二次函数专题训练(三角形周长最值问题)含答案

合集下载

2020年重庆中考二次函数最值专题训练(含答案)

2020年重庆中考二次函数最值专题训练(含答案)

2020年重庆中考二次函数最值专题训练类型一、线段的最值问题【例1】(2019•铜仁市模拟)如图,在平面直角坐标系中,已知A(﹣1,0)、C(4,0),BC ⊥x轴于点C,且AC=BC,抛物线y=x2+bx+c经过A、B两点.(1)求抛物线的表达式;(2)点E是线段AB上一动点(不与A、B重合),过点E作x轴的垂线,交抛物线于点F,当线段EF的长度最大时,求点E的坐标;解:∵A(﹣1,0)、C(4,0),∴OA=1,OC=4,∴AC=5,∵BC⊥x轴于点C,且AC=BC,∴B(4,5),将点A和点B的坐标代入抛物线的解析式得:,解得:b=﹣2,c=﹣3.∴抛物线的解析式为y=x2﹣2x﹣3.(2)∵直线AB经过点A(﹣1,0),B(4,5),设直线AB的解析式为y=kx+b,∴,解得:,∴直线AB的解析式为:y=x+1,∵二次函数y=x2﹣2x﹣3,∴设点E(t,t+1),则F(t,t2﹣2t﹣3),∴EF=(t+1)﹣(t2﹣2t﹣3)=﹣(t﹣),∴当t=时,EF的最大值为,∴点E的坐标为().【例2】(2019•贺州)如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC =4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.解:(1)OA=OC=4OB=4,故点A、C的坐标分别为(4,0)、(0,﹣4);(2)抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=﹣4,解得:a=1,故抛物线的表达式为:y=x2﹣3x﹣4;(3)直线CA过点C,设其函数表达式为:y=kx﹣4,将点A坐标代入上式并解得:k=1,故直线CA的表达式为:y=x﹣4,过点P作y轴的平行线交AC于点H,∵OA=OC=4,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,设点P(x,x2﹣3x﹣4),则点H(x,x﹣4),PD=HP sin∠PFD=(x﹣4﹣x2+3x+4)=﹣x2+2x,∵<0,∴PD有最大值,当x=2时,其最大值为2,此时点P(2,﹣6). 【例3】(2019•覃塘区三模)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C(1)求抛物线的表达式;(2)如图1,若点F在线段OC上,且OF=OA,经入过点F的直线在第一象限内与抛物线交于点D,与线段BC交于点E,求的最大值;(3)如图2,若P为抛物线的顶点,动点Q在抛物线上,当∠QCO=∠PBC时,请直接写出点Q的坐标.解:(1)函数的表达式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3,则点C(0,3);(2)过点D作y轴的平行线交BC于点N,将点B、C的坐标代入一次函数表达式并解得:函数BC表达式为:y=﹣x+3, OF=OA=1,则点F(0,1),CF=2,设点D(x,﹣x2+2x+3),则点N(x,﹣x+3),∵DN∥CF,∴==(﹣x2+2x+3+x﹣3)=﹣x2+x,∵﹣0,则有最大值,此时x=,的最大值为;(3)连接PC,点P坐标(1,4),则PC=,PB=,BC=,则△PBC为直角三角形,tan∠PBC==,过点Q作QH⊥y轴于点H,设点Q(x,﹣x2+2x+3),则tan∠HCQ=tan=,解得:x=0或5或﹣1(舍去0),故点Q(﹣1,0)或(5,﹣12).【练习】1、(2019•河南模拟)如图,抛物线y=ax2+bx﹣1(a≠0)交x轴于A,B(1,0)两点,交y轴于点C,一次函数y=x+3的图象交坐标轴于A,D两点,E为直线AD上一点,作EF⊥x轴,交抛物线于点F (1)求抛物线的解析式;(2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E的坐标;若没有,请说明理由;解:(1)将y=0代入y=x+3,得x=﹣3.∴点A的坐标为(﹣3,0).设抛物线的解析式为y=a(x﹣x1)(x﹣x2),点A的坐标为(﹣3,0),点B的坐标为(1,0), ∴y=a(x+3)(x﹣1).∵点C的坐标为(0,﹣1),∴﹣3a=﹣1,得a=,∴抛物线的解析式为y=x2+x﹣1;(2)设点E的坐标为(m,m+3),线段EF的长度为y,则点F的坐标为(m,m2+m﹣1)∴y=(m+3)﹣(m2+m﹣1)=﹣m2+m+4即y=(m﹣)2+,此时点E的坐标为(,);2、(2019•安阳二模)如图,直线y=﹣x+4与x轴,y轴分别交于点B,C,点A在x轴负半轴上,且OA=OB,抛物线y=ax2+bx+4经过A,B,C三点.(1)求抛物线的解析式;(2)点P是第一象限内抛物线上的动点,设点P的横坐标为m,过点P作PD⊥BC,垂足为D,用含m的代数式表示线段PD的长,并求出线段PD的最大值.解:(1)由y=﹣x+4,当x=0时,y=4;当y=0时,x=4,∴B(4,0),C(0,4),∴OB=4,∴OA=OB=2,∴A(﹣2,0),把A(﹣2,0),B(4,0)代入抛物线y=ax2+bx+4中,得,解得,∴抛物线的解析式为y=﹣x2+x+4;(2)∵点P在二次函数y=﹣x2+x+4图象上且横坐标为m,∴P(m,﹣m2+m+4),过P作PF∥y轴,交BC于F,则F(m,﹣m+4),∴PF=﹣m2+2m,∵PD⊥AB于点D,∴在Rt△OBC中,OB=OC=4,∴∠OCB=45°,∵PF∥y轴,∴∠PFD=∠OCB=45°,∴PD=PF•sin∠PFD=(﹣m2+2m)=﹣(m﹣2)2+,∵0<m<4,﹣<0,∴当m=2时,PD最大,最大值为.3、(2019•仁寿县模拟)在平面直角坐标系XOY中,抛物线y=﹣x2+bx+c经过点A(﹣2,0),B(8,0).(1)求抛物线的解析式;(2)点C是抛物线与y轴的交点,连接BC,设点P是抛物线上在第一象限内的点,PD⊥BC,垂足为点D.是否存在点P,使线段PD的长度最大?若存在,请求出点P的坐标;若不存在,请说明理由;解:(1)把A(﹣2,0),B(8,0)代入抛物线y=﹣x2+bx+c,,解得:, ∴抛物线的解析式为:y=﹣x2+x+4;(2)由(1)知C(0,4),∵B(8,0),将点B、C的坐标代入一次函数表达式并解得:直线BC的解析式为:y=﹣x+4,如图1,过P作PG⊥x轴于G,PG交BC于E,Rt△BOC中,OC=4,OB=8,∴BC=4,在Rt△PDE中,PD=PE•sin∠PED=PE•sin∠OCB=PE,∴当线段PE最长时,PD的长最大,设P(t,﹣t2+t+4),则E(t,﹣t+4),∴PE=PG﹣EG=﹣t2+t+4+t﹣4=﹣(t﹣4)2+4,(0<t<8),当t=4时,PE有最大值是4,此时P(4,6),∴PD═,即当P(4,6)时,PD的长度最大,最大值是;4、(2019•邓州市一模)如图,抛物线y=ax2+bx+4与x轴交于A,B两点,与y轴交于点C.已知点A(﹣2,0),B(8,0),连接AC,BC.(1)求抛物线的解析式和点C的坐标;(2)点D是直线BC上方抛物线上的一点,过点D作DE⊥BC,垂足为E,求线段DE的长度最大时,点D的坐标;(3)抛物线上是否存在一点P(异于点A,B,C),使S△P AC=S△PBC?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)把A(﹣2,0),B(8,.0)分别代入y=ax2+bx+4中得∴抛物线的解析式为y=,令x=0,得y=4.∴点C的坐标为(0,4);(2)如图1,过点D作DF∥y轴,交BC于点F,则∠DFE=∠BCO.∵C=(0,4),B(8,0),∴OC=4,OB=8,在Rt△OBC中,BC=,∴sin∠BCO=,∴在Rt△DEF中,DE=DF・sin∠DFE=DF•sin∠BCO=,设直线BC的解析式为y=kx+t,把B(8,0),C(0,4)分别代入,得,解得,∴直线BC的解析式为y=, 设D(m,,则F(m,)∴DF=,∴DE=,∵,∴当m=4时,DE的值最大,最大值为,此时点D的坐标为(4,.6);(3)存在点P,使S△P AC=S△PBC,过点C与AB平行的直线交抛物线于P,∵CP∥AB,∴点A、B到CP的距离相等,∴△P AC、△PBC的面积相等,∵C(0,4),把y=4代入y=,解得x=0或x=6,∴P(6,4),∴使S△P AC=S△PBC的点P的坐标为(6,4).类型二、线段和的最值问题【例4】(2019•广安)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合). (1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.解:(1)将点A、D的坐标代入直线表达式得:,解得:,故直线l的表达式为:y=﹣x﹣1,将点A、D的坐标代入抛物线表达式,同理可得抛物线的表达式为:y=﹣x2+3x+4;(2)直线l的表达式为:y=﹣x﹣1,则直线l与x轴的夹角为45°,即:则PE=PE,设点P坐标为(x,﹣x2+3x+4)、则点F(x,﹣x﹣1),PE+PF=2PF=2(﹣x2+3x+4+x+1)=﹣2(x﹣2)2+18,∵﹣2<0,故PE+PF有最大值,当x=2时,其最大值为18;【例5】(2019•资阳)如图,抛物线y=﹣x2+bx+c过点A(3,2),且与直线y=﹣x+交于B、C两点,点B的坐标为(4,m).(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+P A的最小值;解:(1)将点B的坐标为(4,m)代入y=﹣x+,m=﹣4+=﹣,∴B的坐标为(4,﹣),将A(3,2),B(4,﹣)代入y=﹣x2+bx+c,解得b=1,c=,∴抛物线的解析式y=;(2)设D(m,),则E(m,﹣m+),DE=()﹣(﹣m+)==﹣(m﹣2)2+2, ∴当m=2时,DE有最大值为2,此时D(2,),作点A关于对称轴的对称点A',连接A'D,与对称轴交于点P.PD+PA=PD+PA'=A'D,此时PD+PA最小,∵A(3,2),∴A'(﹣1,2),A'D==,即PD+PA的最小值为;类型三、线段差或线段差的绝对值的最值问题【例6】(2019•零陵区一模)如图,已知抛物线y=ax2﹣4x+c(a≠0)与x轴交于点A(﹣3,0)和点B,与y轴交于点C(0,6).(1)求抛物线y的函数表达式及点B的坐标;(2)在抛物线的对称轴上是否存在点P使PB﹣PC的值最大?若存在,求出P点的坐标,若不存在,请说明理由;解:(1)函数过点C,则其表达式为:y=ax2﹣4x+6,将点A的坐标代入上式并解得:a=﹣2, 故抛物线的表达式为:y=﹣2x2﹣4x+6…①,令y=0,则x=1或﹣3,过点B(1,0);(2)存在,理由:连接BC并延长交函数对称轴于点P,此时,PB﹣PC的值最大,将点B、C的坐标代入一次函数表达式:y=kx+b得:,故直线BC的表达式为:y=﹣6x+6, 当x=﹣1时,y=12,故点P(﹣1,12);【例7】(2019•安顺)如图,抛物线y=x2+bx+c与直线y=x+3分别相交于A,B两点,且此抛物线与x轴的一个交点为C,连接AC,BC.已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MC|的值最大,并求出这个最大值;解:(1)①将A(0,3),C(﹣3,0)代入y=x2+bx+c得:,解得:,∴抛物线的解析式是y=x2+x+3;(2)将直线y=x+3表达式与二次函数表达式联立并解得:x=0或﹣4,∵A(0,3),∴B(﹣4,1)①当点B、C、M三点不共线时,|MB﹣MC|<BC②当点B、C、M三点共线时,|MB﹣MC|=BC∴当点、C、M三点共线时,|MB﹣MC|取最大值,即为BC的长,过点B作x轴于点E,在Rt△BEC中,由勾股定理得BC==,∴|MB﹣MC|取最大值为;【练习】如图,已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点(点A在点B的右侧),与y轴交于C点.(1)求直线BC的解析式;(2)若点P是直线BC上方抛物线上的一点,当△PBC面积的值最大时,在y轴上找一点D,使得|AD ﹣PD|值最大,请求出D点的坐标和|AD﹣PD|的最大值;解:(1)抛物线y=﹣x2﹣2x+3与x轴交于A、B两点(点A在点B的右侧),与y轴交于C点, 令x=0,则y=3,∴C(0,3),令y=0,则,﹣x2﹣2x+3=0,解得x=1或﹣3,∴B(﹣3,0),A(1,0),设直线BC的解析式为y=kx+b,把B(﹣3,0),C(0,3)代入得,解得,∴直线BC的解析式为y=x+3;(2)设P(x,﹣x2﹣2x+3),∵OB=3=OC,∴S四边形OBPC=S△PDB+S梯形PDOC=(x+3)(﹣x2﹣2x+3)+×(﹣x)(﹣x2﹣2x+3+3)=﹣x2﹣3x+ ∴S△PBC=S四边形OBPC﹣S△BOC=﹣x2﹣3x+﹣×3×3=﹣x2﹣3x=﹣(x+1)2+∴当x=﹣1时,△PBC面积的值最大,∴P(﹣1,4),∵抛物线的顶点为(﹣1,4),∴P点是抛物线的顶点,∴PB=P A,要使|AD﹣PD|值最大,则点P、D、B三点在一条直线上,∴设直线PB:y=mx+n(m≠0),则,解得,∴直线PB:y=2x+6.当x=0时,y=6,则点D的坐标是(0,6).此时,|AD﹣PD|的最大值为:;类型四、三角形或四边形面积最值问题【例8】(2019•黄埔区一模)在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),点B(1,0)两点,与y轴交于点C(1)求抛物线的解析式:(2)若点P是抛物线上在第二象限内的一个动点,且点P的横坐标为t,连接PA、PC、AC.①求△ACP的面积S关于t的函数关系式.②求△ACP的面积的最大值,并求出此时点P的坐标.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),点B(1,0)两点,∴,解得:,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)①设直线AC的解析式为y=kx+b,∴,解得:,∴直线AC的解析式为y=x+3,过点P作PQ∥y轴交直线AC于点Q,设P(t,﹣t2﹣2t+3),Q(t,t+3),∴PQ=﹣t2﹣2t+3﹣t﹣3=﹣t2﹣3t,∴S=S△PQC+S△PQA===﹣.②∵S=﹣,∴t=﹣时,△ACP的面积最大,最大值是,此时P点坐标为(﹣,).【例9】(2019•东营)已知抛物线y=ax2+bx﹣4经过点A(2,0)、B(﹣4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标; (3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax+bx﹣4经过点A(﹣2,0),B(4,0),∴,解得,∴抛物线解析式为y=x2+x﹣4;(2)如图1,连接OP,设点P(x,),其中﹣4<x<0,四边形ABPC的面积为S,由题意得C(0,﹣4),∴S=S△AOC+S△OCP+S△OBP=+,=4﹣2x﹣x2﹣2x+8,=﹣x2﹣4x+12,=﹣(x+2)2+16.∵﹣1<0,开口向下,S有最大值,∴当x=﹣2时,四边形ABPC的面积最大,此时,y=﹣4,即P(﹣2,﹣4).因此当四边形ABPC的面积最大时,点P的坐标为(﹣2,﹣4).(3),∴顶点M(﹣1,﹣).如图2,连接AM交直线DE于点G,此时,△CMG的周长最小.设直线AM的解析式为y=kx+b,且过点A(2,0),M(﹣1,﹣),∴,∴直线AM的解析式为y=﹣3.在Rt△AOC中,=2.∵D为AC的中点,∴,∵△ADE∽△AOC,∴,∴,∴AE=5,∴OE=AE﹣AO=5﹣2=3,∴E(﹣3,0),由图可知D(1,﹣2)设直线DE的函数解析式为y=mx+n,∴,解得:,∴直线DE的解析式为y=﹣﹣.∴,解得:,∴G().类型五、三角形周长的最值问题【例10】(2019•宜城市模拟)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1), ∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,∴S△APC=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,∴C△ANM=AM+MN+AN=AC+AN=3+.∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.【练习】1、(2018秋•潮南区期末)如图,已知抛物线y=x2+3x﹣8的图象与x轴交于A,B两点(点A在点B 的右侧),与y轴交于点C.(1)求直线BC的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,在抛物线的对称轴上找一点P,使得△BFP的周长最小,请求出点F的坐标和点P的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.解:(1)对于抛物线y=x2+3x﹣8,令y=0,得到x2+3x﹣8=0,解得x=﹣8或2,∴B(﹣8,0),A(2,0),令x=0,得到y=﹣8,∴A(2,0),B(﹣8,0),C(0,﹣8), 设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=﹣x﹣8.(2)如图1中,作FN∥y轴交BC于N.设F(m,m2+3m﹣8),则N(m,﹣m﹣8)∴S△FBC=S△FNB+S△FNC=•FN×8=4FN=4[(﹣m﹣8)﹣(m2+3m﹣8)]=﹣2m2﹣16m=﹣2(m+4)2+32,∴当m=﹣4时,△FBC的面积有最大值,此时F(﹣4,﹣12),∵抛物线的对称轴x=﹣3,点B关于对称轴的对称点是A,连接AF交对称轴于P,此时△BFP的周长最小,设直线AF的解析式为y=ax+b,则有,解得,∴直线AF的解析式为y=2x﹣4, ∴P(﹣3,﹣10),∴点F的坐标和点P的坐标分别是F(﹣4,﹣12),P(﹣3,﹣10).(3)如图2中,∵B(﹣8,0),F(﹣4,﹣12),∴BF==4,①当FQ1=FB时,Q1(0,0)或(0,﹣24)(虽然FB=FQ,但是B、F、Q三点一线应该舍去).②当BF=BQ时,易知Q2(0,﹣4),Q3(0,4).③当Q4B=Q4F时,设Q4(0,m),则有82+m2=42+(m+12)2,解得m=﹣4,∴Q4(0,﹣4),∴Q点坐标为(0,0)或(0,4)或(0,﹣4)或(0,﹣4).2、(2019•昆山市一模)如图,抛物线y=ax2﹣3ax+c(a≠0)与x轴交于A,B两点,交y轴于点C,其中A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)点P是线段BC上方抛物线上一动点(不与B,C重合),过点P作PD⊥x轴,垂足为D,交BC 于点E,作PF⊥直线BC于点F,设点P的横坐标为x,△PEF的周长记为l,求l关于x的函数关系式,并求出l的最大值及此时点P的坐标;(3)点H是直线AC上一点,该抛物线的对称轴上一动点G,连接OG,GH,则两线段OG,GH的长度之和的最小值等于 ,此时点G的坐标为 (,) (直接写出答案.)解:(1)将A、C代入解析式,可得c=3,a= ∴抛物线的解析式为y=﹣x2+x+3(2)设P(m,﹣m2+m+3), 直线BC的解析式为y=x+3 点E(m,m+3)∴PE=﹣m2+m+3+m﹣3=﹣m2+3m∵△OBC∽△PEF ∴= , ∴l=﹣m2+m当m=2时L的最大值为,点P坐标为(2,)(3)如图,作点O关于对称轴的对称点Q(3,0),作QH⊥AC交对称轴于G∵△AOC∽△ABH ∴= ∴= ∴QH=∵△GMQ∽△ACO ∴= ∴= ∴GM=∴G(,)3、(2019•齐齐哈尔)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为 (,﹣5) .(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.解:(1)∵OA=2,OC=6 ∴A(﹣2,0),C(0,﹣6)∵抛物线y=x2+bx+c过点A、C ∴解得: ∴抛物线解析式为y=x2﹣x﹣6 (2)∵当y=0时,x2﹣x﹣6=0,解得:x1=﹣2,x2=3∴B(3,0),抛物线对称轴为直线x=∵点D在直线x=上,点A、B关于直线x=对称∴x D=,AD=BD∴当点B、D、C在同一直线上时,C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小设直线BC解析式为y=kx﹣6 ∴3k﹣6=0,解得:k=2 ∴直线BC:y=2x﹣6∴y D=2×﹣6=﹣5 ∴D(,﹣5)(3)过点E作EG⊥x轴于点G,交直线BC与点F设E(t,t2﹣t﹣6)(0<t<3),则F(t,2t﹣6)∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t∴S△BCE=S△BEF+S△CEF=EF•BG+EF•OG=EF(BG+OG)=EF•OB=×3(﹣t2+3t)=﹣(t﹣)2+∴当t=时,△BCE面积最大∴y E=()2﹣﹣6=﹣∴点E坐标为(,﹣)时,△BCE面积最大,最大值为.(4)存在点N,使以点A、C、M、N为顶点的四边形是菱形.∵A(﹣2,0),C(0,﹣6) ∴AC=①若AC为菱形的边长,如图3,则MN∥AC且,MN=AC=2∴N1(﹣2,2),N2(﹣2,﹣2),N3(2,0)②若AC为菱形的对角线,如图4,则AN4∥CM4,AN4=CN4设N4(﹣2,n) ∴﹣n= 解得:n=﹣ ∴N4(﹣2,﹣)综上所述,点N坐标为(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).类型六、四边形周长的最值问题【例11】(2019•顺庆区校级自主招生)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A,B两点,交y轴于点D,其中点B的坐标为(3,0)(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H使D,G,H,F四点所围成的四边形周长最小?若存在,求出这个最小值及点G,H的坐标;若不存在,请说明理由.解:(1)∵抛物线顶点为(1,4)∴设顶点式y=a(x﹣1)2+4∵点B(3,0)在抛物线上∴a(3﹣1)2+4=0 解得:a=﹣1∴抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3(2)x轴上存在点H使D,G,H,F四点所围成的四边形周长最小.如图,作点F关于x轴对称的对称点F',连接EF'∵x=0时,y=﹣x2+2x+3=3 ∴D(0,3)∵当y=0时,﹣x2+2x+3=0 解得:x1=﹣1,x2=3 ∴A(﹣1,0)∵点E在抛物线上且横坐标为2 ∴y E=﹣22+2×2+3=3 ∴E(2,3)∴点D、E关于对称轴对称 ∴DG=EG设直线AE解析式为y=kx+e ∴解得: ∴直线AE:y=x+1 ∴F(0,1) ∴F'(0,﹣1),HF=HF',DF=3﹣1=2∴C四边形DGHF=DF+DG+GH+FH=DF+EG+GH+F'H∴当点E、G、H、F'在同一直线上时,C四边形DGHF=DF+EF'最小∵EF'=∴C四边形DGHF=2+2设直线EF'解析式为y=mx﹣1∴2m﹣1=3∴m=2∴直线EF':y=2x﹣1当y=0时,解得x=∴H(,0)当x=1时,y=2﹣1=1∴G(1,1)∴四边形DGHF周长最小值为2+2,点G坐标为(1,1),点H坐标为(,0).【练习】1、(2019•深圳)如图抛物线经y=ax2+bx+c过点A(﹣1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值.(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.解:(1)∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3)=ax2﹣2ax﹣3a,故﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)ACDE的周长=AC+DE+CD+AE,其中AC=、DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点C(2,3),则CD=C′D,取点A′(﹣1,1),则A′D=AE,故:CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=+A′D+DC′=+A′C′=+;(3)如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=EB×(y C﹣y P):AE×(y C﹣y P)=BE:AE,则BE:AE,=3:5或5:3,则AE=或,即:点E的坐标为(,0)或(,0),将点E、C的坐标代入一次函数表达式:y=kx+3,解得:k=﹣6或﹣2,故直线CP的表达式为:y=﹣2x+3或y=﹣6x+3…②联立①②并解得:x=4或8(不合题意值已舍去),故点P的坐标为(4,﹣5)或(8,﹣45).2、(2017•日照模拟)如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为2.(1)求A,B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.解:(1)令y=0,解得x1=﹣1或x2=3,∴A(﹣1,0),B(3,0);将C点的横坐标x=2代入y=x2﹣2x﹣3得y=﹣3,∴C(2,﹣3),∴直线AC的函数解析式是y=﹣x﹣1,(2)设P点的横坐标为x(﹣1≤x≤2),则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),∵P点在E点的上方,PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2,∴当x=时,PE的最大值=,△ACE的面积最大值=PE[2﹣(﹣1)]=PE=,(3)D点关于PE的对称点为点C(2,﹣3),点Q(0,﹣1)点关于x轴的对称点为K(0,1), 连接CK交直线PE于M点,交x轴于N点,可求直线CK的解析式为y=﹣2x+1,此时四边形DMNQ 的周长最小,最小值=|CM|+QD=2+2,求得M(1,﹣1),N(,0).3、(2017秋•南岸区校级期中)如图1,抛物线y=x2﹣x﹣3,与x轴交于A和B两点(点A在点B的左侧),与y轴交于点C,过点A的直线与抛物线在第一象限的交点M的横坐标为,直线AM与y 轴交于点D,连接BC、AC.(1)求直线AD和BC的解折式;(2)如图2,E为直线BC下方的抛物线上一点,当△BCE的面积最大时,一线段FG=4(点F在G的左侧)在直线AM上移动,顺次连接B、E、F、G四点构成四边形BEFG,请求出当四边形BEFG 的周长最小时点F的坐标;解:(1)在抛物线y=中,令x=0,得y=﹣3,∴C(0,﹣3),令y=0,得,解得x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),令x=,得y==,∴M(,),设直线AD的解析式为y=k1x+b1,将A(﹣1,0),M(,)代入得, 解得,∴直线AD的解析式为y=x+1.设直线BC的解析式为y=k2x+b2,将B(4,0),C(0,﹣3)代入,得,解得,∴直线BC的解析式为y=x﹣3;(2)如图2,过点E作EH∥y轴交BC于H,设E(t,),H(t,),∴HE==∴===∵<0,∴当t=2时,S△BCE的最大值=6,此时E(2,),作点B关于直线y=x+1的对称点B1,连接B1G,过点F作B2F∥B1G,且B2F=B1G,∴B1(﹣1,5), ∵FG=4,且FG在直线y=x+1上,∴F可以看作是G向左平移4个单位,向下平移4个单位后的对应点,∴B2(﹣5,1),当B2、F、E三点在同一直线上时,BEFG周长最小,设直线B2E解析式为y=mx+n,将B2(﹣5,1),E(2,)分别代入,得,解得,∴直线B2E解析式为y=,联立方程组,解得.∴F(,).类型七、线段与系数线段的和差最值问题【例12】(2018•南岸区模拟)如图1,在平面直角坐标系中,抛物线y=x2+x﹣与x 轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求抛物线的对称轴和直线AC的解析式;(2)P为直线AC下方抛物线上(不与A、C重合)的一动点,PB交AC于D,当取得最大值时,M为y轴上一动点,N为抛物线对称轴上一动点且MN⊥y轴,求PM+MN+AN的最小值;解:(1)﹣=﹣1,∴抛物线的对称轴为直线x=﹣1,令x=0,y=﹣,∴C(0,﹣),令y=0,解得x1=﹣3,x2=1,∴A(﹣3,0),B(0,﹣1),设直线AC的解析式为y=kx+b,则解得∴AC的解析式为y=﹣x﹣.(2)过点P作y轴的平行线交AC于点H,过点B作y轴的平行线交y轴于点Q,当x=1时,y=﹣,∴BQ=,设点P的坐标为(m,),则点H(m,﹣),∴PH=﹣﹣()=﹣,∵△PHD∽△BDQ,∴,∴=﹣,此时点P(﹣,﹣),过点P作y轴的对称点P′,则P′(,﹣),将点A向右平移一个单位得到点A′,则点A ′(﹣2,0),连接A′P′,与y轴的交点即为点M,过M作x轴的平行线,与对称轴的交点即为点N,设直线A′P′的解析式为y=kx+b,,解得,∴y=﹣x﹣,∴M(0,﹣),N(﹣1,﹣),A′P′==,∴PM+MN+AN的最小值为:1+.【例13】已知二次函数y=x2﹣x﹣2的图象和x轴交于点A,B,与y轴交于点C,过直线BC的下抛物线上与动点P作PQ∥AC交线段BC于点Q,再过P点作PE⊥x轴于点E,交BC于点D; (1)求直线AC的解析式;(2)求△PQD周长的最大值;(3)当△PQD的周长最大时,在y轴上有两个动点M,N(M在N的上方),且MN=1,求PN+MN+AM 的最小值.解:(1)对于二次函数y=x2﹣x﹣2,令x=0得y=﹣2,令y=0,得x2﹣x﹣2=0,解得x=﹣1或2, ∴A(﹣1,0),B(2,0),C(0,﹣2),设直线AC的解析式为y=kx+b,则有,解得,∴直线AC的解析式为y=﹣2x﹣2.(2)∵B(2,0),C(0,﹣2),∴直线BC的解析式为y=x﹣2,OB=OC=2,∴∠OCB=∠OBC=45°,∵PE⊥x轴,∴∠DEB=90°,∴∠EDB=∠QDP=∠EBD=45°,∵PQ∥AC,∴∠PQC=∠ACQ,∴∠PQD,∠PDQ是定值,∴PD最长时,△PDQ的最长最大,设P(m,m2﹣m﹣2),则D(m,m﹣2),∴PD=m﹣2﹣(m2﹣m﹣2)=﹣m2+2m=﹣(m﹣1)2+1,∵﹣1<0,∴m=1时,PD的值最大,PD最大值为1,此时P(1,﹣2),D(1,﹣1),∴直线PQ的解析式为y=﹣2x,由,解得,∴Q(,﹣),∴PD=1,PQ=,DQ= ∴△PDQ的最长的最大值为1++.(3)如图2中,作PP′∥y轴,使得PP′=MN=1,连接AP′交y轴于M,此时PN+NM+AM的值最小.由(2)可知P (1,﹣2),∴P ′(1,﹣1),∵A (﹣1,0),∴直线AP ′的解析式为y =﹣x ﹣,∴M (0,﹣),N (0,﹣),∴AM ==,PN ==,∴AM +MN +PN 的最小值为+1.【例14】如图,抛物线2142y x x =+-与x 轴交于A 、B (A 在B 的左侧),与y 轴交于点C ,抛物上的点E 的横坐标为3,过点E 作直线1l ∥x 轴。

中考数学题型专项训练:二次函数与最值问题(含答案)

中考数学题型专项训练:二次函数与最值问题(含答案)

二次函数与最值问题1.如图,二次函数y =-x 2+2(m -2)x +3的图象与x 、y 轴交于A 、B 、C 三点,其中A (3,0),抛物线的顶点为D . (Ⅰ)求m 的值及顶点D 的坐标;(Ⅱ)当a ≤x ≤b 时,函数y 的最小值为74,最大值为4,求a ,b 应满足的条件;(Ⅲ)在y 轴右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形如果存在,求出符合条件的点P 的坐标;如果不存在,请说明理由.解:(Ⅰ)把A (3,0)代入y =-x 2+2(m -2)x +3,得-9+6(m -2)+3=0, 解得m =3,则二次函数为y =-x 2+2x +3,∵y=-x2+2x+3=-(x-1)2+4, ∴顶点D 的坐标为(1,4);(Ⅱ)把y=74代入y=-x2+2x+3中,得74=-x2+2x+3,解得x1=-12,x2=25,又∵函数y的最大值为4,顶点D的坐标为(1,4), 结合图象知-12≤a≤1.当a=-12时,1≤b≤25,当-12<a≤1时,b=25;(Ⅲ)存在点P,使得△PDC是等腰三角形, 当x=0时,y=3,∴点C 坐标为(0,3).当△PDC 是等腰三角形时,分三种情况: ①如解图①,当DC =DP 时,由抛物线的对称性知由抛物线的对称性知::点P 与点C 关于抛物线的对称轴x =1对称,∴点P 坐标为(2,3);②如解图②,当PC =PD 时,则线段CD 的垂直平分线l 与抛物线的交点即为所求的点P ,过点D 作x 轴的平行线交y 轴于点H ,过点P 作PM ⊥y 轴于点M ,PN ⊥DH 的延长线于点N , ∵HD =HC =1,PC =PD ,∴HP 是线段CD 的垂直平分线. ∵HD =HC ,HP ⊥CD , ∴HP 平分∠MHN ,∵PM ⊥y 轴于点M ,PN ⊥HD 的延长线于点N , ∴PM =PN .设P (m ,-m 2+2m +3), 则m =4-(-m 2+2m +3),解得m =253±, ∴点P 的坐标为(253-,255+)(解图中未标记此点)或(253+,255-);③如解图③,当CD =CP 时,点P 在y 轴左侧,不符合题意.综上所述,所求点P 的坐标为(2,3)或(253-,255+)或(253+,255-).图① 图② 图③ 第1题解图2.已知抛物线y =ax 2+bx +c (a <0)过(m ,b ),(m +1,a )两点,(Ⅰ)若m =1,c =1,求抛物线的解析式;(Ⅱ)若b ≥a ,求m 的取值范围;(Ⅲ)当b ≥a ,m <0时,二次函数y =ax 2+bx +c 有最大值-2,求a 的最大值. 解:(Ⅰ)∵m =1,c =1,∴抛物线的解析式为y =ax 2+bx +1(a <0)过(1,b ),(2,a )两点,∴1421a b ba b a ++=ìí++=î, 解得11a b =-ìí=î,∴抛物线的解析式为y =-x 2+x +1; (Ⅱ)依题意得22am bm c b a m b m c a ì++=ïí①,由②-①得b=-am,∵b≥a,∴-am≥a,∵a<0,∴m≥-1;(Ⅲ) 由(Ⅱ)得b=-am,代入①得am2-am2+c=b,∴c=b=-am,∵b≥a,m<0,∴-1≤m<0,∵二次函数y=ax2+bx+c有最大值-2,∴244ac ba-=-2,∴8a=m2+4m,∴8a = (m +2)2-4, ∵-1≤m <0,∴-3≤(m +2)2-4<0,∴a ≤-83,∴a 的最大值为-83.3.平面直角坐标系xOy 中,抛物线y =mx 2-2m 2x +2交y 轴于A 点,交直线x =4于B 点.(Ⅰ)求抛物线的对称轴(用含m 的代数式表示); (Ⅱ)若AB ∥x 轴,求抛物线的解析式;(Ⅲ)若抛物线在A ,B 之间的部分任取一点P (x p ,y p ),一定满足y p ≤2,求m 的取值范围.解:(Ⅰ)由抛物线的对称轴公式可得x =2ba -=222m m--=m ,∴抛物线的对称轴为直线x=m;(Ⅱ)当x=0时,y=mx2-2m2x+2=2,∴点A(0,2).∵AB∥x轴,且点B在直线x=4上,∴点B(4,2),抛物线的对称轴为直线x=2,∴m=2,∴抛物线的解析式为y=2x2-8x+2;(Ⅲ)当m>0时,如解图①,∵A(0,2),∴要使0≤x p≤4时,始终满足y p≤2,只需使抛物线y=mx2-2m2x+2的对称轴与直线x=2重合或在直线x=2的右侧.∴m≥2;当m<0时,如解图②,m <0时,y p ≤2恒成立.综上所述,m 的取值范围为m <0或m ≥2.第3题解图4.已知抛物线y =ax 2+bx +c 的顶点为(2,5),且与y 轴交于点C (0,1).(Ⅰ)求抛物线的表达式;(Ⅱ)若-1≤x ≤3,试求y 的取值范围;(Ⅲ)若M (n 2-4n +6,y 1)和N (-n 2+n +74,y 2)是抛物线上的不重合的两点,试判断y 1与y 2的大小,并说明理由.解:(Ⅰ)∵抛物线y =ax 2+bx +c 的顶点为(2,5),∴设抛物线的表达式为:y=a(x-2)2+5, 把(0,1)代入得:a(0-2)2+5=1,a=-1,∴抛物线的表达式为:y=-(x-2)2+5=-x2+4x +1;(Ⅱ)∵抛物线的顶点为(2,5),a=-1,对称轴为直线x =2,且-1≤x ≤3,∴当x=-1时,y有最小值,最小值为y=-(-1-2)2+5=-4,当x=2时,y有最大值,最大值为y=5,∴y的取值范围是-4≤y≤5;(Ⅲ)∵n 2-4n+6=(n-2)2+2≥2,2,--n2+n+74=-(n-12)2+2≤2,∴点M在抛物线对称轴右侧,点N在抛物线对称轴左侧,∵N(-n2+n+74,y2),∴点N关于对称轴对称的点坐标为(n 2-n+94,y2), ∵在抛物线对称轴右侧,y随x的增大而减小,∴①当n2-4n+6>n2-n+94时,即n<45时,y1<y 2;②当n2-4n+6=n2-n+94时,即n=45时,y1=y2;③当n2-4n+6<n2-n+94时,即n>45时,y1>y2.5.已知抛物线y=ax2+bx+c与直线y=mx+n 相交于两点,这两点的坐标分别是(0,-12)和(m-b, m2-mb +n),其中 a,b,c,m,n为实数,且a,m不为0.(Ⅰ)求c的值;(Ⅱ)求证:抛物线y=ax2+bx+c与x 轴有两个交点; (Ⅲ)当-1≤x≤1时,设抛物线y=ax2+bx+c上与x轴距离最大的点为P(x0,y0),求这时|y0|的最小值.解:(Ⅰ)把点(0,-12)代入抛物线,得:c=-12;(Ⅱ)把点(0,-12)代入直线得:n=-12.把点(m-b,m2-mb+n)代入抛物线,得: a(m-b)2+b(m-b)+c =m2-mb+n∵c=n=-1 2,∴a(m-b)2+b(m-b)=m2-mb,am2-2abm+ab2+bm-b2-m2+mb=0, (a -1)m2-(a-1)1)•2•2bm+(a -1)b2=0, (a-1)(m2-2bm+b2)=0,(a-1)(m-b)2=0,若m -b =0,则(m -b ,m 2-mb +n )与(0,-12)重合,与题意不合, ∴a =1,∵抛物线y =ax 2+bx +c=x 2+bx -12,b 2-4ac =b 2-4×(-12)=b 2+2>0, ∴抛物线y =ax 2+bx +c 与x 轴有两个交点;(Ⅲ)y =x 2+bx -12,顶点(-2b ,-12-24b ),设抛物线y =x 2+bx -12在x 轴上方与x 轴距离最大的点的纵坐标为H ,在x 轴下方与x 轴距离最大的点的纵坐标为h , ①当-2b <-1时,即b >2时,在x 轴上方与x 轴距离最大的点是(1,y 0),∴|H |=y 0=12+b >52,在x 轴下方与x 轴距离最大的点是(-1,y 0),∴|h |=|y 0|=|12-b |=b -12>32,∴|H |>|h |,∴这时|y 0|的最小值大于52,②当-1≤-2b≤0时,即0≤b ≤2时,在x 轴上方与x 轴距离最大的点是(1,y 0),∴|H |=y 0=12+b ≥12,当b =0时等号成立, 在x 轴下方与x 轴距离最大的点是(-2b ,-12-24b ),∴|h |=|-1-2b |=2+2b ≥1,当b =0时等号成立,∴这时|y 0|的最小值等于12, ③当0<-2b≤1,即-2≤b <0时,在x 轴上方与x 轴距离最大的点是(-1,y 0), ∴|H |=y 0=|1+(-1)b -12|=|12-b |=12-b >12,在x 轴下方与x 轴距离最大的点是(-2b ,-12-24b ), ∴|h |=|y 0|=|-12-24b |=2+24b >12,∴这时|y 0|的最小值大于12;④当1<-2b时,即b <-2时,在x 轴上方与x 轴距离最大的点是(-1,y 0),∴|H|=12-b>52,在x轴下方与x轴距离最大的点是(1,y0),∴|h|=|12+b|=-(b+12)>32,∴|H|>|h|,∴这时|y0|的最小值大于52,综上所述:当b=0,x0=0时,这时|y0|取最小值为12.6.在平面直角坐标系中,直线l:y=x+3与x轴交于点A,抛物线C:y=x2+mx+n的图象经过点A.(Ⅰ)当m=4时,求n的值;(Ⅱ)设m=-2,当-3≤x≤0时,求二次函数y=x2+mx+n 的最小值;(Ⅲ)当-3≤x≤0时,若二次函数y=x2+mx+n时的最小值为-4,求m 、n 的值. 解:(Ⅰ)当y =x +3=0时,x =-3, ∴点A 的坐标为(-3,0).∵二次函数y =x 2+mx +n 的图象经过点A , ∴0=9-3m +n ,即n =3m -9, ∴当m =4时,n =3m -9=3; (Ⅱ)抛物线的对称轴为直线x =-2m,当m =-2时,对称轴为x =1,n =3m -9=-15, ∴当-3≤x ≤0时,y 随x 的增大而减小,∴当x =0时,二次函数y =x 2+mx +n 取得最小值,最小值为-15.(Ⅲ)①当对称轴-2m≤-3,即m ≥6时,在-3≤x ≤0范围内,y 随x 的增大而增大,当x =-3时,y 取得最小值0,不符合题意;②当-3<-2m <0,即0<m <6时,在-3≤x ≤0范围内,x =-2m 时,y取得最小值442m n -,∵二次函数最小值为-4, ∴244n m n -=493=0m n --+ìïíïî, 解得:2 3m n -ìíî==或1021m n ìíî==(舍去), ∴m =2,n =-3; ③当-2m ≥0,即m ≤0时,在-3≤x ≤0范围内,y 随x 的增大而减小,当x =0时,y 取最小值,即n =-4, ∴4930n m n --+ìïíïî==,解得:53m=4nì-ïíïî=(舍去).综上所述:m=2,n=-3.7.在平面直角坐标系中,抛物线y=x2-2x+c(c为常数)的对称轴为x=1.(Ⅰ)当c=-3时,点(x1,y1)在抛物线y=x2-2x+c上,求y1的最小值;(Ⅱ)若抛物线与x轴有两个交点,点A在点B左侧,且OA=12OB,求抛物线的解析式;(Ⅲ)当-1<x<0时,抛物线与x轴有且只有一个公共点,求c的取值范围.解:(Ⅰ)当c=-3时,抛物线为y=x 2-2x-3,∴抛物线开口向上,有最小值,∴y最小值=244ac ba-=2()(4324)1´´---=-4,∴y1的最小值为-4;(Ⅱ)抛物线与x轴有两个交点,①当点A、B都在原点的右侧时,如解图①,设A(m,0),∵OA=12OB,∴B(2m,0),∵二次函数y =x2-2x+c的对称轴为x=1,由抛物线的对称性得1-m=2m-1,解得m=2 3,∴A(23,0),∵点A在抛物线y=x2-2x+c上,∴0=49-43+c,解得c=89,此时抛物线的解析式为y=x2-2x+89;②当点A在原点的左侧,点B在原点的右侧时,如解图②, 设A(-n,0),∵OA=12OB,且点A 、B在原点的两侧,∴B(2n,0),由抛物线的对称性得n+1=2n -1,解得n=2,∴A(-2,0),∵点A在抛物线y =x2-2x+c上,∴0=4+4+c,解得c=-8,此时抛物线的解析式为y=x2-2x-8,综上,抛物线的解析式为y=x 2-2x+89或y=x2-2x-8;(Ⅲ)∵抛物线y =x2-2x+c与x轴有公共点,∴对于方程x2-2x+c=0,判别式b2-4ac=4-4c≥0, ∴c≤1.当x=-1时,y=3+c;当x=0时,y=c,∵抛物线的对称轴为x=1,且当-1<x<0时,抛物线与x 轴有且只有一个公共点,∴3+c>0且c<0,解得-3<c<0,综上,当-1<x<0时,抛物线与x轴有且只有一个公共点时,c的取值范围为-3<c<0.第7题解图8.已知抛物线 y=(m-1)x2+(m-2)x-1与x轴交于A、B 两点.(Ⅰ)求m的取值范围;(Ⅱ)若m <0,且点A 在点B 的左侧,OA :OB =3:1,试确定抛物线的解析式;(Ⅲ)设(Ⅱ)中抛物线与y 轴的交点为C ,过点C 作直线l ∥x 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,抛物线的其余部分保持不变,得到一个新图象.当直线y =-x +b 与新图象只有一个公共点P (x 0,y 0)且 y 0≥-5时,求b 的取值范围.解:(Ⅰ)∵抛物线y =(m -1)x 2+(m -2)x -1与x 轴交于A 、B 两点,∴()210241)0(m m m -¹-+î-ìí>①②, 由①得m ≠1≠1, , 由②得m ≠0≠0,, ∴m 的取值范围是m ≠0且m ≠1;≠1;(Ⅱ)∵点A 、B 是抛物线y =(m -1)x 2+(m -2)x -1与x轴的交点,∴令y=0,即 (m-1)x2+(m-2)x-1=0.解得 x1=-1,x2=11m -.∵m<0,∴−1<11m-<0.∵点A在点B左侧,∴点A的坐标为(-1,0),点B的坐标为(11m-,0).∴OA=1,OB=11m-. ∵OA:OB=3:1,∴11m-=31.∴m=-2.∴抛物线的解析式为y=-3x2−4x−1.(Ⅲ)∵点C 是抛物线y =-3x 2−4x −1与y 轴的交点,∴点C 的坐标为(0,-1).依题意翻折后的图象如解图所示.令y =-5,即-3x 2−4x −1=- 5. 解得x 1=32,x 2=-2.∴新图象经过点D (-2,-5). 当直线y =-x +b 经过D 点时,可得b =-7. 当直线y =-x +b 经过C 点时,可得b =-1.当直线y =-x +b (b >−1)与函数y =-3x 2−4x −1的图象仅有一个公共点P (x 0,y 0)时,得-x 0+b =-3x 02−4x 0−1.整理得 3x 02+3x 0+b +1=0.由32-12(b +1)=-12b -3=0,得b =−14.结合图象可知,符合题意的b 的取值范围为-7≤b <-1或b>−1.4第8题解图9.如图,已知c<0,抛物线y=x2+bx+c与x轴交于A(x1,0),B(x2,0)两点(x2>x1),与y轴交于点C.(Ⅰ)若x2=1,BC=5,求函数y=x2+bx+c的最小值;(Ⅱ)过点A作AP⊥BC,垂足为P(点P在线段BC上),AP 交y轴于点M.若OA=2,求抛物线y=x2+bx+c顶点的纵OM坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.第9题图 解:(Ⅰ)∵x2=1, ∴OB=1,∵BC=5,∴OC=22BC OB-=2,∴C(0,-2),把B(1,0),C(0,-2)代入y=x2+bx+c,得:0=1+b-2, 解得:b=1,∴抛物线的解析式为:y=x2+x-2.转化为y=(x+12)2-94;∴函数y =x 2+bx +c 的最小值为-94;(Ⅱ)∵∠OAM +∠OBC =90°=90°,,∠OCB +∠OBC =90°=90°, , ∴∠OAM =∠OCB ,又∵∠AOM =∠BOC =90°=90°, , ∴△AOM ∽△COB , ∴OAOC OM OB =, ∴OC =OA OM•OB =2OB ,∵c <0,x 2>0,∴-c =2x 2,即x 2=-2c .∵x 22+bx 2+c =0,将x 2=-2c 代入化简得:c =2b -4.抛物线的解析式为:y =x 2+bx +c ,其顶点坐标为(-2b ,244c b -). 令x =-2b,则b =-2x .y =244c b -=c -24b =2b -4-24b =-4x -4-x 2,满足点P 在线段BC 上的x 最小取值,使P 、C 、M 重合, 此时C (0,c ),B (-2c ,0),A (2c ,0),根据根与系数的关系,对于x 2+bx +c =0, -b =-2c +2c =32c , 由c =2b -4,解得c =-1, 所以b =-32c =32,x =-2b=-34;所以自变量x 的取值范围x ≥-34∴顶点的纵坐标随横坐标变化的函数解析式为:y =-x 2-4x -4(x ≥-3).。

