2.1_平面向量的实际背景及基本概念_基础
2.1平面向量的实际背景及基本概念
例1:已知O为正六边形ABCDEF的中心, 在图中所标出的向量中: E D (1)试找出与FE共线的向量;
F
O C
热 热 身
解: (1) OA BC, (2) FE BC
若不相等,则之间有什么关系?
A
B
(3)虽然OA // BC,且|OA|=|BC|,
立
BACK
练习:
1.已知a、b为不共线的非零向量,且
存在向量 c,使 c ∥ a, c ∥ b, 则
c =____ 0
BACK
练习:
1.与非零向量 a (非单位向量)平行的 2 向量中,不相等的单位向量有_____ 个.
BACK
练习:如图,EF是△ABC的中位线,AD是BC 边上的中
线,在以A、B、C、D、E、F为端点的有向线 段表示的向量中请分别写出
三维目标 1.通过实例,利用平面向量的物理背景以及研 究平面向量的必要性,理解平面向量的概念以 及确定平面向量的两个要素,分清数量与向量 的区别。 2.理解自由向量、平行向量、相等向量、相反 向量等概念,并能判断它们之间的关系,并会 辨认图形中的相等向量或作出与某一向量相等 的向量。 3.在教学过程中,应充分根据平面向量的两个 要素加以研究向量的关系,揭示向量可以平移 这一特性。培养学生数形结合的思想。
教学反思:
位移和距离 这两个量
香港
上海 台北
想一想:
观察下述三个量,哪个与另两个有区别?
m=5kg
(1)
F=20N
(2)
v =20km/h
(3)
(2)(3)都是有大小和方向的量
授课教师:高 波
一、向量的定义
说课课件第二章 平面向量 2.1平面向量的实际背景及基本概念
老鼠由A向东北方向以6m/s的速度逃窜,而猫由B 向正东方向10m/s的速度追. 问猫能否抓到老鼠?
嘻嘻!大笨猫!
C
唉, 哪儿去了?
A
B
猫的速度再快也没用,因为方向错了.
D
12
情景引入
南辕北辙——战国时,有个北方人要到南方的楚国去.他从太行山脚下出发, 乘着马车一直往北走去.有人提醒他“到楚国应该朝南走,你怎能往北呢?” 他却说“不要紧,我有一匹好马!”问:北方人能到达楚国吗?
4
重点 难点
教学重难点
向量概念、向量的几何表示、以及相 等向量、平行向量、共线向量的概念;
让学生感受向量、平行向量或共线向量及 相等向量概念形成过程;
5
教学目标
01 知识技能 02 过程与方法
情感态度与价
03
值观
知识技能 (1) 理解平面向量的概念,学会平面向量的表示方法; (2) 理解零向量、单位向量、相等向量、平行向量的含义。
a
b
l
c
C
OB A
平行向量也叫做共线向量!
22
设计意图——根据目标选择合适题型, 检测学生本节课的学习情况。
23
小试牛刀
1.如图, D、E、F分别是△ABC各边上的中点,在 以A、B、C、D、E、F为端点的有向线段表示 A 的向量中,请分别写出:
(1)与向量 DE 相等的向量有__个, E
F
分别是___________;
()
(6)模相等的两个平行向量是相等的向量;
()
(7)共线向量一定在同一直线上;
()
25
课堂小结
向量的概念; 向量的表示方法; 零向量、单位向量概念; 平行向量、共线向量定义; 共线向量与平行向量关系;
2019-2020高中数学人教A版必修四教师用书:2.1 平面向量的实际背景及基本概念 Word版
姓名,年级:时间:2.1 平面向量的实际背景及基本概念[教材研读]预习课本P74~76,思考以下问题1.向量是如何定义的?向量与数量有什么区别?2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.零向量与单位向量有什么特殊性?0与0的含义有什么区别? 5.如何判断相等向量或共线向量?向量错误!与向量错误!是相等向量吗?[要点梳理]1.向量的概念和表示方法(1)概念:既有大小,又有方向的量称为向量.(2)向量的表示2.向量的长度(或称模)与特殊向量(1)向量的长度(或模)定义:向量的大小叫做向量的长度(或模).(2)向量的长度表示:向量错误!,a的长度分别记作:|错误!|,|a|。
(3)特殊向量:①长度为0的向量为零向量,记作0;②长度等于1个单位的向量,叫做单位向量.3.向量间的关系(1)相等向量:长度相等且方向相同的向量,叫做相等向量,记作:a =b。
(2)平行向量:方向相同或相反的非零向量,也叫共线向量;a平行于b,记作a∥b;规定零向量与任一向量平行.[自我诊断]判断(正确的打“√",错误的打“×”)1.两个向量能比较大小.()2.向量的模是一个正实数.()3.单位向量的模都相等.( )4.向量错误!与向量错误!是相等向量.( )[答案]1。
×2。
× 3.√ 4.×错误!思考:已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度.其中是数量的有__________,是向量的有__________.提示:②④⑤⑨⑩①③⑥⑦⑧下列说法正确的有__________.(填序号)①若|a|=|b|,则a与b的长度相等且方向相同或相反;②若|a|=|b|,且a与b的方向相同,则a=b;③由于0方向不确定,故0不能与任意向量平行;④向量a与向量b平行,则向量a与b方向相同或相反;⑤起点不同,但方向相同且模相等的向量是相等向量.[思路导引] 利用向量的有关概念逐一判断.[解析] ①不正确.由|a|=|b|只能判断两向量长度相等,不能确定它们方向的关系.②正确.因为|a|=|b|,且a与b同向,由两向量相等的条件,可得a=b.③不正确.依据规定:0与任一向量平行.④不正确.因为向量a与向量b若有一个是零向量,则其方向不定.⑤正确.