一次函数

合集下载

一次函数

一次函数

y=2x过点A,当2x<kx+b<0时,x的取值范围是( )
A. B. C. D.
第4题图
第5题图
第6题图
7. 如图,直线y=kx+b交坐标轴于A(-3,0)、B(0,5)两点,当-
3<x<0时,y的取值 范围是
.
8. 如图,已知函数和的图象交点为,则不等式的解集为

9. 如图,已知函数和的图像交于点,则根据图像可得不等式的解集是
C.(1,-1)
D.(1,1)
5. 如图,已知直线y=kx+b经过第一、二、四象限,则直线y=bx-k过(

A.第一、二、四象限 B.第二、三、四象限 C.第一、三、四象限 D.第一、二、三象限 6. 在同一平面直角坐标系中,一次函数与正比例函数
(是常数,
且)
的图象只可能是( )
D 0 x
0 A y x 0 C x 0 B x y y y
是x的正比例函数.所以,正比例函数是一次函数的特例.
3、会画一次函数的图像,掌握当k和b取不同的值时一次函数图像所
经过的象限。 4、掌握一次函数的性质以及其在实际问题中的应用。 5、会解决一次函数与几何问题的综合问题。 【知识结构】 1、一次函数的概念与一般形式:y=kx+b(k、b为常数,k ≠ 0)。 2、一次函数的图像。 3、一次函数的性质。 4、一次函数与实际 问题的结合。 【重点知识解析】
到达点B,最后走下坡路到达工作单位,所用的时间与路程的关
系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、
下坡路的速度分别保持和去上班时一致,那么他从单位到家门口
需要的时间是( )
A.12分钟 B.15分钟 C.25分钟

一次函数的定义和性质

一次函数的定义和性质

一次函数的定义和性质一次函数是指形如y=ax+b的函数,其中a和b为常数,且a不等于零。

它也被称为线性函数,因为它的图像是一条直线。

一次函数是数学中的基础概念之一,具有一些重要的性质和应用。

一. 定义一次函数是指以x为自变量,以y为因变量的函数,其表达式为y=ax+b,其中a和b为实数,且a不等于零。

其中,a称为一次项的系数,b称为常数项。

当x取不同的值时,y的取值也相应地发生变化,这种对应关系可以通过一条直线来表示。

二. 图像特征1. 直线特征:一次函数的图像总是一条直线,因此它具有线性特征;2. 斜率特征:一次函数的斜率表示为常数a,描述了图像在x轴正方向上的倾斜程度。

斜率为正时,表示图像向上倾斜;斜率为负时,表示图像向下倾斜;3. 截距特征:一次函数的截距表示为常数b,描述了图像与y轴的交点位置。

截距为正时,表示图像与y轴正半轴交于正值点;截距为负时,表示图像与y轴负半轴交于负值点。

三. 性质1. 单调性:一次函数的单调性由斜率的正负决定。

当a大于零时,函数单调递增;当a小于零时,函数单调递减;2. 定义域和值域:一次函数的定义域为所有实数;值域为所有实数,即函数的取值范围没有限制;3. 零点:一次函数的零点即为函数的根,表示当x取某个值时,函数的值等于零。

对于一次函数,当且仅当x=-b/a时,函数的值为零;4. 最值:一次函数没有最大值和最小值,因为它的图像是一条直线;5. 平移:通过给定一次函数的表达式,可以进行平移操作来得到新的函数。

平移操作可以在x轴和y轴上分别进行,通过改变常数a和b的值,可以使图像在平面上发生移动。

四. 应用一次函数在现实生活中有着广泛的应用,例如:1. 财务收入:一些经济指标和统计数据的变化趋势可以通过一次函数来表示,如年度收入的增长率;2. 运动模型:一次函数可以表示一些常见的运动模型,如匀速运动的位移和速度关系;3. 经济学模型:在经济学中,一次函数可以用来表示供求关系、成本和收益关系等;4. 工程预测:一次函数可以用来进行工程测量、预测物理量的变化趋势等。

一次函数

一次函数

一次函数知识点聚焦一、函数的概念定义:在某一变化过程中,可以取不同数值的量,叫做变量,例如x 和y ,对于x 的每一个值,y 都有惟一..的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 二、一次函数概念:1.一次函数的概念:一般地,如果y =kx +b(k 、b 是常数,k ≠0),那么y 叫做x 的一次函数.特别地,当b =0时,一次函数y =kx +b 就成为y =kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数.由定义知:y 是x 的一次函数⇔它的解析式是y =kx +b ,其中k 、b 是常数,且k ≠0.2.一次函数解析式y =kx +b(k ≠0)的结构特征:(1)k ≠0;(2)x 的次数是1;(3)常数项b 可为任意实数.3.正比例函数解析式y =kx(k ≠0)的结构特征:(1)k ≠0;(2)x 的次数是1;(3)没有常数项或者说常数项为0.4. 正比例函数是一次函数,但一次函数y =kx +b(k ≠0)不一定是正比例函数,只有当b=0时才是正比例函数。

三、一次函数的图像1.一次函数y =kx +b(k≠0)的图象是经过点(0,b)和(-b k,0)的一条直线.2.正比例函数y =kx(k ≠0)的图象是经过点(0,0)和(1,k)的一条直线.注意:画一次函数的图像,只需要过图像上两点作直线即可,一般取(0,b )、(-b k,0)两点。

