机械原理 第三章平面机构的运动分析

合集下载

机械原理第三章 运动分析

机械原理第三章 运动分析

例3-4 含三副构件的六杆机构运动分析
例3-5 已知图示机构各构件的尺寸及原动件1的角速度1,求 C点的速度vc及构件2和构件3的角速度2及 3;求E点的速度 vE 加速度aE 。 解: 1) 列矢量方程,分析 各矢量大小和方向。 2) 定比例尺,作矢量 图。 3) 量取图示尺寸,求 解未知量。 2 C
vB 3 vB 2 vB 3B 2
⊥BC ⊥AB ? lAB1
v ?
m/s mm
1
A
1
B
2
方向: 大小: 定比例尺 作矢量图.
∥BC

3 C 4
vB3B 2 v b2b3
p b3 b2
vB 3 v pb3 3 lBC lBC
顺时针方向
2) 求构件3的角加速度3 列方程:
机械原理 第三章 平面机构的运动分析
§3-1 概述
§3-2 速度瞬心及其在平面机构速度分析中的应用 §3-3 平面机构运动分析的矢量方程图解法 §3-4 平面机构运动分析的复数矢量法 §3-5 平面机构运动分析的杆组法
§3-1 概述
1.机构运动分析的内容 机构尺寸和原动件运动规律已知时,求转动构件上某点 或移动构件的位移、速度、加速度及转动构件的角位移、 角速度、角加速度。 2.机构运动分析的目的
绝对速度相等的重合点。用Pij表示。
若该点绝对速度为零——绝对瞬心。 若该点绝对速度不为零——相对瞬心。 二、瞬心的数目 设N 为组成机构的构件数(含机架),K为瞬心数,则
2 K CN =N ( N 1) / 2
三、瞬心的位置 1.两构件组成转动副 P12
1 2
以转动副相联,瞬心在其中心处。
P12、P13 的位置(绝对瞬心),P23

平面机构的运动分析

平面机构的运动分析
6
❖绝对瞬心:运动构件和机架之间的瞬心。
绝对瞬心也就是运动构件上瞬时绝对速度等于零的点。
❖相对瞬心:两个运动构件之间的瞬心。
相对瞬心也就是两个运动构件的同速重合点。
2.机构中瞬心的数目
设机构由K个构件组成,该机构的瞬心的总数为:
N = K(k-1)/2
7
3.机构中瞬心位置的确定
(1)两构件组成运动副 根据瞬心的定义,通过观察直接确定两构件的瞬心位
联接两绝对加速度终点 的矢量代表相应两点间 的相对加速度
c'
P'
e'
30
b' c"
2.组成移动副两活动构件的重合点间的运动关系。
(重合点法) 图示机构中,已知各构件的长度、原动件1的位置1 及等角速度ω1,求机构在图示位置时构件3的速度、 加速度。
31
▪ 活动构件1、2组成移动副, ▪ 作平面复杂运动的构件2上的另一个基本运动副是
vP13 P12
P13
P23 ω3 P34
P14
注意:图解法的特点体现在从“机构位置图”中直
接量出两点之间的距离。
15
提问:
1)如何求构件2的角速度ω2? 2) ω3=0时,构件1的角位置1 ?
P24
P23
P12
P13
P34
16
P14
例2:如图所示为一曲柄滑块机构,已知l AB=30mm, l BC=65mm,原动件1的位置1=145° 及等角速度ω1 = 10rad/s,求机构在该位置时滑块3的速度。
C点
B点
构件2
影像原理
35
E点
2.速度分析

