【高中数学】2018-2019学年人教B版高中数学-选修4-4教学案-第一章圆的极坐标方程(可直接打印)

合集下载

2018-2019北师大版数学选修4-1教学案:第一章2.5切割线定理相交弦定理

2018-2019北师大版数学选修4-1教学案:第一章2.5切割线定理相交弦定理

2.4&2.5切割线定理相交弦定理[对应学生用书P23][自主学习]1.切割线定理(1)文字语言:过圆外一点作圆的一条切线和一条割线,切线长是割线上从这点到两个交点的线段长的比例中项.(2)符号语言:从⊙O外一点P引圆的切线PT和割线PAB,T是切点,则PT2=PA·PB.(3)图形语言:如图所示.推论:过圆外一点作圆的两条割线,在一条割线上从这点到两个交点的线段长的积,等于另一条割线上对应线段长的积(割线定理).2.相交弦定理(1)文字语言:圆内的两条相交弦,被交点分成的两条线段长的积相等.(2)符号语言:⊙O的两条弦AB和CD相交于圆内的一点P,则PA·PB=PC·PD.(3)图形语言:如图所示.[合作探究]1.由相交弦定理知,垂直于弦的直径平分弦.那么,直径被弦分成的两条线段与弦有何关系?提示:弦的一半是直径被弦分成的两条线段的比例中项.2.如图,圆外一点P引圆的两条割线能否有PA·AB=PC·CD?提示:只有PA=PC时才有PA·PB=PC·CD成立.[对应学生用书P23]切割线定理的应用[例1]如图所示,⊙O1与⊙O2相交于A,B两点,AB是⊙O2的直径,过A点作⊙O1的切线交⊙O2于点E,并与BO1的延长线交于点P.PB分别与⊙O1,⊙O2交于C,D两点.求证:(1)PA·PD=PE·PC;(2)AD=AE.[思路点拨]本题主要考查切割线定理的应用.解题时由割线定理得PA·PE=PD·PB,再由切割线定理知PA2=PC·PB可得结论,然后由(1)进一步可证AD=AE.[精解详析](1)∵PAE,PDB分别是⊙O2的割线,∴PA·PE=PD·PB.①又∵PA,PCB分别是⊙O1的切线和割线,∴PA2=PC·PB. ②由①②得PA·PD=PE·PC.(2)连接AD,AC,ED,∵BC是⊙O1的直径,∴∠CAB=90°.∴AC是⊙O2的切线.又由(1)知PAPE=PCPD,∴AC∥ED.∴AB⊥ED.又∵AB是⊙O2的直径,∴AD=AE,∴AD=AE.讨论与圆有关的线段间的相互关系,常常可以借助于切割线定理和相似成比例的知识去解决,通常用分析法揭示解题的思考过程,而用综合法来表示解题的形式.1.(湖北高考)如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B.过PA的中点Q作割线交⊙O于C,D两点.若QC=1,CD=3,则PB=.解析:由切割线定理,得QA2=QC·QD=4⇒QA=2,则PB=PA=2QA=4.答案:4相交弦定理的应用。

2018_2019学年高中数学第一章不等式的基本性质和证明的基本方法本章复习课课件新人教B版选修4_

2018_2019学年高中数学第一章不等式的基本性质和证明的基本方法本章复习课课件新人教B版选修4_
c|+|x-b|≤m,|x-c|+|x-b|≥m. 5.会用平均值不等式求一些特定函数的最值. 6.理解不等式证明的五种方法:比较法、综合法、等式.
知识结构
知识梳理 1.实数的运算性质与大小顺序的关系:a>b⇔a-b>0,a=b⇔a -b=0,a<b⇔a-b<0,由此可知要比较两个实数的大小,判断差 的符号即可. 2.不等式的 6 个基本性质是不等式的基础. 3.一元一次、一元二次不等式的解法是解不等式的基础,各类 不等式的求解都转化为一元一次不等式、一元二次不等式,一元二 次不等式都可化为两种类型,ax2+bx+c≥0 (a>0)或 ax2+bx+c≤0 (a>0),ax2+bx+c≥0 (a>0)的解集实质上是函数 f(x)=ax2+bx+c (a>0)的函数值 f(x)≥0 对应的自变量 x 的取值范围,方程 ax2+bx +c=0 (a>0)的根实质上是函数 f(x)的图象与 x 轴交点的横坐标,方 程的根也是方程对应的一元二次不等式解集的端点值.
5.绝对值不等式的解法:解含绝对值的不等式的基本思想是通过 去掉绝对值符号,把含绝对值的不等式转化为一元一次不等式,或一 元二次不等式.去绝对值符号常见的方法有:
(1)根据绝对值的定义;(2)平方法;(3)分区间讨论. 6.绝对值三角不等式: (1)|a|的几何意义表示数轴上的点到原点的距离,|a-b|的几何意义 表示数轴上两点间的距离. (2)|a+b|≤|a|+|b| (a,b∈R,ab≥0 时等号成立). (3)|a-c|≤|a-b|+|b-c| (a,b,c∈R,(a-b)(b-c)≥0 等号成立). (4)||a|-|b||≤|a+b|≤|a|+|b| (a,b∈R,左边“=”成立的条件是 ab≤0,右边“=”成立的条件是 ab≥0). (5)||a|-|b||≤|a-b|≤|a|+|b| (a,b∈R,左边“=”成立的条件是 ab≥0,右边“=”成立的条件是 ab≤0).