2023年九年级中考数学专题练习 二次函数的最值问题(含解析)

2023年九年级中考数学专题练习 二次函数的最值问题(含解析)

2023年中考数学专题练习--二次函数的最值问题1.如图,抛物线 212y x bx c =-++ 与 x 轴交于 A 、 B 两点,与 y 轴交于点 C ,且 2OA = , 3OC = .(1)求抛物线的解析式;(2)已知抛物线上点 D 的横坐标为 2 ,在抛物线的对称轴上是否存在点P ,使得 BDP ∆ 的周长最小?若存在,求出点 P 的坐标;若不存在,请说明理由.2.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y 与x 之间的函数关系式;(2)写出每天的利润W 与销售单价x 之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?3.阿静家在新建的楼房旁围成一个矩形花圃,花圃的一边利用20米长的院墙,另三边用总长为32米的离笆恰好围成.如图,设AB 边的长为x 米,矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)当x为何值时,S有最大值?并求出最大值.4.在环境创优活动中,某居民小区要在一块靠墙(墙长25米)的空地上修建一个矩形养鸡场,养鸡场的一边靠墙,如果用60m长的篱笆围成中间有一道篱笆的养鸡场,设养鸡场平行于墙的一边BC的长为x(m),养鸡场的面积为y(m2)(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)养鸡场的面积能达到300m2吗?若能,求出此时x的值,若不能,说明理由;(3)根据(1)中求得的函数关系式,判断当x取何值时,养鸡场的面积最大?最大面积是多少?5.市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=40时,y=120;x =50时,y=100.在销售过程中,每天还要支付其他费用500元.(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,该公司日获利最大.最大获利是多少元.6.抛物线y1=x2+bx+c与直线y2=2x+m相交于A(1,4)、B(﹣1,n)两点.(1)求y1和y2的解析式;(2)直接写出y1﹣y2的最小值.7.某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种新型商品成本为20元/件,第x天销售量为p件,销售单价为q元.经跟踪调查发现,这40 p-与x成正比,前20天(包含第20天),q与x的关系满足关系式天中50=+;从第21天到第40天中,q是基础价与浮动价的和,其中基础价保持q ax30不变,浮动价与x成反比,且得到了表中的数据:的值为;直接写出这天中p与x的关系式为;(2)从第21天到第40天中,求q与x满足的关系式;(3)求这40天里该网店第几天获得的利润最大?最大为多少?8.如图,一次函数y=kx+2的图象分别交y轴,x轴于A,B两点,且tan∠ABO=1,抛物线y=-x2+bx+c经过A,B两点.2(1)求k的值及抛物线的解析式.(2)直线x=t在第一象限交直线AB于点M,交抛物线于点N,当t取何值时,线段MN的长有最大值?最大值是多少?(3)在(2)的情况下,以A,M,N,D为顶点作平行四边形,求第四个顶点D 的坐标,并直接写出所有平行四边形的面积,判断面积是否都相等.9.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为15米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S.(1)求S与x的函数关系式;(2)并求出当AB的长为多少时,花圃的面积最大,最大值是多少?10.如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH∠AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,∠AEF的面积最大?11.2021年春节,不少市民响应国家号召原地过年.为保障市民节日消费需求,某商家宣布“今年春节不打烊”,该商家以每件80元的价格购进一批商品,规定每件商品的售价不低于进价且不高于100元,经市场调查发现,该批商品的日销售量y (件)与每件售价x(元)满足一次函数关系,其部分对应数据如下表所示:(2)当每件商品的售价定为多少元时,该批商品的日销售利润最大?日销售最大利润是多少?12.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y箱与销售价x元/箱之间的函数关系式.(2)当每箱苹果的销售价x为多少元时,可以使获得的销售利润w最大?最大利润是多少?13.某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系式;(2)写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额一年销售产品的总进价一年总开支金额)当销售单价x为何值时,年获利最大最大值是多少?(3)若公司希望该产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?14.我市某工艺厂设计了一款成本为10元 / 件的工艺品投放市场进行试销,经过调查,得到如下数据:(2)若用 W( 元 ) 表示工艺厂试销该工艺品每天获得的利润,试求 W( 元 ) 与 x( 元 / 件 ) 之间的函数关系式.(3)若该工艺品的每天的总成本不能超过2500元,那么销售单价定为多少元时,工艺厂试销工艺品每天获得的利润最大,最大是多少元?15.已知抛物线y =x 2﹣bx +c (b ,c 为常数)的顶点坐标为(2,﹣1).(1)求该抛物线的解析式;(2)点M (t ﹣1,y 1),N (t ,y 2)在该抛物线上,当t <1时,比较y 1与y 2的大小;(3)若点P (m ,n )在该抛物线上,求m ﹣n 的最大值.16.地摊经济开放以来,小王以每个40元的价格购进一种玩具,计划以每个60元的价格销售,后来为了尽快回本决定降价销售.已知这种玩具销售量 y (个)与每个降价 x (元)( 020x << )之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数解析式.(2)该玩具每个降价多少元时,小王获利最大?最大利润是多少元?17.如图,抛物线y=23 x 2+bx+c 经过点B (3,0),C (0,﹣2),直线l :y=﹣ 23x ﹣23交y 轴于点E ,且与抛物线交于A ,D 两点,P 为抛物线上一动点(不与A ,D 重合).(1)求抛物线的解析式;(2)当点P 在直线l 下方时,过点P 作PM∠x 轴交l 于点M ,PN∠y 轴交l 于点N ,求PM+PN 的最大值.(3)设F 为直线l 上的点,以E ,C ,P ,F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.18.如图,抛物线 2y ax bx c =++ 的图象过点 (10)(30)(03)A B C ﹣,、,、, .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得∠PAC 的周长最小,若存在,请求出点P 的坐标及∠PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得 PAM PAC S S ∆∆= ?若存在,请求出点M 的坐标;若不存在,请说明理由.19.如图,抛物线y =12 x 2+bx+c 与直线y = 12x+3分别相交于A,B 两点,且此抛物线与x 轴的一个交点为C ,连接AC,BC.已知A(0,3),C(-3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB-MC|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ∠PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与∠ABC相似?若存在,请求出所有符合条件的点P的坐标;若还在存在,请说明理由.20.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S∠AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ∠x轴,交抛物线于点D,求线段DQ长度的最大值.答案解析部分1.【答案】(1)解:2OA = ,∴ 点 A 的坐标为 (2,0)- .3OC = ,∴ 点 C 的坐标为 ()0,3 .把 ()2,0- , ()0,3 代入 212y x bx c =-++ ,得0223b cc =--+⎧⎨=⎩, 解得 123b c ⎧=⎪⎨⎪=⎩ . ∴ 抛物线的解析式为 211322y x x =-++ .(2)解:存在. 把 0y = 代入 211322y x x =-++ , 解得 12x =- , 23x = ,∴ 点 B 的坐标为 ()3,0 .点 D 的横线坐标为 2211223222∴-⨯+⨯+= .故点 D 的坐标为 ()2,2 .如图,设 P 是抛物线对称轴上的一点,连接 PA 、 PB 、 PD 、 BD ,PA PB = ,BDP ∴∆ 的周长等于 BD PA PD ++ ,又BD 的长是定值,∴ 点 A 、 P 、 D 在同一直线上时, BDP ∆ 的周长最小,由 ()2,0A - 、 ()2,0A - 可得直线 AD 的解析式为 112y x =+ , 抛物线的对称轴是 12x =, ∴ 点 P 的坐标为 15,24⎛⎫⎪⎝⎭,∴ 在抛物线的对称轴上存在点 15,24P ⎛⎫⎪⎝⎭,使得 BDP ∆ 的周长最小.【解析】【分析】(1)由题意先求出A 、C 的坐标,直接利用待定系数法即可求得抛物线的解析式;(2)根据题意转化 PA PB = ,BD 的长是定值,要使 BDP ∆ 的周长最小则有点A 、 P 、 D 在同一直线上,据此进行分析求解.2.【答案】(1)解:设y 与x 之间的函数关系式为y=kx+b (k≠0),由所给函数图象可知,{130k +b =50150k +b =30, ,解得 {k =−1b =180,.故y 与x 的函数关系式为y=﹣x+180 (2) 解:∵y=﹣x+180,∴W=(x ﹣100)y=(x ﹣100)(﹣x+180) =﹣x 2+280x ﹣18000 =﹣(x ﹣140)2+1600, ∵a=﹣1<0,∴当x=140时,W 最大=1600,∴售价定为140元/件时,每天最大利润W=1600元【解析】【分析】(1)由图像可知 销售单价x(元/件)与每天销售量y(件)之间满足 一次函数关系,设出该函数的一般式,再将(130,50)与(150,30)代入即可得出关于k,b 的二元一次方程组,求解得出k,b 的值,从而得出函数解析式;(2)每件商品的利润为(x-100)元,根据总利润等于单件的利润乘以销售的数量即可得出 W=(x ﹣100)y ,再将(1)整体代入,然后配成顶点式即可得出答案。

二次函数与最值问题练习题(含答案)

二次函数与最值问题练习题(含答案)

二次函数与最值 题集一、实际问题中的最值(1)(2)1.如图,某中学准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为米的篱笆围成,若墙长为米,设这个苗圃垂直于墙的一边长为米.苗圃园若苗圃园的面积为平方米,求的值.若平行于墙的一边长不小于米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值,如果没有,请说明理由.【答案】(1)(2).有,当时,取得最大值,最大值为.当时,取得最小值,最小值为.【解析】(1)(2)由题意,得:平行于墙的一边长为,根据题意,得:,解得:或,∵,∴.∴.∵矩形的面积,且,即,∴当时,取得最大值,最大值为.当时,取得最小值,最小值为.【标注】【知识点】二次函数的几何问题2.(1)(2)某校在基地参加社会实践活动中,基地计划新建一个矩形的生物园地,一边靠旧墙(墙的最大可用长度为米),另外三边用总长米的不锈钢栅栏围成,与墙平行的一边留一个宽为米的出入口.如图所示,设米.若这个生物园地的面积为平方米,求出与之间的函数关系式,并写出自变量的取值范围.当为多少米时,这个生物园地的面积最大,并求出这个最大面积.【答案】(1)(2).为米时面积最大,最大为平方米.【解析】(1)(2)由题意可知∴∴.当时有最大值平方米.故当为米时,生物园地面积最大,最大面积为平方米.【标注】【知识点】二次函数的几何问题3.某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长),中间用一道墙隔开(如图),已知计划中的建筑材料可建围墙的总长为,设两饲养室合计长,总占地面积为.(1)(2)求关于的函数表达式和自变量的取值范围. 若要使两间饲养室占地总面积达到,则各道墙的长度为多少?占地总面积有可能达到吗?【答案】(1)(2)总占地面积为,.占地总面积达到时,道墙长分别为米、米或米、米;占地面积不可能达到平方米.【解析】(1)(2)∵围墙的总长为米,间饲养室合计长米,∴饲养室的宽米,∴总占地面积为,.当两间饲养室占地总面积达到平方米时,则,解得:或.答:各道墙长分别为米、米或米、米.当占地面积达到平方米时,则,方程的,所以此方程无解,所以占地面积不可能达到平方米.【标注】【知识点】根据条件列二次函数关系式(1)(2)4.某果园有颗橙子树,平均每颗树结个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结个橙子,假设果园多种了棵橙子树.直接写出平均每棵树结的橙子个数(个)与之间的关系.果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【答案】(1)(2)().果园多种棵橙子树时,可使橙子的总产量最大,最大为个.【解析】(1)(2)平均每棵树结的橙子个数(个)与之间的关系为:().设果园多种棵橙子树时,可使橙子的总产量为,则,则果园多种棵橙子树时,可使橙子的总产量最大,最大为个.【标注】【知识点】二次函数的利润问题(1)(2)(3)5.已知某商品每件的成本为元,第天的售价和销量分别为元/件和件,设第天该商品的销售利润为元,请根据所给图象解决下列问题:求出与的函数关系式.问销售该商品第几天时,当天销售利润最大?最大利润是多少.该商品在销售过程中,共有多少天当天的销售利润不低于元.【答案】(1)(2)(3)当时,,当时,.该商品第天时,当天销售利润最大,最大利润是元.共天每天销售利润不低于元.【解析】(1)当时,设与的函数关系式为,∵当时,,当,,∴,解得:∴,∴当时,;当时,.(2)(3),∴当时取得最大值元;∵;∴当时,随的增大而减小,当时,,综上所述,该商品第天时,当天销售利润最大,最大利润是元.当时,,解得,因此利润不低于元的天数是,共天;当时,,解得,因此利润不低于元的天数是,共天,所以该商品在销售过程中,共天每天销售利润不低于元.【标注】【知识点】函数图象与实际问题最大(1)(2)(3)6.某商场将进价为元的冰箱以元售出,平均每天能售出台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低元,平均每天就能多售出台.假设每台冰箱降价元,商场每天销售这种冰箱的利润是元,请写出与之间的函数表达式.(不要求写自变量的取值范围)商场要想在这种冰箱销售中每天盈利元,同时又要使百姓得到实惠,每台冰箱应降价多少元?每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?【答案】(1)(2)(3).每台冰箱应降价元.每台冰箱的售价降价元时,商场的利润最大,最大利润是元.【解析】(1)(2)根据题意,得,即.由题意,得.整理,得.解这个方程,得,.(3)要使百姓得到实惠,取.所以,每台冰箱应降价元.对于,当时,.所以,每台冰箱的售价降价元时,商场的利润最大,最大利润是元.【标注】【知识点】二次函数的利润问题最大值(1)(2)7.在新型城镇化型过程中,为推进节能减排,发展低碳经济,我市某公司以万元购得某项节能产品的生产技术后,再投入万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件元.经过市场调研发现,该产品的销售单价定在元到元之间较为合理,并且该产品的年销售量(万件)与销售单价(元)之间的函数关系式为:(年获利年销售收入生产成本投资成本)当销售单价定为元时,该产品的年销售量为多少万件?求该公司第一年的年获利(万元)与销售单价(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?【答案】(1)(2)投资第一年,公司亏损,最少亏损万【解析】(1)(2)把代入,得(万件)当销售单价定为元时,该产品的年销售量为万件.①当时,故当时,最大为,即公司最少亏万.②当时,故当时,最大为,即公司最少亏万.综上,投资第一年,公司亏损,最少亏损万.【标注】【知识点】二次函数的利润问题二、几何问题中的最值(1)(2)1.已知,如图,抛物线与轴交于点,与轴交于,两点,点在点左侧.点的坐标为,.xyOxyO备用图求抛物线的解析式;若点是线段下方抛物线上的动点,求四边形面积的最大值.【答案】(1)(2)..【解析】(1)(2)∵∴∵∴∵过、∴解这个方程组,得∴抛物线的解析式为:.过点作轴分别交线段和轴于点、yOx在中,令得方程解这个方程,得,∴设直线的解析式为∴解这个方程组,得∴的解析式为:∵==设,当时,有最大值.此时四边形面积有最大值.【标注】【知识点】二次函数与面积四边形(1)(2)2.如图,二次函数的图象与轴交于点,,与轴交于点.xyO求二次函数表达式.若点是第一象限内的抛物线上的一个动点,且点的横坐标为,用含有的代数式表示的面积,并求出当为何值时,的面积最大,最大面积是多少?【答案】(1)(2).当时,的面积最大,最大面积是.【解析】(1)∵二次函数的图象与轴交于点,,∴二次函数的解析式为.(2)如图,连接,易得的解析式为.设点的坐标为,则点的坐标为,∴,,,当时,的面积最大,最大面积是.yO【标注】【知识点】二次函数与面积(1)(2)3.如图,已知经过原点的抛物线与轴的另一交点为,现将它向右平移()个单位,所得抛物线与轴交于、两点,与原抛物线交于点.求点的坐标,并判断存在时它的形状(不要求说理).在轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含的式子表示);若不存在,请说明理由.(3)设的面积为,求关于的关系式.【答案】(1)(2)(3)点的坐标为,是等腰三角形.存在,,..【解析】(1)(2)(3)令,得,.∴点的坐标为.是等腰三角形.存在.,.如图,当时,作轴于,设,∵,,∴.∴.∴.把代入,得.∵,∴.如图,当时,作轴于,设∵,,∴.∴.∴.把代入,得.∵,∴.综上可得:.【标注】【知识点】二次函数与面积(1)(2)4.已知抛物线与轴交于,两点,交轴于点,已知抛物线的对称轴为,点,点,为抛物线的顶点.求抛物线的解析式.在轴下方且在抛物线上有一动点,求四边形的面积最大值.【答案】(1)(2).【解析】(1)由、关于对称轴对称,对称轴为,点,得.将、、点的坐标代入函数解析式,得,解得.(2)故抛物线的解析式为.如图,过作轴于点,交于点.设,点坐标为,.,当时,.【标注】【知识点】二次函数与面积四边形最大(1)(2)(3)5.如图,二次函数(为非负整数)与轴交于、两点,与轴交于点.求抛物线的解析式.在直线上找一点,使的周长最小,并求出点的坐标.点在抛物线上,且在第二象限内,设点的横坐标为,问为何值时,四边形的面积最大?并求出这个最大面积.【答案】(1)(2)(3)时,四边形的面积最大,这个最大面积是.【解析】(1)(2)(3)由题意得,,解得:,∵是非负整数,∴或,当时,二次函数的解析式为,当时,二次函数的解析式为,∵图象与轴交于点和点,点、分别在原点的左、右两边,∴当时,二次函数的解析式为不符合题意,∴二次函数的解析式为.如图,作点关于的对称点连接交对称轴于点,.由得点坐标为.当时,.解得,,∴,.设的解析式为,图象过点,,得,解得,∴的解析式为,当时,,点坐标为 时,的周长最小.如图,设点坐标为(),作轴于点,由图可知:四边形梯形.因此时,四边形的面积最大,这个最大面积是.【标注】【知识点】二次函数与面积(1)(2)6.如图,已知抛物线经过,两点.x24y–22O 求该抛物线的解析式.在直线上方的该抛物线上是否存在一点,使得的面积最大?若存在,求出点的坐标及面积的最大值;若不存在,请说明理由.【答案】(1)(2).存在,,面积的最大值为.【解析】(1)(2)把,代入抛物线的解析式得:,解得:,则抛物线解析式为.存在,理由如下:设的横坐标为,则点的纵坐标为,过作轴的平行线交于,连接,,如图所示,x24y–22O 由题意可求得直线的解析式为,∴点的坐标为,∴,∴的面积,当时,,∴此时,面积的最大值为.【标注】【知识点】二次函数与面积最大(1)(2)(3)7.已知二次函数的图象和轴交于点、,与轴交于点,直线上方的抛物线上一动点,抛物线的顶点是点.图求直线的解析式.求面积的最大值及点的坐标.当的面积最大时,在直线上有一动点,使得的周长最小,求周长最小时点的坐标.图【答案】(1)(2)(3).,..【解析】(1)(2)(3)过抛物线上动点作轴的垂线,垂足是,线段交线段于,设,,,∵,∴当时,,此时.关于直线的对称点连接,∵,,∴,∴联立,解得,最大∴.【标注】【知识点】二次函数与动点问题(1)(2)(3)8.如图,抛物线与轴的两个交点分别为、,与轴交于点,顶点为,为线段的中点,的垂直平分线与轴、轴分别交于、.xyO 求抛物线的函数表达式,并写出顶点的坐标.在直线上是否存在一点,使周长最小,若存在,请求出最小周长和点的坐标;若不存在,请说明理由.若点在轴上方的抛物线上运动,当运动到什么位置时,面积最大?并求出最大面积.【答案】(1)(2)(3)抛物线的解析式为,顶点的坐标为.存在;的周长最小值为,.时,的面积最大,最大面积为.【解析】(1)(2)由题意,得,解得,,所以抛物线的解析式为,顶点的坐标为.设抛物线的对称轴与轴交于点,(3)∵垂直平分,∴关于直线的对称点为,连结交于于一点,xyO∴这一点为所求点,使最小,即最小为.而,∴的周长最小值为.设直线的解析式为,则,解得,,所以直线的解析式为.由于,,,得,所以,,.同理可求得直线的解析式为,联立直线与的方程,解得使的周长最小的点.设,.过作轴的垂线交于,xyO则,所以,即当时,的面积最大,最大面积为,此时.【标注】【知识点】二次函数的几何问题(1)(2)(3)9.如图,已知抛物线与一直线相交于、两点,与轴相交于点,其顶点为.求抛物线及直线的函数关系式.若是抛物线上位于直线上方的一个动点,求的面积的最大值及此时点的坐标.在对称轴上是否存在一点,使的周长最小.若存在,请求出点的坐标和周长的最小值;若不存在,请说明理由.备用图【答案】(1)(2);.;.(3)在对称轴上存在一点,使的周长最小,周长的最小值为.【解析】(1)(2)(3)将,代入,得:,解得:,∴抛物线的函数关系式为;设直线的函数关系式为,将,代入,得:,解得,∴直线的函数关系式为.过点作轴交轴于点,交直线于点,过点作轴交轴于点,如图所示.图设点的坐标为,则点的坐标为,点的坐标为,∴,,,∵点的坐标为,∴点的坐标为,∴,∴,∵,∴当时,的面积取最大值,最大值为,此时点的坐标为.当时,,∴点的坐标为,∵,∴抛物线的对称轴为直线,∵点的坐标为,∴点,关于抛物线的对称轴对称,令直线与抛物线的对称轴的交点为点,如图所示.图∵点,关于抛物线的对称轴对称,∴,∴,∴此时周长取最小值,当时,,∴此时点的坐标为,∵点的坐标为,点的坐标为,点的坐标为,∴,,∴,∴在对称轴上存在一点,使的周长最小,周长的最小值为.10.如图,已知抛物线经过、两点,与轴交于点.(1)(2)(3)求抛物线的解析式.点是对称轴上的一个动点,当的周长最小时,直接写出点的坐标和周长最小值.点为抛物线上一点,若,求出此时点的坐标.【答案】(1)(2)(3).点为,周长的最小值为.点的坐标为或或.【解析】(1)(2)(3)根据题意,将、代入抛物线,可得:,解得:,所以,抛物线为:.点为,周长的最小值为.∵抛物线为:,∴抛物线的对称轴为直线,点、关于直线对称,当的周长最小时,则需要最小,根据利用轴对称且最小值的方法,可知点是与对称轴的交点,令,则,所以,点坐标为,设为直线,把,代入直线解析式,可得:,解得:,所以,直线为,将代入,可得:,∴点为,此时,,,∴周长的最小值为:.∵,,∴,∵,,∴点的纵坐标为或,令,解得:,,∴点的坐标为:或,令,解得:,∴点的坐标为:.综上所述:点的坐标为:或或.【标注】【知识点】二次函数与轴对称问题。

2023年中考数学专题复习:二次函数最值问题训练(含答案)

2023年中考数学专题复习:二次函数最值问题训练(含答案)

2023年中考数学专题复习:二次函数最值问题一、单选题1.已知2()=++≠的对称轴为直线230y ax bx ax=,与x轴的其中一个交点为(1,0),该x的取值范围,下列说法正确的是()函数在14A.有最小值0,有最大值3 B.有最小值1-,有最大值3C.有最小值3-,有最大值4 D.有最小值1-,有最大值42.若二次函数24=++的最小值是3,则a的值是()y ax x aA.4 B.-1或3 C.3 D.4或-13.已知二次函数y=﹣x2+2x+4,则下列说法正确的是()A.该函数图象开口向上B.该函数图象向右平移2个单位长度是y=﹣(x+1)2+5C.当x=1时,y有最大值5D.该函数的图象与坐标轴有两个交点4.函数2(0)=++≠的图象如图所示,则该函数的最小值是()y ax bx c aA.1-B.0C.1D.25.在关于n 的函数2=+中,n 为自然数.当n =9 时,S< 0;当n =10 时,S an bnS > 0.则当S 取值最小时,n 的值为()A.3 B.4 C.5 D.66.代数式22 5-+的最小值为()a aA.2 B.3 C.4 D.57.若两个图形重叠后.重叠部分的面积可以用表达式表示为y=﹣(x﹣2)2+3,则要使重叠部分面积最大,x的值为()A.x=2 B.x=﹣2 C.x=3 D.x=﹣38.某商品现在的售价为每件35元,每天可卖出50件.市场调查反映:如果调整价格,每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,求最大销售额是( )A .2500元B .2000元C .1800元D .2200元二、填空题9.如图,四边形ABCD 的两条对角线互相垂直,16AC BD +=,则四边形ABCD 的面积最大值是_________10.已知二次函数242y x x =-+,当13x -≤≤时,y 的取值范围内是_______. 11.已知抛物线22(1)1y x =-+,当03x 时,y 的最小值是 __,y 的最大值是 __. 12.当02x ≤≤时,22y x x a =++有最小值为4,则a 为 _____.13.某商品的销售利润y 与销售单价x 的关系为y =﹣21(50)10x -+2650,则当单价定价为每件____元时,可获得最大利润____元.14.已知二次函数223y x x =-+的图象经过点()11A x y , 和点()122B x y +,,则12y y +的最小值是________.15.设抛物线2(1)y x a x a =+++,其中a 为实数.(1)不论a 为何值,该抛物线必经过一定点 _____;(2)将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是 _____.16.如图是二次函数2y ax bx c =++(a ≠0)图象的一部分,对称轴是直线x =-1,下列判断:①b -2a =0;②4a -2b +c <0;③abc >0;④当x =0和x =-2时,函数值相等; ⑤3a +c <0;⑥a -b >m (ma +b );⑦若自变量x 的取值范围是-3<x <2,则函数值y >0.其中正确的序号是________.三、解答题17.如图,在▱ABCD中,AB=6,BC=8,∠B=60°,E为BC上一动点(不与B重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S.(1)求用x表示S的函数解析式,并写出x的取值范围.(2)当E运动到何处时,S有最大值,最大值为多少?18.如图,抛物线经过A(﹣1,0),B(3,0),C(0,32)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使P A+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.19.端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,设这种水果每千克降价x元,解决下面所给问题:(1)设该水果超市一天销量y千克,写出y与x之间的关系式;(2)超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果每千克降价多少元?(3)设该水果超市一天可获利润w元.求当该商品每千克降价多少元时,该超市一天所获利润最大?并求最大利润值.20.春节即将到来,某水果店进了一些水果,在进货单上可以看到:每次进货价格没有变化,第一次进货苹果400千克和梨500千克,共支付货款6200元;第二次进货苹果600千克和梨200千克,共支付货款6000元;为了促销,该店推出一款水果礼盒,内有3千克苹果和2千克梨,包装盒每个4元.市场调查发现:该礼盒的售价是70元时,每天可以销售80盒;每涨价1元,每天少销售2盒.(1)求每个水果礼盒的成本(成本=水果成本+盒子成本);(2)若每个礼盒的售价是a元(a是整数),每天的利润是w元,求w关于a的函数解析式(不需要写出自变量的取值范围);(3)若每个礼盒的售价不超过m元(m是大于70的常数,且是整数),直接写出每天的最大利润.参考答案:1.B2.A3.C4.A5.C6.C7.A8.C9.3210.27y -≤≤11. 1 912.413. 50 265014.615. (-1,0) 216.①③④⑥17.(1)S 2+(0<x ≤8)(2)18.(1)21322y x x =-++ (2)(1,1)(3)存在,3(2,)2,(13)2,(13)219.(1)y =40x +160;(2)这种水果每千克降价9元;(3)当该商品每千克降价6元时,该超市一天所获利润最大,最大利润值为4000元.20.(1)40元(2)2=-+-23008800w a a(3)当75m时,每天的最大利润为2450元;当7075<<时,每天的最大利润为m2-+-m m23008800。

(01)二次函数 最值问题解答题专项练习60题(有答案)ok

(01)二次函数 最值问题解答题专项练习60题(有答案)ok

二次函数最值专项练习60题1.画出抛物线y=4(x﹣3)2+2的大致图象,写出它的最值和增减性.2.如图,二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值.3.已知二次函数y=x2﹣x﹣2及实数a>﹣2,求(1)函数在一2<x≤a的最小值;(2)函数在a≤x≤a+2的最小值.4.已知函数y=x2+2ax+a2﹣1在0≤x≤3范围内有最大值24最小值3,求实数a的值.5.我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理:∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0∴(x+1)2+2≥2,故x2+2x+3的最小值是2.试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.6.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm).(1)写出▱ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围.(2)当x取什么值时,y的值最大?并求最大值.7.求函数y=2x2﹣ax+1当0≤x≤1时的最小值.8.已知m,n是关于x的方程x2﹣2ax+a+6=0的两实根,求y=(m﹣1)2+(n﹣1)2的最小值.9.当﹣1≤x≤2时,求函数y=f(x)=2x2﹣4ax+a2+2a+2的最小值,并求最小值为﹣1时,a的所有可能的值.10.已知二次函数y=x2﹣6x+m的最小值为1,求m的值.11.已知函数是关于x的二次函数.(1)求m的值;(2)当m取什么值时,此函数图象的顶点为最低点?(3)当m取什么值时,此函数图象的顶点为最高点?12.两个数的和为6,这两个数的积最大可以达到多少?利用图象描述乘积与因数之间的关系.13.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做一个正方形.这两个正方形面积之和有最值吗?如有,求出最值;如没有请说明理由.14.关于自变量x的二次函数y=x2﹣4ax+5a2﹣3a的最小值为m,且a满足不等式0≤a2﹣4a﹣2≤10,则m的最大值是多少?15.求函数的最小值.16.当﹣1≤x≤1时,函数y=﹣x2﹣ax+b+1(a>0)的最小值是﹣4,最大值是0,求a、b的值.17.已知a2+b2=1,,求a+b+ab的取值范围.18.如图,在矩形ABCD中,B(16,12),E、F分别是OC、BC上的动点,EC+CF=8.当F运动到什么位置时,△AEF的面积最小,最小为多少?19.如图;AC,BD是四边形ABCD的对角线,AC⊥BD于点O;(1)求证:S四边形ABCD=AC•BD;(2)若AC+BD=10,当AC,BD的长是多少时,四边形ABCD的面积最大?20.先画出函数图象,然后结合图象回答下列问题:(1)函数y=3x2的最小值是多少?(2)函数y=﹣3x2的最大值是多少?(3)怎样判断函数y=ax2有最大值或最小值?与同伴交流.21.将长为156cm的铁线剪成两段,每段都围成一个边长为整数(cm)的正方形,求这两个正方形面积和的最小值.22.已知函数y=(a+2)x2﹣2(a2﹣1)x+1,其中自变量x为正整数,a也是正整数,求x何值时,函数值最小.23.设实数a,b满足:3a2﹣10ab+8b2+5a﹣10b=0,求u=9a2+72b+2的最小值.24.若函数y=4x2﹣4ax+a2+1(0≤x≤2)的最小值为3,求a的值.25.说明:不论x取何值,代数式x2﹣5x+7的值总大于0.并尝试求出当x取何值时,代数式x2﹣5x+7的值最小?最小值是多少?26.求经过点A(0,2)、B(2,0)、C(﹣1,2)的抛物线的解析式,并求出其最大或最小值.27.如图,在△ABC中,∠A=90°,∠C=30°,AB=1,两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C.(1)点Q的速度是点P速度的多少倍?(2)设AP=x,△APQ的面积是y,求y关于x的函数关系式,并写出x的取值范围,(3)求出y的最大值.28.已知二次函数y=x2与一次函数y=2x+1相交于A、B两点,点C是线段AB上一动点,点D是抛物线上一动点,且CD平行于y轴,求在移动过程中CD的最大值.29.代数式x2﹣3x﹣1有最大值或最小值吗?若有,请求出:当x取何值时,最大(小)值是多少?30.已知二次函数y=2x2﹣4ax+a2+2a+2(1)通过配方,求当x取何值时,y有最大或最小值,最大或最小值是多少?(2)当﹣1≤x≤2时,函数有最小值2.求a所有可能取的值.31.设函数y=|x2﹣x|+|x+1|,求﹣2≤x≤2时,y的最大值和最小值.32.求函数y=(k﹣1)x2﹣2(k﹣1)x﹣k的最值,其中k为常数且k≠1.33.已知函数y=﹣9x2﹣6ax+2a﹣a2,当时,y的最大值为﹣3,求a.34.求函数y=x2+5x+8的最小值.35.已知二次函数y=(3﹣k)x2+2,求:(1)当k为何值时,函数有最大值?最大值是多少?(2)当k为何值时,函数有最小值?最小值是多少?36.求关于x的二次函数y=x2﹣2tx+1在﹣1≤x≤1上的最大值(t为常数).37.已知二次函数y=﹣9x2﹣6ax﹣a2+2a有最大值﹣3,求实数a的值.38.(1)求函数y=|x2﹣4|﹣3x在区间﹣2≤x≤5中的最大值和最小值.(2)已知:|y|≤1,且2x+y=1,求2x2+16x+3y2的最小值.39.已知y=x2﹣2ax﹣3,﹣2≤x≤2.(1)求y的最小值;(2)求y的最大值.40.当|x+1|≤6时,求函数y=x|x|﹣2x+1的最大值?41.用长14m的篱笆围成如图所示的鸡舍,门MN宽2m,怎样设计才能使鸡舍的面积最大?42.如图所示,在直角梯形ABCD中,AB=2,P是边AB的中点,∠PDC=90°,问梯形ABCD面积的最小值是多少?43.有两条抛物线y=x2﹣3x,y=﹣x2+9,通过点P(t,0)且平行于y轴的直线,分别交这两条抛物线于点A和B,当t在0到3的范围内变化时,求线段AB的最大值.44.如图,半径为1的半圆内接等腰梯形,其下底是半圆的直径,试求:(1)它的周长y与腰长x之间的函数关系式,并求出自变量x的取值范围.(2)当腰长为何值时,周长有最大值?这个最大值为多少?45.已知点P,Q,R分别在△ABC的边AB,BC,CA上,且BP=PQ=QR=RC=1,求△ABC的面积的最大值.46.已知:0≤x≤1,函数的最小值为m,试求m的最大值.47.阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y=x2﹣6x+7的最大值.他画图研究后发现,x=1和x=5时的函数值相等,于是他认为需要对m进行分类讨论.他的解答过程如下:∵二次函数y=x2﹣6x+7的对称轴为直线x=3,∴由对称性可知,x=1和x=5时的函数值相等.∴若1≤m<5,则x=1时,y的最大值为2;若m≥5,则x=m时,y的最大值为m2﹣6m+7.请你参考小明的思路,解答下列问题:(1)当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为_________;(2)若p≤x≤2,求二次函数y=2x2+4x+1的最大值;(3)若t≤x≤t+2时,二次函数y=2x2+4x+1的最大值为31,则t的值为_________.48.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P,Q两点同时出发,分别到达B,C两点后就停止移动.(1)设运动开始后第t秒钟后,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围.(2)t为何值时,S最小?最小值是多少?49.已知二次函数y=x2与一次函数y=2x+1相交于A、B两点,点C是线段AB上一动点,点D是抛物线上一动点,且CD平行于y轴,求在移动过程中CD的最大值.50.如图,在△ABC中,∠A=90°,∠C=30°,AB=1,两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C.(1)点Q的速度是点P速度的多少倍?(2)设AP=x,△APQ的面积是y,求y关于x的函数关系式,并写出x的取值范围,(3)求出y的最大值.51.一块三角形废料如图所示,∠A=30°,∠C=90°,BC=6.用这块废料剪出一个平行四边形AGEF,其中,点G,E,F分别在AB,BC,AC上.设CE=x(1)求x=2时,平行四边形AGEF的面积.(2)当x为何值时,平行四边形AGEF的面积最大?最大面积是多少?52.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=8,点D在BC上运动(不运动至B,C),DE∥AC,交AB 于E,设BD=x,△ADE的面积为y.(1)求y与x的函数关系式及自变量x的取值范围;(2)x为何值时,△ADE的面积最大?最大面积是多少?53.如图,将两张长为8,宽为2的矩形纸条交叉放置.(1)求证:重叠部分的图形是菱形;(2)求重叠部分图形的周长的最大值和最小值.(要求画图﹑推理﹑计算)54.如图,设点P是边长为a的正三角形ABC的边BC上一点,过点P作PQ⊥AB,垂足为Q,延长QP交AC的延长线于点R.当点P在何处时,△BPQ与△CPR的面积之和取最大(小)值?并求出最大(小)值.55.(2012•杭州)当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.56.(2003•黄石)二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),若△ABC的面积为9,求此二次函数的最小值.57.(2013•南岗区一模)如图,在Rt△AOB中,∠AOB=90°,且AO=8,BO=6,P是线段AB上一个动点,PE⊥A0于E,PF⊥B0于F.设PE=x,矩形PFOE的面积为S(1)求出S与x的函数关系式;(2)当x为何值时,矩形PFOE的面积S最大?最大面积是多少?58.(2013•资阳)在关于x,y的二元一次方程组中.(1)若a=3.求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最值.59.(2010•漳州)如图,在△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.动点P、Q分别从A、C两点同时出发,其中点P以1cm/s的速度沿AC向终点C移动;点Q以cm/s的速度沿CB向终点B移动.过P作PE∥CB交AD于点E,设动点的运动时间为x秒.(1)用含x的代数式表示EP;(2)当Q在线段CD上运动几秒时,四边形PEDQ是平行四边形;(3)当Q在线段BD(不包括点B、点D)上运动时,求四边形EPDQ面积的最大值.60.(2010•长春)如图,梯形ABCD中,AB∥DC,∠ABC=90°,∠A=45°.AB=30,BC=x,其中15<x <30.作DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F处,DF交BC于点G.(1)用含有x的代数式表示BF的长.(2)设四边形DEBG的面积为S,求S与x的函数关系式.(3)当x为何值时,S有最大值,并求出这个最大值.。

2020年九年级数学中考压轴专题练:《二次函数与周长、面积最值问题》(含答案)

2020年九年级数学中考压轴专题练:《二次函数与周长、面积最值问题》(含答案)