VC = VB + VCB

平面机构的运动分析

平面机构的运动分析

2
极点
c'
n ''
vB
p'
aB
b'
aE a p ' e '
n
e'
n'
加速度多边形
★加速度多边形的特性
2
极点
c'
n ''
p'
vB
aB
注意:速度影像和加速度影像只适用于 同一构件上的各点。
b'
n
e'
n'
加速度多边形
①由极点 p’ 向外放射的矢量代表构件相应点的绝对加速度;
2)确定直接联接构件的瞬心位置
3)用三心定理求非直接联接构件的瞬心位置 枚举法用于构件数较少的机构,构件较多用点元法求解。
《机械原理》
第三章 平面机构运动分析 ——利用瞬心法进行机构速度分析
例1:图示五杆机构,标出全部瞬心。
1、瞬心数目:
N n(n 1) 2
5 (5 1) 2
10
A1 (A2)
2
P12
② 已知任意两点A、B的相对速 度方向,求瞬心点位置
( 二)速度瞬心的分类
◆ 绝对瞬心( absolute instant centre): 该点的绝对速度为零。 ◆ 相对瞬心( relative instant centre): 该点的绝对速度不为零。
1 2
P12
1 2
P12
P23
相联


P12
2

3
4
P34



1

两构 件非 运动
N n(n 1) 4 (4 1) 6

平面机构的自由度与运动分析

平面机构的自由度与运动分析

平面机构的自由度与运动分析一、平面机构的自由度平面机构是指机构中的构件只能在一个平面内运动的机构,它由多个连接杆、转动副和滑动副组成。

平面机构的自由度是指机构中能够独立变换位置的最小的连接杆数目,也可以理解为机构中独立的变量的数量。

对于平面机构,其自由度可以通过以下公式计算:自由度=3n-2j-h其中,n表示连接杆的数量,j表示驱动链的数量,h表示外部约束的数量。

根据上述公式可以看出,自由度与平面机构中连接杆的数量和驱动链和外部约束的数量有关。

连接杆的数量越多,机构的自由度就越大,可以实现更复杂的运动。

驱动链的数量越多,机构中的动力驱动器越多,自由度就越小,机构的运动变得更加确定。

外部约束的数量越多,机构中的约束条件就越多,自由度就越小,机构的运动也会变得更加确定。

二、平面机构的运动分析1.闭合链和链架分析:首先需要确定机构中的闭合链和链架,闭合链是指机构中连接杆形成一个封闭的回路,闭合链中的连接杆数目应该为n 或n-1,n是机构中的连接杆数量。

链架是指机构中的连接杆形成一个开放的链路。

通过分析闭合链和链架中的链接关系和约束条件,可以确定机构中构件的位置和运动方式。

2.位置和速度分析:根据机构的连接杆的长度和角度,可以通过几何方法或代数方法确定机构中构件的位置和速度分量。

通过分析连接杆的长度和角度的变化规律,可以推导出机构中构件的位置和速度随时间的变化关系。

3.加速度和动力学分析:根据机构中各个构件的位置和速度,可以通过几何方法或动力学方法计算构件的加速度和动力学特性。

通过分析机构中构件的加速度和动力学特性,可以确定机构中构件的运动稳定性和质量分布。

4.动力分析:对于需要携带负载或进行力学传动的机构,需要进行动力学分析,确定机构中各个构件的受力和承载能力。

通过分析机构中构件的受力情况,可以确定机构的设计参数和强度要求。

总结起来,平面机构的自由度与运动分析是确定机构中构件位置和运动状态的重要方法,通过分析机构中的闭合链和链架、构件的位置和速度、加速度和动力学特性,可以确定机构的运动方式和特性,为机构的设计和优化提供依据。

第3章平面机构的运动分析

第3章平面机构的运动分析

一、基本原理和方法
1.矢量方程图解法
设有矢量方程: D= A + B + C
因每一个矢量具有大小和方向两个参数,根据已 知条件的不同,上述方程有以下四种情况:
D= A + B + C 大小:? √ √ √ 方向:? √ √ √
D= A + B + C 大小:√ ? ? √
方向:√ √ √ √
B
A
D
C
②联接任意两点的向量代表该两点 在机构图中同名点的相对速度, 指向与速度的下标相反。如bc代 表VCB而不是VBC ,常用相对速 度来求构件的角速度。
P
C
A 作者:潘存云教授
B
D
a
③∵△abc∽△ABC,称abc为ABC的速 度影象,两者相似且字母顺序一致。
作者:潘存云教授
c
p
前者沿ω 方向转过90°。称△abc为
3.求传动比 定义:两构件角速度之比传动比。
ω 3 /ω 2 = P12P23 / P13P23 推广到一般:
2
P ω2 12
1
ω i /ω j =P1jPij / P1iPij
P ω 233
3
P13
结论:
①两构件的角速度之比等于绝对瞬心至相对
瞬心的距离之反比。
②角速度的方向为:
相对瞬心位于两绝对瞬心的同一侧时,两构件转向相同。 相对瞬心位于两绝对瞬心之间时,两构件转向相反。
B A
DC
D= A + B + C 大小:√ √ √ √ 方向:√ √ ? ?
D= A + B + C 大小:√ ? √ √ 方向:√ √ ? √
B
A

