实际问题与方程(一)(1)

合集下载

3.4 实际问题与一元一次方程(一)配套与工程问题

3.4 实际问题与一元一次方程(一)配套与工程问题

3.4 实际问题与一元一次方程(一)配套与工程问题一、选择题1.某车间有20名工人,生产螺栓和螺母,每人每天能生产螺栓12个或螺母16个.如果分配x 名工人生产螺栓,其余的工人生产螺母,要恰好使每天生产的螺栓和螺母按1∶2配套.求x 所列的方程是( )A .12x =16(20-x )B .16x =12(20-x )C .2×16x =12(20-x )D .2×12x =16(20-x )2.41人参加运土劳动,有三十根扁担,要安排多少人抬(两人合用一根扁担),多少人挑(一人用一根扁担),可使扁担和人数刚好配套?若设有x 人挑土,则所列方程是( )A .41)30(2=--x xB .30)41(2=-+x x C .30241=-+x x D .x x -=-4130 3.在加固某段河坝时,需要动用15台挖土,运土机械,每台机械每小时能挖土18立方米或运土12立方米,为了使挖出的土能及时运走,若安排x 台机械挖土,则可列方程( )A .151218=-xB .)28(1218x x -=C .)15(1812x x -=D .151218=+x x4.某地下管道由甲工程队单独铺设需要20天,由乙工程队单独铺设需要30天.如果由这两个工程队从两端同时相向施工,总共需要( )A .10天B .12天C .14天D .16天5.某班组每天需生产了50个零件,才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前三天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程( )A .1205x +-506x +=3 B .50x -506x +=3 C .50x -120506x ++=3 D .120506x ++-50x =3 二、填空题6.某中学的学生自己动手整修操场,如果让八年级学生单独工作,需要6小时完成;如果让九年级学生单独工作,需要4小时完成.现在由八年级、九年级学生一起工作x 小时,完成了任务.则=x .7.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x 人做上衣,则做裤子的人数为 人,根据题意,可列方程为 ,解得x = .8.某瓷器厂共有120个工人,每个工人一天能做200只茶杯或50只茶壶.如果8只茶杯和一只茶壶为一套,则安排 人生产茶壶可使每天生产的瓷器配套.9.甲队有32人,乙队有28人,如果要使甲队人数是乙队人数的2倍,那么需要从乙队抽调_______人到甲队.三、解答题10.某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?11.东方红机械厂加工车间有90名工人,平均每人每天加工大齿轮20个或小齿轮15个,已知2个大齿轮与3个小齿轮配成一套,问一天最多可以生产多少套这样成套的产品?12.用白铁皮做罐头盒,每张铁皮可制盒身15个,或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?13.某玩具加工车间要赶在“6·1”儿童节前加工450个毛绒玩具,决定由甲、乙两班工人来完成.已知甲班工人每天做20个玩具,乙班工人的速度是甲班工人的1.5倍,问甲、乙两班工人需要做多少天才能完成任务?14.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.15.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?3.4 实际问题与一元一次方程(一)配套与工程问题一、选择题1.D 2.C 3.C 4.B 5.C二、填空题6.512 7.)54(x -,)54(108x x -=,30 8.40 9.8 三、解答题10.设每天有x 个工人生产镜片,)60(x -个工人生产镜架,一副眼镜有一个镜架,2片镜片,故可以设方程为250)60(200⨯⨯-=x x 200x=(60-x )*50*2方程两边同时除以100,得x x -=602解得20=x答: 20个工人生产镜片,40个工人生产镜架11.设一天最多可以生产x 套这样成套的产品, 由题意得90153202=+x x ,解得 300=x 答:一天最多可以生产300套这样成套的产品.12.设用x 张制盒身,则用)108(x -张制盒底正好制成整套罐头盒.列方程 )108(42152x x -=⨯ 解得:63=x 108-x =45答:用63张制盒身,则用45张制盒底正好制成整套罐头盒.13.设做x 天完成任务,由题意得450205.120=⨯+x x x解得:9=x答:甲、乙两班工人需要做9天才能完成任务。

五年级上册数学人教版《实际问题与方程(一)》课件

五年级上册数学人教版《实际问题与方程(一)》课件

解:设学校原跳远纪录是x米。 检验:
4.21-x = 0.06
方程左边 = 4.21-x
4.21-x+x = 0.06+x
= 4.21-4.15
4.21= 0.06+x 0.06+x = 4.21 0.06+x-0.06 = 4.21-0.06
= 0.06 =方程右边 所以,x = 4.15是方程的解。
解:设小明去年身高x米。 解法二: 8cm=0.08m
1.53-x=0.08 1.53-x+x=0.08+x
1.53=0.08+x 0.08+x=1.53 0.08+x-0.08=1.53-0.08
x=1.45
2.
半小时=30分
解:设一个滴水的水龙头每分钟浪费x千克水。
每分钟滴的水×30=半小时滴的水 30x=1.8
30x÷30=1.8÷30 x=0.06
答:一个滴水的水龙头每分钟浪费0.06千克水。
半小时=30分
2.
解:设一个滴水的水龙头每分钟浪费x千克水。
半小时滴的水÷每分钟滴的水=30
1.8÷x=30 1.8÷x×x=30×x
1.8=30x 30x=1.8 30x÷30=1.8÷30
x=0.06
答:一个滴水的水龙头每分钟浪费0.06千克水。
新成绩 – 原纪录 = 超出部分
解:设学校原跳远纪录是x米。 4.21-x = 0.06
4.21-x+x = 0.06+x 4.21= 0.06+x
0.06+x = 4.21 0.06+x-0.06 = 4.21-0.06
x = 4.15
小明成绩为: – 原纪录 = 超出部分
解:设小明去年身高x米。
1.小明今年的身高是 1.53m,比去年长高了 8cm。小明去年身高多 少米?

实际问题与一元一次方程(知识讲解)

实际问题与一元一次方程(知识讲解)