压轴专题练:《二次函数与周长、面积最值问题》1.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).(1)求该抛物线的表达式;(2)点E是线段BC上方的抛物线上一个动点,求△BEC的面积的最大值;(3)点P是抛物线的对称轴上一个动点,当以A、P、C为顶点的三角形是直角三角形时,求出点P的坐标.2.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x 2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直.则称该矩形为点P,Q的相关矩形“.如图为点P,Q的“相关矩形”的示意图.(1)已知点A的坐标为(1,0).①若点B的坐标为(2,5),求点A,B的“相关矩形”的周长;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,已知抛物线y=x2+mx+n经过点A和点C,求抛物线y=x2+mx+n与y轴的交点D的坐标;(2)⊙O的半径为4,点E是直线y=3上的从左向右的一个动点.若在⊙O上存在一点F,使得点E,F的“相关矩形”为正方形,直接写出动点E的横坐标的取值范围.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)过点A(﹣1,0),B(3,0),与y轴交于点C,连接AC,BC,将△OBC沿BC所在的直线翻折,得到△DBC,连接OD.(1)若OB=3OC,求抛物线的解析式.(2)如图1,设△OBD的面积为S1,△OAC的面积为S2,若,求a的值.(3)如图2,a=﹣1,若P点是半径为2的OB上一动点,连接PC、PA,当点P运动到某一位置时,的值最大,请求出这个最大值,并说明理由.4.在平面直角坐标系中,点A的坐标为(0,6),点B在x轴的正半轴上.点P,Q均在线段AB上,点P的横坐标为m,点Q的横坐标大于m,在△PQM中,若PM∥x轴,OM∥y轴,则称△PQM为点P,Q的“云三角形”.(1)若B点的坐标为(4,0),m=2,则点P,B的“云三角形”的面积为.(2)当点P,Q的“云三角形”是等腰三角形时,求点B的坐标.(3)在(2)的条件下,作过O,P,B三点的抛物线y=ax2+bx+c,①若点M为抛物线上一点,△POM是点P,O的“云三角形”,求△POM的面积S与m之间的函数关系式,并写出m的取值范围;②当点P,Q的“云三角形”的面积为3,且抛物线y=ax2+bx+c与点P,Q的“云三角形”恰有两个交点时,直接写出m的取值范围.5.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)已知抛物线上点D的横坐标为2,在抛物线的对称轴上是否存在一点P,使得△BDP 的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.6.抛物线y=﹣x2+x+b与x轴交于A、B两点,与y轴交于点C.(1)若B点坐标为(2,0)①求实数b的值;②如图1,点E是抛物线在第一象限内的图象上的点,求△CBE面积的最大值及此时点E的坐标.(2)如图2,抛物线的对称轴交x轴于点D,若抛物线上存在点P,使得P、B、C、D四点能构成平行四边形,求实数b的值.(提示:若点M,N的坐标为M(x₁,y₁),N(x₂,y₂),则线段MN的中点坐标为(,)7.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣6(a≠0)与x轴交于A(﹣2,0),B(3,0)两点,与y轴交于点C,连接BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为;(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4)若点M是对称轴上的动点,在抛物线上是否存在点N,使以点B、C、M、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.8.一次函数y=﹣2x﹣2分别与x轴、y轴交于点A、B.顶点为(1,4)的抛物线经过点A.(1)求抛物线的解析式;(2)点C为第一象限抛物线上一动点.设点C的横坐标为m,△ABC的面积为S.当m 为何值时,S的值最大,并求S的最大值;(3)在(2)的结论下,若点M在y轴上,△ACM为直角三角形,请直接写出点M的坐标.9.如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3),顶点为D(1)求抛物线的解析式;(2)求∠CBD的度数;(3)若点N是线段BC上一个动点,过N作MN∥y轴交抛物线于点M,交x轴于点H,设H点的横坐标为m.①求线段MN的最大值;②若△BMN是等腰三角形,直接写出m的值.10.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1.0).B(5,0)两点,与y轴交于点C.(1)求地物线的解析式;(2)在地物线的对称轴上找一点M.使得MA+MC最小,请求出点M的坐标;(3)在直线BC下方抛物线上是否存在点P,使得△PBC的面积最大?若存在.请求出点P的坐标;若不存在,请说明理由.11.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点坐标为C(3,6),并与y轴交于点B(0,3),点A是对称轴与x轴的交点.(1)求抛物线的解析式;(2)如图①所示,P是抛物线上的一个动点,且位于第一象限,连接BP,AP,求△ABP 的面积的最大值;(3)如图②所示,在对称轴AC的右侧作∠ACD=30°交抛物线于点D,求出D点的坐标;并探究:在y轴上是否存在点Q,使∠CQD=60°?若存在,求点Q的坐标;若不存在,请说明理由.12.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式.(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=).13.如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=﹣x+3的图象与y轴、x轴的交点,点B在二次函数y=x2+bx+c的图象上,且该二次函数图象上存在一点D,使四边形ABCD能构成平行四边形.(1)试求b、c的值,并写出该二次函数表达式;(2)动点P沿线段AD从A到D,同时动点Q沿线段CA从C到A都以每秒1个单位的速度运动,问:①当P运动过程中能否存在PQ⊥AC?如果不存在请说明理由;如果存在请说明点的位置?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?14.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A ,B 两点,与y 轴交于点C (0,3),且OB =OC .直线y =x +1与抛物线交于A 、D 两点,与y 轴交于点E ,点Q 是抛物线的顶点,设直线AD 上方的抛物线上的动点P 的横坐标为m .(1)求该抛物线的解析式及顶点Q 的坐标.(2)连接CQ ,直接写出线段CQ 与线段AE 的数量关系和位置关系.(3)连接PA 、PD ,当m 为何值时S △APD =S △DAB ?(4)在直线AD 上是否存在一点H ,使△PQH 为等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.15.已知一次函数y =kx +3与二次函数y =﹣x 2+bx +c 的图象的一个交点坐标为A (3,0),另一个交点B 在y 轴上,点P 为y 轴右侧抛物线上的一动点.(1)求此二次函数的解析式;(2)当点P 位于直线AB 上方的抛物线上时,求△ABP 面积的最大值;(3)当此抛物线在点B 与点P 之间的部分(含点B 和点P )的最高点与最低点的纵坐标之差为9时,请直接写出点P 的坐标和△ABP 的面积.参考答案1.解:(1)∵抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),∴,解得∴y=﹣x2+2x+3=﹣(x﹣1)2+4;(2)如图,作EF∥y轴交BC于点F,记△BEC的面积为S,∵B(3,0),C(0,3),∴直线BC解析式为:y=﹣x+3.设E(m,﹣m2+2m+3),则F(m,﹣m+3).∴EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m.∴当时,此时,点E的坐标是(3)设P(1,n),A(﹣1,0)、C(0,3),∴AC2=10,AP2=4+n2,CP2=1+(n﹣3)2=n2﹣6n+10①当AC⊥AP时,AC2+AP2=CP2,即10+4+n2=n2﹣6n+10.解得;②当AC⊥CP时,AC2+CP2=AP2,即10+n2﹣6n+10=4+n2,解得;③当AP⊥CP时,AP2+CP2=AC2,即4+n2+n2﹣6n+10=10.解得n=1或2.综上所述,符合条件的点P的坐标是或或(1,1)或(1,2),2.解:(1)①如图1,∵矩形ACBD是点A,B的“相关矩形”,∴AD∥CB,∵点A(1,0),B(2,5),∴点C(2,0),BC=5,∴AC=2﹣1=1,∴点A,B的“相关矩形”的周长为2(AC+BC)=2×(1+6)=14;②如图2,∵点C在直线x=3上,∴点C的横坐标为3,∵点A(1,0),C的“相关矩形”为正方形,∴BC∥AD,AB=BC,∴点B的坐标为(3,0),∴BC=AB=3﹣1=2∴点C的纵坐标为(3,2),∵抛物线y=x2+mx+n经过点A和点C,∴,∴,∴抛物线的解析式为y=x2﹣3x+2,令x=0,则y=0,∴点D的坐标为(0,2);(2)如图3,当点F在y轴的右侧时,点E在点M的右侧时,点E的横坐标大,连接OM,OF,设OG=m,∵点E,F的“相关矩形”为正方形,∴FM=ME,∵点E在直线y=3上,∴MG=3,在Rt△OGF中,FG==,∴点E的横坐标为OG+ME=OG+MF=OG+MG+FG=OG+3+FG=m++3=()2+)2﹣2+2+3=(﹣)2+2+3≥2+3(当且仅当=时,取等号),即m=2时,点E的横坐标为(OG+ME)最大=(m+)最大+3=4+3,∴点E的横坐标最大是4+3,由圆的对称性得,点E的横坐标的最小值为﹣(4+3),即点E的横坐标的范围是大于等于﹣(4+3)而小于等于(4+3).3.解:(1)∵B(3,0),∴OB=3,OB=3OC,∴OC=1,∴C(0,1),∵A(﹣1,0),B(3,0),∴设抛物线的解析式y=a(x+1)(x﹣3),将C(0,1)代入,1=a×(0+1)×(0﹣3),∴a=﹣,∴y=((x+1)(x﹣3),即y=;(2)设y=a(x+1)(x﹣3)=ax2﹣2ax﹣3a ∴C(0,﹣3a),CQ=﹣3a.∵A(﹣1,0),B(3,0),∴AB=4,∴设OD交BC于点M,由轴对称性,BC⊥OD,OD=2OM,在Rt△COB中,由面积法:∴∴又,∴a2+1=9.∴.∵a<0∴.(3)在x轴上取点D(2,0),连接PD,CD,BP∴BD=3﹣2=1,∵AB=4,BP=2,∴,∵∠PBD=∠ABP,∴△PBD~△ABP,∴,∴,∴,∴当点C,P,D在同一直线上时,最大,∵,∴最大值为.4.解:(1)如图1,∵A(0,6),B(4,0),∴直线AB解析式为,∵m=2,∴P(2,3)∵PM∥x轴,QM∥y轴,∴M(4,3),∠PMB=90°∴PM=2,BM=3,∴点P,B的“云三角形”△PBM的面积=;故答案为:3(2)如图2,根据题意,得MP=MQ,∠PMQ=90°,∴∠MPQ=45°,∵PM∥x轴,∴∠ABO=45°,∴OB=OA=6,点B的坐标为(6,0);(3)如图3,①首先,确定自变量取值范围为0<m<3,由(2)易得,线段AB的表达式为y=6﹣x,∴点P的坐标为(m,6﹣m),∵抛物线y=ax2+bx+c经过O,B两点,∴抛物线的对称轴为直线x=3,∴点M的坐标为(6﹣m,6﹣m),∴PM=(6﹣m)﹣m=6﹣2m,∴;②当点P在对称轴左侧,即m<3时,∵点P,Q的“云三角形”面积为3,由①得:2m2﹣12m+18=3,解得:或(舍去).当点P在对称轴上或对称轴右侧,即m≥3时,,∴,,,∵抛物线=ax2+bx+c与点P,Q的“云三角形”恰有两个交点,∴,解得:.综上所述,m的取值范围为:或.5.解:(1)OC=3,则c=3,OA=2,则点A(﹣2,0),将点A的坐标代入抛物线表达式得:0=﹣4﹣2b+3,解得:b=,故抛物线的表达式为:y=﹣x2+x+3;(2)当x=2时,y=﹣x2+x+3=2,故点D(2,2);令y=0,则x=3或﹣2,故点B(3,0),则函数的对称轴为:x=,点B关于对称轴的对称点为点A,连接AD交函数对称轴于点P,则点P为所求点,△BDP的周长=BD+BP+PD=BD+AP+PD=BD+AD为最小,由点A、D的坐标得,直线AD的表达式为:y=(x+2),当x=时,y=,故点P(,).6.解:(1)①将点B(2,0)代入y=﹣x2+x+b,得到0=﹣4+2+b,∴b=2;②C(0,2),B(2,0),∴BC的直线解析式为y=﹣x+2,设E(m,﹣m2+m+2),过点E与BC垂直的直线解析式为y=x﹣m2+2,∴直线BC与其垂线的交点为F(,﹣+2),∴EF=(﹣+2)=[﹣(m﹣1)2+],当m=1时,EF有最大值,∴S=×BC×EF=×2×=1,∴△CBE面积的最大值为1,此时E(1,2);(2)∵抛物线的对称轴为x=,∴D(,0),∵函数与x轴有两个交点,∴△=1+4b>0,∴b>﹣,可求C(0,b),B(,0),设M(t,﹣t2+t+b),①当CM和BD为平行四边形的对角线时,C、M的中点为(,),B、D的中点为(,0),∴=,=0,∴b=﹣1+或b=﹣1﹣,∴b=﹣1+;②当BM和CD为平行四边形的对角线时,B、M的中点为(,),C、D的中点为(,),∴=,=,∴b无解;③当BC和MD为平行四边形的对角线时,B、C的中点为(,),M、D的中点为(,),∴=,=,∴b=或b=﹣(舍);综上所述:b=﹣1+或b=.7.解:(1)∵抛物线y=ax2+bx﹣6(a≠0)过点A(﹣2,0),B(3,0),∴解得:,∴抛物线解析式为y=x2﹣x﹣6.(2)∵当y=0时,x2﹣x﹣6=0,解得:x1=﹣2,x2=3,∴B(3,0),抛物线对称轴为直线,∵点D在直线上,点A,B关于直线对称,∴,AD=BD,∴当点B、D、C在同一直线上时,C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小,设直线BC解析式为y=kx﹣6,∴3k﹣6=0,解得:k=2,∴直线BC:y=2x﹣6,∴,∴,故答案为:;(3)过点E作EG⊥x轴于点G,交直线BC与点F,设E(t,t2﹣t﹣6)(0<t<3),则F(t,2t﹣6),∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t,∴=,∴当时,△BCE面积最大为,∴,∴此时点E坐标为;(4)存在点N,使以点B、C、M、N为顶点的四边形是平行四边形,设N(n,n2﹣n﹣6),M点的横坐标为,∵B(3,0),C(0,﹣6),①当BC∥MN,BC=MN时,B、M的横坐标为,C、N的中点的横坐标为,∴=,∴n=,∴N;②当BC∥NM,BC=NM时,B、N的中点的横坐标为,C、M的中点的横坐标为,∴=,∴n=﹣,∴N;③当BN∥CM,BN=CM时,B、C的中点横坐标为,M、N的中点横坐标为,∴=,∴n=,∴N;综上所述:点N坐标为,,.8.解:(1)一次函数y=﹣2x﹣2与x轴交于点A,则A的坐标为(﹣1,0),∵抛物线的顶点为(1,4),∴设抛物线解析式为y=a(x﹣1)2+4,∵抛物线经过点A(﹣1,0),∴0=a(﹣1﹣1)2+4,∴a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)连接OC,点C为第一象限抛物线上一动点,点C的横坐标为m,∴C(m,﹣m2+2m+3),一次函数y=﹣2x﹣2与y轴交于点B,则OB=2,∵A的坐标为(﹣1,0),∴OA=1,∴,,.∴,∴当m=2时,S的值最大,最大值为;(3)设M(0,n),∵A(﹣1,0),C(2,3),∴直线AC的解析式为y=x+1,①当AC⊥MC时,=﹣1,∴n=5,∴M(0,5);②当AC⊥AM时,n=﹣1,∴M(0,﹣1);③当AM⊥MC时,•n=﹣1,∴n=,∴M或M;综上所述:点M的坐标为(0,﹣1)、(0,5)、或.9.解:(1)∵抛物线与y轴交于点C(0,3),∴c=3,将点B(3,0)代入y=x2+bx+3,求得b=﹣4,∴y=x2﹣4x+3;(2)∵顶点为D,∴D(2,﹣1),∴直线BD的解析式y=x﹣3,∴∠OBD=45°,∵OB=OC,∴∠CBO=45°,∴∠CBD=90°;(3)①直线BC的解析式y=﹣x+3,∵H点的横坐标为m,∴N(m,﹣m+3),M(m,m2﹣4m+3),∴MN=﹣m+3﹣m2+4m﹣3=﹣m2+3m=﹣(m﹣)2+,当m=时,MN的最大值为;②BM2=(m﹣3)2(m2﹣2m+2),BN2=2(m﹣3)2,MN2=m2(m﹣3)2,当BM=BN时,m2﹣2m+2=2(m﹣3),解得m无解;当BM=MN时,m2﹣2m+2=m2,解得m=1;当BN=MN时,2=m2,解得m=±,∵点N是线段BC上一个动点,∴m>0,∴m=;③当M与D点重合的时候BN=BM,此时三角形BMN是等腰直角三角形,∴m=2;综上所述,当m=或m=1或m=2时△BMN是等腰三角形.10.解:(1)把A(﹣1.0).B(5,0)代入抛物线y=ax2+bx﹣5得,,解得,a=1,b=﹣4,∴抛物线的关系式为y=x2﹣4x﹣5,(2)当x=0时,y=﹣5,∴点C(0,﹣5)设直线BC的关系式为y=kx+b,把点B、C坐标代入得,,解得,k=1,b=﹣5,∴直线BC的关系式为y=x﹣5,∵抛物线的关系式为y=x2﹣4x﹣5=(x﹣2)2﹣9,∴对称轴为直线x=2,由对称可得,直线BC与对称轴x=2交点就是所求的点M,当x=2时,y=2﹣5=﹣3,∴M(2,﹣3)时,MA+MC最小;(3)向下平移直线BC,使平移后的直线与抛物线有唯一公共点P时,此时点P到BC的距离最大,因此△PBC的面积最大,设将直线BC向下平移后的直线的关系式为y=x﹣5﹣m,则方程x2﹣4x﹣5=x﹣5﹣m,有两个相等的实数根,即x2﹣3x+m=0有两个相等的实数根,∴m=,当m=时,方程x2﹣3x+m=0的解为x=,把x=代入抛物线的关系式得,y=﹣4×﹣5=﹣,∴P(,﹣),答:在直线BC下方批物线上存在点P,使得△PBC的面积最大,此时点P的坐标为(,﹣).11.解:(1)抛物线顶点坐标为C(3,6),∴可设抛物线解析式为y=a(x﹣3)2+6,将B(0,3)代入可得a=﹣,∴y=﹣x2+2x+3;(2)连接PO,BO=3,AO=3,设P(n,﹣n2+2n+3),∴S△ABP =S△BOP+S△AOP﹣S△ABO,S△BPO=n,S△APO=﹣n2+3n+,S△ABO=,∴S△ABP =S△BOP+S△AOP﹣S△ABO=﹣n2+n=﹣(n﹣)2+,∴当x=时,S△ABP的最大值为;(3)存在,设点的坐标为(t,﹣t2+2t+3),过D作对称轴的垂线,垂足为G,则DG=t﹣3,CG=6﹣(﹣t2+2t+3)=t2﹣2t+3,∴∠ACD=30°,∴2DG=DC,在Rt△CGD中,CG==DG,∴(t﹣3)=t2﹣2t+3,∴t=3+3或t=3(舍)∴D(3+,﹣3),∴AG=3,GD=3,连接AD,在Rt△ADG中,∴AD==6,∴AD=AC=6,∠CAD=120°,∴在以A为圆心,AC为半径的圆与y轴的交点上,此时,∠CQD=∠CAD=60°,设Q(0,m),AQ为圆A的半径,AQ2=OA2+QO2=9+m2,∴AQ2=AC2,∴9+m2=36,∴m=3或m=﹣3,综上所述:Q点坐标为(0,3)或(0,﹣3).12.解:(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2﹣2x+3,∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=﹣1+3=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)如图,设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t=,1 t=;2综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).13.解:(1)由y=﹣x+3,令x=0,得y=3,所以点A(0,3);令y=0,得x=4,所以点C(4,0),∵△ABC是以BC为底边的等腰三角形,∴B点坐标为(﹣4,0),又∵四边形ABCD是平行四边形,∴D点坐标为(8,3),将点B(﹣4,0)、点D(8,3)代入二次函数y=x2+bx+c,∴,解得:,故该二次函数解析式为:y=x2﹣x﹣3.(2)∵OA=3,OB=4,∴AC=5.①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,∵PQ⊥AC,∴∠AQP=∠AOC=90°,∠PAQ=∠ACO,∴△APQ∽△CAO,∴,即,解得:t=.即当点P运动到距离A点个单位长度处,有PQ⊥AC.②∵S四边形PDCQ +S△APQ=S△ACD,且S△ACD=×8×3=12,∴当△APQ的面积最大时,四边形PDCQ的面积最小,当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽△CAO可得:,解得:h=(5﹣t),∴S△APQ=t×(5﹣t)=(﹣t2+5t)=﹣(t﹣)2+,∴当t=时,S△APQ 达到最大值,此时S四边形PDCQ=12﹣=,故当点P运动到距离点A个单位处时,四边形PDCQ面积最小,最小值为.14.解:(1)直线y=x+1与抛物线交于A点,则点A(﹣1,0)、点E(0,1).∵OB=OC,C(0,3),∴点B的坐标为(3,0),故抛物线的表达式为y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),将点C的坐标代入,得﹣3a=3,解得a=﹣1,∴抛物线的表达式为y=﹣x2+2x+3,∴函数的对称轴为x=1,故点Q的坐标为(1,4).(2)CQ=AE,且CQ∥AE,理由:∵Q(1,4),C(0,3),∴CQ==,CQ的解析式为y=x+3,又∵AE==,直线AE的解析式为y=x+1,∴CQ=AE,CQ∥AE,(3)∵,∴,,∴点D的坐标为(2,3).如图1,过点P作y轴的平行线,交AD于点K,设点P(m,﹣m2+2m+3),则点K(m,m+1)∴S△PAD====×4×3.解得m=0或1.(4)存在,点P的坐标为(2,3)或(0,3)或.设点H(t,t+1),点P(m,n),n=﹣m2+2m+3,而点Q(1,4),①当∠QPH=90°时,如图2,过点P作y轴的平行线,过点H、点Q作x轴的平行线,交过点P且平行于y轴的直线于点M、G,∵∠GQP+∠QPG=90°,∠QPG+∠HPM=90°,∴∠HPM=∠GQP,∠PGQ=∠HMP=90°,PH=PQ,∴△PGQ≌△HMP(AAS),∴PG=MH,GQ=PM,即4﹣n|=|t﹣m|,|1﹣m|=|n﹣(t+1)|,解得m=2或n=3.当n=3时,3=﹣m2+2m+3,解得m1=0,m2=2(舍去),∴点P(0,3).②当∠PQH=90°时,如图3所示,同理可得m 1=0,m 2=3(舍去),故点P 为(0,3). ③当∠PHQ =90°时,如图4,同理可得n =2,解得m 1=1+(舍去),m 2=1﹣. 故点P (1﹣,2).综上可得,点P 的坐标为(0,3)或(1﹣,2). 15.解:(1)∵点A (3,0)在一次函数y =kx +3的图象上, ∴0=3k +3,∴k =﹣1,∴一次函数的解析式为y =﹣x +3,∴B (0,3),又∵A 、B 都在二次函数y =﹣x 2+bx +c 的图象上, ∴∴b =2,c =3,∴二次函数的解析式为y =﹣x 2+2x +3;(2)过P作PC⊥x轴交AB于点C,设P点坐标为(m,﹣m2+2m+3),则C(m,﹣m+3),∴PC=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m∴S△PAB =S△PAC+S△PBC=====∵,∴当时,S△PAB有最大值;(3)抛物线的顶点坐标为:(1,4)为最高点,最高点与最低点的纵坐标之差为9时,则y P=﹣5,y=﹣x2+2x+3=﹣5,解得:x=4(不合题意值已舍去)故:P(4,﹣5),如图2,设PB交x轴于点H,由点BP的坐标得,直线PB的表达式为:y=﹣2x+3,故点H(,0),则HA=3﹣=,S=×HA×(y B﹣y P)=×(3+5)=6.△PAB。

2023年九年级数学中考专题训练——二次函数的最值 (附答案))

2023年九年级数学中考专题训练——二次函数的最值 (附答案))

2023年中考专题训练——二次函数的最值1.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =. (1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少? (3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.2.如图1,抛物线2323333y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点B 作直线BD ∥直线AC ,交抛物线y 于另一点D ,点P 为直线AC 上方抛物线上一动点.(1)求线段AB 的长.(2)过点P 作PF y ∥轴交AC 于点Q ,交直线BD 于点F ,过点P 作PE AC ⊥于点E ,求233PE PF +的最大值及此时点P 的坐标. (3)如图2,将抛物线2323333y x x =--+向右平移3个单位得到新抛物线y ',点M 为新抛物线上一点,点N 为原抛物线对称轴一点,直接写出所有使得A 、B 、M 、N 为顶点的四边形是平行四边形时点N 的坐标,并写出其中一个点N 的坐标的求解过程. 3.已知二次函数2y x bx c =+-的图象经过点(3,0),且对称轴为直线1x =.(1)求b c +的值;(2)当43x -≤≤时,求y 的最大值;(3)平移抛物线2y x bx c =+-,使其顶点始终在二次函数221y x x =--上,求平移后所得抛物线与y 轴交点纵坐标的最小值.4.已知关于x 的一元二次方程()()121x x m --=+(m 为常数).(1)若它的一个实数根是方程()2140x --=的根,则m =_____,方程的另一个根为_____; (2)若它的一个实数根是关于x 的方程()240x m --=的根,求m 的值; (3)若它的一个实数根是关于x 的方程()240x n --=的根,求m n +的最小值.5.如图,抛物线23y ax bx =++交x 轴于()3,0A ,()1,0B -两点,交y 轴于点C ,动点P 在抛物线的对称轴上.(1)求抛物线的解析式;(2)当以P ,B ,C 为顶点的三角形周长最小时,求点P 的坐标及PBC 的周长;(3)若点Q 是平面直角坐标系内的任意一点,是否存在点Q ,使得以A ,C ,P ,Q 为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.6.平面直角坐标系中,二次函数y =ax 2+bx +c 的顶点为(32,﹣254),它的图象与x 轴交于点A ,B (点A 在点B 左侧).(1)若AB =5,交y 轴于点C ,点C 在y 轴负半轴上. ①求二次函数的解析式;②若自变量x 的值增加4时,对应的函数值y 增大,求满足题意的自变量x 的取值范围. (2)当-1≤x ≤1时,函数值y 有最小值为﹣a 2,求a 的值(其中a 为二次函数的二次项系数).7.已知直线1y kx =+经过点()2,3,与抛物线2y x bx c =++的对称轴交于点1,2n ⎛⎫⎪⎝⎭(1)求k ,b 的值;(2)抛物线2y x bx c =++与x 轴交于()()12,0,0x x 且2139x x ≤-<,若22123p x x =-,求p 的最大值;(3)当12x -<<时,抛物线2y x bx c =++与直线1y kx =+有且只有一个公共点,直接写出c 的取值范围.8.如图,直线:l y m =-与y 轴交于点A ,直线:a y x m =+与y 轴交于点B ,抛物线2y x mx =+的顶点为C ,且与x 轴左交点为D (其中0m >).(1)当12AB =时,在抛物线的对称轴上求一点P 使得BOP △的周长最小;(2)当点C 在直线l 上方时,求点C 到直线l 距离的最大值; (3)若把横坐标、纵坐标都是整数的点称为“整点”.当2021m =时,求出在抛物线和直线a 所围成的封闭图形的边界上的“整点”的个数.9.如图,在平面直角坐标系中,抛物线2y x bx c =++经过A (0,﹣1),B (4,1).直线AB 交x 轴于点C ,P 是直线AB 下方抛物线上的一个动点.过点P 作PD ⊥AB ,垂足为D ,PE ∥x 轴,交AB 于点E .(1)求抛物线的函数表达式;(2)当△PDE 的周长取得最大值时,求点P 的坐标和△PDE 周长的最大值;(3)把抛物线2y x bx c =++平移,使得新抛物线的顶点为(2)中求得的点P .M 是新抛物线上一点,N 是新抛物线对称轴上一点,直接写出所有使得以点A ,B ,M ,N 为顶点的四边形是平行四边形的点M 的坐标,并把求其中一个点M 的坐标的过程写出来.10.如图,抛物线2y x bx c =-++过点()3,2A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为()4,m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ∠=︒?若存在,求点Q 的坐标;若不存在,请说明理由.11.如图,抛物线24y ax bx =++交x 轴于3,0,()(,0)4A B -两点,与y 轴交于点C ,连接,AC BC .M 为线段OB 上的一个动点,过点M 作PM x ⊥轴,交抛物线于点P ,交BC 于点Q . (1)求抛物线的表达式;(2)过点P 作PN BC ⊥,垂足为点N .求线段PN 的最大值.(3)试探究点M 在运动过程中,是否存在这样的点Q ,使得以,,A C Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标:若不存在,请说明理由.12.如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B . (1)求抛物线的解析式(2)若直线y =mx +n 经过B 、C 两点,求直线BC 的解析式; (3)在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标及此时距离之和的最小值13.在平面直角坐标系xOy 中,已知抛物线y =ax 2-2ax -1(a <0). (1)抛物线的对称轴为,抛物线与y 轴的交点坐标为;(2)试说明直线y =x -2与抛物线y =ax 2-2ax -1(a <0)一定存在两个交点; (3)若当-2≤x ≤2时,y 的最大值是1,求当-2≤x ≤2时,y 的最小值是多少?14.如图,抛物线2y ax bx =+经过点()3,33A -、()12,0B . (1)求抛物线的解析式; (2)试判断OAB 的形状;(3)曲线AB 为抛物线上点A 到点B 的曲线,在曲线AB 上是否存在点P 使得四边形OAPB 的面积最大,若存在,求点P 的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,二次函数y =ax 2+bx ﹣6的图象交坐标轴于A (﹣2,0),B (3,0)两点,抛物线与y 轴相交于点C ,抛物线上有一动点P 在直线BC 下方. (1)求这个二次函数的解析式;(2)是否存在点P ,使△POC 是以OC 为底边的等腰三角形?若存在,求出P 点坐标; (3)动点P 运动到什么位置时,△PBC 面积最大.求出此时P 点坐标和△PBC 的最大面积.16.已知抛物线y =x 2﹣bx +c (b ,c 为常数)的顶点坐标为(2,﹣1). (1)求该抛物线的解析式;(2)点M (t ﹣1,y 1),N (t ,y 2)在该抛物线上,当t <1时,比较y 1与y 2的大小; (3)若点P (m ,n )在该抛物线上,求m ﹣n 的最大值. 17.如图1,抛物线2y x bx c =++与x 轴交于点(2,0)A -、(6,0)B .(1)求抛物线的函数关系式.(2)如图1,点C 是抛物线在第四象限内图像上的一点,过点C 作CP y ⊥轴,P 为垂足,求CP OP +的最大值;(3)如图2,设抛物线的顶点为点D ,点N 的坐标为()2,16--,问在抛物线的对称轴上是否存在点M ,使线段MN 绕点M 顺时针旋转90︒得到线段MN ',且点N '恰好落在抛物线上?若存在,求出点M 的坐标;若不存在,请说明理由.18.如图,已知抛物线2y ax bx c =++()0a ≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点C ,且OC OB =.(1)求点C 的坐标和此抛物线的解析式;(2)若点E 为第二象限抛物线上一动点,连接BE ,CE ,BC ,求BCE 面积的最大值; (3)点P 在抛物线的对称轴上,若线段PA 绕点P 逆时针旋转90°后,点A 的对应点A '.恰好也落在此抛物线上,求点P 的坐标.19.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ()0,3-,A 点的坐标为(-1,0). (1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积; (3)若Q 为抛物线对称轴上一动点,当Q 在什么位置时QA+QC 最小,求出Q 点的坐标,并求出此时△QAC 的周长.20.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当24x ≤≤时,两个函数:()221,211y x y x =+=-+的最大值和最小值; (2)若2y x=的值不大于2,求符合条件的x 的范围;(3)若(0)ky k x=≠,当()20t x x ≤≤≠时既无最大值,又无最小值,求a 的取值范围.参考答案:1.(1)2=23y x x --(2)函数的最大值为5,最小值为4- (3)存在,(0,9)P -或9(0,)5P -【分析】(1)先求出点C 的坐标,得到点B 的坐标,再将点A 、B 的坐标代入解析式计算即可;(2)将函数解析式化为顶点式,根据函数的性质解答即可; (3)存在点P ,设()0,P m ,根据相似三角形对应边成比例列得PC CC PO OB'=,代入数值求出m 即可.【解析】(1)二次函数23y ax bx =+-的图象与y 轴交于C 点,()0,3C ∴-.OB OC =,点A 在点B 的左边,()3,0B ∴.又点A 的坐标为()1,0-,由题意可得:093303a b a b =+-⎧⎨=--⎩,解得:12a b =⎧⎨=-⎩.∴二次函数的解析式为2=23y x x --.(2)()22=2314y x x x ---=-,二次函数顶点坐标为()1,4-,∴当1x =时,4y =-最小值,当01x ≤≤时,y 随着x 的增大而减小, ∴当0x =时,3y =-最大值,当14x <≤时,y 随着x 的增大而增大, ∴当4x =时,5y =最大值.∴当04x ≤≤时,函数的最大值为5,最小值为4-.(3)存在点P ,如图,设()0,P m ,CC OB '∥,且PC 与PO 是相似三角形的对应边,PC CC PO OB ∴'=,即:()323m m --=, 解得:9m =-或95m =-,()0,9P ∴-或90,5P ⎛⎫- ⎪⎝⎭.【点评】此题考查了二次函数与图形问题,待定系数法求二次函数的解析式,二次函数的对称性,相似三角形的性质,二次函数的最值,正确掌握二次函数的综合知识是解题的关键. 2.(1)4(2)当32t =-时,233PE PF +1733232P ⎛- ⎝⎭; (3)(1,3N --,113⎛- ⎝⎭和3731,⎛- ⎝⎭【分析】(1)令232330,求解即可; (2)求直线,AC BD 的解析式,设点232,33P t ⎛ ⎝,则33Q t ⎛ ⎝,33F t ⎛ ⎝⎭,利用30QFC ∠=︒,将所求转化为23333PE PF PQ PF +=+,再求解即可; (3)推出平移后的解析式,设234383,M m ⎛ ⎝⎭,()2,N n -,分三种情况讨论;再利用平行四边形的性质结合中点坐标求解即可. 【解析】(1)令232330, 解得1x =或3x =-, ∴()()3,0,1,0A B -,4AB ∴=;(2)232333y x x =-(3C ∴,设直线AC 的解析式为y kx b =+,303k b b -+=⎧⎪∴⎨=⎪⎩,解得33k b ⎧=⎪⎨⎪=⎩,∴直线AC 的解析式为y x =(),1,0AC BD B ∥,∴直线BD 的解析式为y x =设点2,P t ⎛ ⎝+,则Q t ⎛+ ⎝,F t ⎛ ⎝⎭, ∵点P 为直线AC 上方抛物线上一动点,22PQ ∴==,22P F ==∵3,OA OC ==30CAO ∴∠=︒,,PE AC PF OA ⊥⊥, 30QFC ∴∠=︒,PE ∴=,∴222333332PF PQ PF t ⎛⎫+=+==-+ ⎪⎭⎝⎭∴当32t =-时,3PF +32P ⎛- ⎝⎭;(3))22313y x =-+ ∴抛物线对称轴为直线=1x -,∵抛物线2y =3个单位得到新抛物线y ',∴新抛物线y '的解析式为)22y x =-+',∴2,M m ⎛ ⎝⎭,()1,N n -,①当AB 为平行四边形的对角线时,2311,0m n -=-+=,∴1,m n =-=∴((1,N M --,;②当AM 为平行四边形的对角线时,234383311,m n -=+-= ∴1133,m n ==∴113113N M ⎛⎛- ⎝⎭⎝⎭,; ③当AN 为平行四边形的对角线时,24311,3383n m -+-=+=, ∴3735,m n =-= ∴3733735,1,M N ⎛⎛-- ⎝⎭⎝⎭,; 综上,N 点坐标分别为(1,3N -,113⎛- ⎝⎭和3731,⎛- ⎝⎭. 【点评】本题考查了为此函数的图象和性质,直角三角形的性质,平行四边形的性质,熟练掌握知识并能够运用分类讨论的思想是解题的关键. 3.(1)1 (2)21 (3)1312-【分析】(1)根据对称轴公式求出b ,再有二次函数2y x bx c =+-的图象经过点(3,0),代入求出c ,计算即可;(2)根据二次函数的增减性可知,当x =-4时,y 值最大,代入求解即可;(3)因为平移抛物线2=23y x x --,其顶点始终在二次函数221y x x =--上,故设顶点坐标为()2,21h h h --,可得平移后的解析式为22()21y x h h h =-+--,可求平移后所得抛物线与y 轴交点纵坐标为231=--w h h ,根据二次函数求最值的方法求解即可. (1)解:由题意可知12bx =-=,∴2b =-. 将(3,0)代入22y x x c =--,得3c =, ∴1b c +=. (2)解:由(1)得2223(1)4y x x x =--=--,∴当1x <时,y 随x 增大而减小,当1x >时,y 随x 增大而增大.∵1(4)31-->-,∴当4x =-时,y 取最大值21. (3)解:∵平移抛物线2=23y x x --,其顶点始终在二次函数221y x x =--上,∴设顶点坐标为()2,21h h h --,故平移后的解析式为22()21y x h h h =-+--,∴22222221231y x hx h h h x hx h h =-++--=-+--. 设平移后所得抛物线与y 轴交点的纵坐标为w , 则22113313612w h h h ⎛⎫=--=-- ⎪⎝⎭,∴当16h =时,平移后所得抛物线与y 轴交点纵坐标的最小值为1312-. 【点评】本题考查了二次函数的性质,和最值,平移规律,熟练掌握二次函数的性质和平移规律是解题的关键.4.(1)1,0x =;(2)11m =,21m =-;(3)当1n =-时,m n +有最小值为-2. 【分析】(1)求方程2(x -1)-4=0的根,代入(x -1)(x -2)=m +1中,确定m 的值;解(x -1)(x -2)=m +1,得到另一个根;(2)求方程2(x -m )-4=0的根,代入(x -1)(x -2)=m +1中,确定m 的值;(3)求方程()240x n --=的根,代入(x -1)(x -2)=m +1中,用含n 的代数式表示m ,构造m +n 与n 的二次函数,利用二次函数的性质确定最值. 【解析】(1)∵2(x -1)-4=0, ∴x =3,∴(3-1)(3-2)=m +1, 解得m =1, ∴(x -1)(x -2)=2, ∴2x -3x =0, ∴123,0x x ==, 故答案为:1,0x =. (2)由()240x m --=,得 2x m =+.则()()21221m m m +-+-=+ ∴21m m m +=+, ∴21m =,∴11m =,21m =-. (3)由()240x n --=,得2x n =+.则()()21221n n m +-+-=+. 即21m n n =+-.∴()222112m n n n n +=+-=+-; ∴当1n =-时,m n +有最小值-2.【点评】本题考查了一元一次方程,一元二次方程,二次函数的最值,熟练掌握方程的解法,二次函数的最值是解题的关键.5.(1) 223y x x =-++;(2) P 点坐标为(1,2),BCP ∆1032(3) Q 点坐标存在,为(2,2)或(417或(4,17-或(2-,314或(2-,314【分析】(1)将()3,0A ,()1,0B -代入即可求解;(2)连接BP 、CP 、AP ,由二次函数对称性可知,BP=AP ,得到BP +CP =AP +CP ,当C 、P 、A 三点共线时,△PBC 的周长最小,由此求出AC 解析式,将P 点横坐标代入解析式中即可求解;(3)设P 点坐标为(1,t ),Q 点坐标为(m ,n ),按AC 为对角线,AP 为对角线,AQ 为对角线分三种情况讨论即可求解.【解析】解:(1)将()3,0A ,()1,0B -代入二次函数表达式中,∴093303a b a b =++⎧⎨=-+⎩ ,解得12a b =-⎧⎨=⎩,∴二次函数的表达式为:223y x x =-++; (2)连接BP 、CP 、AP ,如下图所示:由二次函数对称性可知,BP=AP , ∴BP +CP =AP +CP , BCPC BP CP BCPA CP BCBC 为定直线,当C 、P 、A 三点共线时,PA CP 有最小值为AC ,此时BCP ∆的周长也最小,设直线AC 的解析式为:y kx m =+,代入()3,0,(0,3)A C ,∴0=330k m m +⎧⎨=+⎩,解得13k m =-⎧⎨=⎩,∴直线AC 的解析式为:3y x =-+, 二次函数的对称轴为12bx a=-=,代入3y x =-+,得到2y =, ∴P 点坐标为(1,2),此时BCP ∆的周长最小值=222213331032BC AC;(3)()3,0,(0,3)A C 设P 点坐标为(1,t ),Q 点坐标为(m ,n ), 分类讨论:情况一:AC 为菱形对角线时,另一对角线为PQ ,此时由菱形对角互相平分知:AC 的中点也必定是PQ 的中点, 由菱形对角线互相垂直知:1AC PQk k ,∴30103111m t n n t m ⎧⎪+=+⎪+=+⎨⎪-⎪-⋅=--⎩,解得221m n t =⎧⎪=⎨⎪=⎩,∴P 点坐标为(1,1),对应的Q 点坐标为(2,2); 情况二:AP 为菱形对角线时,另一对角线为CQ ,同理有:310030312m t n t n m ⎧⎪+=+⎪+=+⎨⎪--⎪⋅=--⎩,解得43m n t=⎧⎪⎨⎪=⎩或43m n t =⎧⎪=⎨⎪=⎩,∴P 点坐标为(1,3)或(1,3,对应的Q 点坐标为(4或(4,); 情况三:AQ 为菱形对角线时,另一对角线为CP ,()3,0,(0,3)A C 设P 点坐标为(1,t ),Q 点坐标为(m ,n ),同理有:3010303131m n t n t m ⎧⎪+=+⎪+=+⎨⎪--⎪⋅=--⎩,解得23m n t =-⎧⎪=⎨⎪=⎩23m n t =-⎧⎪=⎨⎪=⎩ ∴P 点坐标为(1或(1,,对应的Q 点坐标为(-2,3或(-2,3; 纵上所示,Q 点坐标存在,为(2,2)或(4或(4,或(2-,3或(2-,3.【点评】本题考查了待定系数法求二次函数解析式,二次函数对称性求线段最值问题及菱形的存在性问题,本题第三问难度大一些,熟练掌握各图形的性质是解决本题的关键. 6.(1)①234y x x =--;②自变量x 的取值范围为12x >-;(2)a 1401-+25541-- 【分析】(1)①二次函数y =ax 2+bx +c 的顶点为(32,﹣254),可确定二次函数的对称轴为32x =,利用对称轴求出抛物线与x 轴的交点A (-1,0),B (4,0),利用待定系数法可求抛物线解析式;②设自变量x 的值增加4时,的函数为y 1,求出新增函数21=5y x x +,利用1y y >两函数作差840x +>解不等式即可;(2)设二次函数的解析式为232524y a x ⎛⎫=-- ⎪⎝⎭,由-1≤x ≤132<,0a >或a<0分两种情况利用函数的增减性构造关于a 的一元二次方程,求出a 的值即可. 【解析】解:(1)①二次函数y =ax 2+bx +c 的顶点为(32,﹣254),∴二次函数的对称轴为32x =, ∵与x 轴交于点A ,B ,AB =5, ∴A 、B 两点关于对称轴为32x =对称,35122-=-,35+422=, ∴A (-1,0),B (4,0), 设解析式为()()14y a x x =+-,∵()()14y a x x =+-过顶点(32,﹣254),∴253314422a ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭, 解得=1a ,∴二次函数解析式为:2=34y x x --, ②设自变量x 的值增加4时,的函数为y 1, ∴()()221=+43+44=5y x x x x --+, ∵1y y >,∴()22534840x x x x x +---=+>,解得12x >-;(2)设二次函数的解析式为232524y a x ⎛⎫=-- ⎪⎝⎭,当-1≤x ≤132<, 当0a >,二次函数开口向上,在二次函数对称轴的左侧,y 随x 的增大而减小, ∴当x =1时函数取最小值﹣a 2,∴22325124a a ⎛⎫--=- ⎪⎝⎭,整理得24+250a a -=,解得a =0a =<(舍去), 当a<0,二次函数开口向下,在二次函数对称轴的左侧,y 随x 的增大而增大, ∴当x =-1时函数取最小值﹣a 2,∴22325124a a ⎛⎫---=- ⎪⎝⎭, 整理得24+25250a a -=,解得a =或0a =>(舍去). 【点评】本题考查待定系数法求抛物线解析式,利用自变量增大函数值增大构造不等式,利用函数的增减性取最小值构造关于a 的一元二次方程,掌握待定系数法求抛物线解析式,会列不等式与解不等式,利用函数的增减性取最小值构造关于a 的一元二次方程和解方程是解题关键.7.(1)1k =,1b =;(2)p 最大值为1;(3)30c -<≤或1c =【分析】(1)将(2,3)和1,2n ⎛⎫⎪⎝⎭分别代入直线表达式中可求得k 和n 值,再根据抛物线的对称轴公式求解b 值即可;(2)抛物线的对称轴为直线x =﹣12和2139x x ≤-<得出211x x =--及152x -<≤-,则()22221211331p x x x x =-=---2133222x ⎛⎫=-++ ⎪⎝⎭,根据二次函数的最值方法求解即可;(3)联立方程组可得x 2=1﹣c ,对c 讨论,结合方程根取值范围进行求解即可. 【解析】解:(1)把()2,3代入1y kx =+得:213k +=,则1k =,∴点1,2n ⎛⎫⎪⎝⎭在直线1y x =+上,∴12n =-,∴抛物线的对称轴122b x =-=-,∴1b =;(2)由(1)知1b =,则2y x x c =++,∵抛物线2y x x c =++与x 轴交点的横坐标为1x ,2x 且213x x -≥ ∴2112x x >-> ∴211122x x ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭即121x x +=-. ∴211x x =--.∴()22221211331p x x x x =-=---2133222x ⎛⎫=-++ ⎪⎝⎭∵2139x x ≤-<,∴()11319x x ≤---< ∴152x -<≤-∵20-<且对称轴为直线32x =-∴当152x -<≤-时,p 随1x 的增大而增大, ∴当12x =-时,p 取最大值且最大值为1;(3)由(1)知,直线的表达式为1y x =+,抛物线表达式为2y x x c =++,联立方程组21y x y x x c =+⎧⎨=++⎩得:x 2=1﹣c , 当c >1时,该方程无解,不满足题意; 当c =1时,方程的解为x =0满足题意; 当c <1时,方程的解为x =±1c -当1c -2即30c -<≤时,满足12x -<<时,抛物线2y x bx c =++与直线1y kx =+有且只有一个公共点,综上,满足题意的c 的取值范围为30c -<≤或1c =.【点评】本题考查二次函数与一次函数的综合,涉及待定系数法求函数表达式、二次函数的图象与性质、求二次函数的最值问题、两个函数图象的交点问题、解一元二次方程、解一元一次不等式组等知识,解答的关键是认真分析题意,找寻知识之间的关联点,利用待定系数法、分类讨论和数形结合思想进行推理、探究和计算. 8.(1)()3,3-;(2)1;(3)4044个【分析】(1)先求出点B 坐标,B 的纵坐标减去A 的纵坐标等于12求出m 值,再求出抛物线的对称轴,根据抛物线的对称性和两点之间线段最短知,当B 、P 、D 三点共线时OBP 周长最短,此时点P 为直线a 与对称轴的交点,进而求解即可;(2)先求出抛物线的顶点C 坐标2,24m m ⎛⎫-- ⎪⎝⎭,由C 与l 的距离221()(2)1144m m m =---=--+≤即可求出最大值;(3)先求出抛物线与直线a 的交点的横坐标,根据每一个整数x 的值都对应的一个整数y 值,结合边界由线段和抛物线组成求解即可. 【解析】解:(1)当0x =时,y x m m =+=, (0,)B m ∴,12AB =,而(0,)A m -,()12m m ∴--=,6m ∴=,∴抛物线L 的解析式为:26y x x =+,L ∴的对称轴3x =-,又知O 、D 两点关于对称轴对称,则OP DP =OB OP PB OB DP PB ∴++=++∴当B 、P 、D 三点共线时OBP 周长最短,此时点P 为直线a 与对称轴的交点,当3x =-时,63y x =+=, (3,3)P ∴-;(2)2224m m y x ⎛⎫=+- ⎪⎝⎭,L ∴的顶点2,24m m C ⎛⎫-- ⎪⎝⎭,点C 在l 上方,C ∴与l 的距离221()(2)1144m m m =---=--+≤,∴点C 与l 距离的最大值为1;(3)当2021m =时,抛物线解析式2:2021L y x x =+ 直线解析式:2021a y x =+联立上述两个解析式220212021y x xy x ⎧=+⎨=+⎩可得:12021x =-,21x =∴可知每一个整数x 的值都对应的一个整数y 值,且-2021和1之间(包括-2021和1)共有2023个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线, ∴线段和抛物线上各有2023个整数点, ∴总计4046个点∵这两段图象交点有2个点重复, ∴“整点”的个数:404624044-=(个); 故2021m =时“整点”的个数为4044个.【点评】本题考查二次函数的图象与性质、一次函数的图象与性质、图形与坐标、最短路径问题、二次函数的最值、两函数图象的交点问题、解二元一次方程组等问题,综合性强,难度适中,解答的关键是读懂题意,找寻相关知识的关联点,利用数形结合思想解决问题. 9.(1)2712y x x =--;(2)t =2时,△PDE 2458, 点P的坐标为(2,﹣4);(3)满足条件的点M 的坐标有(2,﹣4),(6,12),(﹣2,12),过程见解析【分析】(1)利用待定系数法求函数表达式即可;(2)先求出直线AB 的函数表达式和点C 坐标,设P 27,12t t t ⎛⎫-- ⎪⎝⎭,其中0<t <4,则E22727,12t t t t ⎛⎫---⎪⎝⎭,证明△PDE ∽△AOC ,根据周长之比等于相似比可得())22355651024522828l t t ++⎡⎤=--+=-⎣⎦,根据二次函数求最值的方法求解即可;(3)分以下情况①若AB 是平行四边形的对角线;②若AB 是平行四边形的边,1)当 MN ∥AB 时;2)当 NM ∥AB 时,利用平行四边形的性质分别进行求解即可. 【解析】解(1)∵抛物线2y x bx c =++经过点A (0,﹣1),点B (4,1),∴11641c b c =-⎧⎨++=⎩, 解得721b c ⎧=-⎪⎨⎪=-⎩, ∴该抛物线的函数表达式为2712y x x =--;(2)∵A (0,-1),B (4,1), ∴直线AB 的函数表达式为112y x =-, ∴C (2,0),设P 27,12t t t ⎛⎫-- ⎪⎝⎭,其中0<t <4,∵点E 在直线112y x =-上,PE ∥x 轴, ∴E 22727,12t t t t ⎛⎫--- ⎪⎝⎭,∠OCA =∠DEP ,∴PE =()2228228t t t -+=--+, ∵PD ⊥AB , ∴∠EDP =∠COA , ∴△PDE ∽△AOC , ∵AO =1,OC =2, ∴AC∴△AOC 的周长为令△PDE 的周长为lACPE=,∴())2222828l t t ⎡⎤=--+=-⎣⎦, ∴当t =2时,△PDE8, 此时点P 的坐标为(2,﹣4),(3)如图所示,满足条件的点M 的坐标有(2,﹣4),(6,12),(﹣2,12). 由题意可知,平移后抛物线的函数表达式为24y x x =-,对称轴为直线2x =. ①若AB 是平行四边形的对角线,当MN 与AB 互相平分时,四边形ANBM 是平行四边形, 即MN 经过AB 的中点C (2,0),∵点N 的横坐标为2,∴点M 的横坐标为2,∴点M 的坐标为(2,-4);②若AB 是平行四边形的边,1)MN ∥AB 时,四边形ABNM 是平行四边形,∵A (0,-1),B (4,1),点N 的横坐标为2,∴点M 的横坐标为2﹣4=﹣2,∴点M 的坐标为(﹣2,12);2)当 NM ∥AB 时,四边形ABMN 是平行四边形,∵A (0,-1),B (4,1),点N 的横坐标为2,∴点M 的横坐标为2+4=6,∴点M 的坐标为(6,12),综上,满足条件的点M 的坐标有(2,﹣4),(6,12),(﹣2,12).【点评】本题考查待定系数法求函数的表达式、相似三角形的判定与性质、求二次函数的最值、平行四边形的性质等知识,解答的关键是熟练掌握二次函数的性质,运用平行四边形的性质,结合数形结合和分类讨论的思想方法进行探究、推导和计算.10.(1)21722y x x =-++;(2)352(3)存在,点Q 的坐标为(10,23Q 、(20,23Q 【分析】(1)先将点B 的坐标为(4,)m 代入代入直线解析式中,求得点B 的坐标,再利用,A B 坐标,待定系数法求二次函数解析式;(2)设217,22D m m m ⎛⎫-++ ⎪⎝⎭,则7,2E m m ⎛⎫-+ ⎪⎝⎭,()21222DE m =--+,当2m =时,DE 有最大值为2,此时72,2D ⎛⎫ ⎪⎝⎭,作点A 关于对称轴的对称点A ',连接A D ',与对称轴交于点P ,PD PA PD PA A D ''+=+=此时PD PA +最小,勾股定理即可求得;(3)作AH y ⊥轴于点H ,连接AM 、AQ 、MQ 、HA 、HQ ,由45AQM ∠=︒可知12AQM AHM ∠=∠,继而可得:2QH HA HM ===,设(0,)Q t ,勾股定理即可求得点Q 的坐标【解析】解:(1)将点B 的坐标为(4,)m 代入72y x =-+, 71422m =-+=-, ∴B 的坐标为14,2⎛⎫- ⎪⎝⎭, 将(3,2)A ,14,2B ⎛⎫- ⎪⎝⎭代入 212y x bx c =-++, 2213322114422b c b c ⎧-⨯++=⎪⎪⎨⎪-⨯++=-⎪⎩ 解得1b =,72c =, ∴抛物线的解析式21722y x x =-++; (2)设217,22D m m m ⎛⎫-++ ⎪⎝⎭, 则7,2E m m ⎛⎫-+ ⎪⎝⎭, 222177112(2)222222DE m m m m m π⎛⎫⎛⎫=-++--+=-+=--+ ⎪ ⎪⎝⎭⎝⎭, ∴当2m =时,DE 有最大值为2 此时72,2D ⎛⎫ ⎪⎝⎭, 作点A 关于对称轴的对称点A ',连接A D ',与对称轴交于点P .PD PA PD PA A D ''+=+=,此时PD PA +最小,∵(3,2)A ,∴(1,2)A '-,2273(12)2522A D ⎛⎫'=--+- ⎪⎝⎭ 即PD PA +352(3)作AH y ⊥轴于点H ,连接AM 、AQ 、MQ 、HA 、HQ ,∵抛物线的解析式21722y x x =-++, ∴(1,4)M ,∵(3,2)A ,∴2AH MH ==,(1,2)H∵45AQM ∠=︒,90AHM ∠=︒, ∴12AQM AHM ∠=∠, 可知AQM 外接圆的圆心为H ,∴2QH HA HM ===设(0,)Q t2,2t =2∴符合题意的点Q的坐标:(10,2Q、(20,2Q .【点评】本题考查了待定系数法求二次函数解析式,二次函数图像与性质,勾股定理,将军饮马求线段和的最小值,三角形的外心,圆周角定理,正确作出图形是解题的关键.11.(1)211433y x x =-++;(2)3;(3)存在,点Q 的坐标为(1,3)或⎝⎭ 【分析】(1)将点A 、B 的坐标代入解析式中求解即可;(2)由抛物线的表达式211433y x x =-++求出y 轴交点C 的坐标,利用待定系数法求得直线BC 的解析式,然后用m 表示出PQ ,利用三角函数求出PN =PQ cos45°,再利用二次函数的性质即可求解;(3)分三种情况:①当AC CQ =时,过点Q 作QE y ⊥轴于点E .则222CQ CE EQ =+,即[]224(4)25m m +--+=;②当AC AQ =时,连结AQ ,则5AQ AC ==,在Rt AMQ △中,由勾股定理得:AQ 2=AM 2+QM 2=AC 2,即22[(3)](4)25m m --+-+=;③当CQ AQ =时,则EC 2+EQ 2=AM 2+QM 2,即()[]2222(3)(+44)4m m m m =--+--+⎡⎤+⎦-⎣,分别求解即可. 【解析】解:(1)∵抛物线24y ax bx =++交x 轴于3,0,()(,0)4A B -两点,∴将点A B 、的坐标代入抛物线表达934016440a b a b -+=⎧⎨++=⎩, 解得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的表达式为:211433y x x =-++;(2)∵抛物线的表达式211433y x x =-++,当x=0时,y=4,∴点(0,4)C ,设直线BC 的表达式为:y kx b =+;把点B C 、的坐标代入解析式得:404k b b +=⎧⎨=⎩, 解得:14k b =-⎧⎨=⎩, 直线BC 的表达式为:4y x =-+;设点(,0)M m ,则点211,433P m m m ⎛⎫-++ ⎪⎝⎭,点4(),Q m m -+, 221114443333PQ m m m m m ∴=-+++-=-+, OB OC =,∴45ABC OCB ∠=∠=︒,∵PM ⊥x 轴,∴∠MQB =90°-∠CBO =90°-45°=45°,∴∠PQN =∠MQB =45°,∵PN ⊥BC ,∴45NPQ NQP ∠=∠=︒,22214222sin 452)33PN PQ m m m ⎫∴=︒=-+=-⎪⎝⎭, 206-<,开口向下,PN 有最大值, 当2m =时,PN 22 (3)存在,理由: 点A C 、的坐标分别为(3,0),(0,4)-,在△OAC 中由勾股定理有()2222-34AC OA OC +=+①当AC CQ =时,过点Q 作QE y ⊥轴于点E .则222CQ CE EQ =+,∴222=CE EQ AC +即()224425m m ⎡⎤⎣-⎦+-+=, 解得:52m =(舍去负值),∴点Q ⎝⎭;②当AC AQ =时,连结AQ ,则5AQ AC ==,在Rt AMQ △中,由勾股定理得:AQ 2=AM 2+QM 2=AC 2即[]22(3)(4)25m m --+-+=,解得:1m =或0(舍去0),∴点()1,3Q ;③当CQ AQ =时,则EC 2+EQ 2=AM 2+QM 2,即()[]2222(3)(+44)4m m m m =--+--+⎡⎤+⎦-⎣, 解得:2542m =>(舍去);综上,点Q 的坐标为(1,3)或822⎛- ⎝⎭..【点评】本题考查待定系数法求抛物线解析式和直线解析式,两点距离公式,锐角三角函数,分类探究等腰三角形.勾股定理,掌握待定系数法求抛物线解析式和直线解析式,两点距离公式,锐角三角函数,分类探究等腰三角形.勾股定理,利用勾股定理构造方程是解题关键.12.(1)223y x x =--+;(2)y =x +3;(3)M (-1,2),【分析】(1)根据抛物线的对称轴可得12b a-=-,然后代入A (1,0),C (0,3)代入抛物线解析式03a b c c ++=⎧⎨=⎩解方程组即可; (2)利用(1)的函数解析式令y =0,解方程即可求出点B 坐标,再根据B 、C 坐标利用待定系数法求直线BC 的解析式即可;(3)由点A 与点B 是关于对称轴直线=1x -的对称点,直线BC 与对称轴直线=1x -的交点就是D (-1,2),由点M 在对称轴上,可得AM =BM ,由点M 到点A 的距离与到点C 的距离之和最小,点B ,点M ,点C 三点共线时最短,即点M 与点D 重合时,距离之和的最小值就是可得CM +AM =BC 的长,在Rt △BOC 中,由勾股定理得BC =32【解析】解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得123a b c =-⎧⎪=-⎨⎪=⎩,∴223y x x =--+;(2)当y=0时2x 2x 30--+=解得123,1x x =-=∴点B (-3,0)由直线BC 的解析式为:y =mx+n ,代入B (﹣3,0),C (0,3)得:303m n n -+=⎧⎨=⎩, 解得:13m n =⎧⎨=⎩, ∴直线BC 的解析式为:y =x +3;(3)∵点A 与点B 是关于对称轴直线=1x -的对称点,∴直线BC 与对称轴直线=1x -的交点就是D 点,∴当=1x -时3y x =-1+3=2,∴D (-1,2),∵点M 在对称轴上,∴AM =BM ,点M 到点A 的距离与到点C 的距离之和最小,∴点B ,点M ,点C 三点共线时最短,即点M 与点D 重合时,点M (-1,2),∴距离之和的最小值就是CM +AM =CM+BM = BC 的长,在Rt △BOC 中,由勾股定理得BC∴距离之和的最小值就是【点评】本题考查的是二次函数的综合运用,待定系数法求函数解析式,一次函数解析式,利用轴对称求最短路径以及M 坐标是解题关键.13.(1)直线x =1,(0,-1);(2)见解析;(3)17-.【分析】(1)将抛物线解析式转化为顶点式解析式,得到对称轴,当0x =时,可解得抛物线与y 轴的交点坐标;(2)将y =x -2代入二次函数解析式,得到关于x 的一元二次方程,根据一元二次方程根的判别式解题即可;(3)将抛物线解析式转化为顶点式,得到对称轴为直线x =1,根据抛物线的图象与性质解题即可.【解析】解:(1)抛物线y =ax 2-2ax -12(1)1a x a =--- ,∴抛物线的对称轴为直线1x =,抛物线y =ax 2-2ax -1中,当0x =时,1y =-,∴抛物线与y 轴的交点坐标为:(0,1)-故答案为:直线x =1,(0,1)-;(2)将y =x -2代入二次函数解析式,得x -2 = ax 2-2ax -1,则原方程可化为 ax 2-(2a +1)x +1=0,由根的判别式可得2-4b ac =()222214441441a a a a a a ⎡⎤-+-=++-=+⎣⎦2410a +>0∴∆>∴直线y =x -2与抛物线y =ax 2-2ax -1(a < 0)一定存在两个交点;(3)∵抛物线的开口向下,对称轴直线为x =1,顶点坐标为(1,1)a --,∴当-2≤x ≤2时,∵y 的最大值是1,∴顶点坐标为(1, 1),11a ∴--=2a ∴=-∴当x < 1时,y 随x 的增大而增大,当x >1时,y 随x 的增大而减小,∵2x =-比2x =离对称轴1x =更远一些,即x =-2时,y 有最小值,∴最小值是22(2)2(2)(2)117y =-⨯--⨯-⨯--=-,即y 的最小值是 17-.【点评】本题考查二次函数的图象与性质、一次函数与二次函数的交点问题,涉及二次函数的最值等知识,是重要考点,难度一般,掌握相关知识是解题关键.14.(1)2343y x =;(2)直角三角形;(3)存在,点P 坐标为:151353,2⎛ ⎝⎭. 【分析】(1)把(3,33A -、(12,0)B 代入2y ax bx =+,利用待定系数法解题;(2)利用勾股定理的逆定理解题;(3)连接AB ,利用待定系数法解得直线AB 的解析式为:33y =-2343P x x ⎛⎫ ⎪ ⎪⎝⎭,过点P 作PM x ⊥轴,垂足为M ,交AB 于点343N x x ⎛- ⎝,由三角形面积公式,结合二次函数的最值问题解题即可.【解析】解:(1)把(3,33A -、(12,0)B 代入2y ax bx =+,得9333144120a b a b ⎧+=-⎪⎨+=⎪⎩①②, ①4⨯-②得,1083a -=-3a ∴= 把3a =①得 43b =343a b ⎧=⎪⎪∴⎨⎪=⎪⎩∴抛物线的解析式为:2343y x =;(2)(0,0)O,(3,A -、(12,0)B(222336OA ∴=+=∣(222(123)108AB =-+=2212144OB ==22236108144OA AB OB +=+==OAB ∴△为直角三角形;(3)存在,连接AB ,OAB APB OAPB S S S =+△△四边形而OAB S 已确定,要使四边形OAPB S 面积最大,只需要APB S 最大即可,设直线AB 的解析式为(0)y kx b k =+≠,把点(3,A -、(12,0)B代入,得:3120k b k b ⎧+=-⎪⎨+=⎪⎩解得:k b ⎧=⎪⎨⎪=-⎩∴直线AB的解析式为:y x =-设2P x x ⎛⎫ ⎪ ⎪⎝⎭,过点P 作PM x ⊥轴,垂足为M ,交AB 于点N ,于是N x ⎛- ⎝,则2119922APB APB S PN S x x ⎡⎤⎫=⋅⋅==--⨯⎢⎥⎪⎪⎢⎥⎝⎝⎭⎣⎦△△2x =-当152x ==⎝⎭时,APB S 最大.2x x = ∴符合条件的点P坐标为:15,2⎛ ⎝⎭.【点评】本题考查二次函数与一次函数的综合题,涉及勾股定理逆定理、待定系数法求一次。