对于一个向量只要不改变其大小与方向,是可以任意移动的.[答案] ②⑤解决与向量概念有关问题的方法解决与向量概念有关题目的关键是突出向量的核心——方向和长度,如:共线向量的核心是方向相同或相反,长度没有限制;相等向量的核心是方向相同且长度相等;单位向量的核心是方向没有限制,但长度都是一个单位长度;零向量的核心是方向没有限制,长度是0;规定零向量与任一向量共线.只有紧紧抓住概念的核心才能顺利解决与向量概念有关的问题.[跟踪训练]下列说法错误的有__________.(填上你认为所有符合的序号)①两个单位向量不可能平行;②两个非零向量平行,则它们所在直线平行;③当两个向量a,b共线且方向相同时,若|a|〉|b|,则a>b.[解析]①错误,单位向量也可以平行;②错误,两个非零向量平行,则它们所在直线还可能重合;③错误,两个向量是不能比较大小的,只有模可以比较大小.[答案] ①②③错误!思考:向量就是有向线段,这种说法对吗?提示:不对,向量与有向线段是两个不同的概念,可以用有向线段表示向量.在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:(1)错误!,使|错误!|=4错误!,点A在点O北偏东45°;(2)错误!,使|错误!|=4,点B在点A正东;(3)错误!,使|错误!|=6,点C在点B北偏东30°。
2.1 平面向量的实际背景及基本概念
三 向量的表示
有向线段 AB 、a
长度(也称为模) AB 、|a| 零向量 0 单位向量 a 0
四 向量的性质
1.向量有大小,但却不可以比较大小
2.向量不是有向线段,却用有向线段 表示
3.向量平行即共线
六 练习3
下列说法不正确的是( ). (A)若|a|=0,则a =0
(B)若| a |=|b|,则a = b (C)若a =0,则| a |=0 (D)若a = b ,则| a |=| b |
六 练习4
如图:四边形 ABCD 是平行四边形. 则下列哪些向量是相等的向量( )
(A) AD 和 BC
A
D
(B) AD 和 CB
(C) AB 和 CD B
C
(D) AC 和 BD
六 练习5 在等腰梯形 ABCD 中,AB∥CD, E、F 分别为 AD、BC 的中点.则
与 AB 共线的向量有_______个.
A
B
E
F
D
C
六 练习6
在平面直角坐标系 xoy 中,已知| OA |
=4, OA 与 x 轴正方向成 60°角,
情感态度与价值观
• 了解数学是如何从具体的事物中抽象出向量的概念,强 化数学与物理之间有着密切联系的观念.
一 实例引入
广附 5 千米 北
60 西
六中
N f
30 G
二 向量的概念
位移和力这些物理量都是既有大小, 又有方向的量,在物理中称为“矢 量”.它们和长度、面积、质量等只有 大小的量是不同的.
4.零向量方向任意,可平行于任何向 量列量当中,不是向量的有( )个.
2.1-平面向量的实际背景及基本概念
AC 表示A地至C地的
位移,且 AC 264k m
4、向量间的关系
(1)相等向量: 长度相等且方向相同的向量
叫做相等向量. 向量 a 与 b 相等,记作:a b
•向量不能比较大小,但可以说相等不相等
(2)平行向量: 方向 相同或相反的非零向量 叫平行向量,也叫共线向量. a b 记作:∥ 注:零向量与任意向量平行.
(1)向量只有大小和方向两个要素,与起点无 关,只要大小和方向相同,这两个向量就是相同 的向量; (2)有向线段有起点、大小和方向三个要素,起 点不同,尽管大小和方向相同,也是不同的有向 线段.
即有向线段是固定的线段,而向量是可 以平移的.
4、向量的模及两个特殊向量 (1)向量的模:向量的大小就是向量的长 度,即向量的模.记作: | AB | (2)零向量: 长度为0的向量叫做零向量, 记作: 0 (3)单位向量: 长度(模)为1个单位长度 的向量叫单位向量.
引例
美国“小鹰”号航空母舰导弹发射处获得信息:伊拉 克的军事目标距“小鹰”号1200公里。试问只知道这一信 息导弹是否能击中目标?
1200公里
答案:不能,因为 没有给定发射的方向.
1200公里
1200公里
1200公里
力:重力 ,浮力,弹力等
12N 5N f 1kg 5N f
许多物理量都有这样的性质...
注:①所有零向量都相等,且零向量的方向 是任意的. ②如果把所有单位向量的起点平移到同 一点上,那么终点都在同一个单位圆上.
例1 如图,试根据图中的比例尺以及三地的位置,在图中分 别用有向线段表示A地至B、C两地的位移,并求出A地至B、 C两地的距离(精确到1km).
2.7CM 3.3CM
2.1平面向量的实际背景及基本概念
(2)直角坐标平面内的x轴,y轴是向量。 (3)如果两个向量所在的直线互相平行,那么这 两个向量是平行向量。
(4)平行向量所在的直线一定互相平行。 (5)单位向量都相等。
二、课堂互动讲练
(6)不相等的向量一定不平行。 (7)若 | a | > | b | 则 a > b 。
二、课堂互动讲练
(三)解决问题
3、掌握平行向量、相等向量、共线向量的概念。 重、难点 重点:理解并掌握向量、向量的模、零向量、单
位向量、平行向量、相等向量、共线向量的概念。 难点:向量的方向、相等向量、共线向量。
一、课前自主探究 1、什么是位移? 2、什么是向量?你还能从物理学中举 出一些这样的量吗?
3、什么是数量?生活中哪些量是数量
? 4、什么是有向线段?怎样表示?它的 长度怎样表示?它由哪几个要素组成?
5、向量的大小(或称模),怎样表示?
一、课前自主探究 6、对比线段的表示方法,向量怎样表 示? 7、你知道两个特殊向量吗?它们是? 8、什么是平行向量? 9、什么是相等向量? 10、什么是共线向量?