实际问题与一元一次方程(一) (基础)知识讲解【学习目标】1. 熟练掌握分析解决实际问题的一般方法及步骤;2. 熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】知识点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题分析方程求解解答.由此可得解决此类抽象检验题的一般步骤为:审、设、列、解、验、答.要点诠释:( 1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找(2)"设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数;( 3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;( 4)“解”就是解方程,求出未知数的值.( 5)“验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;( 6)“答”就是写出答案,注意单位要写清楚.知识点二、常见列方程解应用题的几种类型(待续) 1.和、差、倍、分问题(1)基本量及关系:增长量=原有量X增长率,现有量=原有量+增长量,现有量=原有量-降低量.( 2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2. 行程问题(1 )三个基本量间的关系:路程=速度X时间( 2)基本类型有:①相遇问题(或相向问题):1 •基本量及关系:相遇路程=速度和X相遇时间n.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:i•基本量及关系:追及路程=速度差X追及时间n.寻找相等关系:第一,同地不同时出发:前者走的路程=追者走的路程;第二,第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:i.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度= 2 X水速;n.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.( 3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3. 工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率X工作时间;( 2)总工作量=各单位工作量之和.4. 调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1. 2011年北京市生产运营用水和居民家庭用水的总和为 5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?【答案与解析】设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米.依题意,得 5.8-x = 3x+0.6解得x = 1.35.8-x = 5.8-1.3 = 4.5 (亿立方米)答:生产运营用水 1.3亿立方米,居民家庭用水 4.5亿立方米.【总结升华】本题要求两个未知数,不妨设其中一个未知数为x,另外一个用含x的式子表示.本题的相等关系是生产运营用水量+居民家庭用水总量=5.8亿立方米.举一反三:【变式】(麻城期末考试)麻商集团三个季度共销售冰箱2800台,第一个季度销售量是第二个季度的2倍.第三个季度销售量是第一个季度的2倍,试问麻商集团第二个季度销售冰箱多少台?【答案】解:设第二个季度麻商集团销售冰箱x台,则第一季度销售量为2x台,第三季度销售量为4x 台,依题意可得:x+2x+4x = 2800,解得:x = 400答:麻商集团第二个季度销售冰箱400台.类型二、行程问题1. 一般问题CP2•小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城•试问学校到县城的距离是多少千米?【答案与解析】解:设小山娃预订的时间为x小时,由题意得:4x+0.5 = 5(x-0.5),解得x = 3.所以4x+0.5 = 4 X 3+0.5 = 12.5(千米).答:学校到县城的距离是12.5千米.【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.举一反三:【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.【答案】解:设这段坡路长为a千米,汽车的平均速度为x千米/时,则上坡行驶的时间为—小时,下坡行驶的10时间为■—小时.依题意,得:旦—x 2a ,20 10 20化简得:3ax 40a.1显然a丰0,解得x 133答:汽车的平均速度为 13 -千米/时.32. 相遇问题(相向问题)【高清课堂:实际问题与一元一次方程(一)388410 相遇问题】3.A 、B 两地相距100km,甲、乙两人骑自行车分别从A B 两地出发相向而行,甲的速度是23km/h ,乙的速度是21km/h ,甲骑了 1h 后,乙从B 地出发,问甲经过多少时间与乙相遇? 【答案与解析】解:设甲经过x 小时与乙相遇.由题意得:23 1 23 21 (x 1) 100解得,x=2.752.75小时与乙相遇. 等量关系:甲走的路程 +乙走的路程=100km2.5km ,求甲、乙每小时各行驶多少千米 ? 【答案】解:设乙每小时行驶 x 千米,则甲每小时行驶2(x 2.5) 2x 45解得:x 10x 2.5 10 2.5 12.5 (千米)答:甲每小时行驶 12.5千米,乙每小时行驶 10千米3. 追及问题(同向问题)C 4.一队学生去校外进行军事野营训练,他们以 5千米/时的速度行进,走了 18分钟时,学校要将 一紧急通知传给队长,通讯员从学校出发,骑自行车以 14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍 ? 【答案与解析】解:设通讯员x 小时可以追上学生队伍,则根据题意,18得14x 5 - 5x ,60得:x 11 小时=10分钟.6, 6答:通讯员用 10分钟可以追上学生队伍【总结升华】追及问题:路程差 =速度差X 时间,此外注意:方程中 x 表示小时,18表示分钟,两边单 位不一致,应先统一单位.4. 航行问题(顺逆风问题)5 .一艘船航行于 A 、B 两个码头之间,轮船顺水航行需3小时,逆水航行需 5小时,已知水流速度是4千米/时,求这两个码头之间的距离. 【答案与解析】解法1 :设船在静水中速度为x 千米/时,则船顺水航行的速度为 (x+4)千米/时,逆水航行的速度为(x-4)千米/时,由两码头的距离不变得方程:3(x+4) = 5(x-4),解得:x=16,—甲1小討答:甲经过 【总结升华】举一反三: 乙两人骑自行车,同时从相距 45km 的两地相向而行, 2小时相遇,每小时甲比乙多走(x +2.5)千米,根据题意,得:(16+4 )X 3=60 (千米)答:两码头之间的距离为 60千米.解法2 :设A 、B 两码头之间的距离为 x 千米,则船顺水航行时速度为-千米/时,逆水航行时速度为-35千米/时,由船在静水中的速度不变得方程:答:两码头之间的距离为 60千米.【总结升华】顺流速度 =静水速度+水流速度;逆流速度 =静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类型三、工程问题1 7,合注7小时注水池的 ,乙管每小时注水池的15 10【答案与解析】 解:设乙管还需x 小时才能注满水池.1 17 由题意得方程: —-x 1— 10 1510解此方程得:x = 9答:单独开乙管,还需 9小时可以注满水池.【总结升华】工作效率X 工作时间 =工作量,如果没有具体的工作量,一般视总的工作量为“ 1 ”.举一反三:【变式】修建某处住宅区的自来水管道,甲单独完成需 14天,乙单独完成需 18天,丙单独完成需 12天,前7天由甲、乙两人合作,但乙中途离开了一段时间,后两天由乙、丙合作完成问乙中途离开了几天?【答案】 解:设乙中途离开 x 天,由题意得1 1 1 7 (7 x 2)2 1141812解得:x 3答:乙中途离开了 3天 类型四、调配问题(比例问题、劳动力调配问题 )7•星光服装厂接受生产某种型号的学生服的任务,已知每 3m 长的某种布料可做上衣 2件或裤子3条,一件上衣和一条裤子为一套,计划用 750m 长的这种布料生产学生服,应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?2【思路点拨】每3米布料可做上衣2件或裤子3条,意思是每1米布料可做上衣 2件,或做裤子1条,3此外恰好配套说明裤子的数量应该等于上衣的数量. 【答案与解析】x750 x解:设做上衣需要 xm,则做裤子为(750-x)m ,做上衣的件数为2件,做裤子的件数为3 , 33x x 44,解得:x 6035.一个水池有两个注水管,两个水管同时注水, 10小时可以注满水池;甲管单独开 15小时可以注 满水池,现两管同时注水 7小时,关掉甲管,单独开乙管注水,还需要几小时能注满水池【思路点拨】视水管的蓄水量为1 ”,设乙管还需 x 小时可以注满水池;那么甲乙合注1小时注水池的1,甲管单独注水每小时注水池的10 1 1 10 1533解得:x = 450,750-x = 750-450 = 300(m),答:用450m 做上衣,300m 做裤子恰好配套,共能生产300套.【总结升华】用参数表示上衣总件数与裤子的总件数,等量关系:上衣总件数=裤子的总件数. 举一反三:【高清课堂:实际问题与一元一次方程(一)调配问题】【变式】甲队有 72人,乙队有68人,需要从甲队调出多少人到乙队,才能使甲队恰好是乙队人数的 解:设从甲队调出 x 人到乙队.由题意得,372 x 68 x4解得,x=12.答:需要从甲队调出 12人到乙队,才能使甲队恰好是乙队人数的34实际问题与一元一次方程(一)(提高)知识讲解【学习目标】1. 熟练掌握分析解决实际问题的一般方法及步骤;2. 熟悉行程,工程,配套及和差倍分问题的解题思路. 【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题 抽象 方程检解 解答.由此可得解决此类题的一般步骤为:审、设、列、解、验、答. 要点诠释:(1) “审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找 (2)“设”就是设未知数,一般求什么就设什么为 x ,但有时也可以间接设未知数;(3) “列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类 量,单位要统一;(4) “解”就是解方程,求出未知数的值;(5) “检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可; (6) “答”就是写出答案,注意单位要写清楚.要点二、常见列方程解应用题的几种类型(待续) 1. 和、差、倍、分问题(1) 基本量及关系:增长量=原有量X 增长率,现有量=原有量+增长量,现有量=原有量 -降低量.(2) 寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增 长率等.2. 行程问题(1 )三个基本量间的关系:路程=速度X 时间则有: 2x 3(750 x) 45^-2300 (套)3(2)基本类型有:①相遇问题(或相向问题):1 •基本量及关系:相遇路程=速度和X相遇时间n.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:1 •基本量及关系:追及路程=速度差X追及时间n.寻找相等关系:第三,同地不同时出发:前者走的路程=追者走的路程;第四,第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:i.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度= 2 X水速;n.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3. 工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率X工作时间;(2)总工作量=各单位工作量之和.4. 调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1 .旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%第二次旅程中用去剩余汽油的40%这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?【答案与解析】解:设油箱里原有汽油x公斤,由题意得:x(1-25%)(1-40%)+仁25%x+(1-25%)x X 40%解得:x=10答:油箱里原有汽油10公斤•【点评】等量关系为:油箱中剩余汽油+1=用去的汽油•举一反三:【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票?