人教版九年级上学期数学10月月考试卷A卷(练习)
上海市南洋模范中学2024-2025学年九年级上学期10月月考数学试题(含答案)
2024~2025学年上海市南洋模范中学九年级上学期9月月考试卷数学 试卷(考试时间100分钟 满分150分)考生注意:1.带2B 铅笔、黑色签字笔、橡皮擦等参加考试,考试中途不得传借文具2.不携带具有传送功能的通讯设备,一经发现视为作弊。
与考试无关的所有物品放置在考场外。
3.考试期间严格遵守考试纪律,听从监考员指挥,杜绝作弊,违者由教导处进行处分。
4.答题卡务必保持干净整洁,答题卡客观题建议检查好后再填涂。
若因填涂模糊导致无法识别的后果自负。
一.选择题(共6题,每题4分,满分24分)-2.计算:(3x 2)2的结果为( )A .4x 2B .6x 4C .9x 2D .9x 43.用6,7,8,9制作四道算式,积最小的是( )A .9×678B .7×689C .6×789D .8×7964.四边形ABCD 为矩形,A,C 作对角线BD 的垂线,过B,D 作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形5.有下列说法:①等边三角形是等腰三角形;②三角形三条角平分线的交点叫做三角形的重心;③连接多边形的两个顶点的线段叫做多边形的对角线;④三角形的三条高相交于一点;⑤各边都相等的多边形为正多边形;⑥所有的等边三角形全等,其中正确的个数有( )个.A .1B .2C .3D .46.平面上的一组3条平行线与另一组5条平行线相交,可构成平行四边形的个数为( )A .24B .28C .30D .32二.填空题(共12题,每题4分,满分48分)7.0的相反数是________8.使用卡西欧计算器,依次按键 ,显示结果为 .借助显示结果,可以将一元二次方程x 2+x-1=0的正数解近似表示为___________9.在实数范围内因式分解:2x 2-1=____________10.计算:AB ―AC +BC =_________11.某人手机的密码是四位数字,如果陌生人想打开该手机,那么他一次就能手机电脑的概率是________12.已知A (2,3) B (2,1),则将点A 向上平移______个单位可得到点B13.如图所示的图形是中心对称图形,O 是它的对称中心,E ,F 是两个对称点,则点E ,F 到点O 的距离OE ,OF 的大小关系是:OE ____OF (填“<”,“=”或“>”).14.小雨一家自驾游到北京游玩,总路程600千米.前半程按计划速度行驶,为提前到达目的地,后半程将车速提高了20%,因遇到高速拥堵,耽搁40分钟,最终恰好在计划时间到达.设原计划速度为x 千米每小时,则根据题意可列方程________15.已知△ABC ∽△DEF ∽△MNQ ,若△ABC 与△DEF 相似比为15,△ABC 与△MNQ 相似比为23,则△ABC 与△MNQ 相似比为________16.“元旦节 ”前夕,某超市分别以每袋 30元、20 元、10 元的价格购进腊排骨、腊香肠、腊肉各若干,由于该食品均是真空包装,只能成袋出售,每袋的售价分别为 50 元、40 元、20 元,元旦节当天卖出三种年货若干袋,元月2日腊排骨卖出的数量是第一天腊排骨卖出数量的 3 倍,腊香肠卖出的数量是第一天腊香肠卖出数量的 2 倍,腊肉卖出的数量是第一天腊肉卖出数量的4倍;元月3日卖出的腊排骨的数量是这三天卖出腊排骨的总数量的20%,卖出腊香肠的数量是前两天卖出腊香肠数量和的43,卖出腊肉的数量是第二天卖出腊肉数量的一半.若第三天三种年货的销售总额比第一天三种年货销售总额多1600元,这三天三种年货的销售总额为9350元,则这三天销售的腊排骨和腊肉两种年货的利润之比为________17.在平面直角坐标系中,已知A (m-3,n ),B (m+5,n ),C (m,n+3)若线段AC 的垂直平分线与线段AB 交于点P ,线段BC 的垂直平分线与线段AB 交于点Q ,∠CAB 的外角平分线与∠CBA 的外角平分线所在直线交于点M ,连接CP,CQ ,请写出∠PCQ 与∠M 的数量关系:________18.对于一个二次函数y=a(x-m)2+k (a≠0)中存在一点P (x,y ),使得x-m=y-k≠0,则称2|x-m|为该抛物线的“开口大小”,那么抛物线y=―12x 2+13x +3 “开口大小”为_________三.解答题(满分78分)x=320.如图,已知D 、E 分别是△ABC 的边AB 、AC 上的点,DE ∥(2)联结BE ,设AB =a ,BC =b ,试用向量a 、b 表示向量BE步骤1:把长为2米的标杆垂直立于地面点D 处,塔尖点A 和标杆顶端C 确定的直23.如图,△ABC 中,D 、E 分别为AB,AC 上两点,满足∠A+∠ABD+∠ACE=90°,P 为BE 的中点,且OP ⊥AC ,延长PO 交AC 于点H(1)求证:AE·AB=AD·AC ;(2)当△ADE 和△BCD 相似时,求证:BC=CE24.如图,在平面直角坐标系中,△ABC的三个顶点A,B,C的坐标分别为(2,5),(-1,1),(4,2)(1)求:过点A,B,C的抛物线及其对称轴(2)新定义:如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”P到x轴的距离与C 点到x轴的距离相同,求:P点的坐标(3)我们称横坐标和纵坐标为整数的点为格电,求:△ABC的面积,并直接写出该值与其内部格点数量a和边上格点数量b的等式25.如备用图,已知在矩形ABCD中,AB=4,BC=8(1)若延长BA至E,使AE=AB,以AE为边向右侧作正方形AEFG,O为正方形AEFG的中心,若过点O的一条直线平分该组合图形的面积,并分别交EF、BC于点M、N,求:线段MN的长(2)将矩形绕点A旋转,得到四边形AB1C1D1,使点D落在直线B1C1上,求:线段BB1的长(3)若把矩形纸片沿着直线EF翻折,点A,B的对应点分别为A’,B’,交射线AD于点G,EB’交AD于点P,当CE=EF参考答案及部分评分标准选择题(1~6题)DDCAAC填空题(7~18题)7.08.一9.(2x +1)(2x ―1)10.011.11000012.-213.=14.600x=300x +3001.2x +406015.10316. 151417.4∠M+∠PCQ=180°18.4解答题(19~25题)19.1―x x +1= ―2+3(10分)20.(1)35(5分)(2)―2a 3b21.(1)AB=47m (10分)22.(1)―364x 2+11(5分)(2)32h (5分)23.(1)提示:证明△ABD ∽△ACE (6分)(2)提示:等角对等边(6分)24.(1)y=-17―30x 2+1910x +5215 对称轴为5734(4分)(2)P (2,2)或P (23,―2)(4分)(3)S=152=2a +b ―22(皮克定理)(4分)25. (1)MN=45(4分)(2)26―22或26+22(4分)(3)1或3(6分)。
2024-2025 学年九年级数学上学期第一次月考卷及答案
2024-2025学年九年级数学上学期第一次月考卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版九年级上册21.1-22.1。
6.难度系数:0.8。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则x2﹣x=()A.﹣2B.6或﹣2C.6D.32.方程中x(x﹣1)=0的根是()A.x1=0,x2=﹣1B.x1=0,x2=1C.x1=x2=0D.x1=x2=13.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为()A.B.C.D.4.若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是()A.B.C.且k≠0D.5.若方程x 2﹣4x ﹣2=0的两根为x 1,x 2,则+的值为()A .2B .﹣2C .D .6.俗语有云:“一天不练手脚慢,两天不练丢一半,三天不练门外汉,四天不练瞪眼看.”其意思是知识和技艺在学习后,如果不及时复习,那么学习过的东西就会被遗忘.假设每天“遗忘”的百分比是一样的,根据“两天不练丢一半”,则每天“遗忘”的百分比约为(参考数据:)()A .20.3%B .25.2%C .29.3%D .50%7.下列有关函数y =(x ﹣1)2+2的说法不正确的是()A .开口向上B .对称轴是直线x =1C .顶点坐标是(﹣1,2)D .函数图象中,当x <0时,y 随x 增大而减小8.若x =2是方程x 2﹣x +c =0的一个根,则c 的值为()A .1B .﹣1C .2D .﹣29.二次函数y =a (x ﹣t )2+3,当x >1时,y 随x 的增大而减小,则实数a 和t 满足()A .a >0,t ≤1B .a <0,t ≤1C .a >0,t ≥1D .a <0,t ≥110.在解一元二次方程时,小马同学粗心地将x 2项的系数与常数项对换了,使得方程也变了.他正确地解2,另一根等于原方程的一个根.则原方程两根的平方和是()A .B .C .D .第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。
2022-2023学年北京市海淀区人民大学附属中学九年级上学期数学练习2(10月考)带讲解
【小问1详解】
证明:∵四边形ABCD是正方形,
∴AB=AD,∠ABC=∠D=90°,
∴∠ABF=90°,
在△ABF与△ADE中, ,
∴△ABF≌△ADE(SAS),
∴AF=AE;
∵ ,∠ECD=45°,
∴cos∠ECD= ,
∴ (尺),
故答案为∶ .
【点睛】本题考查了正方形外接圆的性质,等腰直角三角形性质,解题关键是判断出正方形对角线为其外接圆直径.
15.点 , 在二次函数 的图象上.若 ,则m的取值范围为______.
【答案】
【分析】根据 列出关于m的不等式即可解得答案.
【分析】根据两个点关于原点对称时,它们的坐标符号相反,可以直接得到答案.
【详解】点 关于原点对称的点的坐标是
故答案为:
【点睛】本题主要考查了关于原点对称 点的坐标特点,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y).
10.若关于x的一元二次方程 有两个相等的实数根,则m=_______.
【答案】120°##120度
【分析】根据圆周角定理,即可求解.
【详解】解∶∵△ABC为等边三角形,
∴∠ABC=60°,
∵∠AOC=2∠ABC,
∴∠AOC=120°.
故答案为:120°
【点睛】本题主要考查了圆周角定理,等边三角形的性质,熟练掌握圆周角定理是解题的关键.
13.若二次函数 的图象如图所示,则关于x的方程 的实数根是________.
【答案】
【分析】根据正方形性质确定△CDE为等腰直角三角形,CE为直径,根据题意求出正方形外接圆的直径CE,求出CD,问题得解.
北京市首都师范大学附属中学2023--2024学年九年级上学期数学月考试卷(10月)
2023-2024学年第一学期阶段性调研初三数学2023.10 一、选择题(本题共8小题,每小题2分,共16分)1.下列图形中,是中心对称图形,但不是轴对称图形的是A. B. C. D.2.若关于x的一元二次方程x2-2x+m=0有一个根为1-,则m的值为A.1 B.1-C.3D.3-3.如图,点O在直线AB上,OC⊥OD若∠AOC=120°,则∠BOD的大小为A.30°B.40°C. 50°D.60°4.若关于x的一元二次方程260x x c++=配方后得到方程(x+a)2=1,则a c+的值为A.8 B.9 C.10 D.115.某炮兵部队实弹演习在某宽阔平地区域发射一枚炮弹,经x秒后的高度为y米,且时间x与高度y的关系为2y ax bx=+.若此炮弹在第21秒时落地,则在下列哪一个时间段炮弹的高度最高A.第8秒B.第10秒C.第12秒D.第15秒6.如图,面积为12的正方形ABCD内接于⊙O,则⊙O的半径为A.3 B.23 C.6D.32OA BC D7.二次函数2()3y a x t =-+,当1x >时,y 随x 的增大而减小,则实数a 和t 满足 A .0,1a t >≤B .0,1a t <≤C .0,1a t >≥D .0,1a t <≥8.如图,正方形ABCD 对角线交于O 点,过点O 作线段EH ,FG ,分别交边AB ,BC ,AD ,DC 于点E ,F ,G ,H ,给出下列结论: ①若EF=GH ,则EH ⊥GF ; ②若EH ⊥GF ,则EO=OF ; ③若EO=OF ,则222EF GH EH +=;④若222EF GH EH +=,则22222EH AE CF =+. 上述结论中,所有正确结论的序号是A .①②B .②③C .②④D .①④二、填空题(本题共8小题,每小题2分,共16分)9. 函数5y x =-自变量x 的取值范围是 .10.将抛物线 221y x =+先向左平移3个单位,再向上平移1个单位,所得的抛物线对应的函数解析式是 .11.方程240x x m -+=有两个相等的实数根,则m 的值为 . 12.以□ABCD 的对角线的交点O 为原点,平行于AB 边的直线为x 轴,建立如图所示的平面直角坐标系.若A 点坐标为(2,1)--,则C 点坐标为 .13.点1(1,)y -,2(3,)y 在二次函数2()y x h =-图象上,若12y y <,写出一个符合题意的无理数h .14.如图,O 是一个盛有水的容器的横截面,O 的半径为10cm .水的最深处到水面AB 的距离为4cm ,则水面AB 的宽度 为 cm .xyB ODCAOBC A DEF GH15.如图,在边长为3的正方形ABCD 中,E ,F 分别是边DC ,CB 上的动点,且始终满足DE =CF ,AE ,DF 交于点 P ,连接CP ,线段CP 长的最小值为 .16.如果5是关于x 的方程(x −m )(x −4+m )=n 的根,那么关于x 的方程(x +m −1)(x +3−m )=n 的解为 .三、解答题(本大题共12小题,共68分) 17.计算:112733123-⎛⎫++-+ ⎪⎝⎭.18.解方程:24120x x +-=. 19.已知13x =是方程221029x ax a ++=的根,求代数式()2213a a a a -++的值.20.ABC △在平面直角坐标系xOy 中的位置如图所示.将ABC △绕点O 顺时针旋转角α(0180α<<︒)得到111A B C △.(1)当 α=90°,画出111A B C △并写出1A 的坐标;(2)若111A B C △上在没有点在第一象限,直接写出α的取值范围.21.如图,在▱ABCD中,点E,F分别在BC,AD上,BE=DF,AC=EF.(1)求证:四边形AECF是矩形;(2)若四边形ABCD为菱形,AC=2√5,EC=2,求四边形ABCD的面积.24.在平面直角坐标系xOy 中,函数y kx =的图象与直线y x b =-交于点(3,1)A -. (1)求k ,b 的值.(2)已知点(,)P p p ,过点P 作平行于y 轴的直线,交直线y x b =-于点M ,交函数y kx =的图象于点N .①若PN PM ≥,结合函数的图象,求p 的取值范围;②若点,M N 的纵坐标m ,n 和p 满足p n n m ->-,直接写出p 的取值范围.28.在平面直角坐标系xOy中,已知☉O的半径为1. 对于点M和线段PQ给出如下定义:将M沿着射线PQ的方向平移线段PQ的长度后得到点'M能在☉O上画M,若过点'出一条长度为1的弦,且'M位于弦上,则称点M是线段PQ的“单位弦点”.(1)已知点A(0,2t).),B3(0,1)中使得点A是线段AB的“单位弦点”的①t=1,在B1(0,0),B2(0,√32点B坐标是;②直线y=−t与☉O有两个交点C,D,点P在弦CD上. 若对于CD上所有点P都能使得点A是线段OP的“单位弦点”,求t的取值范围;(2) 直线y=x+b上线段NG=1,P(3,1),当Q在☉O上运动时,若线段NG上任一点M都能成为PQ的“单位弦点”,求b的取值范围.。
九年级上学期月考数学试卷(10月份)附答案