四、一次函数图像的性质1. 一次函数y =kx +b ,当k >0时,y 随x 的增大而增大,图象一定经过第一、三象限;当k <0时,y 随x 的增大而减小,图象一定经过第二、四象限.b>0时,直线交y 轴正半轴,b<0时,直线交y 轴负半轴。

2.一次函数y=kx+b(k ≠0)的图象是经过点(0,b)且平行于直线y=kx (k ≠0)的一条直线3. 平移规律在原有函数的基础上“k 值正右移,负左移;b 值正上移,负下移”。

一次函数

一次函数

第十四章一次函数一、一次函数及其图像知识总结(一)知识总结(二)例题精讲知识点一:变量与函数知识点二:一次函数与正比例函数的意义知识点三:待定系数法求一次函数的解析式知识点一:变量与函数A、夯实基础每个同学购买一支钢笔,每支笔 5 元,求总金额y(元)与学生数出式中的函数与自变量,写出自变量的取值范围。

解答: y=5n, n 是自变量, y 是 n 的函数。

自变量n 的取值范围是:解析:这里的自变量的取值范围,要考虑它的实际意义。

n(个)的函数关系并指n 为自然数。

B、双基固化如果 A、 B两人在一次百米赛跑中,路程s(米)与赛跑的时间t (秒)的关系如图所示,则下列说法正确的是((A) A 比 B 先出发(B)A、B两人的速度相同(C) A 先到达终点( D) B 比 A 跑的路程多C )C、能力提升一水管以均匀的速度向容积为如下表,请从表中找出 t 与100 立方米的空水池中注水,注水的时间t 与注入的水量Q Q之间的函数关系式,且求当t=5 分 15 秒时水池中的水量Q的值.T(分钟)2468...Q(立方米)481216...解答:∵水管是匀速流出水于池中,速度是(4 ÷ 2)=2 ,即每分钟Q=2t,自变量 t 为非负数 .又∵水池容积为100 立方米,时间不能超过100÷2=50( 分钟 ) ,∴0≤ t ≤ 50.2 立方米,函数解析式为当t=5 分 15 秒时, Q=2× 5.25=10.5( 立方米 )即当 t 为 5 分 15 秒时,水量为10.5立方米.知识点二:一次函数与正比例函数的意义A、夯实基础下列函数中 , 哪些是一次函数(1)Y = -3X+7是一次函数.(2)Y = 6X2-3X不是一次函数.(3)Y = 8X是一次函数, 也是正比例函数(4)Y = 1+9X是一次函数(5)Y =6不是一次函数XB、双基固化列出下列函数关系式,判别其中哪些为一次函数、正比例函数.(1)正方形周长 p 和一边的长 a.解答 :(1)∵p=4a.自变量 a 为一次且其系数为4( 不为零 ) .∴p为 a 的一次函数.又∵不含常数项∴也是正比例函数.(2) 长 a 一定时矩形面积y 与宽 x.解答:∵ y=ax,自变量x 为一次且系数 a 为长度 ( 不为零 ) .∴y是 x 的一次函数.∵不含常数项.∴y也是 x 的正比例函数.(3)定期存 100 元本金,月利率 1.8 %,本息和 y 与所存月数 x.解答 : ∵ y=100+100× 1.8%x,自变量 x 的次数为一次,又含有常数项.∴ y 是 x 的一次函数但不是正比例函数.(4) 水库原存水Q立方米,现以每小时 a 立方米的流量开闸放水,同时上游以每小时 b 立方米的流量向水库注水,求这时水库的蓄水量M与时间 t 的函数关系.解答 : ∵ M=Q+(b-a)t ,因为自变量 t 的次数为一次,当 a≠ b 时, M是 t 的一次函数.若 Q=0 时,M是 t 的正比例函数;若 a=b 时, M是常量函数,不是 t 的一次函数.C、能力提升已知 y = -(m2+2m)xm2+m-1 ,当 m是什么数值时,为正比例函数?解答:设正比例函数为y = kx (k≠ 0),∵正比例函数k≠ 0,x 的指数为1.∴m2+2m≠ 0,解得 m1≠ 0, m2≠-2 ,且m2+m-1 = 1 ,解得 m3 = -2 ,m4 = 1 .∴当 m = 1 时,为正比例函数.知识点三:待定系数法求一次函数的解析式B、双基固化已知一次函数y=kx+b 在 x=-4 时的值为9,在 x=6 时的值为 3,求k 与 b解:由已知得:9 = - 4k + b3 = 6k + b解得 k=- 0.6, b = 6.6C、能力提升一次函数的图象经过点(0,2)和点( 4, 6)。

一次函数课件ppt

一次函数课件ppt

奇偶性
一次函数既不是奇函数也不是偶函数 ,因为它们的图像不关于原点或 y 轴 对称。
02 一次函数的表达式与系数
一次函数的表达式
01
一次函数的一般表达式为 $y = ax + b$,其中 $a$ 和 $b$ 是常 数,且 $a neq 0$。
02
当 $a > 0$ 时,函数为增函数; 当 $a < 0$ 时,函数为减函数。
已知函数与$x$轴和$y$轴的截距,使用截 距式$y = frac{x}{a} + frac{b}{a}$求函数解 析式。
一次函数的解题技巧
数形结合
利用函数图像直观理解 函数性质,如增减性、
最值等。
整体代入
在求解过程中,将表达 式整体代入,简化计算

