高一数学集合教案(精选多篇)
高一数学第一章《集合》教案
高一数学第一章《集合》教案高一数学第一章《集合》教案(通用6篇)作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。
那么什么样的教案才是好的呢?以下是店铺收集整理的高一数学第一章《集合》教案,欢迎大家分享。
高一数学第一章《集合》教案篇1教学目标:(1) 知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。
(2) 过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。
(3) 情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。
教学重难点:(1) 重点:了解集合的含义与表示、集合中元素的特性。
(2) 难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。
教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?[设计意图]引出“集合”一词。
【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。
[设计意图]探讨并形成集合的含义。
【问题3】请同学们举出认为是集合的例子。
[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。
【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?[设计意图] 区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。
理解集合与元素的关系。
【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x- 1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。
2023最新-高一数学集合教案优秀4篇
高一数学集合教案优秀4篇作为一名无私奉献的老师,时常要开展教案准备工作,借助教案可以有效提升自己的教学能力。
我们该怎么去写教案呢?为您带来了4篇《高一数学集合教案》,如果能帮助到亲,我们的一切努力都是值得的。
高一数学集合教案篇一教学目标:1.使学生理解集合的含义,知道常用集合及其记法;2.使学生初步了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.使学生初步掌握集合的表示方法,并能正确地表示一些简单的集合。
教学重点:集合的含义及表示方法。
教学过程:一、问题情境1.情境。
新生自我介绍:介绍家庭、原毕业学校、班级。
2.问题。
在介绍的过程中,常常涉及像家庭、学校、班级、男生、女生等概念,这些概念与学生相比,它们有什么共同的特征?二、学生活动1.介绍自己;2.列举生活中的集合实例;3.分析、概括各集合实例的共同特征。
三、数学建构1.集合的含义:一般地,一定范围内不同的、确定的对象的全体组成一个集合。
构成集合的每一个个体都叫做集合的一个元素。
2.元素与集合的关系及符号表示:属于,不属于。
3.集合的表示方法:另集合一般可用大写的拉丁字母简记为集合A、集合B.4.常用数集的记法:自然数集N,正整数集N*,整数集Z,有理数集Q,实数集R.5.有限集,无限集与空集。
6.有关集合知识的历史简介。
四、数学运用1.例题。
例1 表示出下列集合:(1)中国的直辖市;(2)中国国旗上的颜色。
小结:集合的确定性和无序性例2 准确表示出下列集合:(1)方程x2―2x-3=0的解集;(2)不等式2-x0的解集;(3)不等式组的解集;(4)不等式组2x-1-33x+10的解集。
解:略。
小结:(1)集合的表示方法列举法与描述法;(2)集合的分类有限集⑴,无限集⑴与⑴,空集⑴例3 将下列用描述法表示的集合改为列举法表示:(1){(x,y)| x+y = 3,x N,y N }(2){(x,y)| y = x2-1,|x |2,x Z }(3){y| x+y = 3,x N,y N }(4){ x R | x3-2x2+x=0}小结:常用数集的记法与作用。
集合教案数学必修一
集合教案数学必修一教学目标:1. 知识目标:学生能够正确理解和运用集合的概念,能够正确使用集合的基本运算规则。
2. 能力目标:培养学生分析和解决问题的能力,培养学生的逻辑思维能力。
3. 情感目标:培养学生的学习兴趣和学习动力,培养学生的团队合作精神。
教学重点:1. 理解集合的概念。
2. 学习集合的基本运算法则。
教学难点:1. 学会正确应用集合的基本运算法则。
2. 在解决问题时能够正确运用集合的概念和基本运算法则。
教学方法:1. 课堂教学法:通过讲解、举例、讨论等方式讲解集合的概念和基本运算法则。
2. 合作学习法:通过小组讨论、合作探究等形式,培养学生的合作精神和解决问题的能力。
3. 情景教学法:通过真实的生活情境和案例引导学生理解和运用集合的概念和运算法则。
教学过程:第一步:导入(10分钟)1. 利用生活中的例子引导学生理解集合的概念。
比如,将课堂中的学生分为男生和女生两个集合,让学生分析男生和女生各自拥有的特点,并形成集合的概念。
2. 提问:集合的定义是什么?集合有哪些特点?第二步:学习集合的基本运算法则(30分钟)1. 定义并讲解集合的基本运算法则:并集、交集、差集和补集。
2. 通过举例子的方式帮助学生理解集合的基本运算法则,并通过画图的方式展示集合的运算过程。
3. 练习:让学生自己试着解决一些集合的运算问题,并让他们在小组内交流和讨论答案。
第三步:拓展运用(30分钟)1. 在生活中继续寻找集合的例子,让学生能够将所学的知识灵活运用到实际生活中。
2. 分组讨论:将学生分为小组,让每个小组选择一个自己感兴趣的话题,通过集合的概念和运算法则进行讨论和总结,最后由每个小组代表进行汇报。
第四步:总结(10分钟)1. 回顾本节课所学的知识点和解题方法,并进行总结。
2. 提问:学会了集合的概念和基本运算法则之后,你觉得对你有什么帮助?板书设计:集合的概念1. 定义:集合是由一些个体组成的整体。
2. 特点:没有重复元素,没有次序。
高一数学教案集合(3篇)
高一数学教案集合(3篇)高一数学教案集合篇一错的同学不能很快地适应而感到困难,以下就怎样学好高中数学谈几点意见和建议。
一、要改变观念。
初中阶段,特别是初中三年级,通过大量的练习,可使你的成绩有明显的进步,这是因为初中数学知识相比照拟粗浅,更易于掌握,通过反复练习,进步了纯熟程度,即可进步成绩,既使是这样,对有些问题理解得不够深化甚至是不理解的。