【答案】解:设这个班有x名学生,根据题意得:3x+24 = 4x-26解得:x= 50所以3x+24 = 3X 50+24 = 174答:这个班有50名学生,一共展出了174张邮票.类型二、行程问题1. 车过桥问题2. 某桥长1200m现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s , 而整个火车在桥上的时间是30s,求火车的长度和速度.【思路点拨】正确理解火车“完全过桥”和“完全在桥上”的不同含义.【答案与解析】解:设火车车身长为xm,根据题意,得:1200 x 1200 x50 30 ,解得:x= 300,1200 x 1200 300 “所以30 .50 50答:火车的长度是300m,车速是30m/s.【点评】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下车(注:A点表示火头):⑴ <2)(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度.举一反三:【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?【答案】解:设从第一排上桥到排尾离桥需要x分钟,列方程得:69286x 1 1 86,4解得:x= 3答:从第一排上桥到排尾离桥需要3分钟.2. 相遇问题(相向问题)3 .小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进•已知两人在上午8 时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A、B两地间的路程•【答案与解析】解:设A、B两地间的路程为x千米,由题意得:x 36 x 362 4解得:x 10 8.答:A、B两地间的路程为108千米.【点评】根据“匀速前进”可知A、B的速度不变,进而A、B的速度和不变.利用速度和=小李和小明前进的路程和/时间可得方程.举一反三:【高清课堂:实际问题与一元一次方程(一)388410二次相遇问题】10【变式】甲、乙两辆汽车分别从 到达对方车站后立即返回,两车第二次相遇时距 52km/h ,求A B 两站间的距离. 【答案】 A B 两站同时开出,相向而行,A 站 34km, 途中相遇后继续沿原路线行驶,在分别 已知甲车的速度是 70km/h ,乙车的速度是 解:设A 、B 两站间的距离为x km ,由题意得: 2x 34 70x 5234 解得:x=122 答:A 、B 两站间的距离为122km. 3.追及问题(同向问题) • 一辆卡车从甲地匀速开往乙地,出发 卡车的速度每小时快 30千米,但轿车行驶一小时后突遇故障,修理 1速度减小了 -,结果又用两小时才追上这辆卡车,求卡车的速度.3 【答案与解析】 解:设卡车的速度为 1 2x x x 2x4 解得:x=24答:卡车的速度为 【点评】采用“线示” 2小时后, x 千米/时,由题意得:(x 30) (1 1) (x 30) 2 一辆轿车从甲地去追这辆卡车,轿车的速度比15分钟后,又上路追这辆卡车,但24千米/时. 分析法,画出示意图.利用轿车行驶的总路程等于卡车行驶的总路程来列方程,理清两车行驶的速度与时间. 4.航行问题(顺逆风问题) .(武昌区联考)盛夏,某校组织长江夜游,在流速为 至B 地,然后溯江而上到 C 地下船,共乘船 4小时•已知 A 、C 两地相距 7.5千米/时,求A 、B 两地间的距离. 【思路点拨】由于 C 的位置不确定,要分类讨论: (1) C 地在A B 之间;【答案与解析】 解:设A 、B 两地间的距离为x 千米. (1) 当C 地在A B 两地之间时,依题意得.x 102.5千米/时的航段,从 A 地上船,沿江而下 10千米,船在静水中的速度为 (2) C 地在A 地上游.47.5 2.57.5 2.5解这个方程得:x = 20(千米) (2) 当C 地在A 地上游时,依题意得:x 10,47.5 2.57.5 2.520解这个方程得:x 203 20答:A B 两地间的距离为20千米或 旦 千米. 3 【点评】这是航行问题,本题需分类讨论,采用“线示”分析法画出示意图 “共乘” 4小时构建方程求解. (如下图所示),然后利用10C x-lQ逆沆逆流5. 环形问题•环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的3 倍,环城一周是20千米,求两个人的速度•2【答案与解析】7解;设最慢的人速度为 x 千米/时,则最快的人的速度为x 千米/时,由题意得:27 48 48 —X X -X X 一 =20260£0解得:x=10答:最快的人的速度为 35千米/时,最慢的人的速度为 10千米/时. 【点评】这是环形路上的追及问题,距离差为环城一周 20千米.相等关系为:最快的人骑的路程 -最慢人骑的路程=20千米. 90m 的正方形行走,按 A T B T SD^ A …方向,甲从 A 以65m/min 的速度,乙 当乙第一次追上甲时,在正方形的哪一条边上?【答案】解:设乙追上甲用了 x 分钟,则有:72x-65x= 3 X 90 270 八 x(分)7270答:乙第一次追上甲时走了 72 270〜7类型三、工程问题• 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管 8小时可注满水池,单独开丙管 9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?【答案与解析】 解:设再过x 小时可把水注满.由题意得:“1 1、 c “1 11、 ”( )2 ( )x 1 6 8 6 8 9 解得:x 302-. 13134答:打开丙管后2兰小时可把水放满.举一反三:【变式】两人沿着边长为从B 以72m/min 的速度行走,如图所示, 2777 (m)此时乙在 AD 边上A D13【点评】相等关系:甲、乙开2h的工作量+甲、乙、丙水管的工作量=1.举一反三:2【变式】收割一块水稻田,若每小时收割4亩,预计若干小时完成,收割2后,改用新式农机,工作效31率提高到原来的1丄倍,因此比预计时间提早1小时完成,求这块水稻田的面积.2【答案】解:设这块水稻田的面积为x亩,由题意得:2 1x xx3 3 14〒口12解得:x 36.答:这块水稻田的面积为36亩.类型四、配套问题(比例问题、劳动力调配问题)&某工程队每天安排120个工人修建水库,平均每天每个工人能挖土 5 m3或运土 3 m3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人?【答案与解析】解:设安排x人挖土,则运土的有(120-x)人,依题意得:5x = 3(120-x),解得x = 45.120-45 = 75(人).答:应安排45人挖土,75人运土.【点评】用参数表示挖土数与运土数,等量关系:挖土与运土的总立方米数应相等.举一反三:【高清课堂:实际问题与一元一次方程(一)配制问题】【变式】某商店选用A、B两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A种糖果x千克,则B种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25 X 100解得:x=62.5.当x=62.5 时,100-x=37.5.答:要用A B两种糖果分别为62.5千克和37.5千克.实际问题与一元一次方程(二)(基础)知识讲解【学习目标】(1)进一步提高分析实际问题中数量关系的能力,能熟练找出相等关系并列出方程;⑵熟悉利润,存贷款,数字及方案设计问题的解题思路.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题分象方程求验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、验、答. 要点诠释:(1)“审”是指读懂题目弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.要点三、常见列方程解应用题的几种类型(续)1. 禾U润问题利润(1) 利润率=u润100%进价(2) 标价=成本(或进价)*1 +利润率)(3) 实际售价=标价对丁折率(4) 利润=售价—成本(或进价)=成本>利润率注意:商品利润=售价一成本”中的右边为正时,是盈利;当右边为负时,就是亏损•打几折就是按标价的十分之几或百分之几十销售.2•存贷款问题(1)利息=本金X利率X期数(2)本息和(本利和)=本金+利息=本金+本金X利率>期数=本金X1 +利率X期数)(3)实得利息=利息-利息税(4)利息税=利息X利息税率(5)年利率=月利率X12(6)月利率=年利率X丄123. 数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a.4. 方案问题选择设计方案的一般步骤:(1 )运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.【典型例题】类型一、利润问题【高清课堂:实际问题与一元一次方程(二)利润问题例2】侧” 1•以现价销售一件商品的利润率为30%如果商家在现有的价格基础上先提价40%后降价50%的方法进行销售,商家还能有利润吗?为什么?【答案与解析】解:设该商品的成本为a元,则商品的现价为(1+30%)a元,依题意其后来折扣的售价为(1+30%) a • (1+40%)(1-50%)=0.91 a.■/ 0.91 a- a=-0.09 a,答:商家不仅没有利润,而且亏损的利润率为9%.【总结升华】解答此类问题时,一定要弄清题意•分清售价、进价、数量、利润之间的关系很重要. 举一反三:【高清课堂:实际问题与一元一次方程 (二)388413利润问题例3】【变式1】某个商品的进价是 500元,把它提价 40游作为标价.如果商家要想保住 12%的利润率搞促销 活动,请你计算一下广告上可写出打几折? 【答案】解:设该商品打x 折,依题意,则:x500(1+40%) • =500 (1+12% .1010 1.12 o x==8.1.4答:该商品的广告上可写上打八折.【变式2】张新和李明相约到图书大厦去买书,请你根据他们的对话内容 (如图所示),求出李明上次所买书籍的原价.【答案】解:设李明上次购买书籍的原价为 x 元,由题意得:0.8x+20 = x-12 ,解这个方程得:x = 160.答:李明上次所买书籍的原价是 160元. 类型二、存贷款问题2 .爸爸为小强存了一个五年期的教育储蓄,年利率为 2.7 %,五年后取出本息和为17025兀,爸爸开始存入多少元. 【答案与解析】解:设爸爸开始存入 x 元.根据题意,得x + XX2.7 % X5= 17025. 解之,得x = 15000答:爸爸开始存入 15000元.【总结升华】本息和=本金+利息,禾利息=本金>利率 >期数.类型三、数字问题3.一个三位数,十位上的数是百位上的数的 2倍,百位、个位上的数的和比十位上的数大 2,又个位、十位、百位上的数的和是 14,求这个三位数.【答案与解析】解:设百位上的数为 x ,则十位上的数为 2x ,个位上的数为14-2x-x由题意得:x+14-2x-x=2x+2解得:x=3/• x=3 , 2x=6 , 14-2x-x=50.09a-100%=-9%.答:这个三位数为 365【总结升华】在数字问题中应注意: (1)求的是一个三位数,而不是三个数; 间接未知数,切勿求出 x 就答;(3)三位数字的表示方法是百位上的数字乘以 10,然后把所得的结果和个位数字相加. 举一反三:【变式】一个两位数,个位上的数字比十位上的数字大 4,这个两位数又是这两个数字的和的4倍,求这个两位数• 【答案】解:设十位上的数字为 X ,则个位上的数字为(X 4 ),由题意得:10x (x 4) [x (x 4)] 4解得:x 44 10 (4 4) 48答:这两位数是 48.类型四、方案设计问题4 •为鼓励学生参加体育锻炼•学校计划拿出不超过 1600元的资金再购买一批篮球和排球•已知篮球和排球的单价比为 3:2,单价和为80元. (1)篮球和排球的单价分别是多少元 ? ⑵若要求购买的篮球和排球的总数量是36个,且购买的篮球数量不少于26个•请探究有哪几种购买【答案与解析】解:(1)设篮球和排球的单价分别为 3x 元和2x 元.依题意3x+2x = 80,解得x = 16 即 3x = 48, 2x = 32 答:篮球和排球的单价分别为 48元和32元.(2) 米用列表法探索:方案一:购买篮球 26个,排球10个; 方案二:购买篮球 27个,排球9个; 方案三:购买篮球 28个,排球8个.【总结升华】本例设未知数的方法很独特,值得借鉴•采用列表的方法探索方案,值得学习. 举一反三: 【变式】(武昌区期末调考)某校组织10位教师和部分学生外出考察,全程票价为 25元,对集体购票,客运公司有两种优惠方案可供选择:方案一:所有师生按票价的 88%勾票;方案二:前 20人购全票,从第21人开始,每人按票价的 80%勾票. (1)若有30位学生参加考察,问选择哪种方案更省钱?(2)这类应用题,一般设 100, 10位上的数字乘以。