2017-2018学年北师大版高中数学选修4-4全册同步配套教学案

2017-2018学年北师大版高中数学选修4-4全册同步配套教学案

2017-2018学年高中数学北师大版选修4-4全册同步配套教学案目录第一章§1 平面直角坐标系第一章§2 2.1、2.2 极坐标系的概念点的极坐标与直角坐标的互化第一章§2 2.3 直线和圆的极坐标方程第一章§2 2.4、2.5曲线的极坐标方程与直角坐标方程的互化圆锥曲线统一的极坐标方程第一章§3 柱坐标系和球坐标系第一章章末复习课第二章§1 参数方程的概念第二章§2 2.1 直线的参数方程第二章§2 2.2、2.3、2.4 圆的参数方程椭圆的参数方程双曲线的参数方程第二章§3 参数方程化成普通方程第二章§4 平摆线和渐开线第二章章末复习课§1平面直角坐标系[对应学生用书P1][自主学习]1.平面直角坐标系与曲线方程(1)平面直角坐标系中点和有序实数对的关系:在平面直角坐标系中,点和有序实数对是一一对应的. (2)平面直角坐标系中曲线与方程的关系:曲线可看作是满足某些条件的点的集合或轨迹,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:①曲线C 上的点的坐标都是方程f (x ,y )=0的解; ②以方程f (x ,y )=0的解为坐标的点都在曲线C 上.那么,方程f (x ,y )=0叫作曲线C 的方程,曲线C 叫作方程f (x ,y )=0的曲线. (3)一些常见曲线的方程: ①直线的方程:ax +by +c =0;②圆的方程:圆心为(a ,b ),半径为r 的圆的方程为(x -a )2+(y -b )2=r 2;③椭圆的方程:中心在原点,焦点在x 轴上,长轴长为2a ,短轴长为2b 的椭圆方程为x 2a 2+y 2b 2=1;④双曲线的方程:中心在原点,焦点在x 轴上,实轴长为2a ,虚轴长为2b 的双曲线方程为x 2a 2-y 2b 2=1;⑤抛物线的方程:顶点在原点,以x 轴为对称轴,开口向右,焦点到顶点距离为p2的抛物线方程为y 2=2px .2.平面直角坐标系中的伸缩变换1.如何根据题设条件建立适当的平面直角坐标系? 提示:①如果图形有对称中心,选对称中心为坐标原点; ②如果图形有对称轴,选对称轴为坐标轴; ③使图形上的特殊点尽可能多的在坐标轴上;④如果是圆锥曲线,所建立的平面直角坐标系应使曲线方程为标准方程. 2.平面直角坐标系中的伸缩变换可以改变图形的形状,那平移变换呢? 提示:平移变换仅改变图形的位置,不改变它的形状、大小.[对应学生用书P1]的距离之和为12,求椭圆G 的方程.(2)在边长为2的正△ABC 中,若P 为△ABC 内一点,且|P A |2=|PB |2+|PC |2,求点P 的轨迹方程,并画出方程所表示的曲线.[思路点拨] 本题是曲线方程的确定与应用问题,考查建立平面直角坐标系、数形结合思想、曲线方程的求法及分析推理、计算化简技能、技巧等.解答此题中(1)需要根据已知条件用待定系数法求解;(2)需要先建立平面直角坐标系,写出各点的坐标,用直接法求解,再根据方程判定曲线类型画出其表示的曲线.[精解详析] (1)由已知设椭圆方程为 x 2a 2+y 2b 2=1(a >b >0), 则2a =12,知a =6.又离心率e =c a =32,故c =3 3.∴b 2=a 2-c 2=36-27=9. ∴椭圆的标准方程为x 236+y 29=1.(2)以BC 所在直线为x 轴,BC 的中点为原点,BC 的中垂线为y 轴建立平面直角坐标系,设P (x ,y )是轨迹上任意一点,又|BC |=2,∴B (-1,0),C (1,0),则A (0,3);∵|P A |2=|PB |2+|PC |2,∴x 2+(y -3)2=(x +1)2+y 2+(x -1)2+y 2. 化简得x 2+(y +3)2=4. 又∵P 在△ABC 内,∴y >0.∴P 点的轨迹方程为x 2+(y +3)2=4(y >0).其曲线如上图所示为以(0,-3)为圆心,半径为2的圆在x 轴上半部分圆孤.1.求曲线方程的方法:(1)已知曲线类型求方程一般用待定系数法; (2)求动点轨迹方程常用的方法有:①直接法:如果题目中的条件有明显的等量关系或者可以推出某个等量关系,即可直接求曲线的方程,步骤如下:a .建立适当的平面直角坐标系,并用(x ,y )表示曲线上任意一点M 的坐标;b .写出适合条件P 的点M 的集合P ={M |P (M )};c .用坐标表示条件P (M ),写出方程f (x ,y )=0;d .化简方程f (x ,y )=0;e .检验或证明d 中以方程的解为坐标的点都在曲线上,若方程的变形过程是等价的,则e 可以省略. ②定义法:如果动点的轨迹满足某种已知曲线的定义,则可依定义写出轨迹方程.③代入法(相关点法):如果动点P (x ,y )依赖于另一动点Q (x 1,y 1),而Q (x 1,y 1)又在某已知曲线上,则可先列出关于x ,y ,x 1,y 1的方程组,利用x ,y 表示x 1,y 1,把x 1,y 1代入已知曲线方程即为所求.④参数法:动点P (x ,y )的横坐标、纵坐标用一个或几个参数来表示,消去参数即得其轨迹方程. 2.根据曲线的方程画曲线时,关键根据方程判定曲线的类型,是我们熟知的哪种曲线,但要注意是曲线的全部还是局部.1.在△ABC 中,底边BC =12,其他两边AB 和AC 上中线CE 和BD 的和为30,建立适当的坐标系,求此三角形重心G 的轨迹方程.解:以BC 所在直线为x 轴,BC 边中点为原点,过原点且与BC 垂直的直线为y 轴建立平面直角坐标系,则B (6,0),C (-6,0),|BD |+|CE |=30, 可知|GB |+|GC |=23(|BD |+|CE |)=20,∴重心G 的轨迹是以(-6,0),(6,0)为焦点,2a =20的椭圆,且y ≠0,其轨迹方程为:x 2100+y 264=1(x ≠±10).[例2] 如图,以Rt △ABC 的两条直角边AB ,和正方形BCFG ,连接EC ,AF ,且EC ,AF 交于点M ,连接BM .求证:BM ⊥AC .[思路点拨] 本题考查坐标法在解决平面几何中垂直、平行、线段相等、平分等问题中的应用,解答此题需要先建立适当的平面直角坐标系,设出相关点的坐标,求出相关线的方程,求出k BM ,k AC ,证明k BM ·k AC =-1,即可.形BCFG 的边长分别为a ,b ,则A (0,a ),B (0,0),C (b,0),E (-a ,a ),F (b ,-b ).直线AF :y +b a +b =x -b0-b ,即(a +b )x +by -ab =0; 直线EC :y -0a -0=x -b-a -b ,即ax +(a +b )y -ab =0.解方程组⎩⎪⎨⎪⎧(a +b )x +by -ab =0,ax +(a +b )y -ab =0,得⎩⎨⎧x =a 2ba 2+ab +b 2,y =ab2a 2+ab +b 2.即M 点的坐标为⎝⎛⎭⎫a 2b a 2+ab +b 2,ab2a 2+ab +b 2.故k BM =b a .又k AC =0-a b -0=-ab ,∴k BM ·k AC =-1, ∴BM ⊥AC .坐标法解决几何问题的“三部曲”:第一步,建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化为代数问题;第二步,通过代数运算解决代数问题;第三步,把代数运算结果翻译成几何结论.2.已知正△ABC 的边长为a ,在平面上求一点P ,使|P A |2+|PB |2+|PC |2最小,并求出此最小值. 解:以BC 所在直线为x 轴,BC 的垂直平分线为y 轴,建立如图所示的平面直角坐标系,则A ⎝⎛⎭⎫0,32a ,B ⎝⎛⎭⎫-a 2,0,C ⎝⎛⎭⎫a 2,0. 设P (x ,y ), 则|P A |2+|PB |2+|PC |2 =x 2+⎝⎛⎭⎫y -32a 2+⎝⎛⎭⎫x +a 22+y 2+⎝⎛⎭⎫x -a 22+y 2=3x 2+3y 2-3ay +5a 24=3x 2+3⎝⎛⎭⎫y -36a 2+a 2≥a 2, 当且仅当x =0,y =36a 时,等号成立, ∴所求最小值为a 2,此时P 点坐标为P ⎝⎛⎭⎫0,36a ,它是正△ABC 的中心.[例3] 在下列平面直角坐标系中,分别作出x 25+y 9=1的图形.(1)x 轴与y 轴具有相同的单位长度;(2)x 轴上的单位长度为y 轴上单位长度的2倍; (3)x 轴上的单位长度为y 轴上单位长度的12倍.[思路点拨] 本题考查平面直角坐标系中的伸缩变换对图形的影响及数形结合思想,解决此题只需根据坐标轴的伸缩变换找出变换后x 轴、y 轴单位长度的变化情况,再作出图形即可.[精解详析] (1)建立平面直角坐标系使x 轴与y 轴具有相同的单位长度,则x 225+y 29=1的图形如图①.(2)如果x 轴上的单位长度保持不变,y 轴上的单位长度缩小为原来的12,则x 225+y 29=1的图形如图②.(3)如果y 轴上的单位长度不变,x 轴上的单位长度缩小为原来的12,则x 225+y 29=1的图形如图③.一般地,在平面直角坐标系xOy 中:(1)使x 轴上的单位长度为y 轴上单位长度的k 倍(k >0),则当k =1时,x 轴与y 轴具有相同的单位长度;即为⎩⎪⎨⎪⎧x ′=x ,y ′=y 的伸缩变换,当k >1时,相当于x 轴上的单位长度保持不变,y 轴上的单位长度缩小为原来的1k ,即为⎩⎪⎨⎪⎧x ′=x ,y ′=1k y 的伸缩变换,当0<k <1时,相当于y 轴上的单位长度保持不变,x 轴上的单位长度缩小为原来的k 倍,即为⎩⎪⎨⎪⎧x ′=kx ,y ′=y 的伸缩变换.(2)在平面经过伸缩变换,直线伸缩后仍为直线;圆伸缩后可能是圆或椭圆;椭圆伸缩后可能是椭圆或圆;双曲线伸缩后仍为双曲线;抛物线伸缩后仍为抛物线.本例中若x 轴的单位长度为y 轴上单位长度的35,则椭圆x 225+y 29=1的图形如何?解:如果y 轴上的单位长度不变,x 轴的单位长度缩小为原来的35,即⎩⎪⎨⎪⎧x ′=35x ,y ′=y ,则x 225+y 29=1的图形变为圆.本课时主要考查平面直角坐标系中曲线的求解,常与平面几何知识结合.[考题印证]满足BQ=设λ>0,点A 的坐标为(1,1),点B 在抛物线y =x 2上运动,点Q λQA ,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足QM =λMP ,求点P 的轨迹方程.[命题立意] 本题考查直线和抛物线的方程、平面向量的概念、性质与运算、动点的轨迹方程等基本知识,考查灵活运用知识探究问题和解决问题的能力,全面考核综合数学素养.[自主尝试] 由QM =λMP知Q ,M ,P 三点在同一条垂直于x 轴的直线上,故可设P (x ,y ),Q (x ,y 0),M (x ,x 2), 则x 2-y 0=λ(y -x 2),即 y 0=(1+λ)x 2-λy .①再设B (x 1,y 1),由BQ =λQA, 即(x -x 1,y 0-y 1)=λ(1-x,1-y 0),解得⎩⎪⎨⎪⎧x 1=(1+λ)x -λ,y 1=(1+λ)y 0-λ.②将①式代入②式,消去y 0,得⎩⎪⎨⎪⎧x 1=(1+λ)x -λ,y 1=(1+λ)2x 2-λ(1+λ)y -λ.③ 又点B 在抛物线y =x 2上,所以y 1=x 21, 再将③式代入y 1=x 21,得(1+λ)2x 2-λ(1+λ)y -λ=[(1+λ)x -λ]2, (1+λ)2x 2-λ(1+λ)y -λ=(1+λ)2x 2-2λ(1+λ)x +λ2, 2λ(1+λ)x -λ(1+λ)y -λ(1+λ)=0.因λ>0,两边同除以λ(1+λ),得2x -y -1=0. 故所求点P 的轨迹方程为y =2x -1.[对应学生用书P4]一、选择题1.方程x 2+xy =0的曲线是( ) A .一个点 B .一条直线C .两条直线D .一个点和一条直线解析:选C 方程变形为x (x +y )=0,∴x =0或x +y =0,而方程x =0,x +y =0表示的是直线,∴C 正确.2.已知△ABC 的底边BC 长为12,且底边固定,顶点A 是动点,且sin B -sin C =12sin A ,若以底边BC 为x 轴、底边BC 的中点为原点建立平面直角坐标系,则点A 的轨迹方程是( )A.x 29-y 227=1 B.x 29-y 227=1(x <-3) C.x 227-y 29=1 D.x 227-y 29=1(x <-3) 解析:选B 由题意知,B (-6,0),C (6,0) 由sin B -sin C =12sin A 得b -c =12a =6,即|AC |-|AB |=6.所以点A 的轨迹是以B (-6,0),C (6,0)为焦点,2a =6的双曲线的左支且y ≠0.其方程为 x 29-y 227=1(x <-3). 3.已知一椭圆的方程为x 216+y 24=1,如果x 轴上的单位长度为y 轴上单位长度的12,则该椭圆的形状为( )解析:选B 如果y 轴上的单位长度保持不变,x 轴上的单位长度缩小为原来的12,则该椭圆的形状为选项B 中所示.4.平面内有一条固定线段AB ,|AB |=4,动点P 满足|P A |-|PB |=3,O 为AB 的中点,则|OP |的最小值是( )A.32B.12 C .2D .3解析:选A 以AB 的中点O 为原点,AB 所在直线为x 轴建立平面直角坐标系,∴a =32.如图,则点P 的轨迹是以A ,B 为焦点的双曲线的一部分.2c =4,c =2,2a =3,∴b 2=c 2-a 2=4-94=74.∴点P 的轨迹方程为x 294-y 274=1(x ≥32).由图可知,点P 为双曲线与x 轴的右交点时,|OP |最小,|OP |的最小值是32.二、填空题5.已知点A (-2,0),B (-3,0),动点P (x ,y )满足PA ·PB=x 2+1,则点P 的轨迹方程是________. 解析:由题意得PA =(-2-x ,-y ),PB=(-3-x ,-y ). ∴PA ·PB=(-2-x )(-3-x )+(-y )2=x 2+1. 即y 2+5x +5=0. 答案:y 2+5x +5=06.在平面直角坐标系中,O 为原点,已知两点A (4,1),B (-1,3),若点C 满足OC =m OA +n OB,其中m ,n ∈[0,1],且m +n =1,则点C 的轨迹方程为________.解析:由题意知,A ,B ,C 三点共线且C 在线段AB 上,点A ,B 所在的直线方程为2x +5y -13=0,且点C 的轨迹为线段AB ,所以,点C 的轨迹方程为2x +5y -13=0,x ∈[-1,4].答案:2x +5y -13=0(-1≤x ≤4)7.在平面直角坐标系中,设点P (x ,y ),定义|OP |=|x |+|y |,其中O 为坐标原点,对以下结论: ①符合|OP |=1的点P 的轨迹围成图形面积为2;②设P 为直线5x +2y -2=0上任意一点,则|OP |的最小值为1;③设P 为直线y =kx +b (k ,b ∈R )上任意一点,则“使|OP |最小的点P 有无数个”的必要不充分条件是“k =±1”.其中正确的结论有________.(填序号) 解析:在①中,由于|OP |=1 ⇔⎩⎪⎨⎪⎧y =-x +1,0≤x ≤1,y =-x -1,-1≤x ≤0,y =x +1,-1≤x ≤0,y =x -1,0≤x ≤1,其图像如图故其面积为2×⎝⎛⎭⎫12×2×1=2. 故①正确. 在②中,当P ⎝⎛⎭⎫255,0时,|OP |=|x |+|y |=255<1, ∴|OP |的最小值不为1,故②错误. 在③中,∵|x |+|y |≥|x +y |=|(k +1)x +b |, 当k =-1时,|x |+|y |≥|b |满足题意, 即|x |+|y |≥|x -y |=|(k -1)x -b |,当k =1时,|x |+|y |≥|b |满足题意,故③正确. 答案:①③8.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹.给出下列三个结论:①曲线C 过坐标原点; ②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是________.解析:因为原点O 到两个定点F 1(-1,0),F 2(1,0)的距离的积是1,而a >1,所以曲线C 不过原点,即①错误;因为F 1(-1,0),F 2(1,0)关于原点对称,所以|PF 1||PF 2|=a 2对应的轨迹关于原点对称,即②正确;因为S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2≤12|PF 1||PF 2|=12a2,即面积不大于12a 2,所以③正确.答案:②③ 三、解答题9.如图所示,△ABC 中,角A ,B ,C 所对三边分别为a ,b ,c ,且B (-1,0),C (1,0).(1)求满足b >a >c ,b ,a ,c 成等差数列时,顶点A 的轨迹方程. (2)在x 轴上的单位长度为y 轴上单位长度的12倍的平面直角坐标系中作出(1)中轨迹.解:(1)∵b ,a ,c 成等差数列, ∴b +c =2a =2×2=4.即|AB |+|AC |=4>|BC |=2符合椭圆定义条件. 动点A (x ,y )的轨迹是椭圆,且⎩⎪⎨⎪⎧ 2a =4,2c =2,∴⎩⎪⎨⎪⎧a =2,c =1,∴A 点的轨迹方程是x 24+y 23=1.由于b >c ,即|AC |>|AB |,可知A 点轨迹是椭圆左半部分,还必须除去点(0,-3),(0,3). ∵A ,B ,C 构成三角形,∴必须除去点(-2,0). ∴所求轨迹方程为x 24+y 23=1 (-2<x <0).(2)如果y 轴上的单位长度不变,x 轴上的单位长度缩小为原来的12,x 24+y 23=1(-2<x <0)的图形为图示.10.我海军某部发现,一艘敌舰从离小岛O 正东方向80 n mile 的B 处,沿东西方向向O 岛驶来,指挥部立即命令在岛屿O 正北方向40 n mile 的A 处的我军舰沿直线前往拦截,以东西方向为x 轴,南北方向为y 轴,岛屿O 为原点,建立平面直角坐标系并标出A ,B 两点,若敌我两舰行驶的速度相同,在上述坐标系中标出我军舰最快拦住敌舰的位置,并求出该点的坐标.解:A ,B 两点如图所示,A (0,40),B (80,0),∴OA =40(n mile),OB =80(n mile). 我军舰直行到点C 与敌舰相遇, 设C (x,0),∴OC =x ,BC =OB -OC =80-x . ∵敌我两舰速度相同, ∴AC =BC =80-x .在Rt △AOC 中,OA 2+OC 2=AC 2, 即402+x 2=(80-x )2,解得x =30. ∴点C 的坐标为(30,0).11.如图,椭圆C 0:x 2a 2+y 2b 2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左、右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.解:(1)设 A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a (x +a ),①直线A 2B 的方程为y =-y 1x 1-a (x -a ).②由①②得y 2=-y 21x 21-a2(x 2-a 2).③ 由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b 2=1.从而y 21=b 2⎝⎛⎭⎫1-x 21a 2,代入③得x 2a 2-y 2b2=1(x <-a ,y <0).(2)设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2||y 2|,故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以 b 2x 21⎝⎛⎭⎫1-x 21a 2=b 2x 22⎝⎛⎭⎫1-x 22a 2. 由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2.从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值.§2极_坐_标_系2.1&2.2 极坐标系的概念 点的极坐标与直角坐标的互化[对应学生用书P5][自主学习]1.极坐标系的概念 (1)极坐标系:在平面内取一个定点O ,叫作极点,自极点O 引一条射线Ox ,叫作极轴;选定一个单位长度和角的正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)点的极坐标:对于平面上任意一点M ,用ρ表示线段OM 的长,用θ表示以Ox 为始边,OM 为终边的角度,ρ叫作点M 的极径,θ叫作点M 的极角,有序实数对(ρ,θ)就叫作点M 的极坐标,记作M (ρ,θ).①特别地,当点M 在极点时,它的极径ρ=0,极角θ可以取任意值;②点与极坐标的关系:平面内一点的极坐标可以有无数对,当k ∈Z 时,(ρ,θ),(ρ,θ+2k π),(-ρ,θ+(2k +1)π)表示同一个点,如果规定ρ>0,0≤θ<2π或者-π<θ≤π,那么除极点外,平面内的点和极坐标就一一对应了.2.点的极坐标与直角坐标的互化 (1)互化的前提条件:①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合; ③两种坐标系取相同的长度单位. (2)极坐标与直角坐标的互化:①将点M 的极坐标(ρ,θ)化为直角坐标(x ,y )的关系式为⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ.②将点的直角坐标(x [合作探究],y )化为极坐标(ρ,θ)的关系式为⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).1.极坐标系与平面直角坐标系有什么区别和联系?提示:区别:平面直角坐标系以互相垂直的两条数轴为几何背景,而极坐标以角和距离为背景. 联系:二者都是平面坐标系,用来研究平面内点与距离等有关问题.2.点M (ρ,θ)关于极轴、极点以及过极点且垂直于极轴的直线的对称点的坐标各为什么? 提示:(ρ,2π-θ),(ρ,π+θ),(ρ,π-θ).3.把直角坐标转化为极坐标时,表示方法唯一吗? 提示:通常有不同的表示法.(极角相差2π的整数倍)[对应学生用书P6][例1] 在极坐标系中,画出点A ⎝⎭⎫1,π4,B ⎝⎭⎫2,3π2,C ⎝⎭⎫3,-π4,D ⎝⎭⎫4,9π4. [思路点拨] 本题考查极坐标系以及极坐标的概念,同时考查数形结合思想,解答此题需要先建立极坐标系,再作出极角的终边,然后以极点O 为圆心,极径为半径分别画弧,从而得到点的位置.[精解详析] 在极坐标系中先作出π4线,再在π4线上截取|OA |=1,这样可得到点A ⎝⎛⎭⎫1,π4.同样可作出点B ⎝⎛⎭⎫2,3π2,C ⎝⎛⎭⎫3,-π4,D ⎝⎛⎭⎫4,9π4,如图所示.由极坐标确定点的位置的步骤 (1)取定极点O ;(2)作方向为水平向右的射线Ox 为极轴;(3)以极点O 为顶点,以极轴Ox 为始边,通常按逆时针方向旋转极轴Ox 确定出极角的终边; (4)以极点O 为圆心,以极径为半径画弧,弧与极角终边的交点即是所求点的位置.1.在极坐标系中,作出以下各点:A (4,0),B ⎝⎛⎭⎫3,π4,C ⎝⎛⎭⎫2,π2,D ⎝⎛⎭⎫3,7π4;结合图形判断点B ,D 的位置是否具有对称性;并求出B ,D 关于极点的对称点的极坐标.(限定ρ≥0,θ∈[0,2π))解:如图,A ,B ,C ,D 四个点分别是唯一确定的.由图形知B ,D 两点关于极轴对称,且B ,D 关于极点的对称点的极坐标分别为⎝⎛⎭⎫3,5π4,⎝⎛⎭⎫3,3π4.[例2] 已知A ⎝⎭⎫3,-π3,B ⎝⎭⎫1,2π3,将A ,B 坐标化为直角坐标,并求A ,B 两点间的距离. [思路点拨] 本题考查如何将极坐标化为直角坐标,解答此题需要利用互化公式先将极坐标化为直角坐标,再由两点间的距离公式得结果.[精解详析] 将A ⎝⎛⎭⎫3,-π3,B ⎝⎛⎭⎫1,2π3由极坐标化为直角坐标, 对于点A ,有x =3cos ⎝⎛⎭⎫-π3=32, y =3sin ⎝⎛⎭⎫-π3=-332,∴A ⎝⎛⎭⎫32,-332. 对于点B ,有x =1×cos 2π3=-12,y =1×sin 2π3=32,∴B (-12,32).∴|AB |=⎝⎛⎭⎫32+122+⎝⎛⎭⎫-332-322 =4+12=4.1.将极坐标M (ρ,θ)化为直角坐标(x ,y ),只需根据公式:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ即可得到;2.利用两种坐标的互化,可以把不熟悉的极坐标问题转化为熟悉的直角坐标问题求解.本例中如何由极坐标直接求A ,B 两点间的距离? 解:根据M (ρ1,θ1),N (ρ2,θ2),则由余弦定理得:|MN |=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2),所以|AB |=32+12-2×3×1×cos ⎣⎡⎦⎤2π3-⎝⎛⎭⎫-π3=4.[例3] 分别将下列点的直角坐标化为极坐标(ρ>0,(1)(-1,1),(2)(-3,-1).[思路点拨] 本题考查如何将直角坐标化为极坐标,同时考查三角函数中由值求角问题,解答此题利用互化公式即可,但要注意点所在象限.[精解详析] (1)∵ρ=(-1)2+12=2,tan θ=-1,θ∈[0,2π), 又点(-1,1)在第二象限,∴θ=3π4.∴直角坐标(-1,1)化为极坐标为⎝⎛⎭⎫2,3π4. (2)ρ=(-3)2+(-1)2=2, tan θ=-1-3=33,θ∈[0,2π),∵点(-3,-1)在第三象限, ∴θ=76π.∴直角坐标(-3,-1)化为极坐标为⎝⎛⎭⎫2,7π6.将点的直角坐标(x ,y )化为极坐标(ρ,θ)时,运用公式⎩⎪⎨⎪⎧ρ=x 2+y 2,tan θ=yx (x ≠0)即可,在[0,2π)范围内,由tan θ=yx (x ≠0)求θ时,要根据直角坐标的符号特征,判断出点所在象限,如果允许θ∈R ,再根据终边相同的角的意义,表示为θ+2k π,k ∈Z 即可.2.将下列各点由直角坐标化为极径ρ是正值,极角在0到2π之间的极坐标. (1)(3,3);(2)(-2,-23).解:(1)ρ=32+(3)2=23,tan θ=y x =33,又点(3,3)在第一象限,所以θ=π6.所以点(3,3)的极坐标为23,π6.(2)ρ=(-2)2+(-23)2=4, tan θ=y x =-23-2=3,又点(-2,-23)在第三象限,所以θ=4π3.所以点(-2,-23)的极坐标为⎝⎛⎭⎫4,4π3.本课时常考查极坐标的确定及点的直角坐标与极坐标的互化,特别是直角坐标化为极坐标常与三角知识交汇命题,更成为命题专家的新宠.点P 的直角坐标为(1,-3),则点P 的极坐标为( ) A.⎝⎛⎭⎫2,π3 B.⎝⎛⎭⎫2,4π3 C.⎝⎛⎭⎫2,-π3 D.⎝⎛⎭⎫2,-4π3 [命题立意] 本题主要考查点的极坐标与直角坐标 的互化,同时还考查了三角知识及运算解题能力. [自主尝试]ρ=12+(-3)2=2,tan θ=-31=-3,又点(1,-3)在第四象限,所以OP 与x 轴所成的角为5π3,故点P 的一个极坐标为⎝⎛⎭⎫2,5π3,排除A ,B 选项.又-43π+2π=23π,所以极坐标⎝⎛⎭⎫2,-4π3所表示的点在第二象限,故D 不正确,而-π3+2π=53π. [答案] C[对应学生用书P8]一、选择题1.点P 的直角坐标为(-2,2),那么它的极坐标可表示为( ) A.⎝⎛⎭⎫2,π4 B.⎝⎛⎭⎫2,3π4 C.⎝⎛⎭⎫2,5π4 D.⎝⎛⎭⎫2,7π4 解析:选B ρ=(-2)2+(2)2=2, tan θ=2-2=-1,∵点P 在第二象限, ∴最小正角θ=3π4.2.在极坐标系中与点A ⎝⎛⎭⎫3,-π3关于极轴所在的直线对称的点的极坐标是( ) A.⎝⎛⎭⎫3,2π3 B.⎝⎛⎭⎫3,π3 C.⎝⎛⎭⎫3,4π3 D.⎝⎛⎭⎫3,5π6 解析:选B 与点A ⎝⎛⎭⎫3,-π3关于极轴所在直线的对称的点的极坐标可以表示为⎝⎛⎭⎫3,2k π+π3(k ∈Z ),这时只有选项B 满足条件.3.在极坐标系中,若等边△ABC 的两个顶点是A ⎝⎛⎭⎫2,π4,B ⎝⎛⎭⎫2,5π4,那么可能是顶点C 的坐标的是( )A.⎝⎛⎭⎫4,3π4B.⎝⎛⎭⎫23,3π4 C.()23,πD.()3,π解析:选B 如图,由题设,可知A ,B 两点关于极点O 对称,即O 是AB 的中点.又|AB |=4,△ABC 为正三角形,∴|OC |=23,∠AOC =π2,点C 的极角θ=π4+π2=3π4或5π4+π2=7π4,即点C 的极坐标为⎝⎛⎭⎫23,3π4或⎝⎛⎭⎫23,7π4. 4.若ρ1+ρ2=0,θ1+θ2=π,则点M 1(ρ1,θ1)与点M 2(ρ2,θ2)的位置关系是( ) A .关于极轴所在直线对称 B .关于极点对称C .关于过极点垂直于极轴的直线对称D .两点重合解析:选A 因为点(ρ,θ)关于极轴所在直线对称的点为(-ρ,π-θ).由此可知点(ρ1,θ1)和(ρ2,θ2)满足ρ1+ρ2=0,θ1+θ2=π,是关于极轴所在直线对称.二、填空题5.将极轴Ox 绕极点顺时针方向旋转π6得到射线OP ,在OP 上取点M ,使|OM |=2,则ρ>0,θ∈[0,2π)时点M 的极坐标为________,它关于极轴的对称点的极坐标为________(ρ>0,θ∈[0,2π)).解析:ρ=|OM |=2,与OP 终边相同的角为-π6+2k π(k ∈Z ).∵θ∈[0,2π),∴k =1,θ=11π6.∴M ⎝⎛⎭⎫2,11π6. ∴M 关于极轴的对称点为(2,π6).答案:⎝⎛⎭⎫2,11π6 ⎝⎛⎭⎫2,π6 6.点A ⎝⎛⎭⎫5,π3在条件: (1)ρ>0,θ∈(-2π,0)下的极坐标是________; (2)ρ<0,θ∈(2π,4π)下的极坐标是________.解析:(1)当ρ>0时,点A 的极坐标形式为⎝⎛⎭⎫5,2k π+π3(k ∈Z ), ∵θ∈(-2π,0).令k =-1,点A 的极坐标为⎝⎛⎭⎫5,-5π3,符合题意. (2)当ρ<0时,⎝⎛⎭⎫5,π3的极坐标的一般形式是⎝⎛⎭⎫-5,(2k +1)π+π3(k ∈Z ).∵θ∈(2π,4π),当k =1时,点A 的极坐标为⎝⎛⎭⎫-5,10π3,符合题意. 答案:⎝⎛⎭⎫5,-5π3 (2)⎝⎛⎭⎫-5,10π3 7.直线l 过点A ⎝⎛⎭⎫7,π3,B ⎝⎛⎭⎫7,π6,则直线l 与极轴所在直线的夹角等于________. 解析:如图所示,先在图形中找到直线l 与极轴夹角(要注意夹角是个锐角),然后根据点A ,B 的位置分析夹角大小.因为|AO |=|BO |=7,∠AOB =π3-π6=π6,所以∠OAB =π-π62=5π12.所以∠ACO =π-π3-5π12=π4.答案:π48.已知两点的极坐标是A ⎝⎛⎭⎫3,π12,B ⎝⎛⎭⎫-8,π12,则AB 中点的一个极坐标是________. 解析:画出示意图,A ,B 与极点O 共线,∴ρ=12(3-8)=-52,θ=π12. 故AB 中点的一个极坐标为⎝⎛⎭⎫-52,π12. 答案:⎝⎛⎭⎫-52,π12 三、解答题9.设有一颗彗星,围绕地球沿一抛物线轨道运行,地球恰好位于该抛物线的焦点处,当此彗星离地球30万千米时,经过地球和彗星的直线与抛物线对称轴的夹角为30°,试建立适当的极坐标系,写出彗星此时的极坐标.解:如图所示,建立极坐标系,使极点O 位于抛物线的焦点处,极轴Ox 过抛物线的对称轴,由题设可得下列4种情形:①当θ=30°时,ρ=30(万千米); ②当θ=150°时,ρ=30(万千米); ③当θ=210°时,ρ=30(万千米); ④当θ=330°时,ρ=30(万千米).∴彗星此时的极坐标有4种情形:(30,30°),(30,150°),(30,210°),(30,330°). 10.在极坐标系中,点A 和点B 的极坐标分别为⎝⎛⎭⎫2,π3和(3,0),O 为极点. (1)求|AB |;(2)求S △AOB .解:|AB |=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2)=22+32-2×2×3×cos ⎝⎛⎭⎫π3-0=4+9-6=7.S △AOB =12|OA |·|OB |·sin ∠AOB=12×2×3×sin ⎝⎛⎭⎫π3-0 =332. 11.在极坐标系中,如果A ⎝⎛⎭⎫2,π4,B ⎝⎛⎭⎫2,5π4为等边三角形ABC 的两个顶点,求顶点C 的极坐标. 解:法一:对于A ⎝⎛⎭⎫2,π4有ρ=2,θ=π4, ∴x =ρcos θ=2cos π4=2,y =ρsin θ=2sin π4= 2.∴A (2,2).对于B ⎝⎛⎭⎫2,5π4有ρ=2,θ=54π. ∴x =2cos 5π4=-2,y =2sin 5π4=- 2.∴B (-2,-2).设C 点的坐标为(x ,y ),由于△ABC 为等边三角形,故有|AB |=|BC |=|AC |. ∴有(x +2)2+(y +2)2=(x -2)2+(y -2)2 =(2+2)2+(2+2)2.∴有⎩⎨⎧(x -2)2+(y -2)2=16,(x +2)2+(y +2)2=16.解之得⎩⎨⎧ x =6,y =-6,或⎩⎨⎧x =-6,y = 6.∴C 点的坐标为(6,-6)或(-6,6).∴θ=7π4或θ=3π4.∴点C 的极坐标为⎝⎛⎭⎫23,7π4或⎝⎛⎭⎫23,3π4. 法二:设C 点的极坐标为(ρ,θ)(0≤θ<2π,ρ>0). 则有|AB |=|BC |=|AC |.∴⎩⎨⎧ρ2+22-2×2ρcos ⎝⎛⎭⎫θ-π4=22+22-2×2×2cos π,ρ2+22-2×2ρ cos ⎝⎛⎭⎫θ-5π4=22+22-2×22cos π.解之得⎩⎪⎨⎪⎧ ρ=23,θ=3π4或⎩⎪⎨⎪⎧ρ=23,θ=7π4.∴点C 的极坐标为⎝⎛⎭⎫23,3π4,⎝⎛⎭⎫23,7π4.2.3直线和圆的极坐标方程[对应学生用书P9][自主学习]1.曲线的极坐标方程(1)意义:在极坐标系中,如果曲线C上的点与一个二元方程φ(ρ,θ)=0建立了如下的关系:①曲线C上的每个点的极坐标中至少有一组(ρ,θ)满足方程φ(ρ,θ)=0;②极坐标满足方程φ(ρ,θ)=0的点都在曲线C上.那么方程φ(ρ,θ)=0叫作曲线C的极坐标方程,曲线C叫作极坐标方程φ(ρ,θ)=0的曲线.(2)求极坐标方程的步骤:求曲线的极坐标方程通常有以下五个步骤:①建立适当的极坐标系;②在曲线上任取一点M(ρ,θ);③根据曲线上的点所满足的条件写出等式;④用极坐标ρ,θ表示上述等式,并化简得曲线的极坐标方程;⑤证明所得的方程是曲线的极坐标方程.通常第⑤步不必写出,只要对特殊点的坐标加以检验即可.2.常见直线和圆的极坐标方程[合作探究]1.曲线的极坐标方程与直角坐标方程有何异同?提示:由于平面上点的极坐标的表示形式不唯一,因此曲线的极坐标方程与直角坐标方程也有不同之处.一条曲线上点的极坐标有多组表示形式,这里要求至少有一组满足极坐标方程.有些表示形式可能不满足方程.例如,对极坐标方程ρ=θ,点M ⎝⎛⎭⎫π4,π4可以表示为⎝⎛⎭⎫π4,π4+2π或⎝⎛⎭⎫π4,π4-2π等多种形式,其中只有⎝⎛⎭⎫π4,π4的形式满足方程,而其他表示形式都不满足方程.2.在极坐标系中,θ=-π4与tan θ=-1表示同一条直线吗?提示:表示同一条直线.3.在极坐标系中,ρ=1或ρ=-1表示同一个圆吗? 提示:表示同一个圆.[对应学生用书P9][例1] 求:(1)过点A ⎝⎭⎫2,π4平行于极轴的直线的极坐标方程. (2)过点A ⎝⎛⎭⎫3,π3且和极轴成3π4角的直线的极坐标方程. [思路点拨] 本例主要考查直线的极坐标方程以及正弦定理等三角、平面几何知识,同时亦考查了数形结合思想,解答此题需要先设待求直线上任一点M (ρ,θ),寻找到ρ,θ满足的几何等式,建立关于ρ,θ的方程,再化简即可.[精解详析] (1)法一:如图在直线l 上任取一点M (ρ,θ),在△OAM 中|OA |=2,|OM |=ρ, ∠OAM =π-π4⎝⎛⎭⎫或π4, ∠OMA =θ(或π-θ). 在△OAM 中,由正弦定理得2sin θ=ρsin π4, ∴ρsin θ= 2.点A ⎝⎛⎭⎫2,π4也满足上述方程. 因此过点A ⎝⎛⎭⎫2,π4平行于极轴的直线的极坐标方程为ρsin θ= 2. 法二:如图,在直线l 上任取一点M (ρ,θ),过M 作MH ⊥极轴于H 点.∵A 点坐标为⎝⎛⎭⎫2,π4, ∴|MH |=2·sin π4= 2.在直角三角形MHO 中,点A ⎝⎛⎭⎫2,π4也满足此方程. ∴过点A ⎝⎛⎭⎫2,π4平行于极轴的直线的极坐标方程为ρsin θ= 2. (2)如图,设M (ρ,θ)为直线l 上一点.已知A ⎝⎛⎭⎫3,π3,故|OA |=3. ∠AOB =π3,又已知∠MBx =3π4,∴∠OAB =3π4-π3=5π12.又∠OMA =π-⎝⎛⎭⎫3π4-θ=π4+θ,在△MOA 中,根据正弦定理得3sin ⎝⎛⎭⎫π4+θ=ρsin 5π12,又sin 5π12=sin 7π12=sin ⎝⎛⎭⎫π4+π3=6+24, 将sin ⎝⎛⎭⎫π4+θ展开化简代入可得 ρ(sin θ+cos θ)=332+32,又点A ⎝⎛⎭⎫3,π3也满足上述方程, 所以过点A ⎝⎛⎭⎫3,π3且和极轴成3π4角的直线的极坐标方程为:ρ(sin θ+cos θ)=332+32.在极坐标系中,求直线的极坐标方程的一般思路:在直线上设M (ρ,θ)为任意一点,连接OM ;构造出含OM 的三角形,再利用正弦定理求OM ,即把OM 用θ表示,即为直线的极坐标方程.若将本例(2)中点A 变为(2,0),3π4变为π6,则直线的极坐标方程如何?解:设M (ρ,θ)为直线上除A 点以外的任意一点, 连接OM ,则在△AOM 中,∠AOM =θ,∠AMO =π6-θ,∠OAM =π-π6,OM =ρ,由正弦定理可得|OA |sin ⎝⎛⎭⎫π6-θ=|OM |sin ⎝⎛⎭⎫π-π6.∴ρsin ⎝⎛⎭⎫π-π6=2sin ⎝⎛⎭⎫π6-θ. ∴ρ=1sin ⎝⎛⎭⎫π6-θ.∴ρsin π6cos θ-ρcos π6sin θ=1.化简得:ρcos θ-3ρsin θ=2. 经检验点(2,0)的坐标适合上述方程, 所以满足条件的直线的极坐标方程为 ρ(cos θ-3sin θ)=2,其中,0≤θ<π6(ρ≥0)和7π6≤θ<2π(ρ≥0).[例2] 求圆心在A ⎝⎛⎭⎫2,3π2处并且过极点的圆的极坐标方程,并判断点⎝⎭⎫-2,sin 5π6是否在这个圆上. [思路点拨] 本题考查圆的极坐标方程及解三角形的知识,解答此题需要先设圆上任意一点M (ρ,θ),建立等式转化为ρ,θ的方程,化简即可.[精解详析] 由题意知,圆经过极点O ,OA 为其一条直径,设M (ρ,θ)为圆上除点O ,A 以外的任意一点,则|OA |=2r ,连接AM ,则OM ⊥MA ,在Rt △OAM中,|OM |=|OA |cos ∠AOM ,即ρ=2r cos ⎝⎛⎭⎫3π2-θ,∴ρ=-4sin θ.经验证,点O (0,0),A ⎝⎛⎭⎫4,3π2的坐标满足上式.所以满足条件的圆的极坐标方程为ρ=-4sin θ. ∵sin5π6=12,∴ρ=-4sin θ=-4sin 5π6=-2, ∴点⎝⎛⎭⎫-2,sin 5π6在此圆上.在极坐标系中,求圆的极坐标方程的一般思路:在圆上设M (ρ,θ)为任意一点,连接OM ,构造出含OM 的三角形,再利用解直角三角形或解斜三角形的正弦、余弦定理求OM ,即把OM 用θ表示,从而得到圆的极坐标方程.1.求半径为1,圆心在点C ⎝⎛⎭⎫3,π4的圆的极坐标方程. 解:设圆C 上的任意一点为M (ρ,θ),且O ,C ,M 三点不共线,不妨设如图所示情况,在△OCM 中,由余弦定理得:。