分类讨论
根据不同情况分类讨论 ,得出不同情况下的函
斜率与图像
斜率决定了图像的倾斜程 度,当 a > 0 时,图像向 右倾斜;当 a < 0 时,图 像向左倾斜。
一次函数的性质
单调性
无界性
一次函数的单调性由斜率决定,当 a > 0 时,函数单调递增;当 a < 0 时 ,函数单调递减。
一次函数的值域是全体实数,即对于 任意实数 x,y = ax + b 总有一个对 应的值。
一次函数的系数
一次函数的斜率为 $a$,表示函数图 像的倾斜程度。
当 $a > 0$ 时,函数图像从左下到右 上倾斜;当 $a < 0$ 时,函数图像从 左上到右下倾斜。
一次函数的应用
一次函数在数学、物理、工程等领域都有广泛应用。
在实际生活中,一次函数可以用来描述一些简单的问题,如速度与时间的关系、 价格与数量的关系等。

一次函数基本概念

一次函数基本概念

一次函数基本概念篇一:一次函数是一种基本的数学函数,表示输入一次变量的值,就可以得到输出变量的值。

一次函数通常用于描述简单的数学计算,如求和、加减、乘除等。

在一元一次函数中,输入的变量只可能是一个整数,输出的变量也只会是一个整数。

例如,y = 2x + 1是一次函数,因为输入的变量x为2,输出的变量y为3。

在二元一次函数中,输入的变量可以是两个整数,输出的变量也可以是两个整数。

例如,z = 2x + 3和y = 4x + 2是一次函数,因为输入的变量x为2,输出的变量y为6,输入的变量z为3,输出的变量z为9。

一次函数的解析式通常可以用一次方程表示,例如y = 2x + 1。

一次方程是一个二元一次方程,它的解可以用一个整数来表示,例如x = 2,y = 3。

在实际应用中,我们可以使用代数方法来求解一次方程,例如消元、代入等方法。

除了基本的一次函数,还有很多其他的数学函数,例如二次函数、指数函数、对数函数等。

这些函数都有不同的输入和输出变量,但它们的共同点是都可以描述一些复杂的数学问题。

在数学研究中,我们可以使用这些函数来解决一些复杂的问题,例如几何、微积分等。

篇二:一次函数是一种基本的数学函数,描述了一个变量随着另一个变量的变化而变化的函数。

在数学中,一次函数通常用字母f(x) 表示,其中 x 是自变量,f(x) 是因变量。

一次函数可以写成这样的形式:f(x) = c,其中 c 是常数,通常被称为函数的“导数”。

这个表达式表示,当自变量 x 变化时,因变量 f(x) 的变化率等于常数 c。

一次函数具有一些特殊的性质,例如它的图像是一条直线、它的导数等于函数本身等。

这些性质使得一次函数在许多领域中都有广泛的应用,例如物理学、工程学、经济学等。

除了上面的基本概念外,一次函数还有一些更深入的拓展。

例如,一次函数可以表示为两个变量的线性关系,即 f(x) =k1x1 + k2x2,其中 k1 和 k2 是常数。

一次函数公式

一次函数公式

一次函数公式
一次函数公式是数学中常用的一种函数公式,它是一类函数的代表,它的特点是它的函数图像只有一个拐点,而且拐点处的斜率是一恒定的值。

一次函数公式的形式为:y=ax+b,其中a和b是常数,x是变量,y是函数值。

一次函数公式的应用非常广泛,它可以用来解决许多数学问题,例如求解抛物线的顶点、求解一元二次方程的根、求解正弦函数的最大值等。

同时,一次函数公式还可以用来解决实际问题,例如求解经济学中的供求曲线、求解物理学中的势能曲线、求解化学中的反应速率曲线等。

一次函数公式的研究和应用,可以帮助我们更好地理解自然界的规律,也可以为我们解决实际问题提供有效的帮助。

一次函数最值问题

一次函数最值问题

一次函数最值问题
一次函数一般形式为 y = kx + b,其中 k 和 b 是常数,且k ≠ 0。

对于一次函数,其斜率为 k。

1. 当 k > 0 时,函数 y = kx + b 是增函数,即随着 x 的增加,y 也增加。

因此,函数的最大值出现在 x 的正无穷大处,此时 y 的值为正无穷大。

函数的最小值出现在 x = -b/k 处,此时 y 的值为 -b。

2. 当 k < 0 时,函数 y = kx + b 是减函数,即随着 x 的增加,y 减小。

因此,函数的最大值出现在 x 的负无穷大处,此时 y 的值为正无穷大。

函数的最小值出现在 x = -b/k 处,此时 y 的值为 -b。

需要注意的是,由于一次函数的定义域是全体实数,因此其最值是相对于定义域而言的。

在实际情况中,我们可能需要考虑函数的定义域和值域,以及函数的实际应用背景来求解最值问题。

一次函数详解

一次函数详解
函数之
一次函数
一次函数的定义
一般地,形如y=kx+b(k,b是常数,且k≠0)
的函数,叫做一次函数,其中x是自变量。当b=0 时,一次函数y=kx(k≠0),又叫做正比例函数 (正比例函数是一次函数的特例,一次函数包括 正比例函数)。
析式
形式是y=kx+b,判断一个函数是否是一次函数, 就是判断是否能化成这种形式。 注:一次函数一般形式 y=kx+b (k不为零) ① k不为零 ②x指数为1 ③ b取任意实数
图像
一次函数y=kx+b在直角坐标系中 的图像是一条直线。k是斜率(反 映直线对x轴的倾斜度)。
k>0时,图像从左到右上升,y随x 的增大而增大,经过的象限如图:
k<0时,图像从左到右下降,y 随x的增大而减小,经过的象限 如图:
性质
在一次函数上的任意一点P(x,y),都满足 等式:y=kx+b(k≠0)。
一次函数与y轴交点的坐标总是(0,b),与x轴 总是交于(-b/k,0),正比例函数的图像都是过 原点的。
最值
一般情况,一次函数没有最大值或最小值,但 是当自变量的取值范围有限制时,在端点可以 取到最大值或最小值。在应用题中要特别注意 自变量的取值范围。
过定点
正比例函数y=kx,过(0,0),(1,k) 一次函数y=kx+b,过(0,b),(-b/k,0) 例如直线y=kx-k,此时b=-k,套用(-b/k,0),可知y=kx-k 过定点(1,0)。 这种题也可以这样理解,对于y=kx-k,当x确定时y与k值有 关,所以y不确定,想过定点(x1,y1),需要使y与k无关。 由于参数k是字母,可以把它当作关于k的方程,即y=(x-1)k。 该方程有无数个解(无论k取何值,(x1,y1)都满足这个方程)

一次函数专题

一次函数专题

一次函数【知识点】1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。

当0b =时,一次函数y kx =,又叫做正比例函数。

⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.(1)解析式:y=kx(k 是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时, 图像经过二、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5)倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b (k 不为零)①k 不为零②x 指数为1③b 取任意实数一次函数y=kx+b 的图象是经过(0,b)和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b 是常数,k ≠0)(2)必过点:(0,b)和(-kb,0)(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>0b k 直线经过第一、二、三象限⇔⎩⎨⎧<>0b k 直线经过第一、三、四象限⇔⎩⎨⎧><00b k 直线经过第一、二、四象限⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移:当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.4、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),.即横坐标或纵坐标为0的点.b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y 随x 的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)考点例析考点1认识一次函数1.下列函数关系式:①y=-2x,②y=-2x,③y=-2x2,④y=3x,⑤y=2x-1.其中是一次函数的有()A.①⑤B.①④⑤C.②⑤D.②④⑤2.若一次函数y=kx+b,当x=-2时,y=7;当x=1时,y=-11,则k、b的值为()A.k=6,b=5B.k=-1,b=-5C.k=-6,b=-5D.k=1,b=53.据调查,某地铁自行车存放处在某星期天的存车量为4000辆次,其中变速车存车费是每辆一次0.30元,普通自行车存车费是每辆一次0.20元,若普通自行车存车数为x辆,存车费总收入为y元,则y关于x的函数关系式为()A.y=0.10x+800(0≤x≤4000)B.y=0.10x+1200(0≤x≤4000)C.y=-0.10x+800(0≤x≤4000)D.y=-0.10x+1200(0≤x≤4000)4.若函数y=(n+2)x+(n2-4)是一次函数,则n__________;若函数y=(n+2)x+(n2-4)是正比例函数,则n__________.5.已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?6.函数y=(m-2)x n-1+n是一次函数,则m、n应满足的条件是()A.m≠2且n=0B.m=2且n=2C.m≠2且n=2D.m=2且n=07.若3y-4与2x-5成正比例,则y是x的()A.正比例函数B.一次函数C.没有函数关系D.以上均不正确8.如图,在△ABC中,∠ABC与∠ACB的平分线交于点P,设∠A=x,∠BPC=y,当∠A变化时,求y与x之间的函数关系式,并判断y是不是x的一次函数,指出自变量的取值范围.9.+(b-2)2=0,则函数y=(b+3)x-a+1-2ab+b2是什么函数?当x=-12时,函数值y是多少?10.已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.(1)求y与x的函数关系式,并说明此函数是什么函数;(2)当x=3时,求y的值.考点2一次函数的图象与性质1.(2014·东营)直线y=-x+1经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2.(2014·资阳)一次函数y=-2x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(2014·温州)一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,-4)B.(0,4)C.(2,0)D.(-2,0)4.若一次函数y=(2-m)x-2的函数值y随x的增大而减小,则m的取值范围是()A.m<0B.m>0C.m<2D.m>25.如果一次函数y=k x+b的图象经过第一、三、四象限,那么()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<06.(2014·邵阳)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a>bB.a=bC.a<bD.以上都不对7.已知一次函数y=(a+8)x+(6-b),求:(1)a、b为何值时,y随x的增大而增大?(2)a、b为何值时,函数与y轴交点在x轴上方?(3)a、b为何值时,图象过原点?10.(2014·河北)如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为()11.(2014·达州)直线y=kx+b不经过第四象限,则()A.k>0,b>0B.k<0,b>0C.k>0,b≥0D.k<0,b≥012.(2014·娄底)一次函数y=kx-k(k<0)的图象大致是()13.(2014·巴中)已知直线y=mx+n,其中m、n是常数,且满足:m+n=6,mn=8,那么该直线经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限14.(2014·鞍山)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第__________象限.15.(2014·嘉兴)点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)的两点,则y1-y2__________0.(填“>”或“<”)16.如图是一个正比例函数的图象,把该图象向左平移1个单位长度,得到的函数图象的解析式为__________.17.已知一次函数y=kx-4,当x=2时,y=-3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.18.作出一次函数y=2x-1的图象,根据图象回答问题:(1)y的值随x的变化怎样变化?(2)当x取何值时,y>0,y=0,y<0?(3)指出图象与两坐标轴的交点坐标.19.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值;(2)若函数的图象平行直线y=3x-3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.挑战自我20.如图,点B是直线y=-x+8在第一象限的一动点,A(6,0),设△AOB的面积为S.(1)写出S与x之间的函数关系式,并求出x的取值范围;(2)画出S与x之间函数关系式的图象;。