例如在初中问a=2时,a等于什么,在中考中错的人极少,然而进入高中后,教师问,假设a=2,且a<0,那么a等于什么,既使是重点学校的学生也会有一些同学毫不思索地答复:a=2。
就是以说明了这个问题。
又如,前几年北京四中高一年级的一个同学在高一上学期期中考试以后,曾向教师提出“抗议”说:“你们平时的作业也不多,测验也很少,我不会学”,这也正说明了改变观念的重要性。
高中数学的理论性、抽象性强,就需要在对知识的理解上下功夫,要多考虑,多研究。
二、进步听课的效率是关键。
学生学习期间,在课堂的时间占了一大局部。
因此听课的效率如何,决定着学习的根本状况,进步听课效率应注意以下几个方面:1、课前预习能进步听课的针对性。
预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进展补缺,以减少听课过程中的困难;有助于进步思维才能,预习后把自己理解了的东西与教师的讲解进展比拟、分析即可进步自己思维程度;预习还可以培养自己的自学才能。
2、听课过程中的科学。
应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;上课前也不应做过于剧烈的体育运动或看小书、下棋、打牌、剧烈争论等。
以免上课后还喘嘘嘘,或不能平静下来。
就是听课要全神贯注。
全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。
耳到:就是专心听讲,听教师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。
眼到:就是在听讲的同时看课本和板书,看教师讲课的表情,手势和演示实验的动作,生动而深化的承受教师所要表达的思想。
高一数学集合教案 (4)
高一数学集合教案一、教学目标1.理解集合的概念,并能正确运用集合的基本运算。
2.掌握集合的表示方法和运算规则,能灵活运用于解决实际问题。
3.培养学生的逻辑思维和数学推理能力,提高解决问题的能力。
二、教学内容1.集合的定义及表示方法2.集合的基本运算:并集、交集、补集、差集3.集合的性质和定理4.集合在实际问题中的应用1.学生能正确理解集合的概念及表示方法。
2.学生能够正确运用并集、交集、补集、差集的运算规则。
3.学生能够灵活应用集合的性质和定理解决问题。
四、教学方法1.归纳法:通过实例引导学生总结集合的定义和表示方法。
2.演示法:通过具体实例演示并集、交集、补集、差集的运算规则。
3.合作学习:组织学生进行小组合作,共同解决集合相关问题。
4.情景教学:引导学生运用集合概念解决实际生活问题。
1.导入(10分钟)–引入集合的概念,通过例子引发学生对集合的思考。
–讲解集合的基本概念和表示方法。
2.概念讲解(20分钟)–讲解并集、交集、补集、差集的定义和运算规则。
–通过示意图和具体例子解释运算规则。
3.练习与讨论(20分钟)–给学生分发练习题,让他们解答并讨论答案。
–引导学生在解决问题过程中灵活应用集合的运算规则。
4.性质和定理(20分钟)–介绍集合的性质和定理,如幂集的性质、笛卡尔积的性质等。
–通过例题演示如何应用性质和定理解决问题。
5.实际应用(20分钟)–设计一些实际生活问题,让学生利用集合的概念和运算解决问题。
–引导学生思考集合在不同领域的应用。
6.总结与归纳(10分钟)–归纳集合的概念、运算规则、性质和定理,并进行总结。
–强化学生对所学知识的记忆和理解。
六、教学资源1.教材:提供相关章节的教材内容;2.黑板和彩色粉笔:用于讲解和演示;3.课件:包含示意图和练习题的PPT文档;4.练习题和答案:提供给学生进行练习和自我检测;5.实际应用问题:设计一些与学生生活相关的问题。
七、教学评价1.学生的课堂表现:包括积极参与讨论、回答问题的准确性和深入度等。
高中数学必修一教案(精选多篇)
高中数学必修一教案(精选多篇) 第一篇:高中数学必修1集合教案学习周报专业辅导学习集合(第1课时)一、知识目标:①内容:初步理解集合的基本概念,常用数集,集合元素的特征等集合的基础知识。
②重点:集合的基本概念及集合元素的特征③难点:元素与集合的关系④注意点:注意元素与集合的关系的理解与判断;注意集合中元素的基本属性的理解与把握。
二、能力目标:①由判断一组对象是否能组成集合及其对象是否从属已知集合,培养分析、判断的能力;②由集合的学习感受数学的简洁美与和谐统一美。
三、教学过程:ⅰ)情景设置:军训期间,我们经常会听到教官在高喊:(x)的全体同学集合!听到口令,咱们班的全体同学便会从四面八方聚集到教官的身边,而那些不是咱们班的学生便会自动走开。
这样一来教官的一声“集合”(动词)就把“某些指定的对象集在一起”了。
数学中的“集合”这一概念并不是教官所用的动词意义下的概念,而是一个名词性质的概念,同学们在教官的集合号令下形成的整体即是数学中的集合的涵义。
ⅱ)探求与研究:①一般地,某些指定的对象集在一起就成为一个集合,也简称集。
问题:同学们能不能举出一些集合的例子呢?(板书学生们所举出的一些例子)②为了明确地告诉大家,是哪些“指定的对象”被集在了一起并作为一个整体来看待,就用大括号{}将这些指定的对象括起来,以示它作为一个整体是一个集合,同时为了讨论起来更方便,又常用大写的拉丁字母a、b、c??来表示不同的集合,如同学们刚才所举的各例就可分别记为??(板书)另外,我们将集合中的“每个对象”叫做这个集合的元素,并用小写字母a、b、c??(或x1、x2、x3??)表示③分析刚才同学们所举出的集合例子,引出:对某具体对象a与集合a,如果a是集合a中的元素,就说a属于集合a,记作a∈a;如果a不是集合a的元素,就说a不属于集合a,记作a?a④再次分析同学们刚才所举出的一些集合的例子,师生共同讨论得出结论:集合中的元素具有确定性、互异性和无序性。
高一数学集合教案