实际问题与一元二次方程-

实际问题与一元二次方程-
不能修养性情。年华随时光飞逝,意志随岁月消失,最终年老志衰,大多不为社会所用,只能悲哀地守着穷困的陋室,此时后悔又怎 么来得及呢! 作者是冰心,原名谢婉莹,中国现代文学史上第一位著名女作家。这两作品是在受到了印度诗人泰戈尔的《飞鸟集》的影响下写成的。
知识点一 传染繁殖问题 包括三方面的内容:
4、有人说,秋天的落叶是枯槁的,没有任何价值。我却不以为然。“落红不是无情物,化作春泥更护花”。坠落在秋天的它,溶入泥 土成为大树妈妈的养料,孕育着春的希望。我相信,在明年春天的嫩芽里,一定有秋叶淡淡的微笑。 孔子说:“我十五岁时就有志于做学问,三十岁时有所成就,四十岁时内心不再感到迷惑,五十岁就明白上天的意旨,六十岁时能听 取各种见解并加以容纳,七十岁时就能随心所欲,却不会逾越法度。” 比喻:比喻就是“打比方”。即抓住两种不同性质的事物的相似点,用一事物来喻另一事物。 作用:比喻的作用主要是:化平淡为生
解:设平均一轮每个人传染x人,则: (1+x)2=121
解得:x1=10,x2=-12(不符合题意,舍去) 令最初患病的人数为y人,依题意,得:
y(1+10)3=2662 解得:y=2 答:最初有2人患了该病。
知识点二 竞赛、握手、赠送、合同问题
1.一个小组若干人,新年互送贺卡,若全组 共送贺卡72张,则这个小组共多少人?
第一步:审:弄清题意和题目中的已知数、未知数, 用字母表示题目中的一个未知数;
第二步:设:找出能多方位、多角度、最好的表示关 系的量设出未知数;
第三步:找:找出能够表示应用题全部含义的相等关 系;
第四步:列:根据这些相等关系列出需要的代数式 (简称关系式)从而列出方程;
第五步:解:解这个方程,求出未知数的值;
遇和现实境况的观照与反思。 3、段意合并法

人教九年级数学上册-实际问题与一元二次方程(传播问题和数字问题)(附习题)

人教九年级数学上册-实际问题与一元二次方程(传播问题和数字问题)(附习题)
解:设共有x个队参加了比赛. 依题意x(x-1)=90. 解得x1=10, x2=-9(舍去).
答:共有10个队参加了比赛.
4. 有一人利用手机发送短信,获得信息的人 也按他的发送人数发送了该条短信息,经
过两轮短信发送,共有90人的手机上获得 同一信息,则每轮平均一个人向多少人发
送短信? 解:设每轮平均一个人向x人发送短信. 由题意,得x+x2=90. 解得:x1=9,x2=-10(舍去). 答:每轮平均一个人向9个人发送短信.
答:这个两位数是82或28.
课堂小结
两个要点: 传染源和传播速度

播 问 题
传染轮数 与传染总 人数之间
设1个人每次可以传染x人 第一轮:(1+x)人 第二轮:(1+x)+x(1+x)人
的关系: 第三轮:(1+x)+x(1+x)+x(1+x)2人
第n轮: (1+x)+x(1+x)+…x(1+x)n=(1+x)n人
知识点 列一元二次方程解决实际问题
有一人患了流感,经过两轮传染后共有 121个人患了流感,每轮传染中平均一个人 传染了几个人?
你能解决这个问题吗?
设每轮传染中平均一个人传染了x个人. 第一轮传染后有 x+1 人患了流感. 第二轮传染中的传染源为 x+1 人,第二轮传染后 有 x+1+x(x+1) 人患了流感. 根据等量关系 “ 两轮传染后,有121人患了流感 ” 列出方程 x+1+x(x+1)=121 .
21.3 实际问题与一元二次方程 第1课时 实际问题与一元二次方程(1)

人教新课标五年级上册数学教案:《实际问题与方程1》

人教新课标五年级上册数学教案:《实际问题与方程1》
2.教学难点
-难点一:理解并建立未知数概念。对于学生来说,使用字母表示未知数是一个抽象的过程,需要通过具体例子的引导来理解。
-举例:解释为什么用“x”来表示小红的金额,而不是具体的数字。
-难点二:等式性质的运用。学生在理解等式两边进行运算时,可能会混淆运算规则,需要通过重复练习和直观演示来加强理解。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了实际问题与方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.应用方程解决购物、长度、面积等实际问题,培养解决问题的策略和思维方式。
二、ห้องสมุดไป่ตู้心素养目标
《实际问题与方程1》核心素养目标:
1.培养学生运用数学语言描述现实问题的能力,增强数学建模的核心素养,通过提炼问题中的数量关系,建立方程模型。
2.提升逻辑推理能力,让学生在探索方程解的过程中,理解等式的性质,掌握等式运算的基本规则,培养严谨的逻辑思维。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次方程的基本概念。一元一次方程是只含有一个未知数,并且未知数的最高次数为一次的方程。它在数学中非常重要,可以帮助我们解决许多生活中的实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设小明有20元,小红比小明多5元,我们用x表示小红的金额,那么x=20+5。这个案例展示了方程在实际中的应用,以及它如何帮助我们解决问题。
-举例:在解方程过程中,解释为什么可以在等式两边同时加上或减去相同的数而不改变等式的真实性。

22.3实际问题与一元二次方程(第一课时)