一次函数知识点总结

一次函数知识点总结

一次函数知识点总结一次函数(也称线性函数)在数学中是一种基本的函数类型,具有简单直观的图像和重要的应用。

下面将对一次函数的相关知识点进行总结。

1. 定义和表达式一次函数是指具有形如 y = kx + b 的函数,其中 k 和 b 是常数,且k ≠ 0。

其中 k 表示斜率,b 表示截距。

一次函数的图像是一条直线。

2. 斜率的意义斜率是一次函数最重要的特征之一,它表示了函数图像在平面上的倾斜程度。

具体而言,斜率 k 表示单位自变量变化时,因变量相应的变化量。

斜率可以正负,正斜率表示函数图像从左下到右上逐渐升高,负斜率表示函数图像从左上到右下逐渐降低。

3. 截距的意义截距是一次函数图像与 y 轴交点的纵坐标,也就是当 x = 0 时,对应的 y 值。

截距 b 表示了函数图像与 y 轴的相对位置关系,它是一次函数图像上的常数项。

4. 图像特征和性质一次函数的图像是一条直线,根据斜率和截距的不同取值,可以分为四种情况:正斜率正截距、正斜率负截距、负斜率正截距和负斜率负截距。

根据斜率的大小可以判断函数图像的陡峭程度,斜率越大,函数图像越陡峭。

5. 函数的性质一次函数的性质非常重要,有助于解决实际问题和理解其他函数类型。

一次函数是一个线性函数,它的图像是直线,因此具有以下性质:- 一次函数上的任意两个点可以唯一确定一条直线。

- 一次函数的函数值随自变量的变化是线性变化的。

- 一次函数图像关于 y 轴对称。

- 一次函数图像不存在极值和拐点。

6. 直线方程与一次函数的关系一次函数可以通过直线方程 y = ax + b 来表示,其中 a 是斜率,b 是截距。

直线方程是一种常见的形式,可以更直观地表示函数图像的性质和特点。

7. 一次函数的应用举例一次函数在实际问题中有广泛的应用。

例如,在经济学中,一次函数可以用来描述成本和收入的关系;在物理学中,一次函数可以用来表示速度和位移的关系;在统计学中,一次函数可以用来进行线性回归等。

一次函数的概念说

一次函数的概念说

斜率的概念与计算方法
斜率是一次函数的重要特征之一,它表示函数图像的斜率或倾斜程度。 斜率的计算方法包括利用直线上的两个点的坐标、借助方程的系数以及使用图像上的特征点等。 斜率在数学和物理等学科中广泛应用,帮助我们理解和解决各种实际问题。
截距的概念与计算方法
截距是一次函数图像与坐标轴的交点位置,它在函数的定义中起到重要的作用。 截距的计算方法包括利用函数的定义和图像上的特征点等。 截距的概念和计算方法对于理解和应用一次函数都具有重要意义。
一次函数的概念说
一次函数是数学中的基本函数之一。它具有许多重要的定义、特征和性质, 是解决各种实际问题的有力工具。
一次函数的定义及特征
一次函数是指函数的最高次数为1的多项式函数。它的一般形式可以表示为y = kx + b,其中k表示斜率,b表示截距。 一次函数具有线性关系、单一的倾斜方向,以及与坐标系的关系等特征。 一次函数的定义和特征对于理解和应用其他类型的函数都至关重要。
一次函数的变形与操作规律
一次函数可以通过改变斜率和截距的值进行变形和操作。 常见的一次函数变形包括水平平移、垂直平移、水平伸缩和垂直伸缩等。 对一次函数进行变形和操作可以改变其图像和性质,从而更好地适应实际问 题的需求。
点斜式方程的推导与应用
点斜式方程是一种表示一次函数的方程形式。 通过已知一次函数上的一点和斜率,可以推导出该函数的点斜式方程。 点斜式方程在几何和物理等学科中有广泛的应用,帮助我们分析和解决各种 实际问题。
线性方程与一次函数的关系
线性方程是一次方程的一种特殊形式。一次函数可以通过线性方程来表示。
通过解线性方程,我们可以确定一次函数的斜率和截距,从而得到该函数的 图像和性质。
线性方程和一次函数之间的关系是数学中的基本概念之一,也被广泛应用于 科一条直线。它在坐标系中呈现出特定的形状和方向。 一次函数的图像具有直线的特点,如斜率、截距以及与坐标轴的交点。 通过分析一次函数的图像,我们可以了解其特点和行为,从而更好地理解和应用一次函数。