1.1.1集合的概念【教学目标】1. 初步理解集合的概念;理解集合中元素的性质.2. 初步理解“属于”关系的意义;知道常用数集的概念及其记法.【教学重点】集合的基本概念,元素与集合的关系.【教学难点】正确理解集合的概念.【教学过程】环节 教学内容 师生互动 设计意图导 入 师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学”. 师:“物以类聚”;“人以群分”;这些都给我们以集合的印象. .新 课 新 课引例:(1) 某学校数控班学生的全体;(2) 正数的全体;(3) 平行四边形的全体;(4) 数轴上所有点的坐标的全体.1. 集合的概念.(1) 一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合(简称为集).(2) 构成集合的每个对象都叫做集合的元素.(3) 集合与元素的表示方法:一个集合,通常用大写英文字母 A,B,C,…表示,它的元素通常用小写英文字母 a,b,c,…表示.2. 元素与集合的关系.(1) 如果 a 是集合 A 的元素,就说a属于A,记作a A,读作“a属于A”.(2)如果a不是集合A的元素,就说a不属于A,记作a A.读作“a不属于A”.3. 集合中元素的特性.(1) 确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2) 互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个元素都是不同的对象.4. 集合的分类.(1) 有限集:含有有限个元素的集合叫做有限集.(2) 无限集:含有无限个元素的集合叫做无限集.5. 常用数集及其记法.(1) 自然数集:非负整数全体构成的集合,记作 N;或 N*;(2) 正整数集:非负整数集内排除0的集合,记作 N+(3) 整数集:整数全体构成的集合,记作 Z;(4) 有理数集:有理数全体构成的集合,记作 Q;(5) 实数集:实数全体构成的集合,记作 R.注意:(1)自然数集合与非负整数集合是相同的集合,也就是说自然数集包含0;(2)自然数集内排除0的集,表示成 或 ,其他数集{如整数集Z、有理数集Q、实数集R}内排除0的集,也可类似表示 , , ;(3)原教科书或根据原教科书编写的教辅用书中出现的符号如 , , …不再适用. 例1 判断下列语句能否构成一个集合,并说明理由.(1) 小于 10 的自然数的全体;(2) 某校高一(2)班所有性格开朗的男生;(3) 英文的 26 个大写字母;(4) 非常接近 1 的实数.练习1 判断下列语句是否正确:(1) 由2,2,3,3构成一个集合,此集合共有4个元素;(2) 所有三角形构成的集合是无限集;(3) 周长为20 cm 的三角形构成的集合是有限集;(4) 如果a Q,b Q,则 a+b Q.2.选择题⑴以下四种说法正确的( )(A) “实数集”可记为{R}或{实数集}(B){a,b,c,d}与{c,d,b,a}是两个不同的集合(C)“我校高一年级全体数学学得好的同学”不能组成一个集合,因为其元素不确定⑵已知2是集合M={ }中的元素,则实数为( )(A) 2 (B)0或3 (C) 3 (D)0,2,3均可例2 用符号“ ”或“ ”填空:(1) 1 N,0 N,-4 N,0.3 N;(2) 1 Z,0 Z,-4 Z,0.3 Z;(3) 1 Q,0 Q,-4 Q,0.3 Q;(4) 1 R,0 R,-4 R,0.3 R.练习2 用符号“ ”或“ ”填空:(1) -3 N;(2) 3.14 Q;(3) 13 Z ; (4) -12 R ;(5) 2 R ; (6) 0 Z .1.1.2 集合的表示方法【教学目标】1. 掌握集合的表示方法;能够按照指定的方法表示一些集合.. 【教学重点】集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合. 【教学难点】集合特征性质的概念,以及运用描述法表示集合. 【教学过程】 环节 教学内容师生互动设计意图导 入1. 集合、元素、有限集和无限集的概念是什么?2. 用符号“ ”与“ ”填空白:(1) 0 N ; (2) -2 Q ; (3)-2 R .这节课我们一起研究如何将集合表示出来.新 课 新 课 新 课1. 列举法.当集合元素不多时,我们常常把集合的元素列举出来,写在大括号“{}”内表示这个集合,这种表示集合的方法叫列举法.例如,由1,2,3,4,5,6这6个数组成的集合,可表示为:{1,2,3,4,5,6}.又如,中国古代四大发明构成的集合,可以表示为: {指南针,造纸术,活字印刷术,火药}.有些集合元素较多,在不发生误解的情况下,可列几个元素为代表,其他元素用省略号表示. 如:小于100的自然数的全体构成的集合,可表示为 {0,1,2,3,…,99}. 例1 用列举法表示下列集合:(1) 所有大于3且小于10的奇数构成的集合; (2) 方程 x 2-5 x +6=0的解集. 解 (1) {5,7,9};(2) {2,3}.练习1 用列举法表示下列集合:(1) 大于3小于9的自然数全体; (2) 绝对值等于1的实数全体; (3) 一年中不满31天的月份全体;(4) 大于3.5且小于12.8的整数的全体.2. 性质描述法.给定 x 的取值集合 I,如果属于集合 A 的任意元素 x 都具有性质 p(x),而不属于集合 A 的元素都不具有性质p(x),则性质 p(x)叫做集合A的一个特征性质,于是集合 A 可以用它的特征性质描述为 {x I |p(x)} ,它表示集合 A是由集合 I 中具有性质 p(x)的所有元素构成的.这种表示集合的方法,叫做性质描述法.使用特征性质描述法时要注意:(1) 特征性质明确;(2) 若元素范围为 R,“x R”可以省略不写.例2 用性质描述法表示下列集合:(1) 大于3的实数的全体构成的集合;(2) 平行四边形的全体构成的集合;(3) 平面 内到两定点 A,B 距离相等的点的全体构成的集合.解 (1){ x |x >3};(2){ x |x 是两组对边分别平行的四边形};(3) l={ P ,|PA|=|PB|,A,B 为 内两定点}.练习2 用性质描述法表示下列集合:(1) 目前你所在班级所有同学构成的集合;(2) 正奇数的全体构成的集合;(3) 绝对值等于3的实数的全体构成的集合;(4) 不等式4 x-5<3的解构成的集合;(5)所有的正方形构成的集合.2、用描述法表示下列集合①{1,4,7,10,13}②{-2,-4,-6,-8,-10}3、用列举法表示下列集合①{x∈N|x是15的约数}②{(x,y)|x∈{1,2},y∈{1,2}}?③④⑤ ?⑥①注意区别 a 与 {a}.a 是集合{a}的一个元素,而{a}表示一个集合.例如,某个代表团只有一个人,这个人本身和这个人构成的代表团是完全不同的;②用列举法表示集合时,不必考虑元素的前后顺序.集合{1,2}与{2,1}表示同一个集合吗?注:(1)在不致混淆的情况下,可以省去竖线及左边部分。
高一必修一数学集合教案3篇
高一必修一数学集合教案3篇高一必修一数学集合教案篇1一、教材分析1、教材的地位和作用:函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。
本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。
2、教学目标及确立的依据:教学目标:(1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。