二、课堂互动讲练
(一)选择
1、下列物理量不是向量的是( ① ⑥ ⑦
① 质量 ② 速度 ③ 位移 ④
)
力
⑤
加速度 ⑥
路程
⑦
密度
2、下列说法中错误的是( A ) A.零向量是没有方向的 B.零向量的长度为零 C.零向量与任一向量平行 D.零向量的方向是任 意的
二、课堂互动讲练
(二)辨析
(1)温度含零上和零下温度,所以温度是向量。
(1)与零向量相等的向量必定是什么向量?
零向量 (2)与任意向量都平行的向量是什么向量? 零向量
(3)平行向量是否一定方向相同? 不一定
高中数学 2.1平面向量的实际背景及基本概念教案2 新人教A版必修4
§2.1 平面向量的实际背景及基本概念
一、三维目标
1、知识与技能
(1)了解向量的实际背景,理解平面向量的概念和向量的几何表示;
(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;
并能弄清平行向量、相等向量、共线向量的关系
(3)通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
2、过程与方法
引导发现法与讨论相结合。
这是向量的第一节课,概念与知识点较多,在对学生进行适当的引导之后,应让学生清清楚楚得明白其概念,这是学生进一步获取向量知识的前提;通过学生主动地参与到课堂教学中,提高学生学习的积极性。
体现了在老师的引导下,学生的的主体地位和作用。
3、情感目标与价值观
通过对向量与数量的比较,培养学生认识客观事物的数学本质的能力,并且意识到数学与现实生活是密不可分的,是源于生活,用于生活的。
二、教学重点及难点
1重点:向量的概念,相等向量的概念,向量的几何表示等
2难点:向量的概念和共线向量的概念。
2.1平面向量的实际背景及基本概念
向量的几何表示 方向相同或相反的非零向量叫做平行向量
a
b
记作 a ∥ b ∥c
c
规定: 零向量与任一向量平行, 即对于任意向量a,都有0∥a
相等向量:长度相等且方向相同的向量。
a
b
记作: a = b
共线向量 任一组平行向量都可以移动到 同一直线上 a 平行向量也叫做共线向量。
b c
l
C
o B A
比较大小的,因此向量不能比较大小。
友情链接:物理中向量与数量分别叫做
矢量、标量
判断题
1.身高是一个向量( )
)
2.温度含零上和零下温度,所以温度是向量(
3.坐标平面上的 x 轴和 y 轴都是(
)
Hale Waihona Puke 2.1.2向量的几何表示 由于实数与数轴上的点一一对应,所以 数量常常用数轴上的一个点表示。 如:3,2,-1,…而且不同的点表示不同 的数量.
B
(知道了有向线段的起点、方向和长度, 它的终点就可以唯一确定.)
A
向量的几何表示:用有向线段表示。 向量AB的大小,也就是向量AB的长度(或 称模),记作|AB|.
长度为0的向量叫做零向量(方向任意)。 记作0. |0|=0.
长度等于1个单位的向量,叫做单位向量. 向量的字母表示:(1)a、b、c.... (2)用表示向量的有向线段的起点和终 点字母表示,例如,AB,CD
思考:有向线段就是向量,向量就是有 向线段? 有向线段只是一个几何图形,是 向量直观表示
例1 如图,试根据图中的比例尺以及三地 的位置,在图中分别用有向线段表示A地 至B、C两地的位移(精确到1km).
解:
AB表示A地至B地的位移,且
平面向量的实际背景及基本概念
一点P,那么它们的终点的集合组成什么图形?
提示:圆
P
相等向量: 长度相等且方向相同的向量.
向量 a与 相等,记作:
b
a b.
A1
a
A3A2
在实数中,我们有:若
=
b
A4, =
,则 B=1
B2
B3
,在向量中,你能提出类似的问题吗?结论怎样?
c
向量 AB 或a 的模 (或长度) 就是向量AB 或a 的大小,
记作:AB 或 a .
注:向量的模是可以比较大小的.
数量中有很特殊的数“0”,“1”,向量中有
没有类似的特殊向量?
零向量——长度为0的向量叫做零向量,记作 0.
零向量的方向是任意的!
单位向量——长度等于1个单位的向量,叫做单位向量.
图中与向量 OA 、OB 、OC 相等的向量。
B
A
O
C
F
D
E
解:
B
A
OA CB DO
OB DC EO
O
C
F
OC AB ED FO
D
E
变式练习:
1.与向量 OA 长度相等的向量有多少个?
2.是否存在与向量 OA 长度相等、方向
相反的向量?
3.与向量OA 共线的向量有哪些?
2.1平面向量的实际背景
及基本概念
向量的概念
向量:既有大小又有方向的量叫向量.
向量的两要素:大小、方向.
数量:只有大小没有方向的量.
数量可以比较大小,向量不能比较大小!
友情链接:物理中常把向量与数量分别叫做 矢量、标量.