机械原理-第3章 平面机构的运动分析和力分析

机械原理-第3章 平面机构的运动分析和力分析


a
大小:2w1×vB2B1=2w1vB2B1sin90°=2w1vB2B1; k B 2 B1 方向:将vB2B1的方向沿w1转过90°。

vB1B2 1
2 B
(B1B2)
vB1B2 1
2 B
(B1B2)
ω1
a
k B 2 B1
ω1
a
k B 2 B1
(3)注意事项
B (B1B2)
1
2
vB1 = vB2,aB1 = aB2,
目的: 了解现有机构的运动性能,为受力 分析奠定基础。 方法:1)瞬心法(求速度和角速度); 2)矢量方程图解法; 3)解析法(上机计算)。
3.1
速度瞬心
(Instant center of velocity )
3.1.1 速度瞬心
两个互作平行平面运动的构件 定义:
上绝对速度相等、相对速度为
零的瞬时重合点称为这两个构 件的速度瞬心, 简称瞬心。瞬 心用符号Pij表示。
图(b) 2
(B1B2B3)
扩大刚体(扩大构件3),看B点。
B 1 A
b2
C
vB3 = vB2 + vB3B2
方向:⊥BD ⊥AB 大小: ? lAB w1 ∥CD ?
3
w1
D
4
p
选 v ,找 p 点 。
v
v B 3 pb3 μv ω3 (逆 ) l BD l BD
b3
(b)
例4:已知机构位臵、尺寸,w1为常数,求w2、a2。
C B
n t n t aC aC a B aCB aCB
2
1
E
方向:C→D ⊥CD B→A C→B ⊥CB 大小:lCD w32 ? lABw12 lCB w22 ?

机械原理第七版第三章

机械原理第七版第三章

(二)、用解析法对平面连杆机构进行运动分析 用解析法对平面连杆机构进行运动分析又可分为:矢 量方程解析法、杆组法和矩阵法等。 矢量方程法是将机构中各种构件视为矢量,并构成封 闭矢量多边形,列出矢量方程,进而推导出未知量的表达 式。
复数矢量法 图示四杆机构,已知机构各构 件尺寸及原动件1的角位移θ 1和 角速度ω 1 ,现对机构进行位置、 速度、加速度分析 1、位置分析 矢量方程式:
第三章
平面机构的运动分析
§3-1 机构运动分析的任务、目的和方法 §3-2 用速度瞬心法作机构的速度分析
§3-3 用矢量方程图解法作机构的速度及 加速度分析
§3-4 综合运用瞬心法和矢量方程图解法 对复杂机构进行速度分析 §3-5 用解析法作机构的运动分析 返回
§3-1 机构运动分析的任务、目的和方法
i
2
l33e
i
3
l11 cos 1 l22 cos 2 l33 cos 3 l11 sin 1 l22 sin 2 l33 sin 3
3l3 sin( 3 2 ) 1l1 sin( 1 2 )
1L1 sin( 1 2 ) 3 L3 sin( 3 2 )
1L1 sin( 1 3 ) 2 L2 sin( 2 3 )
1L1 sin( 1 3 ) 2 L2 sin( 2 3 )
3、加速度分析
l11e i l22e i l33e i
1 2
3
2 i il1 1 e1

1
i l2 2e 2
1.任务 根据机构的尺寸及原动件已知运动规律,求构件中从动件上 某点的轨迹、位移、速度及加速度和构件的角位移、角速度及角 加速度。 2.目的 了解已有机构的运动性能,设计新的机械和研究机械动力性 能的必要前提。 3.方法 主要有图解法和解析法。图解法又有速度瞬心法和矢量方程 图解法(又称相对运动图解法)。 图解法: 形象、直观,用于平面机构简单方便,但精度 和求解效率较低。 解析法: 计算精度和求解效率高。可借助计算机计算。