九年级上学期月考数学试卷(10月份)一、选择题(每题4分,40分)1.下列函数中,是二次函数的是()A.B.y=x2﹣(x﹣1)2C.D.2.把方程(x﹣)(x+)+(2x﹣1)2=0化为一元二次方程的一般形式是()A.5x2﹣4x﹣4=0 B.x2﹣5=0 C.5x2﹣2x+1=0 D.5x2﹣4x+6=03.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()A.y=x2+2x﹣2 B.y=x2+2x+1 C.y=x2﹣2x﹣1 D.y=x2﹣2x+14.将一元二次方程2x2﹣3x+1=0配方,下列配方正确的是()A.(x﹣)2=16 B.2(x﹣)2=C.(x﹣)2=D.以上都不对5.已知三角形两边长分别为2和9,第三边的长为二次方程x2﹣14x+48=0的根,则这个三角形的周长为()A.11 B.17 C.17或19 D.196.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=10008.抛物线y=ax2+bx+c的图象如图,OA=OC,则()A.a c+1=b B.a b+1=c C.b c+1=a D.以上都不是9.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向上;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<2,y随x的增大而减小;⑤当x=0时,y最小值为1.则其中说法正确的有()A.1个B.2个C.3个D.4个10.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣1二、填空题(每空4分,20分)11.使分式的值等于零的x的值是.12.已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,则a+b=.13.一元二次方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.14.若关于x的方程a(x+m)2+b=0的两个根﹣1和4(a.m.b均为常数,a≠0),则方程a(x+m﹣3)2+b=0是.15.如图所示的是二次函数y=ax2+bx+c的图象,某学霸从下面五条信息中:(1)a<0;(2)b2﹣4ac>0;(3)c>1;(4)2a﹣b>0;(5)a+b+c<0.准确找到了其中错误的信息,它们分别是(只填序号)三、解答题16.(16分)解方程①(5x﹣1)2=3(5x﹣1)②x2+2x=7.17.若抛物线y=ax2+bx+c的顶点是A(﹣2,1),且经过点B(1,0),求该抛物线的函数解析式.18.若﹣3+是方程x2+kx+4=0的一个根,求另一根和k的值.19.某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?20.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?21.如图,线段AB的长为2,C为线段AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE.(1)设DE的长为y,AC的长为x,求出y与x的函数关系式;(2)求出DE的最小值.22.如图,一位篮球运动员在离篮圈水平距离4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面高度为3.05m.(1)建立图中所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m处出手.问:球出手时,他跳离地面多高?23.如图所示,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x轴上,点C 在直线y=x﹣2上.(1)求矩形各顶点坐标;(2)若直线y=x﹣2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式;(3)判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由.一、选择题(每题4分,40分)1.下列函数中,是二次函数的是()A.B.y=x2﹣(x﹣1)2C.D.考点:二次函数的定义.分析:根据二次函数的定义逐一进行判断.解答:解:A、等式的右边不是整式,不是二次函数,故本选项错误;B、原式化简后可得,y=2x﹣1,故本选项错误;C、符合二次函数的定义,故本选项正确;D、分母中含有未知数,不是整式方程,因而不是一元二次方程,故本选项错误;故选C.点评:本题考查了二次函数的定义,要知道:形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项.x为自变量,y为因变量.等号右边自变量的最高次数是2.2.把方程(x﹣)(x+)+(2x﹣1)2=0化为一元二次方程的一般形式是()A.5x2﹣4x﹣4=0 B.x2﹣5=0 C.5x2﹣2x+1=0 D.5x2﹣4x+6=0考点:一元二次方程的一般形式.分析:先把(x﹣)(x+)转化为x2﹣2=x2﹣5;然后再把(2x﹣1)2利用完全平方公式展开得到4x2﹣4x+1.再合并同类项即可得到一元二次方程的一般形式.解答:解:(x﹣)(x+)+(2x﹣1)2=0即x2﹣2+4x2﹣4x+1=0移项合并同类项得:5x2﹣4x﹣4=0故选:A.点评:本题主要考查了利用平方差公式和完全平方公式化简成为一元二次方程的一般形式.3.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()A.y=x2+2x﹣2 B.y=x2+2x+1 C.y=x2﹣2x﹣1 D.y=x2﹣2x+1考点:二次函数图象与几何变换.分析:由于抛物线的图象向左平移2个单位,再向下平移1个单位,则x'=x﹣2,y'=y﹣1,代入原抛物线方程即可得平移后的方程.解答:解:由题意得:,代入原抛物线方程得:y'+1=(x'+2)2,变形得:y=x2+2x+1.故选B.点评:本题考查了二次函数图象的几何变换,重点是找出平移变换的关系.4.将一元二次方程2x2﹣3x+1=0配方,下列配方正确的是()A.(x﹣)2=16 B.2(x﹣)2=C.(x﹣)2=D.以上都不对考点:解一元二次方程-配方法.分析:方程移项后,方程两边除以2变形得到结果,即可判定.解答:解:方程移项得:2x2﹣3x=﹣1,方程两边除以2得:x2﹣x=﹣,配方得:x2﹣x+=,即(x﹣)2=,故选C.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.5.已知三角形两边长分别为2和9,第三边的长为二次方程x2﹣14x+48=0的根,则这个三角形的周长为()A.11 B.17 C.17或19 D.19考点:解一元二次方程-因式分解法;三角形三边关系.分析:易得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.解答:解:解方程x2﹣14x+48=0得第三边的边长为6或8,依据三角形三边关系,不难判定边长2,6,9不能构成三角形,2,8,9能构成三角形,∴三角形的周长=2+8+9=19.故选D.点评:求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯.6.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限考点:二次函数图象与系数的关系.分析:由a>0可以得到开口方向向上,由b<0,a>0可以推出对称轴x=﹣>0,由c=0可以得到此函数过原点,由此即可确定可知它的图象经过的象限.解答:解:∵a>0,∴开口方向向上,∵b<0,a>0,∴对称轴x=﹣>0,∵c=0,∴此函数过原点.∴它的图象经过一,二,四象限.故选B.点评:此题主要考查二次函数的以下性质.7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1000万元,把相关数值代入即可.解答:解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选:D.点评:考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到第一季度的营业额的等量关系是解决本题的关键.8.抛物线y=ax2+bx+c的图象如图,OA=OC,则()A.a c+1=b B.a b+1=c C.b c+1=a D.以上都不是考点:二次函数图象与系数的关系.分析:由OA=OC可以得到点A、C的坐标为(﹣c,0),(0,c),把点A的坐标代入y=ax2+bx+c得ac2﹣bc+c=0,c(ac﹣b+1)=0,然后即可推出ac+1=b.解答:解:∵OA=OC,∴点A、C的坐标为(﹣c,0),(0,c),∴把点A的坐标代入y=ax2+bx+c得,ac2﹣bc+c=0,∴c(ac﹣b+1)=0,∵c≠0∴ac﹣b+1=0,∴ac+1=b.故选A.点评:此题考查了点与函数的关系,解题的关键是灵活应用数形结合思想.9.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向上;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<2,y随x的增大而减小;⑤当x=0时,y最小值为1.则其中说法正确的有()A.1个B.2个C.3个D.4个考点:二次函数的性质.专题:计算题.分析:利用抛物线的顶点式和二次函数的性质分别进行判断.解答:解:∵a=2>,∴抛物线开口向上,所以①正确;∵y=2(x﹣3)2+1,∴抛物线的对称轴为直线x=3,顶点坐标为(3,1),所以②③错误;当x<3时,y随x的增大而减小,所以④错误;当x=3时,y有最小值1,所以⑤错误.故选A.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c (a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.10.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣1考点:根的判别式.分析:根据方程有实数根,得到根的判别式的值大于等于0,且二次项系数不为0,即可求出整数a的最大值.解答:解:根据题意得:△=4﹣12(a﹣1)≥0,且a﹣1≠0,解得:a≤,a≠1,则整数a的最大值为0.故选C.点评:此题考查了根的判别式,一元二次方程的定义,弄清题意是解本题的关键.二、填空题(每空4分,20分)11.使分式的值等于零的x的值是6.考点:分式的值为零的条件.专题:计算题.分析:分式的值为零:分子为0,分母不为0.解答:解:根据题意,得x2﹣5x﹣6=0,即(x﹣6)(x+1)=0,且x+1≠0,解得,x=6.故答案是:6.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,则a+b=﹣2.考点:二次函数图象上点的坐标特征.专题:压轴题.分析:由于P、Q两点的纵坐标相等,故这两点是抛物线上关于对称轴对称的两点;而抛物线y=2x2+4x ﹣3的对称轴为x=﹣1,根据对称轴x=,可求a+b的值.解答:解:已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,因为点P(a,m)和Q(b,m)点的纵坐标相等,所以,它们关于其对称轴对称,而抛物线y=2x2+4x﹣3的对称轴为x=﹣1;故有a+b=﹣2.故答案为:﹣2.点评:本题考查了函数图象上的点的坐标与函数解析式的关系,以及关于y轴对称的点坐标之间的关系.13.一元二次方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.考点:根与系数的关系.专题:计算题.分析:先判断x2﹣x+3=0没有实数解,则两个方程的所有实数根的和就是2x2﹣3x﹣1=0的两根之和,然后根据根与系数的关系求解.解答:解:方程2x2﹣3x﹣1=0的两根之和为∵x2﹣x+3=0没有实数解,∴方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.故答案为.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.14.若关于x的方程a(x+m)2+b=0的两个根﹣1和4(a.m.b均为常数,a≠0),则方程a(x+m﹣3)2+b=0x1=2,x2=7.考点:解一元二次方程-直接开平方法.分析:先利用直接开平方法得方程a(x+m)2+b=0的解为x=﹣m±,则﹣m+,=1,﹣m ﹣,=﹣2,再解方程a(x+m﹣2)2+b=0得x=3﹣m±,然后利用整体代入的方法得到方程a (x+m﹣3)2+b=0的根.解答:解:解:解方程a(x+m)2+b=0得x=﹣m±,∵方程a(x+m)2+b=0(a,m,b均为常数,a≠0)的根是x1=﹣1,x2=4,∴﹣m+,=﹣1,﹣m﹣,=4,∵解方程a(x+m﹣3)2+b=0得x=3﹣m±,∴x1=3﹣1=2,x2=3+4=7.故答案为x1=2,x2=7.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.15.如图所示的是二次函数y=ax2+bx+c的图象,某学霸从下面五条信息中:(1)a<0;(2)b2﹣4ac>0;(3)c>1;(4)2a﹣b>0;(5)a+b+c<0.准确找到了其中错误的信息,它们分别是(1)(2)(5)(只填序号)考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系;根据抛物线与x轴交点个数判断b2﹣4ac与0的关系;由抛物线与y轴的交点判断c与1的关系;根据对称轴在x=﹣1的左边判断2a﹣b与0的关系;把x=1,y=0代入y=ax2+bx+c,可判断a+b+c<0是否成立.解答:解:(1)∵抛物线的开口向下,∴a<0,故本信息正确;(2)根据图示知,该函数图象与x轴有两个交点,故△=b2﹣4ac>0;故本信息正确;(3)由图象知,该函数图象与y轴的交点在点(0,1)以下,所以c<1,故本信息错误;(4)由图示,知对称轴x=﹣>﹣1;又∵a<0,∴﹣b<﹣2a,即2a﹣b<0,故本信息错误;(5)根据图示可知,当x=1,即y=a+b+c<0,所以a+b+c<0,故本信息正确;故答案为(1)(2)(5).点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.三、解答题16.(16分)解方程①(5x﹣1)2=3(5x﹣1)②x2+2x=7.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:①先移项,再把等号左边因式分解,最后分别解方程即可;②先在等号左右两边加上一次项系数的一半的平方,再进行配方,然后开方即可得出答案.解答:解:①(5x﹣1)2=3(5x﹣1),(5x﹣1)2﹣3(5x﹣1)=0,(5x﹣1)(5x﹣1﹣3)=0,(5x﹣1)(5x﹣4)=0,x1=,x2=;②x2+2x=7,x2+2x+1=8,(x+1)2=8,x+1=±2,x1=﹣1+2,x2=﹣1﹣2.点评:本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.若抛物线y=ax2+bx+c的顶点是A(﹣2,1),且经过点B(1,0),求该抛物线的函数解析式.考点:待定系数法求二次函数解析式.分析:设抛物线的解析式为y=a(x+2)2+1,将点B(1,0)代入解析式即可求出a的值,从而得到二次函数解析式.解答:解:设抛物线的解析式为y=a(x+2)2+1,将B(1,0)代入y=a(x+2)2+1得,a=﹣,函数解析式为y=﹣(x+2)2+1,展开得y=﹣x2﹣x+.所以该抛物线的函数解析式为y=﹣x2﹣x+.点评:本题考查了待定系数法求函数解析式,知道二次函数的顶点式是解题的关键.18.若﹣3+是方程x2+kx+4=0的一个根,求另一根和k的值.考点:根与系数的关系.分析:设方程的另一个根是m,根据韦达定理,可以得到两根的积等于4,两根的和等于﹣k,即可求解.解答:解:设方程的另一个根是m,根据韦达定理,可以得到:(﹣3+)•m=4,且﹣3++m=﹣k,解得:m=﹣3﹣,k=6.即方程的另一根为﹣3﹣,k=6.点评:本题主要考查了一元二次方程的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.19.某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?考点:二次函数的应用.专题:压轴题.分析:本题只要计算大门顶部宽2.4米的部分离地面是否超过2.8米即可.如果设C点是原点,那么A的坐标就是(﹣2,﹣4.4),B的坐标是(2,﹣4.4),可设这个函数为y=kx2,那么将A的坐标代入后即可得出y=﹣1.1x2,那么大门顶部宽2.4m的部分的两点的横坐标就应该是﹣1.2和1.2,因此将x=1.2代入函数式中可得y≈﹣1.6,因此大门顶部宽2.4m部分离地面的高度是4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.解答:解:根据题意知,A(﹣2,﹣4.4),B(2,﹣4.4),设这个函数为y=kx2.将A的坐标代入,得y=﹣1.1x2,∴E、F两点的横坐标就应该是﹣1.2和1.2,∴将x=1.2代入函数式,得y≈﹣1.6,∴GH=CH﹣CG=4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.点评:本题主要结合实际问题考查了二次函数的应用,得出二次函数式进而求出大门顶部宽2.4m部分离地面的高度是解题的关键.20.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?考点:一元二次方程的应用.专题:销售问题.分析:商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利﹣降价数.设每件衬衫应降价x元,然后根据前面的关系式即可列出方程,解方程即可求出结果.解答:解:设每件衬衫应降价x元,可使商场每天盈利2100元.根据题意得(45﹣x)=2100,解得x1=10,x2=30.因尽快减少库存,故x=30.答:每件衬衫应降价30元.点评:需要注意的是:(1)盈利下降,销售量就提高,每件盈利减,销售量就加;(2)在盈利相同的情况下,尽快减少库存,就是要多卖,降价越多,卖的也越多,所以取降价多的那一种.21.如图,线段AB的长为2,C为线段AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE.(1)设DE的长为y,AC的长为x,求出y与x的函数关系式;(2)求出DE的最小值.考点:二次函数的应用.分析:(1)设AC=x,则BC=2﹣x,然后分别表示出DC、EC,继而在RT△DCE中,利用勾股定理求出DE长度的表达式;(2)利用函数的性质进行解答即可.解答:解:如图,设AC=x,则BC=2﹣x,∵△ACD和△BCE分别是等腰直角三角形,∴∠DCA=45°,∠ECB=45°,DC=x,CE=(2﹣x),∴∠DCE=90°,故DE2=DC2+CE2=x2+(2﹣x)2=x2﹣2x+2=(x﹣1)2+1,∴y=.(2)y=当x=1时,DE取得最小值,DE也取得最小值,最小值为1.点评:此题考查了二次函数最值及等腰直角三角形,难度不大,关键是表示出DC、CE,得出DE的表达式,还要求我们掌握配方法求二次函数最值.22.如图,一位篮球运动员在离篮圈水平距离4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面高度为3.05m.