位错和晶界的运动,不利于再结晶。 纯度越高,再结晶温度越低; (5)第二分散相。 间距和直径都较大时,提高畸变能,并可作为形核核心,促进再结晶; 直径和间距很小时,提高畸变能,但阻碍晶界迁移,阻碍再结晶。
9.2 回复
• 一 回复概念 • 回复:在加热温度较低时,仅因金属中的一些

材料科学基础4-回复、再结晶

材料科学基础4-回复、再结晶

Q Q A exp RT t1 A exp RT t2 1 2
t1 t2 exp exp 1 1 RT2 R T2 T1 e RT 1
晶粒长大--3.影响晶粒长大(即晶界迁移率)的因素
(1)温度 温度越高,晶粒长大速度越快,晶粒越粗大
G =G0exp(-QG /RT)
G:晶界迁移速度 G0:常数 QG:晶界迁移的激活能
(2)第二相 晶粒长大的极限半径 R=kr/f K:常数 r:第二相质点半径 f:第二相的体积分数 ∴ 第二相质点的数量越多,颗粒越小,则阻碍晶粒长大的能 力越强。 (3)可溶解的杂质或合金元素阻碍晶界迁移,特别是晶界偏 聚现象显著的元素,其阻碍作用更大。但当温度很高时, 晶界偏聚可能消失,其阻碍作用减弱甚至消失。
§2
一、回复动力学 1.回复动力学曲线
回复
回复动力学特点:
(1)回复过程没有孕育期,随着退火的开始进行,发 生软化。 (2)在一定温度下,初期的回复速率很大,以后逐渐 变慢,直到最后回复速率为零。
(3)每一温度的回复程度有一极限值,退火温度越高, 这个极限值也越高,而达到此极限所需时间则越短
(4)回复不能使金属性能恢复到冷变形前的水平。
TC TA TB sin A sin B sin C
当界面张力平衡时: 因 为 大 角 度 晶 界 TA=TB=TC, 而 A+B+C=360o ∴A=B=C=120o
晶粒长大--晶粒长大的方式
(3)在二维坐标中, 晶界边数少于6的晶 粒,其晶界向外凸出, 必然逐渐缩小,甚至 消失,而边数大于6 的晶粒,晶界向内凹 进,逐渐长大,当晶 粒的边数为6时,处 于稳定状态。 在三维坐标中, 晶粒长大最后稳 定的形状是正十 四面体。

第七章回复与再结晶

第七章回复与再结晶
化严重时下降。 (2)物理性能 密度:在回复阶段变化不大,在再结晶阶段急剧升高; 电阻:电阻在回复阶段可明显下降。
回复、再结晶及晶粒长大阶段中性能的变 化情况
7.2 回复
回复过程3阶段(储存能在回复阶段三个峰值所对应的) 约化温度:表征加热温度的高低,用绝对温标表示的加热温度与其熔点温度之比, TH =T/Tm。
错相遇相消,位错密度下降,位错缠结内部重新排列组合,使亚晶规整化。
(3)高温回复( TH >0.5Tm) 高温回复,原子活动能力进一步增强,位错除滑移外,还可攀移。主要机制是多边化。冷变形后由
于同号刃型位错在滑移面上塞积而导致点阵弯曲,在退火过程中通过刃型位错的攀移和滑移,使同号 刃型位错沿垂直于滑移面的方向排列成小角的亚晶界,这个过程称为多边化。其驱动力来自应变能的 下降。
位错及晶界处,对位错的运动及晶界的迁移起阻碍作用,因此不利于再结晶的形核与长大,阻碍再结 晶,使再结晶温度升高。 4.原始晶粒尺寸
其他条件相同情况下,晶粒越细,变形抗力越大,冷变形后存储能越多,再结晶温度越低。相同变 形度,晶粒越细,晶界总面积越大,可供形核场所较多,生核率也增大,再结晶速度加快。
5.分散相粒子 分散相粒子直径较大,离子间距较大的情况下,再结晶被促进;而小的粒子尺寸和小的粒子间距,
储存能的释放与性能变化
1 储存能:存在于冷变形金属内部的一小部分(~10%)变形功。
弹性应变能(3~12%) 2 存在形式 位错(80~90%)
点缺陷
3 储存能的释放:原子活动能力提高,迁移至平衡位置,储存能得以释放。
(1)力学性能 回复阶段:强度、硬度略有下降,塑性略有提高。 再结晶阶段:强度、硬度明显下降,塑性明显提高。 晶粒长大阶段:强度、硬度继续下降,塑性继续提高,粗

第7章 《材料科学》回复与再结晶.