平面向量的实际背景及基本概念
数乘向量
• 数乘向量:一个实数与一个向量的乘积是一个向量,其模 等于该实数乘以原向量模,其方向与原向量方向相同或相 反(当实数为负时)。
03
平面向量的性质与运 算
向量的模
向量的模的性质
• 齐次性:对于任意实数λ和向量 a,有|λa|=|λ||a|。
向量的模定义:向量的大小或长 度称为向量的模。记作|a|,其中a 为向量。
速度与加速度的合成
总结词
平面向量在速度和加速度的计算中有着重要的应用, 通过速度和加速度的合成可以更好地分析物体的运动 状态。
详细描述
在物理学中,速度和加速度是描述物体运动状态的重 要物理量,可以用向量表示其大小和方向。通过将速 度和加速度进行合成,可以更好地分析物体的运动状 态,例如,在曲线运动中,可以将速度分解为多个分 量,然后分别对每个分量进行分析,以确定物体在曲 线上的位置、速度和加速度。此外,在航天工程中, 也需要利用平面向量来计算卫星轨道和航天器姿态等 参数。
VS
向量的积分
向量的积分可以表示向量在某个区间内的 累积效果,其计算方法与函数的积分类似 。
THANK YOU
05
平面向量的扩展与延 伸
向量的空间几何意义
向量的长度
表示向量的大小,可以通过模长来衡 量。
向量的夹角
表示两个向量之间的角度,可以通过 向量的点积来计算。
向量的平行
当两个向量共线时,它们是平行的。
向量的垂直
当两个向量正交时,它们是垂直的。
向量的函数表示
向量的线性函数
向量的线性函数是指与向量成正比的函数, 可以表示为y=mx+b的形式。
向量的二次函数
向量的二次函数是指与向量平方成正比的函数,可 以表示为y=mx²+bx+c的形式。
2.1 平面向量的实际背景及基本概念
2.1 平面向量的实际背景及基本概念向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量. 与长度相等方向相反的向量叫做的相反向量.课堂训练一、选择题1、下列物理量中, 不能称为向量的是 ( )A .距离B .加速度C .力D .位移2、下列四个命题正确的是 ( )A .两个单位向量一定相等B .若与不共线,则与都是非零向量C .共线的单位向量必相等D .两个相等的向量起点、方向、长度必须都相同3、下列说法错误的是 ( )A .向量OA 的长度与向量AO 的长度相等B .零向量与任意非零向量平行C .长度相等方向相反的向量共线D .方向相反的向量可能相等4、对于以下命题:(1)平行向量一定相等; (2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线。
其中真命题的个数是 ( )A .0个B .1个C .2个D .3个5、在△ABC 中,AB=AC ,D 、E 分别是AB 、AC 的中点,则 ( ) A. 与AC 共线 B. 与CB 共线 C. 与相等 D. 与相等6、两个向量共线是两个向量相等的 ( )A 、 充分不必要条件B 、必要不充分条件C 、充要条件D 、 既不充分也不必要条件二、填空题1、与非零向量平行的单位向量的个数是_______。
2、||||b a =是b a =的___ __条件。
3、已知B ,C 是线段AD 的两个三等分点,分别以图中各点为起点和终点最多可以写出___ __个互不相等的非零向量。
4、已知平面上不共线的四点满足=,则以下四个命题:(1)ABCD 是平行四边形;(2)ACBD 是平行四边形;(3)ADBC 是平行四边形;(4)ACDB 是平行四边形。
2.1 平面向量的实际背景及基本概念
§2.1 平面向量的实际背景及基本概念学习目标:了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.学习重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.学习难点:平行向量、相等向量和共线向量的区别和联系.学习过程:一、复习引入 请同学想想哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习:1.向量的概念:我们把____________________________________叫向量数量与向量的区别:_______________________________________2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ;.有向线段:____________线段就叫做有向线段,三个要素:______________- ④向量AB 的大小――长度称为向量的模,记作|AB |.3.零向量、单位向量概念:①_______________叫零向量,记作____ 的方向是任意的注意0 与0的区别②__________________________叫单位向量.说明:零向量、单位向量的定义都是只限制大小,不确定方向.4.平行向量定义:①__________________________叫平行向量;②我们规定_________与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a 、b 、c 平行,记作a ∥b ∥c .6、相等向量定义:___________________________________叫相等向量.A(起点) B (终点)a说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与.有向线段的起点无关..........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有..向线段的起点无关)..........说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.三:理解和巩固:例1 书本第75页例1.例2 如图,设O是正六边形ABCDEF的中心,分别写出图中与向量OA、OB、OC相等的向量.变式一:与向量长度相等的向量有多少个?变式二:是否存在与向量长度相等、方向相反的向量?变式三:与向量共线的向量有哪些?练习1.(1)平行向量是否一定方向相同?(2)不相等的向量是否一定不平行?(3)与零向量相等的向量必定是什么向量?(4)与任意向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(6)两个非零向量相等的当且仅当什么?(7)共线向量一定在同一直线上吗?2.课本77页练习四小结:向量及向量的有关概念、表示方法,还知道有两个特殊向量,最后学了向量间的两种关系,即平行向量(共线向量)和相等向量课后作业:课本77页习题2.1A组第3、4、5题。
说课第二章 平面向量 2.1平面向量的实际背景及基本概念
200km .
AC 表示A地至C地的位移,且
280km .
25
平行向量:
向量间的关系
①方向相同或相反的非零向量叫平行向量;
②我们规定0与任一向
a
量平行.
b
c
26
讲授新课
6.平行向量定义: ①方向相同或相反的非零向量叫平行向量; ②我们规定0与任一向量平行. a
b c
决数学问题。
(三)情感态度与价值观
经历平面向量的概念的探索过程,提高自主探究能力,进
一步提高学习数学的乐趣,由感性思维逐步提升到理性思
维。
7
(四)学科核心素养 a. 数学抽象:平面向量的概念 b. 逻辑推理:共线向量的判断 c. 数学运算:向量相等 d. 直观想象:向量的几何表示 e.数学建模:向量概念的建立
直线与直线的位置关 系里,严格区分直线和 直线位置关系,平行就 是共面前提下的无交 点,平行不共线.
29
相等向量:长度相等,方向相同的两个向量。
a
b
ab
对向量的大小和方向都明确规定
a
b
方向相同
a
b
30
思 (1)相等向量一定是平行向量?
考
a
:
是
b
(2)平行向量一定是相等向量?
以A为起点、B为终点的有向线段 记作: AB
起点写在终点的前面.