高中数学选修四教案

高中数学选修四教案

高中数学选修四教案
一、教案标题:向量的数量积及其应用
二、教学目标:
1. 掌握向量的数量积的定义和性质;
2. 能够运用向量的数量积求向量夹角和向量的投影;
3. 能够应用向量的数量积解决实际问题。

三、教学内容:
1. 向量的数量积的定义和性质;
2. 向量夹角的余弦定理;
3. 向量的投影及其应用。

四、教学过程:
1. 导入:通过引入实际问题,引出向量的数量积的概念和应用。

2. 讲解向量的数量积的定义和性质,引导学生理解向量的数量积的意义。

3. 演示向量夹角的余弦定理的推导过程,并进行例题讲解。

4. 练习:让学生进行练习,巩固向量的数量积和夹角的概念。

5. 讲解向量的投影的概念及其应用,举例说明。

6. 练习:让学生进行解决实际问题的练习,提高应用能力。

7. 总结:归纳本节课的重点内容,强化学生对向量的数量积和应用的理解。

五、教学辅助手段:
1. 教学PPT;
2. 黑板;
3. 教材;
4. 实物或图片展示。

六、教学反馈:
1. 布置作业,让学生巩固所学知识;
2. 听取学生对本节课的反馈和建议;
3. 综合评价学生的学习情况,及时调整教学策略。

高中选修4数学教案

高中选修4数学教案

高中选修4数学教案
教师:XXX
第一课时:立体几何的基本概念
目标:了解立体几何的基本概念,掌握立体几何的相关术语。

教学重点:球、柱、锥的表面积和体积的计算。

教学难点:利用给定条件计算球、柱、锥的体积。

教学准备:教科书、教学PPT、黑板、粉笔。

教学过程:
1. 导入:通过图片展示不同的立体几何图形,让学生猜测它们的名称。

2. 引入:介绍球、柱、锥的定义和特点,让学生看视频了解它们的表面积和体积计算方法。

3. 实例讲解:以一个具体的例子说明如何计算球、柱、锥的体积。

4. 练习:让学生自行计算几个给定图形的体积,并进行讲解和讨论。

5. 拓展:引导学生思考如何计算其他立体几何图形的体积,并鼓励他们尝试解决问题。

6. 总结:回顾本节课的内容,强调立体几何的重要性,并对下节课的内容做简单预告。

板书设计:
立体几何的基本概念
- 球的表面积和体积的计算
- 柱的表面积和体积的计算
- 锥的表面积和体积的计算
作业布置:布置一些练习题,巩固本节课所学知识。

教学反思:本节课主要介绍了立体几何的基本概念和相关计算方法,通过实例讲解和练习,学生对立体几何的理解有了一定的提高。

在接下来的教学中,需要继续引导学生理解和应
用这些知识,提高他们的数学解题能力。

人教B版高中数学选修4-1习题课件:2.2.4 圆锥曲线的统一定义

人教B版高中数学选修4-1习题课件:2.2.4 圆锥曲线的统一定义
2.2.4 圆锥曲线的统一定义
-1-
M Z Z 2.2.4 圆锥曲线的统一定义
目标导航
UBIAODAOHANG
知识梳理
HISHI SHULI
重难聚焦
HONGNAN JVJIAO
D S 典例透析 IANLI TOUXI
随堂演练
UITANGYANLIAN
1.理解定理. 2.掌握椭圆、双曲线的离心率的定义. 3.掌握圆锥曲线的统一定义.
重难聚焦
HONGNAN JVJIAO
D S 典例透析 IANLI TOUXI
随堂演练
UITANGYANLIAN
椭圆、双曲线的两条准线间的距离
剖析椭圆的长轴长为 2a,焦距为 2c,则两条准线间距离为2������������2;双 曲线的实轴长为 2a,焦距为 2c,则两条准线间距离为2������������2.
随堂演练
UITANGYANLIAN
题型一 题型二 题型三
题型一 椭圆的离心率
【例1】 已知椭圆的焦点为F1,F2,两条准线与实轴所在直线的交 点分别为M,N,若MN≤2F1F2,求椭圆离心率的取值范围.
分析利用不等式MN≤2F1F2列出关于a,c的不等式,解得离心率的 取值范围.
-8-
M Z Z 2.2.4 圆锥曲线的统一定义
-2-
M Z Z 2.2.4 圆锥曲线的统一定义
目标导航
UBIAODAOHANG
知识梳理
HISHI SHULI
重难聚焦
HONGNAN JVJIAO
D S 典例透析 IANLI TOUXI
随堂演练
UITANGYANLIAN
1.定理 除了圆之外,每一条圆锥曲线都是平面上到某个定点F和到某条 定直线l的距离的比值等于常数的点的轨迹.其中点F叫做圆锥曲线 的焦点,直线叫做圆锥曲线的准线. 2.离心率的几何意义 (1)椭圆:椭圆上任意一点P到焦点F和直线m(m称为椭圆的一条准 线)的距离之比为一个常数,我们把这个常数e称为椭圆的离心率,其 范围是e∈(0,1). (2)双曲线:双曲线上任意一点P到焦点F和直线m(m称为双曲线的 一条准线)的距离之比为一个常数,我们把这个常数e称为双曲线的 离心率,其范围是e∈(1,+∞).