第7章 《材料科学》回复与再结晶.
(7.1)
式中t为恒温下的加热时间,x为冷变形导致的性能增量经加热后的残留分数,c为 与材料和温度有关的比例常数,c值与温度的关系具有典型的热激活过程的特点:
c c0eQ RT
( 7.2)
式中Q为激活能,R为气体常数(8.31×10-3J/mol·K),c0为比例常数,T为绝对温度。 将式7.2代入方程7.1中并积分,以x0表示开始时性能增量的残留分数,则得: ( 7.3)
特点: ①无孕育期; ②开始变化快,随后变慢; ③长时间处理后,性能趋于一平衡值; ④加热温度越高,回复程度也越高; ⑤变形量越大,初始晶粒尺寸越小, 有助于加快回复速率。
图 同一变形度的Fe在不同温度等温退火后的性能变化曲线
§7.2 回复
§7.2.2 回复动力学
回复特征通常可用一级反应方程来表达,即:
再结晶:经冷变形的金属在足够高的温度下加热时,通过新晶粒 的形核及长大,以无畸变的等轴晶粒取代变形晶粒的过程。
(再结晶是一个显微组织彻底改组、变形储能充分释放、性能显著变化的过程。)
形核的两种方式:晶界凸出形核、亚晶形核。
(1)晶界凸出形核----晶核伸向小位错胞晶粒(畸变能较高域)内
对于变形程度较小的金属(一般小于20%),再结晶晶核往往采用凸出形核机制生 成,如图所示。
※ 注:实际再结晶退火温度一般比上述温度高 100~200℃。 19
§7.3
再结晶
§7.3.4 影响再结晶的因素
(1)退火温度 ----温度越高,再结晶速度越大。 (2) 变形量 ----变形量越大,再结晶温度越低;随变形量增大,再结晶 温度趋于稳定;变形量低于一定值,再结晶不能进行。 (3) 原始晶粒尺寸 ----晶粒越小,驱动力越大;晶界越多,有利于形核。 (4) 微量溶质元素 -----阻碍位错和晶界的运动,不利于再结晶。 (5)第二分散相 ----间距和直径都较大时,提高畸变能,并可作为形核核心, 促进再结晶;直径和间距很小时,提高畸变能,但阻碍晶 界迁移,阻碍再结晶。

材料科学基础-回复与再结晶

材料科学基础-回复与再结晶
— 电阻: 回复阶段已有大的变化(与点缺陷有
关) — 内应力:
回复阶段消除大部或全部内应力; 再结晶阶段全部消除微观内应力 — 亚晶粒尺寸: 回复阶段变化小; 接近再结晶时,显著增大 — 密度: 再结晶阶段急剧增高(缺陷减少) — 储存能的变化: 再结晶阶段释放多
第二节:回复
现象:除内应力大大减少外,在光学显微镜下看不到金 相组织的变化。在电子显微镜下观察,点缺陷有所减少,位 错在形态上也有变化,但数量没有明显减少。
正常长大影响因素
1)温度:温度影响界面迁移速度,温度越高,界面迁移速 度越大,因而晶粒长大速度也越快。
2)时间:正常晶粒长大时,一定温度下,平均晶粒直径随 保温时间的平方根而增大。
3)第二相粒子:第二相粒子对界面迁移有约束力,阻碍界 面迁移、晶粒长大。粒子尺寸越小,粒子的体积分数越大, 极限的平均晶粒尺寸也越小。
再结晶织构的形成机制
— 定向生长理论:晶核位向各异,只有特殊位向的容易长大 — 定向形核理论:再结晶晶核具有择优取向
制耳现象:在冲制筒形和杯形零件时,各向变形不均匀, 造成薄厚不均、边缘不齐的现象。
第五节:金属的热变形
金属的热变形:金属在再结晶温度以上进行的加工、变形。
热变形的实质是:变形中形变硬化和动态软化同时进行的过程, 形变硬化为动态软化所抵消,因而不显示加工硬化作用。
— 退火温度的影响:
退火温度对刚完成再结晶时晶粒尺寸的影响不 大;但对再结晶速率影响很大,降低临界变形 度数值;促进再结晶后的晶粒的长大,温度越 高晶粒越粗
第四节:晶粒长大
晶粒长大:再结晶结束后,材料通常得到新的细小的无畸变的 等轴晶粒,若继续提高加热温度或延长加热时间,引起晶粒进 一步长大的现象 驱动力:总晶界能的降低 按特点分类: — 正常长大:大多数晶粒几乎同时逐渐均匀长大 — 异常长大:少数晶粒突发性的不均匀长大
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、一块单相多晶体包含。