2023年中考数学压轴题专题02 二次函数与直角三角形问题【含答案】

2023年中考数学压轴题专题02 二次函数与直角三角形问题【含答案】

专题2二次函数与直角三角形问题解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.我们先看三个问题:1.已知线段AB,以线段AB为直角边的直角三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?3.已知点A(4,0),如果△OAB是等腰直角三角形,求符合条件的点B的坐标.图1图2图3如图1,点C在垂线上,垂足除外.如图2,点C在以AB为直径的圆上,A、B两点除外.如图3,以OA为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个.如图4,已知A(3,0),B(1,-4),如果直角三角形ABC的顶点C在y轴上,求点C的坐标.我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C.如果作BD⊥y轴于D,那么△AOC∽△CDB.设OC=m,那么341m m-=.这个方程有两个解,分别对应图中圆与y轴的两个交点.对于代数法,可以采用两条直线的斜率之积来解决.【例1】(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点P为该抛物线对称轴上的一个动点,当PA=PC时,求点P的坐标;(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.【例2】.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【例3】.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C 两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.【例4】.(2022•柳州)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).(1)求b,c,m的值;(2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG的周长最大时,求点D的坐标;(3)如图2,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.1.(2022•公安县模拟)如图,已知二次函数y=﹣x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(﹣1,0),C(2,0),AC=BC.(1)求抛物线的解析式;的最大值以及此时E点的坐标;(2)点E是抛物线AB之间的一个动点(不与A,B重合),求S△ABE(3)根据问题(2)的条件,判断是否存在点E使得△ABE为直角三角形,如果存在,求出E点的坐标,如果不存在,说明理由.2.(2022•高邮市模拟)如图,抛物线y=ax2+bx﹣3经过A(﹣1,0),与y轴交于点C,过点C作BC∥x 轴,交抛物线于点B,连接AC、AB,AB交y轴于点D,若.(1)求点B的坐标;(2)点P为抛物线对称轴上一点,且位于x轴上方,连接PA、PC,若△PAC是以AC为直角边的直角三角形,求点P的坐标.3.(2022•碑林区校级模拟)如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣2,0),B(4,0)两点.(1)求b,c的值;(2)点E为抛物线y=﹣x2+bx+c上一点,且点E在x轴上方,连接BE,以点E为直角顶点,BE为直角边,作等直角△BED,使得点D恰好落在直线y=x上,求出满足条件的所有点E的坐标.4.(2022•雁峰区校级模拟)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,与y轴交于点C,直线y=x+1与x轴交于点E,与y轴交于点D.(1)求抛物线的解析式;(2)P为抛物线上的点,连接OP交直线DE于Q,当Q是OP中点时,求点P的坐标;(3)M在直线DE上,当△CDM为直角三角形时,求出点M的坐标.5.(2022•平南县二模)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且A (﹣1,0),对称轴为直线x=2.(1)求该抛物线的表达式;(2)直线l过点A与抛物线交于点P,当∠PAB=45°时,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使得△BCQ是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.6.(2022•太原一模)综合与实践如图,抛物线y=x2+2x﹣8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.点D在直线AC 下方的抛物线上运动,过点D作y轴的平行线交AC于点E.(1)求直线AC的函数表达式;(2)求线段DE的最大值;(3)当点F在抛物线的对称轴上运动,以点A,C,F为顶点的三角形是直角三角形时,直接写出点F的坐标.7.(2022•桐梓县模拟)在平面直角坐标系xOy中,已知抛物线y=﹣与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,它的对称轴与x轴交于点D,直线L经过C,D两点,连接AC.(1)求A,B两点的坐标及直线L的函数表达式;(2)探索直线L上是否存在点E,使△ACE为直角三角形,若存在,求出点E的坐标;若不存在,说明理由.8.(2022•沈阳模拟)如图1,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0),与y轴交于点C(0,﹣3).(1)求抛物线的解析式.(2)若点M是抛物线上B,C之间的一个动点,线段MA绕点M逆时针旋转90°得到MN,当点N恰好落在y轴上时,求点M,点N的坐标.(3)如图2,若点E坐标为(2,0),EF⊥x轴交直线BC于点F,将△BEF沿直线BC平移得到△B'E'F',在△B'E'F'移动过程中,是否存在使△ACE'为直角三角形的情况?若存在,请直接写出所有符合条件的点E′的坐标;若不存在,请说明理由.9.(2022•东坡区校级模拟)如图,抛物线y=x2﹣(m+2)x+4的顶点C在x轴的正半轴上,直线y=x+2与抛物线交于A,B两点,且点A在点B的左侧.(1)求m的值;(2)点P是抛物线y=x2﹣(m+2)x+4上一点,当△PAB的面积是△ABC面积的2倍时,求点P的坐标;(3)将直线AB向下平移k(k>0)个单位长度,平移后的直线与抛物线交于D,E两点(点D在点E的左侧),当△DEC为直角三角形时,求k的值.10.(2022•海沧区二模)抛物线y1=ax2﹣2ax+c(a<2且a≠0)与x轴交于A(﹣1,0),B两点,抛物线的对称轴与x轴交于点D,点M(m,n)在该抛物线上,点P是抛物线的最低点.(1)若m=2,n=﹣3,求a的值;(2)记△PMB面积为S,证明:当1<m<3时,S<2;(3)将直线BP向上平移t个单位长度得直线y2=kx+b(k≠0),与y轴交于点C,与抛物线交于点E,当x <﹣1时,总有y1>y2.当﹣1<x<1时,总有y1<y2.是否存在t≥4,使得△CDE是直角三角形,若存在,求t的值;若不存在,请说明理由.11.(2021•葫芦岛模拟)如图,在平面直角坐标系中,矩形OABC,点A在y轴上,点C在x轴上,其中B(﹣2,3),已知抛物线y=﹣x2+bx+c经过点A和点B.(1)求抛物线解析式;(2)如图1,点D(﹣2,﹣1)在直线BC上,点E为y轴右侧抛物线上一点,连接BE、AE,DE,若S△BDE=4S△ABE,求E点坐标;(3)如图2,在(2)的条件下,P为射线DB上一点,作PQ⊥直线DE于点Q,连接AP,AQ,PQ,若△APQ为直角三角形,请直接写出P点坐标.12.(2021•和平区一模)如图,抛物线y=ax2+bx﹣,交y轴于点A,交x轴于B(﹣1,0),C(5,0)两点,抛物线的顶点为D,连接AC,CD.(1)求直线AC的函数表达式;(2)求抛物线的函数表达式及顶点D的坐标;(3)过点D作x轴的垂线交AC于点G,点H为线段CD上一动点,连接GH,将△DGH沿GH翻折到△GHR(点R,点G分别位于直线CD的两侧),GR交CD于点K,当△GHK为直角三角形时.①请直接写出线段HK的长为;②将此Rt△GHK绕点H逆时针旋转,旋转角为α(0°<α<180°),得到△MHN,若直线MN分别与直线CD,直线DG交于点P,Q,当△DPQ是以PQ为腰的等腰三角形时,请直接写出点P的纵坐标为﹣或﹣.13.(2021•莱芜区三模)二次函数y=ax2+bx+c交x轴于点A(﹣1,0)和点B(﹣3,0),交y轴于点C (0,﹣3).(1)求二次函数的解析式;(2)如图1,点E为抛物线的顶点,点T(0,t)为y轴负半轴上的一点,将抛物线绕点T旋转180°,得到新的抛物线,其中B,E旋转后的对应点分别记为B′,E′,当四边形BEB'E'的面积为12时,求t的值;(3)如图2,过点C作CD∥x轴,交抛物线于另一点D.点M是直线CD上的一个动点,过点M作x轴的垂线,交抛物线于点P.当以点B、C、P为顶点的三角形是直角三角形时,求所有满足条件的点M的坐标.14.(2021•雁塔区校级模拟)已知二次函数y=x2+bx+c经过A、B两点,BC垂直x轴于点C,且A(﹣1,0),C(4,0),AC=BC.(1)求抛物线的解析式;(2)请画出抛物线的图象;(3)点P是抛物线对称轴上一个动点,是否存在这样的点P,使三角形ABP为直角三角形?若存在,求出P点坐标;若不存在,请说明理由.15.(2021•武汉模拟)如图,抛物线y=x2+bx+12(b<0)与x轴交于A,B两点(A点在B点左侧),且OB=3OA.(1)请直接写出b=﹣8,A点的坐标是(2,0),B点的坐标是(6,0);(2)如图(1),D点从原点出发,向y轴正方向运动,速度为2个单位长度/秒,直线BD交抛物线于点E,若BE=5DE,求D点运动时间;(3)如图(2),F点是抛物线顶点,过点F作x轴平行线MN,点C是对称轴右侧的抛物线上的一定点,P点在直线MN上运动.若恰好存在3个P点使得△PAC为直角三角形,请求出C点坐标,并直接写出P 点的坐标.16.(2021•北碚区校级模拟)如图1,在平面直角坐标系中,抛物线y=﹣x+2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求直线BC的解析式;(2)过点A作AD∥BC交抛物线于D,连接CA,CD,PC,PB,记四边形ACPB的面积为S1,△BCD的面积为S2,当S1﹣S2的值最大时,求P点的坐标和S1﹣S2的最大值;(3)如图2,将抛物线水平向右平移,使得平移后的抛物线经过点O,G为平移后的抛物线的对称轴直线l上一动点,将线段AC沿直线BC平移,平移过程中的线段记为A'C'(线段A'C'始终在直线l左侧),是否存在以A',C',G为顶点的等腰直角△A'C'G?若存在,请写出满足要求的所有点G的坐标并写出其中一种结果的求解过程,若不存在,请说明理由.17(2021•广东模拟)如图,直线y=x﹣3与x轴,y轴分别交于B、C两点.抛物线y=x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)设点P从点D出发,沿对称轴向上以每秒1个单位长度的速度匀速运动.设运动的时间为t秒.①点P在运动过程中,若∠CBP=15°,求t的值;②当t为何值时,以P,A,C为顶点的三角形是直角三角形?求出所有符合条件的t值.18.(2021•巴中)已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C(0,﹣3).(1)求抛物线的表达式;(2)点P在直线BC下方的抛物线上,连接AP交BC于点M,当最大时,求点P的坐标及的最大值;(3)在(2)的条件下,过点P作x轴的垂线l,在l上是否存在点D,使△BCD是直角三角形,若存在,请直接写出点D的坐标;若不存在,请说明理由.19.(2021•毕节市)如图,抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,顶点为D,点B的坐标为(3,0).(1)填空:点A的坐标为(1,0),点D的坐标为(2,﹣1),抛物线的解析式为y=x2﹣4x+3;(2)当二次函数y=x2+bx+c的自变量x满足m≤x≤m+2时,函数y的最小值为,求m的值;(3)P是抛物线对称轴上一动点,是否存在点P,使△PAC是以AC为斜边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.20.(2021•兰溪市模拟)如图,在平面直角坐标系中,已知二次函数y=a(x﹣m)2﹣m+4图象的顶点为C,其中m>0,与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点D,点M的坐标为(0,4).(1)当m=2时,抛物线y=a(x﹣m)2﹣m+4(m>0)经过原点,求a的值;(2)当a=﹣1时,①若点M,点D,点C三点组成的三角形是直角三角形,求此时点D的坐标.②设反比例函数y=﹣(x>0)与抛物线y=a(x﹣m)2﹣m+4(m>0)相交于点E(p,q).当2<p <4时,求m的取值范围.【例1】.(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点P为该抛物线对称轴上的一个动点,当PA=PC时,求点P的坐标;(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.【分析】(1)根据坐标轴上点的特点求出点A,C的坐标,即可求出答案;(2)设出点P的坐标,利用PA=PC建立方程求解,即可求出答案;(3)分三种情况,利用等腰直角三角形的性质求出前两种情况,利用三垂线构造出相似三角形,得出比例式,建立方程求解,即可求出答案.【解析】(1)针对于抛物线y=x2﹣2x﹣3,令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x2﹣2x﹣3=0,∴x=3或x=﹣1,∵点A在点B的左侧,∴A(﹣1,0),B(3,0),∴AC==;(2)∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∵点P为该抛物线对称轴上,∴设P(1,p),∴PA==,PC==,∵PA=PC,∴=,∴p=﹣1,∴P(1,﹣1);(3)由(1)知,B(3,0),C(0,﹣3),∴OB=OC=3,设M(m,m2﹣2m﹣3),∵△BCM为直角三角形,∴①当∠BCM=90°时,如图1,过点M作MH⊥y轴于H,则HM=m,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠HCM=90°﹣∠OCB=45°,∴∠HMC=45°=∠HCM,∴CH=MH,∵CH=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,∴﹣m2+2m=m,∴m=0(不符合题意,舍去)或m=1,∴M(1,﹣4);②当∠CBM=90°时,过点M作M'H'⊥x轴,同①的方法得,M'(﹣2,5);③当∠BMC=90°时,如图2,Ⅰ、当点M在第四象限时,过点M作MD⊥y轴于D,过点B作BE⊥DM,交DM的延长线于E,∴∠CDM=∠E=90°,∴∠DCM+∠DMC=90°,∵∠DMC+∠EMB=90°,∴∠DCM=∠EMB,∴△CDM∽△MEB,∴,∵M(m,m2﹣2m﹣3),B(3,0),C(0,﹣3),∴DM=m,CD=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,ME=3﹣m,BE=﹣(m2﹣2m﹣3)=﹣m2+2m+3,∴,∴m=0(舍去)或m=3(点B的横坐标,不符合题意,舍去)或m=(不符合题意,舍去)或m =,∴M(,﹣),Ⅱ、当点M在第三象限时,M(,﹣),即满足条件的M的坐标为(1,﹣4)或(﹣2,5)或(,﹣),或(,﹣).【例2】.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【分析】(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,即可求解;(2)过点D作DG⊥AB交于G,交AC于点H,设D(n,﹣n2﹣3n+4),H(n,n+4),由DH∥OC,可得==,求出D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=45°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,证明△MDF≌△NOD(AAS),可得D点纵坐标为2,求出D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,证明△KDF≌△LFO(AAS),得到D点纵坐标为4,求得D(0,4)或(﹣3,4).【解析】(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,∴,解得,∴y=﹣x2﹣3x+4;(2)过点D作DG⊥AB交于G,交AC于点H,设直线AC的解析式为y=kx+b,∴,解得,∴y=x+4,设D(n,﹣n2﹣3n+4),H(n,n+4),∴DH=﹣n2﹣4n,∵DH∥OC,∴==,∵OC=4,∴DH=3,∴﹣n2﹣4n=3,解得n=﹣1或n=﹣3,∴D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=45°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,∵∠DOF=45°,∴DF=DO,∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,∴∠NDO=∠MFD,∴△MDF≌△NOD(AAS),∴DM=ON,MF=DN,∴DN+ON=﹣t,DN=ON+(﹣t﹣4),∴DN=﹣t﹣2,ON=2,∴D点纵坐标为2,∴﹣x2﹣3x+4=2,解得x=或x=,∴D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,∴∠LFO=∠KDF,∵DF=FO,∴△KDF≌△LFO(AAS),∴KD=FL,KF=LO,∴KL=t+4﹣t=4,∴D点纵坐标为4,∴﹣x2﹣3x+4=4,解得x=0或x=﹣3,∴D(0,4)或(﹣3,4);综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).【例3】(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.【分析】(1)把点B,C两点坐标代入抛物线的解析式,解方程组,可得结论;(2)存在.如图1中,设D(t,t2+t﹣4),连接OD.构建二次函数,利用二次函数的性质,解决问题;(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M (﹣1,﹣4),分三种情形:∠PAB=90°,∠PBA=90°,∠APB=90°,分别求解可得结论.【解析】(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D(t,t2+t﹣4),连接OD.令y=0,则x2+x﹣4=0,解得x=﹣4或2,∴A(﹣4,0),C(2,0),∵B(0,﹣4),∴OA=OB=4,=S△AOD+S△OBD﹣S△AOB=×4×(﹣﹣t+4)+×4×(﹣t)﹣×4×4=﹣t2﹣4t=﹣(t+2)∵S△ABD2+4,∵﹣1<0,∴t=﹣2时,△ABD的面积最大,最大值为4,此时D(﹣2,﹣4);(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M (﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).【例4】.(2022•柳州)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).(1)求b,c,m的值;(2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG的周长最大时,求点D的坐标;(3)如图2,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.【分析】(1)把A(﹣1,0),C(0,5)代入y=﹣x2+bx+c,解二元一次方程组即可得b,c的值,令y=0即可得m的值;(2)设D(x,﹣x2+4x+5),则E(4﹣x,﹣x2+4x+5),表示出四边形DEFG的周长,根据二次函数的最值即可求解;(3)过点C作CH⊥对称轴于H,过点N作NK⊥y轴于K,证明△MCH≌△NCK,根据全等三角形的性质得NK=MH=4,CK=CH=2,则N(﹣4,3),利用待定系数法可得直线BN的解析式为y=﹣x+,可得Q(0,),设P(2,p),利用勾股定理表示出PQ2、BP2、BQ2,分两种情况:①当∠BQP=90°时,②当∠QBP=90°时,利用勾股定理即可求解.【解析】(1)把A(﹣1,0),C(0,5)代入y=﹣x2+bx+c,得,解得.∴这个抛物线的解析式为:y=﹣x2+4x+5,令y=0,则﹣x2+4x+5=0,解得x1=5,x2=﹣1,∴B(5,0),∴m=5;(2)∵抛物线的解析式为:y=﹣x2+4x+5=﹣(x﹣2)2+9,∴对称轴为x=2,设D(x,﹣x2+4x+5),∵DE∥x轴,∴E(4﹣x,﹣x2+4x+5),∵过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,∴四边形DEFG是矩形,∴四边形DEFG的周长=2(﹣x2+4x+5)+2(x﹣4+x)=﹣2x2+12x+2=﹣2(x﹣3)2+20,∴当x=3时,四边形DEFG的周长最大,∴当四边形DEFG的周长最大时,点D的坐标为(3,8);(3)过点C作CH⊥对称轴于H,过点N作NK⊥y轴于K,∴∠NKC=∠MHC=90°,由翻折得CN=CM,∠BCN=∠BCM,∵B(5,0),C(0,5).∴OB=OC,∴∠OCB=∠OBC=45°,∵CH⊥对称轴于H,∴CH∥x轴,∴∠BCH=45°,∴∠BCH=∠OCB,∴∠NCK=∠MCH,∴△MCH≌△NCK(AAS),∴NK=MH,CK=CH,∵抛物线的解析式为:y=﹣x2+4x+5=﹣(x﹣2)2+9,∴对称轴为x=2,M(2,9),∴MH=9﹣5=4,CH=2,∴NK=MH=4,CK=CH=2,∴N(﹣4,3),设直线BN的解析式为y=mx+n,∴,解得,∴直线BN的解析式为y=﹣x+,∴Q(0,),设P(2,p),∴PQ2=22+(p﹣)2=p2﹣p+,BP2=(5﹣2)2p2=9+p2,BQ2=52+()2=25+,分两种情况:①当∠BQP=90°时,BP2=PQ2+BQ2,∴9+p2=p2﹣p++25+,解得p=,∴点P的坐标为(2,);②当∠QBP=90°时,P′Q2=BP′2+BQ2,∴p2﹣p+=9+p2+25+,解得p=﹣9,∴点P′的坐标为(2,﹣9).综上,所有符合条件的点P的坐标为(2,),(2,﹣9).1.(2022•公安县模拟)如图,已知二次函数y=﹣x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(﹣1,0),C(2,0),AC=BC.(1)求抛物线的解析式;的最大值以及此时E点的坐标;(2)点E是抛物线AB之间的一个动点(不与A,B重合),求S△ABE(3)根据问题(2)的条件,判断是否存在点E使得△ABE为直角三角形,如果存在,求出E点的坐标,如果不存在,说明理由.【分析】(1)先求得点B的坐标,然后将点A和点B的坐标代入抛物线的解析式可得到关于b、c的方程组,从而可求得b、c的值;(2)过点E作EF∥y轴交线段AB于点F,设点E(t,﹣t2+2t+3),则F(t,t+1),则可得到EF与x的函数关系式,利用配方法可求得EF的最大值以及点E的坐标,最后根据EF的最大值可得△ABE的面积;(3)存在,设E(m,﹣m2+2m+3),分三种情况:分别以A,B,E为直角顶点,作出辅助线,构造相似列出方程,解方程即可.【解析】(1)∵点A(﹣1,0),C(2,0),∴AC=3,OC=2,∵AC=BC=3,∴B(2,3),把A(﹣1,0)和B(2,3)代入二次函数y=x2+bx+c中得:,解得:,∴二次函数的解析式为:y=﹣x2+2x+3;(2)∵直线AB经过点A(﹣1,0),B(2,3),设直线AB的解析式为y=kx+b′,∴,解得:,∴直线AB的解析式为:y=x+1,如图,过点E作EF∥y轴交线段AB于点F,∴设点E(t,﹣t2+2t+3),则F(t,t+1),∴EF=﹣t2+2t+3﹣(t+1)=﹣(t﹣)2+,∴当t=时,EF的最大值为,∴点E的坐标为(,),最大,S△ABE=•EF•(x B−x A)=××(2+1)=.∴此时S△ABE(3)在问题(2)的条件下,存在点E使得△ABE为直角三角形;设E(m,﹣m2+2m+3),①当点A为直角顶点,过点A作AB的垂线,与AB之间的抛物线无交点,故不可能存在点E使得△ABE为以点A为直角顶点的直角三角形,②当点B为直角顶点,如下图,此时∠EBA=90°,过点E作EG⊥CB,交CB延长线于点G,∵BC⊥x轴于点C,且AC=BC,∴△ABC是等腰直角三角形,∠ABC=45°,∴∠EBG=45°,∴△BEG是等腰直角三角形,EG=BG,∵EG的长为点E与直线BC的距离,即2﹣m,且BG=CG﹣BC=﹣m2+2m+3﹣3=﹣m2+2m,∴2﹣m==﹣m2+2m,解得m=1或m=2(舍),∴E(1,4);③如下图,此时∠AEB=90°,作EM∥x轴,交CB的延长线于点M,过点A作AN⊥x轴交ME的延长线于点N,∴∠BEM+∠AEN=90°,∵在Rt△AEN中,∠EAN+∠AEN=90°,∴∠BEM=∠EAN,∴△AEN∽△BEM,∴BM:EN=EM:AN,∴(﹣m2+2m):(m+1)=(2﹣m):(﹣m2+2m+3),即﹣m(2﹣m)(m+1)(m﹣3)=(2﹣m)(m+1),∵2﹣m≠0,m+1≠0,∴m2﹣3m+1=0,解得m=或m=(舍).∴E(,)综上,根据问题(2)的条件,存在点E(1,4)或(,)使得△ABE为直角三角形.2.(2022•高邮市模拟)如图,抛物线y=ax2+bx﹣3经过A(﹣1,0),与y轴交于点C,过点C作BC∥x 轴,交抛物线于点B,连接AC、AB,AB交y轴于点D,若.(1)求点B的坐标;(2)点P为抛物线对称轴上一点,且位于x轴上方,连接PA、PC,若△PAC是以AC为直角边的直角三角形,求点P的坐标.【分析】(1)根据A(﹣1,0),得到OA=l,对于y=ax2+bx﹣3,令x=0,则y=﹣3,得到C(0,﹣3),OC=3,根据BC∥x轴,得到△AOD∽△BCD,推出,得到BC=2,即可得B(2,﹣3);(2)把A(﹣1,0),B(2,﹣3)代入y=ax2+bx﹣3,求得a=1,b=﹣2,得到抛物线解析式并配方为y =x2﹣2x﹣3=(x﹣1)2﹣4,得到抛物线的对称轴是直线x=1,设P(1,m),写出PA2=m2+22=m2+4.PC2=(m+3)2+12=(m+3)2+1.AC2=12+32=10.根据△PAC是以AC为直角边的直角三角形,当∠PAC=90°时,PA2+AC2=PC2.得到m2+4+10=(m+3)2+1,求得m=;当∠PCA=90°时,PC2+AC2=AP2,得到(m+3)2+1+10=m2+4,求出m=﹣;即可得点P的坐标.【解析】∵A(﹣1,0),∴OA=l,在y=ax2+bx﹣3中,令x=0,则y=﹣3,∴C(0,﹣3),∴OC=3,∵BC∥x轴,∴△AOD∽△BCD,∴,∴BC=2,∴B(2,﹣3);(2)把A(﹣1,0),B(2,﹣3)代入y=ax2+bx﹣3,∴,解得,∴抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴是直线x=1,设P(1,m),∴PA2=m2+22=m2+4.PC2=(m+3)2+12=(m+3)2+1.AC2=12+32=10.∵△PAC是以AC为直角边的直角三角形,当∠PAC=90°时,PA2+AC2=PC2.∴m2+4+10=(m+3)2+1,解得m=;当∠PCA=90°时,PC2+AC2=AP2,∴(m+3)2+1+10=m2+4,解得m=﹣(不符合题意,舍去).∴P(1,).3.(2022•碑林区校级模拟)如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣2,0),B(4,0)两点.(1)求b,c的值;(2)点E为抛物线y=﹣x2+bx+c上一点,且点E在x轴上方,连接BE,以点E为直角顶点,BE为直角边,作等直角△BED,使得点D恰好落在直线y=x上,求出满足条件的所有点E的坐标.【分析】(1)运用待定系数法即可求得答案;(2)设D(m,m),E(n,﹣n2+2n+8),分两种情况:当点E1在点D左侧,∠DE1B=90°,BE1=D1E1时,当点E2在点D2右侧,∠D2E2B=90°,BE2=D2E2时,利用等腰直角三角形性质,添加辅助线构造全等三角形,再利用全等三角形的性质建立方程求解即可得出答案.【解析】(1)∵抛物线y=﹣x2+bx+c与x轴交于A(﹣2,0),B(4,0)两点,∴,解得:,∴b=2,c=8;(2)∵点D在直线y=x上,点E在抛物线解析式为y=﹣x2+2x+8上,∴设D(m,m),E(n,﹣n2+2n+8),当点E1在点D左侧,∠DE1B=90°,BE1=D1E1时,如图,过点E1作E1G∥x轴,过点B作BF⊥EG于点F,过点D1作D1G⊥E1G于点G,则∠BFE1=∠E1GD1=90°,BF=﹣n2+2n+8,E1F=4﹣n,E1G=m﹣n,D1G=m﹣(﹣n2+2n+8)=n2﹣2n﹣8+m,∴∠E1BF+∠BE1F=90°,∵∠D1E1G+∠BE1F=90°,∴∠E1BF=∠D1E1G,在△BE1F和△E1D1G中,,∴△BE1F≌△E1D1G(AAS),∴E1F=D1G,BF=E1G,∴,解得:,当n=2时,﹣n2+2n+8=﹣22+2×2+8=8,∴E1(2,8);当点E2在点D2右侧,∠D2E2B=90°,BE2=D2E2时,如图,过点E2作E2H⊥x轴于点H,过点D2作D2K ⊥E2H于点K,则∠BHE2=∠E2KD2=90°,BH=4﹣n,E2H=﹣n2+2n+8,E2K=﹣n2+2n+8﹣m,D2K=n﹣m,同理可得△BE2H≌△E2D2K(AAS),∴E2H=D2K,BH=E2K,∴,解得:或,∴E(1+,2)或(1﹣,2);综上所述,满足条件的所有点E的坐标为(2,8)或(1+,2)或(1﹣,2).4.(2022•雁峰区校级模拟)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,与y轴交于点C,直线y=x+1与x轴交于点E,与y轴交于点D.(1)求抛物线的解析式;(2)P为抛物线上的点,连接OP交直线DE于Q,当Q是OP中点时,求点P的坐标;(3)M在直线DE上,当△CDM为直角三角形时,求出点M的坐标.【分析】(1)根据抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,列方程组,于是得到答案;(2)令x=0,则y=x+1=1,求得OD=1,作PH⊥OB,垂足为H,得到∠COA=∠PHO=90°,根据平行线的性质得到∠P=∠DOQ,∠PFQ=∠ODQ,根据全等三角形的性质得到PF=OD=1,设P点横坐标为x,得到方程﹣x2+2x+3﹣(x+1)=1,求得x1=2,x2=﹣,当x=2时,y=3,当x=﹣时,y =,于是得到答案;(3)求得CD=OC﹣OD=2,设M(a,a+1),分两种情况①当∠CMD=90°时,②当∠DCM=90°时,根据勾股定理即可得到结论.【解析】(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线的解析式是y=﹣x2+2x+3;(2)令x=0,则y=x+1=1,∴OD=1,如图,作PH⊥OB,垂足为H,交ED于F,则∠COA=∠PHO=90°,∴PH∥OC,∴∠OPF=∠DOQ,∠PFQ=∠ODQ,又Q是OP中点,∴PQ=OQ,∴△PFQ≌△ODQ(AAS),∴PF=OD=1设P点横坐标为x,则﹣x2+2x+3﹣(x+1)=1,解得:x1=2,x2=﹣,当x=2时,y=3,当x=﹣时,y=,∴点P的坐标是(2,3)或(﹣,);(3)令x=0,则y=﹣x2+2x+3=3,∴OC=3,∴CD=OC﹣OD=2,设M(a,a+1),∴CM2=a2+(3﹣a﹣1)2=a2﹣2a+4,DM2=a2+(a+1﹣1)2=a2,①当∠CMD=90°时,∴CD2=CM2+DM2,∴22=a2﹣2a+4+a2,解得:a1=,a2=0(舍去),当a=时,a+1=,∴M(,);②当∠DCM=90°时,∴CD2+CM2=DM2,∴22+a2﹣2a+4=a2,解得:a=4,当a=4时,a+1=3,∴M(4,3);解法二:∵∠DCM=90°,∴CM∥x轴,∴a+1=3,解得a=4,∴M(4,3);综上所述:点M的坐标为(,)或(4,3).5.(2022•平南县二模)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且A (﹣1,0),对称轴为直线x=2.(1)求该抛物线的表达式;(2)直线l过点A与抛物线交于点P,当∠PAB=45°时,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使得△BCQ是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)设y=(x﹣2)2+k,用待定系数法可得抛物线的解析式为y=x2﹣4x﹣5;(2)过点P作PM⊥x轴于点M,设P(m,m2﹣4m﹣5),根据∠PAB=45°知AM=PM,即|m2﹣4m﹣5|=m+1,解得m的值,即可得P的坐标是(6,7)或P(4,﹣5);(3)由y=x2﹣4x﹣5求出B(5,0),C(0,﹣5),设Q(2,t),有BC2=50,BQ2=9+t2,CQ2=4+(t+5)2,分三种情况:当BC为斜边时,9+t2+4+(t+5)2=50,当BQ为斜边时,50+4+(t+5)2=9+t2,当CQ 为斜边时,50+9+t2=4+(t+5)2,分别解得t的值,即可求出相应Q的坐标.【解析】(1)设y=(x﹣2)2+k,把A(﹣1,0)代入得:(﹣1﹣2)2+k=0,解得:k=﹣9,∴y=(x﹣2)2﹣9=x2﹣4x﹣5,答:抛物线的解析式为y=x2﹣4x﹣5;(2)过点P作PM⊥x轴于点M,如图:设P(m,m2﹣4m﹣5),则PM=|m2﹣4m﹣5|,∵A(﹣1,0),∴AM=m+1∵∠PAB=45°∴AM=PM,∴|m2﹣4m﹣5|=m+1,即m2﹣4m﹣5=m+1或m2﹣4m﹣5=﹣(m+1),当m2﹣4m﹣5=m+1时,解得:m1=6,m2=﹣1(不合题意,舍去),当m2﹣4m﹣5=﹣(m+1),解得m3=4,m4=﹣1(不合题意,舍去),∴P的坐标是(6,7)或P(4,﹣5);(3)在抛物线的对称轴上存在一点Q,使得△BCQ是直角三角形,理由如下:在y=x2﹣4x﹣5中,令x=0得y=﹣5,令y=0得x=﹣1或x=5,∴B(5,0),C(0,﹣5),由抛物线y=x2﹣4x﹣5的对称轴为直线x=2,设Q(2,t),∴BC2=50,BQ2=9+t2,CQ2=4+(t+5)2,当BC为斜边时,BQ2+CQ2=BC2,∴9+t2+4+(t+5)2=50,解得t=﹣6或t=1,∴此时Q坐标为(2,﹣6)或(2,1);当BQ为斜边时,BC2+CQ2=BQ2,∴50+4+(t+5)2=9+t2,解得t=﹣7,∴此时Q坐标为(2,﹣7);当CQ为斜边时,BC2+BQ2=CQ2,∴50+9+t2=4+(t+5)2,解得t=3,∴此时Q坐标为(2,3);综上所述,Q的坐标为(2,3)或(2,﹣7)或(2,1)或(2,﹣6).6.(2022•太原一模)综合与实践如图,抛物线y=x2+2x﹣8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.点D在直线AC 下方的抛物线上运动,过点D作y轴的平行线交AC于点E.(1)求直线AC的函数表达式;(2)求线段DE的最大值;(3)当点F在抛物线的对称轴上运动,以点A,C,F为顶点的三角形是直角三角形时,直接写出点F的坐标.【分析】(1)分别令x=0,y=0,求得点C、A的坐标,再运用待定系数法即可求得答案;(2)设D(m,m2+2m﹣8),则E(m,﹣2m﹣8),可得DE=﹣2m﹣8﹣(m2+2m﹣8)=﹣m2﹣4m=﹣(m+2)2+4,运用二次函数的性质即可求得线段DE的最大值;(3)设F(﹣1,n),根据两点间距离公式可得:AF2=32+n2=n2+9,AC2=42+82=80,CF2=12+(n+8)2=n2+16n+65,分三种情况:①当∠AFC=90°时,②当∠CAF=90°时,③当∠ACF=90°时,分别建立方程求解即可.【解析】(1)在y=x2+2x﹣8中,令x=0,得y=﹣8,∴C(0,﹣8),令y=0,得x2+2x﹣8=0,解得:x1=﹣4,x2=2,∴A(﹣4,0),B(2,0),设直线AC的解析式为y=kx+b,则,解得:,∴直线AC的解析式为y=﹣2x﹣8;(2)设D(m,m2+2m﹣8),则E(m,﹣2m﹣8),∵点D在点E的下方,∴DE=﹣2m﹣8﹣(m2+2m﹣8)=﹣m2﹣4m=﹣(m+2)2+4,∵﹣1<0,∴当m=﹣2时,线段DE最大值为4;(3)∵y=x2+2x﹣8=(x+1)2﹣9,∴抛物线的对称轴为直线x=﹣1,设F(﹣1,n),又A(﹣4,0),C(0,﹣8),∴AF2=32+n2=n2+9,AC2=42+82=80,CF2=12+(n+8)2=n2+16n+65,①当∠AFC=90°时,∵AF2+CF2=AC2,∴n2+9+n2+16n+65=80,解得:n1=﹣4﹣,n2=﹣4+,∴F(﹣1,﹣4﹣)或(﹣1,﹣4+);②当∠CAF=90°时,∵AF2+AC2=CF2,∴n2+9+80=n2+16n+65,解得:n=,∴F(﹣1,);③当∠ACF=90°时,∵CF2+AC2=AF2,∴n2+16n+65+80=n2+9,解得:n=﹣,∴F(﹣1,﹣);综上所述,点F的坐标为(﹣1,﹣4﹣)或(﹣1,﹣4+)或(﹣1,)或(﹣1,﹣).7.(2022•桐梓县模拟)在平面直角坐标系xOy中,已知抛物线y=﹣与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,它的对称轴与x轴交于点D,直线L经过C,D两点,连接AC.(1)求A,B两点的坐标及直线L的函数表达式;(2)探索直线L上是否存在点E,使△ACE为直角三角形,若存在,求出点E的坐标;若不存在,说明理由.【分析】(1)令x=0,y=0,可分别求出A、B、C三点坐标,在求出函数的对称轴即可求D点坐标,利用待定系数法求直线解析式即可;(2)设E(t,﹣t+2),分三种情况讨论:①当∠CAE=90°时,AC2+AE2=CE2,②当∠ACE=90°时,AC2+CE2=AE2,③当∠AEC=90°时,AE2+CE2=AC2,分别利用勾股定理求解即可.【解析】(1)令y=0,则﹣=0,解得x=﹣2或x=6,∴A(﹣2,0),B(6,0),令x=0,则y=2,∴C(0,2),∵y=﹣=﹣(x﹣2)2+,∴抛物线的对称轴为直线x=2,∴D(2,0),设直线CD的解析式为y=kx+b,。