人民教育出版社B版高中数学目录(全)

人民教育出版社B版高中数学目录(全)

人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结。

【2019-2020年度】人教B版高中数学-选修4-4教学案-第一章球坐标系(Word)

【2019-2020年度】人教B版高中数学-选修4-4教学案-第一章球坐标系(Word)

【2019-2020年度】人教B 版高中数学-选修4-4教学案-第一章球坐标系(Word )[读教材·填要点]1.球坐标系设空间中一点M 的直角坐标为(x ,y ,z),点M 在xOy 坐标面上的投影点为M0,连接OM 和OM0,设z 轴的正向与向量的夹角为φ,x 轴的正向与0的夹角为θ,M 点到原点O 的距离为r ,则由三个数r ,θ,φ构成的有序数组(r ,θ,φ)称为空间中点M 的球坐标.在球坐标中限定r≥0,0≤θ<2π,0≤φ≤π.OM OM2.直角坐标与球坐标的转化空间点M 的直角坐标(x ,y ,z)与球坐标(r ,φ,θ)之间的变换关系为⎩⎨⎧x =rsin φ·cos θ,y =rsin φ·sin θ,z =rcos φ. [小问题·大思维]球坐标与平面上的极坐标之间有什么关系?提示:空间某点的球坐标中的第二个坐标θ就是该点在xOy 平面上投影点的极坐标中的第二个坐标θ.[例1][思路点拨] 本题考查球坐标与直角坐标的变换关系.解答本题需要先搞清球坐标中各个坐标的意义,然后代入相应的公式求解即可.[精解详析] ∵M 的球坐标为,∴r =5,φ=,θ=.由变换公式⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,得⎩⎪⎨⎪⎧ x =5sin 5π6cos 4π3=-54,y =5sin 5π6sin 4π3=-534,z =5cos 5π6=-532.故它的直角坐标为. 已知球坐标求直角坐标,可根据变换公式直接求解,但要分清哪个角是φ,哪个角是θ.1.已知点P 的球坐标为,求它的直角坐标.解:由变换公式得x =rsin φcos θ=4sin cos =2,y =rsin φsin θ=4sin sin =2,z =rcos φ=4cos =-2.∴它的直角坐标为(2,2,-2).[例[思路点拨] 本题考查直角坐标与球坐标的变换关系.解答本题只需将已知条件代入变换公式求解即可,但应注意θ与φ的取值范围.[精解详析] 由坐标变换公式,可得r ===2.由rcos φ=z =,得cos φ==,φ=.又tan θ==1,θ=(x>0,y>0),所以知M点的球坐标为.由直角坐标化为球坐标时,我们可以先设点M的球坐标为(r,θ,φ),再利用变换公式求出r,θ,φ代入点的球坐标即可;也可以利用r2=x2+y2+z2,tan θ=,cos φ=求解.特别注意由直角坐标求球坐标时,θ和φ的取值应首先看清点所在的象限,准确取值,才能无误.2.设点M的直角坐标为,求它的球坐标.解:由变换公式得r===1.由rcos φ=z=-得cos φ=-,φ=.又tan θ==(r>0,y>0),得θ=,∴M的球坐标为.[例3] O为端点且与零子午线相交的射线Ox为极轴,建立坐标系.有A,B两个城市,它们的球坐标分别为AR,,,BR,,.飞机沿球的大圆圆弧飞行时,航线最短,求最短的路程.[思路点拨] 本题考查球坐标系的应用以及球面上的最短距离.解答本题需要搞清球的大圆的圆心角及求法.[精解详析] 如图所示,因为A,B,可知∠AOO1=∠O1OB=,∴∠O1AO=∠O1BO=.又∠EOC=,∠EOD=,∴∠COD=-=.∴∠AO1B=∠COD=.在Rt△OO1B中,∠O1BO=,OB=R,∴O1B=O1A=R.∵∠AO1B=,∴AB=R.在△AOB中,AB=OB=OA=R,∴∠AOB=.故飞机沿经过A,B两地的大圆飞行,航线最短,其路程为R.我们根据A,B两地的球坐标找到纬度和经度,当飞机沿着过A,B两地的大圆飞行时,飞行最快.求所飞行的路程实际上是要求我们求出过A,B两地的球面距离.3.用两平行面去截球,如图,在两个截面圆上有两个点,它们的球坐标分别为A,B8,θB,,求出这两个截面间的距离.解:由已知,OA=OB=8,∠AOO1=,∠BOO1=.∴在△AOO1中,OO1=4.在△BOO2中,∠BOO2=,OB=8,∴OO2=4,则O1O2=OO1+OO2=8.即两个截面间的距离O1O2为8.一、选择题1.已知一个点P的球坐标为,点P在xOy平面上的投影点为P0,则与的夹角为( )OPA.- B.3π4C.D.π3解析:选A ∵φ=,∴OP 与OP0之间的夹角为=. 2.点M 的球坐标为(r ,φ,θ)(φ,θ∈(0,π)),则其关于点(0,0,0)的对称点的坐标为( )A .(-r ,-φ,-θ)B .(r ,π-φ,π-θ)C .(r ,π+φ,θ)D .(r ,π-φ,π+θ)解析:选D 设点M 的直角坐标为(x ,y ,z),则点M 关于(0,0,0)的对称点M′的直角坐标为(-x ,-y ,-z),设M′的球坐标为(r′,φ′,θ′),因为⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,所以⎩⎨⎧ r′sin φ′cos θ′=-rsin φcos θ,r′sin φ′sin θ′=-rsin φsin θ,r′cos φ′=-rcos φ,可得⎩⎨⎧ r′=r ,φ′=π-φ,θ′=π+θ,即M′的球坐标为(r ,π-φ,π+θ).3.点P 的球坐标为,则它的直角坐标为( )A .(1,0,0)B .(-1,-1,0)C .(0,-1,0)D .(-1,0,0)解析:选D x =rsin φcos θ=1·sin ·cos π=-1, y =rsin φsin θ=1·sinsin π=0,z =rcos φ=1·cos=0,∴它的直角坐标为(-1,0,0).4.已知点P 的柱坐标为,点B 的球坐标为,则这两个点在空间直角坐标系中的点的坐标为( )A .P(5,1,1),B ⎝⎛⎭⎪⎫364,324,62 B .P(1,1,5),B ⎝⎛⎭⎪⎫364,324,62 C .P ,B(1,1,5)D .P(1,1,5),B ⎝ ⎛⎭⎪⎫62,364,324 解析:选B 球坐标与直角坐标的互化公式为⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,柱坐标与直角坐标的互化公式为⎩⎨⎧ x =ρcos θ,y =ρsin θ,z =z.设P 点的直角坐标为(x ,y ,z),则x =cos =×=1, y =sin =1,z =5.设B 点的直角坐标为(x′,y′,z′),则x′=sin cos =××=,y′=sin sin =××=,z′=cos =×=.所以点P 的直角坐标为(1,1,5),点B 的直角坐标为.二、填空题5.以地球中心为坐标原点,地球赤道平面为xOy 坐标面,由原点指向北极点的连线方向为z 轴正向,本初子午线所在平面为zOx坐标面,如图所示.若某地在西经60°,南纬45°,地球的半径为R ,则该地的球坐标可表示为________.解析:由球坐标的定义可知,该地的球坐标为R ,,.答案:⎝ ⎛⎭⎪⎫R ,5π3,3π4 6.已知点M 的球坐标为,则它的直角坐标为________,它的柱坐标是________.解析:由坐标变换公式直接得直角坐标和柱坐标.答案:(-2,2,2) ⎝ ⎛⎭⎪⎫22,3π4,22 7.设点M 的直角坐标为(-1,-1,),则它的球坐标为________. 解析:由坐标变换公式,得r ===2,cos φ==,∴φ=.∵tan θ===1,又∵x<0,y<0,∴θ=.∴M 的球坐标为.答案:⎝ ⎛⎭⎪⎫2,5π4,π4 8.在球坐标系中,方程r =1表示________,方程φ=表示空间的________.解析:数形结合,根据球坐标的定义判断形状.答案:球心在原点,半径为1的球面 顶点在原点,轴截面顶角为的圆锥面三、解答题9.如图,请你说出点M 的球坐标.解:由球坐标的定义,记|OM|=R ,OM 与z 轴正向所夹的角为φ.设M 在xOy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为θ.这样点M 的位置就可以用有序数组(R ,θ,φ)表示.∴M 点的球坐标为M(R ,θ,φ).10.已知点P 的球坐标为,求它的直角坐标.解:根据坐标变换公式⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,得⎩⎪⎨⎪⎧ x =2sin 3π4cos 7π6=2·22·⎝ ⎛⎭⎪⎫-32=-62,y =2sin 3π4sin 7π6=2·22·⎝ ⎛⎭⎪⎫-12=-22,z =2·cos 3π4=2·⎝ ⎛⎭⎪⎫-22=-2,∴点P 的直角坐标为. 11.如图,建立球坐标系,正四面体ABCD 的棱长为1,求A ,B ,C ,D 的球坐标.(其中O 是△BCD 的中心)解:O 是△BCD 的中心,则OC =OD =OB =,AO =.∴C ,D ,B,A.[对应学生用书P19][对应学生用书P19]1的对称性,尽量使图形的对称轴(对称中心)正好是坐标系中的x 轴,y 轴(坐标原点).2.坐标系的建立,要尽量使我们研究的曲线的方程简单.[例1] 线段AB 与CD 互相垂直且平分于点O ,|AB|=2a ,|CD|=2b ,动点P 满足|PA|·|PB|=|PC|·|PD|,求动点P 的轨迹方程.[解] 以AB 的中点O 为原点,直线AB 为x 轴建立直角坐标系,如图所示.设P(x ,y),则A(-a,0),B(a,0),C(0,-b),D(0,b),由题设,知|PA|·|PB|=|PC|·|PD|.∴ ·错误!= ·.化简得x2-y2=,∴动点P 的轨迹方程为x2-y2=.设点点P(X ,Y)对应点P′(x′,y′),称这种变换为平面直角坐标系中的坐标伸缩变换.[例2] 在同一平面直角坐标系中,经过伸缩变换后,曲线C 变为曲线(X -5)2+(Y +6)2=1,求曲线C 的方程,并判断其形状.[解] 将代入(X -5)2+(Y +6)2=1中,得(2x -5)2+(2y +6)2=1.化简,得⎝⎛⎭⎪⎫x -522+(y +3)2=. 该曲线是以为圆心,为半径的圆.1F(ρ,θ)=0.如果曲线C 是由极坐标(ρ,θ)满足方程的所有点组成的,则称此二元方程F(ρ,θ)=0为曲线C的极坐标方程.2.平面上点的极坐标的表示形式不唯一,因此曲线的极坐标方程和直角坐标方程也有不同之处.一条曲线上的点的极坐标有多组表示形式,有些表示形式可能不满足方程,这里要求至少有一组能满足极坐标方程.3.求轨迹方程的方法有直接法、定义法、相关点代入法,其在极坐标中仍然适用.注意求谁设谁,找出所设点的坐标ρ,θ的关系.[例3] △ABC的底边BC=10,∠A=∠B,以B为极点,BC为极轴,求顶点A的轨迹的极坐标方程.[解] 如图,令A(ρ,θ).△ABC内,设∠B=θ,∠A=,又|BC|=10,|AB|=ρ,所以由正弦定理,得=.化简,得A点轨迹的极坐标方程为ρ=10+20cos θ.1x轴的正半轴作为极轴并在两种坐标系下取相同的单位.2.互化公式为x=ρcos θ,y=ρsin θ3.直角坐标方程化极坐标方程可直接将x=ρcos θ,y=ρsin θ代入即可,而极坐标方程化为直角坐标方程通常将极坐标方程化为ρcos θ,ρsin θ的整体形式,然后用x,y代替较为方便,常常两端同乘以ρ即可达到目的,但要注意变形的等价性.[例4] 把下列极坐标方程化为直角坐标方程,并指出它们分别表示什么曲线.(1)ρ=2acos θ(a>0);(2)ρ=9(sin θ+cos θ);(3)ρ=4;(4)2ρcos θ-3ρsin θ=5.[解] (1)ρ=2acos θ,两边同时乘以ρ,得ρ2=2aρcos θ,即x2+y2=2ax.整理得x2+y2-2ax=0,即(x-a)2+y2=a2.它是以(a,0)为圆心,以a为半径的圆.(2)两边同时乘以ρ得ρ2=9ρ(sin θ+cos θ),即x2+y2=9x+9y,又可化为2+2=.它是以为圆心,以为半径的圆.(3)将ρ=4两边平方得ρ2=16,即x2+y2=16.它是以原点为圆心,以4为半径的圆.(4)2ρcos θ-3ρsin θ=5,即2x-3y=5.它是一条直线.1M0,用(ρ,θ)(ρ≥0,0≤θ<2π)来表示点M0在平面xOy上的极坐标.这时点M的位置可由有序数组(ρ,θ,z)表示,叫做点M的柱坐标.2.球坐标:建立空间直角坐标系O ­xyz,设M是空间任意一点,连接OM,记|OM|=r,OM与Oz轴正向所夹的角为φ,设M在xOy平面上的射影为M0.Ox轴按逆时针方向旋转到OM0时,所转过的最小正角为θ,则M(r,θ,φ)为M点的球坐标.[例5] 在柱坐标系中,求满足的动点M(ρ,θ,z)围成的几何体的体积.[解] 根据柱坐标系与点的柱坐标的意义可知,满足ρ=1,0≤θ<2π,0≤z≤2的动点M(ρ,θ,z)的轨迹是以直线Oz 为轴,轴截面为正方形的圆柱,如图所示,圆柱的底面半径r =1,h =2,∴V=Sh =πr2h =2π.[例6] 如图,长方体OABC —D′A′B′C′中,OA =OC =a ,BB′=OA ,对角线OB′与BD′相交于点P ,顶点O 为坐标原点,OA ,OC 分别在x 轴,y 轴的正半轴上.试写出点P 的球坐标.[解] r =|OP|,φ=∠D′OP,θ=∠AOB,而|OP|=a ,∠D′OP=∠OB′B,tan ∠OB′B==1,∴∠OB′B=,θ=∠AOB=.∴点P 的球坐标为.[对应学生用书P21]一、选择题1.点M 的直角坐标是(-1,),则点M 的极坐标为( )A.B.⎝ ⎛⎭⎪⎫2,-π3C.D.,k∈Z解析:选C ρ2=(-1)2+()2=4,∴ρ=2.又∴⎩⎪⎨⎪⎧ cos θ=-12,sin θ=32.∴θ=π+2k π,k ∈Z.即点M 的极坐标为,k∈Z.2.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( )A.x2+y2=0或y=1 B.x=1C.x2+y2=0或x=1 D.y=1解析:选 C ρ(ρcos θ-1)=0,ρ==0,或ρcos θ=x =1.3.极坐标方程ρcos θ=2sin 2θ表示的曲线为( )A.一条射线和一个圆B.两条直线C.一条直线和一个圆D.一个圆解析:选C ρcos θ=4sin θcos θ,cos θ=0,或ρ=4sin θ(ρ2=4ρsin θ),则x=0,或x2+y2=4y.4.极坐标系内曲线ρ=2cos θ上的动点P与定点Q的最近距离等于( )A.-1B.-1C.1 D.2解析:选A 将曲线ρ=2cos θ化成直角坐标方程为(x-1)2+y2=1,点Q的直角坐标为(0,1),则P到Q的最短距离为点Q与圆心的距离减去半径,即-1.二、填空题5.极坐标方程5ρ2cos2θ+ρ2-24=0所表示的曲线焦点的极坐标为________________.解析:原方程化为直角坐标方程为-=1,∴c==,双曲线在直角坐标系下的焦点坐标为(,0),(-,0),故在极坐标系下,曲线的焦点坐标为(,0),(,π).答案:(,0),(,π)6.点M的球坐标为,则它的直角坐标为________.解析:x=6·sin·cos =3,y=6sinsin=3,z=6cos=0,∴它的直角坐标为(3,3,0).答案:(3,3,0)7.在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线ρ=4cos θ于A,B两点,则|AB|=________.解析:过点(3,0)且与极轴垂直的直线的直角坐标方程为x=3,曲线ρ=4cos θ化为直角坐标方程为x2+y2-4x=0,把x=3代入上式,得9+y2-12=0,解得,y1=,y2=-,所以|AB|=|y1-y2|=2.答案:238.在极坐标系中,过点A(6,π)作圆ρ=-4cos θ的切线,则切线长为________.解析:圆ρ=-4cos θ化为(x+2)2+y2=4,点(6,π)化为(-6,0),故切线长为==2.答案:23三、解答题9.求由曲线4x2+9y2=36变成曲线X2+Y2=1的伸缩变换.解:设变换为将其代入方程X2+Y2=1,得a2x2+b2y2=1.又∵4x2+9y2=36,即+=1,∴又∵a>0,b>0,∴a=,b=.∴将曲线4x2+9y2=36变成曲线X2+Y2=1的伸缩变换为⎩⎪⎨⎪⎧ X =13x ,Y =12y.10.已知A ,B 两点的极坐标分别是,,求A ,B 两点间的距离和△AOB 的面积.解:求两点间的距离可用如下公式:|AB|===2.S△AOB=|ρ1ρ2sin(θ1-θ2)|=2×4×sin=×2×4=4.11.在极坐标系中,已知圆C 的圆心C ,半径为1.Q 点在圆周上运动,O 为极点.(1)求圆C 的极坐标方程;(2)若P 在直线OQ 上运动,且满足=,求动点P 的轨迹方程.解:(1)如图所示,设M(ρ,θ)为圆C 上任意一点.在△OCM 中,可知|OC|=3,|OM|=ρ,|CM|=1,∠COM =.根据余弦定理,得1=ρ2+9-2·ρ·3·cos .化简整理,得ρ2-6·ρcos +8=0为圆C 的轨迹方程.(2)设Q(ρ1,θ1),则有ρ-6·ρ1cos +8=0.①设P(ρ,θ),则OQ∶QP=ρ1∶(ρ-ρ1)=2∶3⇒ρ1=ρ, 又θ1=θ,所以⎩⎨⎧ ρ1=25ρ,θ1=θ.代入①得ρ2-6·ρcos +8=0,整理得ρ2-15ρcos +50=0为P 点的轨迹方程.。