22.3实际问题与一元二次方程(第一课时)
各赛1场, 由于甲队对乙队的比赛和乙队对甲队的比赛
是同一场比赛,所以全部比赛共 即
1 x( x 1) 28 2
化简:得
1 x( x 1) 2
场.
2 x 56 0 x
?
探究1: 有一人患了流感,经过两轮传染后共有
121人患了流感,每轮传染中平均一个人 传染了几个人?
解:设每轮传染中平均一个人传染了x个人,则第一轮后共有 X+1 人患了流感,第二轮后共有x(x+1) 人患了流感. 列方程得 1+x+x(x+1)=121
x
∴(1 x)2 1 36% ∴1 x 0.8
∴ x1 0.2 x2 1.8
. 答:平均每月降价
x2 1.8 不合题意舍去. ∴ x 0.2 20%
20% .
例1. 某人将2000元人民币按一年定期存入银行,到期后支取1000 元用于购物,剩下的1000元及应得利息又全部按一年定期存入银 行,若银行存款的利率不变,到期后得本金和利息共1155元,求 这种存款方式的年利率. 解:设这种存款方式的年利率为
解:设甲种药品成本的年平均下降率为x,则一年后
甲种药品成本为5000(1-x)元,两年后甲种药品成本 为 5000(1-x)2 元,依题意得
5000 (1 x) 3000
2
解方程,得
x 0.225, x 1.775(不合题意, 舍去)
1 2
答:甲种药品成本的年平均下降率约为22.5%.
x2+2x-120=0 解方程,得 x1=-12, x2=10
根据问题的实际意义,x=10
答:每轮传染中平均传染速度,三轮传染后有多少人患流感?

五年级上册数学教案-第五单元第7课时简易方程—实际问题与方程(1) 人教版

五年级上册数学教案-第五单元第7课时简易方程—实际问题与方程(1) 人教版

五年级上册数学教案-第五单元第7课时简易方程—实际问题与方程(1) 人教版一、教学目标1. 让学生理解方程的概念,能够识别方程中的未知数和已知数。

2. 培养学生利用方程解决实际问题的能力,通过实际问题情境,让学生学会将问题转化为方程,并求解方程。

3. 培养学生运用方程进行逻辑推理和解决问题的能力,提高学生的数学思维和数学素养。

二、教学内容1. 方程的概念:方程是由等号连接的两个代数表达式,其中包含未知数和已知数。

2. 实际问题与方程:将实际问题转化为方程,通过求解方程来解决问题。

3. 方程的求解方法:代入法、消元法、加减法等。

三、教学步骤1. 引入:通过一个实际问题引入方程的概念,让学生了解方程在实际生活中的应用。

2. 讲解:讲解方程的定义和方程的组成部分,让学生理解方程中的未知数和已知数。

3. 示例:给出一个实际问题,引导学生将其转化为方程,并求解方程。

4. 练习:让学生独立完成一些实际问题与方程的练习题,巩固所学知识。

5. 小结:总结本节课的学习内容,强调方程在解决实际问题中的重要性。

四、教学评价1. 通过课堂讲解和练习,观察学生对方程概念的理解和应用能力。

2. 收集学生的练习题,评价学生对实际问题与方程的转化能力和求解能力。

3. 通过课后作业和测试,评估学生对本节课内容的掌握程度。

五、教学资源1. 教科书:五年级上册数学教科书,人教版。

2. 练习题:教师自编或选用的练习题,用于巩固学生对方程的理解和应用能力。

3. 教学辅助材料:如PPT、教具等,用于辅助教学和展示实际问题的情境。

六、教学建议1. 在教学过程中,注重引导学生将实际问题转化为方程,培养学生的数学思维能力。

2. 针对不同学生的学习情况,给予个性化的指导,帮助学生克服困难,提高学习效果。

3. 鼓励学生积极参与课堂讨论和练习,培养学生的合作意识和解决问题的能力。

七、教学反思1. 教师应反思教学过程中的教学方法是否得当,是否能够激发学生的学习兴趣和积极性。

五年级上册数学教案-5 简易方程—实际问题与方程(1)∣人教新课标

五年级上册数学教案-5 简易方程—实际问题与方程(1)∣人教新课标

教案标题:五年级上册数学教案-5简易方程—实际问题与方程(1)∣人教新课标一、教学目标1. 让学生掌握简易方程的基本概念,理解方程与实际问题的联系。

2. 培养学生运用方程解决实际问题的能力,提高学生的逻辑思维能力。

3. 使学生能够熟练地列出简单的方程,并求解未知数。

4. 培养学生合作交流、积极参与的学习态度。

二、教学内容1. 简易方程的定义及特点2. 方程与实际问题的联系3. 列出简单的方程解决实际问题4. 求解方程中的未知数三、教学重点与难点1. 教学重点:简易方程的基本概念,方程与实际问题的联系,求解未知数。

2. 教学难点:理解方程与实际问题的联系,熟练地列出简单的方程解决实际问题。

四、教学过程1. 导入:通过一个简单的实际问题,引导学生思考如何用数学方法解决,从而引入方程的概念。

2. 新课导入:介绍简易方程的定义及特点,让学生了解方程与实际问题的联系。

3. 案例分析:分析一个具体的实际问题,引导学生如何列出简单的方程,并求解未知数。

4. 练习巩固:布置一些类似的实际问题,让学生独立完成,巩固所学知识。

5. 总结提升:总结本节课所学内容,强调方程与实际问题的联系,激发学生继续学习的兴趣。

五、教学评价1. 课后作业:布置一些实际问题,让学生独立完成,检查学生对本节课知识的掌握程度。

2. 课堂表现:观察学生在课堂上的表现,了解学生对本节课内容的理解和运用情况。

3. 小组讨论:组织学生进行小组讨论,培养学生的合作交流能力。

六、教学反思1. 教师在教学中要注意引导学生理解方程与实际问题的联系,提高学生的逻辑思维能力。

2. 教师要关注学生的学习情况,及时解答学生的疑问,确保学生对知识的掌握。

3. 教师要注重培养学生的合作交流能力,激发学生的学习兴趣。

注:本教案适用于人教新课标五年级上册数学教材,教学内容及教学过程可根据实际情况进行调整。

重点关注的细节是“教学过程”部分,因为这是教案中实施教学步骤的核心内容,直接关系到学生能否有效地理解和掌握方程的概念及其在实际问题中的应用。

_实际问题与一元一次方程(第1课时)螺钉、螺母问题

_实际问题与一元一次方程(第1课时)螺钉、螺母问题

【请你来试一试】:
1.某工地需要派 48 人去挖土和运土,如果每人每 天平均挖土 5 方或运土 3 方, 那么应该怎样安排 人员,正好能使挖的土及时运走? (分析:本题 的配套关系是:每天挖的土方等于每天运走的土 方.)
2.一套仪器由一个A部件和三个B部件构成.用1 m3 钢材可做40个A部件或240个B部件.现要用6 m3 钢材制作这种仪器,应用多少钢材做A部件,多少钢 材做B部件,恰好配成这种仪器多少套?
二、合作探究,学习新知
【例 1】某车间有 22 名工人,每人每天可以生产
1 200 个螺钉或 2 000 个螺母,1 个螺钉需要配
2 个螺母.为了使每天的螺钉和螺母刚好配套,
应安排生产螺钉和螺母的工人各多少名?
分析:1.如果设 x 名工人生产螺钉,则__(2_2_-_x_)_名工人生产螺母;
螺钉数量 = 1200x
三、探索过程
通过我们这几节课的学习,尝试归纳用一元一次方程 分析和解决实际问题的基本过程.
设未知数、列 方 程
实际问题
一元一次方程
实际问题பைடு நூலகம்的答案
检验
解 方 程
一元一次方程的解
(x a)
课堂 小结
这节课你学到了什么?
练习
1.某服装厂要生产某种型号的学生校服,已知 3m 长的某种 布料可做上衣 2 件或裤子 3 条,一件上衣和一 条裤子为一 套,库内存这种布料 600m,应如何分配布料做上衣和做裤 子才能恰好配套?
2.某车间有 28 名工人,生产一种螺栓和螺帽,平均每人每小时 能生产螺栓 12 个或螺帽 18 个,两个螺栓要 配三个螺帽,应 分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓 和螺帽刚好配套