A(起点)
B (终点)
线段AB的长度也叫做有向线段 AB 的长度,记作: AB
有向线段的三要素:起点、,它的终 点就唯一确定.
22
3. 向量的表示方法:
(1)几何表示法:用有向线段表示
2.1平面向量的实际背景及基本概念
12.1 平面向量的实际背景及基本概念教学目标一、知识与技能1. 了解向量的实际背景,理解平面向量的概念和向量的几何表示.2. 掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念.3. 并会区分平行向量、相等向量和共线向量.二、过程与方法本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的一些基本概念.三、情感、态度与价值观1. 通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.2. 通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教学重点、难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.教学关键:向量、零向量、单位向量、相等向量、共线向量概念的理解.教学突破方法:本节课内容简单,可让学生仔细阅读课本,并合作探究,得出结论.最后老师画龙点睛. 教法与学法导航教学方法:启发诱导,探究合作.学习方法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.教学准备教师准备:多媒体、投影仪.学生准备:练习本.教学过程一、创设情境,导入新课如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了.分析:老鼠逃窜的路线AC 、猫追逐的路线B D 实际上都是有方向、有长短的量.引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向? 由此引出新课.二、主题探究,合作交流提出问题①在物理课中,我们学过力的概念.请回顾一下力的表示方式是什么?还有哪些量和力具有同样特征呢?这些量的共同特征是什么?你能否给出准确的定义呢?②数量与向量的区别在哪里?师生互动:教师指导学生阅读教材,思考讨论并解决上述问题,学生讨论列举与位移一样的一些量.物体受到的重力是竖直向下的,物体的质量越大,它受到的重力越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力就越大;速度与加速度都是既有大小,又有方向的量;物理中的动量与矢量都有方向,且有大小;物理学中存在着许多既有大小,又有方向的量.A B C D2至此时机成熟,引入向量,并把那些只有大小,没有方向的量,如年龄、身高、长度、面积、体积、质量等称为数量,物理学上称为标量.显然数量和向量的区别就在于方向问题.提出问题1. 如何表示向量?2. 有向线段和线段有何区别和联系?分别可以表示向量的什么?3. 长度为零的向量叫什么向量?长度为1的向量叫什么向量?4. 满足什么条件的两个向量是相等向量?单位向量是相等向量吗?5. 有一组向量,它们的方向相同或相反,这组向量有什么关系?6. 如果把一组平行向量的起点全部移到一点O ,这时它们是不是平行向量?这时各向量的终点之间有什么关系?师生互动:教师指导学生阅读教材,通过阅读教材思考讨论以上问题.1. 向量的表示方法: ①用有向线段表示; ②用字母a 、b (黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ; ④向量AB 的大小――长度称为向量的模,记作|AB |.2. 有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.3. 零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.4. 平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a 、b、c平行,记作a ∥b∥c.5. 相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a 与b 相等,记作a=b ;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点........无关... 6. 共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关..........).又如上图,a 、b 、c 是一组平行向量,任作一条与a 所在直线平行的直线l ,在l 上任取一点O ,则可在l 上分A(起点)B (终点)a3别作出OA =a ,OB =b ,OC =c .这就是说,任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量.三、拓展创新,应用提高例1 如图,试根据图中的比例尺以及三地的位置,在图中分别用有向线段表示A 地至B 、C 两地的位移.(精确到1 k m )分析:本例是一个简单的实际问题,要求画出有向线段表示位移,目的在于巩固向量概念及其几何表示. 解:AB 表示A 地至B 地的位移,且|AB |≈232 km ;(AB 长度×8 000 000÷100 000)AC 表示A 地至C 地的位移,且|AC |≈296 km .(AC 长度×8 000 000÷100 000) 点评:位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如上图,由A 点确定B 点、C 点的位置.例2 如图,设O 是正六边形ABC D EF 的中心.分别写出图中所示向量与OA OB OC 、、相等的量. 解:OA =CB =DO ;OB =DC =EO ;OC =AB =ED =FO .点评:向量相等是一个重要的概念,今后经常用到.让学生在训练中明确,向量相等不仅大小相等,还要方向相同.四、小结1. 本节课从平面向量的物理背景和几何背景入手,利用类比的方法,介绍了向量的两种表示方法:几何表示和字母表示,几何表示为用向量处理几何问题打下了基础,字母表示则利于向量的运算;2. 介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是进一步学习后续课程的基础,必须要在理解的基础上把握好.五、课堂作业1.若正多边形有n 条边,它们对应的向量依次为a 1,a 2,…,a n ,则这n 个向量 ( ).A .都相等B .都共线C .都不共线D .模都相等2.如右图所示,在△ABC 中,D E ∥BC ,则其中共线向量有( ).4A .一组B .二组C .三组D .四组3.若命题p 为a =b ,命题q 为|a |=|b |,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不必要又不充分条件4.如下图所示,在四边形ABC D 中,若AB DC ,则下列各组向量相等的是( ).A .AD 与CB B .OA 与OC C .AC 与DBD .DO 与OB5.已知a ,b 是任意两个向量,有下列条件:①|a |=|b |;②a =b ;③a 与b 的方向相反;④a =0或b =0;⑤a 与b 都是单位向量.其中是向量a 与b 共线的充分不必要条件的为._________(把你认为正确的序号全都填上)6.如图所示,四边形ABC D 和AB D E 都是平行四边形.(1)写出与ED 相等的向量;(2)若|AB |=3,求向量EC 的模.参考答案:1.D 2.C 3.A 4.D 5.②③④6.(1)与ED 相等的向量有DC 和AB ,因为四边形ABC D 和AB D E 都是平行四边形,故AB =ED =DC .(2)向量EC 的模|EC |=6.。
2.1向量的实际背景及基本概念
在相等向量的定义下,任意两个相等的非 零向量,都可用同一条有向线段表示,并 且与有向线段的起点无关,在平面上,两 个长度相等且指向一致的有向线段表示同 一个向量,因为向量完全由它的方向和模 确定
用表示向量的有向线段的长度表示.