高中数学第1章坐标系1.5柱坐标系和球坐标系人教B版选修4_4

高中数学第1章坐标系1.5柱坐标系和球坐标系人教B版选修4_4
[答案] 3
[答案] B
3.设点 M 的直角坐标为(-1,- 3,3),则它的柱坐标是( )
A.(2,π3,3)
B.(2,23π,3)
C.(2,43π,3)
D.(2,53π,3)
3.设点 M 的直角 [解析] ∵ρ= -12+- 32=2,
坐标为(-1,- 则它的柱坐标是(
3,3), )
tan
θ=--13=
[解] 设点的直角坐标为(x,y,z). (1)∵(ρ,θ,z)=(2,56π,3),
x=ρcos θ=2cos56π=- 3,
∴y=ρsin

θ=2sin56π=1,
z=3,
因此所求点的直角坐标为(- 3,1,3).
(2)∵(ρ,θ,z)=( 2,4π,5),
x=ρcos θ= 2cos4π=1,
由直角坐标系中的直角坐标求柱坐标,可以先设出点 M 的柱坐
x=ρcos θ,

标为(ρ,θ,z)代入变换公式y=ρsin θ, z=z.
求 ρ;也可以利用 ρ2=x2
+y2,求 ρ.利用 tan θ=yx,求 θ,在求 θ 的时候特别注意角 θ 所在的 象限,从而确定 θ 的取值.
1.根据下列点的柱坐标,分别求直角坐标: (1)(2,56π,3);(2)( 2,4π,5).
1.根据球坐标系的意义以及与空间直角坐标系的联系,首先要 明确点的球坐标(r,θ,φ)中角 φ,θ 的边与数轴 Oz,Ox 的关系,注 意各自的限定范围,即 0≤θ<2π,0≤φ≤π.
2.化点的球坐标(r,θ,φ)为直角坐标(x,y,z),需要运用公式
x=rsin φcos θ,

y=rsin φsin θ, z=rcos φ.

2019新版人教B版高中数学-选修4-5教学案-第一章章末小结知识整合与阶段检测

2019新版人教B版高中数学-选修4-5教学案-第一章章末小结知识整合与阶段检测

2019新版人教B版高中数学-选修4-5教学案-第一章章末小结知识整合与阶段检测[对应学生用书P24][对应学生用书P24]绝对值不等式的解法的值或取值范围问题,是高考中对绝对值不等式考查的一个重要考向,每年高考均有重要体现,以填空题、解答题为主,属中档题,解绝对值不等式的基本思想,是转化、化归,不等式的性质是实现“转化”的基本依据,通过利用绝对值的几何意义、平方法、零点分区间讨论法等将绝对值不等式转化为最简单的一元一次不等式(组)或一元二次不等式(组)来求解.[例1] 不等式|x+1|+|x|<2.[解] 法一:利用分类讨论的思想方法.当x≤-1时,-x-1-x<2,解得-<x≤-1;当-1<x<0时,x+1-x<2,解得-1<x<0;当x≥0时,x+1+x<2,解得0≤x<.因此,原不等式的解集为.法二:利用方程和函数的思想方法.令f(x)=|x+1|+|x|-2=错误!作函数f(x)的图象(如图),知当f(x)<0时,-<x<.故原不等式的解集为.法三:利用数形结合的思想方法.由绝对值的几何意义知,|x+1|表示数轴上点P(x)到点A(-1)的距离,|x|表示数轴上点P(x)到点O(0)的距离.由条件知,这两个距离之和小于2.作数轴(如图),知原不等式的解集为.法四:利用等价转化的思想方法.原不等式⇔0≤|x+1|<2-|x|,∴(x+1)2<(2-|x|)2,且|x|<2,即0≤4|x|<3-2x,且|x|<2.∴16x2<(3-2x)2,且-2<x<2.解得-<x<.故原不等式的解集为.[例2] 已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|-2≤x≤1}.(1)求a的值;(2)若≤k恒成立,求k的取值范围.[解] (1)由|ax+1|≤3得-4≤ax≤2.又f(x)≤3的解集为{x|-2≤x≤1},所以当a≤0时,不合题意.当a>0时,-≤x≤,得a=2.(2)法一:记h(x)=f(x)-2f(),。

高中数学第一章相似三角形定理与圆幂定理131圆幂定理课件新人教B版选修4

高中数学第一章相似三角形定理与圆幂定理131圆幂定理课件新人教B版选修4
有三条线段共线,不妨把平方项线段利用中间积进行代换试试.
(4)利用“中间比”代换得到,在证明比例线段(不论共线与否),如果
不能直接运用有关定理,不妨就寻找“中间比”进行代换试试.
与圆有关的比例线段证明要诀:圆幂定理是法宝,相似三角形中找
诀窍,联想射影定理分角线,辅助线来搭桥,第三比作介绍,代数方法不
UITANGYANLIAN
M 目标导航 Z 知识梳理 Z 重难聚焦
UBIAODAOHANG
1
2
3
HISHI SHULI
HONGNAN JVJIAO
D典例透析 S随堂演练
IANLI TOUXI
4
解:如图所示,取 BC 的中点 D,连接 OD 和 OB,则 OD⊥BC.
易知 OD= 3,
则 BC=2BD=2 2 - 2 =2 2 -3.
可少,分析综合要记牢,十有八九能见效.
M 目标导航 Z 知识梳理 Z 重难聚焦
UBIAODAOHANG
HISHI SHULI
HONGNAN JVJIAO
D典例透析 S随堂演练
IANLI TOUXI
UITANGYANLIAN
2.垂径定理、射影定理、相交弦定理、切割线定理之间的关系
剖析如图,PA,PB为☉O的两条切线,A,B为切点,PCD为过圆心O的
大致可分为以下几种:
(1)直接由相似形得到,即先由已知条件证得两个三角形相似,从而
直接得到有关对应线段成比例.这是简单型的比例线段问题.
(2)利用“等线段”代换得到,在证明“等积式”形如a2=bc时,如果其中
有三条线段共线,那么一般往往把平方项线段用“等线段”进行代换.
(3)利用“中间积”代换得到,在证明“等积式”形如a2=bc时,如果其中