五年级上册数学教案-第五单元第九课时实际问题与方程1∣人教新课标

五年级上册数学教案-第五单元第九课时实际问题与方程1∣人教新课标

教案标题:五年级上册数学教案-第五单元第九课时实际问题与方程1|人教新课标一、教学目标1. 让学生理解方程的概念,掌握解一元一次方程的方法。

2. 培养学生运用方程解决实际问题的能力。

3. 培养学生对方程的审美情趣,激发学生对数学学习的兴趣。

二、教学内容1. 一元一次方程的概念和解法。

2. 运用一元一次方程解决实际问题。

三、教学重点与难点1. 教学重点:一元一次方程的概念和解法。

2. 教学难点:运用一元一次方程解决实际问题。

四、教学过程1. 导入:通过一个实际问题的引入,让学生感受方程的必要性。

2. 新课导入:讲解一元一次方程的概念,让学生明确方程的意义。

3. 案例分析:通过具体的一元一次方程案例,让学生掌握解方程的方法。

4. 实践环节:让学生分组讨论,运用一元一次方程解决实际问题。

5. 总结与拓展:对本节课所学内容进行总结,并布置课后作业。

五、教学方法1. 讲授法:讲解一元一次方程的概念和解法。

2. 案例分析法:通过具体案例,让学生掌握解方程的方法。

3. 小组讨论法:让学生分组讨论,运用一元一次方程解决实际问题。

六、教学评价1. 课后作业:检查学生对一元一次方程的掌握程度。

2. 课堂表现:观察学生在课堂上的参与程度,了解学生对知识的理解程度。

3. 小组讨论:评估学生在小组讨论中的表现,了解学生的合作能力和问题解决能力。

七、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握程度,调整教学方法和策略,以提高教学效果。

同时,教师还应关注学生的学习兴趣,激发学生的学习积极性,使学生在轻松愉快的氛围中学习数学。

八、教学资源1. 教材:五年级上册数学教材。

2. 辅导资料:一元一次方程的相关辅导资料。

3. 多媒体设备:用于展示教学内容和案例分析。

九、教学进度安排1. 课时:2课时。

2. 教学进度:第一课时讲解一元一次方程的概念和解法,第二课时讲解运用一元一次方程解决实际问题。

十、课后作业1. 请学生完成教材中的一元一次方程练习题。

第五单元 简易方程 第7课时 实际问题与方程(1)(含详细解析)人教版

第五单元 简易方程 第7课时 实际问题与方程(1)(含详细解析)人教版

第五单元简易方程第7课时实际问题与方程(1)一、解方程。

x-89=36.2 3+x=17.4x÷5=15 18x=3.6二、小萍买了一本童话故事书,付给营业员10元,找回1.2元。

童话故事书单价多少元?(用方程解)三、平均每层放多少本?四、生活中的数学。

1.在一次跳远比赛中,小明跳了1.35米,比小亮少0.06米。

小亮跳了多少米?2.小松鼠储藏了130个松果,吃了几天后还剩26个松果,小松鼠吃了多少个松果?五、三个连续自然数的和是51,求这三个连续自然数。

第五单元简易方程第7课时实际问题与方程(1)一、解方程。

x-89=36.2 3+x=17.4解:x-89+89=36.2+89 解:3+x-3=17.4-3 x=125.2 x=14.4x÷5=15 18x=3.6解:x÷5×5=15×5 解:18x÷18=3.6÷18 x=75 x=0.2二、小萍买了一本童话故事书,付给营业员10元,找回1.2元。

童话故事书单价多少元?(用方程解)解:设童话故事书单价x元。

x+1.2=10x+1.2-1.2=10-1.2x=8.8答:童话故事书单价是8.8元。

三、平均每层放多少本?解:设每层书架放书x本。

4x=96x=24答:每层书架放书24本。

四、生活中的数学。

1.在一次跳远比赛中,小明跳了1.35米,比小亮少0.06米。

小亮跳了多少米?解:设小亮跳了x米x-1.35=0.06x=1.41答:小亮跳了1.41米。

2.小松鼠储藏了130个松果,吃了几天后还剩26个松果,小松鼠吃了多少个松果?解:设小松鼠吃了x个松果。

x+26=130x=104答:小松鼠吃了104个松果。

五、三个连续自然数的和是51,求这三个连续自然数。

解:设中间的一个自然数为x。

x-1+x+x+1=513x=51x=17x+1=18 x-1=16答:这三个连续自然数为16,17,18。

实际问题与一元一次方程1(教案)

实际问题与一元一次方程1(教案)

课题 3.4实际问题与一元一次方程(1)学习目标:学生在前面的知识中,已经能够基本掌握一元一次方程的解题过程,如何把这些解题过程展现在实际应用中,那就是本节课需要探导的问题——实际问题与一元一次方程。

有些应用题,学生是可以用小学的思想来解题出来,但上到初中之后,为了能让学生适应初中的学习思想,以及初中的答题规范,所以在遇到实际问题中有数量关系时,我们需要让学生有意识的用列方程来解决问题。

本节课的重点是:需要培养学生的建模能力,能够列方程解实际问题。

而难点将是,如何寻找实际问题中的等量关系。

【教学过程】一、知识链接1.解方程: 51131+=--x x ;(通过这个题目,复习巩固解方程的步骤和论据) 2.(回忆小学知识,为后面的学生做准备。

)一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是 ,乙每天的工作效率是 ,两人合作3天完成的工作量是 ,此时剩余的工作量是 。

二、自主学习例1:某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少个?分析:每天生产的螺母数量是螺钉数量的2倍,它们刚好配套1. 知识准备关系:工作量= ×2. 设生产螺钉工人 人,生产螺母的工人 人。

3,分析出:分配的人员在实际中各生产中,一共有多少的数量4. 这些数量有什么样的相等关系:列方程 : (课后再解)(师生共同完成)例2 :整理一批图书,由一个人做要40h 完成。

现在计划由一部分人先做4小时,再增加2人和他们一起做8h ,完成这项工作.假设这些人的工作效率相同,具体应安排多少人工作?分析:(1)人均效率(一个人做1小时完成的工作量)为 。

(2)有x 人先做4小时,完成的工作量为 。

再增加2人和前一部分人一起做8小时,完成的工作量为 。

(3)这项工作分两段完成,两段完成的工作量之和为 。

(4) 师生共同完成解题过程。

22.3.1实际问题与一元二次方程(一)

22.3.1实际问题与一元二次方程(一)
分析:本金×利率=利息,本金+利息=本息
4.某种药剂原售价为4元, 经过两次降价, 现 在每瓶售价为2.56元,问平均每次降价百分 之几?
5.某公司计划经过两年把某种商品的生产成本 降低19%,那么平均每年需降低百分之几?
6、已知两个连续奇数的积等于399,求这两个数.
7、某花圃用花盆培育某种花苗,经过实验发现 每盆的盈利与每盆的株数构成一定的关系.每
(2)上网计算机总台数2001年12月31日至 2003年12月31日与2000年12月31日至2002 年12月31日相比,哪段时间年平均增长率较 大(参考下图)?
2000年1月至2003年12月我国上网计算机总台数
3200 2400 1600 800 0
892 350 2000年 1月1日 2000年 12月31日 2001年 2002年 2003年 年份 12月31日 12月31日 12月31日 1254 上网计算 机总台数 (万台) 3089 2083
x
结束寄语
• 运用方程(方程组)解答相关 的实际问题是一种重要的数学 思想——方程的思想. • 一元二次方程也是刻画现实世 界的有效数学模型.
8.截止到2000年12月31日,我国的上网计算机 总台数为892万台;截止到2002年12月31日,我 国的上网计算机总台数已达2083万台. (1)求2000年12月31日至2002年12月31日 我国 计算机上网台数的年平均增长率(精确 到 0.1%);
盆植入3株时,平均单株盈利3元;以同样的栽
培条件,若每盆每增加1株,平均单株盈利就减 少0.5元.要使每盆的盈利达到10元,每盆应该
植多少株?
8.一个直角梯形的下底比上底大2cm,高比上底 小1cm,面积等于8cm2,求这个梯形的周长。 9.某种植物的主干长出若干数目的支干,每个支干 又长出同样数目的小分支,主干、支干和小分支 的总数是91,每个支干长出多少小分支? 10.如图,利用一面墙(墙的长度不限), 用20m长的篱笆,怎样围成一个面积 为50m2的矩形场地? x 20-2x