平面机构的运动分析

平面机构的运动分析

平面机构的运动分析平面机构是由若干个连杆组成的机械结构,在运动分析中,我们需要研究机构中各个连杆的运动规律,以及机构整体的运动情况。

平面机构常见的类型有四杆机构、曲柄滑块机构、双曲柄滑块机构等。

在运动分析中,我们通常要确定机构的约束条件、求解连杆的角度、速度和加速度等。

首先,我们需要确定机构的约束条件。

约束条件是指机构中各个连杆之间的几何关系,包括定位约束和连杆长度约束。

定位约束是指机构中一些点的位置关系,可以通过坐标方程等方法求解。

连杆长度约束是指连杆的长度是固定的,可以通过连杆长度的几何关系来确定。

然后,我们可以通过运动分析的方法来求解连杆的角度、速度和加速度等。

在运动分析中,可以使用几何法和代数法等不同的方法来求解。

几何法中常用的方法有图解法和模型法。

图解法是通过绘制连杆的运动图来解决问题,可以直观地表示出机构的运动情况。

模型法是将机构模型化为几何图形,然后通过几何关系求解。

这些方法通常适用于简单的机构。

代数法中常用的方法有位置矩阵法和速度矩阵法。

位置矩阵法是通过建立连杆的位移方程来求解连杆的角度。

速度矩阵法是通过建立速度传递关系求解连杆的速度和加速度。

此外,还可以通过数值模拟的方法来进行运动分析。

数值模拟是利用计算机软件对机构进行建模,并进行数值计算得到机构的运动参数。

这种方法可以应用于复杂的机构,但计算量比较大。

总之,平面机构的运动分析是解决机构运动问题的基础,通过确定约束条件和求解连杆的角度、速度和加速度等参数,可以研究机构的运动规律,为机构的设计和优化提供理论依据。

[机械原理]图解-平面机构的运动分析

[机械原理]图解-平面机构的运动分析

at 4 E2B
aC22

an EC
大方5小向)v角速得E速度,度, 方v可其向B 用指的构向判⊥v?EE件与定BB上速采任度用v意的矢C 两角量⊥点平标v?EE之相移CC 间反法的((将相v代对CBb表速该度A1b相除c对于)1速该。度两的点4矢之量间E 平的G移距3到离D对来应求
vE点上)v。 pe
vB
对Δ当67Δb))b应已cc构e当速e边称知图∽同度互为构中Δ一影相Δ件B对B构像C垂上CE应件原直E两且点已理的点字构知:速的母成两同度速顺的点一影度序多速构像时一边度件,致形求上可相第各以似三点用且点在速角速速度e标f度度影字cv时矢像C母B才量原绕能图理行使上求顺v用构出E序速成该相度的v构C同多影件g。边像上形原任与理意其一在点机的 P
1 P12
A
1
P14
VE 2 P24E
P24
2
P23 C
VE E
3
D
4
P34
§3-2 用速度瞬心法作机构速度分析
四、 用瞬心法作机构的速度分析
1. 铰链四杆机构
已知:各杆长及1 ,1。求:2 ,3 。 V E
N(N I) 43
P24
K
6
2
2
P14、P12、P23、P34位于铰链中心
取基点p,按比例尺v (m/s)/mm作速度图
A 1
4
D
b
VB
vC v pc vCB v bc
VCB
p
2

vCB lBC
3

vC l CD
c
VC
方向判定:采用矢量平移法
§3-2 用矢量方程图解法作机构的运动分析

机械原理-机构的运动分析

机械原理-机构的运动分析

3、加速度分析
aC aB aCB
a C a C aB a CB a CB
n t n t
a B 12l AB
F
1
1 A B 2 E C
大小 lCD32
?
→A
lCB22 C→B
? ⊥CB
·
G
3
方向 C→D ⊥CD
取极点p’ ,按比例尺a作加速度图
1
4
D
' aC a p 'c ' aCB a b 'cc´
思考题:
P44 3-1
作业:
P44 3-3、3-6、3-8(b)
§3-3 用矢量方程图解法作机构的运动分析
一、矢量方程图解法的基本原理及作图法
1、基本原理 —— 相对运动原理 B(B1B2) 1
B
A
同一构件上两点间的运动关系
2
两构件重合点间的运动方程
vB v A vBA
aB a A aBA aA a