高中数学选修第四章教案

高中数学选修第四章教案

高中数学选修第四章教案
一、教学目标:
1. 理解数列的概念,掌握等差数列、等比数列的性质及求通项公式的方法。

2. 了解数学归纳法的基本原理和应用方法。

3. 能够应用数列的性质和数学归纳法解决实际问题。

二、教学重点:
1. 等差数列的性质及求通项公式的方法。

2. 等比数列的性质及求通项公式的方法。

3. 数学归纳法的基本原理和应用方法。

三、教学难点:
1. 数学归纳法的应用方法。

2. 难题的解决思路及方法。

四、教学内容:
1. 数列的概念和基本性质。

2. 等差数列的定义、通项公式及性质。

3. 等比数列的定义、通项公式及性质。

4. 数学归纳法的基本原理和应用方法。

五、教学过程:
1. 引入:通过一个生活中的例子引导学生理解数列的概念。

2. 讲解等差数列的定义、通项公式及性质。

3. 讲解等比数列的定义、通项公式及性质。

4. 系统讲解数学归纳法的基本原理和应用方法。

5. 练习:布置一定数量的练习题供学生自主练习。

六、教学反思:
本章内容相对较为抽象,需要学生反复练习和思考,老师要引导学生理解数列的性质及数学归纳法的应用方法,帮助学生建立良好的数学思维习惯。

同时,教师要及时发现学生在学习过程中的问题,及时做出调整和帮助。

2017-2018学年人教B版高中数学选修4-1全册教学案

2017-2018学年人教B版高中数学选修4-1全册教学案

2017-2018学年人教B版高中数学选修4-1全册教学案目录第一章1.1 1.1.1相似三角形判定定理第一章1.1 1.1.2相似三角形的性质第一章1.1 1.1.3平行截割定理第一章1.1 1.1.4锐角三角函数与射影定理第一章1.2 1.2.1圆的切线第一章1.2 1.2.2圆周角定理第一章1.2 1.2.3弦切角定理第一章1.3 1.3.1圆幂定理第一章1.3 1.3.2圆内接四边形的性质与判定第一章章末小结第二章2.1 平行投影与圆柱面的平面截线第二章2.2 用内切球探索圆锥曲线的性质第二章章末小结_1.1相似三角形1.1.1相似三角形判定定理[对应学生用书P1][读教材·填要点]1.相似三角形的定义及相关概念如果在两个三角形中,对应角相等、对应边成比例,则这两个三角形叫做相似三角形.设相似三角形对应边的比值为k,则k叫做相似比(或相似系数).2.相似三角形判定定理(1)判定定理1:两角对应相等的两个三角形相似.(2)判定定理2:三边对应成比例的两个三角形相似.(3)判定定理3:两边对应成比例,并且夹角相等的两个三角形相似.[小问题·大思维]1.两个三角形“相似”与两个三角形“全等”之间有什么关系?提示:两个三角形全等是两个三角形相似的一种特殊情况.相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,当两个相似三角形的相似比为1时,两个三角形全等.2.如果两个三角形的两边对应成比例,且有一角相等,那么这两个三角形相似吗?提示:不一定.只有当这个角是对应成比例的两边的夹角时,这两个三角形才相似.[对应学生用书P1][例1]如图,若O是△ABC内任一点,D,E,F分别是OA,OB,OC的靠近O的三等分点.求证:△DEF∽△ABC.[思路点拨]本题考查相似三角形判定定理2的应用.解答此题需要根据已知条件,寻找三角形相似的条件.利用三等分点找出对应边成比例即可.[精解详析] ∵D ,E ,F 分别是OA ,OB ,OC 靠近点O 的三等分点,∴DE =13AB ,EF=13BC ,FD =13CA . ∴DE AB =EF BC =FD CA =13. 由三角形相似的判定定理得△DEF ∽△ABC .在相似三角形的判定中,应用最多的是判定定理1,因为它的条件最容易寻求,实际证明当中,要特别注意两个三角形的公共角.判定定理2、3则常见于连续两次证明相似时,在第二次使用的情况较多.1.已知△ABC 中,BF ⊥AC 于点F ,CE ⊥AB 于点E ,BF 和CE 相交于点P ,求证: (1)△BPE ∽△CPF ; (2)△EFP ∽△BCP .证明:(1)∵BF ⊥AC 于点F ,CE ⊥AB 于点E , ∴∠BFC =∠CEB . 又∵∠CPF =∠BPE , ∴△CPF ∽△BPE .(2)由(1)得△CPF ∽△BPE , ∴EP BP =FP CP. 又∵∠EPF =∠BPC ,∴△EFP ∽△BCP .[例2] 如图所示,∠ABC =∠CDB =90°,AC =a ,BC =b ,求当BD 与a ,b 之间满足怎样的关系时,△ABC 与△CDB 相似?[思路点拨] 由于△ABC 与△CDB 相似且都是直角三角形,因此,只要对应边成比例即可.而斜边肯定是三角形的最大边,所以AC 一定与BC 对应,这里要注意分类讨论的运用.[精解详析] ∵∠ABC =∠CDB =90°,斜边AC 与BC 为对应边,以下分两种情况讨论. ①当AC BC =BC BD 时,△ABC ∽△CDB ,即a b =b BD .∴BD =b 2a时,△ABC ∽△CDB .②当AC BC =AB BD 时,△ABC ∽△BDC ,即ab =a 2-b 2BD.∴当BD =b a 2-b 2a 时,△ABC ∽△BDC .故当BD =b 2a 或BD =b a 2-b 2a 时,△ABC 与△CDB 相似.(1)在证明直角三角形相似时,要特别注意直角这一隐含条件的应用. (2)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.2.如图,BD 、CE 是△ABC 的高. 求证:△ADE ∽△ABC .证明:∵BD 、CE 是△ABC 的高, ∴∠AEC =∠ADB =90°. 又∵∠A =∠A , ∴△AEC ∽△ADB . ∴AD AB =AE AC. 又∵∠A =∠A , ∴△ADE ∽△ABC .[例3] 如图,已知在△ABC 中,AB =AC ,AD 是BC 边上的中线,CF ∥BA ,BF 交AD 于点P ,交AC 于点E .求证:BP 2=PE ·PF .[思路点拨] 本题考查相似三角形的判定及其应用,解答本题需要注意AD 是等腰△ABC 底边上的高,所以PB =PC ,从而将所求证的结论转化为PC 2=PE ·PF .进而可以证明△PCE ∽△PFC 来解决问题.[精解详析] 连接PC ,在△ABC 中, 因为AB =AC ,D 为BC 中点, 所以AD 垂直平分BC .所以PB =PC ,∠1=∠2. 因为AB =AC , 所以∠ABC =∠ACB ,所以∠ABC -∠1=∠ACB -∠2, 即∠3=∠4. 因为CF ∥AB ,所以∠3=∠F ,所以∠4=∠F . 又因为∠EPC =∠CPF , 所以△PCE ∽△PFC ,所以PC PE =PFPC ,所以PC 2=PE ·PF .因为PC =PB , 所以PB 2=PE ·PF.(1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式ab =cd ,或平方式a 2=bc ,一般都是证明比例式a c =d b 或b a =a c ,再根据比例的基本性质推出乘积式或平方式.3.如图所示,正方形ABCD 的边长为1,P 是CD 边的中点,点Q 在线段BC 上,当△ADP 与△QCP 相似时,求BQ 的值.解:由题知∠D =∠C =90°, ①当△ADP ∽△PCQ 时,AD PC =DP CQ ,∴112=12CQ ,∴CQ =14,∴BQ =1-14=34. ②当△ADP ∽△QCP 时,AD QC =DP CP ,∴1QC =1212,∴CQ =1,∴BQ =0.综上可知,当△ADP 与△QCP 相似时,BQ =0或34.[对应学生用书P3]一、选择题1.如图,锐角三角形ABC的高CD和BE相交于点O,图中与△ODB相似的三角形的个数是()A.1B.2C.3 D.4解析:∵BE⊥AC,CD⊥AB,∴△ODB,△ABE,△ADC,△OCE都是直角三角形.又∵∠DBO=∠EBA,∠A=∠A,∠DOB=∠EOC,∴△ODB∽△AEB∽△ADC,△ODB∽△OEC.∴与△ODB相似的三角形有3个.答案:C2.Rt△ABC中,CD是斜边AB上的高,图形中共有x个三角形与△ABC相似,则x 的值为()A.1 B.2C.3 D.4解析:由题意知,△ACD与△CBD与△ABC相似,故x=2.答案:B3.三角形的一条高分这个三角形为两个相似三角形,则这个三角形是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形解析:等腰三角形底边上的高或直角三角形斜边上的高分得的两个三角形分别相似.答案:D4.如图所示,∠AOD=90°,OA=OB=BC=CD,则下列结论正确的是()A.△DAB∽△OCAB.△OAB∽△ODAC.△BAC∽△BDAD.△OAC∽△ABD解析:设OA=OB=BC=CD=a,则AB=2a,BD=2a.∴AB BD =22,BC AB =a 2a =22. ∴AB BD =BCAB,且∠ABC =∠DBA . ∴△BAC ∽△BDA . 答案:C 二、填空题5.如图,已知△ABC ,△DEF 均为正三角形,D ,E 分别在AB ,BC 上,与△DBE 相似的三角形的个数为________.解析:在△DBE 与△ECH 中, ∵∠B =∠C =60°,∠BDE +∠BED =120°,∠BED +∠CEH =120°, ∴∠BDE =∠CEH .∴△DBE ∽△ECH .同理可证△ADG 和△FHG 也都和△BED 相似. 答案:36.如图所示,在△ABC 中,点D 在线段BC 上,∠BAC =∠ADC ,AC =8,BC =16,那么CD =________.解析:先根据已知条件和隐含条件证明△ABC ∽△DAC .再根据相似建立比例式,根据给出的线段易求出未知线段.答案:47.如图,∠B =∠D ,AE ⊥BC ,∠ACD =90°,且AB =6,AC =4,AD =12,则AE =________.解析:∵∠ACD =∠AEB =90°,∠B =∠D , ∴△ABE ∽△ADC ,∴AB AD =AE AC .又AC =4,AD =12,AB =6,∴AE =AB ·AC AD =6×412=2.答案:28.如图,在△ABC 中,DE ∥BC ,EF ∥CD ,若BC =3,DE =2,DF =1,则AB 的长为________.解析:∵DE ∥BC ,EF ∥CD , ∴∠FDE =∠DBC ,∠DFE =∠BDC . ∴△FDE ∽△DBC ∴FD DB =DE BC ,即BD =32.由AE AC =DE BC =23,得AE EC =2=AFFD. ∴AF =2,AB =92.答案:92三、解答题9.如图,已知:D 是△ABC 内的一点,在△ABC 外取一点E ,使∠CBE =∠ABD ,∠BCE =∠BAD .求证:△ABC ∽△DBE . 证明:∵∠CBE =∠ABD , ∠BCE =∠BAD ,∴△ABD ∽△CBE ,∠ABC =∠DBE . ∴AB BC =BD BE ,即AB BD =BCBE,∴△ABC ∽△DBE . 10.如图,已知▱ABCD 中,G 是DC 延长线上一点,AG 分别交BD 和BC 于E ,F 两点.证明:AF ·AD =AG ·BF .证明:因为四边形ABCD 为平行四边形, 所以AB ∥DC ,AD ∥BC .所以△ABF ∽△GCF ,△GCF ∽△GDA . 所以△ABF ∽△GDA . 从而有AF AG =BF AD, 即AF ·AD =AG ·BF .11.如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME =∠A =∠B =α.且DM 交AC 于F ,ME 交BC 于G ,(1)写出图中三对相似三角形,并证明其中的一对;(2)连接FG ,如果α=45°,AB =42,AF =3,求FG 的长. 解:(1)△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM . 以下证明:△AMF ∽△BGM .∵∠AFM =∠DME +∠E =∠A +∠E =∠BMG ,∠A =∠B , ∴△AMF ∽△BGM .(2)当α=45°时,可得AC ⊥BC 且AC =BC . ∵M 为AB 的中点,∴AM =BM =2 2. 又∴△AMF ∽△BGM , ∴AF AM =BMBG. ∴BG =AM ·BM AF =22×223=83.又AC =BC =42×sin 45°=4, ∴CG =4-83=43,CF =4-3=1.∴FG =CF 2+CG 2=1+⎝⎛⎭⎫432=53.1.1.2 相似三角形的性质[对应学生用书P4][读教材·填要点]相似三角形的性质定理(1)性质定理1:相似三角形对应边上的高、中线和它们周长的比都等于相似比. (2)性质定理2:相似三角形面积的比等于相似比的平方.[小问题·大思维]1.两个相似三角形的外接圆的直径比、周长比、面积比与相似比有什么关系? 提示:相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方.2.两个相似三角形的内切圆的直径比、周长比、面积比与相似比之间又有什么关系? 提示:相似三角形内切圆的直径比、周长比等于相似比,内切圆的面积比等于相似比的平方.[对应学生用书P5][例1] 如图,梯形ABCD ,AB ∥CD ,E 是对角线AC 和BD 的交点,S △DEC ∶S △DBC =1∶3,求:S △DECS △ABD的值.[思路点拨] 本题考查相似三角形的判定及性质的应用.解答本题需要利用相似三角形的性质求得DEBE 之比,进而求得S △ABE S △ABD 的值,最后求得S △DEC S △ABD的值.[精解详析] ∵S △DEC ∶S △DBC =1∶3, ∴DE ∶DB =1∶3,即DE ∶EB =1∶2. 又∵DC ∥AB , ∴△DEC ∽△BEA . ∴S △DEC ∶S △BEA =1∶4.又∵DE ∶EB =CE ∶EA =1∶2, ∴S △DEC ∶S △DEA =1∶2. ∴S △DEC ∶S △ABD =1∶6.S△ABD6相似三角形的性质把相似三角形对应边上的高、中线,以及周长、面积都与相似三角形的对应边的比(相似比)联系起来,利用相似三角形的性质可得到线段的比例,线段的平方比或角相等,有时还可用来计算三角形的面积、周长和边长.1.△ABC∽△A′B′C′,AD和A′D′分别是△ABC和△A′B′C′的中线,且AD∶A′D′=7∶3,下面给出四个结论:①BC∶B′C′=7∶3;②△ABC的周长与△A′B′C′的周长之比为7∶3;③△ABC与△A′B′C′的对应高之比为7∶3;④△ABC与△A′B′C′的对应中线之比为7∶3.其中正确的个数为()A.1B.2C.3 D.4解析:由相似三角形的性质知4个命题均正确,故选D.答案:D[例2]如图,△ABC是一块锐角三角形余料,边BC=200 mm,高AD=300 mm,要把它加工成长是宽的2倍的矩形零件,使矩形较短的边在BC上,其余两个顶点分别在AB、AC上,求这个矩形零件的边长.[思路点拨]本题考查相似三角形性质的应用.解答本题需要设出所求矩形零件的某一边长,然后借助△AEH∽△ABC求解.[精解详析]设矩形EFGH为加工成的矩形零件,边FG在BC上,则点E、H分别在AB、AC上,△ABC的高AD与边EH相交于点P,设矩形的边EH的长为x mm.因为EH∥BC,所以△AEH∽△ABC.AD BC 所以300-2x 300=x 200,解得x =6007(mm),2x =1 2007(mm).答:加工成的矩形零件的边长分别为6007 mm 和1 2007mm.将实际问题转化为平面几何问题是解决此题的关键,要注意相似三角形的性质在实际问题中的作用.2.如图,小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18 m ,已知小明的身高是1.6 m ,他的影长是2 m.(1)图中△ABC 与△ADE 是否相似?为什么? (2)求古塔的高度. 解:(1)△ABC ∽△ADE . ∵BC ⊥AE ,DE ⊥AE , ∴∠ACB =∠AED =90°. ∵∠A =∠A , ∴△ABC ∽△ADE .(2)由(1)得△ABC ∽△ADE , ∴AC AE =BCDE. ∵AC =2 m ,AE =2+18=20 m ,BC =1.6 m. ∴220=1.6DE , ∴DE =16 m.答:古塔的高度为16 m.[例3] 如图,已知矩形ABCD 的边长AB =2,BC =3,点P 是AD 边上的一动点(P 异于A 、D ),Q 是BC 边上的任意一点.连AQ 、DQ ,过P 作PE ∥DQ 交AQ 于E ,作PF ∥AQ 交DQ 于F .(1)求证:△APE ∽△ADQ ;(2)设AP 的长为x ,试求△PEF 的面积S △PEF 关于x 的函数关系式,并求当P 在何处时,S △PEF 取得最大值?最大值为多少?(3)当Q 在何处时,△ADQ 的周长最小?(必须给出确定Q 在何处的过程或方法,不必给出证明)[思路点拨] 本题考查相似三角形的判定及性质的综合应用.解答问题(1)只需证明△APE 和△ADQ 中有两个角对应相等即可;解答问题(2)要注意△ADQ 的面积为定值,且S △PEF =12(S △ADQ -S △APE -S △PDF );解答问题(3)可作点A 关于直线BC 的对称点A ′,利用三点共线解决.[精解详析] (1)证明:因为PE ∥DQ , 所以∠APE =∠ADQ ,∠AEP =∠AQD , 所以△APE ∽△ADQ .(2)因为△APE ∽△ADQ ,所以S △APE S △ADQ =⎝⎛⎭⎫AP AD 2.因为AD ∥BC ,所以△ADQ 的高等于AB . 所以S △ADQ =3.所以S △APE =13x 2.同理,由PF ∥AQ ,可证得△PDF ∽△ADQ , 所以S △PDF S △ADQ =⎝⎛⎭⎫PD AD 2.因为PD =3-x ,所以S △PDF =13(3-x )2.因为PE ∥DQ ,PF ∥AQ , 所以四边形PEQF 是平行四边形. 所以S △PEF =12S ▱PEQF=12(S △ADQ -S △APE -S △PDF ) =-13x 2+x =-13⎝⎛⎭⎫x -322+34. 所以当x =32时,即P 是AD 的中点时,S △PEF 取得最大值,最大值为34.(3)作A 关于直线BC 的对称点A ′,连接DA ′交BC 于Q ,则这个Q 点就是使△ADQ 周长最小的点,此时Q 是BC 的中点.在三角形中有平行于一边的直线时,通常考虑三角形相似,利用比值获得线段的长或三角形的面积.3.如图(1),已知矩形ABCD 中,AB =1,点M 在对角线AC 上,AM =14AC ,直线l 过点M 且与AC 垂直,与边AD 相交于点E .(1)如果AD =3,求证点B 在直线l 上;(2)如图(2),如果直线l 与边BC 相交于点H ,直线l 把矩形分成的两部分的面积之比为2∶7,求AD 的长;(3)如果直线l 分别与边AD ,AB 相交于E ,G .当直线l 把矩形分成的两部分的面积之比为1∶6时,求AE 的长是多少? 解:(1)证明:连接BD ,交AC 于O 点, ∵四边形ABCD 为矩形,∴OA =12AC .∵AM =14AC ,∴AM =OM .在Rt △ABD 中,AB =1,AD =3, ∴BD =AB 2+AD 2=2. ∴BO =OA =AB =1,∴△AOB 是等边三角形,又AM =OM , ∴BM ⊥AO ,∴点B 在直线l 上.(2)设AD =a ,则AC =1+a 2.∵∠EAM =∠CAD ,∠AME =∠D =90°,∴△AEM ∽△ACD ,∴AE AC =AMAD .又AM =14AC =141+a 2,∴AE =AC ·AM AD =1+a24a.由AE ∥HC ,得△AEM ∽△CHM , ∴AE HC =AM MC =13,∴HC =3AE . 又BH =BC -HC =a -3(1+a 2)4a =a 2-34a ,而S 梯形ABHE =12(AE +BH )·AB=12(1+a 24a +a 2-34a )·1=a 2-14a. ∵S 梯形ABHE ∶S 梯形EHCD =2∶7, ∴S 梯形ABHE =29S 矩形ABCD =29a ,∴a 2-14a =29a ,解得a =3,即AD =3.(3)如图,设l 分别交AD 、AC 、AB 于E 、M 、G 三点, 则有△AEG ∽△DCA , ∴AG AD =AE DC. ∵DC =1,∴AE =AGAD.∵S △AEG =12AE ·AG ,S △AEG S 多边形EGBCD =16,∴S △AEG S 矩形ABCD =17.∴12AE ·AG AD ·DC =17,即AE ·AG AD =27. ∴AE 2=27,AE =147.[对应学生用书P7]一、选择题1.在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D ,如果△ABC 的周长是16,面积是12,那么△DEF 的周长、面积依次为( )A .8,3B .8,6C .4,3D .4,6解析:∵AB =2DE ,AC =2DF ,∠A =∠D , ∴△ABC ∽△DEF ,且相似比为2. ∵△ABC 的周长是16,面积是12, ∴△DEF 的周长是8,面积是3. 答案:A2.如图,在四边形ABCD 中,EF ∥BC ,FG ∥AD ,则EF BC +FGAD=( ) A .1 B .2C .3D .4解析:∵EF ∥BC ,∴EF BC =AFAC ,又∵FG ∥AD ,∴FG AD =CFAC ,∴EF BC +FG AD =AF AC +CF AC =AC AC=1. 答案:A3.如图所示,已知在△ABC 中,∠C =90°,正方形DEFG 内接于△ABC ,DE ∥AC ,EF ∥BC ,AC =1,BC =2,则AF ∶FC 等于( )A .1∶3B .1∶4C .1∶2D .2∶3解析:设正方形边长为x ,则由△AFE ∽△ACB , 可得AF ∶AC =FE ∶CB ,即x 2=1-x 1.所以x =23,于是AF FC =12.答案:C4.如图,D ,E 分别是△ABC 的边AB ,AC 上的点,DE ∥BC 且ADDB =2,那么△ADE与四边形DBCE 的面积比是( )A.23B .25C.45 D .49解析:∵DE ∥BC ,∴△ADE ∽△ABC , ∴S △ADE S △ABC =AD 2AB 2. ∵AD DB =2,∴AD AB =23,∴S △ADE S △ABC =49, ∴S △ADES 四边形DBCE =45.答案:C 二、填空题5.如图,在Rt △ABC 中,∠ACB =90°,直线EF ∥BD ,交AB 于点E ,交AC 于点G ,交AD 于点F .若S △AEG =13S 四边形EGCB ,则CFAD=________.解析:∵S △AEG =13S 四边形EGCB ,∴S △AEG S △ABC =14. 由相似三角形的性质定理,得AE AB =12,∴E 为AB 的中点.由平行线等分线段定理的推论,知G 为AC 的中点. ∵EF ∥BC ,AC ⊥BC ,∴FG ⊥AC .又点G 为AC 的中点, ∴FG 为AC 的中垂线.∴FC =F A .∵EF ∥BD ,E 为AB 的中点,∴F 为AD 的中点, ∴CF AD =AF AD =12. 答案:126.如图,在△ABC 中,D 为AC 边上的中点,AE ∥BC ,ED 交AB 于G ,交BC 延长线于F ,若BG ∶GA =3∶1,BC =10,则AE 的长为________.