二次函数专题训练(三角形周长最值问题)含答案

二次函数专题训练(三角形周长最值问题)含答案

1.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC于点F,求△PEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM 重合部分的面积是▱APQM面积的时,求▱APQM面积.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=.(1)求抛物线的解析式;(2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值;(3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.4.如图(1),抛物线y=ax2+bx+c与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于点C(0,﹣3),若抛物线的对称轴为直线x=1,且tan∠OAC=3.(1)求抛物线的函数解析式;(2 若点D是抛物线BC段上的动点,且点D到直线BC距离为,求点D的坐标(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0,﹣),点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN 的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.5.已知:如图,直线y=﹣x+2与x轴交于B点,与y轴交于C点,A点坐标为(﹣1,0).(1)求过A、B、C三点的抛物线的解析式.(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若不存在,说明理由.6.如图,抛物线y=﹣x2+(m﹣1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x 轴交直线AD于H,求△FGH的周长的最大值;(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.7.如图,已知抛物线y=﹣x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对称.(1)直接写出点D的坐标和直线AD的解析式;(2)点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;(3)若点P为y轴上的动点,则在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标,若不存在,请说明理由.8.如图,抛物线y=﹣x2﹣x+3与x轴相交于A、B两点(点A在点B的左侧),交y轴与点D,已知点C(0,),连接AC.(1)求直线AC的解析式;(2)点P是直线AC上方的抛物线上一动点,过点P作PE∥y轴,交直线AC于点E,过点P作PG⊥AC,垂足为G,当△PEG周长最大时,在x轴上存在一点Q,使|QP﹣QC|的值最大,请求出这个最大值以及点P的坐标;(3)当(2)题中|QP﹣QG|取得最大值时,直线PG交y轴于点M,把抛物线沿直线AD平移,平移后的抛物线y′与直线AD相交的一个交点为A′,在平移的过程中,是否存在点A′,使得点A′,P,M 三点构成的三角形为等腰三角形,若存在,直接写出点A′的坐标;若不存在,请说明理由.9.如图,抛物线y=﹣x2+x+3交x轴于A、B两点,点A在点B的左侧,交y轴于点C.(1)求直线AC与直线BC的解析式;(2)如图1,P为直线BC上方抛物线上的一点;①过点P作PD⊥BC于点D,作PM∥y轴交直线BC于点M,当△PDM的周长最大时,求P点坐标及周长最大值;②在①的条件下,连接AP与y轴交于点E,抛物线的对称轴与x轴交于点K,若S为直线BC上一动点,T为直线AC上一动点,连接EK,KS,ST,TE,求四边形EKST周长的最小值;(3)如图2,将△AOC顺时针旋转60°得到△A′OC′,将△A′OC′沿直线OC′平移,记平移中的△A′OC′为△A″O′C″,直线A″O′与x轴交于点F,将△O′C″F沿O′C″翻折得到△O′C″F′,当△CC″F′为等腰三角形时,求此时F点的坐标.参考答案与试题解析1.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC于点F,求△PEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.【解答】解:(1)把A(﹣1,0),B(3,0)两点坐标代入抛物线y=ax2+bx﹣3,得到,解得,∴抛物线的解析式为y=x2﹣2x﹣3.(2)如图1中,连接PB、PC.设P(m,m2﹣2m﹣3),∵B(3,0),C(0,﹣3),∴OB=OC,∴∠OBC=45°,∵PF∥OB,∴∠PFE=∠OBC=45°,∵PE⊥BC,∴∠PEF=90°,∴△PEF是等腰直角三角形,∴PE最大时,△PEF的面积中点,此时△PBC的面积最大,则有S△PBC=S△POB+S△POC﹣S△BOC=•3•(﹣m2+2m+3)+•3•m﹣=﹣(m﹣)2+,∴m=时,△PBC的面积最大,此时△PEF的面积也最大,此时P(,﹣),∵直线BC的解析式为y=x﹣3,∴F(﹣,﹣),∴PF=,∵△PEF是等腰直角三角形,∴EF=EP=,∴C△PEF最大值=+.(3)①如图2中,当N与C重合时,点N关于对称轴的对称点P,此时思想MNQP是正方形,易知P(2,﹣3).点P横坐标为2,②如图3中,当四边形PMQN是正方形时,作PF⊥y轴于N,ME∥x轴,PE∥y轴.易知△PFN≌△PEM,∴PF=PE,设P(m,m2﹣2m﹣3),∵M(1,﹣4),∴m=m2﹣2m﹣3﹣(﹣4),∴m=或(舍弃),∴P点横坐标为所以满足条件的点P的横坐标为2或.2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM 重合部分的面积是▱APQM面积的时,求▱APQM面积.【解答】解:(1)令﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),C(0,3),∵点D,C关于抛物线的对称轴对称,∴D(2,3),∴直线AD的解析式为:y=x+1;(2)设点F(x,﹣x2+2x+3),∵FH∥x轴,∴H(﹣x2+2x+2,﹣x2+2x+3),∴FH=﹣x2+2x+2﹣x=﹣(x﹣)2+,∴FH的最大值为,由直线AD的解析式为:y=x+1可知∠DAB=45°,∵FH∥AB,∴∠FHG=∠DAB=45°,∴FG=GH=×=故△FGH周长的最大值为×2+=;(3)①当P点在AM下方时,如图1,设P(0,p),易知M(1,4),从而Q(2,4+p),∵△PM Q′与▱APQM重合部分的面积是▱APQM面积的,∴PQ′必过AM中点N(0,2),∴可知Q′在y轴上,易知QQ′的中点T的横坐标为1,而点T必在直线AM上,故T(1,4),从而T、M重合,∴▱APQM是矩形,∵易得直线AM解析式为:y=2x+2,∵MQ⊥AM,∴直线QQ′:y=﹣x+,∴4+p=﹣×2+,解得:p=﹣,∴PN=,∴S□APQM=2S△AMP=4S△ANP=4××PN×AO=4×××1=5;②当P点在AM上方时,如图2,设P(0,p),易知M(1,4),从而Q(2,4+p),∵△PM Q′与▱APQM重合部分的面积是▱APQM面积的,∴PQ′必过QM中点R(,4+),易得直线QQ′:y=﹣x+p+5,联立,解得:x=,y=,∴H(,),∵H为QQ′中点,故易得Q′(,),由P(0,p)、R(,4+)易得直线PR解析式为:y=(﹣)x+p,将Q′(,)代入到y=(﹣)x+p得:=(﹣)×+p,整理得:p2﹣9p+14=0,解得p1=7,p2=2(与AM中点N重合,舍去),∴P(0,7),∴PN=5,∴S□APQM=2S△AMP=2××PN×|x M﹣x A|=2××5×2=10.综上所述,▱APQM面积为5或10.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=.(1)求抛物线的解析式;(2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值;(3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.【解答】解:(1)∵点A的坐标为(﹣1,0),∴OA=1.又∵tan∠ACO=,∴OC=4.∴C(0,﹣4).∵OC=OB,∴OB=4∴B(4,0).设抛物线的解析式为y=a(x+1)(x﹣4).∵将x=0,y=﹣4代入得:﹣4a=﹣4,解得a=1,∴抛物线的解析式为y=x2﹣3x﹣4.(2)∵抛物线的对称轴为x=﹣=,C(0,﹣4),点D和点C关于抛物线的对称轴对称,∴D(3,﹣4).设直线AD的解析式为y=kx+b.∵将A(﹣1,0)、D(3,﹣4)代入得:,解得k=﹣1,b=﹣1,∴直线AD的解析式y=﹣x﹣1.∵直线AD的一次项系数k=﹣1,∴∠BAD=45°.∵PM平行于y轴,∴∠AEP=90°.∴∠PMH=∠AME=45°.∴△MPH的周长=PM+MH+PH=PM+MP+PM=(1+)PM.设P(a,a2﹣3a﹣4),M(﹣a﹣1),则PM=﹣a﹣1﹣(a2﹣3a﹣4)=﹣a2+2a+3,∵PM=﹣a2+2a+3=﹣(a﹣1)2+4,∴当a=1时,PM有最大值,最大值为4.∴△MPH的周长的最大值=4×(1+)=4+4.(3)如图1所示;当∠EGN=90°.设点G的坐标为(a,0),则N(a,a2﹣3a﹣4).∵∠EGN=∠AOC=90°,∴时,△AOC∽△EGN.∴=,整理得:a2+a﹣8=0.解得:a=(负值已舍去).∴点G的坐标为(,0).如图2所示:当∠EGN=90°.设点G的坐标为(a,0),则N(a,a2﹣3a﹣4).∵∠EGN=∠AOC=90°,∴时,△AOC∽△NGE.∴=4,整理得:4a2﹣11a﹣17=0.解得:a=(负值已舍去).∴点G的坐标为(,0).∵EN在EP的右面,∴∠NEG<90°.如图3所示:当∠ENG′=90°时,EG′=EG××=(﹣1)×=.∴点G′的横坐标=.∵≈4.03>4,∴点G′不在EG上.故此种情况不成立.综上所述,点G的坐标为(,0)或(,0).4.如图(1),抛物线y=ax2+bx+c与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于点C(0,﹣3),若抛物线的对称轴为直线x=1,且tan∠OAC=3.(1)求抛物线的函数解析式;(2 若点D是抛物线BC段上的动点,且点D到直线BC距离为,求点D的坐标(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0,﹣),点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN 的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.【解答】解:(1)在Rt△AOC中,tan∠AOC==3,且OC=3,∴OA=1,则A(﹣1,0),∵抛物线的对称轴为直线x=1,则点A(﹣1,0)关于直线x=1的对称点B的坐标为(3,0),设抛物线的表达式为y=a(x﹣3)(x+1),将点C(0,﹣3)代入上式得﹣3a=﹣3,解得:a=1,∴抛物线的解析式为y=(x﹣3)(x+1)=x2﹣2x﹣3;(2)∵点B(3,0)、C(0,﹣3),则BC=3,∴S△BCD=×3×=3,设D(x,x2﹣2x﹣3),连接OD,∴S△BCD=S△OCD+S△BOD﹣S△BOC=•3•x+•3•(﹣x2+2x+3)﹣×3×3==3,解得x=1或x=2,则点D的坐标为(1,﹣4)或(2,﹣3);(3)设直线AE解析式为y=kx+b,将点A(﹣1,0)、E(0,﹣)代入得:,解得:,则直线AE 解析式为y=﹣x﹣,AE==,设P(t,t2﹣2t﹣3),则M(t,﹣t﹣),∴PM=﹣t﹣﹣(t2﹣2t﹣3)=﹣t2+t+,作PG⊥MN于G,由PM=PN得MG=NG=MN,由△PMG∽△AEO得=,即=,∴MG=PM=NG,∴C△PMN=PM+PN+MN=PM=(﹣t2+t+)=﹣t2++6=﹣(t﹣)2+,∴当t=时,C△PMN取得最大值,此时P(,﹣).5.已知:如图,直线y=﹣x+2与x轴交于B点,与y轴交于C点,A点坐标为(﹣1,0).(1)求过A、B、C三点的抛物线的解析式.(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若不存在,说明理由.【解答】解:(1)直线y=﹣x+2与x轴交于B(2,0),与y轴交于C点(0,2),设过A、B、C的抛物线的解析式为y=ax2+bx+c,把A(﹣1,0)、B(2,0)、C(0,2)的坐标代入,∴a=﹣1,b=1,c=2,∴抛物线的解析式为:y=﹣x2+x+2,(2)设D(x,﹣x2+x+2),F(x,﹣x+2),∴DF=(﹣x2+x+2)﹣(﹣x+2)=﹣x2+2x,所以x=1时,DF最大=1,∵OB=OC,∴△OBC为等腰直角三角形,∵DE⊥BC,DF∥y轴,∴△DEF为等腰直角三角形,∴△DEF周长的最大值为1+(3)如图,当△DEF周长最大时,D(1,2),F(1,1).延长DF交x轴于H,作PM⊥DF于M,则DB=,DH=2,OH=1当∠DFP=∠DBC时,△DFP∽△DBF,∴,∴DP=,∴=,∴PM=,DM=,∴P点的横坐标为OH+PM=1+=,P点的纵坐标为DH﹣DM=2﹣=,∴P(,).6.如图,抛物线y=﹣x2+(m﹣1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x轴交直线AD于H,求△FGH的周长的最大值;(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.【解答】解:(1)把C(0,3)代入y=﹣x2+(m﹣1)x+m得m=3,∴抛物线的解析式为:y=﹣x2+2x+3,(2)令y=﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),C(0,3),∵点D和点C关于抛物线的对称轴对称,∴D(1,2),AD的解析式y=x+1,设AD与y轴交于E,∴OA=OE=1,∴∠EAO=45°,∵FH∥AB,∴∠FHA=∠EAO=45°,∵FG⊥AH,∴△FGH是等腰直角三角形,设点F坐标(m,﹣m2+2m+3),∴点H坐标(﹣m2+2m+2,﹣m2+2m+3),∴FH=﹣m2+m+2,∴△FGH的周长=(﹣m2+m+2)+2×(﹣m2+m+2)=﹣(1+)(m﹣)2+∴△FGH的周长最大值为;(3)∵抛物线y=﹣x2+2x+3的定点坐标为(1,4),∴直线AM的解析式为y=2x+2,∵直线l垂直于直线AM,∴设直线l的解析式为y=﹣x+b,∵与坐标轴交于P、Q两点,∴直线l的解析式为y=﹣x+b与y轴的交点P(0,b),与x轴的交点Q(2b,0),设R(1,a),∴PR2=(﹣1)2+(a﹣b)2,QR2=(2b﹣1)2+a2,PQ2=b2+(2b)2=5b2,∵△PQR是以PQ为斜边的等腰直角三角形,∴PR2=QR2,即(﹣1)2+(a﹣b)2=QR2=(2b﹣1)2+a2,∴﹣2a=3b﹣4,①∴PR2+QR2=PQ2,即(﹣1)2+(a﹣b)2+(2b﹣1)2+a2=5b2,∴2a2﹣2ab﹣4b+2=0,②联立①②解得:,,∴直线l的解析式为y=﹣x+或y=﹣x+2.7.如图,已知抛物线y=﹣x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对称.(1)直接写出点D的坐标和直线AD的解析式;(2)点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;(3)若点P为y轴上的动点,则在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标,若不存在,请说明理由.【解答】解:(1)将x=0代入得y=3,∴C(0,3).∵抛物线的对称轴为x=﹣=1,C(0,3),∴D(2,3).把y=0代入抛物线的解析式得:0=﹣x2+2x+3,解得x=3或x=﹣1,∴A(﹣1,0).设直线AD的解析式为y=kx+b,将点A和点D的坐标代入得:,解得:k=1,b=1,∴直线AD的解析式为y=x+1.(2)如图1所示:∵直线AD的解析式为y=x+1,∴∠DAB=45°.∵EF∥x轴,EG∥y轴,∴∠GEF=90°,∠GFE=∠DAB=45°∴△EFG是等腰直角三角形.∴△EFG的周长=EF+FG+EG=(2+)EG.依题意,设E(t,﹣t2+2t+3),则G(t,t+1).∴EG=﹣t2+2t+3﹣(t+1)=﹣(t﹣)2+.∴EG的最大值为.∴△EFG的周长的最大值为+.(3)存在.①以AD为平行四边形的边时,PQ∥AD,PQ=AD.∵A,D两点间的水平距离为3,∴P,Q两点间的水平距离也为3.∴点Q的横坐标为3或﹣3.将x=3和x=﹣3分别代入y=﹣x2+2x+3得y=0或y=﹣12.∴Q(3,0)或(﹣3,﹣12).②当AD为平行四边形的对角线时,设AD的中点为M,∵A(﹣1,0),D(2,3),M为AD的中点,∴M(,).设点Q的横坐标为x,则=,解得x=1,∴点Q的横坐标为1.将x=1代入y=﹣x2+2x+3得y=4.∴这时点Q的坐标为(1,4).综上所述,当点Q的坐标为Q(3,0)或(﹣3,﹣12)或(1,4)时,以A,D,P,Q为顶点的四边形是平行四边形.8.如图,抛物线y=﹣x2﹣x+3与x轴相交于A、B两点(点A在点B的左侧),交y轴与点D,已知点C(0,),连接AC.(1)求直线AC的解析式;(2)点P是直线AC上方的抛物线上一动点,过点P作PE∥y轴,交直线AC于点E,过点P作PG⊥AC,垂足为G,当△PEG周长最大时,在x轴上存在一点Q,使|QP﹣QC|的值最大,请求出这个最大值以及点P的坐标;(3)当(2)题中|QP﹣QG|取得最大值时,直线PG交y轴于点M,把抛物线沿直线AD平移,平移后的抛物线y′与直线AD相交的一个交点为A′,在平移的过程中,是否存在点A′,使得点A′,P,M 三点构成的三角形为等腰三角形,若存在,直接写出点A′的坐标;若不存在,请说明理由.【解答】解:(1)令y=0则,﹣x2﹣x+3=0,解得x=﹣3或x=2,∴A(﹣3,0),B(2,0).设直线AC的解析式为y=kx+b,将点A和点C的坐标代入得:,解得:k=,b=,∴直线AC的解析式为y=x+.(2)延长PE交OA与点F,则PF⊥OA.∵PF⊥OA,PG⊥AC,∴∠EFA=∠PGE.又∵∠PEG=∠FEA,∴∠EAF=∠EPG.∵OC=,AO=3,∴tan∠GPE=tan∠EAF=.∴sin∠GPE=,cos∠GPE=.∴PG=PE,EG=EP.∴△PEG的周长=PE+PG+EG=(1+)PE.∴当PE取得最大值时,△PEC的周长最大.设点P的坐标为(t,﹣t2﹣t+3),则点E的坐标为(t,t+).∵点P在点E的上方,∴PE=﹣t2﹣t+3﹣(t+)=﹣t2﹣t+=﹣(t+1)2+2.当t=﹣1时,PE取得最大值,此时△PGE的周长取得最大值.∴点P(﹣1,3),点E的坐标为(﹣1,﹣1).∴PE=3﹣1=2.∴PG=PE=.根据三角形的两边之差小于第三边可知:当点P、G、Q三点共线时,|QP﹣QG|的值最大,此时|QP﹣QG|=PG=(3)如图所示:∵∠PGE=∠PFN,∠P=∠P,∴△PEG∽△PNF,∴=,即=2,解得FN=1.5.∴点N的坐标为(,0).设PN的解析式为y=kx+b,将点P和点N的坐标代入得:,解得:k=﹣2,b=1.∴M(0,1).设直线AD的解析式为y=mx+3,将点A的坐标代入得:﹣3m+3=0,解得m=1,∴直线AD的解析式为y=x+3.设点A′的坐标为(x,x+3).当PM=PA′时,=,整理得:x2+x﹣2=0,解得x=1或x=﹣2,∴点A′的坐标为(1,4)或(﹣2,1).当PM=MA′时,=,整理得:2x2+4x﹣1=0,解得:x=或x=,∴点A′的坐标为(,)或(,).当A′P=A′M时,=,整理得:﹣2x=3,解得:x=﹣,∴A′(﹣,).综上所述,点A′的坐标为(1,4)或(﹣2,1)或(,)或(,)或(﹣,).9.如图,抛物线y=﹣x2+x+3交x轴于A、B两点,点A在点B的左侧,交y轴于点C.(1)求直线AC与直线BC的解析式;(2)如图1,P为直线BC上方抛物线上的一点;①过点P作PD⊥BC于点D,作PM∥y轴交直线BC于点M,当△PDM的周长最大时,求P点坐标及周长最大值;②在①的条件下,连接AP与y轴交于点E,抛物线的对称轴与x轴交于点K,若S为直线BC上一动点,T为直线AC上一动点,连接EK,KS,ST,TE,求四边形EKST周长的最小值;(3)如图2,将△AOC顺时针旋转60°得到△A′OC′,将△A′OC′沿直线OC′平移,记平移中的△A′OC′为△A″O′C″,直线A″O′与x轴交于点F,将△O′C″F沿O′C″翻折得到△O′C″F′,当△CC″F′为等腰三角形时,求此时F点的坐标.【解答】解:(1)对于抛物线y=﹣x2+x+3,令x=0,得到y=3,可得C(0,3),令y=0,可得y=﹣x2+x+3=0,解得x=﹣1或3,∴A(﹣1,0),B(4,0),∴直线AC的解析式为y=3x+3,直线BC的解析式为y=﹣x+3;(2)①如图在1中,设P(m,﹣m2+m+3),则M(m,﹣m+3).∵点P运动时,△PDM的形状是相似的,∴PM的值最大时,△PDM的周长的值最大,∵PM=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m=﹣(m2﹣4m+4﹣4)=﹣(m﹣2)2+3,∵﹣<0,∴m=2时,PM的值最大,此时P(2,),PM的最大值为,∵OC=3,OB=4,∴BC==5,由△PDM∽△BOC,可得==,∴==,∴PD=,DM=,∴△PDM的周长的最大值为++=.②如图2中,作K关于BC的对称点K′,E关于AC的对称点E′,连接E′K′交AC于T,交BC于S,此时四边形EKST的周长最小.四边形EKST的周长的最小值=EK+SK+ST+TE=EK+K′S+ST+TE′=EK+E′K′,∵P(2,),∴直线AP的解析式为y=x+,∴E(0,),∵K(,0),∴OE=OK=,EK=,∵K与K′关于直线BC对称,∴K′(,),∵E,E′关于直线AC对称,∴E′(﹣,),∴E′K′==3,∴四边形EKST周长的最小值为3+=.(3)如图3中,设OF=2m,则FO′=O′F′=m,OO′=m,OC″=m+3..可得F′(m ,m),C″(m+,m+),①当C″C=C″F′时,(m+)2+(m ﹣)2=(﹣m)2+(﹣m)2,整理得m2+3m=0,解得m=0或﹣3(舍弃),∴F(0,0).②当CF′=C″F′时,(﹣m)2+(﹣m)2=m2+(m﹣3)2,整理得m2﹣m=0,解得m=0或,∴F(0,0)或(,3);③当CF′=CC″时,m2+(m﹣3)2=(m+)2+(m ﹣)2,整理得m2﹣9m=0,解得m=0或9,∴F(0,0)或(9,27),综上所述,满足条件的点F坐标为(0,0)或(,3)或(9,27);可编辑。

中考数学二次函数专题训练50题(含参考答案)

中考数学二次函数专题训练50题(含参考答案)

中考数学二次函数专题训练50题含答案一、单选题1.二次函数y =﹣2x 2﹣1图象的顶点坐标为( ) A .(0,0)B .(0,﹣1)C .(﹣2,﹣1)D .(﹣2,1)2.下列函数图象不属于中心对称图形的是( ) A .20222023yxB .220222023yx x C .2023y =- D .2022xy =-3.下列关系式中,属于二次函数的是( )A .22y x =-B .y =C .31y x =-D .1y x=4.若抛物线2(2)(2)=-≠y a x a 开口向上,则a 的取值范围是( ) A .2a <B .2a >C .a<0D .0a >5.已知点1(4)y -,、2(1)y -,、353y ⎛⎫⎪⎝⎭,都在函数245y x x =--+的图象上,则123y y y 、、的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .312y y y >> 6.在平面直角坐标系中,将抛物线221y x x =+-,绕原点旋转180°,所得到的抛物线的函数关系式是( ) A .221y x x =-+ B .221y x x =--- C .221y x x =-+-D .221y x x =-++7.已知二次函数2y ax bx c =++的图象经过原点和第一、二、三象限,则( ) A .0,0,0a b c >>> B .0,0,0a b c <<= C .0,0,0a b c <D .0,0,0a b c >>=8.二次函数241y mx x =-+有最小值3-,则m 等于( ) A .1B .1-C .1±D .12±9.已知点 A (−1,a ),B (1,b ),C (2,c )是抛物线 y = -2x + 2x 上的三点,则 a ,b ,c 的大小关系为( ) A .a>c>bB .b>a>cC .b>c>aD .c>a>b10.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB →BC 方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.5C.6D.25411.如图,已知直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,则①abc、①a﹣b+c、①a+b+c、①2a﹣b、①3a﹣b,其中是负数的有()A.1个B.2个C.3个D.4个12.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x+4)2+7C.y=(x﹣4)2﹣25D.y=(x+4)2﹣2513.若二次函数y=(x﹣k)2+m,当x≤2时,y随x的增大而减小,则k的取值范围是()A.k=2B.k>2C.k≥2D.k≤214.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:则方程ax2+bx+3=0的根是()A.0或4B.1或3C.-1或1D.无实根15.二次函数图像如图所示,下列结论:①0abc >,①20a b +=,①,①方程20ax bx c ++=的解是-2和4,①不等式20ax bx c ++>的解集是24-<<x ,其中正确的结论有( )A .2个B .3个C .4个D .5个16.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,有下列5个结论:①abc <0,①3a ﹣b =0,①a +b +c =0,①9a ﹣3b +c <0,①b 2﹣4ac >0.其中正确的有( )A .①①①B .①①①C .①①①D .①①17.将抛物线y=2x2向右平移1个单位后,得到的抛物线的表达式是( ) A .y=2(x+1)2B .y=2(x ﹣1)2C .y=2x2﹣1D .y=2x2+118.如图为二次函数y=ax 2+bx+c 的图象,在下列说法中:①ac <0;①2a ﹣b=0;①当x >1时,y 随x 的增大而增大;①方程ax 2+bx+c=0的根是x 1=﹣1,x 2=3;①30a c +=;①对于任意实数m ,2am bm a b +≥+总是成立的.正确的说法有( )A .2B .3C .4D .519.如图是二次函数21y ax bx c =++,反比例函数2my x=在同一直角坐标系的图象,若y 1与y 2交于点A (4,yA ),则下列命题中,假命题是( )A .当x >4时,12y y >B .当1x <-时,12y y >C .当12y y <时,0<x <4D .当12y y >时,x <020.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =12, 且经过点(2,0),下列结论正确的是( )A .abc >0B .2-4ac<0bC .a+b=1D .当x >2或x <-1时,y <0二、填空题21.写出一个函数的表达式,使它满足:①图象经过点(1,1);①在第一象限内函数y 随自变量x 的增大而减少,则这个函数的表达式为__________. 22.抛物线()269y x =-++的顶点坐标是______. 23.抛物线244y x x =+-的对称轴是直线______. 24.抛物线y =-(x -1)2-2的顶点坐标是________.25.二次函数210y ax bx a =+≠-()的图象经过点(1,1),则代数式1a b --的值为______. 26.将抛物线2yx 向左平移2个单位后,得到的抛物线的解析式是______;27.若抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4),则这条抛物线的对称轴是直线____________.28.抛物线 245y x x =-+,当34x -≤≤时,y 的取值范围是___________ 29.已知二次函数21y mx x =+-的图象与x 轴有两个交点,则m 的取值范围是______.30.如图,抛物线2=23y x x --与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点B ,C 作一条直线l . (1)ABC ∠的度数是______;(2)点P 在线段OB 上,且点P 的坐标为()2,0,过点P 作PM x ⊥轴,交直线l 于点N ,交抛物线于点M ,则线段MN 的长为______.31.如图,一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_____.32.二次函数y =2x 2的图象向左平移2个单位长度,再向下平移5个单位长度后得到的图象的解析式为_____.33.如图,直角梯形OABC 的直角顶点是坐标原点,边OA ,OC 分别在x 轴,y 轴的正半轴上.OA ①BC ,D 是BC 上一点,BD =14OA AB =3,①OAB =45°,E ,F 分别是线段OA ,AB 上的两个动点,且始终保持①DEF =45°.设OE =x ,AF =y ,则y 与x 的函数关系式为_____.34.已知某抛物线上部分点的横坐标x ,纵坐标y 的对应值如下表:那么该抛物线的顶点坐标是_____.35.已知点A(-3,m)在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点的坐标为________.36.若二次函数()22212y x m x m m =-+-+-的图象关于y 轴对称,则m 的值为:________.此函数图象的顶点和它与x 轴的两个交点所确定的三角形的面积为:________.37.二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a≠0)中的x 与y 的部分对应值如表下列结论:①ac <0; ①当x >1时,y 的值随x 值的增大而减小; ①当2x =时,5y =; ①3是方程ax 2+(b ﹣1)x+c=0的一个根. 其中正确的结论是_________(填正确结论的序号).38.如图所示,已知二次函数()20y ax bx c a =++≠的部分图象,下列结论中:0abc >①; 40a c +>②;③若t 为任意实数,则有2a bt at b -≥+; ④若函数图象经过点()2,1,则311222a b c ++=;⑤当函数图象经过()2,1时,方程210ax bx c ++-=的两根为1x ,212()x x x <,则1228x x -=-.其中正确的结论有______.39.如图,正方形ABCD 的边长为4,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 上的动点,且AE =BF =CG =DH .则四边形EFGH 面积的最小值为___.40.如图,已知二次函数2y x 2x 3=-++的图象与y 轴交于点A ,MN 是该抛物线的对称轴,点P 在射线MN 上,连结PA ,过点A 作AB AP ⊥交x 轴于点B ,过A 作AC MN ⊥于点C ,连结PB ,在点P 的运动过程中,抛物线上存在点Q ,使QAC PBA ∠∠=,则点Q 的横坐标为______.三、解答题41.已知抛物线y =x 2+(b -2)x +c 经过点M (-1,-2b ). (1)求b +c 的值.(2)若b =4,求这条抛物线的顶点坐标.42.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x ≤14)之间的函数关系式,并求出第几天时销售利润最大?43.我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“D 函数”,其图象上关于原点对称的两点叫做一对“D 点”根据该约定,完成下列各题.(1)在下列关于x 的函数中,是“D 函数”的,请在相应题目后面的括号中打“√”,不是“D 函数”的打“×”,my x=(0m ≠)(_______);31y x =-(_______);2y x =(_______).(2)若点A (1,m )与点B (n ,4-)是关于x 的“D 函数”2y ax bx c =++(0a ≠)的一对“D 点”,且该函数的对称轴始终位于直线1x =的右侧,求a ,b ,c 的值或取值范围;(3)若关于x 的“D 函数”223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=;①()()2230c b a c b a +-++<;求该“D 函数”截x 轴得到的线段长度的取值范围.44.(1)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度;(2)如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)i =1:0.75,山坡坡底C 点到坡顶D 点的距离CD =50m ,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,求居民楼AB 的高度.(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)(3)已知飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣32t2,求在飞机着陆滑行中最后4s滑行的距离.45.已知二次函数222y x x k=-+++与x轴的公共点有两个.求:()1求k的取值范围;()2当1k=时,求抛物线与x轴的公共点A和B的坐标及顶点C的坐标;()3观察图象,当x取何值时0y>?46.如图,抛物线245y x x=-++与x轴交于点A和点B,与y轴交于点C.(1)求出A、B、C三点的坐标;(2)将抛物线245y x x=-++图像x轴上方部分沿x轴向下翻折,保留抛物线与x轴的交点和x轴下方图像,得到的新图像记作M,图像M与直线y t=恒有四个交点,从左到右四个交点依次记为D,E,F,G.若以EF为直径作圆,该圆记作图像N.①在图像M上找一点P,使得PAB的面积为3,求出点P的坐标;①当图像N与x轴相离时,直接写出t的取值范围.47.如图,在△ABC 中,AB=4,D 是AB 上的一点(不与点A、B 重合),DE①BC,交AC 于点E.设△ABC 的面积为S,△DEC 的面积为S'.(1)当D是AB中点时,求SS'的值;(2)设AD=x,SS'=y,求y与x的函数表达式,并写出自变量x的取值范围;(3)根据y的范围,求S-4S′的最小值.48.如图1,在平面直角坐标系中,抛物线y=﹣38x2+34x+3与x轴交于点A和点B,A在B的左侧,与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求直线BC的解析式;(2)过P作PM①x轴,交BC于M,当PM﹣CM的值最大时,求P的坐标和PM﹣CM的最大值;(3)如图2,将该抛物线向右平移1个单位,得到新的抛物线y1,过点P作直线BC 的垂线,垂足为E,作y1对称轴的垂线,垂足为F,连接EF,请直接写出当PEF是以PF为腰的等腰三角形时,点P的横坐标.49.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B.求:(1)点A 、B 的坐标;(2)抛物线的函数表达式;(3)若点M 是该抛物线对称轴上的一点,求AM+BM 的最小值及点M 的坐标; (4)在抛物线对称轴上是否存在点P ,使得以A 、B 、P 为顶点的三角形为等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.50.如图所示,抛物线2y ax bx c =++的图象过(03)A ,,()10B -,,0(3)C ,三点,顶点为P .(1)求抛物线的解析式;(2)设点G 在y 轴上,且OGB OAB ACB ∠+∠=∠,求AG 的长;(3)若//AD x 轴且D 在抛物线上,过D 作DE BC ⊥于E ,M 在直线DE 上运动,点N 在x 轴上运动,是否存在这样的点M 、N 使以A 、M 、N 为顶点的三角形与APD △相似若存在,请求出点M 、N 的坐标.参考答案:1.B【分析】根据二次函数的解析式特点可知其图象关于y 轴对称,可得出其顶点坐标.【详解】解:①221y x =-- ,①其图象关于y 轴对称,①其顶点在y 轴上,当0x =时,1y =-,所以顶点坐标为(0,﹣1),故选择:B.【点睛】本题主要考查二次函数的顶点坐标,掌握二次函数y=ax 2+c 的图象关于y 轴对称是解题的关键.2.B【分析】分别根据一次函数图象,二次函数图象,常数函数的图象的对称性分析判断即可得解.【详解】解:A .直线20222023y x 是轴对称图形,也是中心对称图形,故本选项不符合题意;B .抛物线220222023y x x 是轴对称图形,不是中心对称图形,故本选项符合题意;C .直线2023y =-是轴对称图形,也是中心对称图形,故本选项不符合题意;D .直线2022x y =-是轴对称图形,也是中心对称图形,故本选项不符合题意. 故选:B .【点睛】本题考查了二次函数图象,一次函数图象,常数函数的图象,熟记各图形以及其对称性是解题的关键.3.A【分析】根据二次函数的定义进行解答即可.【详解】22y x =-符合二次函数的定义,故A 符合题意;y B 不符合题意; 31y x =-是一次函数,故C 不符合题意;1y x=中含自变量的代数式不是整式,不符合二次函数的定义,故D 不符合题意;故选A【点睛】本题考查了二次函数的定义,掌握二次函数的一般形式()20y ax bx c a =++≠是解题的关键.4.B【分析】根据抛物线的开口向上,可得20a ->,进而即可求得a 的取值范围.【详解】解:①抛物线2(2)(2)=-≠y a x a 开口向上,①20a ->即2a >故选B【点睛】本题考查了二次函数2y ax =图象的性质,掌握0a >时,抛物线的开口向上是解题的关键.5.C【分析】根据函数解析式求出对称轴,在根据函数的性质求解即可;【详解】解:①245y x x =--+,①函数图像的对称轴是直线422x -=-=--,图象的开口向下, ①当<2x -时,y 随x 的增大而增大, 点353y ⎛⎫ ⎪⎝⎭,关于对称轴的对称点是⎛⎫- ⎪⎝⎭317,3y , ①17413-<-<-, ①213y y y >>;故选:C .【点睛】本题主要考查了二次函数图象上点的坐标特征,掌握二次函数图象的性质是解题的关键.6.D【分析】先求出抛物线的顶点坐标,再根据旋转求出旋转后的抛物线顶点坐标,然后根据顶点式写出抛物线的解析式即可.【详解】解:①()222112y x x x =+-=+-,①抛物线的顶点坐标为()1,2--,①将抛物线221y x x =+-,绕原点旋转180︒后顶点坐标变为()1,2,1a =-,①旋转后的函数关系式为()221221y x x x =--+=-++.故选:D .【点睛】本题主要考查了求抛物线的解析式,关于原点对称的两个点的坐标特点,解题的关键是求出旋转后抛物线的顶点坐标和a 的值.7.D【详解】试题分析:由题意得,二次函数经过原点可知,,又只经过第一,二,三象限,画图可知抛物线开口向上,对称轴在轴的负半轴,综合可知,故选D.考点:二次函数的对称轴及开口方向综合问题.8.A【分析】根据二次函数的最值公式列式计算即可得解.【详解】①二次函数241y mx x =-+有最小值3-, ①41634m m-=-, 解得1m =.故选A .9.C【分析】根据二次函数的性质得到抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:①抛物线y =-x 2+2x =-(x -1)2+1,①抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,而A (-1,a )离直线x =1的距离最远,B (1,b )在直线x =1上,①b >c >a ,故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10.B【分析】易证△CFE ∽△BEA ,可得CF CE BE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【详解】若点E 在BC 上时,如图∵∠EFC +∠AEB =90°,∠FEC +∠EFC =90°,∴∠CFE =∠AEB ,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB=,BE =CE =x ﹣52,即525522x y x -=-, ∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5; 故选B . 【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.11.B【分析】根据抛物线的开口方向,对称轴,与y 轴的交点判定系数符号,及运用一些特殊点解答问题.【详解】由抛物线的开口向下可得:a <0,根据抛物线的对称轴在y 轴左边可得:a ,b 同号,所以b <0,根据抛物线与y轴的交点在正半轴可得:c > 0,直线x =-1是抛物线y = ax 2+bx +c (a ≠0)的对称轴,所以-b 2a=-1,可得b =2a ,由图知,当x =-3时y <0,即9a -3b +c < 0,所以9a -6a +c =3a +c <0,因此①abc >0;①a -b +c =a -2a +c =c -a > 0;①a +b +c = a +2a +c =3a +c < 0;①2a -b =2a - 2a = 0;①3a -b =3a - 2a = a <0所以①①小于0,故负数有2个,故答案选B.【点睛】本题主要考查了结合图形判断抛物线方程的系数,解本题的要点在于熟知抛物线的基本性质.12.C【分析】直接利用配方法进而将原式变形得出答案.【详解】y =x 2-8x -9=x 2-8x +16-25=(x -4)2-25.故选C .【点睛】此题主要考查了二次函数的三种形式,正确配方是解题关键.13.C【详解】试题分析:根据二次函数的增减性可得:当x≤k 时,y 随x 的增大而减小,则k≥2.考点:二次函数的性质14.B【分析】将(0,2)(3,-1)(4,2)代入到二次函数y =ax 2+bx +c 中,分别求出a 、b 的值,即可求出方程的解.【详解】由题意得:29311642c a b c a b c =⎧⎪++=-⎨⎪++=⎩解得:142a b c =⎧⎪=-⎨⎪=⎩①方程230ax bx ++=为2430x x -+=(1)(3)0x x --=解得:121,3x x ==故选B【点睛】本题考查二次函数抛物线与坐标轴的交点以及待定系数法函数解析式和一元二次方程求解,熟练掌握相关知识点是解题关键.15.C【详解】试题分析: ①抛物线开口向上,①0a >,①抛物线对称轴为直线2b x a =-=1,①0b <,①抛物线与y 轴交点在x 轴下方,①0c <,①0abc >,所以①正确; ①2b x a=-=1,即2b a =-,①20a b +=,所以①正确; ①抛物线与x 轴的一个交点为(﹣2,0),而抛物线对称轴为直线x=1,①抛物线与x 轴的另一个交点为(4,0),①当3x =时,0y <,①,所以①错误. ①抛物线与x 轴的两个交点为(﹣2,0),(4,0),①方程20ax bx c ++=的解是-2和4,①①正确;由图像可知:不等式20ax bx c ++>的解集是24-<<x ,①①正确.①正确的答案为:①①①①.故选C .考点:二次函数图象与系数的关系.16.B【分析】根据二次函数的图像和性质逐一进行判断即可【详解】解:①抛物线开口朝下,①a <0,①对称轴x =3-22b a=- ①b =3a <0,①3a ﹣b =0,故①正确;①抛物线与y 轴的交点在x 轴的上方,①c >0,①abc >0,故①错误;①抛物线的对称轴x =3-2,与x 轴的一个交点为(-4,0), ①抛物线与x 轴的一个交点为(1,0),①a +b +c =0,故①正确;根据图象知道当x =-3时,y =9a -3b +c >0,故①错误;根据图象知道抛物线与x 轴有两个交点,①b 2-4ac >0,故①正确.①正确答案为:①①①.故选:B【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.17.B【分析】可根据二次函数图象左加右减,上加下减的平移规律进行解答.【详解】二次函数y=2x 2的图象向右平移1个单位,得:y=2(x-1)2,故选B .【点睛】本题考查了函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.18.D【分析】根据二次函数系数与图像性质,二次函数与方程,二次函数与不等式之间的关系判断每一个结论,从而得出答案.【详解】①由图像可知,抛物线的开口向上,①a >0,①抛物线与y 轴的交点为在y 轴的负半轴上,①c <0,①ac <0,故此选项正确;①由图像可知,对称轴为x=1, ①12b x a=-=, ①-b=2a ,①2a+b=0,故此选项错误;①当x >1时,y 随x 的增大而增大,故此选项正确;①由图像可知,方程ax 2+bx+c=0的根是x 1=﹣1,且对称轴为x=1, ①1212x x +=, ①2122(1)3x x =-=--=,故此选项正确;①由①可知,12133c x x a==-⨯=-, 3c a ∴=-,30a c ∴+=,故此选项正确;①由图像可知,抛物线的顶点坐标为(1,)a b c ++,∴当x=1时,二次函数y=ax 2+bx+c 有最小值a+b+c ,∴2ax bx c a b c ++≥++,当x=m 时,则有2am bm c a b c ++≥++,∴2am bm a b +≥+,故此选项正确;①正确的说法有①①①①①共5个.故选:D .【点睛】本题考查了二次函数的图像与性质、方程、不等式之间的知识点,要掌握如何利用图像上的信息确定字母系数的范围,并记住特殊值的特殊用法,如x=1,x=-1时对应的y 值是解题的关键.19.D【分析】结合图形、利用数形结合思想解答.【详解】由函数图象可知,当x >4时,y 1>y 2,A 是真命题;当x <-1时,y 1>y 2,C 是真命题;当y 1<y 2时,0<x <4,C 是真命题;y 1>y 2时,x <0或x >4,D 是假命题;故选D .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.20.D【分析】根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a 、b 、c 的符号;根据对称轴求出b=-a ;把x=2代入函数关系式,结合图象判断函数值与0的大小关. .【详解】:①二次函数的图象开口向下,①a<0,①二次函数的图象交y 轴的正半轴于一点,①c>0,①对称轴是直线x=12,①−2b a =12, ①b=−a>0,①abc<0.故A 错误;①抛物线与x 轴有两个交点,①b 2-4ac>0, 故B 错误①b=−a ,①a+b=0,故C 错误;故答案选D【点睛】本题考查的知识点是二次函数图像与系数的关系,解题的关键是熟练的掌握二次函数图像与系数的关系.21.1y x= 【分析】根据反比例函数、一次函数以及二次函数的性质作答. 【详解】解:该题答案不唯一,可以为1y x=等. 故答案为:1y x =. 【点睛】本题考查的是反比例函数、一次函数以及二次函数的性质,熟知函数的增减性是解答此题的关键.22.()6,9-【分析】直接根据顶点式解析式写出顶点坐标即可.【详解】解:()269y x =-++的顶点为()6,9-, 故答案为:()6,9-.【点睛】本题考查了抛物线顶点式解析式的顶点坐标,解题关键是理解抛物线()()20y a x h k a =-+≠的顶点坐标为()h k ,. 23.2x =-【分析】将题目的解析式化为顶点式,即可得到该抛物线的对称轴,本题得以解决.【详解】解:①抛物线2244(2)8y x x x =+-=+-,①该抛物线的对称轴是直线2x =-,故答案为:2x =-.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.24.(1,-2)【分析】对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,. 【详解】由y =-(x -1)2-2,根据顶点式的坐标特点可知,顶点坐标为()12-,故答案为:()12-,. 【点睛】本题考查了抛物线的顶点式及顶点坐标;对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,,掌握顶点式是解题的关键.25.-1【详解】①二次函数y=ax2+bx−1(a≠0)的图象经过点(1,1),①a+b−1=1,①a+b=2,①1−a−b=1−(a+b)=1−2=−1.故答案为-1.26.()22y x =+或244y x x =++【分析】根据函数的平移规律:左加右减;上加下减即可求解.【详解】解:①抛物线2y x 向左平移2个单位,①平移后抛物线的解析式为()22y x =+故答案为:()22y x =+【点睛】本题考查了抛物线的平移变换,熟练掌握抛物线的平移规律是解题的关键. 27.x =3【分析】因为点(1,4),(5,4)的纵坐标都为4,所以可判定是一对对称点,把两点的横坐标代入公式x =122x x +求解即可.【详解】解:抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4), ①两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x =1532+=,即x =3. 故答案为:3.【点睛】本题考查抛物线与x 轴的平行线交点问题.掌握抛物线的性质,会利用关于对称轴对称的两点坐标求对称轴是解题关键.28.126y ≤≤【分析】先化为顶点式,然后根据二次函数的性质求解即可.【详解】解:①2245(2)1y x x x =-+=-+,①抛物线开口向上,对称轴为直线=2x ,函数有最小值1,当3x =-时,26y =,当=4x 时, 5.y =,①当34x -≤≤时,y 的取值范围是126y ≤≤;故答案为:126y ≤≤.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.29.14m >-且0m ≠ 【分析】根据题意可得0m ≠,且判别式0∆>,求解不等式即可.【详解】解:①二次函数21y mx x =+-的图象与x 轴有两个交点①0m ≠,且判别式240b ac ∆=->①14(1)0m ∆=-⨯⨯->,0m ≠ 解得14m >-且0m ≠ 故答案为:14m >-且0m ≠ 【点睛】此题考查了二次函数的定义以及二次函数与x 轴交点问题,掌握二次函数的定义以及性质是解题的关键.30. 45°; 2【分析】(1)分别求出A,B,C 的坐标,得到OB OC =,故可求解;(2)先求出直线l 的解析式,再得到M,N 的坐标即可求解.【详解】(1)当0y =时,2230x x --=,解得11x =-,23x =,①点A 在点B 的左侧, ①点A 坐标为()1,0-,点B 坐标为()3,0.当0x =时,=3y -,①点C 坐标为()0,3-,①OB OC =,①=45ABC ∠︒.(2)设直线l 的函数表达式为y kx b =+,根据题意得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, ①直线l 的函数表达式为3y x =-;当2x =时,31=-=-y x ,①点N 的坐标为2,1;当2x =时,22232433=--=--=-y x x ,①点M 的坐标为()2,3-;①()132=---=MN .故答案为:45°;2.【点睛】此题主要考查二次函数与一次函数综合,解题的关键是求出各点坐标. 31.m=2【分析】根据图像的旋转变化规律及二次函数的平移规律得出平移后的解析式,进而即可求值.【详解】①一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),①点O (0,0),A 1(3,0)①将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.①C 13的解析式与x 轴的坐标为(36,0)、(39,0)①C 13的解析式为:y =﹣(x -36)(x -39)当x =37时,m=y =﹣1×(﹣2)=2故答案为:2【点睛】本题主要考查二次函数的平移规律,解题的关键是得出二次函数平移后的解析式.32.y =2(x+2)2﹣5【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】由“左加右减”的原则可知,将二次函数y =2x 2的图象向左平移2个单位长度所得抛物线的解析式为:y =2(x+2)2,即y =2(x+1)2;由“上加下减”的原则可知,将抛物线y =2(x+2)2向下平移5个单位长度所得抛物线的解析式为:y =2(x+2)2﹣5,即y =2(x+2)2﹣5.故答案为:y =2(x+2)2﹣5.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.33.213y x x =【分析】首先过B 作x 轴的垂线,设垂足为M ,由已知易求得OA Rt①ABM 中,已知①OAB 的度数及AB 的长,即可求出AM 、BM 的长,进而可得到BC 、CD 的长,再连接OD ,证①ODE ①①AEF ,通过得到的比例线段,即可得出y 与x 的函数关系式.【详解】解:过B 作BM ①x 轴于M .在Rt①ABM 中,①AB =3,①BAM =45°,①AM =BM =2, ①BD =14OA ,OA ∴=,①BC =OA﹣AM =,CD =BC ﹣BD ,①D ,3OD ∴== . 连接OD ,则点D 在①COA 的平分线上,所以①DOE =①COD =45°.又①在梯形DOAB 中,①BAO =45°,①由三角形外角定理得:①ODE =①DEA ﹣45°,又①AEF =①DEA ﹣45°,①①ODE=①AEF ,①①ODE ①①AEF ,OE OD AF AE∴= 即x y =①y 与x 的解析式为:213y x =-.故答案为:213y x =-.【点睛】本题主要考查二次函数的应用,掌握相似三角形的判定及性质是解题的关键.34.(1,﹣4)【分析】根据二次函数的对称性求得对称轴,进而根据表格的数据即可得到抛物线的顶点坐标.【详解】①抛物线过点(0,﹣3)和(2,﹣3),①抛物线的对称轴方程为直线x=022+=1,①当x=1时,y=﹣4,①抛物线的顶点坐标为(1,﹣4);故答案为(1,﹣4).【点睛】本题考查了二次函数的性质,掌握二次函数的对称性是解题的关键.35.(-1,7)【详解】先根据抛物线上点的特点求出点A的坐标,再利用抛物线的对称性即可得出答案.解:把点A(-3,m)代y=x2+4x+10得,m=(-3)2+4×(-3)+10=7,①点A(-3,7),①对称轴42 22ba-=-=-,①点A(-3,7)关于对称轴x=2的对称点坐标为(-1,7).故答案为(-1,7).36.11【分析】由图象关于y轴对称可知对称轴为x=0,由此可求解m的值;代入m值后,分别求解抛物线与x 轴的两个交点以及与y 轴的交点,利用三角形面积公式计算三角形面积.【详解】①图象关于y 轴对称,①对称轴为x=0, ①()211022m b m a --=-=-=- 解得m=1,代入原方程得:21y x =-+当y=0时,210x -+=,x=±1,当x=0时,y=1,则S △=2112⨯=. 【点睛】本题考查了二次函数对称轴及其与x 、y 轴的交点.37.①①①.【详解】试题解析:①x =-1时y =-1,x =0时,y =3,x =1时,y =5,①1{35a b c c a b c -+-++===,解得1{33a b c -===,①y =-x 2+3x +3,①ac =-1×3=-3<0,故①正确;对称轴为直线x =-33212=⨯-(), 所以,当x >32时,y 的值随x 值的增大而减小,故①错误; 当x =2时,y =-4+4+3=3;故①正确.方程为-x 2+2x +3=0,整理得,x 2-2x -3=0,解得x 1=-1,x 2=3,所以,3是方程ax 2+(b -1)x +c =0的一个根,正确,故①正确.综上所述,结论正确的是①①①.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.38.①①①【分析】根据二次函数的开口方向、对称轴、顶点坐标以及二次函数与一元二次方程的关系综合进行判断即可.【详解】解:由抛物线开口向上,因此0a >, 对称轴是直线12b x a=-=-,因此a 、b 同号,所以0b >, 抛物线与y 轴的交点在负半轴,因此0c <. ,所以0abc <,故①不正确; 由对称轴12b x a=-=-可得2b a =, 由图象可知,当1x =时,0y a b c =++>,即20a a c ++>,30a c ∴+>,又0a >,40a c ∴+>,因此①正确;当=1x -时,y a b c =-+最小值,∴当()1x t t =≠-时,2a b c at bt c -+<++,即2a bt at b -<+,x t ∴=(t 为任意实数)时,有2a bt at b -≤+,因此①不正确;函数图象经过点()2,1,即421a b c ++=,而2b a =,231a b c ∴++=,311222a b c ∴++=, 因此①正确;当函数图象经过()2,1时,方程21ax bx c ++=的两根为1x ,212()x x x <,而对称轴为=1x -, 14x ∴=-,22x =,122448x x ∴-=--=-,因此①正确;综上所述,正确的结论有:①①①,故答案为:①①①.【点睛】本查二次函数的图象和性质,掌握二次函数图象的开口方向、对称轴、顶点坐标与系数a 、b 、c 的关系以及二次函数与一元二次方程的根的关系是正确判断的前提. 39.8【分析】由已知可证明①AHE ①①BEF ①①CFG ①①DGH (SAS ),再证明四边形EFGH 是正方形,设AE =x ,则AH =DG =BE =CF =4﹣x ,在Rt①EAH 中,由勾股定理得EH 2=x 2+(4﹣x )2,所以S 四边形EFGH =EH 2=2(x ﹣2)2+8,可知当x =2时,S 四边形EFGH 有最小值8,【详解】解:设AE =x ,则AE =BF =CG =DH =x ,①正方形ABCD ,边长为4,①AH =DG =BE =CF =4﹣x ,①A =①B =①C =①D =90°①①AHE ①①BEF ①①CFG ①①DGH (SAS ),①①AEH +①BEF =90°,①EFB +①GFC =90°,①FGC +①HGD =90°,①①HEF =①EFG =①FGH =90°,①EF =EH =HG =FG ,①四边形EFGH 是正方形,在Rt ①EAH 中,EH 2=AE 2+AH 2,即EH 2=x 2+(4﹣x )2,①S 四边形EFGH =EH 2=2x 2﹣8x +16=2(x ﹣2)2+8,当x =2时,S 四边形EFGH 有最小值8,故答案为:8.【点睛】本题主要考查了全等三角形的性质与判定,正方形的性质和二次函数的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.40.53【分析】通过作辅助线,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,先证明AOB 与ACP 相似,得到ABP AOC ∠∠=,再证QDA 与CAO 相似,设出点Q 的坐标,通过相似比即可求出点Q 坐标.【详解】如图,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,。