(2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。
(3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。
教学目标确立的依据:函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。
加强函数教学可帮助学好其他的内容。
而掌握好函数的概念是学好函数的基石。
3、教学重点难点及确立的依据:教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。
教学难点:映射的概念,函数近代概念,及函数符号的理解。
重点难点确立的依据:映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。
而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。
二、教材的处理:将映射的定义及类比手法的运用作为本课突破难点的关键。
函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。
为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。
高一数学教案
高一数学教案
高一数学集合教案(集锦11篇)
作为一名老师,总归要编写教案,教案有助于顺利而有效地开展教学活动。
那么优秀的教案是什么样的呢?下面是小编收集整理的高一数学集合教案,欢迎大家借鉴与参考,希望对大家有所帮助。
高一数学集合教案1
教学目的:
(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;
(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
教学重点:
集合的交集与并集、补集的概念;
教学难点:
集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;。
最新集合的概念教案 3篇精选
【教学目标】1.了解集合、元素的概念,体会集合中元素的三个特征;2.理解集合的作用,会根据已知条件构造集合;3. 理解元素与集合的“属于”和“不属于”关系,并会正确表达;4. 掌握常用数集及其记法;5.了解数合的含义,记忆基本数集的符号;6.能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.【导入新课】一、实例引入:军训前学校通知:8月21日上午8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体.二、问题情境引入:我们高一(3)班一共45人,其中班长易雪芳,现有以下问题:⑴ 45人组成的班集体能否组成一个整体?⑵ 班长易雪芳和45人所组成的班集体是什么关系?⑶ 假设张三是相邻班的学生,问他与高一(3)班是什么关系?三、课前学习1.学法指导:(1)阅读教材的内容感受集合的含义,理解集合与元素的关系,理解数集、空集的概念;(2)本学时的重点是集合的含义、元素与集合之间的关系以及常用数集的符号表示、空集的意义及符号;(3)对于一个整体是否是集合的判断的关键是对“确定”两字的理解,学习时结合实例及教材上的例题进行理解。
记忆常用数集、空集的符号表示。
2.尝试练习:见《数学学案》P1四、课堂探究:见《数学学案》P11.探究问题:探究1探究22.知识链接:3.拓展提升:例1、下列各组对象能否组成集合?(1) 所有小于10的自然数;(2) 某班个子高的同学;(3) 方程的所有解;(4) 不等式的所有解;(5) 中国的直辖市;(6) 不等式的所有解;(7) 大于4的自然数;(8) 我国的小河流。
例2、下列集合哪些是数集?再试着举两个数集,并使它们分别是有限集与无限集。
高一数学集合教案(精选多篇)
高一数学集合教案(精选多篇)第一篇:高一数学教案:集合的表示方法1.1.2集合的表示方法教学目标:掌握集合的表示方法,能选择自然语言、图形语言、集合语言描述不同的问题.教学重点、难点:用列举法、描述法表示一个集合.教学过程:一、复习引入:1.回忆集合的概念2.集合中元素有那些性质?3.空集、有限集和无限集的概念二、讲述新课:集合的表示方法1、大写的字母表示集合2、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法. 例如,24所有正约数构成的集合可以表示为{1,2,3,4,6,8,12,24} 注:(1)大括号不能缺失.(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:{1,2,3, (100)自然数集n:{1,2,3,4,…,n,…}(3)区分a与{a}:{a}表示一个集合,该集合只有一个元素.a表示这个集合的一个元素.(4)用列举法表示集合时不必考虑元素的前后次序.相同的元素不能出现两次.3、特征性质描述法:在集合i中,属于集合a的任意元素x都具有性质p(x),而不属于集合a 的元素都不具有性质p(x),则性质p(x)叫做集合a的一个特征性质,于是集合a可以表示如下:{x∈i| p(x) }例如,不等式x2?3x?2的解集可以表示为:{x?r|x2?3x?2}或{x|x2?3x?2},所有直角三角形的集合可以表示为:{x|x是直角三角形}注:(1)在不致混淆的情况下,也可以写成:{直角三角形};{大于104的实数}(2)注意区别:实数集,{实数集}.4、文氏图:用一条封闭的曲线的内部来表示一个集合.例1:集合{(x,y)|y?x2?1}与集合{y|y?x2?1}是同一个集合吗?答:不是.集合{(x,y)|y?x2?1}是点集,集合{y|y?x2?1}={y|y?1} 是数集。