A(起点)
向量 AB 的大小,也就是向量 AB的长度(或称模)
5/31/2013
记作 AB , 如图所示:
思考5:向量的模可以为0吗?可以为1吗?可以为 负数吗? 向量的模可以为0,也可以为1,不可以为负数. 为了研究的需要,我们引入以下概念. 【零向量】长度为0的向量叫零向量; 0 记作0. (书写体用 ) 规定:零向量0的方向是任意的. 注意:零向量0与实数0的含义、书写区别. 【单位向量】长度为1个单位长度的向量,叫单 位向量. 〖说明〗零向量、单位向量的定义都只是 限制了大小.
AB
B 有向线段的图示与代数记法:在有向线段的终点 (起点)
A(起点)
5/31/2013
处画上箭头表示它的方向,以A为起点、B为终点 起点写在终点的前面. 的有向线段,记作 AB, 线段AB的长度叫做有向线段 AB的长度. 记作 AB 有向线段包含三个要素:起点、方向、长度. 知道了有向线段的三要素,它的终点就唯一确定
5/31/2013
A
B
D
探究(一):向量的物理背景与概念 思考1:在物理中,怎样区分作用于同一 点的两个力?
力的大小和力的方向
思考2:物体受到的重力、物体在液体中 受到的浮力的方向分别如何? 受力的大小分别与哪些因素有关?
F G
5/31/2013
§2.1平面向量的实际背景及基本概念
2013-1-10
重庆市万州高级中学 曾国荣 wzzxzgr@
9
§2.1平面向量的实际背景及基本概念
§ 2.1.2
向量的几何表示
判断题 1.温度含零上和零下温度,所以温度是向量( 2.向量的模是一个正实数。( 3.若|a|>|b| ,则a > b ) )
2013-1-10 重庆市万州高级中学 曾国荣 wzzxzgr@ 23
§2.1平面向量的实际背景及基本概念
课堂练习 <<教材>> P.5 书面作业 <<教材>> P.77 习题2.1 A组3.4.5.6 B组2 练习1.2.3.4.5
2013-1-10
重庆市万州高级中学 曾国荣 wzzxzgr@
( 2 ) 若 | a | | b |, 则 a b ; ( 3 ) 若 AB DC , 则 四 边 形 ABCD 是 平 行 四 边 形 AB DC ; ;
( 4 )平行四边形 ( 5 )若 m
ABCD 中 , 一 定 有 k;
n, n k , 则 m
( 6 ) 若 a // b , b // c , 则 a // c 其中不正确命题的个数 A .2
12
重庆市万州高级中学 曾国荣 wzzxzgr@
§2.1平面向量的实际背景及基本概念
§ 2.1.3 相等向量与平行向量 1.相等向量:长度相等且方向相同的向量叫做相等向 量。向量 a 与 b 相等,记作:a b
a b V4 c a=b=c
注:1.若向量 a , b
V1 V2 V3
§2.1平面向量的实际背景及基本概念
人教高中数学必修4PPT课件:平面向量的实际背景及基本概念
√ (5)物理学中的作用力与反作用力是一对共线向量( ) (6)直角坐标平面图上的x轴,y轴都是向量(√ )
人教高中数学必修4PPT课件:平面向 量的实 际背景 及基本 概念
2.判断下面命题的对错
(1)若a = b,b = c,则a = c。( √) (2)若|a|=0,则a = 0 (×) (3)若|a|=|b|,则a = b (×)
人教高中数学必修4PPT课件:平面向 量的实 际背景 及基本 概念
说明: 1、向量的几何表示:用有向线段表示。 人教高中数学必修4PPT课件:平面向量的实际背景及基本概念
向量AB的大小,也就是向量AB的长度(或称模),记
作 |AB |。
向量不能比较大小,模可以比较大小。
2、向量的字母符号表示:(1)a , b , c , . . . (2)用表示向量的有向线段的起点和终点字母表示, 例如,AB,CD。 注意字母的顺序
量
长度(模)符 概号 念表示 : AB , a
零向量
单位向量
关系相 平等 行向 (量 共线)向量 用向量表示点的位置:位置向量
CB、DO、FE
人教高中数学必修4PPT课件:平面向 量的实 际背景 及基本 概念
人教高中数学必修4PPT课件:平面向 量的实 际背景 及基本 概念
在平面图形中寻求共线向量、相等向量的方法: (1)在平面图形中找共线向量时,应逐个列举,做到不 重不漏,可先找在同一条直线上的共线向量,然后再 找平行直线上的共线向量,要注意一条线段有一正一 反两个共线向量,而方向相同、长度不等的有向线段 又可以表示不同的共线向量. 对于相等向量,一定是共线向量,因此在找相等向量 时,可以从共线向量中筛选,找出长度相等、方向相 同的共线向量即可.
人教版数学必修四 平面向量的实际背景及基本概念 说课
• 4.从“平行向量→相等向量→共线向量”的逐步认识,充分揭示向量的两个要素 (方向、大小)及向量可以平移的特点.
• 学习新课之前,我先介绍两个预备知识。
• 预备知识1:如果由你来简略介绍实数,你准备介绍什么?按 照什么顺序介绍?
• 请看投影.同学们思考的基本线索可能是:什么是实数→几何 表示→特殊的实数→简单的相互关系等.)
• 反过来,向量的理论和方法,又成为解决物理学和工程技术的 重要工具,向量之所以有用,关键是它具有一套良好的运算性 质,通过向量可把空间图形的性质转化为向量的运算,这样通 过向量就能较容易地研究空间的直线和平面的各种有关问题.