实际问题与方程(1)教学设计

实际问题与方程(1)教学设计

实际问题与方程(一)教学设计梅营小学普素珍【教学内容】:人教版小学数学五年级上册73页例1及相应练习的内容。

【教材分析】:本节课的内容是人教版小学数学五年级上册第五单元简易方程的第二部分的第四个内容的第一个例题。

例题取材于跳远比赛,采用图文结合的方式给出已知条件,并提出问题。

这是学生第一次接触列方程解答实际问题,对将所求数量设为x,对未知数参加列式,都会感到不习惯。

因此,教材先给出学生已学过的算术解法,再引导学生将未知数设为x,列出方程。

这部分内容也是学好后面的比较复杂的实际问题与方程的基础,所以,一定要让学生学会列方程解决实际问题。

【学情分析】:本班有24个学生,其中男生8人,女生16人,上学年期末考居于全镇22个教学班中第14名。

大部分学生的数学基础知识一般,计算马虎,解决问题的能力较弱,还有三四个同学听课习惯差。

本节课是在学生学习了用字母表示数和解方程的基础上教学的。

根据学生已有的知识来看,解方程学生应该没有困难,但分析等量关系是学生学习的难点。

因此,本课的关键是教会学生会根据题意找出数量关系,并列出相应的方程。

【教学目标】:1、知识与技能:使学生初步理解和掌握列方程解决一些简单的实际问题的步骤。

2、过程与方法:让学生借助直观图自主探究,分析数量之间的等量关系,并正确地列出方程解决实际问题,培养学生的主体意识、创新意识以及分析、观察和表达能力。

3、情感、态度与价值观:使学生感受数学与现实生活的密切联系,体会数学在生活中的应用价值和学习数学的乐趣。

【教学重、难点】:教学重点:正确设未知数,找出题目中的等量关系,会列方程,并会解方程。

教学难点:根据题意分析数量间的相等关系。

【教学准备】:多媒体课件,探究卡,答题卡。

实际问题与一元一次方程(第1课时)产品配套问题和工程问题(教学课件)七年级数学上册(人教版)

实际问题与一元一次方程(第1课时)产品配套问题和工程问题(教学课件)七年级数学上册(人教版)

解:设甲做了x h.
你会列表分析吗?
依题意,得 1 x 1 x 2 1 .
40 30 解方程,得 x=16.
答:甲做了16小时.
总结归纳
解决工程问题的基本思路: 1. 三个基本量:工作量、工作效率、工作时间.
它们之间的关系是:工作量=工作效率×工作时间. 2. 相等关系:工作总量=各部分工作量之和.
复习旧知
为简便起见,通常设总工作量为“1”. 1. 如果已知工作时间, 那么“时间的倒数”就是工作效率. 2. 如果工程为多方合作完成, 则合作完成时的工作效率是各方的工作效率相加.
新课导入
从前面几节课的学习中已经可以看出,方程是分析和解决问题的 一种很有用的数学工具. 从本节课开始,我们将重点学习如何用 一元一次方程解决实际问题. 生活中,有很多需要进行配套的问题,如课桌和凳子、螺钉和螺 母、电扇叶片和电机等,大家能举出生活中配套问题的例子吗?
小学我们学过工程问题,请回答下列问题:
1. 一项工作甲单独做需要5天完成,乙单独做需要10天完成,那么
1
1
甲每天的工作效率是__5__,乙每天的工作效率是_1_0__,两人合作3天
完成的工作量是_3___1519_0_1_10__,此时剩余的工作量是__1_10__.
复习旧知
2. 一项工作甲单独做需要a天完成,乙单独做需要b天完成,那么甲
解得 x = 13. 答:乙队还需13天才能完成.
感受中考
1.(2022•南充)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有 三十五头,下有九十四足,问鸡兔各几何.”设鸡有x只,可列方程为( )
A.4x+2(94-x)=35 B.4x+2(35-x)=94 C.2x+4(94-x)=35 D.2x+4(35-x)=94

一元一次方程与实际问题的多种题型

一元一次方程与实际问题的多种题型

一元一次方程与实际问题的多种题型实际问题与一元一次方程(1)一、数字问题1.一个两位数,十位数字比个位数字的4倍多1.将两个数字调换顺序后所得数比原数小63.求原数.2.日历的12月份上,爷爷生日那天的上、下、左、右4个日期的和为80,你能说出爷爷生日是几号吗?3.有一个三位数的百位数字是1,如果把1移到最后,其他两位数字顺序不变,所得的三位数比这个三位数的2倍少7,求这个三位数.二、人员分配问题4.某班同学参加平整土地劳动.运土人数比挖土人数的一半多3人.若从挖土人员中抽出6人运土,则挖土和运土的人数相等.求原来运土和挖土各多少人?5.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?三、追击相遇问题6.甲、乙两车划分从相距XXX的两地相向开出,已知甲车速度60千米/时,乙车速度40千米/时,若甲车先开1个小时,问乙车开出多少小时后两车相遇?7.A、B两地相距31千米,甲从A地骑自行车去B地,1小时后乙骑摩托车也从A地去B地.已知甲每小时行12千米,乙每小时行28千米.(1)问乙动身后多少小时追上甲;(2)若乙抵达B地后立刻返回,则在返回路上与甲相遇时距乙动身多长工夫?8.某行军纵队以8千米/时的速度行进,队尾的通讯员以12千米/时的速度赶到队伍前送一个文件.送到后立即返回队尾,共用14.4分钟.求队伍长.9.某人有急事,预定搭乘一辆小货车从A地赶往B地,实际上他乘小货车行了三分之一路程后改乘一辆小轿车,车速提高了一倍,结果提前一个半小时抵达.已知小货车的速度是36千米/时,求两地间路程.四、工程问题10.一项工程甲、乙两队合作10天可以完成,甲队独做15天完成,现两队合作7天后,其余工程由乙队独做.乙队还需几天完成?11.检修一处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合做,但乙中途离开了一段时间,后2天由乙、丙合作完成.问乙中途离开了几天?5、方案计划题目12.某中学组织初一同砚春游,原打算租用45座客车若干辆,但有15人没有坐位;如果租用同样数目的60座客车,则多出一辆,且其余客车正好坐满.已知45座客车日房钱为每辆220元,60座客车日房钱为每辆300元.试问:(1)初一年级人数是多少?原计划租用45座客车多少辆?(2)要使每个同学都有座位,怎样租车更合算?13.XXX和XXX在课外研究中,用20张白卡纸做包装盒,每张白卡纸可以做2个盒身或者做3个盒底盖.且1个盒身和2个底盖正好做成一个包装盒,为了充裕利用资料使做成的盒身和底盖恰好配套,他们设想了两种方案:方案一:把这些白卡纸分成两部分,一部分做盒身,一部分做底盖;方案二:先把一张白卡纸适当剪裁出一个盒身和一个盒盖,余下的白卡纸分成两部分,一部分做盒身一部分做底盖.想一想,他们的方案是否可行?实际题目与一元一次方程(2)一、销售与利润问题1.在商品销售经营中,触及的基本干系式:(1)商品的原销售价、提价的百分数与商品的现销售价之间的关系是__________________________________________________ ____________________.商品的原销售价、降价的百分数与商品的现销售价之间的关系是__________________________________________________ ____________________.(2)商品的实际售价、商品的进价与商品的利润之间的干系是(这里不考虑其他因素)___________________________________________________ ___________________.(3)商品的利润、商品的进价与商品的利润率之间的干系是(这里不考虑其他因素)___________________________________________________ ___________________.(4)在打折销售中,商品的标价、折扣数与商品打折后的实际售价之间的干系是__________________________________________________ ____________________.2.在我国银行储蓄存款计较利息的基本干系式首要有:(1)主顾存入银行的钱叫做______,银行付给主顾的酬金叫做______,它们的和叫做____,即__________________.(2)顾客将钱存入银行的时间叫做______.每个期数内的______与____的比叫做利率.这样,本金、利率、期数、利息这四个量的关系是____________.3.商店中某个玩具的进价为40元,标价为60元.(1)若按标价出售这个玩具,则所得的利润及利润率分别是多少?(2)顾客在与店主砍价时,店主为了保住15%的利润率,出售这个玩具的售价底线是多少元?(3)店主为吸引顾客,把这个玩具的标价提高10%后,再贴出打八八折的告示,则这个玩具的实际售价是多少元?(4)若店主设法将进价降低10%,标价不变,而贴出打八八折的告示,则出售这个玩具的利润及利润率划分是多少?4.(1)某个商品的进价是500元,把它提价40%后作为标价.如果商家要想保住12%的利润率搞促销活动,请你计算一下广告上可写出打几折?(2)想一想,如果(1)中该商品的进价没有具体给出,这时该题目怎样办理?5.某经销商经销一种商品,由于进货价降低了5%,售价不变,使得利润率由k%提高到(k+7)%,求k.〔售价=进货价×(1+利润率)〕6.XXX和XXX相约到图书城去买书,请你根据他们的对话内容,求出XXX上次所买书籍的原价.7.下表是甲商场电脑产品的进货单,其中进价一栏被墨迹污染,读了进货单后,请你算出这台电脑的进价是多少元.甲商场商品进货单供货单位品名与规格商品代码商品所属进价(商品的进货代价)标价(商品的预售价格)折扣利润(实际销售后的利润)乙单位P4200DN—63D7电脑专柜元5850元8折210元保修终生,三年内免收任何费用,三年后收取材料费,五日售后效劳快修,周起色备用,免费投诉,回访实际问题与一元一次方程(测试)一、选择题1.篮球赛的组织者出售球票,需要付给售票处12%的酬金,如果组织者要在扣除酬金后,每张球票净得12元,按精确到0.1元的要求,球票票价应定为().(A)13.4元(B)13.5元(C)13.6元(D)13.7元2.一市肆把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则彩电的标价为().(A)3200元(B)3429元(C)2667元(D)3168元3.某市肆将彩电按原价提高40%,然后在广告上写“大酬宾,八折优待”,结果每台彩电仍获利270元,那么每台彩电原价是()(A)2150元(B)2200元(C)2250元(D)2300元4.一个市肆以每3盘16元的代价购进一批灌音带,又从别的一处以每4盘21元的代价购进比前一批数目加倍的灌音带.如果两种合在一起以每3盘k元的代价全部出售可得到所投资的20%的收益,则k值等于()(A)17(B)18(C)19(D)20二、解答题5.某城市有50万户居民,平均每户有两个水龙头,估计其中有1%的水龙头漏水.若每个漏水龙头1秒钟漏一滴水,10滴水约重1克,试问该城市一年因此而浪费多少吨水(一年按365天计算).6.某市居民生活用电基本代价为每度0.4元,若每月用电量跨越a度,跨越部分按基本电价的70%收取.(1)某户5月份用电84度,共交电费30.72元,求a是多少;(2)若6月份的电费平均为每度0.36元,求该户6月份共用多少度电,应交纳多少电费?7.八年级三班在召开期末总结表彰会前,班主任放置班长XXX去市肆买奖品,下面是XXX与售货员的对话:XXX说:阿姨好!售货员:同砚,你好,想买点甚么?XXX说:我只要100元,请您帮忙放置买10支钢笔和15本笔记本。