二次函数实际应用题专项训练(最值问题)

二次函数实际应用题专项训练(最值问题)

二次函数实际应用题专题训练(最值问题)中考知识提要(一)(二)1.今年我国多个省市遭受严重干旱. 受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:周数x 1 2 3 4 价格y(元/千2 2.2 2.4 2.6克)进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数.(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x所满足的函数关系式,并求出5月份y与x所满足的二次函数关系式;(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为,5月份的进价m(元/千克)与周数x所满足的函数关系为.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月的第2周共销售100吨此种蔬菜. 从5月的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少%a,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的价格仅上涨%8.0a.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.(1)当x = 1000时,y =元/件,w=元;内(2)分别求出与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?(2010 山东省德州)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?15.(2010湖北武汉)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x 为10的整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?23.(2010湖北恩施自治州)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?2、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。

二次函数专题训练(三角形周长最值问题)含答案

二次函数专题训练(三角形周长最值问题)含答案

1.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC 于点F,求△PEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM 为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM重合部分的面积是▱APQM面积的时,求▱APQM面积.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=.(1)求抛物线的解析式;(2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值;(3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.4.如图(1),抛物线y=ax2+bx+c与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于点C (0,﹣3),若抛物线的对称轴为直线x=1,且tan∠OAC=3.(1)求抛物线的函数解析式;(2 若点D是抛物线BC段上的动点,且点D到直线BC距离为,求点D的坐标(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0,﹣),点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.5.已知:如图,直线y=﹣x+2与x轴交于B点,与y轴交于C点,A点坐标为(﹣1,0).(1)求过A、B、C三点的抛物线的解析式.(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若不存在,说明理由.6.如图,抛物线y=﹣x2+(m﹣1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x轴交直线AD于H,求△FGH的周长的最大值;(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.7.如图,已知抛物线y=﹣x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对称.(1)直接写出点D的坐标和直线AD的解析式;(2)点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;(3)若点P为y轴上的动点,则在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标,若不存在,请说明理由.8.如图,抛物线y=﹣x2﹣x+3与x轴相交于A、B两点(点A在点B的左侧),交y轴与点D,已知点C(0,),连接AC.(1)求直线AC的解析式;(2)点P是直线AC上方的抛物线上一动点,过点P作PE∥y轴,交直线AC于点E,过点P作PG⊥AC,垂足为G,当△PEG周长最大时,在x轴上存在一点Q,使|QP﹣QC|的值最大,请求出这个最大值以及点P 的坐标;(3)当(2)题中|QP﹣QG|取得最大值时,直线PG交y轴于点M,把抛物线沿直线AD平移,平移后的抛物线y′与直线AD相交的一个交点为A′,在平移的过程中,是否存在点A′,使得点A′,P,M三点构成的三角形为等腰三角形,若存在,直接写出点A′的坐标;若不存在,请说明理由.9.如图,抛物线y=﹣x2+x+3交x轴于A、B两点,点A在点B的左侧,交y轴于点C.(1)求直线AC与直线BC的解析式;(2)如图1,P为直线BC上方抛物线上的一点;①过点P作PD⊥BC于点D,作PM∥y轴交直线BC于点M,当△PDM的周长最大时,求P点坐标及周长最大值;②在①的条件下,连接AP与y轴交于点E,抛物线的对称轴与x轴交于点K,若S为直线BC上一动点,T 为直线AC上一动点,连接EK,KS,ST,TE,求四边形EKST周长的最小值;(3)如图2,将△AOC顺时针旋转60°得到△A′OC′,将△A′OC′沿直线OC′平移,记平移中的△A′OC′为△A″O′C″,直线A″O′与x轴交于点F,将△O′C″F沿O′C″翻折得到△O′C″F′,当△CC″F′为等腰三角形时,求此时F点的坐标.参考答案与试题解析1.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC 于点F,求△PEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.【解答】解:(1)把A(﹣1,0),B(3,0)两点坐标代入抛物线y=ax2+bx﹣3,得到,解得,∴抛物线的解析式为y=x2﹣2x﹣3.(2)如图1中,连接PB、PC.设P(m,m2﹣2m﹣3),∵B(3,0),C(0,﹣3),∴OB=OC,∴∠OBC=45°,∵PF∥OB,∴∠PFE=∠OBC=45°,∵PE⊥BC,∴∠PEF=90°,∴△PEF是等腰直角三角形,∴PE最大时,△PEF的面积中点,此时△PBC的面积最大,则有S△PBC=S△POB+S△POC﹣S△BOC=•3•(﹣m2+2m+3)+•3•m﹣=﹣(m﹣)2+,∴m=时,△PBC的面积最大,此时△PEF的面积也最大,此时P(,﹣),∵直线BC的解析式为y=x﹣3,∴F(﹣,﹣),∴PF=,∵△PEF是等腰直角三角形,∴EF=EP=,∴C△PEF最大值=+.(3)①如图2中,当N与C重合时,点N关于对称轴的对称点P,此时思想MNQP是正方形,易知P(2,﹣3).点P横坐标为2,②如图3中,当四边形PMQN是正方形时,作PF⊥y轴于N,ME∥x轴,PE∥y轴.易知△PFN≌△PEM,∴PF=PE,设P(m,m2﹣2m﹣3),∵M(1,﹣4),∴m=m2﹣2m﹣3﹣(﹣4),∴m=或(舍弃),∴P点横坐标为所以满足条件的点P的横坐标为2或.2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM 为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM重合部分的面积是▱APQM面积的时,求▱APQM面积.【解答】解:(1)令﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),C(0,3),∵点D,C关于抛物线的对称轴对称,∴D(2,3),∴直线AD的解析式为:y=x+1;(2)设点F(x,﹣x2+2x+3),∵FH∥x轴,∴H(﹣x2+2x+2,﹣x2+2x+3),∴FH=﹣x2+2x+2﹣x=﹣(x﹣)2+,∴FH的最大值为,由直线AD的解析式为:y=x+1可知∠DAB=45°,∵FH∥AB,∴∠FHG=∠DAB=45°,∴FG=GH=×=故△FGH周长的最大值为×2+=;(3)①当P点在AM下方时,如图1,设P(0,p),易知M(1,4),从而Q(2,4+p),∵△PM Q′与▱APQM重合部分的面积是▱APQM面积的,∴PQ′必过AM中点N(0,2),∴可知Q′在y轴上,易知QQ′的中点T的横坐标为1,而点T必在直线AM上,故T(1,4),从而T、M重合,∴▱APQM是矩形,∵易得直线AM解析式为:y=2x+2,∵MQ⊥AM,∴直线QQ′:y=﹣x+,∴4+p=﹣×2+,解得:p=﹣,∴PN=,∴S□APQM=2S△AMP=4S△ANP=4××PN×AO=4×××1=5;②当P点在AM上方时,如图2,设P(0,p),易知M(1,4),从而Q(2,4+p),∵△PM Q′与▱APQM重合部分的面积是▱APQM面积的,∴PQ′必过QM中点R(,4+),易得直线QQ′:y=﹣x+p+5,联立,解得:x=,y=,∴H(,),∵H为QQ′中点,故易得Q′(,),由P(0,p)、R(,4+)易得直线PR解析式为:y=(﹣)x+p,将Q′(,)代入到y=(﹣)x+p得:=(﹣)×+p,整理得:p2﹣9p+14=0,解得p1=7,p2=2(与AM中点N重合,舍去),∴P(0,7),∴PN=5,∴S□APQM=2S△AMP=2××PN×|x M﹣x A|=2××5×2=10.综上所述,▱APQM面积为5或10.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=.(1)求抛物线的解析式;(2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值;(3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.【解答】解:(1)∵点A的坐标为(﹣1,0),∴OA=1.又∵tan∠ACO=,∴OC=4.∴C(0,﹣4).∵OC=OB,∴OB=4∴B(4,0).设抛物线的解析式为y=a(x+1)(x﹣4).∵将x=0,y=﹣4代入得:﹣4a=﹣4,解得a=1,∴抛物线的解析式为y=x2﹣3x﹣4.(2)∵抛物线的对称轴为x=﹣=,C(0,﹣4),点D和点C关于抛物线的对称轴对称,∴D(3,﹣4).设直线AD的解析式为y=kx+b.∵将A(﹣1,0)、D(3,﹣4)代入得:,解得k=﹣1,b=﹣1,∴直线AD的解析式y=﹣x﹣1.∵直线AD的一次项系数k=﹣1,∴∠BAD=45°.∵PM平行于y轴,∴∠AEP=90°.∴∠PMH=∠AME=45°.∴△MPH的周长=PM+MH+PH=PM+MP+PM=(1+)PM.设P(a,a2﹣3a﹣4),M(﹣a﹣1),则PM=﹣a﹣1﹣(a2﹣3a﹣4)=﹣a2+2a+3,∵PM=﹣a2+2a+3=﹣(a﹣1)2+4,∴当a=1时,PM有最大值,最大值为4.∴△MPH的周长的最大值=4×(1+)=4+4.(3)如图1所示;当∠EGN=90°.设点G的坐标为(a,0),则N(a,a2﹣3a﹣4).∵∠EGN=∠AOC=90°,∴时,△AOC∽△EGN.∴=,整理得:a2+a﹣8=0.解得:a=(负值已舍去).∴点G的坐标为(,0).如图2所示:当∠EGN=90°.设点G的坐标为(a,0),则N(a,a2﹣3a﹣4).∵∠EGN=∠AOC=90°,∴时,△AOC∽△NGE.∴=4,整理得:4a2﹣11a﹣17=0.解得:a=(负值已舍去).∴点G的坐标为(,0).∵EN在EP的右面,∴∠NEG<90°.如图3所示:当∠ENG′=90°时,EG′=EG××=(﹣1)×=.∴点G′的横坐标=.∵≈>4,∴点G′不在EG上.故此种情况不成立.综上所述,点G的坐标为(,0)或(,0).4.如图(1),抛物线y=ax2+bx+c与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于点C (0,﹣3),若抛物线的对称轴为直线x=1,且tan∠OAC=3.(1)求抛物线的函数解析式;(2 若点D是抛物线BC段上的动点,且点D到直线BC距离为,求点D的坐标(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0,﹣),点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.【解答】解:(1)在Rt△AOC中,tan∠AOC==3,且OC=3,∴OA=1,则A(﹣1,0),∵抛物线的对称轴为直线x=1,则点A(﹣1,0)关于直线x=1的对称点B的坐标为(3,0),设抛物线的表达式为y=a(x﹣3)(x+1),将点C(0,﹣3)代入上式得﹣3a=﹣3,解得:a=1,∴抛物线的解析式为y=(x﹣3)(x+1)=x2﹣2x﹣3;(2)∵点B(3,0)、C(0,﹣3),则BC=3,∴S△BCD=×3×=3,设D(x,x2﹣2x﹣3),连接OD,∴S△BCD=S△OCD+S△BOD﹣S△BOC=•3•x+•3•(﹣x2+2x+3)﹣×3×3==3,解得x=1或x=2,则点D的坐标为(1,﹣4)或(2,﹣3);(3)设直线AE解析式为y=kx+b,将点A(﹣1,0)、E(0,﹣)代入得:,解得:,则直线AE 解析式为y=﹣x﹣,AE==,设P(t,t2﹣2t﹣3),则M(t,﹣t﹣),∴PM=﹣t﹣﹣(t2﹣2t﹣3)=﹣t2+t+,作PG⊥MN于G,由PM=PN得MG=NG=MN,由△PMG∽△AEO得=,即=,∴MG=PM=NG,∴C△PMN=PM+PN+MN=PM=(﹣t2+t+)=﹣t2++6=﹣(t﹣)2+,∴当t=时,C△PMN取得最大值,此时P(,﹣).5.已知:如图,直线y=﹣x+2与x轴交于B点,与y轴交于C点,A点坐标为(﹣1,0).(1)求过A、B、C三点的抛物线的解析式.(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若不存在,说明理由.【解答】解:(1)直线y=﹣x+2与x轴交于B(2,0),与y轴交于C点(0,2),设过A、B、C的抛物线的解析式为y=ax2+bx+c,把A(﹣1,0)、B(2,0)、C(0,2)的坐标代入,∴a=﹣1,b=1,c=2,∴抛物线的解析式为:y=﹣x2+x+2,(2)设D(x,﹣x2+x+2),F(x,﹣x+2),∴DF=(﹣x2+x+2)﹣(﹣x+2)=﹣x2+2x,所以x=1时,DF最大=1,∵OB=OC,∴△OBC为等腰直角三角形,∵DE⊥BC,DF∥y轴,∴△DEF为等腰直角三角形,∴△DEF周长的最大值为1+(3)如图,当△DEF周长最大时,D(1,2),F(1,1).延长DF交x轴于H,作PM⊥DF于M,则DB=,DH=2,OH=1当∠DFP=∠DBC时,△DFP∽△DBF,∴,∴DP=,∴=,∴PM=,DM=,∴P点的横坐标为OH+PM=1+=,P点的纵坐标为DH﹣DM=2﹣=,∴P(,).6.如图,抛物线y=﹣x2+(m﹣1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x轴交直线AD于H,求△FGH的周长的最大值;(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.【解答】解:(1)把C(0,3)代入y=﹣x2+(m﹣1)x+m得m=3,∴抛物线的解析式为:y=﹣x2+2x+3,(2)令y=﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),C(0,3),∵点D和点C关于抛物线的对称轴对称,∴D(1,2),AD的解析式y=x+1,设AD与y轴交于E,∴OA=OE=1,∴∠EAO=45°,∵FH∥AB,∴∠FHA=∠EAO=45°,∵FG⊥AH,∴△FGH是等腰直角三角形,设点F坐标(m,﹣m2+2m+3),∴点H坐标(﹣m2+2m+2,﹣m2+2m+3),∴FH=﹣m2+m+2,∴△FGH的周长=(﹣m2+m+2)+2×(﹣m2+m+2)=﹣(1+)(m﹣)2+∴△FGH的周长最大值为;(3)∵抛物线y=﹣x2+2x+3的定点坐标为(1,4),∴直线AM的解析式为y=2x+2,∵直线l垂直于直线AM,∴设直线l的解析式为y=﹣x+b,∵与坐标轴交于P、Q两点,∴直线l的解析式为y=﹣x+b与y轴的交点P(0,b),与x轴的交点Q(2b,0),设R(1,a),∴PR2=(﹣1)2+(a﹣b)2,QR2=(2b﹣1)2+a2,PQ2=b2+(2b)2=5b2,∵△PQR是以PQ为斜边的等腰直角三角形,∴PR2=QR2,即(﹣1)2+(a﹣b)2=QR2=(2b﹣1)2+a2,∴﹣2a=3b﹣4,①∴PR2+QR2=PQ2,即(﹣1)2+(a﹣b)2+(2b﹣1)2+a2=5b2,∴2a2﹣2ab﹣4b+2=0,②联立①②解得:,,∴直线l的解析式为y=﹣x+或y=﹣x+2.7.如图,已知抛物线y=﹣x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对称.(1)直接写出点D的坐标和直线AD的解析式;(2)点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;(3)若点P为y轴上的动点,则在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标,若不存在,请说明理由.【解答】解:(1)将x=0代入得y=3,∴C(0,3).∵抛物线的对称轴为x=﹣=1,C(0,3),∴D(2,3).把y=0代入抛物线的解析式得:0=﹣x2+2x+3,解得x=3或x=﹣1,∴A(﹣1,0).设直线AD的解析式为y=kx+b,将点A和点D的坐标代入得:,解得:k=1,b=1,∴直线AD的解析式为y=x+1.(2)如图1所示:∵直线AD的解析式为y=x+1,∴∠DAB=45°.∵EF∥x轴,EG∥y轴,∴∠GEF=90°,∠GFE=∠DAB=45°∴△EFG是等腰直角三角形.∴△EFG的周长=EF+FG+EG=(2+)EG.依题意,设E(t,﹣t2+2t+3),则G(t,t+1).∴EG=﹣t2+2t+3﹣(t+1)=﹣(t﹣)2+.∴EG的最大值为.∴△EFG的周长的最大值为+.(3)存在.①以AD为平行四边形的边时,PQ∥AD,PQ=AD.∵A,D两点间的水平距离为3,∴P,Q两点间的水平距离也为3.∴点Q的横坐标为3或﹣3.将x=3和x=﹣3分别代入y=﹣x2+2x+3得y=0或y=﹣12.∴Q(3,0)或(﹣3,﹣12).②当AD为平行四边形的对角线时,设AD的中点为M,∵A(﹣1,0),D(2,3),M为AD的中点,∴M(,).设点Q的横坐标为x,则=,解得x=1,∴点Q的横坐标为1.将x=1代入y=﹣x2+2x+3得y=4.∴这时点Q的坐标为(1,4).综上所述,当点Q的坐标为Q(3,0)或(﹣3,﹣12)或(1,4)时,以A,D,P,Q为顶点的四边形是平行四边形.8.如图,抛物线y=﹣x2﹣x+3与x轴相交于A、B两点(点A在点B的左侧),交y轴与点D,已知点C(0,),连接AC.(1)求直线AC的解析式;(2)点P是直线AC上方的抛物线上一动点,过点P作PE∥y轴,交直线AC于点E,过点P作PG⊥AC,垂足为G,当△PEG周长最大时,在x轴上存在一点Q,使|QP﹣QC|的值最大,请求出这个最大值以及点P 的坐标;(3)当(2)题中|QP﹣QG|取得最大值时,直线PG交y轴于点M,把抛物线沿直线AD平移,平移后的抛物线y′与直线AD相交的一个交点为A′,在平移的过程中,是否存在点A′,使得点A′,P,M三点构成的三角形为等腰三角形,若存在,直接写出点A′的坐标;若不存在,请说明理由.【解答】解:(1)令y=0则,﹣x2﹣x+3=0,解得x=﹣3或x=2,∴A(﹣3,0),B(2,0).设直线AC的解析式为y=kx+b,将点A和点C的坐标代入得:,解得:k=,b=,∴直线AC的解析式为y=x+.(2)延长PE交OA与点F,则PF⊥OA.∵PF⊥OA,PG⊥AC,∴∠EFA=∠PGE.又∵∠PEG=∠FEA,∴∠EAF=∠EPG.∵OC=,AO=3,∴tan∠GPE=tan∠EAF=.∴sin∠GPE=,cos∠GPE=.∴PG=PE,EG=EP.∴△PEG的周长=PE+PG+EG=(1+)PE.∴当PE取得最大值时,△PEC的周长最大.设点P的坐标为(t,﹣t2﹣t+3),则点E的坐标为(t,t+).∵点P在点E的上方,∴PE=﹣t2﹣t+3﹣(t+)=﹣t2﹣t+=﹣(t+1)2+2.当t=﹣1时,PE取得最大值,此时△PGE的周长取得最大值.∴点P(﹣1,3),点E的坐标为(﹣1,﹣1).∴PE=3﹣1=2.∴PG=PE=.根据三角形的两边之差小于第三边可知:当点P、G、Q三点共线时,|QP﹣QG|的值最大,此时|QP﹣QG|=PG=(3)如图所示:∵∠PGE=∠PFN,∠P=∠P,∴△PEG∽△PNF,∴=,即=2,解得FN=.∴点N的坐标为(,0).设PN的解析式为y=kx+b,将点P和点N的坐标代入得:,解得:k=﹣2,b=1.∴M(0,1).设直线AD的解析式为y=mx+3,将点A的坐标代入得:﹣3m+3=0,解得m=1,∴直线AD的解析式为y=x+3.设点A′的坐标为(x,x+3).当PM=PA′时,=,整理得:x2+x﹣2=0,解得x=1或x=﹣2,∴点A′的坐标为(1,4)或(﹣2,1).当PM=MA′时,=,整理得:2x2+4x﹣1=0,解得:x=或x=,∴点A′的坐标为(,)或(,).当A′P=A′M时,=,整理得:﹣2x=3,解得:x=﹣,∴A′(﹣,).综上所述,点A′的坐标为(1,4)或(﹣2,1)或(,)或(,)或(﹣,).9.如图,抛物线y=﹣x2+x+3交x轴于A、B两点,点A在点B的左侧,交y轴于点C.(1)求直线AC与直线BC的解析式;(2)如图1,P为直线BC上方抛物线上的一点;①过点P作PD⊥BC于点D,作PM∥y轴交直线BC于点M,当△PDM的周长最大时,求P点坐标及周长最大值;②在①的条件下,连接AP与y轴交于点E,抛物线的对称轴与x轴交于点K,若S为直线BC上一动点,T 为直线AC上一动点,连接EK,KS,ST,TE,求四边形EKST周长的最小值;(3)如图2,将△AOC顺时针旋转60°得到△A′OC′,将△A′OC′沿直线OC′平移,记平移中的△A′OC′为△A″O′C″,直线A″O′与x轴交于点F,将△O′C″F沿O′C″翻折得到△O′C″F′,当△CC″F′为等腰三角形时,求此时F点的坐标.【解答】解:(1)对于抛物线y=﹣x2+x+3,令x=0,得到y=3,可得C(0,3),令y=0,可得y=﹣x2+x+3=0,解得x=﹣1或3,∴A(﹣1,0),B(4,0),∴直线AC的解析式为y=3x+3,直线BC的解析式为y=﹣x+3;(2)①如图在1中,设P(m,﹣m2+m+3),则M(m,﹣m+3).∵点P运动时,△PDM的形状是相似的,∴PM的值最大时,△PDM的周长的值最大,∵PM=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m=﹣(m2﹣4m+4﹣4)=﹣(m﹣2)2+3,∵﹣<0,∴m=2时,PM的值最大,此时P(2,),PM的最大值为,∵OC=3,OB=4,∴BC==5,由△PDM∽△BOC,可得==,∴==,∴PD=,DM=,∴△PDM的周长的最大值为++=.②如图2中,作K关于BC的对称点K′,E关于AC的对称点E′,连接E′K′交AC于T,交BC于S,此时四边形EKST的周长最小.四边形EKST的周长的最小值=EK+SK+ST+TE=EK+K′S+ST+TE′=EK+E′K′,∵P(2,),∴直线AP的解析式为y=x+,∴E(0,),∵K(,0),∴OE=OK=,EK=,∵K与K′关于直线BC对称,∴K′(,),∵E,E′关于直线AC对称,∴E′(﹣,),∴E′K′==3,∴四边形EKST周长的最小值为3+=.(3)如图3中,设OF=2m,则FO′=O′F′=m,OO′=m,OC″=m+3.百度文库- 让每个人平等地提升自我可得F′(m ,m ),C″(m+,m+),①当C″C=C″F′时,(m+)2+(m﹣)2=(﹣m)2+(﹣m)2,整理得m2+3m=0,解得m=0或﹣3(舍弃),∴F(0,0).②当CF′=C″F′时,(﹣m)2+(﹣m)2=m2+(m﹣3)2,整理得m2﹣m=0,解得m=0或,∴F(0,0)或(,3);③当CF′=CC″时,m2+(m﹣3)2=(m+)2+(m﹣)2,整理得m2﹣9m=0,解得m=0或9,∴F(0,0)或(9,27),综上所述,满足条件的点F坐标为(0,0)或(,3)或(9,27);3131。

二次函数与三角形周长最值问题

二次函数与三角形周长最值问题

二次函数与三角形周长最值问题1. 引言嘿,大家好!今天咱们聊聊一个既有趣又实用的话题,那就是二次函数和三角形周长的最值问题。

听起来是不是有点晦涩?别担心,我会尽量把这些复杂的数学概念变得简单易懂,就像喝水一样容易。

你有没有发现,数学其实就像生活中的调味品,适量的话,能让一切变得更美味。

今天我们就来看看,如何用二次函数来找出三角形周长的最值。

2. 二次函数的基本概念2.1 二次函数是什么?首先,咱们得搞清楚二次函数是什么。

简单来说,二次函数就是形如 ( y = ax^2 + bx + c ) 的函数,其中 ( a, b, c ) 是常数,而 ( a neq 0 )。

这个公式的图像通常是一条抛物线,像个笑脸,或者说是个哭脸,真是个多情的家伙。

它的形状和位置全靠那个 ( a ) 的值决定——如果 ( a ) 是正的,它就笑得特别灿烂;如果是负的,那就是个忧伤的小抛物线。

2.2 如何求最值?在二次函数中,最值也就是我们常说的“顶点”。

顶点的横坐标可以用公式 ( x = frac{b{2a ) 来计算。

得到横坐标后,把它带回原方程,就能算出对应的纵坐标。

这样一来,我们就能轻松找到函数的最大值或最小值,就像捡到了一个大便宜。

3. 三角形周长的计算3.1 三角形的周长公式接下来,我们来聊聊三角形的周长。

三角形的周长简单来说就是三条边的长度加起来。

无论你是直角三角形、等边三角形还是其他类型,周长都是那个公式:( P = a + b + c ),其中 ( a, b, c ) 就是三条边的长度。

很简单吧?不过,别忘了,边的长度可不是随便定的哦,得满足三角形不等式。

3.2 周长与二次函数的关系现在问题来了,怎么把周长和二次函数联系起来呢?我们可以设定一条边的长度为( x ),另外两条边用 ( y ) 和 ( z ) 表示。

然后通过一些简单的代数变换,把三角形的周长表达为 ( P(x) = x + f(x) ),其中 ( f(x) ) 是个二次函数,表示与 ( x ) 相关的边长。

三角形周长最值问题典型例题

三角形周长最值问题典型例题

解三角形专题练:周长最值与范围问题(含答案解析)求周长的最值或取值范围的问题,通常有两种途径,其一是运用余弦定理结合基本不等式求解,其二是运用正弦定理、辅助角公式结合三角函数求解.一、知识点1.基本不等式:ab b a 2≥+;2.正弦定理:Cc B b A a sin sin sin ==,余弦定理:A bc c b a cos 2222-+=等;3.和差公式:()βαβαβα±=±sin sin cos cos sin ;()βαβαβα cos cos cos cos cos =±4.二倍角公式:αααcos sin 22sin =,ααα22sin cos 2cos -=,ααα2tan 1tan 22tan -=.5.辅助角公式:),sin(cos sin )(22ϕ++=+=x b a x b x a x f (其中ab =ϕtan ).二、典型例题【例1】:△ABC 的内角A,B,C 的对边分别为a,b,c 且满足a=2,cos (2)cos a B c b A =-.(1)求角A 的大小;(2)求△ABC 周长的范围.【解析】:(1)解法一:由已知,得cos cos 2cos a B b A c A +=.由正弦定理,得sin cos sin cos 2sin cos A B B A C A +=.即sin()2sin cos A B C A +=,因为sin()sin A B C +=.所以sin 2sin cos C C A =.因为sin 0C ≠,所以1cos 2A =,因为0A π<<,所以3A π=.解法二:结合余弦定理222222(2)22a c b b c a a c b ac bc +-+-⨯=-⨯,即222b c a bc +-=.所以2221cos 22b c a A bc +-==.因为0A π<<,所以3A π=.(2)解法一:由余弦定理2222cos a b c bc A =+-,得224bc b c +=+,即2()34b c bc +=+.因为22⎪⎭⎫⎝⎛+≤c b bc ,所以()()44322++≤+c b c b .即4≤+c b (当且仅当2b c ==时等号成立).又因为a c b >+,所以64≤++<c b a .解法二:sin sin sin a b c A B C ==,且2a =,3A π=,所以43sin 3b B =,433c C =,所以22sin )2[sin sin()]24sin()3336a b c B C B B B ππ++=++=++-=++,因为203B π<<,所以64≤++<c b a ,【例2】:已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,cos sin 0a C C b c +--=.(1)求A 的大小;(2)若a =7,求△ABC 的周长的取值范围.【解析】:(1)由已知及正弦定理得:C B C A C A sin sin sin sin 3cos sin +=+,即C C A C A C A sin )sin(sin sin 3cos sin ++=-,化简得1cos sin 3=-A A ,所以21)6sin(=-πA ,所以66ππ=-A ,解得3π=A ;(2)由已知:0b >,0c >,7b c a +>=,由余弦定理()()()()222222414333cos249c b c b c b bc c b bc c b +=+-+≥-+=-+=π,当且仅当b =c =7时等号成立,所以2()449b c +≤⨯,又因为b +c >a,所以7<b +c ≤14,从而△ABC 的周长的取值范围是(14,21].三、巩固练习1.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且2sin (2)sin (2)sin a A b c B c b C =+++.(Ⅰ)求角A ;(Ⅱ)若a=2,求△ABC 周长的取值范围.2.已知△ABC 中,角A,B,C 所对的边分别为a,b,c ,且满足sin (sin )A B B C +=.(1)求角A 的大小;(2)若a=3,求△ABC 周长的取值范围.3.锐角△ABC 中,角A,B,C 所对的边分别为a,b,c ,且(cos )0c a B B -+=.(1)求角A 的大小;(2)若a =ABC 周长的取值范围.4.在△ABC 中,角A,B,C 的对边分别为a,b,c ,b=4,()sin ()(sin sin )a c A b c B C -=-+.(1)求角B ;(2)求△ABC 周长的最大值.5.在△ABC 中,角A,B,C 的对边分别为a,b,c ,且2,3==a A π.(1)求△ABC 的周长的取值范围;(2)求22c b +的取值范围.6.如图,在四边形ABCD 中,CD =BC =,7cos14CBD ∠=-.(1)求BDC ∠;(2)若3A π∠=,求△ABD 周长的最大值.7.(2020·理2)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求ABC 周长的最大值.8.已知a ,b ,c 分别为锐角△ABC 的三个内角A ,B ,C 的对边,若a =2,且)sin (sin sin 2sin C A A B +=,求△ABC 的周长的取值范围.9.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知向量(2cos ,)m C b =- ,(1,cos cos )n a C c A =+,且//m n.(1)求角C 的大小;(2)若c =,求ABC ∆的周长的取值范围.10.在△ABC 中,角A,B,C 的对边分别为a,b,c ,请在①(2)cos cos 0a c B b A ++=;②22cos cos sin (sin sin )A B C C A -=+中选择一个作为已知条件,解答下列问题.我选择__________.(1)求角B 的大小;(2)若3b =,求△ABC 周长的取值范围.11.在△ABC 中,角A 、B 、C 所对的边分别为c b a 、、,且满足A b B a cos 3sin =.(1)求角A 的大小;(2)若4=a ,求△ABC 周长的最大值.12.已知在△ABC 2)12sin2C A B +=+.(1)求角C 的大小;(2)若BAC ∠与ABC ∠的内角平分线交于点Ⅰ,△ABC 的外接圆半径为2,求△ABI 周长的最大值.13.(2021•上海浦东新区三模)已知函数f (x )=A sin (ωx +φ)(ω>0,20πϕ<<)的部分图象如图所示.(1)求函数f (x )的解析式;(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若22=⎪⎭⎫⎝⎛A f ,a =2,求△ABC 周长的取值范围.四、答案与解析1.【解析】:(1)由正弦定理sin sin sin a b cA B C ==,由2sin (2)sin (2)sin a A b c B c b C =+++⇒22(2)(2)a b c b c b c =+++,整理得222a b c bc =++,即bc a c b -=-+222,所以2122cos 222-=-=-+=bc bc bc a c b A ,因为1800<<A ,所以120=A ;(2)由正弦定理得334sin sin ==C c B b ,所以[])60sin(sin 334)sin (sin 334B B C B c b -+=+=+ )sin 60cos cos 60sin (sin 334B B B-+=)60sin(334cos 23sin 21334 +=⎪⎪⎭⎫ ⎝⎛+=B B B ,因为120=A ,所以()60,0∈B ⇒()120,6060∈+B ,⇒⎥⎦⎤⎝⎛∈+1,23)60sin(B ⇒⎦⎤ ⎝⎛∈+334,2)60sin(334B ,即⎥⎦⎤ ⎝⎛∈+334,2c b ,所以周长⎥⎦⎤⎝⎛+∈++3342,4c b a .2.【解析】:(1)由A B C π++=,得sin sin()C A B =+,代入已知条件得:sin sin cos cos sin A B A B A B A B +=⇒sin sin sin A B A B =,因为0sin ≠B,由此得tan A =,因为π<<A 0,所以3π=A .(2)由上可知:23B C π+=,所以B C -=32π.由正弦定理得:32sin sin 3a R A π===所以232(sin sin )sin()]sin )6sin()326b c R B C B B B B B ππ+=+=+-=+=+,因为由203B π<<得:16sin 21≤⎪⎭⎫ ⎝⎛+<πB ,所以63≤+<c b ,且3a =,故△ABC 周长的取值范围为(6,9].3.【解析】:(1)因为锐角△ABC 中(cos )0c a B B -+=,所以由正弦定理可得sin sin (cos )0C A B B -+=,所以sin sin cos sin C A B A B ∴-=,所以sin()sin cos sin A B A B A B ∴+-=,所以3sin cos sin cos sin cos sin sin 3A B A B A B A B ∴+-=,即3sin cos sin 3A B A B =,约掉sin A 变形可得sin tan cos B B B ==,3A π=;(2)因为3=a ,3A π=,所以32π=+C B ,所以由正弦定理可得sin 2sin sin a B b B A ==,sin 2sin sin a Cc C A==,所以△ABC 周长为2sin 2sin a b c B C ++=++22sin 2sin()3B B π=++-312sin 2(sin )22B B B =++2sin sin B B B =+3sin B B =+1cos )22B B =+)6B π=++,因为320π<<B ⇒5666B πππ<+<⇒16sin 21≤⎪⎭⎫ ⎝⎛+<πB ⇒326sin 323≤⎪⎭⎫ ⎝⎛+<πB ,所以336sin 32332≤⎪⎭⎫ ⎝⎛++<πB ,所以△ABC 周长的取值范围为.4.【解析】:(1)由正弦定理知,sin sin sin a b cA B C==,因为()()()C B c b A c a sin sin sin +-=-,所以()()()c b c b a c a +-=-,整理得222a c b ac +-=,由余弦定理知,2221cos 222a cb ac B ac ac +-===,因为()π,0∈B ,所以3π=B .(2)由(1)知,3B π=,所以32π=+C A ,由正弦定理知,4sin sin sin sin 3a cb A C B π====A a sin 38=,c C =,所以()⎪⎪⎭⎫ ⎝⎛++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=+=+A A A A A C A c a sin 21cos 23sin 3832sin sin 38sin sin 38π3(sin ))8sin(266A A A A ππ=+=+=+,因为⎪⎭⎫ ⎝⎛∈32,0πA ,所以⎪⎭⎫ ⎝⎛∈+65,66πππA ,当62A ππ+=,即3A π=时,a c +取得最大值8,所以1248=+≤++c b a ,故△ABC 周长的最大值为12.5.【解析】:(1)由正弦定理得,k A a C c B b =====334232sin sin sin ,易得:C B C k c B k b -===π32,sin ,sin ,所以⎪⎭⎫ ⎝⎛+=+=+6sin 4)sin (sin πC C B k c b 由⎪⎭⎫ ⎝⎛∈π32,0C ,得⎪⎭⎫⎝⎛∈+65,66πππC ,则有:]4,2(∈+c b 又2=a ,则].6,4(∈++=∆c b a l ABC (2)()⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+-=+=+)62sin(211sin )32(sin sin sin 222222222ππC k C C k C B k c b 由⎪⎭⎫ ⎝⎛∈π32,0C ,得⎪⎭⎫ ⎝⎛-∈-67,662πππC ,则]21,41(62sin 21-∈⎪⎭⎫ ⎝⎛-πC ,所以23,43(62sin 211∈⎪⎭⎫ ⎝⎛-+πC 又3162=k ,则].8,4(22∈+c b 6.【解析】:(1)在BCD ∆中,7cos 14CBD ∠=-,所以321sin 14CBD ∠===,由正弦定理得sin sin CD BCCBD BDC=∠∠,所以321sin 114sin 2BC CBD BDC CD ⋅∠∠===,又因为CBD ∠为钝角,所以BDC ∠为锐角,故6BDC π∠=;(2)在BCD ∆中,由余弦定理得2222cos214BC BD CD CBD BC BD +-∠===-⋅,解得4BD =或5BD =-(舍去),在△ABD 中,3A π∠=,设AB x =,AD y =,由余弦定理得22222161cos 222AB AD BD x y A AB AD xy +-+-===⋅⇒2216x y xy +-=⇒2()163x y xy +-=,又0x >,0y >,利用基本不等式得()()4331622y x xy y x +≤=-+,即()642≤+y x ,当且仅当4x y ==时,等号成立,所以x y +的最大值为8,所以AB AD BD ++的最大值为8412+=,所以△ABD 周长的最大值为12.7.【解析】:(1)由正弦定理可得:222BC AC AB AC AB --=⋅,所以2221cos 22AC AB BC A AC AB +-∴==-⋅,因为()0,A π∈ ,所以23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.因为22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),所以()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),所以△ABC 周长3L AC AB BC =++≤+ABC 周长的最大值为3+.8.【解析】:因为a =2,且)sin (sin sin 2sin C A A B +=,所以由正弦定理可得b 2=a 2+ac ,由余弦定理可得bac bc ac c bc a b c A 222cos 2222+=+=-+=,同理可得:b ac B 2cos -=,即⎩⎨⎧=-=+Ba a c Ab ac cos 2cos 2,消去c ,可得B a A b a cos 2cos 22-=,由正弦定理可得B A A B A cos sin 2cos sin 2sin 2-=,即)sin(2sin 2A B A -=,可得B =2A ,由正弦定理B b A a sin sin =,可得AbA 2sin sin 2=,可得A b cos 4=,因为△ABC 为锐角三角形,且π=++C B A ,所以220π<<A ⇒46ππ<<A ⇒23cos 22<<A ⇒3222<<b .又因为a =2,即b 2=4+2c ,所以△ABC 的周长为b b b b c b a +=-++=++2221242,由二次函数性质可得,△ABC 的周长的取值范围为:(326,224++).9.【解析】:(1)由//m n得22cos 2cos cos a C c A C b +=-,由正弦定理sin sin sin a b cA B C==,得2cos (sin cos sin cos )sin C A C C A B +=-,即2cos sin()sin C A C B +=-,因为在三角形中sin()sin 0A C B +=≠,则1cos 2C =-,又(0,)C π∠∈,故23C π∠=;(2)解法一:在△ABC 中,因为c =,23C π∠=,由余弦定理得2223c a b ab =++=,即22()332a b a b ab +⎛⎫+=+≤+ ⎪⎝⎭,当且仅当a b =时取等号,解得2a b +≤,又由三角形性质得a b c +>=2a b <+≤,则2a b c <++≤+,即ABC ∆的周长的取值范围为(.解法二:由正弦定理知:2233sin sin sin ====CcB b A a ,则A a sin 2=,B b sin 2=3sin 2sin 2++=∆B A l ABC 332sin 2sin 23)sin(2sin 2+⎪⎭⎫ ⎝⎛++=+++=πA A C A A 33sin 23cos 3sin +⎪⎭⎫ ⎝⎛+=++=πA A A 因为0,3A π⎛⎫∈ ⎪⎝⎭,则2,333A πππ⎛⎫+∈ ⎪⎝⎭,故sin ,132A π⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭因此()32,32+=∆ABC l .10.【解析】:(1)若选①,已知(2)cos cos 0a c B b A ++=.则:(sin 2sin )cos sin cos 0A C B B A ++=,整理得:sin cos cos sin 2sin cos 0A B A B C B ++=,解得:1cos 2B =-,又0B π<<,所以23B π=.若选②,因为()A C C B A sin sin sin cos cos 22+=-.所以()C A C B A sin sin sin sin 1sin 1222+=---,所以C A B C A sin sin sin sin sin 222-=-+,所以ac b c a -=-+222,所以212cos 222-=-+=ac b c a B ,又0B π<<,所以32π=B .(2)解法一:因为23B π=,3b =,所以由余弦定理知,()()()2222222432cos 29c a c a c a ac c a B ac c a b +=⎪⎭⎫ ⎝⎛+-+≥-+=-+==,当且仅当3==c a 时,等号成立,所以32≤+c a ,又因为b c a >+,所以3326+≤++<c b a .解法二:因为sin sin sin a b c A B C ===,所以A a sin 32=,c C =,则△ABC 的周长()33sin sin 323sin sin 32+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=++=++=A A C A c b a lπ1sin )32A A A =+-+)33A π=++,因为30π<<A ,2333A πππ<+<,所以13sin 23≤⎪⎭⎫ ⎝⎛+<πA ,即33233sin 326+≤+⎪⎭⎫ ⎝⎛+<πA ,所以△ABC 周长的取值范围是(6,3]+.11.【解析】:(1)依正弦定理Bb A a sin sin =可将A b B a cos 3sin =化为A B B A cos sin 3sin sin =又因为在△ABC 中,0sin >B ,所以A A cos 3sin =,即3tan =A ,因为π<<A 0,所以3π=A .(2)因为△ABC 的周长c b c b a ++=++=4,所以当c b +最大时,△ABC 的周长最大.解法一:因为bc c b A bc c b a 3)(cos 2162222-+=-+==,所以316)(2-+=c b bc 4)(2c b bc +≤且,所以()()431622c b c b +≤-+,所以()642≤+c b ,所以8≤+c b (当且仅当4==c b 时等号成立)所以△ABC 周长的最大值12.解法二:因为sin sin sin 332a b c A B C ====,所以()83832sin sin sin sin 8sin 3336b c B C B B B ππ⎡⎤⎛⎫⎛⎫+=+=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,20,3B π⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭故当且仅当3B π=时,b c +取到最大值8所以△ABC 周长的最大值1212.【解析】:(1)因为2)12sin 2C A B +=+,且A B C π++=,11cos 2cos C C C =+-=-cos 2C C +=⇒26sin 2=⎪⎭⎫ ⎝⎛+πC .因为()π,0∈C ⇒⎪⎭⎫ ⎝⎛∈+67,66πππC ⇒26ππ=+C ,即3C π=.(2)因为△ABC 的外接圆半径为2,所以由正弦定理知,4223sin sin =⨯==∠πAB ACB AB ,所以32=AB ,因为3π=∠ACB ,所以32π=∠+∠BAC ABC ,因为BAC ∠与ABC ∠的内角平分线交于点Ⅰ,所以3π=∠+∠BAI ABI ,所以32π=∠ABI ,设ABI θ∠=,则3BAI πθ∠=-,且03πθ<<,在△ABI中,由正弦定理得,42sin sin sin()sin 33BI AI AB AIB ππθθ====∠-,所以⎪⎭⎫ ⎝⎛-=θπ3sin 4BI ,θsin 4=AI ,所以△ABI的周长为314sin()4sin 4(cos sin )4sin 322πθθθθθ+-+=-+2sin 4sin(3πθθθ=+=++,因为30πθ<<,所以2333πππθ<+<,所以当32ππθ+=,即6πθ=时,△ABI的周长取得最大值为4+,故△ABI的周长的最大值为4+.13.【解析】:(1)根据函数的图象,函数的周期πππ=⎪⎭⎫ ⎝⎛-⨯=12512112T ,故ω=2.由于点⎪⎭⎫ ⎝⎛0,125π满足函数的图象,所以01252sin =⎪⎭⎫ ⎝⎛+⨯ϕπA ,由于20πϕ<<,所以6πϕ=.由于点(0,1)在函数的图象上,所以A =2.故函数⎪⎭⎫ ⎝⎛+=62sin 2)(πx x f .(2)由于26sin 2)2(=⎪⎭⎫ ⎝⎛+=πA A f ,所以3π=A .由正弦定理:34sin sin ==A a B b ,整理得B b sin 34=,同理⎪⎭⎫ ⎝⎛-==B C c 32sin 34sin 34π,由于⎪⎭⎫ ⎝⎛∈32,0πB ,所以⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛-++=++=∆6sin 4232sin 34sin 342ππB B B c b a l ABC ,由于⎪⎭⎫ ⎝⎛∈32,0πB ⇒⎪⎭⎫ ⎝⎛∈+65,66πππB ⇒⎥⎦⎤ ⎝⎛∈⎪⎭⎫ ⎝⎛+1,216sin πB .所以:l △ABC ∈(4,6].。