一次函数

一次函数

知识要点一、一次函数的概念(一)一次函数概念1、一般地,解析式形如y kx b =+(其中k 、b 是常数,且k ≠0)的函数叫做一次函数 定义域是一切实数2、正比例函数是一次函数的特例3、常值函数:一般地,我们把函数y c =(c 为常数)叫做常值函数(二)待定系数法求一次函数1、待定系数法:先设出待求函数的关系式,再根据条件求出未知系数,从而得到所求结果的方法,叫做待定系数法2、用待定系数法确定一次函数关系式的一般步骤:① 设函数关系式为y kx b =+(其中k 、b 为待定系数);② 将已知点的坐标代入函数关系式,解方程(组)③ 求出k 与b 的值,得到函数关系式二、一次函数的图像1、一次函数y kx b =+(其中k 、b 是常数,且k ≠0)的图像是一条直线。

一次函数y kx b =+的图像也称为直线y kx b =+2、一次函数图像的画法画一次函数的图像可通过“列表、描点、连线”获得。

也可由“两点确定一条直线”的知识,只需描出两个点,然后过这两点作一条直线一次函数与x 轴、y 轴的交点分别为,0b k ⎛⎫- ⎪⎝⎭、()0,b ,在画一次函数时,只需取者两点就可以了3、直线的截距一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距 截距与距离是两个完全不一样的概念,截距可以是任意实数,而距离总是非负数4、一般地,一次函数y kx b =+(b ≠0)的图像可由正比例函数y kx =的图像平移得到。

当0b >时,向上平移b 个单位;当0b <时,向下平移b 个单位5、如果12b b ≠,那么直线1y kx b =+于直线2y kx b =+平行;反过来,如果直线12y k x b =+与直星之韵---睿思理科 2014 春季 一 次 函 数线22y k x b =+平行,那么12k k =,12b b ≠三、一次函数的性质0,0 0,0 0,0 0,0 k b y kx b k b y kx b k b y kx b k b y kx b >>=+⎧⎪><=+⎪⎨<>=+⎪⎪<<=+⎩直线经过第一、二、三象限直线经过第一、三、四象限直线经过第一、二、四象限直线经过第二、三、四象限题型1:一次函数的概念☆☆(一)选择题1、下列函数中,是y 关于x 的一次函数的是 ( )A. 2125y x =+ B. 2y =- C. 2、下列函数解析式中,属于一次函数的是( )① ()()20y a x a =+≠ ② ()10y ax a a=-≠ ③()()11y a x a =-+≠- ④ ()0a y a x a x =+≠ A ① B ①②③ C ①③ D 全部都是3、已知函数32y x =+,当x a =时的函数值为1,则a 的值为( ) A. 13 B. -1 C. -13D. 1 4、下列四个命题中,错误的是( )A. 正比例函数一定是一次函数B. 反比例函数不是一次函数C. 若1y -和x 成正比例,则y 是x 的一次函数D. 若1y -和x 成反比例,则y 是x 的一次函数5、下列函数:①()()50y m x m =-≠; ②()10y ax a a=+≠ ③()()33y k x k =-+≠- ④k y kx x =+()0k ≠ 其中是一次函数的有( )A. ①②③④B. ①C. ①②③D. ①③(二)填空题1、 已知常值函数()3f x =-,则()1f =____________2、 已知函数()52y m x b =+-+,当___________时,此函数是一次函数;当____________时,此函数是正比例函数。

一次函数总结

一次函数总结

主要结论➢一次函数四种表达方式:1)斜截式:y=kx+b(k≠0)2)点斜式:(y−y0)=k(x−x0)(k≠0)3)两点式:y−y1y2−y1=x−x1x2−x14)方程式表达:Ax+By+C=0 (A,B≠0)➢点与点距离(弦长公式):d=√(1+k2)×|x1−x2|=√(1+1k2)×|y1−y2|➢点到直线距离:00√A2+B200√k2+1➢直线到直线距离:d=12√(A2+B2)2一、一次函数形式:1、斜截式:y=kx+b(k≠0)备注:也是直线常规表达方式,y轴交点为(0,b),2、点斜式:需知道斜率k,已知点(x0,y0)(y−y0)=k(x−x0)(k≠0)3、两点式:需知道直线上任意两点(x1,y1),(x2,y2)y−y1 y2−y1=x−x1 x2−x14、方程式表达:Ax+By+C=0 (A,B≠0)二、点与点距离(弦长公式):已知直角坐标系两点E(x1,y1),F(x2,y2),求EF线段长度三、点与直线关系:1、点到直线距离:1)已知直线L为Ax+By+C=0,直线外点P(x0,y0),则点P到直线距离为:|Ax+By+C|√A2+B22)已知直接L为y=kx+b,直线外点P(x0,y0),则点P到直线距离为:|kx−y+b|√k2+12、点关于直线的对称点:1)特殊情况:点P(x1,y1)关于x轴,y轴平行线对称2)特殊情况:点P(x1,y1)关于直线y=±x+c对称以上图y=x+c为例,将P点y1带入直线y1=x+c,求得的x即为对称点的x2;对应x1带如求得y2。