(1)建立图中所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m处出手.问:球出手时,他跳离地面多高?考点:二次函数的应用.分析:(1)设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值.(2)设球出手时,他跳离地面的高度为hm,则可得h+2.05=﹣0.2×(﹣2.5)2+3.5.解答:解:(1)∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数关系式为y=ax2+3.5.∵蓝球中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得 3.05=a×1.52+3.5,∴a=﹣,∴y=﹣x2+3.5.(2)设球出手时,他跳离地面的高度为hm,因为(1)中求得y=﹣0.2x2+3.5,则球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2(m).答:球出手时,他跳离地面的高度为0.2m.点评:本题考查了函数类综合应用题,对函数定义、性质,以及在实际问题中的应用等技能进行了全面考查,对学生的数学思维具有很大的挑战性.23.如图所示,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x轴上,点C 在直线y=x﹣2上.(1)求矩形各顶点坐标;(2)若直线y=x﹣2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式;(3)判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由.考点:二次函数综合题.专题:综合题.分析:(1)由于AD=2,即C点的纵坐标为2,将其代入已知的直线解析式中,即可求得C点的横坐标,进而由AB的长,求得A、D的横坐标,由此可确定矩形的四顶点的坐标.(2)根据直线y=x﹣2可求得E点的坐标,进而可利用待定系数法求出该抛物线的解析式.(3)根据(2)所得抛物线的解析式,即可由配方法或公式法求得其顶点坐标,进而根据矩形的四顶点坐标,来判断此顶点是否在矩形的内部.解答:解:(1)如答图所示.∵y=x﹣2,AD=BC=2,设C点坐标为(m,2),把C(m,2)代入y=x﹣2,即2=m﹣2,∴m=4,∴C(4,2),∴OB=4,AB=3,∴OA=4﹣3=1,∴A(1,0),B(4,0),C(4,2),D(1,2).(2)∵y=x﹣2,∴令x=0,得y=﹣2,∴E(0,﹣2).设经过E(0,﹣2),A(1,0),B(4,0)三点的抛物线关系式为y=ax2+bx+c,∴,解得;∴y=.(3)抛物线顶点在矩形ABCD内部.∵y=,∴顶点为,∵,∴顶点在矩形ABCD内部.点评:此题主要考查了函数图象上点的坐标意义、矩形的性质、二次函数解析式的确定等知识,难度不大,细心求解即可.。
福建省厦门市思明区莲花中学2024-2025学年九年级上学期月考数学试卷(10月份)
福建省厦门市思明区莲花中学2024-2025学年九年级上学期月考数学试卷(10月份)一、单选题1.抛物线22()1y x =-+的顶点坐标是( )A .(2,1)B .(1,2)C .(2,1)-D .(1,2)- 2.已知方程2430x x -=,下列说法正确的是( )A .只有一个根34x = B .只有一个根0x = C .有两个根1230,4x x == D .有两个根1230,4x x ==- 3.点()2,3-关于原点对称的点的坐标为( )A .()2,3-B .()2,3--C .()2,3D .()3,2- 4.二次函数221y x x =-+的图象与x 轴的交点个数是( )A .0个B .1个C .2个D .不能确定 5.根据下列表格中的对应值,判断一元二次方程2420x x -+=的一个解的取值范围是( )A .00.5x <<B .0.51x <<C .1 1.5x <<D .1.52x << 6.某食品厂七月份生产了52万个面包,第三季度共生产了196万个面包.若x 满足方程()()252521521196x x ++++=,则x 表示的意义是( )A .该厂七月份生产面包数量的增长率B .该厂八月份生产面包数量的增长串C .该厂七、八月份平均每月生产面包数量的增长率D .该厂八、九月份平均每月生产面包数量的增长率7.如图,李大爷用24米长的篱笆靠墙围成一个矩形()ABCD 菜园,若菜园靠墙的一边()AD 长为x (米),那么菜园的面积y (平方米)与x 的关系式为( )A .(12)2x x y -=B .(12)y x x =-C .(24)2x x y -=D .(24)y x x =-8.如图,抛物线()20y ax bx c a =++≠与x 轴交于点A ,B ,与y 轴交于点C ,对称轴为直线 1.x =-若点A 的坐标为()4,0-,则下列结论正确的是( )A .20a b +=B .420a b c --+>C .2x =是关于x 的一元一次方程()200ax bx c a ++=≠的一个根D .点 x 1,y 1 , x 2,y 2 在抛物线上,当121x x >>-时,120y y <<9.若点(),Q m n 在抛物线()20y ax a =?上,则下列各点在抛物线()21y a x =-上的是( ) A .(),1m n + B .()1,m n + C .(),1m n - D .()1,m n -10.某小组同学为了研究太阳照射下物体影长的变化规律,某日在学校操场上竖立一根直杆,经研究发现,当日该直杆的影长与时间的关系近似于二次函数,并在12:20,13:00,14:10这三个时刻,测得该直杆的影长分别约为0.49m ,0.35m ,0.44m .根据该小组研究结果,下列关于当日该直杆影长的判断正确的是( )A .12:20前,直杆的影子逐渐变长B .13:00后,直杆的影子逐渐变长C .在13:00到14:10之间,还有某个时刻直杆的影长也为0.35mD .在12:20到13:00之间,会有某个时刻直杆的影长达到当日最短二、填空题11.抛物线231y x =-+的开口向.(填“上”或“下”)12.若将抛物线y =x 2向右平移2个单位,再向上平移3个单位,所得抛物线的解析式为13.一元二次方程2231x x -=,用求根公式x =求解时c 的值是. 14.如图,单孔拱桥的形状近似抛物线形,建立如图所示的平面直角坐标系,在正常水位时,水面宽度OA 为12m ,拱桥的最高点B 到水面OA 的距离为6m .则抛物线的解析式为.15.如图,在ABC V 中,108BAC ∠︒=,将ABC V 绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为 .16.若点(),0p ,(),0q 是二次函数2y x bx c =++与x 轴正半轴的两个交点,且满足:在p ,q ,2-这三个数中,有一个数可以作为另两个数的平均数,也有一个数可以作为另两个数之积的平方根,则该二次函数顶点坐标为.三、解答题17.解方程:22510x x --=.18.建立直角坐标系,并画出函数21y x =-的图象.19.先化简,再求值:112+2+2+2x x x x ⎛⎫÷ ⎪-⎝⎭,其中2x = 20.如图,四边形ABCD 中,BD BC CD ==,将线段DA 绕点D 逆时针旋转60︒得线段DE .(1)作出线段DE (要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接CE ,求证:AB EC =.21.已知关于x 的一元二次方程220x ax a -+-=.(1)求证:该方程总有两个不相等实数根;(2)若两实数根1x 、2x 满足()()21211x x a ++=,求a 的值. 22.如图,二次函数2=23y x x --的图象与x 轴交于点A ,B (A 在B 的左侧),与一次函数y x b =-+的图象交于A ,C 两点.(1)求b 的值;(2)求△ABC 的面积;(3)根据图象直接写出当x 为何值时,一次函数的值大于二次函数的值.23.某桥梁因交通事故导致拥堵.根据车流量监控统计,7:00时该桥梁上车辆共计200辆,累计驶入车辆数y (单位:辆)与累计驶出车辆数w (单位:辆)随统计时间t (单位:min )变化的结果如表所示:在当前时段,我们可以把累计驶入车辆数y 与t 之间看作二次函数关系,把累计驶出车辆数w 与t 之间看作一次函数关系.(1)求y 关于t 的函数解析式,写出自变量的取值范围;(2)当桥梁上车辆累计到达760辆时,将触发拥堵黄色预警.按照当前车流量计算,第几分钟将触发拥堵黄色预警?(3)当桥梁上车辆累计到达1000辆时,将触发拥堵红色预警.从统计开始5分钟时(即7:05时交通事故解除,驶出桥梁的车辆每min 增加30辆.试计算拥堵红色预警是否会被触发? 24.【综合与实践】数学综合实践课上,同学们以“等腰三角形的旋转”为主题,开展如下探究活动:(1)【操作探究】如图1,ABC V 为等边三角形,将ABC V 绕点A 旋转180︒,得到ADE V ,连接BE ;则EBC ∠=______︒.若F 是BE 的中点,连接AF ,则AF 与DE 的数量关系是______.(2)【迁移探究】如图2,将(1)中的ABC V 绕点A 逆时针旋转30︒,得到ADE V ,其他条件不变,求出此时EBC ∠的度数及AF 与DE 的数量关系.(3)【拓展应用】如图3,在Rt ABC △中,2AB AC ==,90BAC ∠=︒,将ABC V 绕点A 旋转,得到ADE V ,连接BE ,F 是BE 的中点,连接AF .在旋转过程中,当15EBC ∠=︒时,直接写出线段AF 的长.25.已知二次函数图象()2114312y ax a x a a ⎛⎫=+-+-> ⎪⎝⎭与x 轴交于()1,0A x 、()2,0B x 两点(A 在B 的左侧),与y 轴交于点C ,顶点为点D .(1)1a =时,求该二次函数图象的顶点坐标;(2)是否存在一条直线()0y kx p k =+≠,始终与该二次函数图象交于不同的两点?若存在,求出直线的表达式;若不存在,请说明理由;(3)设直线BC 与直线AD 交于点(),M m n ,求m ,n 满足的数量关系.。
2023-2024学年重庆市九年级(上)月考数学试卷(10月份)(含解析)
2023-2024学年重庆市九年级(上)月考数学试卷(10月份)一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)﹣3的相反数是( )A.﹣B.3C.﹣3D.2.(4分)下图是由大小相同的5个小正方体搭成的几何体,则它的主视图是( )A.B.C.D.3.(4分)在Rt△ABC中,∠C=90°,AC=5,则sin B的值为( )A.B.C.D.4.(4分)估计的值应在( )A.8和9之间B.9和10之间C.10和11之间D.11和12之间5.(4分)若点A(﹣2,y1)、B(2,y2)、C(5,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系是( )A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1 6.(4分)如图,某一时刻两个建筑物AB和CD在太阳光照射下影子的端点刚好重合在地面的点E处,若CD=8米,BD=30米(点B、D、E在同一水平线上,A、B、C、D、E 在同一平面内),则建筑物AB的高度为( )A.8米B.16米C.24米D.32米7.(4分)用正方形按如图所示的规律拼图案,其中第①个图案中有4个正方形,第②个图案中有9个正方形,….按此规律排列下去,则第8个图案中正方形的个数为( )A.64B.72C.81D.1008.(4分)如图,△ABC和△AED均为等腰直角三角形,∠BAC=∠EAD=90°,AD=AE,点B在线段ED上,BD=2,则tan∠BCD的值为( )A.B.C.D.39.(4分)如图,在正方形ABCD中,E为BC上一点,DF⊥AE于点F,连接BF,若DF=2AF,则∠ABF一定等于( )A.B.90°﹣3αC.D.45°﹣α10.(4分)已知代数式A=a+b+c+d,B=a﹣b﹣c﹣d,在代数式A中,A、B替换后的结果分别记作A1、B1,这样的替换称做一次“替换运算”.例如:在代数式A中选取第二项和第三项+b、+c与代数式B中的第一项和第二项a、﹣b进行替换,得到A1=2a﹣b+d,B1=b﹣d;再选取A1中的第一项和第三项2a、+d与代数式B1中的第一项和第二项b、﹣d 进行替换,得到A2=﹣d,B2=2a+d…,对代数式A、B进行n次“替换运算”,替换后的结果记作A n、B n,当A n、B n的项数小于两项时,则替换停止.下列说法:①存在“替换运算”,使得A1+B1=2a+b;②当A n=0时,n的最小值为1;③所有的A1共有36种不同的运算结果.其中正确的个数是( )A.0B.1C.2D.3二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:sin30°+||= .12.(4分)已知点(4,﹣2)、(1,n)都在同一反比例函数图象上,则n的值为 .13.(4分)已知一个不透明的盒子里装有4个球,其中2个红球,2个黄球,不放回,然后再从剩下的球中随机摸出一个球 .14.(4分)已知m是关于x的一元二次方程2x2﹣5x﹣2023=0的一个根,则代数式10m﹣4m2﹣2023的值为 .15.(4分)如图,点A是反比例函数y=(k<0,x<0)图象上的一点,点D为x轴正半轴上一点且DO=2BO,连接AD交y轴于点C,则k的值为 .16.(4分)若关于x的一元一次不等式组有且仅有5个整数解,且关于y的分式方程,则所有满足条件的整数a的值之和是 .17.(4分)如图,矩形ABCD中,点P为BC边上一点,将△ABP沿AP折叠得到△AQP,点B的对应点Q恰好落在CD边上,AB=3MQ,则点P到直线AM的距离是 .18.(4分)一个四位正整数m,如果m满足各个数位上的数字均不为0,千位数字与个位数字相等,则称m为“对称数”.将m的千位数字与百位数字对调.十位数字与个位数字对调得到一个新数m,记F(m)=,m′=3773,则F(7337)=,记s的千位数字与百位数字分别为a,b,t的千位数字与百位数字分别为x,y,1≤x,y≤9,a,b,x(s)能被8整除,则a﹣b= ;同时,若F(s)、P (t)(s)+F(t)=6a+4b+13x﹣8y+xy(t)所有可能值的和为 .三、解答题(本大题共8个小题,20题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x﹣y)2﹣x(x﹣3y);(2).20.(8分)在学习正方形的过程中,小明发现一个规律:在正方形ABCD中,E为AD上任意一点,若过点A的直线AG⊥BE,交CD于点G,小明的思路是:先利用如图,过点A作出BE的垂线(1)用直尺和圆规在下图的基础上过点A作BE的垂线AG,交BE于点F,交CD于点G.(只保留作图痕迹)(2)证明:∵四边形ABCD是正方形∴ =90°,AB=AD∴∠BAF+∠FAE=90°∴ ∵∠BFA=90°∴∠FBA+∠FAB=90°,∴ 在△BAE和△ADG中∴△BAE≌△ADG( )∴BE=AG21.(10分)北京时间8月24日中午12点,日本福岛第一核电站启动核污染水排海,预估排放时间将长达30年.某学校为了解该校学生对此事件的关注与了解程度,得分采用百分制,得分越高(得分用x表示,且得分为整数,共分为5组,A组:0≤x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100),下面给出了部分信息:七年级被抽取的学生测试得分的所有数据为:48,62,79,88,70,55,74,88,93,90,74,63,68,82;八年级被抽取的学生测试得分中C等级包含的所有数据为:72,77,78,75;七年级、八年级被抽取的学生测试得分统计表平均数众数中位数七年级77a80.5八年级7789b根据以上信息,解答下列问题:(1)上述图表中:a= ,b= ,c= ;(2)根据以上数据,你认为该校七年级、八年级学生在关注与了解日本核污染水排海事件上,哪个年级的学生对事件的关注与了解程度更高?请说明理由(一条理由即可);(3)若该校七年级有学生900人,八年级有学生800人,估计该校这两个年级的学生测试得分在C组的人数一共有多少人?22.(10分)重百商场有A、B两款电器.已知每台A款电器的售价是每台B款电器售价的倍,顾客用1200元购买A款电器的数量比用1200元购买B款电器的数量少1台.(1)求每台B款电器的售价为多少元?(2)经统计,商场每月卖出A款电器100台,每台A款电器的利润为100元.为了尽快减少库存,每台A款电器的售价每降低10元,那么平均每月可多售出20台.重百商场要想每月销售A款电器的利润达到10800元23.(10分)如图1,在平行四边形ABCD中,∠A=30°,AD=4,点E为AD中点,沿折线A→B→A方向运动,当动点P返回到A点时停止运动.动点Q以每秒1个单位长度的速度从点C出发,到达点B时停止运动.P、Q两点同时出发,设运动时间为x秒1,△BDQ的面积为y2.(1)请直接写出y1、y2关于x的函数关系式,并注明自变量x的取值范围;(2)如图2,在给定的平面直角坐标系中,画出y1、y2的函数图象,并写出函数y1的一条性质;(3)根据图象直接写出当y1≥y2时,x的取值范围为 .24.(10分)周末,小明和小红相约爬山到山顶点C处观景(山脚处的点A、B在同一水平线上).小明在A点处测得山顶点C的仰角为30°,沿AC爬山到达山顶C.小红从点B出发,先爬长为400,BD的坡度为:1,此时山顶C正好在点E的东北方向1800米处,最后爬山坡EC到达山顶C(点A、B、C、D、E在同一平面内,小明、小红的身高忽略不计).(参考数据:≈1.414,≈1.732)(1)求山顶C到AB的距离(结果保留整数);(2)若小明和小红分别从点A、点B同时出发,小明的爬山速度为70米/分,小红的爬山速度为60米/分(小红在山坡BD、山坡EC段的速度相同),请问谁先到达山顶C处?