aC a G e´
aCB
n2 ´ n2

n3
aF

加速度图分析小结: 1)p‘点代表所有构件上绝对加速度为零的影像点。 2)由p‘点指向图上任意点的矢量均代表机构图中对应点 的绝对加速度。 3)除 p′点之外,图中任意两个带“ ′”点间的连线 均代表机构图中对应两点间的相对加速度,其指向与加 速度的角标相反。 4)角加速度可用构件上任意两点之间的相对切向加速度 除于该两点之间的距离来求得,方向的判定采用矢量平 aCB b ' c ' 移法。 5)加速度影像原理:在加速度图上,同一构件上各点的 绝对加速度矢量终点构成的多边形与机构图中对应点构 成的多边形相似且角标字母绕行顺序相同。 6)加速度影像原理只能用于同一构件。

机械原理第3章平面机构的运动分析

机械原理第3章平面机构的运动分析
(不包括机架), 所以有 N=n+1 。
机构中构件 3 4 5 ……
总数
瞬心数 3 6 10 ……
p12 p13 p23
p12 p13 p14 p23 p24 p34
p12 p13 p14 p15 p23 p24 p25 p34 p35 p45
4
机械原理
§3-2 用速度瞬心法作机构的速度分析 3. 瞬心位置的确定
∴ω4
= ω2
P12 P24 P14 P24
两方构向件?的若角相速对度瞬与心其P绝24对在瞬两心绝对瞬心P12 、P14 至相对瞬的心延的长距线离上成,反比ω2、ω4 同向;若P24
在P12 、15P14之间,则ω2、ω4 反向。
机械原理
(2)求角速度 高副机构
已知构件2的转速ω2,求构件3的角速度ω3
θ3 = arctan a ± a2 +b2 −c2
(3)
2
b+c
* 正负号对应于机构的两个安装 模式,应根据所采用的模式确定 一个解。
此处取“+”
21
机械原理
22
机械原理
⎧⎨⎩ll22
cosθ2 sin θ 2
= =
l3 l3
cosθ3 − l1 cosθ1 + xD − xA sinθ3 − l1 sinθ1 + yD − yA
2 建立速度、加速度关系式 为线性, 不难求解。
3 上机计算, 绘制位移、速度、加速度线图. * 位移、速度、加速度线图是根据机构位移、速度、加速度
对时间或原动件位移的关系式绘出的关系曲线. ** 建立位移关系式是关键,速度、加速度关系式的建立只是求
导过程。
19
机械原理

第三章 平面机构的运动分析

第三章 平面机构的运动分析
第三节 用矢量方程图解法作机构的速度 及加速度分析
1. 矢量方程图解法的基本原理和作法
在用矢量方程图解法对机构进行速度和加速度分析
时,首先是根据相对运动原理,建立点与点之间的 速度和加速度矢量方程,然后用作图法求解矢量方 程,按比例绘出机构的速度多边形和加速度多边形, 求得未知的运动参数。
第三章 平面机构的运动分析
第三章 平面机构的运动分析

两构件以平面高副相联接时,当两构件作 纯滚动,接触点相对速度为零,
该接触点M即为瞬心P12;
第三章 平面机构的运动分析

若高副元素间既作相对滚动,又作相对滑 动,由于相对速度v12存在,并且其方向沿 切线方向,
瞬心P12必位于过接触点的公法线(切线的垂线) n---n上,具体在法线的哪一点,须根据其它 条件再作具体分析确定。
B
A
第三章 平面机构的运动分析
速度分析