3)一般情况:点P(x1,y1)关于直线Ax+By+C=0对称本例题因为选择题,不用求解对称点,可用y 2−y 1x 2−x 1=−1k=−12,选出垂线上的点,如果有多选,可以用(x 1+x 22,y 1+y 22)过直线L 来筛选。

四、直线与直线关系设两条直线方程为Ax+By+C1=0Ax+By+C2=0则其距离公式为d=12222。

一次函数的性质及应用

一次函数的性质及应用

一次函数的性质及应用一次函数,又称为线性函数,是数学中常见且重要的函数类型。

它的一般形式可以表示为y = ax + b,其中a和b为常数,x为自变量,y 为因变量。

本文将探讨一次函数的性质以及其在实际问题中的应用。

一、一次函数的性质1. 斜率:一次函数的斜率可以通过系数a来确定,斜率的正负表示函数的上升或下降趋势,斜率越大越陡峭。

斜率为正表示函数递增,斜率为负表示函数递减,斜率为零表示函数为水平线。

2. 截距:一次函数的截距可以通过常数b来确定,截距表示函数与坐标轴的交点位置。

当x为零时,对应的y值即为函数的纵轴截距;当y为零时,对应的x值即为函数的横轴截距。

3. 函数图像:一次函数的图像为一条直线。

根据斜率和截距的不同取值,函数的图像可能是上升的直线、下降的直线或者水平线。

二、一次函数的应用1. 表示一种关系:一次函数常用于描述两个变量之间的线性关系。

例如,经济学中的供需关系、物理学中的速度与时间关系等都可以用一次函数来表示。

2. 预测与推理:通过确定一次函数的斜率和截距,可以进行数据的预测与推理。

例如,通过已知的数据点(x1,y1)、(x2,y2)可以利用一次函数来预测其他数据点的值。

3. 优化问题:一次函数在优化问题中也有广泛应用。

例如,生产成本与产量之间的关系、投资与回报之间的关系等,都可以用一次函数来描述,并通过计算斜率和截距来实现最优化。

三、实例分析为了更好地理解一次函数的性质及应用,我们来看一个实例分析。

假设小明每天步行去上学,他发现他步行的时间与距离之间存在一种线性关系。

他记录了以下数据:距离(公里)时间(分钟)1 102 203 30通过这些数据点,我们可以得到一次函数的图像并进一步分析其性质和应用。

首先,根据给定的数据点,我们可以利用最小二乘法确定一次函数的表达式为y = 10x。

其中斜率为10,表示小明步行速度为每分钟10米;截距为0,表示小明在出发时不需要额外的时间。

通过这个函数表达式,我们可以回答一些问题。

一次函数知识点整理

一次函数知识点整理

一次函数知识点整理一次函数知识点总结一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k0时,直线必通过一、三象限,y随x的增大而增大;当k0时,直线必通过二、四象限,y随x的增大而减小。

当b0时,直线必通过一、二象限;当b=0时,直线通过原点当b0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b ……①和 y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

一次函数知识点

一次函数知识点
CREATE TOGETHER
DOCS
DOCS SMART CREATE
一次函数知识点详解
01
一次函数的概念与形式
一次函数的定义与性质
一次函数的定义
• 形式:y = kx + b • 定义:函数中只含有一个未知数x,且x的指数为1
一次函数的性质
• 性质1:y的值随着x的值增大而增大 • 性质2:y的值随着x的值减小而减小 • 性质3:一次函数图像是一条直线
03
一次函数的方程与不等式
一次函数的方程表示与求解
一次函数的方程表示
• 形式:y = kx + b • 其中,k为斜率,b为截距
一次函数的方程求解
• 求解方法:将已知条件代入方程,解出x或y的值
一次函数的不等式表示与求解
一次函数的不等式表示
• 形式:kx + b < y 或 kx + b > y • 其中,k为斜率,b为截距
一次函数的截距
• 定义:直线与y轴的交点 • 计算:截距b = y - kx
一次函数的单调性与最值
一次函数的单调性
• 单调递增:当k > 0时,y随x的增大而增大 • 单调递减:当k < 0时,y随x的增大而减小
一次函数的最值
• 最小值:当x = -b / k时,y取得最小值 • 最大值:当x = -b / k时,y取得最大值
伸缩变换的应用
• 应用1:求解直线在x轴上的伸缩比例 • 应用2:求解直线与y轴的交点
05
一次函数的综合问题与解题技巧
一次函数的最大值与最小值问题
最大值问题
• 解题方法:利用一次函数的单调性,求出最大值点
最小值问题

一次函数的解法

一次函数的解法

一次函数的解法一次函数,也被称为线性函数,是数学中常见且重要的一种函数形式。

它的一般形式为f(x) = ax + b,其中a和b为常数,x为自变量。

本文将介绍一次函数的解法,帮助读者更好地理解和应用这一函数形式。

一、一次函数的定义及性质一次函数是指次数为1的多项式函数。

它具有以下几个重要的性质:1. 一次函数的图像是一条直线;2. 当a≠0时,一次函数的斜率为a;3. 一次函数的图像在直角坐标系中的斜率表示直线的倾斜程度。

二、一次函数的解法要解一次函数,主要就是找到函数中的未知数x的值。

以下介绍两种常见的解法。

1. 直接解法直接解法是将已知的函数方程f(x) = ax + b中的x代入,然后求出f(x)的值。

具体步骤如下:1) 将已知函数方程中的x值代入,得到f(x)的值;2) 判断f(x)的值是否等于0;3) 若f(x)的值等于0,则代表找到了一次函数的解,即该x的值满足方程ax + b = 0;4) 若f(x)的值不等于0,则代表未找到解。