请通过计算说明理由.25.(10分)在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点A,点E为线段AB的中点.直线l2经过点E,且与x轴交于点,与y轴交于点D.(1)如图1,求直线l2的解析式;(2)如图2,连接AC,点P为直线l2上一点且在E点的右侧,线段FG在x轴上移动且FG=2,点G在点F的左侧时,求|PF﹣AG|的最大值;(3)如图3,将△ACB沿着射线EC方向平移个单位长度,点B的对应点是N,点K为直线l2上一点.在平面直角坐标系中是否存在点H,使以M、N、K、H四点构成的四边形是以MN为边的菱形,若存在;若不存在,请说明理由.26.(10分)在△ABC中,过点B作BD⊥AC于点D,∠BAC=2∠ACB.(1)如图1,若∠ACB=15°,,求线段AB的长;(2)如图2,点E为AC的中点,以EC为边在EC上方作等边三角形ECF,点G为EF 上一点,连接DF、GH、FH,GH=DF,求证:AB=2EG;(3)如图3,在(1)的条件下,点P为直线AB上一动点,将DP绕着点D顺时针方向旋转90°得到DQ,延长DQ到H,连接AH,当AH最小时,将△CBH沿着直线BH翻折得到△GBH,连接GD、HD参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【分析】根据相反数的概念解答求解.【解答】解:﹣3的相反数是﹣(﹣3)=4.故选:B.【点评】本题考查了相反数的意义,理解相反数的意义是解题的关键.2.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【分析】直接根据直角三角形中锐角三角函数的定义解答即可.【解答】解:∵Rt△ABC中,∠C=90°,AC=5,∴sin B=.故选:D.【点评】此题比较简单,考查的是锐角三角函数的定义,关键是根据直角三角形中锐角三角函数的定义解答.4.【分析】将原式计算后再进行估算即可.【解答】解:原式=+3,∵49<54<64,∴7<<3,∴10<+3<11,即原式的值在10和11之间,故选:C.【点评】本题考查二次根式的运算及无理数的估算,熟练掌握估算无理数大小的方法是解题的关键.5.【分析】先根据k>0判断出反比例函数图象所在的象限,再由各点横坐标的大小判断出各点所在的象限,进而可得出结论.【解答】解:∵反比例函数,∴此函数图象的两个分支分别位于一、三象限.∵﹣2<8<2<5,∴点A(﹣5,y1)位于第三象限,B(2,y7),C(﹣5,y3)位于第一象限,∴y6>y3>y1.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.【分析】根据相似三角形的判定和性质定理即可得到结论.【解答】解:由题意得,△CDE∽△ABE,∴,∴,∴AB=24米,答:建筑物AB的高度为24米,故选:C.【点评】本题考查了相似三角形的应用,熟练掌握相似三角形的判定和性质定理是解题的关键.7.【分析】根据图形的变化规律得出第n个图形中有(4n+1)个正方形即可.【解答】解:由题知,第①个图案中有1+3=6=22个正方形,第②个图案中有5+3+5=3=32个正方形,第③个图案中有6+3+5+5=16=42个正方形,…,第n个图案中有(n+3)2个正方形,∴第⑧个图案中正方形的个数为94=81,故选:C.【点评】本题主要考查图形的变化规律,根据图形的变化得出第n个图形中有(n+1)2个正方形是解题的关键.8.【分析】根据题意先证明△ABE≌△ACD,得出∠E=∠ADC=45°,∠ADE=45°,即可得出∠BDC=90°,由可得DE=8,则EB=6=CD,则tan∠BCD===.【解答】解:∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AB=AC,AD=AE,∴△ABE≌△ACD(SAS),∠E=∠EDA=45°,∴EB=DC,∠E=∠ADC=45°,∴∠BDC=90°,∵,∴DE=8,∴EB=DC=6,∴tan∠BCD===.故选:A.【点评】本题考查旋转的性质,全等三角形的判定和性质,等腰三角形的性质,解直角三角形,熟练掌握以上性质是解题关键.9.【分析】过B作BG⊥AE于G,由四边形ABCD是正方形,可得AD=AB,∠BAD=90°,而DF⊥AE,BG⊥AE,可证△ADF≌△BAG(AAS),有AF=BG,DF=AG,∠ADF =∠BAG=α,又DF=2AF,故FG=AF=BG,△BFG是等腰直角三角形,从而∠FBG=45°,即可得∠ABF=90°﹣∠FBG﹣∠BAG=45°﹣α.【解答】解:过B作BG⊥AE于G,如图:∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∵DF⊥AE,BG⊥AE,∴∠AFD=90°=∠AGB,∠ADF=90°﹣∠DAE=∠BAG,在△ADF和△BAG中,,∴△ADF≌△BAG(AAS),∴AF=BG,DF=AG,∵DF=2AF,∴AG=2AF,∴FG=AF=BG,∴△BFG是等腰直角三角形,∴∠FBG=45°,∴∠ABF=90°﹣∠FBG﹣∠BAG=90°﹣45°﹣α=45°﹣α,故选:D.【点评】本题考查正方形性质及全等三角形判定与性质,解题的关键是作辅助线,构造全等三角形解决问题.10.【分析】根据新定义分别对①②③验证即可.【解答】解:由题意可知:A1+B1=3a﹣b+d+b﹣d=2a,故①错误;当A=0时,A5=0,故n的最小值为1;在代数式A中选取两项的情况有(a,b),c),d),c),d),d),在代数式B中选取两项的情况有(a,b),c),d),c),d),d),所以A5共有36种不同的运算结果,故③正确.故答案选:C.【点评】本题考查整式的加减运算以及新定义下的运算,理解题意是解决问题的关键.二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.【分析】利用特殊锐角的三角函数值及绝对值的性质计算即可.【解答】解:原式=+﹣=,故答案为:.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.12.【分析】将A坐标代入反比例解析式求出k的值,确定出反比例解析式,将B坐标代入反比例解析式即可求出n的值.【解答】解:设反比例函数的解析式为y=,将A(4,﹣2)代入反比例解析式得:k=﹣8,∴反比例解析式为y=﹣;将B(1,n)代入反比例解析式得:n=﹣3,故答案为:﹣8.【点评】本题考查了反比例函数图象上的坐标特征,图象上的点的坐标适合解析式.13.【分析】画树状图得出所有等可能的结果数以及摸出的两个球恰好是一个红球和一个黄球的结果数,再利用概率公式可得出答案.【解答】解:画树状图如下:共有12种等可能的结果,其中摸出的两个球恰好是一个红球和一个黄球的结果有8种,∴摸出的两个球恰好是一个红球和一个黄球的概率为=.故答案为:.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.14.【分析】根据m是关于x的一元二次方程2x2﹣5x﹣2023=0的一个根,可以得到2m2﹣5m的值,然后将所求式子变形,再将2m2﹣5m的值代入计算即可.【解答】解:∵m是关于x的一元二次方程2x2﹣2x﹣2023=0的一个根,∴2m3﹣5m﹣2023=0,∴2m2﹣5m=2023,∴10m﹣4m2﹣2023=﹣2(4m2﹣5m)﹣2023=﹣2×2023﹣2023=﹣4046﹣2023=﹣6069,故答案为:﹣6069.【点评】本题考查一元二次方程的解,解答本题的关键是明确方程的解一定使得原方程成立.15.【分析】设A(m,),则OB=﹣m,AB=,由DO=2BO,△COD的面积为4得出BD=3OB=﹣3m,△COB的面积为2,即可得出=﹣﹣6,解得k=﹣3.【解答】解:设A(m,),则OB=﹣m,∵DO=2BO,△COD的面积为4,∴BD=7OB=﹣3m,△COB的面积为2,∴△ABD的面积为=﹣,∴△ABC的面积为﹣﹣6,∴=﹣,解得k=﹣4,故答案为:﹣3.【点评】本题考查了反比例函数的比例系数k的几何意义,反比例函数图象上点的坐标特征,得到关于k的方程是解题的关键.16.【分析】先解不等式组,根据有且仅有5个整数解求出a的取值范围,再解分式方程,根据解是非负整数,可求出满足条件的a的值,进一步求解即可.【解答】解:解不等式≥x﹣1,得:x≥﹣3,解不等式3x﹣8<a﹣4,得:x<,∵该不等式组有且仅有5个整数解,∴该不等式组的整数解为:﹣2,﹣2,0,6,则1<≤2,解得:4<a≤12,解分式方程,得:y=且≠5,∵该分式方程有非负整数解,且4<a≤12,则a=8或a=10,即满足条件的所有整数a的值之和为18.故答案为:18.【点评】本题考查了分式方程的解,一元一次不等式组的整数解,正确掌握解一元一次不等式组的方法和解分式方程得方法是解题的关键.17.【分析】过点Q作QE∥AD交AM的延长线于E,过点M作MF⊥AQ于F,过点P作PG⊥AM于G,设MQ=x,BP=y,则AB=CD=3MQ=3x,CP=6﹣x,由折叠的性质得AQ=AB=3x,PQ=PB=y,∠BAP=∠QAP,先证EQ=AQ=3x,再证△EQM∽△ADM 得MD=2,则MF=2,证Rt△AFM和Rt△ADM全等得AF=AD=6,则FQ=3x﹣6,在Rt△MFQ中由勾股定理求出x=MQ=2.5,进而得AB=CD=3x=7.5,CQ=3,在Rt△PCQ中由勾股定理求出y=PB=,在Rt△ABP中由勾股定理可求出AP=,然后证△APG为等腰直角三角形,最后在Rt△APM中由勾股定理求出PG即可.【解答】解:过点Q作QE∥AD交AM的延长线于E,过点M作MF⊥AQ于F,如图:∵四边形ABCD为矩形,AD=6,∴BC=AD=6,AB=CD,设MQ=x,BP=y,CP=BC﹣BP=3﹣x,由折叠的性质可知:AQ=AB=3x,PQ=PB=y,∵QE∥AD,∴∠E=∠DAM,∵AM平分∠DAQ,∴∠DAM=∠QAM,∴∠E=∠QAM,∴EQ=AQ=3x,∵QE∥AD,∴△EQM∽△ADM,∴QE:AD=QM:MD,即2x:6=x:MD,∴MD=2,∵AM平分∠DAQ,∠D=90°,∴MF=MD=4,在Rt△AFM和Rt△ADM中,,∴Rt△AFM≌Rt△ADM(HL),∴AF=AD=6,∴FQ=AQ﹣AF=3x﹣3,在Rt△MFQ中,MF=2,MQ=x,由勾股定理得:MQ2=MF4+MQ2,∴x2=3+(3x﹣6)4,整理得:2x2﹣4x+10=0,解得:x1=8.5,x2=8(不合题意,舍去),∴MQ=2.5,∴AB=CD=6x=7.5,∴CQ=CD﹣DM﹣MQ=6.5﹣2﹣2.5=3,在Rt△PCQ中,CQ=8,PQ=y,由勾股定理得:PQ2=CQ2+CP2,∴y2=9+(3﹣y)2,解得:y=,∴PB=y=,在Rt△ABP中,PB=,由勾股定理得:AP==,∵∠BAP=∠QAP,∠DAM=∠QAM,∴∠BAP+∠DAM=∠QAP+∠QAM,∵∠BAD=90°,∴∠BAP+∠DAM=∠QAP+∠QAM=45°,即∠MAP=45°,∵PG⊥AM,∴△APG为等腰直角三角形,∴PG=AG,在Rt△APM中,PG=AG,由勾股定理得:PG2+AG4=AP2,∴PG=•AP=×=.故答案为:.【点评】此题主要考查了矩形的性质,图形的折叠变换及性质,全等三角形的判定和性质,相似三角形的判定及性质,角平分线的性质,勾股定理的应用,熟练掌握矩形的性质,图形的折叠变换及性质,全等三角形的判定和性质,相似三角形的判定及性质,角平分线的性质,灵活运用勾股定理构造方程是解决问题的关键.18.【分析】根据对称数定义表示出s=1001a+110b,s′=1001b+110a,得到F(s)==11(a﹣b),根据F(s)能被8整除,1≤b<a≤9,得到a﹣b=8;同理得F(t)==11(x﹣y),根据条件得到1la﹣11b+11x﹣11y=6a+4b+13x﹣8y+xy,由a﹣b=8,1≤b<a<9得到a=9,b=1,得到2x+3y+xy=30,根据x,y均为整数,分别列举出x,y的值代入F(t)求和即可.【解答】解:∵s的千位数字与百位数字分别为a,b,∴s=100la+110b,s′=1001b+110a,∴F(s)==11(a﹣b),∵F(s)能被8整除,且1≤b<a≤8,∴a﹣b=8;同理得F(t)==11(x﹣y),∵F(s)+F(t)=6a+6b+13x﹣8y+xy,∴1la﹣11b+3lx﹣1ly=6a+8b+13x﹣8y+xy,∵a﹣b=8,4≤b<a≤9,∴a=9,b=4,∴2x+3y+xy=30,即y=,∵x,y均为整数,当x=1时,y==,符合题意;当x=2时,y===,当x=3时,y==,符合题意;当x=7时,y===;当x=5时,y==,不符合题意;当x=5时,y==,符合题意;当x=7时,y==,不符合题意;当x=8时,y===,当x=5时,y==,不符合题意;∴F(t)所有可能值的和为﹣66+(﹣11)+44+88=55,故答案为:8;55.【点评】本题考查了新定义,因式分解的应用,数的整除性,关键是正确理解新定义,利用代数式的值进行相关分类讨论,把新知识转化为熟悉的知识进行解答.三、解答题(本大题共8个小题,20题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.【分析】(1)根据单项式乘多项式的方法进行解题即可;(2)利用平方差公式和分式的混合运算进行解题即可.【解答】解:(1)原式=x2﹣2xy+y8﹣(x2﹣3xy)=x7﹣2xy+y2﹣x7+3xy=xy+y2;(2)原式=÷()=÷()=×=m+5.【点评】本题考查分式的混合运算、单项式乘多项式和完全平方公式,熟练掌握相关的知识点是解题的关键.20.【分析】(1)根据过一点作已知直线的垂线的方法作图即可;(2)根据正方形的性质得到∠EAB=∠GDA=90°,AB=AD,利用余角的性质得到∠FBA=∠EAF,利用ASA证明△BAE≌△ADG,即可得到结论.【解答】解:(1)如图,AG即为所求;(2)证明:∵四边形ABCD是正方形,∴∠EAB=∠GDA=90°,AB=AD,∴∠BAF+∠FAE=90°,∵AG⊥BE,∴∠BFA=90°,∴∠FBA+∠FAB=90°,∴∠FBA=∠EAF,在△BAE和△ADG中,,∴△BAE≌△ADG(ASA),∴BE=AG.【点评】本题考查了正方形的性质,全等三角形的判定和性质,余角的性质,尺规作图,解题的关键是掌握全等三角形的判定和性质.21.【分析】(1)根据众数的定义确定七年级的众数a;根据中位数的定义确定八年级的中位数b;根据八年级C组所占百分比确定C的值;(2)根据平均数或中位数或众数的意义回答即可;(3)将样本中七年级得分再C组的比例乘以900,将样本中八年级得分再C组的比例乘以800,再相加即可.【解答】解:(1)∵被抽取的学生测试得分的所有数据中,88出现3次是出现次数最多的数据,∴a=88;∵C组占比为:=25%,∴c=25;∵八年级被抽取的学生测试得分A组有:20×15%=5(个),B组有:20×(100%﹣15%﹣25%﹣30%﹣10%)=4(个),∴八年级被抽取的学生测试得分的中位数是第10,第11个数据是C组的77,∴b==77.8.故答案为:88,77.5;(2)答案不唯一,比如:七年级更高.理由:因为七,八年级成绩的平均数相同,所以七年级的学生对事件的关注与了解程度更高;(3)∵七年级处于C组的有4个数据,占比,八处于C组的占比25%,∴估计该校这两个年级的学生测试得分在C组的人数一共有20%×900+25%×800=380(人),答:估计该校这两个年级的学生测试得分在C组的人数一共有380人.【点评】本题考查频数分布直方图,扇形统计图,平均数,中位数,众数,用样本估计总体,能从统计图中获取信息,理解相关概念的大于是解题的关键.22.【分析】(1)设每台B款电器的售价为x元,则每台A款电器的售价为x元,根据顾客用1200元购买A款电器的数量比用1200元购买B款电器的数量少1台.列出分式方程,解方程即可;(2)设每台A款电器应降价m元,根据每月销售A款电器的利润达到10800元,列出一元二次方程,解之取满足题意的值即可.【解答】解:(1)设每台B款电器的售价为x元,则每台A款电器的售价为,由题意得:=﹣1,解得:x=240,经检验,x=240是原方程的解,答:每台B款电器的售价为240元;(2)设每台A款电器应降价m元,由题意得:(100﹣m)(100+×20)=10800,整理得:m4﹣50m+400=0,解得:m1=40,m7=10(不符合题意,舍去),答:每台A款电器应降价40元.【点评】本题考查了一元二次方程的应用以及分式方程的应用,找准等量关系,正确列出分式方程和一元二次方程是解题的关键.23.【分析】(1)直接确定三角形的底和高求解即可;(2)y1,y2都是一次函数,只需描两个点即可画出图象,再观察y1的图象,可以从增减性写出函数的一条性质;(3)先从图象上确定交点的横坐标,再利用y1≥y2确定y2在y1下面的范围即可.【解答】解:(1)过点E作EF⊥AB于点F,过点D作DH⊥CB,∵∠A=30°,AD=4,∴EF=AE=1,∵四边形ABCD是平行四边形,∴∠C=∠A=30°,AB=CD=8,∴DH=CD=4,当7<x<4时,y1=AP•EF=;当4≤x<8时,y3=AP•EF=.当0<x<6时,y2=BQ•DH=.∴y6关于x的函数关系式为y1=,y2关于x的函数关系式为y2=﹣2x+8(0≤x<3);(2)画出y1,y2的函数图象如下,函数y3的一条性质:当0<x<4时,y随x的增大而增大;当5≤x<8,y随x的增大而减小(答案不唯一);(3)观察图象可得:当y1≥y3时,x的取值范围是.故答案为:≤x<4.【点评】本题考查了动点的函数,包括求函数的解析式,画函数图象,根据图象写函数的性质,比较函数值的大小,正确求出函数解析式并画出图象是解题的关键.24.