例2:(教材第7页例1)例3:(教材第7页例2)课堂练习:(1)教材第8页练习a、b(2)习题1-1a:1,小结:本节课学习了集合的表示方法(字母表示、列举法、描述法、文氏图共4种)课后作业:p10 1,2第二篇:高一数学教案:1.1集合-集合的概念(2).doc课题:1.1集合-集合的概念(2)教学目的:(1)进一步理解集合的有关概念,熟记常用数集的概念及记法(2)使学生初步了解有限集、无限集、空集的意义(3)会运用集合的两种常用表示方法教学重点:集合的表示方法教学难点:运用集合的列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:上节所学集合的有关概念1、集合的概念(1(22、常用数集及记法(1n,n??0,1,2,??(2)正整数集:非负整数集内排除0n或n+,n*??1,2,3,??*?1,?2,?? (3z , z??0,?(4q , q??所有整数与分数(5r,r??数轴上所有点所对应的数?3、元素对于集合的隶属关系(1)属于:如果a是集合a的元素,就说a属于a,记作a∈a(2)不属于:如果a不是集合a的元素,就说a不属于a,记作a?a4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,(2(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、(1)集合通常用大写的拉丁字母表示,如a、b、c、p、q??元素通常用小写的拉丁字母表示,如a、b、c、p、q??(2)“∈”的开口方向,不能把a∈a二、讲解新课:(二)集合的表示方法1例如,由方程x2?1?0的所有解组成的集合,可以表示为{-1,1} 注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,?,100}所有正奇数组成的集合:{1,3,5,7,?}(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只 2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条格式:{x∈a| p(x)}含义:在集合a中满足条件p(x)的x例如,不等式x?3?2的解集可以表示为:{x?r|x?3?2}或 {x|x?3?2所有直角三角形的集合可以表示为:{x|x是直角三角形}注:(1如:{直角三角形};{大于10的实数}(2)错误表示法:{实数集};{全体实数}344、何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列 {x2,3x?2,5y3?x,x2?y2}⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一如:集合{(x,y)|y?x2?1};集合{1000以内的质数}例集合{(x,y)|y?x2?1}与集合{y|y?x2?1}是同一个集合吗?答:{(x,y)|y?x2?1}是抛物线y?x2?1上所有的点构成的集合,集合{y|y?x2?1}={y|y?1} 是函数y?x2?1(三)有限集与无限集1、有2、无3、空φ,如:{x?r|x2?1?0}三、练习题:1、用描述法表示下列集合①{1,4,7,10,13}{x|x?3n?2,n?n且n?5}②{-2,-4,-6,-8,-10}{x|x??2n,n?n且n?5}2、用列举法表示下列集合①{x∈n|x是15的约数}{1,3,5,15}②{(x,y)|x∈{1,2},y∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}?x?y?282③{(x,y)|?} {(,?)} 33?x?2y?4④{x|x?(?1)n,n?n}{-1,1}⑤{(x,y)|3x?2y?16,x?n,y?n}{(0,8)(2,5),(4,2)}} ⑥{(x,y)|x,y分别是4的正整数约数{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x的方程ax+b=0,当a,b满足条件____时,解集是有限集;当a,b 满足条件_____4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }=;(2) { 0,±4312, ±, ±, ±, ??251017四、小结:本节课学习了以下内容:1.集合的有关概念:有限集、无限集、空集.集合的表示方法:列举法、描述法、文氏图五、课后作业:六、板书设计(略)七、课后记:第三篇:高一数学集合与简易逻辑教案11 苏教版江苏省白蒲中学20xx高一数学集合与简易逻辑教案11 苏教版教材:含绝对值不等式的解法目的:从绝对值的意义出发,掌握形如 | x | = a的方程和形如 | x | > a, | x | 0)不等式的解法,并了解数形结合、分类讨论的思想。
(完整word版)高一数学集合教案(2)
1.1.1集合的概念累计课时:1【教学目标】1. 初步理解集合的概念;理解集合中元素的性质.2. 初步理解“属于”关系的意义;知道常用数集的概念及其记法.3. 引导学生发现问题和提出问题,培养独立思考和创造性地解决问题的意识.【教学重点】集合的基本概念,元素与集合的关系.【教学难点】正确理解集合的概念.【教学方法】本节课采用问题教学和讲练结合的教学方法,运用现代化教学手段,通过创设情景,引导学生自己独立地去发现、分析、归纳,形成概念.【教学过程】1.1.2集合的表示方法累计课时:【教学目标】1. 掌握集合的表示方法;能够按照指定的方法表示一些集合.2. 发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.3. 让学生感受集合语言的意义和作用,学习从数学的角度认识世界;通过合作学习培养学生的合作精神.【教学重点】集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合.【教学难点】集合特征性质的概念,以及运用描述法表示集合.【教学方法】本节课采用实例归纳,自主探究,合作交流等方法.在教学中通过列举例子,引导学生讨论和交流,并通过创设情境,让学生自主探索一些常见集合的特征性质.【教学过程】1.1.3集合之间的关系(一)累计课时:【教学目标】1. 理解子集、真子集概念;掌握子集、真子集的符号及表示方法;会用它们表示集合间的关系.2. 了解空集的意义;会求已知集合的子集、真子集并会用符号及Venn图表示.3. 培养学生使用符号的能力;建立数形结合的数学思想;培养学生用集合的观点分析问题、解决问题的能力.【教学重点】子集、真子集的概念.【教学难点】集合间包含关系的正确表示.【教学方法】本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段辅助教学.设计典型题目,并提出问题,层层引导学生探究知识,让学生在完成题目的同时,思维得以深化;切实体现以人为本的思想,充分发挥学生的主观能动性,培养其探索精神和运用数学知识的意识.【教学过程】1.1.4集合之间的关系(二)累计课时:【教学目标】1. 理解两个集合相等概念.能判断两集合间的包含、相等关系.2. 理解掌握元素与集合、集合与集合之间关系的区别.3. 学习类比方法,渗透分类思想,提高学生思维能力,增强学生创新意识.【教学重点】1. 理解集合间的包含、真包含、相等关系及传递关系.2. 元素与集合、集合与集合之间关系的区别.【教学难点】弄清元素与集合、集合与集合之间关系的区别.【教学方法】本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段进行教学.