二次函数专题训练(三角形周长最值问题)含答案

二次函数专题训练(三角形周长最值问题)含答案

1.如下图,抛物线y=ax2+bx﹣3与x轴交于A〔﹣1,0〕,B〔3,0〕两点,与y轴交于点C.〔1〕求抛物线的解析式;〔2〕如下图,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC 于点F,求△PEF周长的最大值;〔3〕点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面一点,假设点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?假设存在,直接写出点P的横坐标;假设不存在,说明理由.2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.〔1〕求直线AD的解析式;〔2〕如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;〔3〕如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面一点,四边形APQM是以PM 为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM重合局部的面积是▱APQM面积的时,求▱APQM面积.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c〔a≠0〕与x轴交于A,B两点〔点A在点B的左侧〕,与y轴交于点C,点A的坐标为〔﹣1,0〕,且OC=OB,tan∠ACO=.〔1〕求抛物线的解析式;〔2〕假设点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值;〔3〕在〔2〕的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G 的坐标;如果不存在,请说明理由.4.如图〔1〕,抛物线y=ax2+bx+c与x轴交于A〔x1,0〕、B〔x2,0〕两点〔x1<0<x2〕,与y轴交于点C〔0,﹣3〕,假设抛物线的对称轴为直线x=1,且tan∠OAC=3.〔1〕求抛物线的函数解析式;〔2 假设点D是抛物线BC段上的动点,且点D到直线BC距离为,求点D的坐标〔3〕如图〔2〕,假设直线y=mx+n经过点A,交y轴于点E〔0,﹣〕,点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN 的周长有最大值?假设存在,求出点P的坐标及△PMN的周长的最大值;假设不存在,请说明理由.5.:如图,直线y=﹣x+2与x轴交于B点,与y轴交于C点,A点坐标为〔﹣1,0〕.〔1〕求过A、B、C三点的抛物线的解析式.〔2〕在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.〔3〕在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.假设存在,求出点P的坐标;假设不存在,说明理由.6.如图,抛物线y=﹣x2+〔m﹣1〕x+m〔m>1〕与x轴交于A、B两点〔点A在点B的左侧〕,与y轴交于点C〔0,3〕.〔1〕求抛物线的解析式;〔2〕点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x轴交直线AD于H,求△FGH的周长的最大值;〔3〕点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.7.如图,抛物线y=﹣x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对称.〔1〕直接写出点D的坐标和直线AD的解析式;〔2〕点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;〔3〕假设点P为y轴上的动点,那么在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?假设存在,请求出点Q的坐标,假设不存在,请说明理由.8.如图,抛物线y=﹣x2﹣x+3与x轴相交于A、B两点〔点A在点B的左侧〕,交y轴与点D,点C〔0,〕,连接AC.〔1〕求直线AC的解析式;〔2〕点P是直线AC上方的抛物线上一动点,过点P作PE∥y轴,交直线AC于点E,过点P作PG⊥AC,垂足为G,当△PEG周长最大时,在x轴上存在一点Q,使|QP﹣QC|的值最大,请求出这个最大值以及点P 的坐标;〔3〕当〔2〕题中|QP﹣QG|取得最大值时,直线PG交y轴于点M,把抛物线沿直线AD平移,平移后的抛物线y′与直线AD相交的一个交点为A′,在平移的过程中,是否存在点A′,使得点A′,P,M三点构成的三角形为等腰三角形,假设存在,直接写出点A′的坐标;假设不存在,请说明理由.9.如图,抛物线y=﹣x2+x+3交x轴于A、B两点,点A在点B的左侧,交y轴于点C.〔1〕求直线AC与直线BC的解析式;〔2〕如图1,P为直线BC上方抛物线上的一点;①过点P作PD⊥BC于点D,作PM∥y轴交直线BC于点M,当△PDM的周长最大时,求P点坐标及周长最大值;②在①的条件下,连接AP与y轴交于点E,抛物线的对称轴与x轴交于点K,假设S为直线BC上一动点,T为直线AC上一动点,连接EK,KS,ST,TE,求四边形EKST周长的最小值;〔3〕如图2,将△AOC顺时针旋转60°得到△A′OC′,将△A′OC′沿直线OC′平移,记平移中的△A′OC′为△A″O′C″,直线A″O′与x轴交于点F,将△O′C″F沿O′C″翻折得到△O′C″F′,当△CC″F′为等腰三角形时,求此时F点的坐标.参考答案与试题解析1.如下图,抛物线y=ax2+bx﹣3与x轴交于A〔﹣1,0〕,B〔3,0〕两点,与y轴交于点C.〔1〕求抛物线的解析式;〔2〕如下图,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC 于点F,求△PEF周长的最大值;〔3〕点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面一点,假设点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?假设存在,直接写出点P的横坐标;假设不存在,说明理由.【解答】解:〔1〕把A〔﹣1,0〕,B〔3,0〕两点坐标代入抛物线y=ax2+bx﹣3,得到,解得,∴抛物线的解析式为y=x2﹣2x﹣3.〔2〕如图1中,连接PB、PC.设P〔m,m2﹣2m﹣3〕,∵B〔3,0〕,C〔0,﹣3〕,∴OB=OC,∴∠OBC=45°,∵PF∥OB,∴∠PFE=∠OBC=45°,∵PE⊥BC,∴∠PEF=90°,∴△PEF是等腰直角三角形,∴PE最大时,△PEF的面积中点,此时△PBC的面积最大,那么有S△PBC=S△POB+S△POC﹣S△BOC=•3•〔﹣m2+2m+3〕+•3•m﹣=﹣〔m﹣〕2+,∴m=时,△PBC的面积最大,此时△PEF的面积也最大,此时P〔,﹣〕,∵直线BC的解析式为y=x﹣3,∴F〔﹣,﹣〕,∴PF=,∵△PEF是等腰直角三角形,∴EF=EP=,∴C△PEF最大值=+.〔3〕①如图2中,当N与C重合时,点N关于对称轴的对称点P,此时思想MNQP是正方形,易知P〔2,﹣3〕.点P横坐标为2,②如图3中,当四边形PMQN是正方形时,作PF⊥y轴于N,ME∥x轴,PE∥y轴.易知△PFN≌△PEM,∴PF=PE,设P〔m,m2﹣2m﹣3〕,∵M〔1,﹣4〕,∴m=m2﹣2m﹣3﹣〔﹣4〕,∴m=或〔舍弃〕,∴P点横坐标为所以满足条件的点P的横坐标为2或.2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.〔1〕求直线AD的解析式;〔2〕如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;〔3〕如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面一点,四边形APQM是以PM 为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM重合局部的面积是▱APQM面积的时,求▱APQM面积.【解答】解:〔1〕令﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴A〔﹣1,0〕,C〔0,3〕,∵点D,C关于抛物线的对称轴对称,∴D〔2,3〕,∴直线AD的解析式为:y=x+1;〔2〕设点F〔x,﹣x2+2x+3〕,∵FH∥x轴,∴H〔﹣x2+2x+2,﹣x2+2x+3〕,∴FH=﹣x2+2x+2﹣x=﹣〔x﹣〕2+,∴FH的最大值为,由直线AD的解析式为:y=x+1可知∠DAB=45°,∵FH∥AB,∴∠FHG=∠DAB=45°,∴FG=GH=×=故△FGH周长的最大值为×2+=;〔3〕①当P点在AM下方时,如图1,设P〔0,p〕,易知M〔1,4〕,从而Q〔2,4+p〕,∵△PM Q′与▱APQM重合局部的面积是▱APQM面积的,∴PQ′必过AM中点N〔0,2〕,∴可知Q′在y轴上,易知QQ′的中点T的横坐标为1,而点T必在直线AM上,故T〔1,4〕,从而T、M重合,∴▱APQM是矩形,∵易得直线AM解析式为:y=2x+2,∵MQ⊥AM,∴直线QQ′:y=﹣x+,∴4+p=﹣×2+,解得:p=﹣,∴PN=,∴S□APQM=2S△AMP=4S△ANP=4××PN×AO=4×××1=5;②当P点在AM上方时,如图2,设P〔0,p〕,易知M〔1,4〕,从而Q〔2,4+p〕,∵△PM Q′与▱APQM重合局部的面积是▱APQM面积的,∴PQ′必过QM中点R〔,4+〕,易得直线QQ′:y=﹣x+p+5,联立,解得:x=,y=,∴H〔,〕,∵H为QQ′中点,故易得Q′〔,〕,由P〔0,p〕、R〔,4+〕易得直线PR解析式为:y=〔﹣〕x+p,将Q′〔,〕代入到y=〔﹣〕x+p得:=〔﹣〕×+p,整理得:p2﹣9p+14=0,解得p1=7,p2=2〔与AM中点N重合,舍去〕,∴P〔0,7〕,∴PN=5,∴S□APQM=2S△AMP=2××PN×|x M﹣x A|=2××5×2=10.综上所述,▱APQM面积为5或10.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c〔a≠0〕与x轴交于A,B两点〔点A在点B的左侧〕,与y轴交于点C,点A的坐标为〔﹣1,0〕,且OC=OB,tan∠ACO=.〔1〕求抛物线的解析式;〔2〕假设点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值;〔3〕在〔2〕的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G 的坐标;如果不存在,请说明理由.【解答】解:〔1〕∵点A的坐标为〔﹣1,0〕,∴OA=1.又∵tan∠ACO=,∴OC=4.∴C〔0,﹣4〕.∵OC=OB,∴OB=4∴B〔4,0〕.设抛物线的解析式为y=a〔x+1〕〔x﹣4〕.∵将x=0,y=﹣4代入得:﹣4a=﹣4,解得a=1,∴抛物线的解析式为y=x2﹣3x﹣4.〔2〕∵抛物线的对称轴为x=﹣=,C〔0,﹣4〕,点D和点C关于抛物线的对称轴对称,∴D〔3,﹣4〕.设直线AD的解析式为y=kx+b.∵将A〔﹣1,0〕、D〔3,﹣4〕代入得:,解得k=﹣1,b=﹣1,∴直线AD的解析式y=﹣x﹣1.∵直线AD的一次项系数k=﹣1,∴∠BAD=45°.∵PM平行于y轴,∴∠AEP=90°.∴∠PMH=∠AME=45°.∴△MPH的周长=PM+MH+PH=PM+MP+PM=〔1+〕PM.设P〔a,a2﹣3a﹣4〕,M〔﹣a﹣1〕,那么PM=﹣a﹣1﹣〔a2﹣3a﹣4〕=﹣a2+2a+3,∵PM=﹣a2+2a+3=﹣〔a﹣1〕2+4,∴当a=1时,PM有最大值,最大值为4.∴△MPH的周长的最大值=4×〔1+〕=4+4.〔3〕如图1所示;当∠EGN=90°.设点G的坐标为〔a,0〕,那么N〔a,a2﹣3a﹣4〕.∵∠EGN=∠AOC=90°,∴时,△AOC∽△EGN.∴=,整理得:a2+a﹣8=0.解得:a=〔负值已舍去〕.∴点G的坐标为〔,0〕.如图2所示:当∠EGN=90°.设点G的坐标为〔a,0〕,那么N〔a,a2﹣3a﹣4〕.∵∠EGN=∠AOC=90°,∴时,△AOC∽△NGE.∴=4,整理得:4a2﹣11a﹣17=0.解得:a=〔负值已舍去〕.∴点G的坐标为〔,0〕.∵EN在EP的右面,∴∠NEG<90°.如图3所示:当∠ENG′=90°时,EG′=EG××=〔﹣1〕×=.∴点G′的横坐标=.∵≈4.03>4,∴点G′不在EG上.故此种情况不成立.综上所述,点G的坐标为〔,0〕或〔,0〕.4.如图〔1〕,抛物线y=ax2+bx+c与x轴交于A〔x1,0〕、B〔x2,0〕两点〔x1<0<x2〕,与y轴交于点C〔0,﹣3〕,假设抛物线的对称轴为直线x=1,且tan∠OAC=3.〔1〕求抛物线的函数解析式;〔2 假设点D是抛物线BC段上的动点,且点D到直线BC距离为,求点D的坐标〔3〕如图〔2〕,假设直线y=mx+n经过点A,交y轴于点E〔0,﹣〕,点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN 的周长有最大值?假设存在,求出点P的坐标及△PMN的周长的最大值;假设不存在,请说明理由.【解答】解:〔1〕在Rt△AOC中,tan∠AOC==3,且OC=3,∴OA=1,那么A〔﹣1,0〕,∵抛物线的对称轴为直线x=1,那么点A〔﹣1,0〕关于直线x=1的对称点B的坐标为〔3,0〕,设抛物线的表达式为y=a〔x﹣3〕〔x+1〕,将点C〔0,﹣3〕代入上式得﹣3a=﹣3,解得:a=1,∴抛物线的解析式为y=〔x﹣3〕〔x+1〕=x2﹣2x﹣3;〔2〕∵点B〔3,0〕、C〔0,﹣3〕,那么BC=3,∴S△BCD=×3×=3,设D〔x,x2﹣2x﹣3〕,连接OD,∴S△BCD=S△OCD+S△BOD﹣S△BOC=•3•x+•3•〔﹣x2+2x+3〕﹣×3×3==3,解得x=1或x=2,那么点D的坐标为〔1,﹣4〕或〔2,﹣3〕;〔3〕设直线AE解析式为y=kx+b,将点A〔﹣1,0〕、E〔0,﹣〕代入得:,解得:,那么直线AE 解析式为y=﹣x﹣,AE==,设P〔t,t2﹣2t﹣3〕,那么M〔t,﹣t﹣〕,∴PM=﹣t﹣﹣〔t2﹣2t﹣3〕=﹣t2+t+,作PG⊥MN于G,由PM=PN得MG=NG=MN,由△PMG∽△AEO得=,即=,∴MG=PM=NG,∴C△PMN=PM+PN+MN=PM=〔﹣t2+t+〕=﹣t2++6=﹣〔t﹣〕2+,∴当t=时,C△PMN取得最大值,此时P〔,﹣〕.5.:如图,直线y=﹣x+2与x轴交于B点,与y轴交于C点,A点坐标为〔﹣1,0〕.〔1〕求过A、B、C三点的抛物线的解析式.〔2〕在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.〔3〕在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.假设存在,求出点P的坐标;假设不存在,说明理由.【解答】解:〔1〕直线y=﹣x+2与x轴交于B〔2,0〕,与y轴交于C点〔0,2〕,设过A、B、C的抛物线的解析式为y=ax2+bx+c,把A〔﹣1,0〕、B〔2,0〕、C〔0,2〕的坐标代入,∴a=﹣1,b=1,c=2,∴抛物线的解析式为:y=﹣x2+x+2,〔2〕设D〔x,﹣x2+x+2〕,F〔x,﹣x+2〕,∴DF=〔﹣x2+x+2〕﹣〔﹣x+2〕=﹣x2+2x,所以x=1时,DF最大=1,∵OB=OC,∴△OBC为等腰直角三角形,∵DE⊥BC,DF∥y轴,∴△DEF为等腰直角三角形,∴△DEF周长的最大值为1+〔3〕如图,当△DEF周长最大时,D〔1,2〕,F〔1,1〕.延长DF交x轴于H,作PM⊥DF于M,那么DB=,DH=2,OH=1当∠DFP=∠DBC时,△DFP∽△DBF,∴,∴DP=,∴=,∴PM=,DM=,∴P点的横坐标为OH+PM=1+=,P点的纵坐标为DH﹣DM=2﹣=,∴P〔,〕.6.如图,抛物线y=﹣x2+〔m﹣1〕x+m〔m>1〕与x轴交于A、B两点〔点A在点B的左侧〕,与y轴交于点C〔0,3〕.〔1〕求抛物线的解析式;〔2〕点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x轴交直线AD于H,求△FGH的周长的最大值;〔3〕点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.【解答】解:〔1〕把C〔0,3〕代入y=﹣x2+〔m﹣1〕x+m得m=3,∴抛物线的解析式为:y=﹣x2+2x+3,〔2〕令y=﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴A〔﹣1,0〕,B〔3,0〕,C〔0,3〕,∵点D和点C关于抛物线的对称轴对称,∴D〔1,2〕,AD的解析式y=x+1,设AD与y轴交于E,∴OA=OE=1,∴∠EAO=45°,∵FH∥AB,∴∠FHA=∠EAO=45°,∵FG⊥AH,∴△FGH是等腰直角三角形,设点F坐标〔m,﹣m2+2m+3〕,∴点H坐标〔﹣m2+2m+2,﹣m2+2m+3〕,∴FH=﹣m2+m+2,∴△FGH的周长=〔﹣m2+m+2〕+2×〔﹣m2+m+2〕=﹣〔1+〕〔m﹣〕2+∴△FGH的周长最大值为;〔3〕∵抛物线y=﹣x2+2x+3的定点坐标为〔1,4〕,∴直线AM的解析式为y=2x+2,∵直线l垂直于直线AM,∴设直线l的解析式为y=﹣x+b,∵与坐标轴交于P、Q两点,∴直线l的解析式为y=﹣x+b与y轴的交点P〔0,b〕,与x轴的交点Q〔2b,0〕,设R〔1,a〕,∴PR2=〔﹣1〕2+〔a﹣b〕2,QR2=〔2b﹣1〕2+a2,PQ2=b2+〔2b〕2=5b2,∵△PQR是以PQ为斜边的等腰直角三角形,∴PR2=QR2,即〔﹣1〕2+〔a﹣b〕2=QR2=〔2b﹣1〕2+a2,∴﹣2a=3b﹣4,①∴PR2+QR2=PQ2,即〔﹣1〕2+〔a﹣b〕2+〔2b﹣1〕2+a2=5b2,∴2a2﹣2ab﹣4b+2=0,②联立①②解得:,,∴直线l的解析式为y=﹣x+或y=﹣x+2.7.如图,抛物线y=﹣x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对称.〔1〕直接写出点D的坐标和直线AD的解析式;〔2〕点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;〔3〕假设点P为y轴上的动点,那么在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?假设存在,请求出点Q的坐标,假设不存在,请说明理由.【解答】解:〔1〕将x=0代入得y=3,∴C〔0,3〕.∵抛物线的对称轴为x=﹣=1,C〔0,3〕,∴D〔2,3〕.把y=0代入抛物线的解析式得:0=﹣x2+2x+3,解得x=3或x=﹣1,∴A〔﹣1,0〕.设直线AD的解析式为y=kx+b,将点A和点D的坐标代入得:,解得:k=1,b=1,∴直线AD的解析式为y=x+1.〔2〕如图1所示:∵直线AD的解析式为y=x+1,∴∠DAB=45°.∵EF∥x轴,EG∥y轴,∴∠GEF=90°,∠GFE=∠DAB=45°∴△EFG是等腰直角三角形.∴△EFG的周长=EF+FG+EG=〔2+〕EG.依题意,设E〔t,﹣t2+2t+3〕,那么G〔t,t+1〕.∴EG=﹣t2+2t+3﹣〔t+1〕=﹣〔t﹣〕2+.∴EG的最大值为.∴△EFG的周长的最大值为+.〔3〕存在.①以AD为平行四边形的边时,PQ∥AD,PQ=AD.∵A,D两点间的水平距离为3,∴P,Q两点间的水平距离也为3.∴点Q的横坐标为3或﹣3.将x=3和x=﹣3分别代入y=﹣x2+2x+3得y=0或y=﹣12.∴Q〔3,0〕或〔﹣3,﹣12〕.②当AD为平行四边形的对角线时,设AD的中点为M,∵A〔﹣1,0〕,D〔2,3〕,M为AD的中点,∴M〔,〕.设点Q的横坐标为x,那么=,解得x=1,∴点Q的横坐标为1.将x=1代入y=﹣x2+2x+3得y=4.∴这时点Q的坐标为〔1,4〕.综上所述,当点Q的坐标为Q〔3,0〕或〔﹣3,﹣12〕或〔1,4〕时,以A,D,P,Q为顶点的四边形是平行四边形.8.如图,抛物线y=﹣x2﹣x+3与x轴相交于A、B两点〔点A在点B的左侧〕,交y轴与点D,点C〔0,〕,连接AC.〔1〕求直线AC的解析式;〔2〕点P是直线AC上方的抛物线上一动点,过点P作PE∥y轴,交直线AC于点E,过点P作PG⊥AC,垂足为G,当△PEG周长最大时,在x轴上存在一点Q,使|QP﹣QC|的值最大,请求出这个最大值以及点P 的坐标;〔3〕当〔2〕题中|QP﹣QG|取得最大值时,直线PG交y轴于点M,把抛物线沿直线AD平移,平移后的抛物线y′与直线AD相交的一个交点为A′,在平移的过程中,是否存在点A′,使得点A′,P,M三点构成的三角形为等腰三角形,假设存在,直接写出点A′的坐标;假设不存在,请说明理由.【解答】解:〔1〕令y=0那么,﹣x2﹣x+3=0,解得x=﹣3或x=2,∴A〔﹣3,0〕,B〔2,0〕.设直线AC的解析式为y=kx+b,将点A和点C的坐标代入得:,解得:k=,b=,∴直线AC的解析式为y=x+.〔2〕延长PE交OA与点F,那么PF⊥OA.∵PF⊥OA,PG⊥AC,∴∠EFA=∠PGE.又∵∠PEG=∠FEA,∴∠EAF=∠EPG.∵OC=,AO=3,∴tan∠GPE=tan∠EAF=.∴sin∠GPE=,cos∠GPE=.∴PG=PE,EG=EP.∴△PEG的周长=PE+PG+EG=〔1+〕PE.∴当PE取得最大值时,△PEC的周长最大.设点P的坐标为〔t,﹣t2﹣t+3〕,那么点E的坐标为〔t,t+〕.∵点P在点E的上方,∴PE=﹣t2﹣t+3﹣〔t+〕=﹣t2﹣t+=﹣〔t+1〕2+2.当t=﹣1时,PE取得最大值,此时△PGE的周长取得最大值.∴点P〔﹣1,3〕,点E的坐标为〔﹣1,﹣1〕.∴PE=3﹣1=2.∴PG=PE=.根据三角形的两边之差小于第三边可知:当点P、G、Q三点共线时,|QP﹣QG|的值最大,此时|QP﹣QG|=PG= 〔3〕如下图:∵∠PGE=∠PFN,∠P=∠P,∴△PEG∽△PNF,∴=,即=2,解得FN=1.5.∴点N的坐标为〔,0〕.设PN的解析式为y=kx+b,将点P和点N的坐标代入得:,解得:k=﹣2,b=1.∴M〔0,1〕.设直线AD的解析式为y=mx+3,将点A的坐标代入得:﹣3m+3=0,解得m=1,∴直线AD的解析式为y=x+3.设点A′的坐标为〔x,x+3〕.当PM=PA′时,=,整理得:x2+x﹣2=0,解得x=1或x=﹣2,∴点A′的坐标为〔1,4〕或〔﹣2,1〕.当PM=MA′时,=,整理得:2x2+4x﹣1=0,解得:x=或x=,∴点A′的坐标为〔,〕或〔,〕.当A′P=A′M时,=,整理得:﹣2x=3,解得:x=﹣,∴A′〔﹣,〕.综上所述,点A′的坐标为〔1,4〕或〔﹣2,1〕或〔,〕或〔,〕或〔﹣,〕.9.如图,抛物线y=﹣x2+x+3交x轴于A、B两点,点A在点B的左侧,交y轴于点C.〔1〕求直线AC与直线BC的解析式;〔2〕如图1,P为直线BC上方抛物线上的一点;①过点P作PD⊥BC于点D,作PM∥y轴交直线BC于点M,当△PDM的周长最大时,求P点坐标及周长最大值;②在①的条件下,连接AP与y轴交于点E,抛物线的对称轴与x轴交于点K,假设S为直线BC上一动点,T为直线AC上一动点,连接EK,KS,ST,TE,求四边形EKST周长的最小值;〔3〕如图2,将△AOC顺时针旋转60°得到△A′OC′,将△A′OC′沿直线OC′平移,记平移中的△A′OC′为△A″O′C″,直线A″O′与x轴交于点F,将△O′C″F沿O′C″翻折得到△O′C″F′,当△CC″F′为等腰三角形时,求此时F点的坐标.【解答】解:〔1〕对于抛物线y=﹣x2+x+3,令x=0,得到y=3,可得C〔0,3〕,令y=0,可得y=﹣x2+x+3=0,解得x=﹣1或3,∴A〔﹣1,0〕,B〔4,0〕,∴直线AC的解析式为y=3x+3,直线BC的解析式为y=﹣x+3;〔2〕①如图在1中,设P〔m,﹣m2+m+3〕,那么M〔m,﹣m+3〕.∵点P运动时,△PDM的形状是相似的,∴PM的值最大时,△PDM的周长的值最大,∵PM=﹣m2+m+3﹣〔﹣m+3〕=﹣m2+3m=﹣〔m2﹣4m+4﹣4〕=﹣〔m﹣2〕2+3,∵﹣<0,∴m=2时,PM的值最大,此时P〔2,〕,PM的最大值为,∵OC=3,OB=4,∴BC==5,由△PDM∽△BOC,可得==,∴==,∴PD=,DM=,∴△PDM的周长的最大值为++=.②如图2中,作K关于BC的对称点K′,E关于AC的对称点E′,连接E′K′交AC于T,交BC于S,此时四边形EKST的周长最小.四边形EKST的周长的最小值=EK+SK+ST+TE=EK+K′S+ST+TE′=EK+E′K′,∵P〔2,〕,∴直线AP的解析式为y=x+,∴E〔0,〕,∵K〔,0〕,∴OE=OK=,EK=,∵K与K′关于直线BC对称,∴K′〔,〕,∵E,E′关于直线AC对称,∴E′〔﹣,〕,∴E′K′==3,∴四边形EKST周长的最小值为3+=.〔3〕如图3中,设OF=2m,那么FO′=O′F′=m,OO′=m,OC″=m+3.可得F′〔m,m〕,C″〔m+,m+〕,①当C″C=C″F′时,〔m+〕2+〔m﹣〕2=〔﹣m〕2+〔﹣m〕2,整理得m2+3m=0,解得m=0或﹣3〔舍弃〕,∴F〔0,0〕.②当CF′=C″F′时,〔﹣m〕2+〔﹣m〕2=m2+〔m﹣3〕2,整理得m2﹣m=0,解得m=0或,∴F〔0,0〕或〔,3〕;③当CF′=CC″时,m2+〔m﹣3〕2=〔m+〕2+〔m﹣〕2,整理得m2﹣9m=0,解得m=0或9,∴F〔0,0〕或〔9,27〕,综上所述,满足条件的点F坐标为〔0,0〕或〔,3〕或〔9,27〕;。

专题16 三角形周长求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版)

专题16 三角形周长求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版)