• 如果采用全新的思维视角,恰当的教与学,可以使得向量不仅 生动有趣,而且是培养学生创新精神与能力的极佳契机.
• 建议教学时,可以渗透在具体内容中,不必作抽象讲解, 以避免空洞说教.
• §2.1是《平面向量》的最基本内容,教材首先从学生熟知的力、位 移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了 平面向量的有关知识.
• 这节课将直接影响到我们对向量的进一步研究和学习,如向量间 关系、向量的加法、减法以及乘法等运算,还有向量的坐标运算 等.
• 基于以上分析,具体教学时,需要设计一个能让学生开展概括活 动的过程,引导他们经历从具体事例(位移、力、速度等)中领 悟向量概念的本质特征,类比数的概念获得向量概念的定义及表 示,类比数的集合认识“向量的集合”,类比直线(段)的基本关 系认识向量的基本关系.
• 要使学生从中体会到学情分析】从§2.1内容上看,“平面向量的实际背景及基本概念”概 念多但不难理解,但从“概念的形成”的角度看,本节内容,重要的 不是向量的形式化定义及几个相关概念,而是获得数学研究对象、 认识数学新对象的基本方法,蕴含了用数学的观点刻画和研究现实 事物的方法和途径,这是一个带有“本源”性质的过程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1平面向量的实际背景及基本概念【学习目标】1.了解向量的实际背景.2.理解平面向量的含义,理解向量的几何表示的意义和方法.3.掌握向量、零向量、单位向量、相等向量的概念,会表示向量. 4.理解两个向量共线的含义. 【要点梳理】要点一:向量的概念1.向量:既有大小又有方向的量叫做向量.2.数量:只有大小,没有方向的量(如年龄、身高、长度、面积、体积和质量等),称为数量. 要点诠释:(1)本书所学向量是自由向量,即只有大小和方向,而无特定的位置,这样的向量可以作任意平移. (2)看一个量是否为向量,就要看它是否具备了大小和方向两个要素.(3)向量与数量的区别:数量与数量之间可以比较大小,而向量与向量之间不能比较大小. 要点二:向量的表示法1.有向线段:具有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度. 2.向量的表示方法:(1)字母表示法:如,,,a b c等.(2)几何表示法:以A 为始点,B 为终点作有向线段AB(注意始点一定要写在终点的前面).如果用一条有向线段AB 表示向量,通常我们就说向量AB .要点诠释:(1)用字母表示向量便于向量运算;(2)用有向线段来表示向量,显示了图形的直观性.应该注意的是有向线段是向量的表示,不是说向量就是有向线段.由于向量只含有大小和方向两个要素,用有向线段表示向量时,与它的始点的位置无关,即同向且等长的有向线段表示同一向量或相等的向量.要点三:向量的有关概念1.向量的模:向量的大小叫向量的模(就是用来表示向量的有向线段的长度). 要点诠释:(1)向量a 的模||0a.(2)向量不能比较大小,但||a是实数,可以比较大小.2.零向量:长度为零的向量叫零向量.记作0,它的方向是任意的.3.单位向量:长度等于1个单位的向量. 要点诠释:(1)在画单位向量时,长度1可以根据需要任意设定;(2)将一个向量除以它的模,得到的向量就是一个单位向量,并且它的方向与该向量相同. 4.相等向量:长度相等且方向相同的向量. 要点诠释:在平面内,相等的向量有无数多个,它们的方向相同且长度相等. 要点四:向量的共线或平行方向相同或相反的非零向量,叫共线向量(共线向量又称为平行向量).规定:0与任一向量共线.要点诠释:1.零向量的方向是任意的,注意0与0的含义与书写区别.2.平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.3.共线向量与相等向量的关系:相等向量一定是共线向量,但共线向量不一定是相等的向量. 【典型例题】类型一:向量的基本概念例1.下列各题中,哪些是向量?哪些不是向量? (1)密度;(2)浮力;(3)风速;(4)温度.【思路点拨】抓住向量的两个特征:长度和方向进行辨析.【解析】浮力和风速既有大小又有方向,所以是向量,其他的量只有大小没有方向,不是向量.故(2)(3)是向量,(1)(4)不是向量.【总结升华】 实际问题中的一些量,如温度、电量等,尽管它们有正、负之分,但没有方向,故表示数量,而向量是一个既有大小又有方向的量,如位移、速度、加速度、力等.向量和数量是有本质区别的两个概念. 举一反三:【变式1】下列物理量中,不能称为向量的是( )A . 质量B . 速度C .位移D .力 【答案】 A 例2.(2015春 山东梁山县期中)下列说法: ①平行向量一定相等;②不相等的向量一定不平行; ③共线向量一定相等; ④相等向量一定共线;⑤长度相等的向量是相等向量;⑥平行于同一个向量的两个向量是共线向量. 其中,说法错误的是________. 【答案】①②③⑤⑥【解析】①平行向量不一定相等,因此①不正确; ②不相等的向量可能平行,因此②不正确; ③共线向量不一定相等,因此③不正确; ④相等向量一定共线,正确;⑤长度相等的向量不一定是相等向量,因此⑤不正确;⑥平行于同一个向量的两个向量是共线向量,不一定正确.例如:给出不共线的非零向量a ,b,它们都与0 平行,此时a ,b不共线.综上可得:说法错误的是①②③⑤⑥. 故答案为:①②③⑤⑥举一反三:【变式1】判断下列命题的正误: (1)零向量与非零向量平行;(2)长度相等方向相反的向量共线;(3)若向量a 与向量b 不共线,则a 与b都是非零向量;(4)若两个向量相等,则它们的起点、方向、长度必须相等;(5)若两个向量的模相等,则这两个向量不是相等向量就是相反向量。