解析:∵AE ∥BC ,∴△BGF ∽△AGE . ∴BF ∶AE =BG ∶GA =3∶1. ∵D 为AC 中点,∴AE CF =ADDC =1.∴AE =CF .∴BC ∶AE =2∶1,∵BC =10,∴AE =5. 答案:57.(广东高考)如图,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则△CDF 的面积△AEF 的面积=________.解析:由CD ∥AE ,得△CDF ∽△AEF , 于是△CDF 的面积△AEF 的面积=⎝⎛⎭⎫CD AE 2=⎝⎛⎭⎫AB AE 2=9.答案:98.△ABC 是一块锐角三角形余料,边BC =12 cm ,高AD =8 cm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上,则这个正方形的边长为________ cm.解析:设正方形PQMN 为加工成的正方形零件,边QM 在BC 上,顶点P ,N 分别在AB ,AC 上,△ABC 的高AD 与边PN 相交于点E ,设正方形的边长为x cm.∵PN ∥BC , ∴△APN ∽△ABC . ∴AE AD =PNBC ,∴8-x 8=x 12. 解得x =4.8.即加工成的正方形零件的边长为4.8 cm. 答案:4.8 三、解答题9.如图,在△ABC 中,D 是AC 的中点,E 是BD 的三等分点,AE 的延长线交BC 于F ,求S △BEFS 四边形DEFC的值.解:过D 点作DM ∥AF 交BC 于M , 因为DM ∥AF ,所以BF BM =BE BD =13,因为EF ∥DM , 所以S △BEF S BDM =19,即S △BDM =9S △BEF ,因为D 为AC 的中心,且AF ∥DM ,则M 为FC 的中点. 所以S △DMC S △BDM =23,即S △DMC =23S △BDM =6S △BEF ,所以S 四边形DEFC =14S △BEF , 因此S △BEF S 四边形DEFC =114.10.有一块三角形铁片ABC ,已知最长边BC =12 cm ,高AD =8 cm ,要把它加工成一个矩形铁片,使矩形的一边在BC 上,其余两个顶点分别在AB 、AC 上,且矩形的长是宽的2倍.则加工成的铁片的面积为多少?解:本题有图(1)和图(2)两种情况.如图(1),矩形的长EF 在BC 上,G 、H 分别在AC 、AB 上,高AD 交GH 于K , 设矩形的宽为x cm ,则长为2x cm. 由HG ∥BC ,得△AHG ∽△ABC . 得AK ∶AD =HG ∶BC ,所以(8-x )∶8=2x ∶12,即x =247(cm).则S 矩形EFGH =2x 2=115249(cm 2).如图(2),矩形的宽MN 在BC 上,类似地可求得 S 矩形MNPQ =18(cm 2).即加工成的铁片的面积为115249cm 2或18 cm 2.11.如图所示,在矩形ABCD 中,E 为AD 的中点,EF ⊥EC 交AB 于F ,连接FC (AB >AE ).(1)△AEF 与△ECF 是否相似?若相似证明你的结论;若不相似,请说明理由. (2)设ABBC=k ,是否存在这样的k 值,使得△AEF 与△BFC 相似,若存在,证明你的结论,并求出k 的值;若不存在,说明理由.解:(1)相似.在矩形ABCD 中,∠A =∠D =90°. ∵EF ⊥EC ,A 、D 、E 共线, ∴∠AEF +∠DEC =90°. 又∵∠DCE +∠DEC =90°, ∴∠AEF =∠DCE .∴△AEF ∽△DCE ,∴EF EC =AF DE .∵AE =DE ,∴EF EC =AF AE. 又∵∠A =∠FEC =90°, ∴△AEF ∽△ECF .(2)存在,由于∠AEF =90°-∠AFE <180°-∠CFE -∠AFE =∠BFC , ∴只能是△AEF ∽△BCF ,∠AEF =∠BCF . 由(1)知∠AEF =∠DCE =∠ECF =∠FCB =30°. ∴AB BC =CD BC =CD 2DE =32,即k =32. 反过来,在k =32时,DE CD =13,∠DCE =30°, ∠AEF =∠DCE =30°, ∠ECF =∠AEF =30°,∠BCF =90°-30°-30°=30°=∠AEF . ∴△AEF ∽△BCF .1.1.3 平行截割定理[对应学生用书P8][读教材·填要点]1.平行截割定理(1)定理的内容:三条平行线截任两条直线,所截出的对应线成比例. (2)符号语言表示:如图,若l 1∥l 2∥l 3,则AB BC =DEEF.2.平行截割定理的推论(1)推论的内容:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.(2)符号语言表示:如图,若l 1∥l 2∥l 3,则AD AB =AE AC =DEBC.[小问题·大思维]1.在平行截割定理中,被截的两条直线m ,n 应满足什么条件?提示:被截取的两条直线m 、n 可以平行,也可以相交,但它们必须与已知的平行直线a 、b 、c 都相交.2.若将定理中的“三条平行线”改为“三个互相平行的平面”,是否仍然成立? 提示:仍然成立.[对应学生用书P9][例1] 已知:如图,l1∥l 2∥l 3, AB BC =m n. 求证:DE DF =m m +n.[思路点拨] 本题考查平行截割定理及比例的基本性质.解答本题需要利用定理证得DEEF =AB BC ,然后利用比例的有关性质求出DEDF 即可. [精解详析] ∵l 1∥l 2∥l 3,∴AB BC =DE EF =mn. ∴EF DE =n m ,EF +DE DE =n +m m , 即DF DE =m +n m ,∴DE DF =m m +n.解决此类问题要结合几何直观,合理地利用比例的性质,常见的性质有: (1)比例的基本性质: a b =cd(bd ≠0)⇔ad =bc ; a b =bc(bc ≠0)⇔b 2=ac ; a b =c d (abcd ≠0)⇔b a =d c. (2)合分比性质:如果a b =c d ,那么a ±b b =c ±d d.(3)等比性质:如果a b =c d =…=mn (bd …n ≠0,b +d +…+n ≠0),那么a +c +…+m b +d +…+n =a b.1.如图,已知在△ABC 中,∠BAC =120°,AD 平分∠BAC 交BC于D .求证:1AD =1AB +1AC. 证明:过D 点作DE ∥AB 交AC 于E 点,∵∠BAC =120°,AD 平分∠BAC , ∴∠DAE =60°,∠BAD =60°.∵DE ∥AB ,∴∠ADE =60°, ∴AD =DE =AE , ∴AD AB =DE AB =CEAC. ∴AD AB +AD AC =CE AC +AD AC =CE AC +AE AC . ∵CE AC +AE AC =AC AC =1,∴AD AB +AD AC =1. ∴1AB +1AC =1AD.[例2] 如图所示,已知直线l 截△ABC 三边所在的直线分别于E ,F ,D 三点,且AD=BE .求证:EF ·CB =FD ·CA .[思路点拨] 借助平行线分线段成比例定理即可证得.[精解详析] 法一:如图1,过D 作DK ∥AB 交EC 于点K ,则EF FD =EB BK ,CA AD =BC BK ,即CA BC =AD BK. ∵AD =BE , ∴CA BC =BE BK ,∴EF FD =CA CB. 即EF ·CB =FD ·CA .图1法二:如图2,过E 作EP ∥AB ,交CA 的延长线于点P . ∵AB ∥EP , ∴CB BE =CA AP ,即CA CB =AP BE. 在△DPE 中,∵AF ∥PE , ∴EF FD =AP AD. ∵AD =BE ,∴CA CB =EFFD.∴EF ·CB =FD ·CA .图2法三:如图3,过D 作DN ∥BC ,交AB 于N . ∵ND ∥EB ,∴EB DN =EFDF ,∵DN ∥BC ,∴BC DN =CAAD ,即CA CB =AD DN. ∵AD =EB ,∴EF FD =CACB,即EF ·CB =FD ·CA .图3本题所作的辅助线,不仅构造了两个常见的基本图形,而且可以直接利用三角形一边的平行线的性质定理,找到CA CB 与EFFD的比值关系,再借助等量代换,使问题得以突破.2.如图所示,已知直线FD 和△ABC 的BC 边交于D ,与AC 边交于E ,与BA 的延长线交于F ,且BD =DC ,求证:AE ·FB =EC ·F A .证明:过A 作AG ∥BC ,交DF 于G 点. ∵AG ∥BD ,∴F A FB =AG BD .又∵BD =DC ,∴F A FB =AG DC. ∵AG ∥DC ,∴AG DC =AEEC .∴AE EC =F AFB,即AE ·FB =EC ·F A .[例3] 如图,已知▱ABCD 中,延长AB 到E ,使BE =12AB ,连接ED交BC 、AC 于F 、G .求EF ∶FG ∶GD 的值.[思路点拨] 本题考查平行截割定理及其推论的应用.解答本题需要求出EF ∶FG ,EF ∶GD 的比值,进而求出EF ∶FG ∶GD 的值.[精解详析] ∵四边形ABCD 是平行四边形, ∴AD ∥BC . ∵BE =12AB ,∴EF ED =BE AE =13=BF AD. 设EF =k ,ED =3k ,∴FD =2k . ∵BC ∥AD ,∴FG GD =FC AD =23.∴FG FD =25,∴FG =45k ,GD =65k , ∴EF ∶FG ∶GD =k ∶45k ∶65k ,即EF ∶FG ∶GD =5∶4∶6.求线段长度比的问题,通常引入一个参数k ,然后用所设的参数k 表示所求结论中的各个线段,最后消掉参数k 即可得到所求结论.3.如图,在△ABC 中,AD 平分∠BAC ,DE ∥AC ,EF ∥BC ,AB =15,AF =4,则DE =________.解析:设DE =x ,∵DE ∥AC ,EF ∥BC , ∴BE 15=x x +4,解得BE =15x x +4. ∴BD DC =BE EA =BE 15-BE =x 4. 又∵AD 平分∠BAC , ∴BD DC =BA AC =15x +4=x 4, 解得x =6. 答案:6[对应学生用书P11]一、选择题1.如图,AB ∥CD ∥EF ,AF ,BE 相交于O ,若AO =OD =DF ,BE =10 cm ,则BO 的长为( )A.103 cm B .5 cm C.52cm D .3 cm解析:∵CD ∥EF ,OD =DF , ∴C 为OE 中点,∴OC =CE .∵AB ∥CD ,AO =OD ,∴O 为BC 中点, ∴BO =OC ,∴OB =13BE =103 cm.答案:A2.如图,AD 是△ABC 的中线,E 是CA 边的三等分点,BE 交AD 于点F ,则AF ∶FD 为( )A .2∶1B .3∶1C .4∶1D .5∶1 解析:要求AF ∶FD 的比,需要添加平行线寻找与之相等的比. 过D 作DG ∥AC 交BE 于G ,如图,因为D 是BC 的中点, 所以DG =12EC ,又AE =2EC ,故AF ∶FD =AE ∶DG =2EC ∶12EC =4∶1.答案:C3.如图,梯形ABCD 中,E 是DC 延长线上一点,AE 交BD 于G ,交BC于F ,下列结论:①EC CD =EF AF ;②FG AG =BG GD ;③AE AG =BD DG ; ④AF CD =AEDE,其中正确的个数是( ) A .1个 B .2个 C .3个D .4个解析:∵BC ∥AD ,∴EC CD =EF AF ,FG AG =BGGD,∴①、②正确.由BC ∥AD 得AF EF =CDCE ,∴AF AF +EF =CDCD +CE.即AF AE =CD DE ,即AF CD =AEDE,∴④正确. 答案:C4.如图,已知P 、Q 分别在BC 和AC 上,BP CP =25,CQ QA =34,则ARRP=( )A .3∶14B .14∶3C .17∶3D .17∶14解析:过点P 作PM ∥AC , 交BQ 于M , 则AR RP =AQPM.∵PM ∥AC 且BP CP =25, ∴QC PM =BC BP =72. 又∵CQ QA =34,∴AQ PM =QC PM ·AQ QC =72×43=143. 即AR RP =143. 答案:B 二、填空题5.如图,AB ∥EM ∥DC .AE =ED ,EF ∥BC ,EF =12 cm ,则BC 的长为________.解析:⎭⎪⎬⎪⎫AB ∥EM ∥DC AE =ED ⇒E 为AD 中点,M 为BC 的中点. EF ∥BC ⇒EF =MC =12 cm.∴BC =2MC =24 cm. 答案:24 cm6.如图,▱ABCD 中,N 是AB 延长线上一点,BC BM -ABBN 的值为________.解析:∵AD ∥BM ,∴AB BN =DMMN .又∵DC ∥AN ,∴DM MN =MCMB ,∴DM +MN MN =MC +MB MB ,即DN MN =BCBM . ∴BC BM -AB BN =DN MN -DM MN =MN MN=1. 答案:17.如图所示,l 1∥l 2∥l 3,若CH =4.5 cm ,AG =3 cm ,BG =5 cm ,EF =12.9 cm ,则DH =________,EK =________.解析:由l 1∥l 2∥l 3,可得DH CH =BGAG ,所以DH =BG ·CH AG =5×4.53=7.5 (cm),同理可得EK 的长度. 答案:7.5 cm 34.4 cm8.梯形ABCD 中,AD ∥BC ,AD ∶BC =a ∶b .中位线EF =m ,则MN 的长是________.解析:易知EF =12(AD +BC ),EM =FN =12AD .又AD ∶BC =a ∶b ,设AD =ak ,则BC =bk . ∵EF =12(AD +BC ),∴m =k 2(a +b ),∴k =2m a +b.∴MN =EF -EM -NF =m -12ak -12ak=m -ak =m (b -a )a +b .答案:m (b -a )a +b三、解答题9.如图,M 是▱ABCD 的边AB 的中点,直线l 过M 分别交AD 、AC 于E 、F ,交CB 的延长线于N .若AE =2,AD =6.求:AF ∶AC 的值.解:∵AD ∥BC , ∴AF FC =AE NC ,∴AF AF +FC =AE AE +NC. ∵AM =MB , ∴AE BN =AMMB=1,∴AE =BN . ∴AF AC =AE AE +BN +BC =AE 2AE +BC. ∵AE =2,BC =AD =6,∴AF AC =22×2+6=15. 即AF ∶AC =1∶5.10.如图,在▱ABCD 中,E 和F 分别是边BC 和AD 的中点,BF 和DE 分别交AC 于P ,Q 两点.求证:AP =PQ =QC .证明:∵四边形ABCD 是平行四边形,E ,F 分别是BC ,AD 边上的中点, ∴DF 綊BE ,∴四边形BEDF 是平行四边形. ∵在△ADQ 中,F 是AD 的中点,FP ∥DQ , ∴P 是AQ 的中点,∴AP =PQ .∵在△CPB 中,E 是BC 的中点,EQ ∥BP , ∴Q 是CP 的中点,∴CQ =PQ . ∴AP =PQ =QC .11.如图,梯形ABCD 中,AD ∥BC ,EF 经过梯形对角线的交点O ,且EF ∥AD . (1)求证:OE =OF ; (2)求OE AD +OEBC的值; (3)求证:1AD +1BC =2EF.解:(1)证明:∵EF ∥AD ,AD ∥BC , ∴EF ∥AD ∥BC .∵EF ∥BC ,∴OE BC =AE AB ,OF BC =DFDC .∵EF ∥AD ∥BC ,∴AE AB =DFDC .∴OE BC =OFBC,∴OE =OF . (2)∵OE ∥AD ,∴OE AD =BEAB .由(1)知OE BC =AEAB ,∴OE AD +OE BC =BE AB +AE AB =BE +AE AB=1. (3)证明:由(2)知OE AD +OEBC =1,∴2OE AD +2OEBC =2.又EF =2OE , ∴EF AD +EFBC =2, ∴1AD +1BC =2EF.1.1.4 锐角三角函数与射影定理[对应学生用书P12][读教材·填要点]1.锐角三角函数的定义含有相等锐角α的所有直角三角形都相似,锐角三角函数(或三角比)为: sin α=α的对边斜边,cos α=α的邻边斜边,tan α=对边邻边.2.射影定理(1)定理的内容:直角三角形中,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项;斜边上的高是两条直角边在斜边上的射影的比例中项.(2)符号语言表示:如图若CD是Rt△ABC的斜边AB上的高,则:①AC2=AD·AB②BC2=BD·AB③CD2=AD·BD[小问题·大思维]1.线段的正射影还是线段吗?提示:不一定.当该线段所在的直线与已知直线垂直时,线段的正射影为一个点.2.如何用勾股定理证明射影定理?提示:如图,在Rt△ABC中,∵AB2=AC2+BC2,∴(AD+DB)2=AC2+BC2,∴AD2+2·AD·DB+DB2=AC2+BC2,即2AD·DB=AC2-AD2+BC2-DB2.∵AC2-AD2=CD2,BC2-DB2=CD2,∴2AD·DB=2CD2,即CD2=AD·DB.在Rt△ACD中,AC2=AD2+CD2=AD2+AD·DB=AD(AD+DB)=AD·AB,即AC2=AD·AB.在Rt△BCD中,BC2=CD2+BD2=AD·DB+BD2=BD(AD+DB)=BD·AB,即BC2=BD·AB.[对应学生用书P13][例1] 如图,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的高,已知BD =4,AB =29,试求BC ,AC 和CD 的长度.[思路点拨] 本题考查射影定理与勾股定理的应用.解答本题可由已知条件先求出AD ,然后利用射影定理求BC ,AC 和CD 的长度.[精解详析] ∵BD =4,AB =29,∴AD =25. 由射影定理得CD 2=AD ·BD =25×4=100, ∴CD =10.BC 2=BD ·BA =4×29. ∴BC =229.AC 2=AD ·AB =25×29,∴AC =529.运用射影定理时,要注意其成立的条件,要结合图形去记忆定理,当所给条件中具备定理的条件时,可直接运用定理,不具备时可通过作垂线使之满足定理的条件,再运用定理.1.在Rt △ACB 中,∠C =90°,CD ⊥AB 于D ,若BD ∶AD =1∶9,则tan ∠BCD =________. 解析:由射影定理得CD 2=AD ·BD , 又BD ∶AD =1∶9, 令BD =x ,则AD =9x (x >0). ∴CD 2=9x 2,CD =3x .Rt △CDB 中,tan ∠BCD =BD CD =x 3x =13.答案:13[例2] 如图所示,在△ABC 中,∠CAB =90°,AD ⊥BC 于D ,BE 是∠ABC 的平分线,交AD 于F .求证:DF AF =AE EC.[思路点拨] 本题考查射影定理的应用,利用三角形的内角平分线定理及射影定理可证得.[精解详析] 由三角形的内角平分线定理得,在△ABD 中,DF AF =BDAB ,①在△ABC 中,AE EC =ABBC ,②在Rt △ABC 中,由射影定理知, AB 2=BD ·BC , 即BD AB =ABBC.③ 由①③得:DF AF =ABBC ,④由②④得:DF AF =AEEC.将原图分成两部分来看,分别在两个三角形中运用射影定理,实现了沟通两个比例式的目的,在求解此类问题时,一定要注意对图形进行剖析.2.如图,AD 、BE 是△ABC 的高,DF ⊥AB 于F ,交BE 于G ,FD 的延长线交AC 的延长线于H ,求证:DF 2=FG ·FH . 证明:∵BE ⊥AC , ∴∠ABE +∠BAE =90°. 同理,∠H +∠HAF =90°∴∠ABE =∠H .又∠BFG =∠HF A , ∴△BFG ∽△HF A . ∴BF ∶HF =FG ∶AF . ∴BF ·AF =FG ·FH .Rt △ADB 中,DF 2=BF ·AF , ∴DF 2=FG ·FH .[对应学生用书P14]一、选择题1.如图所示,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,CD =2,BD =3,则AC 等于( )A.53B.213C.523 D .13解析:由射影定理知, CD 2=BD ·AD ,∴AD =43.∴AB =AD +BD =133.∴AC 2=AD ·AB =43×133=529.∴AC =523. 答案:C2.如图所示,在△ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足,若CD =6 cm ,AD ∶DB =1∶2,则AD 的值是( )A .6 cmB .3 2 cmC .18 cmD .3 6 cm解析:∵AD ∶DB =1∶2, ∴可设AD =t ,DB =2t . 又∵CD 2=AD ·DB ,∴36=t ·2t ,∴2t 2=36,∴t =32(cm),即AD =3 2 cm. 答案:B3.在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,若AC AB =34,则BD CD =( )A.34 B .43C.169D .916解析:如图,由射影定理,得AC 2=CD ·BC ,AB 2=BD ·BC . ∴AC 2AB 2=CD BD =⎝⎛⎭⎫342.即CD BD =916. ∴BD CD =169. 答案:C4.在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AD ∶BD =2∶3,则△ACD 与△CBD 周长的相似比为( )A .2∶3B .4∶9 C.6∶3D .不确定解析:如图,在Rt △ACB 中,CD ⊥AB ,由射影定理得,CD 2=AD ·BD ,即CD AD =BDCD.又∵∠ADC =∠BDC =90°,∴△ACD ∽△CBD . 又∵AD ∶BD =2∶3,令AD =2x ,BD =3x (x >0), ∴CD 2=6x 2.∴CD =6x .∴△ACD 与△CBD 周长的相似比为AD CD =2x 6x =63,即相似比为6∶3. 答案:C 二、填空题5.如果两条直角边在斜边上的射影分别是4和16,则此直角三角形的面积是________. 解析:由题意知,直角三角形斜边长为20,根据射影定理知,斜边上的高为4×16=8,所以直角三角形的面积为12×20×8=80.答案:806.已知:在△ABC 中,∠ACB =90°,CD 是AB 边上的高,BC =15 cm ,BD =3 cm ,则AD 的长是________.解析:∵BC 2=BD ·AB , ∴15=3AB ,∴AB =5(cm). ∴AD =AB -BD =5-3=2(cm). 答案:2 cm7.如图,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD =a ,CD =a2,点E ,F分别为线段AB ,AD 的中点,则EF =________.解析:连接DE ,可知△AED 为直角三角形,则EF 是Rt △DEA 斜边上的中线,其长等于斜边长的一半,为a2.答案:a 28.已知在梯形ABCD 中,DC ∥AB ,∠D =90°,AC ⊥BC ,AB =10 cm ,AC =6 cm ,则此梯形的面积为________.解析:如图,过C 作CE ⊥AB 于E .。