实际问题与方程(例1)(五年级数学上册)

实际问题与方程(例1)(五年级数学上册)
人教版小学数学五年级上册
复 习 铺 垫
解方程:
87÷3+1.5x=116
只列方程,不解答:
4×2.5-2x=1.8
x的4倍与83的和是107,求x. 4x+83=107 从80里面减去x的3倍,差是26,求x.
80-3x=26
一个数的1.6倍加上0.6与8的积,和是8.4,求这个数。
1.6x+0.6×8=8.4
复 习 铺 垫
现在 成绩
在一次跳远测试中,小 明的成绩是4.21m ,超 过原学校跳远记0.06m, 学校原跳远纪录是多少 米?
超过原纪录 现在的成绩比原来的纪录多 现在成绩 0.06 -0.06= 米是什么意思? 原来纪录 0.06
4.21-0.06=4.15(米)
答:学校原跳远纪录是4.15米。
答:学校原跳远纪录是4.15米。
x+0.06=4.21
巩 固 1、某电脑公司购进300台 练 电脑,卖出一些后还剩140 习 台,卖出多少台?
解:设卖出 台。
x
2、桌子上摆了8排水饺, 每排7个。下了一部分 到锅里,桌上还剩下34 个,锅里有几个水饺?
解:设锅里有x个水饺。 总的 -锅里的 =剩下的 8× 7- =34
今天你有什么 收获?
现在成绩-原来纪录=0.06 现在成绩-0.06=原来纪录
4.21-0பைடு நூலகம்06=原来纪录
探 究 新 知
学校原跳远纪录是多少米? 在一次跳远测试中,小明 的成绩是4.21m ,超过 怎么求? 原学校跳远记0.06m,学 4.21-0.06=原来纪录 校原跳远纪录是多少米?
原来纪录+0.06=4.21 4.21-原来纪录=0.06
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30x÷30=1.8÷30 x=0.06
答:一个滴水的水龙头每分 钟浪费0.06千克水。
状元成才路
三、巩固提高
1.说说各题中的等量关系,并列出方程。 (1)母鸡有30只,比公鸡多5只,公鸡有几只?
公鸡的数量+5=母鸡的数量 x+5=30
(2)甲数是18,是乙数的2倍,乙数是多少? 乙数×2=甲数 2x=18
系,列方程; (3)解方程并检验作答。
状元成才路
达标检测
列方程解决下面问题。
8cm=00.08+x=1.53
0.08+x-x=1.53-x x=1.45
答:小明去年身高1.45米。 小明去年身高多少?
状元成才路
半小时=30分 解:设一个滴水的水龙头每
分钟浪费x千克水。 30x=1.8
小明比学校原跳远 记录超出了0.06米。
状元成才路
你能画图找出等量关系吗?
原纪录 小明
?m
0.06m
4.21m
原纪录+超出部分=小明的成绩 小明的成绩-超出部分=原纪录 小明的成绩-原纪录=超出部分
状元成才路
说一说你的解答方法。 4.21-0.06=4.15(米)
算术方法
状元成才路
由于原纪录是未知数,可以 设它为xm,再列方程解答。
列方程; (3)解方程并检验作答。
关键
状元成才路
五、课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
声明
本文件仅用于个人学习、研究或欣赏,以及其他非商 业性或非盈利性用途,但同时应遵守著作权法及其他相关 法律的规定,不得侵犯本司及相关权利人的合法权利。
除此以外,将本文件任何内容用于其他用途时,应获 得授权,如发现未经授权用于商业或盈利用途将追加侵权 者的法律责任。
原纪录+超出部分=小明的成绩
x+0.06=4.21
状元成才路
解:设学校原跳远纪录是x m。 x+0.06=4.21
x+0.06-0.06=4.21-0.06 x=4.15
答:学校原跳远纪录是4.15m。
列方程解答
状元成才路
还可以怎么列方程?
解:设学校原跳远纪录是x米。 4.21-x=0.06
4.21-x+x =0.06+x 4.21=0.06+x
状元成才路
简易方程
实际问题与方程(一)(1)
R·五年级上册
状元成才路
一、新课导入
说一说你喜欢 的体育运动。
有一个叫小明的小朋友在学校的 跳远比赛中破了纪录,你们想知道学 校原来的纪录是多少吗?
状元成才路
二、探索新知
学校原跳远纪录是多少米?
从图中你获取了 哪些数学信息?
状元成才路
小明的跳远成绩是4.21米。
状元成才路
2.把数量等量关系式补充完整。1件衣服现 价128元,优惠20元,原价多少元? 原价-( 20 )=( 现价 )
状元成才路
3.解方程解决问题。
y+100=270 y=170
状元成才路
四、课堂小结
列方程解决实际问题的步骤:
(1)找出未知数,用字母x表示;
(2)分析实际问题中的数量关系,找出等量关系,
0.06+x=4.21 0.06+x-0.06=4.21-0.06
x=4.15
状元成才路
思考
1. 同一个问题,我们用了哪几种不同的方法解 决? 算术的方法和列方程解答的方法。
2. 用方程的思路解决问题时,你认为关键是什 么? 找出等量关系。
状元成才路
列方程解决实际问题的步骤: (1)找出未知数,用字母x表示; (2)分析实际问题中的数量关系,找出等量关
武汉天成贵龙文化传播有限公司 湖北山河律师事务所
相关文档
最新文档