(6)若非零向量,AB CD是共线向量,则A 、B 、C 、D 四点共线;(7)共线的向量一定相等; (8)相等的向量一定共线. 【答案】√√√××××√【变式2】下列说法正确的个数是( )①向量//AB DC,则直线//AB 直线;CD②两个向量当且仅当它们的起点相同,终点也相同时才相等;③向量AB 既是有向线段AB ;④在平行四边形ABCD 中,一定有AB DC =.A.0个B.1个C.2个D.3个 【答案】C类型二:向量的表示方法例3.在如图所示的坐标系中,用直尺和圆规画出下列向量.(1)||3OA =,点A 在点O 正西方向;(2)||OB =B 在点O 北偏西45°方向;(3)||2OC =,点C 在点O 南偏东60°方向.【解析】 如图所示.【总结升华】准确画出向量的方法是先确定向量的起点,再确定方向,然后根据向量的大小确定向量的终点.例4.如下图,E 、F 、G 、H 分别是四边形ABCD 的各边中点,分别指出图中:(1)与向量HG相等的向量;(2)与向量HG平行的向量;(3)与向量HG模相等的向量;(4)与向量HG模相等、方向相反的向量.【解析】(1)与向量HG 相等的向量有EF.(2)与向量HG 平行的向量有EF 、FE 、AC、CA 、GH .(3)与向量HG 模相等的向量有GH 、EF 、FE.(4)与向量HG 模相等、方向相反的向量有GH 、FE.举一反三:【变式1】(2016 安徽泗县月考)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,在以A ,B ,C ,D ,E ,F 为起点和终点的向量中,(1)找出与向量EF相等的向量; (2)找出与向量DF共线的向量.【解析】(1)∵E ,F 分别为BC ,AC 的中点, ∴EF ∥BA ,且12EF BA =, 又D 是BA 的中点,∴EF BD DA == ,∴与向量EF 相等的向量是,BD DA;(2)∵D ,F 分别为BA ,AC 的中点, ∴DF ∥BC ,且12DF BC =, 又E 是BC 的中点,∴DF BE EC == ,∴与向量DF 相等的向量是,BE EC.【变式2】(1)与向量OA相等的向量有多少个?并把这些向量写出来. (2)是否存在与向量OA长度相等、方向相反向量? (3)与向量OA共线的向量有哪些?【解析】(1)3个 CB 、DO 、EF (2)存在 AO 、OD 、FE 、BC(3)向量OA 共线的向量有:AO 、BC 、CB 、OD 、DO 、EF 、、、FE AD DA .类型三:利用向量相等或共线进行证明例5.如图所示,四边形ABCD 中,AB DC =,N 、M 分别是AD 、BC上的点,且CN MA =.求证:DN MB = .【思路点拨】证明DN MB =,要证明这两个向量的方向相同和大小相等. 【证明】 ∵AB DC = ,∴||||AB DC =且AB ∥CD ,∴四边形ABCD 是平行四边形,∴||||DA CB =且DA ∥CB .又∵DA 与CB的方向相同,∴CB DA = .同理可证,四边形CNAM 是平行四边形,∴CM NA =.∵||||CB DA = ,||||CM NA = ,∴||||MB DN =,又DN 与MB 的方向相同,∴DN MB = .【总结升华】本题主要目的是应用四边形的判定定理体会向量与几何的联系.若AB DC = ,则||||A B D C =且AB ∥CD . 举一反三:【变式1】(2015 湖南芙蓉区模拟)在△ABC 所在平面上有一点P ,使得PA PB PC AB ++=,试判断P 点的位置.【解析】∵PA PB PC AB ++= ,∴PA PC AB PB AB BP AP +=-=+=,∴2PC AP PA AP =-= ,所以AP 与PC共线,即点A ,P ,C 共线,故点P 为线段AC 的三等分点处(靠近点A ).【巩固练习】1.下列物理量中不是向量的个数是( ).(1)质量 (2)速度 (3)力 (4)加速度 (5)路程 (6)密度 (7)功 (8)电流强度 A .5 B .4 C .3 D .2 2.下列说法中错误的是( ).A .有向线段可以表示向量但不是向量,且向量也不是有向线段B .若向量a 与b 不共线,则a 与b都是非零向量C .长度相等但方向相反的两个向量不一定共线D .方向相反的两个非零向量必不相等3.(2016 合肥月考)设O 是正△ABC 的中心,则向量 AO ,OB ,OC是 ( )A .有相同起点的向量B .平行向量C .模相等的向量D .相等向量4.如图所示,点O 是正六边形ABCDEF 的中心,则以图中点A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA 外,与向量OA共线的向量共有()A .6个B .7个C .8个D .9个5.(2015春 浙江安吉县期中)设O 为等边三角形ABC 的中心,则向量AO ,OB ,OC是( )A .有相同起点的向量B .平行向量C .模相等的向量D .相等向量6.在同一平面上,把所有长度为1的向量的始点放在同一点,那么这些向量的终点所构成的图形是( ). A .一条线段 B .一段圆弧 C .圆上一群孤立的点 D .一个半径为1的圆7.四边形ABCD 、CEFG 、CGHD 都是全等的菱形,HE 与CG 相交于点M ,则下列关系不一定成立的是()A .|AB |=|EF|B. AB 与FH共线 C.BD 与EH共线D.DC 与EC共线8.下列命题正确的是( )A .向量a 与b 共线,向量b 与c 共线,则向量a 与c共线 B .向量a 与b 不共线,向量b 与c 不共线,则向量a 与c不共线C .向量AB →与CD →是共线向量,则A 、B 、C 、D 四点一定共线D .向量a 与b 不共线,则a 与b都是非零向量9.对于下列命题:①相反向量就是方向相反的向量;②不相等的向量一定不平行;③相等的向量一定共线;④共线的单位向量一定相等;⑤共线的两个向量一定在同一条直线上。