2017-2018学年高中数学人教B版选修4-4教学案:第一章 章末小结 知识整合与阶段检测

2017-2018学年高中数学人教B版选修4-4教学案:第一章 章末小结 知识整合与阶段检测

对应阶段质量检测(一)P45](时间90分钟,满分120分)一、选择题(本大题共10个小题,每小题5分,共50分) 1.将点M 的直角坐标(-3,-1)化成极坐标为( ) A.⎝ ⎛⎭⎪⎫3,π6 B.⎝ ⎛⎭⎪⎫2,7π6 C.⎝ ⎛⎭⎪⎫-2,7π6 D.⎝ ⎛⎭⎪⎫2,π6 解析:选B 因为ρ=(-3)2+(-1)2=3+1=2, tan θ=-1-3=33,点M 在第三象限,θ=7π6. 所以点M 的极坐标为⎝ ⎛⎭⎪⎫2,7π6.2.原点与极点重合,x 轴正半轴与极轴重合,则点(-2,-23)的极坐标是( )A.⎝ ⎛⎭⎪⎫4,π3 B.⎝ ⎛⎭⎪⎫4,4π3 C.⎝ ⎛⎭⎪⎫-4,-2π3 D.⎝ ⎛⎭⎪⎫4,2π3 解析:选B 由直角坐标与极坐标互化公式:ρ2=x 2+y 2,tan θ=yx (x ≠0),把点(-2,-23)代入即可得ρ=4,tan θ= 3.因为点(-2,-23)在第三象限,所以θ=4π3.3.可以将椭圆x 210+y 28=1变为圆x 2+y 2=4的伸缩变换为( ) A.⎩⎨⎧5X =2x ,2Y =yB.⎩⎨⎧2X =5x ,Y =2yC.⎩⎨⎧2X =x ,5Y =2xD.⎩⎨⎧5X =2x ,2Y =y解析:选D 法一:将椭圆方程x 210+y 28=1化为2x 25+y 22=4, ∴⎝⎛⎭⎪⎫2x 52+⎝ ⎛⎭⎪⎫y 22=4. 令⎩⎪⎨⎪⎧X =25 x ,Y =y 2,得X 2+Y 2=4,即x 2+y 2=4,∴伸缩变换⎩⎨⎧5X =2x ,2Y =y 为所求.法二:将x 2+y 2=4改写为X 2+Y 2=4. 设满足题意的伸缩变换为⎩⎨⎧X =ax (a >0),Y =by (b >0).代入X 2+Y 2=4得a 2x 2+b 2y 2=4, 即a 2x 24+b 2y 24=1.与椭圆x 210+y28=1比较系数得⎩⎪⎨⎪⎧a 24=110,b 24=18,解得⎩⎪⎨⎪⎧a =25,b =12.∴伸缩变换为⎩⎪⎨⎪⎧X =25x ,Y =12y ,即⎩⎨⎧5X =2x ,2Y =y .4.极坐标方程ρ=2sin ⎝ ⎛⎭⎪⎫θ+π4的图形是( )解析:选C ∵ρ=2sin ⎝ ⎛⎭⎪⎫θ+π4=2(sin θ+cos θ),∴ρ2=2ρsin θ+2ρcos θ, 化为普通方程为x 2+y 2=2x +2y , ∴⎝ ⎛⎭⎪⎫x -222+⎝ ⎛⎭⎪⎫y -222=1,∴圆心的坐标为⎝ ⎛⎭⎪⎫22,22.结合四个图形,可知选C.5.圆ρ=2(cos θ+sin θ)的圆心坐标是( ) A.⎝ ⎛⎭⎪⎫1,π4 B.⎝ ⎛⎭⎪⎫12,π4 C.⎝ ⎛⎭⎪⎫2,π4 D.⎝ ⎛⎭⎪⎫2,π4 解析:选A 法一:圆ρ=2(cos θ+sin θ)=2sin ⎝ ⎛⎭⎪⎫θ+π4,可以看成由圆ρ=2sin θ顺时针旋转π4得到.而ρ=2sin θ的圆心为⎝ ⎛⎭⎪⎫1,π2,顺时针旋转π4得到⎝ ⎛⎭⎪⎫1,π4,∴ρ=2(cos θ+sin θ)的圆心坐标为⎝ ⎛⎭⎪⎫1,π4.法二:圆ρ=2(cos θ+sin θ)的直角坐标方程为x 2+y 2-2x -2y =0, ∴⎝⎛⎭⎪⎫x -222+⎝ ⎛⎭⎪⎫y -222=1.圆心的直角坐标为⎝ ⎛⎭⎪⎫22,22,化为极坐标为⎝ ⎛⎭⎪⎫1,π4. 6.已知点P 的坐标为(1,π),则过点P 且垂直于极轴的直线方程是( ) A .ρ=1 B .ρ=cos θ C .ρ=-1cos θ D .ρ=1cos θ解析:选C 由点P 的坐标可知,过点P 且垂直于极轴的直线方程在直角坐标系中为x =-1,即ρcos θ=-1.7.曲线θ=2π3与ρ=6sin θ的两个交点之间的距离为( ) A .1 B. 3 C .3 3D .6解析:选C 极坐标方程θ=2π3,ρ=6sin θ分别表示直线与圆,如图所示,圆心为C (3,π2),∠AOC =π6,∴|AO |=2×3×cos π6=6×32=3 3.8.把函数y =sin 2x 的图象变成y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象的变换是( )A .向左平移π6 B .向右平移π6 C .向左平移π3D .向右平移π3解析:选A 设y ′=sin 2⎝ ⎛⎭⎪⎫x ′+π6,变换公式为⎩⎨⎧x ′=x +λ,y ′=μy ,将其代入y ′=sin 2⎝ ⎛⎭⎪⎫x ′+π6,得μy =sin 2⎝ ⎛⎭⎪⎫x +λ+π6,∴μ=1,λ=-π6,∴⎩⎪⎨⎪⎧x ′=x -π6,y ′=y .由函数y =sin2x 的图象得到y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象所作的变换为 ⎩⎪⎨⎪⎧x ′=x -π6,y ′=y ,故是向左平移π6个单位.9.(江西高考)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A .ρ=1cos θ+sin θ,0≤θ≤π2B .ρ=1cos θ+sin θ,0≤θ≤π4C .ρ=cos θ+sin θ,0≤θ≤π2 D .ρ=cos θ+sin θ,0≤θ≤π4解析:选A 因为x =ρcos θ,y =ρsin θ,且y =1-x ,所以ρsin θ=1-ρcos θ,所以ρ(sin θ+cos θ)=1,ρ=1sin θ+cos θ.又0≤x ≤1,所以0≤y ≤1,所以点(x ,y )都在第一象限及坐标轴的正半轴上,则0≤θ≤π2.10.圆ρ=r 与圆ρ=-2r sin(θ+π4)(r >0)的公共弦所在直线的方程为( ) A .2ρ(sin θ+cos θ)=r B .2ρ(sin θ+cos θ)=-r C.2ρ(sin θ+cos θ)=r D.2ρ(sin θ+cos θ)=-r解析:选D 圆ρ=r 的直角坐标方程为x 2+y 2=r 2. ① 圆ρ=-2r sin ⎝ ⎛⎭⎪⎫θ+π4=-2r ⎝ ⎛⎭⎪⎫sin θcos π4+cos θsin π4=-2r (sin θ+cos θ).两边同乘以ρ得ρ2=-2r (ρsin θ+ρcos θ). ∵x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2, ∴x 2+y 2+2rx +2ry =0.②①-②整理得2(x +y )=-r ,即为两圆公共弦所在直线的普通方程.再将直线2(x +y )=-r 化为极坐标方程为2ρ(cos θ+sin θ)=-r .二、填空题(本大题有4小题,每小题5分,共20分) 11.直线x cos α+y sin α=0的极坐标方程为________. 解析:ρcos θcos α+ρsin θsin α=0,cos (θ-α)=0.取θ-α=π2. 答案:θ=π2+α12.(陕西高考)在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1的距离是________.解析:点⎝ ⎛⎭⎪⎫2,π6化为直角坐标为(3,1),直线方程可化为32ρsin θ-12ρcos θ=1,即x -3y +2=0,由点到直线的距离公式得d =|3-3×1+2|12+(-3)2=1.答案:113.(天津高考)在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,则a 的值为________.解析:由于圆和直线的直角坐标方程分别为x 2+y 2=4y 和y =a ,它们相交于A ,B 两点,△AOB 为等边三角形,所以不妨取直线OB 的方程为y =3x ,联立⎩⎨⎧x 2+y 2=4y ,y =3x ,消去y ,得x 2=3x ,解得x =3或x =0,所以y =3x =3,即a =3.答案:314.已知柱坐标系中,点M 的柱坐标为⎝ ⎛⎭⎪⎫2,2π3,5,且点M 在数轴Oy 上的射影为N ,则|OM |=________,|MN |=________.解析:设点M 在平面Oxy 上的射影为P ,连接PN , 则PN 为线段MN 在平面Oxy 上的射影. ∵MN ⊥直线Oy ,MP ⊥平面xOy , ∴PN ⊥直线Oy .∴|OP |=ρ=2,|PN |=⎪⎪⎪⎪⎪⎪ρcos 2π3=1,∴|OM |=ρ2+z 2=22+(5)2=3.在Rt △MNP 中,∠MPN =90°, ∴|MN |=|PM |2+|PN |2=(5)2+12= 6.答案:3 6三、解答题(本大题共有4小题,共50分)15.(本小题满分12分)已知一条长为6的线段两端点A ,B 分别在x ,y 轴上滑动,点M 在线段AB 上,且AM ∶MB =1∶2,求动点M 的轨迹方程.解:设A (a,0),B (0,b ),M (x ,y ), ∵|AB |=6,∴a 2+b 2=36.①M 的比为12.∴⎩⎪⎨⎪⎧x =a +12×01+12=23a ,y =0+12b 1+12=13b⇒⎩⎪⎨⎪⎧a =32x ,b =3y .②将②式代入①式,化简为x 216+y 24=1.16.(本小题满分12分)在极坐标系中,已知两圆C 1:ρ=2cos θ和C 2:ρ=2sin θ,求过两圆圆心的直线的极坐标方程.解:由极坐标系与直角坐标系的互化关系知: 圆C 1的直角坐标方程为x 2+y 2-2x =0, 即(x -1)2+y 2=1,C 1(1,0),圆C 2的直角坐标方程为x 2+y 2-2y =0, 即x 2+(y -1)2=1,C 2(0,1).∴过两圆圆心的直线方程为x +y -1=0, ∴对应的极坐标方程为ρ(cos θ+sin θ)=1.17.(本小题满分12分)极坐标方程ρ=-cos θ与ρcos θ+π3=1表示的两个图形的位置关系是什么?解:ρ=-cos θ可变为ρ2=-ρcos θ,化为普通方程为x 2+y 2=-x , 即⎝ ⎛⎭⎪⎫x +122+y 2=14.它表示圆心为⎝ ⎛⎭⎪⎫-12,0,半径为12的圆.将ρcos ⎝ ⎛⎭⎪⎫θ+π3=1化为普通方程为x -3y -2=0.∵圆心(-12,0)到直线的距离为|-12-2|1+3=54>1,∴直线与圆相离.18.(本小题满分14分)已知线段BB ′=4,直线l 垂直平分BB ′,交BB ′于点O ,在属于l 并且以O 为起点的同一射线上取两点P ,P ′,使OP ·OP ′=9.建立适当的坐标系,求直线BP 与直线B ′P ′的交点M 的轨迹方程.解:以O 为原点,BB ′为y 轴,l 为x 轴,建立如图所示的直角坐标系,则B (0,2),B ′(0,-2).设P (a,0)(a ≠0),则由OP ·OP ′=9,得P ′⎝ ⎛⎭⎪⎫9a ,0,直线BP 的方程为x a +y 2=1,直线B ′P ′的方程为x 9a +y-2=1,即l BP :2x +ay -2a =0,l B ′P ′:2ax -9y -18=0.设M (x ,y ),则由⎩⎨⎧2x +ay -2a =0,2ax -9y -18=0,解得⎩⎪⎨⎪⎧x =18a a 2+9,y =2a 2-18a 2+9(a 为参数).消去a ,可得4x 2+9y 2=36(x ≠0),所以点M 的轨迹是焦点在x 轴上,长轴长为6,短轴长为4的椭圆(除去点B ,B ′).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

_1.4圆的极坐标方程
[对应学生用书P11]
[读教材·填要点]
圆的极坐标方程
(1)圆心在极轴上的点(a,0)处,且圆过极点O ,则圆的极坐标方程为ρ=2a cos θ,-π2≤θ≤π2
. (2)圆心在点⎝ ⎛⎭
⎪⎫a ,π2处,且过极点的圆的极坐标方程为ρ=2a sin_θ,0≤θ≤π. [小问题·大思维]
相等的圆在同一极坐标中,极坐标方程是否相同?
提示:不一定.相等的圆只要在极坐标系中圆心的位置不同,极坐标方程就不一样.
[对应学生用书P11]
[例1] 求圆心在A ⎝ ⎛⎭
⎪⎫2,3π2,并且过极点的圆的极坐标方程,并把它化为直角坐标方程.
[思路点拨] 结合题意作出图形,设出动点M (ρ,θ),根据条件建立ρ,θ的关系式化简可求.
[精解详析] 如图,设M (ρ,θ)为圆上除O ,B 外的任意
一点,连接OM ,MB ,则有|OB |=4,|OM |=ρ,∠MOB =θ
-3π2,∠BMO =π2,。

相关文档
最新文档