专题16 三角形周长求最值问题1.(2021·四川成都龙泉驿·九年级期中)如图,在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++的顶点(1,4)M -,与x 轴相交于A ,B 两点,与y 轴交于点(0,3)C -,与直线2y kx k =--相交于D ,E 两点.(1)求抛物线的函数表达式; (2)当5BDE ADE S S =△△时,求k 的值;(3)如图2,作//DF y 轴交EM 的延长线于F ,当ACF 的周长最小时,求点F 的坐标.【答案】(1)223y x x =--;(2)32k =-或23-;(3)1(3-,6)-【分析】(1)用待定系数法即可求解;(2)当点H 在线段AB 上时,过点A 、B 分别作直线//m DE 、//n DE ,由5BDE ADE S S ∆∆=时,则:1:5AH HB =,求出点1(3H -,0),进而求解;当点H 在BA 的延长线时,同理可解;(3)求出点F 的坐标为(,6)m -,即点F 为直线6y =-上的一个动点,过点C 作直线6y =-的对称点(0,9)C '-,连接AC '交直线6y =-于点F ,则点F 为所求点,进而求解. 【详解】解:(1)设抛物线的表达式为2()y a x h k =-+, 则22(1)424y a x ax ax a =--=-+-, 即43a -=-,解得1a =,∴抛物线的表达式为223y x x =--;(2)设DE 交x 轴于点H , 当点H 在线段AB 上时,过点A 、B 分别作直线//m DE 、//n DE ,5BDE ADE S S ∆∆=时,则:1:5AH HB =,即1124663AH AB ==⨯=,则点1(3H -,0),将点H 的坐标代入2y kx k =--得:1023k k =---,解得32k =-;当点H 在BA 的延长线时, 同理可得:23k =-,综上,32k =-或23-;(3)设点D 、E 的坐标分别为2(,23)m m m --、2(,23)n n n --, 则点F 的横坐标为m ,联立直线2y kx k =--和抛物线表达式并整理得:2(2)(1)0x k x k -++-=, 则2m n k +=+,1mn k =-,由点E 、M 的坐标得,直线EM 的表达式为(1)3y n x n =---, 当x m =时,(1)3()31236y n x n mn m n k k =---=-+-=----=-, 即点F 的坐标为(,6)m -,即点F 为直线6y =-上的一个动点, 过点C 作直线6y =-的对称点(0,9)C '-,连接AC '交直线6y =-于点F ,则点F 为所求点,理由:ACF ∆的周长AC CF AF AC C F AF AC AC =++=+'+=+'为最小, 由点A 、C '的坐标得,直线AC '的表达式为99y x =--, 当699y x =-=--时,13x =-,故点F 的坐标为1(3-,6)-. 【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.2.(2021·湖北大冶·中考二模)如图,抛物线的顶点为()0,1A -,与x 轴交于点()22,0B -,点()0,1F 为y 轴上的一个定点.点()P m n ,是抛物线上一动点.(1)求这条抛物线的函数解析式;(2)已知直线l 是过点()0,3C -且垂直于y 轴的定直线,若点()P m n ,到直线l 的距离为d ,求证:PF d =;(3)已知坐标平面内一点()2,3D ,求PDF 周长的最小值,并求出此时P 点坐标.【答案】(1)21=18y x -;(2)证明见解析;(3)6+P (2,-12)【分析】(1)根据条件选择设顶点式解析式,然后代入已知点坐标即可求出解析式;(2)根据点的坐标,利用勾股定理表示出PF 的长度,结合抛物线解析式,从而得到PF 长度与n 的关系式,再利用n 表示出d 的值,进而可以找到PF 与d 的关系;(3)借助(2)中得到的结论转化得到,当PD 所在直线垂直l 时,PF +PD 的最小值,即△PDF 周长最小,再求出P 点坐标即可. 【详解】解:(1)由顶点(0,-1),可设抛物线方程为21y ax =-,∵过()-, ∴代入解得a =18,∴抛物线解析式为21=18y x -;(2)证明:已知P 、F 的坐标,∴PF = ∵P 在抛物线上, ∴21=18m n +,∴3PF n +(n >-1), 又P 点到l 的距离d =n +3,∴PF=d ,(3)△PDF 的边长中DF 长度根据勾股定理求出为P 位置改变, ∴PD +PF 最小时,周长最小, 根据(2)可知PF =d ,∴当DP ⊥l 时,PD +PF 最小,且最小值为6, ∴P 点横坐标为2,∴△PDF 周长最小为6+P 点坐标为(2,-12). 【点睛】本题考查了求抛物线的解析式,勾股定理,求最值等知识内容,对学生的做题灵活性要求较高,属于中考常考题.3.如图,对称轴为直线1x =-的二次函数2y x bx c =-++的图象与x 轴交于A 、B 两点,与y 轴交于C 点,B 点的坐标为(1,0). (1)求此二次函数的解析式;(2)在直线1x =-上找一点P ,使PBC 的周长最小,并求出点P 的坐标;(3)若第二象限的且横坐标为t 的点Q 在此二次函数的图象上,则当t 为何值时,四边形AQCB 的面积最大?最大面积是多少?【答案】(1)223y x x =--+;(2)见解析,P (-1,2);(3)32t =-,758【分析】(1)先求点C 的坐标,再将点B 、点C 的坐标分别代入二次函数的解析式,求出待定系数b 、c 的值,问题即解决;(2)根据轴对称的性质,先画出点P 的位置,求出直线AC 的函数关系式,则直线AC 与抛物线的对称轴的交点即为P 的坐标;(3)四边形AQCB 的面积由△ABC 和△AQC 的面积组成,其中△ABC 的面积为定值,可知需要把△AQC 的面积用含t 的代数式表示出来,再求四边形AQCB 的最大值. 【详解】(1)∵二次函数y =-x 2+bx +c 的图象的对称轴为直线1x =-, ∴12(1)b-=-⨯-.∴b =-2.∵点B (1,0)在二次函数2y x bx c =-++的图象上, ∴21(2)10c -+-⨯+=. ∴3c =.∴二次函数的解析式为223y x x =--+.(2)由(1)知二次函数的解析式为223y x x =--+.令0x =,得3y =. ∴点C 的坐标为(0,3).由题意,可得点B (1,0)与点A (-3,0)关于直线1x =-对称.∴要在直线1x =-上找一点P 使△PBC 的周长最小的问题,也就是要在直线1x =-上找一点P 使PC 与P A 的和最小的问题. ∵在连接AC 的线中,线段AC 最短.∴直线AC 与直线1x =-的交点就是所要找的点P (如图1)设经过A 、C 两点的直线为直线y mx n =+,则有30,3.m n n -+=⎧⎨=⎩ ∴ 1,3.m n =⎧⎨=⎩∴3yx .由3,1y x x =+⎧⎨=⎩得点P的坐标为(-1,2). (3)如图2.过点Q 作QF x ⊥轴,垂足为F , 直线AC 与直线QF 交于点E .则ABC ACQ AQCB S S S ∆∆=+四边形. ∵ABC 1143622S AB OC ∆=⋅⋅=⨯⨯=, ACQ AQE CQE S S S ∆∆∆=+11132222QE AF QE OF QE OA QE =⋅⋅+⋅⋅=⋅⋅=⋅. 又∵点Q 的横坐标为t .∴ 点Q 和点E 的纵坐标分别为223t t --+和3t +. ∴2223(3)3QE t t t t t =--+-+=--. ∴()2AQCB 3632S t t =+--四边形223933756()22228t t t =--+=-++.由题意知: 30t -<<.∴当32t =-时,AQCB S 四边形有最大值,此时AQCB S 四边形的最大值为758.【点睛】此题考查了二次函数的图象与性质,根据轴对称找到特殊点及作与坐标轴垂直的直线来表示四边形的面积,是解决本题的关键.4.(2021·辽宁沈阳·中考二模)如图,在平面直角坐标系中,直线=y 与抛物线2y ax bx =+交于点()2,A n 和点()2,B k -,与y 轴交于点E ,抛物线交y 轴于点C ,点P 是第一象限直线AB 上方抛物线上的一点,连接PA ,PE .(1)求抛物线的表达式;(2)当APE 时,设点P 的横坐标为m ,求m 的值; (3)将线段EC 绕点E 顺时针旋转得到线段EF ,旋转角为()0120αα︒<<︒,连接AF 交线段EC 于点G ,FEC ∠的平分线交AF 于点H ,当EFH △的周长最大时,直接写出点H 的坐标.【答案】(1)2y =--(2)3m =;(3)23⎛- ⎝⎭【分析】(1)先求出A ,B 的坐标,代入2y ax bx =+(2)如图1,过点P 作//PK y 轴交直线AB 于点K ,设2(P m ,则(,K m ,由APE EPK APK S S S ∆∆∆=-,即可求得答案; (3)如图2,根据题意可得出120EHF ∠=︒,连接CH ,先证明CEH FEH ∆≅∆,作CEH ∆的外接圆W ,点H 始终在W 的劣弧CHE 上移动,当点H 为CHE 的中点时,CEH ∆的周长最大,即EFH ∆的周长最大,此时AH EC ⊥,利用三角函数定义即可求出答案. 【详解】解:(1)在直线=+y当2x =时,2y =,当2x =-时,(2)y =-=A ∴,(B -,抛物线2y ax bx =+A,(B -,∴4242a b a b ⎧+⎪⎪⎨⎪-=⎪⎩解得:a b ⎧=⎪⎪⎨⎪=⎪⎩∴抛物线的表达式为2y x =--(2)如图1,过点P 作//PK y 轴交直线AB 于点K ,设2(P m,则(,K m ,22(PK ∴=, APE EPK APK S S S ∆∆∆∴=-11(2)22PK m PK m =⋅-⋅-2∴2解得:3m =或3m =-,P 是第一象限的点,0m ∴>,3m ∴=;(3)在2y =0x =,得y =(0,C ∴,在=y 中,令0x =,得y =E ∴,OE ∴=(EC =,(0AE =AE EC EF ∴===设直线=+y x 轴交于M ,则(3,0)M , 3∴=OM ,tanOM MEO OE ∴∠== 60MEO ∴∠=︒,120BEO ∴∠=︒,CEF α∠=, 60AEF α∴∠=+︒,AE EF =, 18016022AEF AFE EAF α︒-∠∴∠=∠==︒-, EH 平分FEC ∠,1122FEH CEH FEC α∴∠=∠=∠=,11606022AHE FEH AFE αα∴∠=∠+∠=+︒-=︒,120EHF ∴∠=︒,如图2,连接CH ,在CEH ∆和FEH ∆中,EC EF CEH FEH EH EH =⎧⎪∠=∠⎨⎪=⎩, ()CEH FEH SAS ∴∆≅∆, 120CHE FHE ∴∠=∠=︒,作CEH ∆的外接圆W ,点H 始终在W 的劣弧CHE 上移动,当点H 为CHE 的中点时,CEH ∆的周长最大,即EFH ∆的周长最大,此时AH EC ⊥,90EGH ∠=︒,60EHG ∠=︒,30HEG ∠=︒,EG GC =2tan tan303GH EG HEG ∴=⋅∠=︒=,423EH GH ==,OG OE EG ∴=- CEH ∴∆的周长最大值423=⨯H 的坐标为2(3-.【点睛】本题是二次函数综合题,主要考查了二次函数图象和性质,一次函数图象和性质,待定系数法,三角形面积,全等三角形判定和性质,勾股定理,三角函数定义等,属于中考压轴题,综合性强,难度大,熟练掌握二次函数图象和性质、全等三角形判定和性质等相关知识,合理添加辅助线是解题关键.5.(2021·山东济南·中考二模)如图,已知抛物线y =ax 2+bx ﹣3的图象与x 轴交于点A (1,0)和B (3,0),与y 轴交于点C ,D 是抛物线的顶点,对称轴与x 轴交于E .(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴DE 上求作一点M ,使△AMC 的周长最小,并求出点M 的坐标和周长的最小值.(3)如图2,点P 是x 轴上的动点,过P 点作x 轴的垂线分别交抛物线和直线BC 于F 、G ,使△FCG 是等腰三角形,直接写出P 的横坐标.【答案】(1)y =﹣x 2+4x ﹣3;(2)M (2,-1);周长最小为(3)P 的坐标是:(5,0)或(4,0)或(30)或(0)【分析】1)将A (1,0)和B (3,0)代入y =ax 2+bx ﹣3得到二元一次方程组求解即可;(2)求出C 坐标及BC 解析式,BC 与对称轴交点即为M ,AC +BC 即是△AMC 的最小周长;(3)设P (m ,0),用m 表示出△FCG 的三边长,分类列方程求解.【详解】解(1)将A (1,0)和B (3,0)代入y =ax 2+bx ﹣3得:030933a b a b =+-⎧⎨=+-⎩,解得14a b =-⎧⎨=⎩, ∴抛物线的解析式y =﹣x 2+4x ﹣3;(2)连接BC 交直线DE 于M ′,如答图1:抛物线的解析式y =﹣x 2+4x ﹣3中令x =0得y =﹣3,令y =0得x =1或3,∴C (0,﹣3),A (1,0),B (3,0),且顶点D (2,1),对称轴x =2,∴AC ,BC =△AMC 的周长最小,即是AM +CM 最小,而M 在对称轴上,∴AM =BM ,AM +CM 最小就是BM +CM 最小,此时M 与M ′重合,AM +CM 最小值即是BC 的长度即AM +CM 最小值为,∴△AMC 的周长最小为设直线BC 解析式为y =kx +n ,将C (0,﹣3),B (3,0)代入得:303n k n -=⎧⎨=+⎩,解得13k n =⎧⎨=-⎩, ∴直线BC 解析式为y =x ﹣3,令x =2得y =-1,∴M (2,-1);(3)设P (m ,0),∵过P 点作x 轴的垂线分别交抛物线和直线BC 于F 、G ,∴F (m ,﹣m 2+4m ﹣3),G (m ,m ﹣3),而C (0,﹣3),∴CF 2=m 2+(﹣m 2+4m )2,CG 2=m 2+m 2=2m 2,FG 2=(﹣m 2+3m )2,△FCG 是等腰三角形,分三种情况:①CF =CG 时,m 2+(﹣m 2+4m )2=2m 2,解得m =0或m =3或m =5,m =0时F 、G 与C 重合,舍去;m =3时,F 、G 与B 重合,舍去,∴m =5,P (5,0),②CF =FG 时,m 2+(﹣m 2+4m )2=(﹣m 2+3m )2,解得m =0(舍去)或m =4, ∴P (4,0),③CG =FG 时,2m 2=(﹣m 2+3m )2,解得m =0(舍去)或m =3或m =,∴P (3,0)或P (0),总上所述,△FCG 是等腰三角形,P 的坐标是:(5,0)或(4,0)或(30)或(0).【点睛】本题考查二次函数、等腰三角形及线段和的最小值等知识点,解题关键是设出坐标表示线段长度,分类列方程求解.6.(2021·山西洪洞·中考二模)综合与探究 如图,在平面直角坐标系中,抛物线234y x x =--+与x 轴分别交于点A 和点B (点A 在点B 的左侧),交y 轴于点C .点P 是线段OA 上的一个动点,沿OA 以每秒1个单位长度的速度由点O 向点A 运动,过点P 作DP x ⊥轴,交抛物线于点D ,交直线AC 于点E ,连接BE .(1)求直线AC 的表达式;(2)在点P 运动过程中,运动时间t 为何值时,EC ED =?(3)在点P 运动过程中,EBP △的周长是否存在最小值?若存在,求出此时点P 的坐标;若不存在,请说明理由.【答案】(1)4y x =+;(2)0t =或4t =(3)存在,3,02P ⎛⎫- ⎪⎝⎭【分析】(1)根据二次函数的解析式可以求出点A 和点C 坐标,把点A 和点C 的坐标代入联立方程组,即可确定一次函数的解析式;(2)由题意可得点P 的坐标,从而可得点D 的坐标,故可求得ED 的长,再由A 、C 的坐标可知:OA =OC ,即△AOC 是等腰直角三角形,因DP ⊥x 轴,故△AEP 也是等腰直角三角形,可分别得到AC 、AE 的长,故可得EC 的长,由题意EC =ED ,即可得关于t 的方程,解方程即可;(3)由EP =AP ,得EBP C EP BP BE AP BP BE AB BE =++=++=+△,AB 是定值,周长最小,就转化为BE 最小,根据垂线段最短就可确定点P 的特殊位置,从而求出点P 的坐标.【详解】解:(1)∵抛物线234y x x =--+与x 轴分别交于点A 和点B ,交y 轴于点C ,∴当0x =时,4y =,即()0,4C ,当0y =时,2340x x --+=,14x =-,21x =,即()4,0A -,()10B ,, 设直线AC 的解析式为:y kx b =+则044k b b =-+⎧⎨=⎩, ∴14k b =⎧⎨=⎩, ∴直线AC 的表达式:4y x =+.(2)∵点P 沿OA 以每秒1个单位长度的速度由点O 向点A 运动,∴OP t =,(),0P t -,∵DP x ⊥轴,∴(),4E t t --+,()2,34D t t t --++,∴24DE t t =-+∵()4,0A -,()0,4C ,∴4OA =,4OC =,∴△AOC 是等腰直角三角形,∴45CAO ∠=︒,由勾股定理得:AC =∵DP x ⊥轴,在Rt APE 中,45CAP ∠=︒,∴△AEP 也是等腰直角三角形,∴4AP PE t ==-,)4AE t -,∴EC AC AE =-=,∴当24t t -+=时,即0t =或4t =EC ED =.(3)在Rt AEP △中,45OAC ∠=︒,∴AP EP =,∴EBP △的周长:EP BP BE AP BP BE AB BE ++=++=+.∴当BE 最小时EPB △的周长最小.当BE AC ⊥时,BE 最小,∵()10B ,, ∴5AB =,在Rt AEB 中,90AEB =︒∠,45BAC ∠=︒,5AB =,BE AC ⊥, ∴1522PB AB ==, ∴32OP PB OB =-=, ∴3,02P ⎛⎫- ⎪⎝⎭.【点睛】本题是综合与探究题,此类问题的考查特点是综合性和探究性强,考查内容是一次函数解析式的确定、特殊点坐标的确定、三角形周长最小值等,渗透了分类讨论、数形结合、转化等数学思想,难度较大.7.(2021·黑龙江讷河·九年级期末)综合与探究如图,已知点B(3,0),C(0,-3),经过B.C两点的抛物线y=x2-bx+c与x轴的另一个交点为A.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,求点D的坐标;(3)已知点E在第四象限的抛物线上,过点E作EF//y轴交线段BC于点F,连结EC,若点E(2,-3),请直接写出△FEC的面积;(4)在(3)的条件下,在坐标平面内是否存在点P,使以点A,B,E,P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-2x-3;(2)点D的坐标为(1,-2);(3)△FEC的面积为2;(4)存在,P1(0,3),P2(-2,-3),P3(6,-3).【分析】(1)将点B(3,0),C(0,-3)代入抛物线y=x2-bx+c,求得b,c即可求解;C=AC+AD+CD=AC+(2)求出D点的横坐标为1,当点B、D、C在同一直线上时,ACDBD +CD =AC +BC 最小,再求出直线BC 的解析式,即可求D 点坐标;(3)根据点和平行线的性质,先得出线段CE 和EF 的长以及∠CEF =90°即可求得△FEC 的面积; (4)【详解】解:(1) 将点B (3,0),C (0,-3)代入抛物线y =x 2-bx +c ,得,930-3b c c ⎧⎨⎩-+== ,解得2-3b c ⎧⎨⎩==, ∴抛物线的解析式为y =x 2-2x -3;(2)如图:由y =x 2-2x -3得对称轴为x =-2b a =-2-21⨯ =1 ∵点A ,.B 关于x =1对称,∴连结BC 与对称轴为x =1的交点就是符合条件的点D ,设直线BC 的解析式为y =mx +n ,将B (3,0),C (0,-3)代入解析式得303m n n ⎧⎨⎩+==- ,解得13m n ⎧⎨⎩==-, ∴y =x -3当x =1时,y =-2,∴点D 的坐标为(1,-2);(3)如图:∵E(2,-3),C(0,-3)∴CE∥x轴,且CE=2∵EF//y轴交线段BC于点F且BCl:y=x-3当x=2时,y=-1,∴F(2,-1)∴EF=2,又∵∠CEF=90°∴12CEFS CE EF=⋅= 12×2×2=2;(4) 存在,如图:①当AB为边长,BE为边长,如图四边形ABE P1为平行四边形∵对称轴为x=1,B(3,0)∴1×2-3=-1∴A(-1,0)AB=3-(-1)=4∴P1E=AB=4∵E(2,-3)∴C P1= P1E-CE=4-2=2∴P1 (-2,-3)②当AB 为边长,AE 为边长,∵E P 2=AB =4∴C P 2= P 2E +CE =4+2=6∴P 2 (6,-3)③当AB 为对角线,四边形ABE P 1为平行四边形∵四边形ABE P 1为平行四边形易得P 3恰好交y 轴∴P 3(0,3)综上所述,P 1 (-2,-3),P 2 (6,-3),P 3(0,3).【点睛】本题考查了二次函数的图象与性质,轴对称求最短路径,一次函数的图象与性质,待定系数法求解析式,平行四边形的性质,解题关键是熟练掌握二次函数的图象与性质以及平行四边形的性质,注意分类讨论思想.8.如图,抛物线y =ax 2+bx +3与x 轴交于A ,B 两点,且点B 的坐标为(2,0),与y 轴交于点C ,抛物线对称轴为直线x 12=-.连接AC ,BC ,点P 是抛物线上在第二象限内的一个动点.过点P 作x 轴的垂线PH ,垂足为点H ,交AC 于点Q .过点P 作PG ⊥AC 于点G . (1)求抛物线的解析式.(2)求PQG 周长的最大值及此时点P 的坐标.(3)在点P 运动的过程中,是否存在这样的点Q ,使得以B ,C ,Q 为顶点的三角形是等腰三角形?若存在,请写出此时点Q 的坐标;若不存在,请说明理由.【答案】(1)y 12=-x 212-x +3;(2))9108,P (32-,218);(3)存在,Q 1(,3),Q 2(﹣1,2)【分析】(1)将已知点B (2,0)代入,抛物线对称轴为直线x 12=-,即b 12a 2-=-,联立方程组,求出a ,b ,即可确定二次函数的解析式;(2)首先根据△PQG是等腰直角三角形,设P(m,12-m212-m+3)得到F(m,m+3),进而得到PQ12=-m212-m+3﹣m﹣312=-m212-m,从而得到△PQG周长12=-m212-m(12-m212-m1)(12-m212-m),配方后即可确定其最大值;(3)利用两点间距离公式可求得:CQ2=2m2,CB2=13,BQ2=2m2+2m+13,根据等腰三角形的性质分3类讨论,联立方程组即可求得Q.【详解】解:(1)∵抛物线y=ax2+bx+3过点B(2,0),对称轴为直线x12 =-,∴4230b12a2a b++=⎧⎪⎨-=-⎪⎩,解得1212ab⎧=-⎪⎪⎨⎪=-⎪⎩,∴y12=-x212-x+3.(2)令y=0,即12-x212-x+3=0,∴x1=﹣3,x2=2,∴A(﹣3,0),令x=0,得C(0,3),∵直线AC经过A(﹣3,0),C(0,3),设直线AC的解析式为:y=kx+b,则033k bb=-+⎧⎨=⎩,∴13kb=⎧⎨=⎩,∴直线AC的解析式为y=x+3,∴∠BAO=45°,∵PH⊥AO,PG⊥AB,∴∠AQH=∠PQG=∠QPG=45°,∴△PQG是等腰直角三角形,设P(m,12-m212-m+3),∴Q(m,m+3),∴PQ12=-m212-m+3﹣m﹣312=-m212-m2139(m)228=-++,∴当m 32=-时,PQ max 98=,此时P (32-,218), ∵△PQG 是等腰直角三角,∴△PQG 周长12=-m 212-m 12-m 212-m ),1)(12-m 212-m ),1)PQ ,∴△PFG 周长的最大值为:981). (3)∵B (2,0),C (0,3),Q (m ,m +3),由两点间距离公式可求得:CQ 2=2m 2,CB 2=13,BQ 2=2m 2+2m +13,①当CQ =CB 时,∴2m 2=13,∴m 1=,m 2=∴Q 1(,3); ②当BQ =CB 时,∴2m 2+2m +13=13,∴m 1=0(舍去),m 2=﹣1,∴Q 2(﹣1,2);③当CQ =BQ 时,∴2m 2+2m +13=2m 2,∴2m +13=0,∴m 132=-, ∴Q 3(132-,72-)(不合题意舍去),综上所述,当Q 1(3),Q 2(﹣1,2)时,以B ,C ,Q 为顶点的三角形是等腰三角形.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,二次函数的性质,三角形的面积,综合性较强,难度适中.9.(2020·吉林长春·中考模拟预测)已知在平面直角坐标系中,抛物线y =x 2+3x ﹣a 2+a +2(a >1)的图象交x 轴于点A 和点B (点A 在点B 左侧),与y 轴交于点C ,顶点为E .(1)如图1,求线段AB 的长度(用含a 的式子表示)及抛物线的对称轴;(2)如图2,当抛物线的图象经过原点时,在平面内是否存在一点P ,使得以A 、B 、E 、P 为顶点的四边形能否成为平行四边形?如果能,求出P 点坐标;如果不能,请说明理由; (3)如图3,当a =3时,若M 点为x 轴上一动点,连结MC ,将线段MC 绕点M 逆时针旋转90°得到线段MN ,连结AC 、CN 、AN ,则△ACN 周长的最小值为多少?【答案】(1)AB =2a ﹣1,抛物线的对称轴为x =﹣32;(2)存在,P 点坐标为(32,﹣94)或(﹣92,﹣94)或(﹣32,﹣94);(3) 【分析】(1)当y =0时,x 2+3x ﹣a 2+a +2=0,则[x ﹣(a ﹣2)][x +(a +1)]=0,解得x =a ﹣2,或x =﹣a ﹣1,进而求出AB 的长度和抛物线的对称轴;(2)由抛物线的图象经过原点,a >1,得出a =2,此时A (﹣3,0),B (0,0), E (-32,﹣94),①若AB 为平行四边形的边,则P 点坐标为(32,﹣94)或(92 ,﹣94);②若AB 为平行四边形的对角线,则P 点坐标为(﹣32,﹣94); (3)当a =3时,y =x 2+3x ﹣4,设M (t ,0),证△MNE ≌△CMF (AAS ),得出MF =CF =OM =﹣t ,EN =MF =OC =4,证出点N 在直线l :y =﹣x +4上运动,设直线l 交x 轴于点G ,则G (4,0),若使△ACN 的周长最小,即使AN +CN 最小,作点A 关于l 的对称点A ',连接A 'C,则AN =A 'N ,得出AN +CN 最小=A 'C ,求出AG =8,AA '=AC =定理得出A 'C =【详解】解:(1)当y =0时,x 2+3x ﹣a 2+a +2=0,∴[x ﹣(a ﹣2)][x +(a +1)]=0,∴x =a ﹣2,或x =﹣a ﹣1,∵点A 在点B 左侧,∴A (﹣a ﹣1,0),B (a ﹣2,0),∴AB =a ﹣2﹣(﹣a ﹣1)=2a ﹣1,抛物线的对称轴为x=122a a--+-=﹣32,即抛物线的对称轴为x=﹣32;(2)存在,理由如下:∵抛物线y=x2+3x﹣a2+a+2(a>1)的图象经过原点,a>1,∴﹣a2+a+2=0,解得:a=2,或a=﹣1(舍去),∴a=2,∴A(﹣3,0),B(0,0),y=x2+3x=(x+32)2﹣94,∴E(﹣32,﹣94),分情况讨论,如图2所示:①若AB为平行四边形的边,则P点坐标为(32,﹣94)或(﹣92,﹣94);②若AB为平行四边形的对角线,则P点坐标为(﹣32,﹣94);综上所述,在平面内存在一点P,使得以A、B、E、P为顶点的四边形成为平行四边形,P点坐标为(32,﹣94)或(﹣92,﹣94)或(﹣32,﹣94);(3)当a=3时,y=x2+3x﹣4,此时A(﹣4,0),B(1,0),C(0,﹣4),∴OA=4,OC=4,设M(t,0),∵将线段MC绕点M逆时针旋转90°得到线段MN,∴OM=﹣t,过点M作EF⊥x轴,过点N作NE⊥EF于点E,过点C作CF⊥EF于点F,如图3所示:则∠MEN=∠CFM=90°,由旋转的性质得:MN=MC,∠CMN=90°,∴∠EMN+∠CMF=∠CMF+∠FCM=90°,∴∠EMN=∠FCM,在△MNE和△CMF中==MEN CFMMN CM MN CM⎧⎪⎨⎪=⎩∠∠∠E∠F,∴△MNE≌△CMF(AAS),∴MF=CF=OM=﹣t,EN=MF=OC=4,∴点N的横坐标为N x=4+t,点N的纵坐标为N y=﹣t,∴y=﹣x+4,∴点N在直线l:y=﹣x+4上运动,设直线l交x轴于点G,则G(4,0),若使△ACN的周长最小,即使AN+CN最小,∴作点A关于l的对称点A',连接A'C,A'N,则AN=A'N,当A'、N、C三点共线时,AN+CN最小=A'C,由题意得:∠A'AO=45°,∠CAO=45°,∴∠CAA'=90°,∵G(4,0),∴AG=OA+OG=8,AA'=∵AC∴A'C∴A'C+AC=∵△ACN的周长=AN+CN+AC,∴△ACN周长的最小值为A'C+AC=【点睛】本题是二次函数的综合题,考查了二次函数的性质,掌握知识点是解题关键.10.(2021·山东惠民·九年级期末)综合与探究 在平面直角坐标系中,抛物线212y x bx c =++经过点(4,0)A -,点M 为抛物线的顶点,点B 在y 轴上,且OA OB =,直线AB 与抛物线在第一象限交于点(2,6)C ,如图.(1)求抛物线的解析式;(2)直线AB 的函数解析式为______,点M 的坐标为______,sin ACO ∠=______. (3)在y 轴上找一点Q ,使得AMQ △的周长最小.请求出点Q 的坐标;(4)在抛物线的对称轴上是否存在点N ,使以点A 、O 、C 、N 为顶点的四边形是平行四边形若存在,请直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)2122y x x =+;(2)4y x =+;(-2,-2)(3)点40,3Q ⎛⎫- ⎪⎝⎭;(4)存在,点(2,6)N -. 【分析】(1)利用待定系数法,将点A 、C 的坐标代入抛物线,解方程组求解即可;(2)由OA OB =,求出点B 的坐标,利用待定系数法求直线AB 的解析式;利用对称轴公式2b x a=-求出抛物线的对称轴,再将对称轴代入到抛物线解析式求出顶点的纵坐标即求出顶点M 的坐标;设抛物线的对称轴交AB 于点E ,证得OE ⊥AB ,利用正弦定义求得sin ACO ∠; (3)作点M 关于y 轴的对称点'A ,连接'MA ,交y 于点Q ,则点Q 即为所求作的点,用待定系数法求出直线'AA 的解析式,再把x =0代入即可求出点Q 的坐标;(4)先根据题意画出图形,再求出点N 的坐标.【详解】解:(1)将点A 、C 的坐标代入抛物线表达式得:11640214262b c b c ⎧⨯-+=⎪⎪⎨⎪⨯++=⎪⎩,解得20b c =⎧⎨=⎩故抛物线的表达式为:2122y x x =+; (2)点(4,0)A -,4OB OA ==,故点(0,4)B ,设直线AB 的解析式为:(),0y kx b k =+≠,044k b b =-+⎧∴⎨=⎩ ,解得,14k b =⎧⎨=⎩∴直线AB 的表达式为:4y x =+; 对于2122y x x =+,函数的对称轴为221222b x a =-=-=-⨯, 把x =2代入2122y x x =+,()()2122222y =⨯-+⨯-=- ∴顶点(2,2)M --;如图,设抛物线的对称轴交AB 于点E ,连接OE ,把x =-2代入4y x =+,得y =2,(2,2)E ∴-,E ∴为线段AB 的中点,OE =在Rt AOB 中,OA =OB ,OE AB ∴⊥,(2,6)C ,OC ∴=在RtOCE中,sin 5OE ACO OC ∠===故答案为:4y x =+;(-2,-2)(3)如图,作点A 点关于y 轴的对称点'A ,连接MA',交y 轴于Q 点,则点Q 即为所求作的点 ,连接AM ,MQ ,此时AMQ △的周长最小,设直线A M '的表达式为:11y k x b =+,则11114022k b k b +=⎧⎨-+=-⎩,解得111343k b ⎧=⎪⎪⎨⎪=-⎪⎩, 故直线A M '的表达式为:1433y x =- 令0x =,则43y =-,故点40,3Q ⎛⎫- ⎪⎝⎭; (4)存在.依题意画出AOCN ,设点N 的坐标为(-2,n ),当,AO NC AN OC == 时,四边形AOCN 是平行四边形,6n ∴=,所以N 的坐标为()2,6-故点(2,6)N -.【点睛】本题是二次函数与一次函数的综合题,考查出待定系数法求函数的解析式,轴对称,二次函数的性质,三角函数,用勾股定理求两点的距离,平行四边形的判定等知识,根据题意求二次函数和一次函数的解析式及利用轴对称求三角形周长最小是解本题的关键.11.(2020·广东·佛山市九年级月考)如图,在平面直角坐标系中,抛物线y =ax 2+2x +c 与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)直接写出抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在抛物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.(4)在线段BC 上是否存在点E ,使△BOE 与△ABC 相似?若存在,直接写出点E 的坐标;若不存在,简要说明理由.【答案】(1)抛物线的解析式:223y x x =-++;直线AC 的解析式:33y x +=;(2)点M 的坐标为(0,3);(3)存在,符合条件的点P 的坐标为720,39⎛⎫ ⎪⎝⎭或1013,39⎛⎫- ⎪⎝⎭;(4)存在点E ,坐标为39,44⎛⎫ ⎪⎝⎭或(1,2)【分析】(1)设交点式()()13y a x x =+-,展开得到22a -=,然后求出a 即可得到抛物线解析式;再确定C (0,3),然后利用待定系数法求直线AC 的解析式;(2)利用二次函数的性质确定D 的坐标为(1,4),作B 点关于y 轴的对称点B ′,连接DB ′交y 轴于M ,如图1,则B ′(-3,0),利用两点之间线段最短可判断此时MB +MD 的值最小,则此时△BDM 的周长最小,然后求出直线DB ′的解析式即可得到点M 的坐标;(3)过点C 作AC 的垂线交抛物线于另一点P ,如图2,利用两直线垂直一次项系数互为负倒数设直线PC 的解析式为13y x b =-+,把C 点坐标代入求出b 得到直线PC 的解析式为133y x =-+,再解方程组213323y x y x x ⎧=-+⎪⎨⎪=-++⎩得此时P 点坐标;当过点A 作AC的垂线交抛物线于另一点P 时,利用同样的方法可求出此时P 点坐标;(4)分∠BOE =∠BAC 和∠BOE =∠BCA 两种情况讨论,分别求得点E 的坐标即可.【详解】(1)设抛物线解析式为()()13y a x x =+-,即223y ax ax a =--,∴22a -=,解得1a =-,∴抛物线解析式为2y x 2x 3=-++;当0x =时,2233y x x =-++=,则C (0,3),设直线AC 的解析式为3y px =+,把A (-1,0)代入得:03p =-+,解得3p =,∴直线AC 的解析式为33y x =+;(2)∵2223(1)4y x x x =-++=--+,∴顶点D 的坐标为(1,4),作B 点关于y 轴的对称点B ′,连接DB ′交y 轴于M ,如图1,则B ′(-3,0),∵MB =MB ′,∴MB +MD =MB ′+MD =DB ′,此时MB +MD 的值最小,而BD 的值不变,∴此时△BDM 的周长最小,同理可求得直线DB ′的解析式为3y x ,当0x =时,33y x , ∴点M 的坐标为(0,3);(3)存在.过点C 作AC 的垂线交抛物线于另一点P ,如图2,∵直线AC 的解析式为33y x =+,∴直线PC 的解析式可设为13y x b =-+, 把C (0,3)代入得b =3,∴直线PC 的解析式为133y x =-+, 解方程组213323y x y x x ⎧=-+⎪⎨⎪=-++⎩,得:03x y =⎧⎨=⎩或73209x y ⎧=⎪⎪⎨⎪=⎪⎩, 则此时P 点坐标为(73,209); 过点A 作AC 的垂线交抛物线于另一点P ,直线AP 的解析式可设为13y x d =-+, 把A (-1,0)代入得:()113y d =-⨯-+, 解得:13d =-,∴直线AP 的解析式为1133y x =--, 解方程组2113323y x y x x ⎧=--⎪⎨⎪=-++⎩, 得:10x y =-⎧⎨=⎩或103139x y ⎧=⎪⎪⎨⎪=-⎪⎩, 则此时P 点坐标为(103,139-),综上所述,符合条件的点P 的坐标为(73,209)或(103,139-); (4)存在.∵A (-1,0),B (3,0),C (0,3),则AB =4,BC 同理求得直线BC 的解析式为:3y x =-+, 设点E 的坐标为(x ,3x -+),当∠BOE =∠BAC 时,△BOE ~△BAC , 过点E 作OB 的垂线交OB 于F ,如图,∵∠BOE =∠BAC ,∠OFE =∠AOC =90︒, ∴Rt △EOF ~Rt △CAO , ∴EF OF OC AO =,即331x x -+=, 解得:34x =, ∴此时点E 的坐标为(34,94); 当∠BOE =∠BCA 时,△BOE ~△BCA , 过点E 作OB 的垂线交OB 于F ,如图,∵△BOE ~△BCA , ∴BE OBAB BC =,即4BE =,∴BE =在Rt △EBF 中,BE EF =3x -+,3BF x =-,∴()()(22233x x -++-=解得:1215x x ==,(舍去),∴此时点E 的坐标为(1,2);综上所述,符合条件的点E 的坐标为(34,94)或(1,2); 【点睛】本题是二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;相似三角形的判定和性质;用分类讨论的思想解决数学问题.。

最新九年级中考数学专题:二次函数最值问题训练含答案

最新九年级中考数学专题:二次函数最值问题训练含答案
(2)在抛物线的对称轴x=﹣1上找一点M,使MA+MC的值最小,求点M的坐标;
(3)设P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
20.如图,在▱ABCD中,AB=6,BC=8,∠B=60°,E为BC上一动点(不与B重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S.
(1)求用x表示S的函数解析式,并写出x的取值范围.
(2)当E运动到何处时,S有最大值,最大值为多少?
参考答案:
1.B
2.C
3.D
4.A
5.D
6.A
7.D
8.A
9.
10.32
11.无解
12.10
13.5
14.
15.
16.8 128平方米
17.(1)截去的小正方形的边长为2cm
(2)当y取 cm时,利用留下的图形(即阴影部分)制成的无盖长方侧面积最大,最大值是 cm2
三、解答题
17.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,
问:
(1)所截去小正方形的边长多少时,留下的图形(阴影部分)面积为原矩形面积的80%?
(2)设所截去小正方形的边长为y厘米,则当y取何值时,利用留下的图形(即阴影部分)制成的无盖长方体侧面积最大?最大值是多少?
18.如图,已知抛物线 与x轴的交点坐标A(﹣4,0),B(2,0),并过点C(﹣2,﹣2),与y轴交于点D.
A. B. C. D.
7.抛物线y=-x2+ax+3的对称轴为直线x=2.若关于x的方程-x2+ax+3﹣t=0(t为实数)在﹣1<x<3的范围内有实数根,则t的取值范围是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC 于点F,求△PEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM 为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM重合部分的面积是▱APQM面积的时,求▱APQM面积.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=.(1)求抛物线的解析式;(2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值;(3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.4.如图(1),抛物线y=ax2+bx+c与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于点C (0,﹣3),若抛物线的对称轴为直线x=1,且tan∠OAC=3.(1)求抛物线的函数解析式;(2 若点D是抛物线BC段上的动点,且点D到直线BC距离为,求点D的坐标(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0,﹣),点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.5.已知:如图,直线y=﹣x+2与x轴交于B点,与y轴交于C点,A点坐标为(﹣1,0).(1)求过A、B、C三点的抛物线的解析式.(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若不存在,说明理由.6.如图,抛物线y=﹣x2+(m﹣1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x轴交直线AD于H,求△FGH的周长的最大值;(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.7.如图,已知抛物线y=﹣x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对称.(1)直接写出点D的坐标和直线AD的解析式;(2)点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;(3)若点P为y轴上的动点,则在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标,若不存在,请说明理由.8.如图,抛物线y=﹣x2﹣x+3与x轴相交于A、B两点(点A在点B的左侧),交y轴与点D,已知点C(0,),连接AC.(1)求直线AC的解析式;(2)点P是直线AC上方的抛物线上一动点,过点P作PE∥y轴,交直线AC于点E,过点P作PG⊥AC,垂足为G,当△PEG周长最大时,在x轴上存在一点Q,使|QP﹣QC|的值最大,请求出这个最大值以及点P 的坐标;(3)当(2)题中|QP﹣QG|取得最大值时,直线PG交y轴于点M,把抛物线沿直线AD平移,平移后的抛物线y′与直线AD相交的一个交点为A′,在平移的过程中,是否存在点A′,使得点A′,P,M三点构成的三角形为等腰三角形,若存在,直接写出点A′的坐标;若不存在,请说明理由.9.如图,抛物线y=﹣x2+x+3交x轴于A、B两点,点A在点B的左侧,交y轴于点C.(1)求直线AC与直线BC的解析式;(2)如图1,P为直线BC上方抛物线上的一点;①过点P作PD⊥BC于点D,作PM∥y轴交直线BC于点M,当△PDM的周长最大时,求P点坐标及周长最大值;②在①的条件下,连接AP与y轴交于点E,抛物线的对称轴与x轴交于点K,若S为直线BC上一动点,T 为直线AC上一动点,连接EK,KS,ST,TE,求四边形EKST周长的最小值;(3)如图2,将△AOC顺时针旋转60°得到△A′OC′,将△A′OC′沿直线OC′平移,记平移中的△A′OC′为△A″O′C″,直线A″O′与x轴交于点F,将△O′C″F沿O′C″翻折得到△O′C″F′,当△CC″F′为等腰三角形时,求此时F点的坐标.参考答案与试题解析1.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC 于点F,求△PEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.【解答】解:(1)把A(﹣1,0),B(3,0)两点坐标代入抛物线y=ax2+bx﹣3,得到,解得,∴抛物线的解析式为y=x2﹣2x﹣3.(2)如图1中,连接PB、PC.设P(m,m2﹣2m﹣3),∵B(3,0),C(0,﹣3),∴OB=OC,∴∠OBC=45°,∵PF∥OB,∴∠PFE=∠OBC=45°,∵PE⊥BC,∴∠PEF=90°,∴△PEF是等腰直角三角形,∴PE最大时,△PEF的面积中点,此时△PBC的面积最大,则有S△PBC=S△POB+S△POC﹣S△BOC=•3•(﹣m2+2m+3)+•3•m﹣=﹣(m﹣)2+,∴m=时,△PBC的面积最大,此时△PEF的面积也最大,此时P(,﹣),∵直线BC的解析式为y=x﹣3,∴F(﹣,﹣),∴PF=,∵△PEF是等腰直角三角形,∴EF=EP=,∴C△PEF最大值=+.(3)①如图2中,当N与C重合时,点N关于对称轴的对称点P,此时思想MNQP是正方形,易知P(2,﹣3).点P横坐标为2,②如图3中,当四边形PMQN是正方形时,作PF⊥y轴于N,ME∥x轴,PE∥y轴.易知△PFN≌△PEM,∴PF=PE,设P(m,m2﹣2m﹣3),∵M(1,﹣4),∴m=m2﹣2m﹣3﹣(﹣4),∴m=或(舍弃),∴P点横坐标为所以满足条件的点P的横坐标为2或.2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM 为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM重合部分的面积是▱APQM面积的时,求▱APQM面积.【解答】解:(1)令﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),C(0,3),∵点D,C关于抛物线的对称轴对称,∴D(2,3),∴直线AD的解析式为:y=x+1;(2)设点F(x,﹣x2+2x+3),∵FH∥x轴,∴H(﹣x2+2x+2,﹣x2+2x+3),∴FH=﹣x2+2x+2﹣x=﹣(x﹣)2+,∴FH的最大值为,由直线AD的解析式为:y=x+1可知∠DAB=45°,∵FH∥AB,∴∠FHG=∠DAB=45°,∴FG=GH=×=故△FGH周长的最大值为×2+=;(3)①当P点在AM下方时,如图1,设P(0,p),易知M(1,4),从而Q(2,4+p),∵△PM Q′与▱APQM重合部分的面积是▱APQM面积的,∴PQ′必过AM中点N(0,2),∴可知Q′在y轴上,易知QQ′的中点T的横坐标为1,而点T必在直线AM上,故T(1,4),从而T、M重合,∴▱APQM是矩形,∵易得直线AM解析式为:y=2x+2,∵MQ⊥AM,∴直线QQ′:y=﹣x+,∴4+p=﹣×2+,解得:p=﹣,∴PN=,∴S□APQM=2S△AMP=4S△ANP=4××PN×AO=4×××1=5;②当P点在AM上方时,如图2,设P(0,p),易知M(1,4),从而Q(2,4+p),∵△PM Q′与▱APQM重合部分的面积是▱APQM面积的,∴PQ′必过QM中点R(,4+),易得直线QQ′:y=﹣x+p+5,联立,解得:x=,y=,∴H(,),∵H为QQ′中点,故易得Q′(,),由P(0,p)、R(,4+)易得直线PR解析式为:y=(﹣)x+p,将Q′(,)代入到y=(﹣)x+p得:=(﹣)×+p,整理得:p2﹣9p+14=0,解得p1=7,p2=2(与AM中点N重合,舍去),∴P(0,7),∴PN=5,∴S□APQM=2S△AMP=2××PN×|x M﹣x A|=2××5×2=10.综上所述,▱APQM面积为5或10.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=.(1)求抛物线的解析式;(2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值;(3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.【解答】解:(1)∵点A的坐标为(﹣1,0),∴OA=1.又∵tan∠ACO=,∴OC=4.∴C(0,﹣4).∵OC=OB,∴OB=4∴B(4,0).设抛物线的解析式为y=a(x+1)(x﹣4).∵将x=0,y=﹣4代入得:﹣4a=﹣4,解得a=1,∴抛物线的解析式为y=x2﹣3x﹣4.(2)∵抛物线的对称轴为x=﹣=,C(0,﹣4),点D和点C关于抛物线的对称轴对称,∴D(3,﹣4).设直线AD的解析式为y=kx+b.∵将A(﹣1,0)、D(3,﹣4)代入得:,解得k=﹣1,b=﹣1,∴直线AD的解析式y=﹣x﹣1.∵直线AD的一次项系数k=﹣1,∴∠BAD=45°.∵PM平行于y轴,∴∠AEP=90°.∴∠PMH=∠AME=45°.∴△MPH的周长=PM+MH+PH=PM+MP+PM=(1+)PM.设P(a,a2﹣3a﹣4),M(﹣a﹣1),则PM=﹣a﹣1﹣(a2﹣3a﹣4)=﹣a2+2a+3,∵PM=﹣a2+2a+3=﹣(a﹣1)2+4,∴当a=1时,PM有最大值,最大值为4.∴△MPH的周长的最大值=4×(1+)=4+4.(3)如图1所示;当∠EGN=90°.设点G的坐标为(a,0),则N(a,a2﹣3a﹣4).∵∠EGN=∠AOC=90°,∴时,△AOC∽△EGN.∴=,整理得:a2+a﹣8=0.解得:a=(负值已舍去).∴点G的坐标为(,0).如图2所示:当∠EGN=90°.设点G的坐标为(a,0),则N(a,a2﹣3a﹣4).∵∠EGN=∠AOC=90°,∴时,△AOC∽△NGE.∴=4,整理得:4a2﹣11a﹣17=0.解得:a=(负值已舍去).∴点G的坐标为(,0).∵EN在EP的右面,∴∠NEG<90°.如图3所示:当∠ENG′=90°时,EG′=EG××=(﹣1)×=.∴点G′的横坐标=.∵≈4.03>4,∴点G′不在EG上.故此种情况不成立.综上所述,点G的坐标为(,0)或(,0).4.如图(1),抛物线y=ax2+bx+c与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于点C(0,﹣3),若抛物线的对称轴为直线x=1,且tan∠OAC=3.(1)求抛物线的函数解析式;(2 若点D是抛物线BC段上的动点,且点D到直线BC距离为,求点D的坐标(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0,﹣),点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.【解答】解:(1)在Rt△AOC中,tan∠AOC==3,且OC=3,∴OA=1,则A(﹣1,0),∵抛物线的对称轴为直线x=1,则点A(﹣1,0)关于直线x=1的对称点B的坐标为(3,0),设抛物线的表达式为y=a(x﹣3)(x+1),将点C(0,﹣3)代入上式得﹣3a=﹣3,解得:a=1,∴抛物线的解析式为y=(x﹣3)(x+1)=x2﹣2x﹣3;(2)∵点B(3,0)、C(0,﹣3),则BC=3,∴S△BCD=×3×=3,设D(x,x2﹣2x﹣3),连接OD,∴S△BCD=S△OCD+S△BOD﹣S△BOC=•3•x+•3•(﹣x2+2x+3)﹣×3×3==3,解得x=1或x=2,则点D的坐标为(1,﹣4)或(2,﹣3);(3)设直线AE解析式为y=kx+b,将点A(﹣1,0)、E(0,﹣)代入得:,解得:,则直线AE 解析式为y=﹣x﹣,AE==,设P(t,t2﹣2t﹣3),则M(t,﹣t﹣),∴PM=﹣t﹣﹣(t2﹣2t﹣3)=﹣t2+t+,作PG⊥MN于G,由PM=PN得MG=NG=MN,由△PMG∽△AEO得=,即=,∴MG=PM=NG,∴C△PMN=PM+PN+MN=PM=(﹣t2+t+)=﹣t2++6=﹣(t﹣)2+,∴当t=时,C△PMN取得最大值,此时P(,﹣).5.已知:如图,直线y=﹣x+2与x轴交于B点,与y轴交于C点,A点坐标为(﹣1,0).(1)求过A、B、C三点的抛物线的解析式.(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若不存在,说明理由.【解答】解:(1)直线y=﹣x+2与x轴交于B(2,0),与y轴交于C点(0,2),设过A、B、C的抛物线的解析式为y=ax2+bx+c,把A(﹣1,0)、B(2,0)、C(0,2)的坐标代入,∴a=﹣1,b=1,c=2,∴抛物线的解析式为:y=﹣x2+x+2,(2)设D(x,﹣x2+x+2),F(x,﹣x+2),∴DF=(﹣x2+x+2)﹣(﹣x+2)=﹣x2+2x,所以x=1时,DF最大=1,∵OB=OC,∴△OBC为等腰直角三角形,∵DE⊥BC,DF∥y轴,∴△DEF为等腰直角三角形,∴△DEF周长的最大值为1+(3)如图,当△DEF周长最大时,D(1,2),F(1,1).延长DF交x轴于H,作PM⊥DF于M,则DB=,DH=2,OH=1当∠DFP=∠DBC时,△DFP∽△DBF,∴,∴DP=,∴=,∴PM=,DM=,∴P点的横坐标为OH+PM=1+=,P点的纵坐标为DH﹣DM=2﹣=,∴P(,).6.如图,抛物线y=﹣x2+(m﹣1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x轴交直线AD于H,求△FGH的周长的最大值;(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.【解答】解:(1)把C(0,3)代入y=﹣x2+(m﹣1)x+m得m=3,∴抛物线的解析式为:y=﹣x2+2x+3,(2)令y=﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),C(0,3),∵点D和点C关于抛物线的对称轴对称,∴D(1,2),AD的解析式y=x+1,设AD与y轴交于E,∴OA=OE=1,∴∠EAO=45°,∵FH∥AB,∴∠FHA=∠EAO=45°,∵FG⊥AH,∴△FGH是等腰直角三角形,设点F坐标(m,﹣m2+2m+3),∴点H坐标(﹣m2+2m+2,﹣m2+2m+3),∴FH=﹣m2+m+2,∴△FGH的周长=(﹣m2+m+2)+2×(﹣m2+m+2)=﹣(1+)(m﹣)2+∴△FGH的周长最大值为;(3)∵抛物线y=﹣x2+2x+3的定点坐标为(1,4),∴直线AM的解析式为y=2x+2,∵直线l垂直于直线AM,∴设直线l的解析式为y=﹣x+b,∵与坐标轴交于P、Q两点,∴直线l的解析式为y=﹣x+b与y轴的交点P(0,b),与x轴的交点Q(2b,0),设R(1,a),∴PR2=(﹣1)2+(a﹣b)2,QR2=(2b﹣1)2+a2,PQ2=b2+(2b)2=5b2,∵△PQR是以PQ为斜边的等腰直角三角形,∴PR2=QR2,即(﹣1)2+(a﹣b)2=QR2=(2b﹣1)2+a2,∴﹣2a=3b﹣4,①∴PR2+QR2=PQ2,即(﹣1)2+(a﹣b)2+(2b﹣1)2+a2=5b2,∴2a2﹣2ab﹣4b+2=0,②联立①②解得:,,∴直线l的解析式为y=﹣x+或y=﹣x+2.7.如图,已知抛物线y=﹣x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对称.(1)直接写出点D的坐标和直线AD的解析式;(2)点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;(3)若点P为y轴上的动点,则在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标,若不存在,请说明理由.【解答】解:(1)将x=0代入得y=3,∴C(0,3).∵抛物线的对称轴为x=﹣=1,C(0,3),∴D(2,3).把y=0代入抛物线的解析式得:0=﹣x2+2x+3,解得x=3或x=﹣1,∴A(﹣1,0).设直线AD的解析式为y=kx+b,将点A和点D的坐标代入得:,解得:k=1,b=1,∴直线AD的解析式为y=x+1.(2)如图1所示:∵直线AD的解析式为y=x+1,∴∠DAB=45°.∵EF∥x轴,EG∥y轴,∴∠GEF=90°,∠GFE=∠DAB=45°∴△EFG是等腰直角三角形.∴△EFG的周长=EF+FG+EG=(2+)EG.依题意,设E(t,﹣t2+2t+3),则G(t,t+1).∴EG=﹣t2+2t+3﹣(t+1)=﹣(t﹣)2+.∴EG的最大值为.∴△EFG的周长的最大值为+.(3)存在.①以AD为平行四边形的边时,PQ∥AD,PQ=AD.∵A,D两点间的水平距离为3,∴P,Q两点间的水平距离也为3.∴点Q的横坐标为3或﹣3.将x=3和x=﹣3分别代入y=﹣x2+2x+3得y=0或y=﹣12.∴Q(3,0)或(﹣3,﹣12).②当AD为平行四边形的对角线时,设AD的中点为M,∵A(﹣1,0),D(2,3),M为AD的中点,∴M(,).设点Q的横坐标为x,则=,解得x=1,∴点Q的横坐标为1.将x=1代入y=﹣x2+2x+3得y=4.∴这时点Q的坐标为(1,4).综上所述,当点Q的坐标为Q(3,0)或(﹣3,﹣12)或(1,4)时,以A,D,P,Q为顶点的四边形是平行四边形.8.如图,抛物线y=﹣x2﹣x+3与x轴相交于A、B两点(点A在点B的左侧),交y轴与点D,已知点C(0,),连接AC.(1)求直线AC的解析式;(2)点P是直线AC上方的抛物线上一动点,过点P作PE∥y轴,交直线AC于点E,过点P作PG⊥AC,垂足为G,当△PEG周长最大时,在x轴上存在一点Q,使|QP﹣QC|的值最大,请求出这个最大值以及点P 的坐标;(3)当(2)题中|QP﹣QG|取得最大值时,直线PG交y轴于点M,把抛物线沿直线AD平移,平移后的抛物线y′与直线AD相交的一个交点为A′,在平移的过程中,是否存在点A′,使得点A′,P,M三点构成的三角形为等腰三角形,若存在,直接写出点A′的坐标;若不存在,请说明理由.【解答】解:(1)令y=0则,﹣x2﹣x+3=0,解得x=﹣3或x=2,∴A(﹣3,0),B(2,0).设直线AC的解析式为y=kx+b,将点A和点C的坐标代入得:,解得:k=,b=,∴直线AC的解析式为y=x+.(2)延长PE交OA与点F,则PF⊥OA.∵PF⊥OA,PG⊥AC,∴∠EFA=∠PGE.又∵∠PEG=∠FEA,∴∠EAF=∠EPG.∵OC=,AO=3,∴tan∠GPE=tan∠EAF=.∴sin∠GPE=,cos∠GPE=.∴PG=PE,EG=EP.∴△PEG的周长=PE+PG+EG=(1+)PE.∴当PE取得最大值时,△PEC的周长最大.设点P的坐标为(t,﹣t2﹣t+3),则点E的坐标为(t,t+).∵点P在点E的上方,∴PE=﹣t2﹣t+3﹣(t+)=﹣t2﹣t+=﹣(t+1)2+2.当t=﹣1时,PE取得最大值,此时△PGE的周长取得最大值.∴点P(﹣1,3),点E的坐标为(﹣1,﹣1).∴PE=3﹣1=2.∴PG=PE=.根据三角形的两边之差小于第三边可知:当点P、G、Q三点共线时,|QP﹣QG|的值最大,此时|QP﹣QG|=PG=(3)如图所示:∵∠PGE=∠PFN,∠P=∠P,∴△PEG∽△PNF,∴=,即=2,解得FN=1.5.∴点N的坐标为(,0).设PN的解析式为y=kx+b,将点P和点N的坐标代入得:,解得:k=﹣2,b=1.∴M(0,1).设直线AD的解析式为y=mx+3,将点A的坐标代入得:﹣3m+3=0,解得m=1,∴直线AD的解析式为y=x+3.设点A′的坐标为(x,x+3).当PM=PA′时,=,整理得:x2+x﹣2=0,解得x=1或x=﹣2,∴点A′的坐标为(1,4)或(﹣2,1).当PM=MA′时,=,整理得:2x2+4x﹣1=0,解得:x=或x=,∴点A′的坐标为(,)或(,).当A′P=A′M时,=,整理得:﹣2x=3,解得:x=﹣,∴A′(﹣,).综上所述,点A′的坐标为(1,4)或(﹣2,1)或(,)或(,)或(﹣,).9.如图,抛物线y=﹣x2+x+3交x轴于A、B两点,点A在点B的左侧,交y轴于点C.(1)求直线AC与直线BC的解析式;(2)如图1,P为直线BC上方抛物线上的一点;①过点P作PD⊥BC于点D,作PM∥y轴交直线BC于点M,当△PDM的周长最大时,求P点坐标及周长最大值;②在①的条件下,连接AP与y轴交于点E,抛物线的对称轴与x轴交于点K,若S为直线BC上一动点,T 为直线AC上一动点,连接EK,KS,ST,TE,求四边形EKST周长的最小值;(3)如图2,将△AOC顺时针旋转60°得到△A′OC′,将△A′OC′沿直线OC′平移,记平移中的△A′OC′为△A″O′C″,直线A″O′与x轴交于点F,将△O′C″F沿O′C″翻折得到△O′C″F′,当△CC″F′为等腰三角形时,求此时F点的坐标.【解答】解:(1)对于抛物线y=﹣x2+x+3,令x=0,得到y=3,可得C(0,3),令y=0,可得y=﹣x2+x+3=0,解得x=﹣1或3,∴A(﹣1,0),B(4,0),∴直线AC的解析式为y=3x+3,直线BC的解析式为y=﹣x+3;(2)①如图在1中,设P(m,﹣m2+m+3),则M(m,﹣m+3).∵点P运动时,△PDM的形状是相似的,∴PM的值最大时,△PDM的周长的值最大,∵PM=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m=﹣(m2﹣4m+4﹣4)=﹣(m﹣2)2+3,∵﹣<0,∴m=2时,PM的值最大,此时P(2,),PM的最大值为,∵OC=3,OB=4,∴BC==5,由△PDM∽△BOC,可得==,∴==,∴PD=,DM=,∴△PDM的周长的最大值为++=.②如图2中,作K关于BC的对称点K′,E关于AC的对称点E′,连接E′K′交AC于T,交BC于S,此时四边形EKST的周长最小.四边形EKST的周长的最小值=EK+SK+ST+TE=EK+K′S+ST+TE′=EK+E′K′,∵P(2,),∴直线AP的解析式为y=x+,∴E(0,),∵K(,0),∴OE=OK=,EK=,∵K与K′关于直线BC对称,∴K′(,),∵E,E′关于直线AC对称,∴E′(﹣,),∴E′K′==3,∴四边形EKST周长的最小值为3+=.(3)如图3中,设OF=2m,则FO′=O′F′=m,OO′=m,OC″=m+3.可得F′(m,m),C″(m+,m+),①当C″C=C″F′时,(m+)2+(m﹣)2=(﹣m)2+(﹣m)2,整理得m2+3m=0,解得m=0或﹣3(舍弃),∴F(0,0).②当CF′=C″F′时,(﹣m)2+(﹣m)2=m2+(m﹣3)2,整理得m2﹣m=0,解得m=0或,∴F(0,0)或(,3);③当CF′=CC″时,m2+(m﹣3)2=(m+)2+(m﹣)2,整理得m2﹣9m=0,解得m=0或9,∴F(0,0)或(9,27),综上所述,满足条件的点F坐标为(0,0)或(,3)或(9,27);。

相关文档
最新文档