A.不同化学成分的几部分晶体B.相同化学成分,不同结构的几部分晶体C.相同化学成分,相同结构,不同位向的几部分晶体
2、在立方系中点阵常数通常指。

A.最近的原子间距B.晶胞棱边的长度
3、每一个面心立方晶胞中有八面体间隙m个,四面体间隙n个,其中。

A.m=4,n=8B.m=13,n=8C.m=1,n=4
4、原子排列最密的一族晶面其面间距。

A.最小B.最大
5、晶体中存在许多点缺陷,例如
A.被激发的电子B.空位C.沉淀相粒子
6、金属中通常存在着溶质原子或杂质原子,它们的存在。

A.总是使晶格常数增大B.总是使晶格常数减小C.可能使晶格常数增大,也可能使晶格常数减小
7、金属中点缺陷的存在使电阻。

A.增大B.减小C.不受影响
8、空位在过程中起重要作用。

A.形变孪晶的形成B.自扩散C.交滑移
9、金属的自扩散的激活能应等于。

A.空位的形成能与迁移激活能的总和B.空位的形成能C.空位的迁移能
10、位错线上的割阶一般通过形成
A.位错的交割B.交滑移C.孪生
一、名词解释
沉淀硬化、细晶强化、孪生、扭折、第一类残余应力、第二类残余应力、、回复、再结晶、多边形化、临界变形量、冷加工、热加工、动态回复、动态再结晶
沉淀硬化:在金属的过饱和固溶体中形成溶质原子偏聚区和由之脱出微粒弥散分布于基体中导致硬化。

细晶强化:通过细化晶粒而使金属材料力学性能提高的方法。

孪生:在切应力作用下,晶体的一部分沿一定晶面和晶向发生均匀切变并形成晶体取向的镜面对称关系。

扭折:在滑移受阻、孪生不利的条件下,晶体所做的不均匀塑性变形和适应外力作用,是位错汇集引起协调性的形变。

按残余应力作用范围不同,可分为宏观残余应力和微观残余应力等两大类,其中宏观残余应力称为第一类残余应力(由整个物体变形不均匀引起),微观残余应力称为第二类残余应力(由晶粒变形不均匀引起)。

储存能:在塑性变形中外力所作的功除大部分转化为热之外,由于金属内部的形变不均匀及点阵畸变,尚有一小部分以畸变能的形式储存在形变金属内部,这部分能量叫做储存能。

回复:经冷塑性变形的金属加热时,尚未发生光学显微组织变化前(即再结晶之前)的微观结构变化过程。

再结晶:经冷变形的金属在一定温度下加热时,通过新的等轴晶粒形成并逐步取代变形晶粒的过程。

多边形化:指回复过程中油位错重新分布而形成确定的亚晶结构过程。

临界变形量:需要超过某个最小的形变量才能发生再结晶,这最少的形变量就称为临界变形量。

冷加工:在再结晶温度以下的加工过程;在没有回复和在接近的条件下进行的塑性变形加工。

热加工:在再结晶温度以上的加工过程;在再结晶过程得到充分进行的条件下进行的塑性变形加工。

动态回复:热加工时由于温度很高,金属在变形的同时发生回复,同时发生加工硬化和软化两个相反的过程。

这种在热变形时由于温度和外力联合作用下发生的回复过程
动态再结晶:是指金属在热变形过程中发生的再结晶现象。

二、问答题
1.如何获得孪晶?
答:孪晶形成过程:形变、晶体生长、退火及相变。

2.孪生和滑移有何区别?
答:
(1) 滑移使滑移面两侧相对滑动一个完整的平移矢量(柏氏矢量),而孪生则在孪晶内所有的面都滑动,滑动的距离并非是完整的平移矢量,每个面的滑动量和距孪生面的距离成正比。