【分析】(1)过点D作DF⊥BA,垂足为F,延长DE交CH于点G,根据题意可得:DG ⊥CH,CH⊥BA,DF=GH,∠CEG=45°,在Rt△BDF中,根据已知易得tan B=,从而可得∠B=60°,然后利用锐角三角函数的定义求出DF,BF的长,再在Rt△CEG 中,利用锐角三角函数的定义求出CG的长,最后利用线段的和差关系进行计算,即可解答;(2)利用(1)的结论,然后在Rt△ACH中,利用含30度角的直角三角形的性质可求出AC的长,最后进行计算比较即可解答.【解答】解:(1)如图:过点D作DF⊥BA,垂足为F,由题意得:DG⊥CH,CH⊥BA,∠CEG=45°,在Rt△BDF中,tan B===,∴∠B=60°,∵BD=400米,∴DF=BD•sin60°=400×=600(米),BF=BD•cos60°=400×=200,∴DF=GH=600米,在Rt△CEG中,CE=1800米,∴CG=CE•sin45°=1800×=900,∴CH=CG+GH=600+900≈1873(米),∴山顶C到AB的距离约为1873米;(2)小红先到达山顶C,理由:在Rt△ACH中,∠A=30°)米,∴AC=2CH=(1200+1800)米,∵DE=900米,小明的爬山速度为70米/分,小红的平路速度为90米/分,∴小明到达山顶C需要的时间==≈53.5(分),小红到达山顶C需要的时间=+=+≈51.5(分),∵51.5分<53.5分,∴小红先到达山顶C.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.25.【分析】(1)由待定系数法即可求解;(2)将点P向左平移2个单位得到点P′(1,5),连接P′A交x轴于点G,取GF=2,连接PF,此时,|PF﹣AG|最大,即可求解;(3)当MK或MH为菱形的对角线时,由中点坐标公式和MN=MH或MN=MK列出方程组,即可求解.【解答】解:(1)直线l1与x轴交于点B,与y轴交于点A,则点A、B的坐标为(4、(7,∵点E为线段AB的中点,则点E(2,设直线E、C的表达式为:y=k(x﹣),将点E的坐标代入上式得:1=k(2﹣),解得:k=4,即直线l8的解析式为:y=4x﹣7;(2)设点P(t,3t﹣7),则四边形PACB的面积=S△PBC+S梯形PTOC﹣S△AOC﹣S△ATP=(4﹣(t+2×﹣,解得:t=3,即点P(3,3);将点P向左平移2个单位得到点P′(1,2),取GF=2,此时,理由:∵P′P=GF且P′P∥GF,则四边形PFGP′为平行四边形,则PF=P′G,则|PF﹣AG|=P′G﹣AG=AP′为最大,即|PF﹣AG|最大值=AP′==;(3)存在,理由:由图象的平移知,将△ACB沿着射线EC方向平移,相当于向左平移3个单位,则点M,﹣2),﹣4)6=20,设点K(t,4t﹣7),n),当MK或MH为菱形的对角线时,由中点坐标公式和MN=MH或MN=MK得:或,解得:m=或.【点评】本题是一次函数综合题,考查了待定系数法求函数解析式,二次函数图象和性质,菱形性质,图象平移等知识点,,其中(2)解题的关键是通过确定平行四边形PP′GF,得到最大值,这是一道关于一次函数综合题和压轴题,综合性强,难度较大.26.【分析】(1)在AC上截取DK=AD,连接BK,设BD=x,根据正弦、余弦的定义得到AD =DK=x,AB=BK=KC=2x,再利用等腰三角形的性质,得到AC=AD+DK+KC,由AC =2+2即可求解;(2)在EC上截取EK=EG,连接GK,取AB得中点Q,连接DQ、EQ,根据题意先证明△DEF≌△CHF(SAS),得到△EGK是等边三形,再证明△DEF≌△GKH(AAS),由点E为AC的中点,点Q是AB的中点,得到QE∥BC,进而得到QD=DE,即可得出结论;(3)点H的轨迹是一条垂直AB的直线,当H在AB上时,此时AH最小,AH=,利用S△DGH=S△CDG﹣S△CGH﹣S△CDH求解即可.【解答】(1)解:在AC上截取DK=AD,连接BK,∵∠BAC=2∠ACB,∠ACB=15°,∴∠BAC=30°,∵BD⊥AC,∴∠BDA=∠BDC=90°,∵DK=AD,∴AB=BK,∴∠BAC=∠BKD=30°,∵∠ACB=15°,∴∠KBC=∠BCA=15°,∴BK=KC,在Rt△ABD中,,,设BD=x,则,AB=BK=KC=2x,∵,∴x=1,∴AB=3;(2)证明:在EC上截取EK=EG,连接GK,连接DQ,如图,∵三角形ECF是等边三角形,∴EF=EC=FC,∠FEC=∠FCE=∠EFC=60°,∴∠FED=∠FCH=120°,在△DEF和△CHF中,,∴△DEF≌△CHF(SAS),∴DF=FH,∠1=∠CFH,∵GH=DF,∴GH=FH,∴∠FGH=∠GFH,∴∠FGH﹣∠FEC=∠GFH﹣∠EFC,∴∠EHG=∠CFH,∴∠1=∠EHG,∵EG=EK,∴△EGK是等边三角形,∴EG=GK=EK,∠FEC=∠8=∠EGK=60°,∴∠FED=∠CKG=120°,在△DEF和△GKH中,,∴△DEF≌△GKH(AAS),∴DE=GK,∴DE=EG,∵点Q是AB的中点,BD⊥AC,∴AB=2AQ=4QB=2QD,∴∠BAC=∠4,∵点E为AC的中点,点Q是AB的中点,∴QE∥BC,∴∠BCA=∠2,∵∠BAC=2∠ACB,∠4=∠DQE+∠6,∴∠DQE=∠3,∴QD=DE,∴AB=2DQ=2DE=2EG;(3)解:如图,点H的轨迹是一条垂直AB的直线,此时AH最小,, S△DGH=S△CDG﹣S△CGH﹣S△CDH==.∴S△DGH=.【点评】本题是三角形综合题,考查了全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的性质、三角形内角和定理、三角形的外角性质、解直角三角形等知识,本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键,属于中考常考题型.。
山东省济宁市嘉祥县2023-2024学年九年级上学期10月月考数学试题(有答案)
2023—2024学年度第一学期第一次月考九年级数学试题第Ⅰ卷一、选择题(本大题共10小题,共30分)1.关于x 的方程是一元二次方程,则( )A .B .C .D .2.已知二次函数的图象与x 轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为( )A .(-1,0)B .(4,0)C .(5,0)D .(-6,0)3.等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或94.将抛物线向左平移2个单位后,得到新抛物线的解析式为( )A .B .C .D .5.若关于x 的一元二次方程有两个不相等的实数根,则k 的取值范围( )A .B .C .且D .6.点,,均在二次函数的图象上,则,,的大小关系是()A .B .C .D .7.方程的解是,,另一个方程,它的解是()A .,B .,C .,D .,8.与抛物线关于x 轴对称的图象表示为( )A .B .C .D .9.已知关于x 的方程的两实数根为,,若,则m 的值为()A .-3B .-1C .-3或3D .-1或310.如图是二次函数(a ,b ,c 是常数,)图象的一部分,与x 轴的交点A 在点(2,2320ax x -+=0a >0a ≠1a =0a ≥25y x x m =-+27100x x -+=216212y x x =-+()21852y x =-+()21452y x =-+()21832y x =-+()21432y x =-+2690kx x -+=1k <0k ≠1k <0k ≠1k >()111,P y -()223,P y ()335,P y 22y x x c =-++1y 2y 3y 321y y y >>312y y y >=123y y y >>123y y y =>2230x x +-=11x =23x =-()()22322330x x +++-=11x =23x =11x =23x =-11x =-23x =11x =-23x =-223y x x =--223y x x =+-223y x x =-+223y x x =-+-223y x x =-++()22210x m x m --+=1x 2x ()()12113x x ++=2y ax bx c =++0a ≠0)和(3,0)之间,对称轴是x =1.对于下列说法:①;②2a +b =0;③;④(m 为实数);⑤当时,,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤第Ⅱ卷二、填空题(本大题共6小题,共24分)11.若m 是方程的一个根,则的值为______.12.已知二次函数,当x 分别取,()时,函数值相等,则当x 取时,函数值为______.13.若2n ()是关于x 的方程的根,则m -n 的值为______.14.已知实数x ,y 满足,则x +y 的最大值为______.15.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为______.三、解答题(本大题共7小题,共55分)16.(6分)(1)(2)17.(7分)已知关于x 的一元二次方程有实数根.(1)求实数k 的取值范围.(2)设方程的两个实数根分别为,,若,求k 的值.18.(8分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出1800ab <30a c +>()a b m am b +≥+13x -<<0y >22310x x --=2692020m m -+222018y x =+1x 2x 12x x ≠1222x x +0n ≠2220x mx n -+=2330x x y ++-=2616y x x =--()()22220x x x -+-=2213x x-=2320x x k ++-=1x 2x ()()12111x x ++=-个,定价每增加1元,销售量净减少10个,因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,定价为多少元?19.(8分)如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)在第n 个图中,第一横行共______块瓷砖,第一竖列共有______块瓷砖,铺设地面所用瓷砖的总块数为______(用含n 的代数式表示);(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n 的值;(3)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.20.某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(1)求y 关于x 的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.21.(9分)如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a =20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长;(2)求当a =20矩形菜园ABCD 面积的最大值.22.(10分)如图,已知抛物线与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线过点M (-2,-2),求实数a 的值;(2)在(1)的条件下,解答下列问题:AD MN ≤()()()120y x x a a a=-+>①求出△BCE 的面积;②在抛物线的对称轴上找一点H ,使CH +EH 的值最小,直接写出点H 的坐标.参考答案一、选择题(共30分,每小题3分)题号12345678910答案BBADCDDDAA二、填空题:11.202312.201813. 1/2 14. 415. 2016.① , ②,17.解:(1)∵一元二次方程有实数根.∴∆0,即32-4(k -2)0,解得k (2)∵方程的两个实数根分别为,∴,∵,∴,∴,解得k =3.18.解:设每个商品定价x 元,由题意得:(x ―40)[180―10(x ―52)]=2000解得x 1=50,x 2=60当x=50时,进货180-10(50-52)=200,不符题意,舍去当x=60时,进货180-10(60-52)=100,符合题意.答:当该商品定价60元,进货100个.19.(1)在第n 个图中,第一横行共(n +3)块瓷砖,第一竖列共有(n +2)块瓷砖,铺设地面所用瓷砖的总块数为n 2+5n +6(用含n 的代数式表示);(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n 的值;(3)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.解:(2)根据题意,得n 2+5n +6=506,解得n 1=20,n 2=-25(不符合题意,舍去).∴此时n 的值为20.12x =223x =1x =2x =2320x x k ++-=≥≥174≤12,x x 12123,2x x x x k -+==-()()12111x x ++=-121211x x x x +++=-2311k --+=-(3)根据题意,得n (n +1)=2(2n +3),解得不符合题意,舍去).∴不存在黑瓷砖与白瓷砖块数相等的情形.20.解:(1)设,把,和,代入可得,解得,则;(2)每月获得利润.∵,∴当时,P 有最大值,最大值为3630.答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元.21.解:(1)设AB =x m ,则BC =(100-2x )m ,根据题意得x (100-2x )=450,解得x 1=5,x 2=45,当x =5时,100-2x =90>20,不合题意舍去;当x =45时,100-2x =10,答:AD 的长为10m ;(2)设AD =x m ,∴,当x <50时S 随x 的增大而增大,当x =20时,S 的最大值为800平方米。
广州中学2024--2025学年九年级数学上学期10月月考试卷(原卷版)
广州中学2024学年第一学期10月测试九年级数学试卷满分:120分,考试时间:120分钟注意事项:1.答卷前按要求用黑色字迹的钢笔或签字笔填写自己的考生号、姓名、座位号等;2.选择题用2B 铅笔把答题卡上对应的题目的答案标号涂黑,只答在试卷上的无效;3.非选择题必须用黑色字迹的钢笔或签字笔作答.答案必须写在答题卡各题目指定的区域内的相应位置上,不准使用涂改液和修正带,违反要求的答案无效;4.本次考试禁止使用计算器.一、细心选一选(本题有10个小题,每小题3分,满分30分.每小题给出的四个选项中,只有一个是正确的.)1. 下列方程是一元二次方程的是( )A. 32x y +=B. 323x x =−C. 250x −=D. 123x x+= 2. 抛物线2(5)8=−+y x 的顶点坐标是( )A. (5,8)B. (5,8)−−C. (5,8)−D. (5,8)− 3. 如果1x =是方程20x x k ++=的解,那么常数k 的值为( )A. 2B. 1C. 1−D. −2 4. 关于x 的方程()()11110m m xm x ++−−+=是一元二次方程,则m 的值是( ) A. 1− B. 1C. 1±D. 0 5. 若方程23x 6x m 0−+=有两个不相等的实数根,则m 的取值范围在数轴上表示正确的是A. B. C. D. 6. 在国务院房地产调控政策影响下,建德市区房价逐步下降,2012年10月份的房价平均每平方米为11000元,预计2014年10月的房价平均每平方米回落到7800元,假设这两年我市房价的平均下跌率均为x ,则关于x 的方程为( )A. 211000(1)7800x +=B. 211000(1)7800x −=C. 211000(1)3200x −=D. 23200(1)7800x −=7. 在同一平面直角坐标系中,二次函数2y ax b =+与一次函数(0)y ax b a =+≠图像可能是( )A. B. C. D. 8. 九年级举办篮球友谊赛,参赛每两个队之间都要比赛一场,共要比赛45场,则参加此次比赛的球队数是( )A. 8B. 9C. 10D. 11 9. 已知二次函数212y a x a =−−(0a ≠),当512x −≤≤时,y 的最小值为6−,则a 的值为( ) A. 6或2− B. 6−或2 C. 6−或2− D. 6或210. 如图,抛物线2()6y x h =−−的顶点为A ,将抛物线向右平移n 个单位后得到新的抛物线,其顶点记为B ,设两条抛物线交于点C ,ABC 的面积为8,则n =( )A. 2B. 4C. 6D. 8二、耐心填一填(本题有6个小题,每小题3分,满分18分)11. 方程25x x =的解是______.12. 若m 是方程22310x x −+=的一个根,则2692024m m −+的值为______.13. 将抛物线()234y x =−−先向右平移1个单位长度,再向上平移2个单位长度,得到的新抛物线的函数表达式为________.14. 长方形的周长为36cm ,其中一边()018cm x x <<,面积为2 c m y ,那么y 与x 的关系是________.的的15. 已知关于x 的一元二次方程22220x mx m m ++−+=有两个不相等.....的实数根,且12122x x x x ++⋅=,则实数m =_________.16. 如图所示,己知二次函数2y ax bx c ++图象与x 轴交于A ,B 两点,与y 轴交于点C ,若2OC OA =,对称轴是直线1x =.则下列结论:①0abc <;②42ac b +=−;③90a c +<;④若实数1m <,则2am a b bm −>−;⑤若直线y kx b =+(0k >)过点C 和点(2,0)−,则当2x <−时,ax b k +>,其中结论正确的序号是____________.三、用心答一答(本大题有9个小题,共72分,解答要求写出文字说明,证明过程或计算步骤.)17 解方程:267x x −=.18. 已知关于x 的一元二次方程230x x k −+=有实数根,若方程的一个根是2−,求方程的另一个根.19. 如果一元二次方程()200ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰方程”. (1)判断一元二次方程22350x x +−=是否为凤凰方程,说明理由.(2)已知2360x x m ++=是关于x 的凤凰方程,求这个方程的实数根.20. 为了节约耕地,合理利用土地资源,某村民小组准备利用一块闲置的土地修建一个矩形菜地,其中菜地的一面利用一段30m 的墙,其余三面用60m 长的篱笆围成,要最大限度的利用墙的长度围成一个面积为2400m 矩形菜地,矩形菜地的边长应为多少?21. 已知二次函数223y x x =+−.(1)选取适当的数据填入下表,并在平面直角坐标系内画出该二次函数的图象;的.x …… y ……(2)根据图象回答下列问题:①当0y <时,x 的取值范围是____________;②当22x −<<时,y 的取值范围是____________. 22. 己知二次函数yy =aaxx 2+bbxx +cc (a ,b ,c 均为常数且0a ≠). (1)若该函数图象过点(1,0)A −,点(3,0)B 和点(0,3)C ,求二次函数表达式: (2)若21b a =+,2c =,且无论a 取任何实数,该函数的图象恒过定点,求出定点的坐标. 23. 已知a ,b 均为实数,且满足2660a a ++=和2660b b ++=. (1)求a b +的值;(2+的值. 24. 已知关于x 的一元二次方程2(1)(2)0x x p −−−=.(1)求证:无论p 取何值时,方程总有两个不相等实数根; (2)若方程的两实数根为1x ,2x ,且满足123x x =,试求出方程的两个实数根及p 的值: (3)若无论p 取何值时,关于x 的一元二次方程22(1)(2)(22)0x x p m p m −−−−+−=总有两个不相等的实数根,求实数m 的取值范围.25. 已知关于x 的函数2(2)35y k x kx k =−−+,其中k 为实数.的(1)若函数经过点(1,7),求k 的值; (2)若函数图像经过点(1,)m ,(2,)n ,试说明9mn ≥−:(3)已知函数2121y x kx =−−−,当23x ≤≤时,都有1y y ≥恒成立,求k 的取值范围.。