通过分析,了解从动件的速度变化
为加速度分析作准备。
规律是否满足工作要求。如牛头刨床; 加速度分析 ① 确定各构件及其上某些点的加速度; ② ③ 了解机构加速度的变化规律; 为机构的力分析打基础。 ●图解法 ●解析法
速度瞬心法
矢量方程图解法
机构运动分析的方法
第三章 平面机构的运动分析
第一节 机构运动分析的任务、目的及方法
机构的运动分析:就是对机构的位移、速度和 加速度进行分析
位移、轨位形),绘制 机构位置图。 ② 确定构件的运动空间,判断是否发生 干涉。 ③ 确定构件行程, 找出极限位置。 ④ 确定点的轨迹(连杆曲线)。
设有矢量方程: D= A + B + C 因每一个矢量具有大小和方向两个参数,根据 已知条件的不同,上述方程有以下四种情况: D= A + B + C 大小:? √ √ √ 方向:? √ √ √

第三章 平面机构的运动分析

第三章 平面机构的运动分析

∥BD
D
μv
b1
(3) 求VE
大小
VE = VC + VEC ? √ √ ? ⊥EC
e
c
b2 P
方向 水平
E
2. 加速度分析 (1) 求aB2 aB2= aB1 + akB2B1 + arB2B1= anB2 + aτB2 大小 ? √
2ω3vB3B2
5
4 C ω1 1 3 6 c D e b2 P 2 B(B1,B2) b1
C→B ⊥CB
b′
m/s2/mm
c″
P′
b″
a′ ′ c″ c′
加速度多边形
加速度多边形特征如下: 1) 连接P′点和任一点的向 量代表该点在机构图中同名点的 绝对速度,其方向由P点指向该 点;
C A vA aA
aB方向
vB方向
B
2) 连接其它任意两点的向量
代表在机构中同名点间的相对速 度,其指向与相对下标相反; 3) 点P′—极点,代表该机 构上加速度为零的点(绝对速度瞬
位移分析可以:
◆ 进行干涉校验 ◆ 确定从动件行程
◆ 考查构件或构件上某点能否实现预定位置变化
的要求。 速度、加速度分析可以: ◆ 确定速度变化是否满足要求 ◆ 确定机构的惯性力、振动等
机构的运动分析:根据原动件的已知运动规律,分 析改机构上某点的位移、速度和加速度以及构件的角速 度、角加速度。 目的在于: 确定某些构件在运动时所需的空间;判断各构件间 是否存在干涉;考察某点运动轨迹是否符合要求;用于 确定惯性力等。 二、方法 图解法:形象直观,精度不高。 速度瞬心法 矢量方程图解法
24
vk= KP24 ×μ
l

机械原理 第3章 平面机构的运动分析

机械原理 第3章 平面机构的运动分析

VD5 = VD4+ VD5D4 大小 ? √ ?
方向 ⊥DF √ ∥移动方向
ω5= VD5/LDF
aD5
= aD5n +
a
t D5
=aD4
+
aD5D4k (哥氏加速度) +
aD5D4r
大小 ω52* LDF ? √ 2ω4* VD5D4

方向
√ D→F ⊥DF
VD5D4方向沿ω4转过900
∥移动方向
二.实例分析
1、矢量方程图解法的基本原理和作法 原理:相对运动原理 方法:对矢量方程进行图解 1)同一构件上两点间速度和加速度的关系 同一构件上一点的运动可看成是随该构件上另 一点的平动和绕该点的转动的合成。
VB=VA+VBA aB=aA+aBAn+aBAt
1 同一构件两点间的和关系
构件2:已知B和B
1)去除局部自由度; 2)剔除虚约束;(D?)
3)正确确定运动副的数目; 4)构件编号; 5) 列式计算 • F=3×5-2×6-1×2
•用速度瞬心作机构的速度分析
•用矢量方程图解法作机构的速度分 析及加速度分析
第三章 平面机构的运动分析
3-1 平面机构运动分析的任务目的和方法 平面机构的运动分析是指 :
已知原动件的运动规律、机构尺寸,求其 它构件上某点的运动(s、v、a)
方法:
1 、图解法 特点: 形象直观,精度低,用于求个别
位置的运动特性
VC = VB + VCB
大小 ? √