使学生初步经历使用最基本的集合语言表示有关数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力.精心设计问题情境,引起学生强烈的求知欲望,通过启发,使学生的思考、发现、归纳等一系列的探究思维活动始终处于自主的状态中.【教学过程】1.1.5集合的运算(一)累计课时:【教学目标】1. 理解交集与并集的概念与性质.2. 掌握交集和并集的表示法,会求两个集合的交集和并集.3. 发展学生运用数学语言进行表达、交流的能力;培养学生观察、归纳、分析的能力.【教学重点】交集与并集的概念与运算.【教学难点】交集和并集的概念、符号之间的区别与联系.【教学方法】这节课主要采用发现式教学法和自学法.运用现代化教学手段,通过创设情景,提出问题,引导学生自己独立地去发现问题、分析归纳、形成概念.并通过对比,自学相似概念,深化对概念的理解.【教学过程】1.1.4集合的运算(二)累计课时:【教学目标】1. 了解全集的意义;理解补集的概念,掌握补集的表示法;理解集合的补集的性质;会求一个集合在全集中的补集.2. 发展学生运用数学语言进行表达、交流的能力;培养学生建立数形结合的思想,将满足条件的集合用Venn图或数轴一一表示出来;提高学生观察、比较、分析、概括的能力.3. 鼓励学生主动参与“教”与“学”的整个过程,激发其求知欲望,增强其学习数学的兴趣与自信心.【教学重点】补集的概念与运算.【教学难点】全集的意义;数集的运算.【教学方法】本节课采用发现式教学法,通过引入实例,进而分析实例,引导学生寻找、发现其一般结果,归纳其普遍规律.【教学过程】新课题时,全集也不一定相同.我们在研究数集时,常常把实数集R作为全集.二、补集1. 定义.如果A 是全集U的一个子集,由U中的所有不属于A 的元素构成的集合,叫做A 在U 中的补集.记作U A.读作“A 在U中的补集”.2. 补集的Venn图表示.例1 已知:U={1,2,3,4,5,6},A={1,3,5}.则U A=;A ∩U A=;A ∪U A=.解{2,4,6};∅;U.例2已知U={ x | x是实数},Q={ x | x 是有理数}.则U Q=;Q∩U Q=;Q∪U Q=.解{ x | x 是无理数};∅;U.3. 补集的性质.(1) A ∪U A=U;(2) A ∩U A=∅;(3) U(U A)=A.例3已知全集U=R,A={x | x>5},求U A.解U A={x | x≤5}.练习 1(1) 已知全集U=R,A={ x | x师:通过引导学生回答引例中的问题2“没有购进的品种构成的集合是什么?”,得出补集的定义和特征;介绍补集的记法和读法.生:根据定义,试用阴影表示补集.师:订正、讲解补集Venn图表示法.生:对例1口答填空.师:引导学生画出例2的Venn图,明确集合间关系,请学生观察并说出结果.师:以填空的形式出示各条性质.生:填写性质.师:结合数轴讲解例3.学生解答练习1,并总结解题规律.从引例的集合关系中直观感知补集涵义.通过画图来理解补集定义,突破难点.借助简单题目使学生初步理解补集定义.例2中补充两问,为学生得出性质做铺垫.结合具体例题和Venn图,使学生自己得出补集的各个性质,深化对补集概念的理解.培养学生数形结合的数学意识.AUC U A新课<1},求U A.(2) 已知全集U=R,A={ x | x≤1},求U A.练习2设U={1,2,3,4,5,6},A={5,2,1},B={5,4,3,2}.求U A;U B;U A ∩U B;UA ∪U B.练习3 已知全集U=R,A={x | -1< x < 1}.求U A,U A∩U,U A∪U,A ∩U A,A ∪U A.学生做练习2、3,老师点拨、解答学生疑难.通过练习加深学生对补集的理解.小结补集定义记法图示性质1. 学生读书、反思,说出自己学习本节课的收获和存在问题.2. 老师引导梳理,总结本节课的知识点,学生填表巩固.让学生读书、反思,培养学生形成良好的学习习惯,提高学习能力.作业教材P17,练习A组第1~4题.学生课后完成.巩固拓展.1.1.4集合的运算(二)累计课时:【教学目标】1. 了解全集的意义;理解补集的概念,掌握补集的表示法;理解集合的补集的性质;会求一个集合在全集中的补集.2. 发展学生运用数学语言进行表达、交流的能力;培养学生建立数形结合的思想,将满足条件的集合用Venn图或数轴一一表示出来;提高学生观察、比较、分析、概括的能力.3. 鼓励学生主动参与“教”与“学”的整个过程,激发其求知欲望,增强其学习数学的兴趣与自信心.【教学重点】补集的概念与运算.【教学难点】全集的意义;数集的运算.【教学方法】本节课采用发现式教学法,通过引入实例,进而分析实例,引导学生寻找、发现其一般结果,归纳其普遍规律.【教学过程】环节教学内容师生互动设计意图导入1. 复习提问:集合的交运算与并运算.2. 实例引入,以我校食堂每天买菜的品种构成的集合为例:计划购进的品种构成的集合记为U={黄瓜,冬瓜,鲫鱼,虾,茄子,猪肉,毛豆,芹菜,土豆};已经购进的品种构成的集合记为A={黄瓜,鲫鱼,茄子,猪肉,芹菜,土豆}.师:提问上节课知识,并引出新问题之后,引入课题.生:感受到数学在生活中处处存在.师:出示引例,提出问题:问题1:集合A与集合U什么关系?问题2:没有购进的品种构成的集合是什么?温故而知新,便于引导学生在已有的基础上去探求新知识.联系实际,使学生对将要学习的概念有感性认识,符合学生的认识规律.新课一、全集1. 定义:我们在研究集合与集合之间的关系时,如果一些集合都是某一给定集合的子集,那么称这个给定的集合为这些集合的全集.通常用字母U表示.2. 特征:全集是一个相对的概念,是一个给定的集合,在研究不同问题时,全集也不一定相同.我们在研究数集时,常常把实数集R作为全集.二、补集1. 定义.如果A 是全集U的一个子集,由U中的所有不属于A 的元素构成的集合,叫做A 在U 中的补集.记作U A.读作“A 在U中的补集”.2. 补集的Venn图表示.师:提出问题,请学生观察并回答;集合A与集合U之间关系怎样?生:观察集合间的关系,得出;集合A是集合U的子集.师:通过上例,介绍全集的定义与特征.师:通过引导学生回答引例中的问题2“没有购进的品种构成的集合是什么?”,得出补集的定义和特征;介绍补集的记法和读法.生:根据定义,试用阴影表示补集.师:订正、讲解补集Venn图表示法.从引例的集合关系中直观感知全集涵义.通过引导学生回答问题1,得出全集的定义和特征.从引例的集合关系中直观感知补集涵义.通过画图来理解补集定义,突破难点.AUC U A新课新课例1 已知:U={1,2,3,4,5,6},A={1,3,5}.则U A=;A ∩U A=;A ∪U A=.解{2,4,6};∅;U.