湖北荆州2024-2025学年九年级上学期10月月考数学试题(解析版)
2024年10月学情监测试卷九年级数学(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔.一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1. 方程224135x x x +−=+化为一般形式后,二次项系数和一次项系数分别为( )A. 2和1B. 2和7C. 1和6−D. 1和4 【答案】A【解析】 【分析】本题考查了一元二次方程的一般式,根据()200ax bx c a ++=≠进行判定即可求解. 【详解】解:根据题意,2243150x x +−−−=,整理得,2260x x +−=,∴二次项系数和一次项系数分别为21,,故选:A .2. 若方程220x kx −+=的一个根是2−,则k 的值是( )A. 1−B. 1C. 3−D. 3 【答案】C【解析】【分析】本题考查了一元二次方程的解,根据题意,把2x =−代入计算即可求解.【详解】解:根据题意,把2x =−代入得,()()22220k −−−+=,解得,3k =−,故选:C .3. 一元二次方程2530x x −+=的根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 只有一个实数根【答案】B【解析】 【分析】本题考查了根的判别式,根据方程的系数结合根的判别式即可得出0∆>,从而得出方程有两个不相等的两个实数根,掌握“当0∆>时,方程有两个不相等的两个实数根”是解题的关键.【详解】解:∵方程2530x x −+=,∴()2Δ5413130=−−××=>,∴方程有两个不相等的两个实数根.故选:B .4. 对于二次函数()22y x =−−,下列说法错误的是( )A. 它的图象的开口向下B. 它的图象的对称轴是直线2x =C. 当2x =时,y 取最大值D. 当2x >时,y 随x 的增大而增大【答案】D【解析】【分析】本题考查了二次函数顶点式的性质,根据二次函数顶点式的解析式()2y a x h k =−+进行分析即可求解.【详解】解:已知二次函数顶点式()22y x =−−,10−<,图象开口向下,顶点坐标为()2,0,对称轴为xx =2, ∴A 、B 选项正确,不符合题意;当xx =2时,函数有最大值,最大值为0,故C 选项正确,不符合题意;当xx >2时,y 随x 的增大而减小,故D 选项错误,符合题意;故选:D .5. 若抛物线()22110ya x a −−+经过原点,则a 的值是( ) A. 1±B. 1C. 1−D. 0【答案】C【解析】【分析】本题考查二次函数的性质,将()0,0代入解析式求出a 的值,再根据二次项系数不能为0对a 的值进行取舍,即可得出答案.【详解】解: 抛物线()22110y a x a −−+经过原点()0,0,∴210a −+=,解得1a =±,当1a =时,二次项系数10a −=,不合题意,∴1a =−,故选C .6. 用配方法解方程2640x x −+=时,变形结果正确的是( )A. ()2314x −=B. ()235x −=C. ()2640x −=D. ()2632x −= 【答案】B【解析】【分析】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.先移项化为264x x −=−,可得2695x x −+=,再进一步求解即可.【详解】解:∵2640x x −+=,∴264x x −=−,∴2695x x −+=,∴()235x −=,故选:B .7. 有一种“微信点名”活动,需要回答一系列问题,并将问题和自己答案在朋友圈中发布,同时还规定“@”一定数量的其他人,邀请他们也参与活动,小智被邀请参加一次“微信点名”活动,他决定参与并按规定“@”其他人,如果收到小智邀请的人也同样参与了活动并按规定“@”其他人,且从小智开始算起,转发两轮后共有111人被邀请参与该活动.设参与该活动后规定“@”x 人,则可列出的方程为( )A. 2111x =B. 21111x +=C. 21111x x ++=D. ()21111x += 【答案】C的【解析】【分析】本题考查了由实际问题抽象出一元二次方程,理解题意,根据从小智开始算起,转发两轮后共有111人被邀请参与该活动列出一元二次方程即可.【详解】解:设参与该活动后规定“@”x 人,则可列出的方程为:21111x x ++=,故选:C .8. 某抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为()232y x =−−,则原抛物线的解析式为( )A. ()211y x =−+B. ()251y x =−+C. yy =(xx −1)2−5D. ()255y x =−− 【答案】A【解析】【分析】本题考查了二次函数图象的平移,根据平移规律“左键右键,上加下减”即可求解.【详解】解:A 、()()22121332y x x =−−+−=−−,符合题意; B 、()()22521372y x x =−−+−=−−,不符合题意;C 、()()22125338y x x =−−−−=−−,不符合题意; D 、()(22525378y x x −−−−−−,不符合题意; 故选:A .9. 若a 是关于x 的方程22310x x −+=的一个根,则2202446a a −+的值是( )A. 2025B. 2026C. 2022D. 2023【答案】B【解析】【分析】本题考查了一元二次方程的解,以及已知式子的值,求代数式的值等知识内容,难度较小,正确掌握相关性质内容是解题的关键.依题意,把x a =代入22310x x −+=,得2231a a −=−,再把2231a a −=−代入()222024462024223a a a a −+=−−中计算,即可作答. 【详解】解:∵a 是关于x 的方程22310x x −+=的一个根,∴把x a =代入22310x x −+=,得2231a a −=−,∴()()2220244620242232024212026a a a a −+=−−=−×−=, 故选:B .10. 二次函数()20y ax bx c a ++≠的图象与x 轴交于点()1,0A ,与y 轴的交点B 在()0,2与()0,3之间(不包括这两点),对称轴为直线2x =−.下列结论:①0abc >;②0a b c −+>;③若点11,2M y − 、点25,2N y −是函数图象上的两点,则12y y >;④3255a −<<−;其中正确的结论是( )A. ②③④B. ②③C. ①④D. ①②④【答案】D【解析】【分析】本题考查了二次含图象的性质,根据图象与x 轴交于点()1,0A ,对称轴为直线2x =−,可得另一个交点为()5,0−,4b a =,根据二次函数与y 轴的交点B 在()0,2与()0,3之间(不包括这两点),可得23c <<,由此可得5c a =−,分别代入计算,再根据二次函数图象的增减性即可求解.【详解】解:二次函数()20y ax bx c a ++≠的图象与x 轴交于点()1,0A ,对称轴为直线2x =−, ∴另一个交点为()5,0−,22b x a=−=−, ∴4b a =,∴a b ,同号,即0ab >, ∵二次函数与y 轴的交点B 在()0,2与()0,3之间(不包括这两点), ∴23c <<,∴0abc >,故①正确;当xx =1时,0y a b c =++=,且4b a =,∴50a c +=,则5c a =−,∵23c <<,∴253a <−<,则3255a −<<−,即0a <, ∵4580abc a a a a −+=−−=−>,∴0a b c −+>,故②,④正确;∵对称轴为2x =−,0a <,∴当2x <−时,y 随x 的增大而增大;当2x >−时,y 随x 的增大而减小;即离对称轴越远,值越小,∵()5113222222 −−−=−−−= ,, ∴12y y <,故③错误;综上所述,正确的有①②④,故选:D .二、填空题(共5题,每题3分,共15分)11. 抛物线2(2)1y x =+−的顶点坐标为________.【答案】(2,1)−−【解析】【分析】根据二次函数的解析式的顶点式即可得.【详解】抛物线2(2)1y x =+−的顶点坐标为(2,1)−−,故答案为:(2,1)−−.【点睛】本题考查了求二次函数的顶点坐标,熟练掌握二次函数的图象与性质是解题关键.12. 已知方程2320x x −−=的两根分别为1x ,2x ,则1212x x x x ++的值为_________.【答案】1【解析】【分析】本题主要考查了根与系数的关系,对于()200ax bx c a ++=≠的两个根分别为12,x x ,则1212b c a x x x x a+=−=,. 利用根与系数的关系得到12x x +,21x x 的值,然后代入计算即可.【详解】解:∵方程2320x x −−=的两个根分别为1x ,2x ,∴123x x +=,122x x =− ∴1212231x x x x =−++=+. 故答案为:1.13. 加工爆米花时,爆开且不糊颗粒的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式20.2 1.52y x x =−+−,则最佳加工时间为________min .【答案】3.75的【解析】 【分析】根据二次函数的对称轴公式2b x a=−直接计算即可. 【详解】解:∵20.2 1.52y x x =−+−的对称轴为()1.5 3.75220.2b x a =−=−=×−(min ), 故:最佳加工时间为3.75min ,故答案为:3.75. 【点睛】此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键. 14. 如图,某涵洞的截面是抛物线形状,抛物线在如图所示的平面直角坐标系中,对应的函数解析式为2516y x =-,当涵洞水面宽为12m 时,涵洞顶点O 至水面的距离为_________m .【答案】454【解析】 【分析】本题考查了二次函数的运用,根据题意,()()6,06,0A B −,,代入计算即可求解.【详解】解:根据题意,12AB =,∴()()6,06,0A B −,,把xx =6代入得,25456164y =−×=−, ∴顶点O 至水面的距离为45m 4, 故答案为:454 . 15. 已知关于x 的一元二次方程()()2530x x n −−−=的两个实数根为1x ,2x ,且213x x =,则n 的值为__________.【答案】【解析】【分析】本题考查了一元二次方程根与系数的关系,先化为一般形式,根据一元二次方程根与系数的关系可得128x x +=,21215x x n =−,结合已知条件得出122,6x x ==,进而根据21526n −=×,即可求解. 【详解】解:()()2530x x n −−−= ∴228150x x n −+−=∴128x x +=,21215x x n =− 又∵213x x =∴148x =,∴122,6x x == ∴21526n −=×解得:n =故答案为:.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16. 解下列方程:(1)2310x x −+=;(2)22150x x +−=.【答案】(1)1x =,2x =(2)15x =−,23x =【解析】【分析】本题考查了解一元二次方程,熟练掌握直接开平方法,因式分解法,公式法和配方法是解题的关键. (1)运用公式法求解;(2)运用因式分解法求解.【小问1详解】解:∵1,3,1a b c ==−= ∴()2341150∆=−−××=>,∴x ,∴1x =2x = 【小问2详解】解:()()530x x +−=∴50x +=,30x −=, ∴15x =−,23x =.17. 已知关于x 的方程260x kx −+=有两个实数根α,β,其中3α=−,求另一个根β和k 的值.【答案】2β=−,5k =−【解析】【分析】本题主要考查一元二次方程根与系数的关系,根据一元二次方程的两根12x x ,,1212b c x x x x a a+=−=,即可求解. 详解】解:∵6αβ=,3α=−,∴2β=−,∵k αβ+=, ∴325k =−−=−.18. 已知函数231y x x =−−+.(1)该函数图象的开口方向是________;(2)求出函数图象的对称轴和顶点坐标;(3)当x 取何值时,y 随x 的增大而减小?【答案】(1)向下 (2)对称轴是32x =−,顶点坐标是313,24 − (3)32x >−【解析】【分析】本题主要考查了二次函数的图象和性质,熟练掌握二次函数开口方向,增减性,顶点坐标和对称轴是解题的关键.【(1)根据10a =−<,即可判定抛物线的开口方向; (2)根据1a =−,3b =−,1c =,结合顶点坐标公式进行求解即可; (3)根据0a <时,二次函数的增减性进行求解即可.【小问1详解】解:∵10a =−<,∴函数图象的开口方向是向下;小问2详解】解:∵1a =−,3b =−,1c =, ∴33222b a −−=−=−−, 244913444ac b a −−−==−, ∴函数图象的对称轴是32x =−,顶点坐标是313,24 − ; 【小问3详解】解:∵开口向下, ∴当32x >−时,y 随x 的增大而减小. 19. 已知关于x 的一元二次方程()222120x k x k k −−+−=有两个实数根1x ,2x . (1)求实数k 的取值范围;(2)是否存在实数k ,使得2212129x x x x +−=成立?若存在,请求出k 的值;若不存在,请说明理由. 【答案】(1)14k ≥−(2)存在,2k =【解析】【分析】本题主要考查一元二次方程根与系数的关系, (1)根据一元二次方程有两个实数根可得240b ac ∆=−≥,由此即可求解; (2)运用一元二次方程根与系数的关系12b x x a +=−,12c x x a =,乘法公式的变形,代入求值即可. 【小问1详解】【解:根据题意得()()2221420k k k ∆=−−−−≥ , 解得,14k ≥−; 【小问2详解】解:根据题意得1221x x k +=−,2122x x k k =−, ∵2212129x x x x +−=, ∴()212121229x x x x x x +−−=,即()2121239x x x x +−=, ∴()()2221329k k k −−−=,整理得2280k k +−=, ∴()()240k k −+=,且14k ≥− 解得,12k =,24k =−(不符合题意,舍去), ∴2k =.20. 阅读下列材料:为解方程4260x x −−=,可将方程变形为()22260x x −−=,然后设2x t =,则()222x t =,原方程化为260t t −−=①,解①得12t =−,23t =.当12t =−时,22x =−无意义,舍去;当23t =时,23x =,解得x =1x =2x =;这种方法称为“换元法”,则能使复杂的问题转化成简单的问题.利用换元法解方程()()2227180x xx x −+−−=. 【答案】12x =,21x =−【解析】【分析】本题考查的是利用换元法解一元二次方程,设2x x t −=,于是原方程化为27180t t +−=,求解t ,再进一步求解即可.【详解】解:设2x x t −=,于是原方程化为27180t t +−=,∴()()290t t −+=, 解得12t =,29t =−;当2t =时,22x x −=,∴220x x −−=,∴()()210x x −+=, 解得12x =,21x =−;当9t =−时,29x x −=−,∴290x x −+=,此时2(1)4190=−−××<△,方程无解,故原方程的解为12x =,21x =−.21. 