(2) 滑移后整个晶体的位向没有改变,而孪生则使孪晶部分的位向与基体成对称。

(3) 滑移使表面出现台阶(滑移线),表面重新抛光后,滑移线消失;孪生则使表面出现浮凸,因孪晶与基体的取向不同,表面重新抛光后并浸蚀后仍能看到。

3.晶界在塑性变形中有何作用?
答:
(1) 协调作用
保证晶粒之间变形的协调性。

由于协调变形的要求,在晶界处变形必须连续,亦即两个相邻晶粒在晶界处的变形必须相同。

(2) 障碍作用
晶界的特点:原子排列不规则;分布有大量缺陷。

晶界对变形的影响:滑移、孪生多终止于晶界,极少穿过。

(3) 促进作用
在高温下变形时,由于晶界比晶粒弱,故除了晶粒内滑移外,相邻两个晶粒还会沿着晶界发生相对滑动,此称为晶界滑动。

晶界滑动也造成晶体宏观塑性变形,但变形量往往远小于滑移和孪生引起的塑性变形。

(4) 起裂作用
一方面由于晶界阻碍滑移,此处往往应力集中;另一方面,由于杂质和脆性,第二相往往优先分布于晶界,使晶界变脆;此外,由于晶界处缺陷多,原子处于能量较高的不稳定状态,在腐蚀介质作用下,晶界往往优先被腐蚀。

结果:在变形过程中裂纹往往起源于晶界。

4.从四个方面分析金属冷变形后组织和性能的变化?
答:
1)晶粒沿变形方向拉长,性能趋于各向异性
2)晶粒破碎,位错密度增加,产生加工硬化
3)织构现象的产生
4)残余内应力
5.塑性变形对金属的力学性能、物理化学性能有什么影响?为什么?
答:
(1)力学性能的影响加工硬化(形变强化、冷作强化):随变形量的增加,材料的强度、硬度升高而塑韧性下降的现象。

(2)物理化学性能的影响导电率、导磁率下降,比重、热导率下降;结构缺陷增多,扩散加快;化学活性提高,腐蚀加快。

塑性变形提高金属的内能,使其化学活性提高,腐蚀速度增快。

塑性变形后由于金属中的晶体缺陷(位错及空位)增加,因而使扩散激活能减少,扩散速度增加。

6.分别说明回复、再结晶、晶粒长大过程中,力学性能和物理性能变化?
答:
(1)机械性能
在回复阶段:强度、硬度、塑性等机械性能几乎无变化。

在再结晶阶段:强度、硬度显著下降,塑性显著升高。

在晶粒长大时:强度、硬度继续下降,塑性在晶粒粗化不十分严重时,仍有继续升高趋势,晶粒粗化严重时,塑性也下降。

(2)物理性能
密度:在回复阶段变化不大,在再结晶阶段急剧升高。

电阻:电阻在回复阶段明显下降。

内应力:回复阶段的变形金属内应力可得到部分消除,主要消除的是宏观内应力。

仅在再结晶阶段,方可全部消除内应力。

7.回复与再结晶的驱动力是什么?回复有何作用?再结晶退火有何作用?
答:
驱动力是变形金属回复后未被释放的储存能。

回复作用:回复可以降低应力(保持加工硬化效果),防止工件变形、开裂,提高耐蚀性。

再结晶作用:恢复变形能力,改善显微组织,消除各向异性,提高组织稳定性。

8.二次结晶形成的基本条件和驱动力?
答:
基本条件:正常晶粒长大过程被分散相微粒、织构或表面的热蚀沟等所强烈阻碍。

驱动力:界面能。

9.固溶强化的微观机制是什么?
答:
(1)晶格畸变,阻碍位错运动在位错线附近存在溶质原子偏聚的情况下,位错的滑移将受到一定的约束和钉扎作用。

因为位错脱离偏聚的溶质原子而滑移将导致应变能的升高,所以,需要更大的作用力才能使位错滑移,塑性变形难度增加,金属材料的强度增加。

(2)柯氏气团置换型溶质原子倾向于进入刃型位错中心区域,集聚到位错周围,形成比较稳定的分布。

这种溶质原子集聚构成的原子团,被称作柯氏气团(Cottrell)。

位错脱离柯氏气团需要额外做功,因而柯氏气团可以钉扎位错使得位错滑移受阻,金属材料由此得到强化。

(3)铃木气团一些溶质原子倾向于向扩展位错的层错区集聚,形成所谓的铃木气团。

该气团降低金属的层错能,也会使得位错滑移困难,从而使金属强化。

相关文档
最新文档