例2已知U={ x | x是实数},Q={ x | x 是有理数}.则U Q=;Q∩U Q=;Q∪U Q=.解{ x | x 是无理数};∅;U.3. 补集的性质.(1) A ∪U A=U;(2) A ∩U A=∅;(3) U(U A)=A.例3已知全集U=R,A={x | x>5},求U A.解U A={x | x≤5}.练习 1(1) 已知全集U=R,A={ x | x<1},求U A.(2) 已知全集U=R,A={ x | x≤1},求U A.练习2设U={1,2,3,4,5,6},A={5,2,1},B={5,4,3,2}.求U A;U B;U A ∩U B;UA ∪U B.练习3 已知全集U=R,A={x | -1< x < 1}.求U A,U A∩U,U A∪U,A ∩U A,A ∪U A.生:对例1口答填空.师:引导学生画出例2的Venn图,明确集合间关系,请学生观察并说出结果.师:以填空的形式出示各条性质.生:填写性质.师:结合数轴讲解例3.学生解答练习1,并总结解题规律.学生做练习2、3,老师点拨、解答学生疑难.借助简单题目使学生初步理解补集定义.例2中补充两问,为学生得出性质做铺垫.结合具体例题和Venn图,使学生自己得出补集的各个性质,深化对补集概念的理解.培养学生数形结合的数学意识.通过练习加深学生对补集的理解.1.2.2子集与推出的关系累计课时:【教学目标】1. 正确理解子集和推出的关系.2. 掌握通过“推出”判断集合的关系.3. 启发学生发现问题和提出问题,培养学生独立思考的能力,学会分析问题和解决问题;培养学生抽象概括能力和逻辑思维能力.【教学重点】理解子集和推出的关系.【教学难点】理解通过“推出”判断集合的包含关系.【教学方法】本节课采用启发式教学和讲练结合的教学方法,运用现代化教学手段进行教学.通过创设情景,用普遍联系的观点审视事物,引导学生自己去发现、分析、归纳,形成概念.穿插有针对性的练习及讲解,并配以题组训练模式,使学生边学边练,及时巩固,深化对概念的理解.【教学过程】。
高一数学集合教案12篇
高一数学教案高一数学集合教案12篇作为一名无私奉献的老师,通常需要用到教案来辅助教学,教案是保证教学取得成功、提高教学质量的基本条件。
我们应该怎么写教案呢?下面是小编帮大家整理的高一数学集合教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
高一数学集合教案1教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作Nx或N+(3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作Nx或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Zx3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写三、练习题:1、教材P5练习1、22、下列各组对象能确定一个集合吗?(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x|,所组成的集合,最多含(A)(A)2个元素(B)3个元素(C)4个元素(D)5个元素5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:(1)当x∈N时,x∈G;(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,则x=x+0x=a+b∈G,即x∈G证明(2):∵x∈G,y∈G,∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)∴x+y=(a+b)+(c+d)=(a+c)+(b+d)∵a∈Z,b∈Z,c∈Z,d∈Z∴(a+c)∈Z,(b+d)∈Z∴x+y=(a+c)+(b+d)∈G,又∵=且不一定都是整数,∴=不一定属于集合G四、小结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法五、课后作业:六、板书设计(略)高中数学考试的技巧一、整体把握、抓大放小拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学集合教案(精选多篇)第一篇:高一数学教案:集合的表示方法1.1.2集合的表示方法教学目标:掌握集合的表示方法,能选择自然语言、图形语言、集合语言描述不同的问题.教学重点、难点:用列举法、描述法表示一个集合.教学过程:一、复习引入:1.回忆集合的概念2.集合中元素有那些性质?3.空集、有限集和无限集的概念二、讲述新课:集合的表示方法1、大写的字母表示集合2、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法. 例如,24所有正约数构成的集合可以表示为{1,2,3,4,6,8,12,24} 注:(1)大括号不能缺失.(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:{1,2,3, (100)自然数集n:{1,2,3,4,…,n,…}(3)区分a与{a}:{a}表示一个集合,该集合只有一个元素.a表示这个集合的一个元素.(4)用列举法表示集合时不必考虑元素的前后次序.相同的元素不能出现两次.3、特征性质描述法:在集合i中,属于集合a的任意元素x都具有性质p(x),而不属于集合a的元素都不具有性质p(x),则性质p(x)叫做集合a的一个特征性质,于是集合a可以表示如下:{x∈i| p(x) }例如,不等式x2?3x?2的解集可以表示为:{x?r|x2?3x?2}或{x|x2?3x?2},所有直角三角形的集合可以表示为:{x|x是直角三角形}注:(1)在不致混淆的情况下,也可以写成:{直角三角形};{大于104的实数}(2)注意区别:实数集,{实数集}.4、文氏图:用一条封闭的曲线的内部来表示一个集合.例1:集合{(x,y)|y?x2?1}与集合{y|y?x2?1}是同一个集合吗?答:不是.集合{(x,y)|y?x2?1}是点集,集合{y|y?x2?1}={y|y?1} 是数集。