如图,抛物线2y x bx c =++与直线1y x =−交于点()1,A m −和(),2B n .(1)求抛物线的解析式;(2)根据图象直接写出不等式21x bx c x ++>−的解集.【答案】(1)24y x x =−−(2)1x <−或3x >【解析】【分析】本题考查了待定系数法求二次函数解析式,函数与不等式的关系等知识.(1)先求出点A 、B 的坐标为()1,2−−,()3,2,再代入2y x bx c =++即可求解;(2)根据函数与不等式的关系结合图象即可求解.【小问1详解】解:把()1,A m −和(),2B n 代入1y x =−,得112m =−−=−,21n =−,∴3n =,∴()1,2A −−,()3,2B ,把()1,2A −−,()3,2B 代入2y x bx c =++,得12932b c b c −+=− ++=, 解得14b c =− =−, ∴抛物线的解析式为24y x x =−−;【小问2详解】解:求不等式21x bx c x ++>−的解集可以看作当抛物线24y x x =−−的图象位于直线1y x =−的上方时求自变量x 的取值范围,∴由图象得不等式21x bx c x ++>−的解集为1x <−或3x >.22. 羽毛球作为国际球类竞技比赛的一种,发球后羽毛球的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,羽毛球从发出到落地的过程中竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()()20y a x h k a =−+≠.某次发球时,羽毛球的水平距离x 与竖直高度y 的几组数据如下:请根据上述数据,解决问题:(1)直接写出羽毛球飞行过程中竖直高度的最大值,并求出满足的函数关系()()20y a x h k a =−+≠; (2)已知羽毛球场的球网高度为1.55m ,当发球点距离球网5m 时,羽毛球能否越过球网?请说明理由. 【答案】(1)()225042727y x =−−+,50 m 27(2)能,理由见解析【解析】【分析】本题考查的是二次函数的实际应用,理解题意是解本题的关键;(1)先求解抛物线的对称轴与顶点坐标,再设设抛物线的关系式为()250427y a x =−+,再代入0x =,23y =即可得到答案; (2)把5x =代入()225042727y x =−−+可得169y =,再比较即可. 【小问1详解】解:根据表格中的数据可知,当2x =时,149y =,当6x =时,149y =, ∴点142,9 与146,9关于抛物线的对称轴对称, ∴抛物线的对称轴为直线2642x +=,根据表格中的数据可知,当4x =时,5027y =, ∴抛物线的顶点坐标为504,27, 即羽毛球飞行过程中竖直高度的最大值为50m 27;设抛物线的关系式为()250427y a x =−+,把0x =,23y =代入得:()225004327a =−+, 解得:227a =−, ∴抛物线的关系式为()225042727y x =−−+.【小问2详解】解:把5x =代入()225042727y x =−−+得:225016(54)27279y =−−+=, ∵161.559>,∴羽毛球能越过球网.23. 一人一盔安全守规,一人一带平安常在!某摩托车配件店经市场调查,发现进价为80元的新款头盔每月的销售量y (件)与售价x (元)的相关信息如下: 售价x (元)100 110 120 130 …销售量y(件)180160 140 120 … (1)试用你学过函数来描述y 与x 的关系,这个函数可以是_______(填“一次函数”或“二次函数”),直接写出这个函数解析式为______;(2)若物价局规定,该头盔最高售价不得超过140元,当售价为多少元时,月销售利润达到5600元? (3)若获利不得高于进价的60%,那么售价定为多少元时,月销售利润达到最大? 【答案】(1)一次函数,2380y x =−+ (2)120元 (3)128元【解析】【分析】本题主要考查一次函数,二次函数,一元二次方程的运用,(1)根据表格信息可得当售价x 增大时,销售量y 逐渐减小,可得这个函数是一次函数,运用待定系数即可求解;(2)根据题意得()()8023805600x x −−+=,解一元二次方程,结合题意取值即可; (3)设利润为w 元,则2(80)(2380)254030400w x x x x =−−+=−+−,根据获利不得高于进价的60%,即获利不得高于808060%128+×=(元),可得80128x ≤≤,结合二次函数图象的性质即可求解. 【小问1详解】解:根据表格信息,当售价x 增大10时,销售量y 减小20,∴这个函数是一次函数,设该一次函数解析式为()0y kx b k =+≠,把100180x y =,,110160x y =,代入得, 100180110160k b k b += +=, 解得,2380k b =− =, ∴一次函数解析式为2380y x =−+, 的当120x =时,2120380120y =−×+=,符合题意, ∴该函数是一次函数,解析式为2380y x =−+; 【小问2详解】解:根据题意得()()8023805600x x −−+=, 解得1120x =,2150x =,∵物价局规定,该头盔最高售价不得超过140元,∴150x =不合题意舍去,答:当售价为120元时,月销售利润达到5600元;【小问3详解】解:设利润为w 元,则2(80)(2380)254030400w x x x x =−−+=−+−, ∴当54013524b x a =−=−=−时,w 取最大值, ∵获利不得高于进价的60%,即获利不得高于808060%128+×=(元), ∴80128x ≤≤,∵20−<,∴当135x ≤时,w 随x∴当128x =时,w 最大,答:售价定为128元时,月销售利润达到最大.24. 如图1,抛物线22y ax x c =−+与x 轴交于点()30A −,和B ,与y 轴交于点()0,3C .(1)求该抛物线的解析式及顶点的坐标;(2)如图2,若P 是线段OA 上一动点,过P 作y 轴的平行线交抛物线于点H ,交AC 于点N ,设点P 的横坐标为t ,ACH 的面积为S .求S 关于t 的函数关系式;当t 取何值时,S 有最大值,求出S 的最大值;(3)若P 是x 轴上一个动点,过P 作直线PQ BC ∥交抛物线于点Q ,随着P 点的运动,在x 轴上是否存在这样的点P ,使以B P Q C ,,,为顶点的四边形为平行四边形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.【答案】(1)223y x x =−−+,()1,4−; (2)23922S t t =−−,32t =−时,S 有最大值,最大值是278;(3)存在,P 点坐标为()1,0−或()2−−或()2−+.【解析】【分析】(1)利用待定系数法求出抛物线的解析式,再把解析式转化为顶点式可得到顶点的坐标; (2)求出直线AC 的函数解析式,用含t 的式子表示出点N H 、的坐标,得出NH ,再根据12AHN CHN S S S HN OA =+=×× 求出S 关于t 的函数关系式,最后根据二次函数的性质解答即可求解; (3)求出B 点坐标,得到OB 的长,再分CQ BP ∥、点P 在点A 的左侧,CP BQ ∥和当点P 点A 的右侧,CP BQ ∥三种情况,画出图形解答即可求解.【小问1详解】解:把()3,0A −,()0,3C 代入22y ax x c =−+得,9603a c c ++= =, 解得13a c =− = , ∴该抛物线的解析式为223y x x =−−+, ∵()222314y x x x =−−+=−++,∴该抛物线的顶点坐标为()1,4−;【小问2详解】 解:设直线AC 的函数解析式为y kx b =+,把()3,0A −,()0,3C 代入得, 033k b b=−+ = ,解得13k b = =, ∴直线AC 的函数解析式为3y x ,把x t =代入3y x 得,3y t =+,∴(),3N t t +,∵点P 的横坐标为t ,∴PH y ∥轴,∴点H 的横坐标为t ,∴()2,23H t t t −−+, ∴()222333HN t t t t t =−−+−+=−−, ∴()22211393327332222228AHN CHNS S S HN OA t t t t t =+=××=×−−×=−−=−++ , ∵302−<, ∴当32t =−时,S 有最大值,最大值为278; 【小问3详解】解:存在,理由如下:把0y =代入223y x x =−−+得,2023x x =−−+,解得13x =−,21x =,∴()1,0B ,∴1OB =,如图,当CQ BP ∥时,四边形BCQP 为平行四边形,∴CQ PB =,把3y =代入223y x x =−−+得,2233x x −−+=,解得10x =,22x =−,∴()2,3Q −,∴2CQ =,∴2BP =,∴211OP =−=,∴()1,0P −;如图,当点P 在点A 的左侧,CP BQ ∥时,四边形BCPQ 是平行四边形,过点Q 作QM x ⊥轴于M ,则90∠=∠=°QMP COB , ∵四边形BCPQ 是平行四边形,∴PQ BC =,PQ BC ∥,∴QPM CBO ∠=∠, ∴()AAS QPM CBO ≌,∴1MP OB ==,3MQOC ==, ∴点Q 的纵坐标为3−,把=3y −代入223y x x =−−+得,2323x x −=−−+,解得11x =−21x =−(不符合,舍去),∴点P 的横坐标为2−−∴()2P −;如图,当点P 在点A 的右侧,CP BQ ∥时,四边形BCPQ 是平行四边形,过点Q 作QN x ⊥轴于N ,则90QNP COB ∠=∠=°,同理可得()2P −+;综上,点P 的坐标为()1,0−或()2−或()2−.【点睛】本题考查了用待定系数法求二次函数解析式,求二次函数图象的顶点坐标,二次函数与几何图形,二次函数的性质,平行四边形的性质,全等三角形的判定和性质,坐标与图形,正确画出图形并运用分类讨论思想解答是解题的关键.。
福州外国语学校2024-2025学年上学期九年级10月月考数学试卷(原卷版)
福州外国语学校2024-2025学年第一学期数学10月适应性练习一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列图形均表示医疗或救援的标识,其中既是轴对称图形又是中心对称图形的是( )A. B.C. D.2. 抛物线()245y x =−−的顶点坐标和开口方向分别是( )A. ()4,5−,开口向上B. ()4,5−,开口向下C. ()4,5−−,开口向上D. ()4,5−−,开口向下 3. 在平面直角坐标系xOy 中,将抛物线22y x =先向左平移2个单位,再向下平移3个单位,所得抛物线( ).A. ()2 223y x =−+B. ()2223y x =−− C ()2223y x =+− D. ()2223y x =++ 4. 若一元二次方程220x x m ++=没有实数根,则m 的取值范围是( )A. 1m ≥B. 1m ≤C. 1m >D. 1m < 5. 风力发电机可以在风力作用下发电,如图的转子叶片图案绕中心旋转后能与原来的图案重合,则至少要旋转( )度.A. 60B. 120C. 180D. 2706. 若1x ,2x 是一元二次方程2560x x −+=的两个根,则12x x +的值为( )为.A. 5−B. 5C. 6−D. 67. 如图,在Rt ABC △中,90ACB ∠=°,60A ∠=°,4AC =,将CAB △绕点C 按逆时针方向旋转得到CDE ,点D 恰好在AB 边上,连接BE ,则BE 的长为( ).A. 8B.C. D. 68. 已知二次函数224y x x =−++,关于该函数在22x −≤≤的取值范围内,下列说法正确的是( )A. 有最大值5,有最小值4−B. 有最大值0,有最小值4−C. 有最大值4,有最小值4−D. 有最大值4,有最小值09. 函数2y ax bx =+与y ax b =+在同一平面直角坐标系中的图象大致是( ) A. B.C. D.10. 已知抛物线()24219y x =−−+上的两点()11,P x y ,()22,Q x y 满足213x x −=,则下列结论中正确的是( )A. 若11x 2<,则120y y << B. 若1122x <<,则120y y >> C. 若11x 2<,则120y y << D. 若1122x <<,则120y y >> 二、填空题11. 点()3,2M −关于原点对称的点的坐标是_______________.12. 已知二次函数y =ax 2+bx+c 中,函数y 与自变量x 部分对应值如表,x 6.176.186.196.20的y ﹣0.03 ﹣0.01 0.02 0.04则方程ax 2+bx+c =0的一个解的范围是_____.13. 请将二次函数2245y x x =−−+改写()2y a x h k =−+的形式为_____.14. 若a 是关于x 的方程2310x x −−=的一个根,则2202662a a −+的值为_____.15. 已知二次函数2y ax bx c ++的部分图象如图所示,则使得函数值y 大于2的自变量x 的取值范围是_________.16. 如图,在ABC 中,90ABC ∠=°, BA BC =, 把ABC 绕点A 逆时针旋转得到ADE , 点D 与点B 对应,点 D 恰好落在AC 上,过E 作EF AB ∥交 BC 的延长线于点F , 连接BD 并延长交EF 于点G ,连接CE 交BG 于点 H .下列结论: ①BD DG =; ②CE =;③CH EH =;④.=FG 其中正确的有_________________(填正确的序号).三、解答题(本大题共7小题,解答应写出文字说明,证明过程或演算步骤)17. 解方程2610x x −+=.18. 如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,ABC 的顶点都在格点上.(1)将ABC 向右平移6个单位长度得到111A B C △,请画出111A B C △;(2)画出ABC 关于点O 的中心对称图形222A B C △;(3)若将111A B C △绕某一点旋转可得到222A B C △,请直接写出旋转中心的坐标:_________. 19. 已知二次函数的图象经过点()0,3、()3,0−、()2,5−,且与x 轴交于A 、B 两点.(1)试确定此二次函数的解析式;(2)判断点()2,3P −是否在这个二次函数图象上,如果在,请求出PAB 的面积;如果不在,请说明理由.20. 如图,AGB 与CGD △关于点G 中心对称,若点E ,F 分别在GA GC ,上,且AE CF =,求证:BF DE =.21. 已知二次函数()225y x k x k =−−+−(k 是常数). (1)求证:该二次函数的图象与x 轴一定有两个交点;(2)若点(),2M k k −在该二次函数的图象上,且点M 在第四象限,该二次函数的图象与y 轴交于点N ,求点M 与点N 之间的距离.22. 篮球是学生非常喜爱的运动项目之一.篮圈中心距离地面的竖直高度是3.05m,小明站在距篮圈中心的水平距离6.5m 处的点A 练习定点投篮,篮球从小明正上方出手到接触篮球架的过程中,其运行路线可以看作是抛物线的一部分.当篮球运行的水平距离是x (单位:m )时,球心距离地面的竖直高度是y (单位:m ).小明进行了多次定点投篮练习,并做了记录:(1)第一次训练时,篮球的水平距离x 与竖直高度y 的几组数据如下: 水平距离/m x 0 1 2 3 4 5 6竖直距离/m y 2.0 2.7 3.2 3.5 3.6 3.5 3.2①结合表中数据,直接写出篮球运行的最高点距离地面的竖直高度,并求y 与x 满足的函数解析式; ②判断小明第一次投篮练习否投进篮筐,并说明理由;(2)将小明第i 次投篮后,篮球运行到最高点时,篮球运行的水平距离记为i d .小明第二次训练时将球投进了篮筐,已知第二次训练与第一次训练相比,出手高度相同,篮球运行到最高点时球心距离地面的竖直高度也相同,则1d _______2d (填“>”,“<”或“=”). 23. 如图1,在等边三角形ABC 中,D 为BC 边上一点,满足BD CD <,连接AD ,以点A 为中心,将线段AD 绕点A 顺时针旋转60 ,点D 的对应点E 恰好落在射线BM 上.(1)求证:CD BE =.(2)如图2,若点B 关于直线AD 的对称点为F ,直线AD 交BF 于点N ,连接CF .①求证:AE CF .②若BE CF AB +=,求BAD ∠的度数.是。
九年级上学期数学10月月考试卷新版