通过直接解法,我们可以迅速得到一次函数的解,从而对函数的性质和图像有更深入的理解。

2. 斜率截距法斜率截距法是一种常用的解一次函数的方法,它将函数方程f(x) =ax + b转化为y = ax + b的形式,并利用直线的斜率和截距来解析函数性质和解。

具体步骤如下:1) 将已知函数方程f(x) = ax + b转化为y = ax + b的形式;2) 利用斜率a和截距b来分析函数的性质和解;3) 斜率a表示直线的倾斜程度,正值表示直线向上倾斜,负值表示直线向下倾斜。

当a>0时,函数图像向右上方倾斜,a<0时,函数图像向右下方倾斜;4) 截距b表示直线与y轴的交点,也即当x=0时,函数的值。

因此,解一次函数的关键是求出截距b的值;5) 通过计算斜率和截距,我们可以得到一次函数图像的一些基本特征,如斜率和截距对应的坐标点,从而更直观地理解和应用一次函数。

一次函数解释

一次函数解释

一次函数解释一次函数是函数中的一种,它反映了变量之间的一种线性关系。

本文将从定义域、函数表达式、图像特征、斜率、与坐标轴的交点、单调性以及函数性质等方面,对一次函数进行详细的解释。

1.定义域定义域是一次函数的基本属性,它表示自变量x的取值范围。

对于任何一个一次函数,定义域都是整个实数集R。

在函数表达式中,x表示自变量,而y是因变量,定义域就是x可以取到的所有值的集合。

2.函数表达式一次函数的函数表达式为y=kx+b,其中k和b是常数,k≠0。

k 称为斜率,b是y轴上的截距。

这个表达式表明,函数的图像是一条直线,直线的斜率是k,它在y轴上的截距是b。

3.图像特征一次函数的图像是一条直线,它的形状由斜率k确定。

当k>0时,直线从左下方向右上方倾斜;当k<0时,直线从左上方向右下方倾斜。

截距b决定了直线在y轴上的位置。

4.斜率斜率是一次函数的重要属性,它反映了函数图像的倾斜程度。

斜率的计算公式为k=(y2-y1)/(x2-x1),其中(x1,y1)和(x2,y2)是函数图像上任意两点的坐标。

5.与坐标轴的交点一次函数与坐标轴的交点是函数图像与x轴或y轴的交点。

当y=0时,一次函数与x轴的交点为(b/k,0);当x=0时,一次函数与y 轴的交点为(0,b)。

这些交点对于理解函数的性质以及解决某些问题非常重要。

6.单调性一次函数在某个区间内的单调性与其斜率密切相关。

当k>0时,函数在(-∞,+∞)上单调递增;当k<0时,函数在(-∞,+∞)上单调递减。

单调性可以帮助我们了解函数值随自变量变化的趋势。

7.函数性质一次函数具有以下性质:(1)定义域为R;(2)值域为R;(3)图像是一条直线;(4)斜率是常数;(5)与坐标轴的交点是有限的;(6)在一定区间内具有单调性;(7)是连续的但不一定是有界的。

总之,一次函数作为一种基本的函数类型,具有丰富的定义域、表达式、图像、斜率、与坐标轴交点、单调性和函数性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《函数图像信息题应用》教学设计
课题
函数图象信息题——中考第25题的解法策略
学科
数学
教者
xxx
学校
xxx学校
时间
2012、5、17




知识与技能
1、深刻理解一次函数图象的意义,培养学生从读图、读题的过程中获取信息的能力。
2、通过操作,演示、等活动,合作探究等方法,师生共同探讨,剖析寻找此类问题的解决方法及策略。
3、通过分析与解答,培养学生运用知识解决实际问题的能力,发展学生逻辑思维能力,体会数形结合的思想
过程与方法
情感态度
与价值观
课程资源的开发与利用
多媒体课件及对中考第25题题型的搜选
学情分析
重点
弄清题意,读懂图象,获取必要信息
难点
数形结合,获取信息,建模解题。
教学过程与实施策略
师生行为及设计意图
预设
时间
15’
活动3:巩固训练,深化目标
教师用多媒体出示练习,学生合作完成。真正让学生当家做主。
6’
活动4:小结与回顾
学生总结,教师补充。
师生共同总结,点睛知识、深化目标。
2’
板书设计:函数图象信息题之行程问题
——中考第25题专项训练
解题策略:1)、2)、3)
教学反思:
活动1:中考链接
1)考察内容
2)考察的数学思想
学生总结,回答
2’
活动2:初探解题策略
学生根据以往对此类题型的解答,总结此类题型的解题策略。
2’
活动2:问
教师操作课件、演示情境,引导、启发,学生观察思考、合作交流、共同探究。使学生在愉快的氛围中获取信息提高解题能力,感受数形结合思想。
相关文档
最新文档