例2:(教材第7页例1)例3:(教材第7页例2)课堂练习:(1)教材第8页练习a、b(2)习题1-1a:1,小结:本节课学习了集合的表示方法(字母表示、列举法、描述法、文氏图共4种)课后作业:p10 1,2第二篇:高一数学教案:1.1集合-集合的概念(2).doc课题:1.1集合-集合的概念(2)教学目的:(1)进一步理解集合的有关概念,熟记常用数集的概念及记法(2)使学生初步了解有限集、无限集、空集的意义(3)会运用集合的两种常用表示方法教学重点:集合的表示方法教学难点:运用集合的列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:上节所学集合的有关概念1、集合的概念(1(22、常用数集及记法(1n,n??0,1,2,??(2)正整数集:非负整数集内排除0n或n+,n*??1,2,3,??*?1,?2,?? (3z , z??0,?(4q , q??所有整数与分数(5r,r??数轴上所有点所对应的数?3、元素对于集合的隶属关系(1)属于:如果a是集合a的元素,就说a属于a,记作a∈a(2)不属于:如果a不是集合a的元素,就说a不属于a,记作a?a 4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,(2(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、(1)集合通常用大写的拉丁字母表示,如a、b、c、p、q??元素通常用小写的拉丁字母表示,如a、b、c、p、q??(2)“∈”的开口方向,不能把a∈a二、讲解新课:(二)集合的表示方法1例如,由方程x2?1?0的所有解组成的集合,可以表示为{-1,1} 注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,?,100}所有正奇数组成的集合:{1,3,5,7,?}(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条格式:{x∈a| p(x)}含义:在集合a中满足条件p(x)的x例如,不等式x?3?2的解集可以表示为:{x?r|x?3?2}或{x|x?3?2所有直角三角形的集合可以表示为:{x|x是直角三角形}注:(1如:{直角三角形};{大于10的实数}(2)错误表示法:{实数集};{全体实数}344、何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列{x2,3x?2,5y3?x,x2?y2}⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一如:集合{(x,y)|y?x2?1};集合{1000以内的质数}例集合{(x,y)|y?x2?1}与集合{y|y?x2?1}是同一个集合吗?答:{(x,y)|y?x2?1}是抛物线y?x2?1上所有的点构成的集合,集合{y|y?x2?1}={y|y?1} 是函数y?x2?1(三)有限集与无限集1、有2、无3、空φ,如:{x?r|x2?1?0}三、练习题:1、用描述法表示下列集合①{1,4,7,10,13}{x|x?3n?2,n?n且n?5}②{-2,-4,-6,-8,-10}{x|x??2n,n?n且n?5}2、用列举法表示下列集合①{x∈n|x是15的约数}{1,3,5,15}②{(x,y)|x∈{1,2},y∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}?x?y?282③{(x,y)|?} {(,?)} 33?x?2y?4④{x|x?(?1)n,n?n}{-1,1}⑤{(x,y)|3x?2y?16,x?n,y?n}{(0,8)(2,5),(4,2)}} ⑥{(x,y)|x,y分别是4的正整数约数{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x的方程ax+b=0,当a,b满足条件____时,解集是有限集;当a,b满足条件_____4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }=;(2) { 0,±4312, ±, ±, ±, ??251017四、小结:本节课学习了以下内容:1.集合的有关概念:有限集、无限集、空集.集合的表示方法:列举法、描述法、文氏图五、课后作业:六、板书设计(略)七、课后记:第三篇:高一数学集合与简易逻辑教案11 苏教版江苏省白蒲中学2014高一数学集合与简易逻辑教案11 苏教版教材:含绝对值不等式的解法目的:从绝对值的意义出发,掌握形如| x | = a的方程和形如| x | > a, | x | 0)不等式的解法,并了解数形结合、分类讨论的思想。
过程:一、实例导入,提出课题实例:课本p14(略)得出两种表示方法:1.不等式组表示:??x?500?52.绝对值不等式表示::| x ? 500 | ≤5 500?x?5?课题:含绝对值不等式解法二、形如| x | = a (a≥0) 的方程解法(a?0)?a?(a?0)复习绝对值意义:| a | = ?0??a(a?0)?几何意义:数轴上表示a 的点到原点的距离.例:| x | = 2.三、形如| x | > a与| x | 2与| x | 1?从数轴上,绝对值的几何意义出发分析、作图。
解之、见p15略结论:不等式| x | > a的解集是{ x | ?a| x | a 或x 2?从另一个角度出发:用讨论法打开绝对值号| x | ?x?0?x?0或?? { x | x > 2或x 3?例题p15例一、例二略4?《课课练》p12“例题推荐”四、小结:含绝对值不等式的两种解法。
五、作业:p16练习及习题1.4- 1 -第四篇:高一数学教案:1.1.1集合的含义与表示.doc课题:§1.1.1集合的含义与表示教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本p2-p3内容新课教学(一)集合的有关概念集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
思考1:课本p3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
关于集合的元素的特征(1)确定性:设a是一个给定的集合,x是某一个具体对象,则或者是a的元素,或者不是a的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样元素与集合的关系;(1)如果a是集合a的元素,就说a属于(belong to)a,记作a∈a (2)如果a不是集合a的元素,就说a不属于(not belong to)a,记作aa(或aa)(举例)常用数集及其记法非负整数集(或自然数集),记作n*+正整数集,记作n或n;整数集,记作z有理数集,记作q实数集,记作r(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;例1.(课本例1)思考2,引入描述法说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。