方向∥X-X ⊥AB ⊥BC
设速度比例尺,作速度图,
设p(小写)为速度极点,
速度极点的速度为零。

平面机构的运动分析

平面机构的运动分析

§3-2 用速度瞬心法作机构的速度分析
1、瞬心-理论力学定义
(1) 速度瞬心是对刚体的平面运动来说的, 每一瞬时,平面图形 上都唯一地存在一个速度为零的点,这个在瞬时速度为零的点, 称为瞬心。
(2) 任何一个物体的瞬时运动实际都可以看作是绕某一点的转动, 速度瞬心说的就是这个转动中心。
(3) 任意两个点的速度垂线焦点就是速度瞬心, 并且其他任何一点的速度垂线 都通过这个速度瞬心。
vD5=vD4+vD5D4 aD5=aD4+aD5Dk4+aD5D4 r
科氏加速度的大小:
aDk5D4=2ω4vD 5D4 ;
方向:将vD5D4沿ω4转过90°的方向。
加速度合成定理: 若牵连运动中存在转动,则动点的绝对加速度等于它的相对加速度、牵连加 速度和科氏加速度的矢量和。 科氏加速度:由科里奥利(G.G. Coriolis)于1835年首先提出的,是动基的转动 与动点相对运动相互耦合引起的加速度。它表示动参考系的角速度,等于角 速度与动点相对速度矢量积的两倍。
速度多边形特征如下:
1) 连接P点和任一点的向量代表该点在机构图 中同名点的绝对速度,其方向由P点指向该点;
2) 连接其它任意两点的向量代表在机构中同名 点间的相对速度,其指向与相对下标相反; C 3) 点P——极点,代表该机构上速度为零的点( 绝对速度瞬心P);
P
K
A
vA
aB方向 vB方向
B aA
例1 确定铰链四杆机构的 全部瞬心
K=6
用速度瞬心法作机构的速度分析(3/3)
2. 用瞬心法作机构的速度分析 例1 平面铰链四杆机构 例2 平面凸轮机构
§3-3 用矢量方程图解法作机构的速度 及加速度分析
1. 基本原理和作法 (1)同一构件上两点间的运动矢量关系

机械原理 第3版 第3章 平面连杆机构的运动分析

机械原理 第3版 第3章 平面连杆机构的运动分析
9
3、瞬心位置的确定
2)两个构件之间没有用运动副连接时,可
用三心定理求出的瞬心位置
Kennedy Theorem
Aronhold-Kenndy Theorem
1)两个构件之间用运动副连接时,可直接
判断出的瞬心位置
primary center
10
1. 选择一个适当的比例尺画出机构运动简图;
2. 找出机构的全部瞬心并标注在机构简图上;
17
已知机构尺寸和主动件角速度1,求2和3
1、利用Vp12求2
18
2、利用Vp13求3
求3的思路
19
P12
P23
1、利用瞬心P12,求V2
已知凸轮角速度1,求推杆速度V2
P13
P23
20101011-04-2-08
速度瞬心法 相对运动图解法
复数法 矩阵法 矢量法
二、运动分析的方法
6
1、瞬心概念:作平面相对运动的两构件,以 看成是围绕一个瞬时重合点作相 对转动,该重合点称为瞬时速度 中心,简称瞬心。
24
第三节 用相对运动图解法对机构进行运动分析
一、相对运动图解法的基本原理
理论力学知识1、同一构件上两点之间的速度、加速度的关系2、两构件重合点处的速度与加速度关系
25
速度关系
加速度关系
1、同一构件上两点之间的速度、加速度的关系
牵连运动是移动,相对运动是转动。
26
2.两构件重合点处的速度和加速度矢量关系
第三章 平面机构的运动分析
2010.10.13 第5次课
21
复 习
1.平面机构的结构分析把一个机构分解为原动件和杆组的过程。机构结构分析的一般步骤 a计算自由度确定原动件 b高副低代,去掉局部自由度和虚约束 c开始拆杆组注意:拆去杆组后,剩余部分仍然是机构 同一个机构选用不同构件作原动件时,其机构的级别可能不同
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∞ 1 6 2 3 P13 4 P14 1 P36 P26 P35 P12 P46 4 P34 P25 2 P45 5 P56 P23 3 ∞ P16 6 P24 P15
5
§3-3 用矢量方程图解法作机构的速度 及加速度分析
1. 基本原理和作法 (1)同一构件上两点间的运动矢量关系 vC=vB+vCB t n aC=aB+aCB=aB+aCB+aCB 1) 速度多边形及加速度多边形; 2) 速度影像及加速度影像. (2)两构件上重合点间的运动矢量关系 vD5=vD4+vD5D4 k r aD5=aD4+aD5D4+aD5D4
1.任务 根据机构的尺寸及原动件已知运动规律,求构件中从动件上 某点的轨迹,位移,速度及加速度和构件的角位移,角速度及角 加速度. 2.目的 了解已有机构的运动性能,设计新的机械和研究机械动力性 能的必要前提. 3.方法 主要有图解法和解析法.
§3-2 用速度瞬心法作机构的速度分析
1.速度瞬心及其位置确定 (1)速度瞬心 两构件上的瞬时等速重 合点(即同速点), 用Pij表示. 绝对瞬心: vP=0 相对瞬心: vP≠0 机构中的瞬心总数目:K=N (N-1)/2 N: 运动构件数 (2)瞬心位置的确定 1)由瞬心定义确定 以转动副相联,瞬心在其中心处; 以移动副相联,瞬心在垂直于其导 路的无穷远处;
用速度瞬心法作机构的速度分析(2/3) 用速度瞬心法作机构的速度分析
以纯滚动高副相联,瞬心就在其接触点处; 以滚动兼滑动的高副相联,瞬心就在过其接触点处两高副元 素的公法线上.
2)借助三心定理确定 三心定理:彼此作平面运动的三个构件的三个瞬心必位于 同一直线上.
用速度瞬心法作机构的速度分析(3/3) 用速度瞬心法作机构的速度分析
复杂机构 即Ⅲ级以上的机构和组合机构等. 综合法 即综合运用瞬心法和矢量方程图解法作机构速度分 析的方法. 举例 例3-6 齿轮-连杆组合机构 例3-7 摇动筛六杆机构 例3-8风扇摇头机构
§3-5 用解析法作机构的运动分析
1. 矢量方程解析法 (1)矢量分析的有关知识 构件用杆矢量 l=le表示, 其单位矢,切向单位矢及法向单 位矢分别用e,e t,e n表示. (2)矢量方程解析法 2. 复数法 3. 矩阵法 以平面铰链四杆机构为例介绍矩阵法作机构运动分析的方法. 例3-9牛头刨床六杆机构
例3-1 平面铰链四杆机构 解 K=6 P12 P13 P23
P14 P24 P34
说明 瞬心确定的一种简捷方法为瞬心代号下脚标同号消 去法. 2. -3 平面凸轮机构
举例:求图示六杆机构的速度瞬心. 举例:求图示六杆机构的速度瞬心. 瞬心数为: n(n-1)/2= 解:瞬心数为:N=n(n-1)/2=15 n=6 1.作瞬心多边形圆 作瞬心多边形圆 2.直接观察求瞬心 直接观察求瞬心 3.三心定律求瞬心 三心定律求瞬心
k 哥氏加速度的大小:aD5D4=2ω4vD 5D4 ;
方向:将vD5D4沿ω4转过90°的方向.
及加速度分析(2/2) 用矢量方程图解法作机构的速度 及加速度分析
2. 作机构的速度及加速度分析 例3-4 柱塞唧筒六杆机构 例3-5 平面凸轮高副机构
§3-4 综合运用瞬心法和矢量方程图解法对 复杂机构进行速度分析

第三章
平面机构的运动分析
机构运动分析的任务, §3-1 机构运动分析的任务,目的和方法 §3-2 用速度瞬心法作机构的速度分析 §3-3 用矢量方程图解法作机构的速度及 加速度分析 §3-4 综合运用瞬心法和矢量方程图解法 对复杂机构进行速度分析 §3-5 用解析法作机构的运动分析 返回
机构运动分析的任务, §3-1 机构运动分析的任务,目的和方法
相关文档
最新文档