九年级上学期数学10月月考试卷新版一、单选题 (共10题;共20分)1. (2分)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A . 俯视图不变,左视图不变B . 主视图改变,左视图改变C . 俯视图不变,主视图不变D . 主视图改变,俯视图改变2. (2分)下列四个命题中,真命题的是()A . 相等的圆心角所对的弧相等B . 同旁内角互补C . 平行四边形是轴对称图形D . 全等三角形对应边上的高相等3. (2分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()B . 60°C . 55°D . 50°4. (2分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年收入400美元,预计2019年年收入将达到1200美元,设2017年到2019年该地区居民年人均收入平均增长率为x,可列方程为()A . 400(1+2x)=12000B . 400(1+x)2=12000C . 400(1+x2)=1200D . 400+2x=120005. (2分)已知a为整数,且,则a等于()A . 1B . 2C . 3D . 46. (2分)把一个小球以20米/秒的速度竖起向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t-5t ,当小球达到最高点时,小球的运动时间为()A . 1秒B . 2秒C . 4秒7. (2分)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为,,,,那么可以转换为该生所在班级序号,其序号为.如图2第一行数字从左到右依次为0,1,0,1,序号为,表示该生为5班学生.表示6班学生的识别图案是()A .B .C .D .8. (2分)已知抛物线:y=ax2+bx+c(a<0)经过A(2,4)、B(﹣1,1)两点,顶点坐标为(h,k),则下列正确结论的序号是()①b>1;②c>2;③h>;④k≤1.A . ①②③④B . ①②③C . ①②④D . ②③④9. (2分)关于方程(a+1)x=1,下列结论正确的是()A . 方程无解B . x=C . a≠-1时方程解为任意实数D . 以上结论都不对10. (2分)如图,在△ABC中,∠A=36°,AB=AC,BD、CE分别为△ABC的角平分线,BD、CE相交于O,则图中等腰三角形有()A . 5个B . 6个C . 7个D . 12个二、填空题 (共7题;共8分)11. (2分)如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为弧AB的中点,D是OA的中点,则图中阴影部分的面积为________cm2.12. (1分)方程3x(x-1)=2(x-1)的根是________13. (1分)将抛物线y=(x+2)2-3的图像向上平移5个单位,得到函数解析式为________ .14. (1分)关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是________.15. (1分)如图,设矩形ABCD的边BC=x,DC=y,连接BD且CE⊥BD,CE=2,BD=4,则(x+y)2﹣3xy+2的值为________ .16. (1分)如图,等边三角形OAB的一边OA在x轴上,双曲线y= 在第一象限内的图象经过OB边的中点C,则点B的坐标是________.17. (1分)三元一次方程组的解是________三、解答题 (共8题;共75分)18. (10分)化简(1+ )÷ .19. (10分)如图,A是半径为6cm的⊙O上的定点,动点P从A出发,以πcm/s的速度沿圆周按顺时针方向运动,当点P回到A时立即停止运动.设点P运动时间为t(s)(1)当t=6s时,∠POA的度数是________;(2)当t为多少时,∠POA=120°;(3)如果点B是OA延长线上的一点,且AB=AO,问t为多少时,△POB为直角三角形?请说明理由.20. (8分)甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩(环)中位数(环)众数(环)方差甲a77 1.2乙7b8c (1)写出表格中a,b,c的值;赛,你认为应选哪名队员?(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?21. (10分)根据所学知识填空:(1)(﹣2)+________=﹣4.(2)(﹣2)﹣________=4.22. (7分)已知二次函数y=﹣x2+2x+3图象的对称轴为直线.(1)请求出该函数图象的对称轴;(2)在坐标系内作出该函数的图象;(3)有一条直线过点P(1,5),若该直线与二次函数y=﹣x2+2x+3只有一个交点,请求出所有满足条件的直线的关系式.23. (10分)某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x30323436y40363228(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?24. (10分)已知,如图所示,在矩形ABCD中,点E在BC边上,∠AEF=90°(1)如图①,已知点F在CD边上,AD=AE=5,AB=4,求DF的长;(2)如图②,已知AE=EF,G为AF的中点,试探究线段AB,BE,BG的数量关系;(3)如图③,点E在矩形ABCD的BC边的延长线上,AE与BG相交于O点,其他条件与(2)保持不变,AD=5,AB=4,CE=1,求△AOG的面积.25. (10分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO= ,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共75分)18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。
山东省青岛三十八中九年级数学10月月考试题(含解析) 新人教版-新人教版初中九年级全册数学试题
某某省某某三十八中2016届九年级数学10月月考试题一、精心选一选,相信你一定能选对!(每题3分,共27分)1.下列方程中,是一元二次方程的是()A.2x2﹣7=3y+1 B.5x2﹣6y﹣2=0C.x﹣=+x D.ax2+(b﹣3)x+c+5=02.三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定3.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形4.正方形具有而菱形不具有的性质是()A.对角线平分一组对角B.对角线相等C.对角线互相垂直平分D.四条边相等5.若菱形两条对角线的长分别为6和8,则这个菱形的周长为()A.20 B.16 C.12 D.106.关于x的方程3x2﹣2x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定7.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是()A.x2+3x+4=0 B.x2﹣4x+3=0 C.x2+4x﹣3=0 D.x2+3x﹣4=08.两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为()A.B.C.D.9.2012年某某市政府投资2亿元人民币建设了廉租房8万平方米,预计2014年投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x,根据题意,列出方程为()A.2(1+x)2=9.5 B.2(1+x)+2(1+x)2C.2+2(1+x)+2(1+x)2二、填空题(每题3分,共27分)10.一元二次方程2x2+4x=1的二次项系数、一次项系数及常数之和为.11.▱ABCD中,对角线AC、BD交于点O,若AC=8,BD=6,则边AB长的取值X围为.12.顺次连接一个对角线互相垂直的四边形各边中点,所得的四边形是形.13.从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是.14.在△ABC中,已知∠A、∠B、∠C的度数之比为1:2:3,AB边上的中线长为4cm,则△ABC面积等于cm2.15.若关于x的方程3x2+mx+m﹣6=0有一根是0,则m=.16.如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,则∠BOE 的度数为度.17.如图所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC中点E处,点A落在E处,折痕为MN,则线段的长是.18.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD,若AB=4,AD=6,∠ABC=60°,PD的长,四边形ABEF的面积.三、解答题19.解方程(1)2x2+4x﹣3=0(配方法解)(2)5x2﹣8x+2=0(公式法解)(3)3(x﹣5)2=2(5﹣x)(4)(3x+2)(x+3)=x+14.20.小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)若出现紫色,则小明胜.此游戏的规则对小明、小芳公平吗?试说明理由.21.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:(1)△ABE≌△ADF;(2)∠AEF=∠AFE.22.某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的市场调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出1辆.该4S店要想平均每周的销售利润为90万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?23.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?24.D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点,O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?为什么?(3)当OA与BC满足时,四边形DGEF是一个矩形(直接填答案,不需证明.)25.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC与点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P 自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,已知点P的速度为每秒5cm,点Q 的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.某某省某某三十八中2016届九年级上学期月考数学试卷(10月份)参考答案与试题解析一、精心选一选,相信你一定能选对!(每题3分,共27分)1.下列方程中,是一元二次方程的是()A.2x2﹣7=3y+1 B.5x2﹣6y﹣2=0C.x﹣=+x D.ax2+(b﹣3)x+c+5=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是二元二次方程,故A错误;B、是二元二次方程,故B错误;C、是一元二次方程,故C正确;D、a=0时,是一元一次方程,故D错误;故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定【考点】解一元二次方程-因式分解法;三角形三边关系.【专题】计算题.【分析】将已知的方程x2﹣10x+21=0左边分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解得到原方程的解为3或7,利用三角形的两边之和大于第三边进行判断,得到满足题意的第三边的长.【解答】解:x2﹣10x+21=0,因式分解得:(x﹣3)(x﹣7)=0,解得:x1=3,x2=7,∵三角形的第三边是x2﹣10x+21=0的解,∴三角形的第三边为3或7,当三角形第三边为3时,2+3<6,不能构成三角形,舍去;当三角形第三边为7时,三角形三边分别为2,6,7,能构成三角形,则第三边的长为7.故选A【点评】此题考查了利用因式分解法求一元二次方程的解,以及三角形的边角关系,利用因式分解法解方程时,首先将方程右边化为0,左边分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化两个一次方程来求解.3.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理.【专题】计算题.【分析】A、一组对边相等,另一组对边平行的四边形不一定为平行四边形,例如等腰梯形满足一组对边相等,另一组对边平行,但不是平行四边形;B、对角线相等的四边形不一定为矩形,例题等腰梯形的对角线相等,但不是矩形,应改为对角线相等的平行四边形为矩形;C、对角线互相垂直的四边形不一定为菱形,例如:画出图形,如图所示,AC与BD垂直,但是显然ABCD不是菱形,应改为对角线互相垂直的平行四边形是菱形;D、两条对角线相等且互相垂直平分的四边形是正方形,根据题意画出相应的图形,如图所示,根据对角线互相平分,得到四边形为平行四边形,再由平行四边形的对角线相等,得到平行四边形为矩形,最后根据矩形的对角线互相垂直得到矩形为正方形.【解答】解:A、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如等腰梯形,一组对边平行,另一组对边相等,不是平行四边形,故本选项为假命题;B、对角线相等的四边形不一定是矩形,例如等腰梯形对角线相等,但不是矩形,故本选项为假命题;C、两条对角线互相垂直的四边形不一定是菱形,如图所示:AC⊥BD,但四边形ABCD不是菱形,本选项为假命题;D、两条对角线相等且互相垂直平分的四边形是正方形,已知:四边形ABCD,AC=BD,AC⊥BD,OA=OC,OB=OD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形为平行四边形,又AC=BD,∴四边形ABCD为矩形,∵AC⊥BD,∴四边形ABCD为正方形,则本选项为真命题,故选D【点评】此题考查了正方形的判定,平行四边形的判定,矩形的判定,以及菱形的判定,判断一个命题为假命题,只需举一个反例即可;判断一个命题为真命题,必须经过严格的证明.熟练掌握平行四边形、矩形、菱形及正方形的判定是解本题的关键.4.正方形具有而菱形不具有的性质是()A.对角线平分一组对角B.对角线相等C.对角线互相垂直平分D.四条边相等【考点】正方形的性质;菱形的性质.【分析】根据正方形的性质以及菱形的性质,即可判断.【解答】解:正方形的边:四边都相等,菱形的边四边都相等;正方形的角:四角都相等,都是直角,菱形的角:对角相等;正方形的对角线:相等,互相平分,且互相垂直,菱形的对角线:互相平分,互相垂直.则:正方形具有而菱形不具有的性质是:对角线相等.故应选B.【点评】本题考查了正方形与菱形的性质,关键是对性质的正确记忆.5.若菱形两条对角线的长分别为6和8,则这个菱形的周长为()A.20 B.16 C.12 D.10【考点】菱形的性质.【专题】计算题.【分析】根据菱形的对角线性质求边长后计算周长.【解答】解:如图,在菱形ABCD中,AC=8,BD=6.∵ABCD为菱形,∴AC⊥BD,BO=3,AO=4.∴AB=5.∴周长=4×5=20.故选A.【点评】此题考查了菱形的性质:对角线互相垂直且平分;四边相等.属基础题.6.关于x的方程3x2﹣2x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定【考点】根的判别式.【分析】先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.【解答】解:∵a=3,b=﹣2,c=1,∴△=b2﹣4ac=4﹣12=﹣8<0,∴关于x的方程3x2﹣2x+1=0没有实数根.故选:C.【点评】此题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是()A.x2+3x+4=0 B.x2﹣4x+3=0 C.x2+4x﹣3=0 D.x2+3x﹣4=0【考点】根与系数的关系.【分析】根据根与系数的关系,直接代入计算即可.【解答】解:∵关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,∴3+1=﹣p,3×1=q,∴p=﹣4,q=3,故选:B.【点评】本题考查了根与系数的关系,解题的关键是熟练掌握根与系数的字母表达式,并会代入计算.8.两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:列表得:1 2 3 41 1+1=2 2+1=3 3+1=4 4+1=52 1+2=3 2+2=4 3+2=5 4+2=63 1+3=4 2+3=5 3+3=6 4+3=74 1+4=5 2+4=6 3+4=7 4+4=8画树状图得:∴一共有16种情况,着地的面所得的点数之和等于5的有4种,∴着地的面所得的点数之和等于5的概率为=.故选A.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.2012年某某市政府投资2亿元人民币建设了廉租房8万平方米,预计2014年投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x,根据题意,列出方程为()A.2(1+x)2=9.5 B.2(1+x)+2(1+x)2C.2+2(1+x)+2(1+x)2【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】如果设每年市政府投资的增长率为x,则可以根据“2012年某某市政府投资2亿元人民币建设了廉租房8万平方米,预计2014年投资9.5亿元人民币建设廉租房”作为相等关系得到方程2(1+x)2=9.5.【解答】解:设每年的增长率为x,根据题意得2(1+x)2=9.5,故选A.【点评】本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.二、填空题(每题3分,共27分)10.一元二次方程2x2+4x=1的二次项系数、一次项系数及常数之和为 5 .【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,其中a,b,c 分别叫二次项系数,一次项系数,常数项.确定二次项系数,一次项系数,常数项以后即可求解.【解答】解:一元二次方程2x2+4x=1的二次项系数为2、一次项系数为4,常数项为﹣1,故二次项系数、一次项系数及常数之和为:2+4﹣1=5.故答案为:5.【点评】此题主要考查了一元二次方程的一般形式,正确得出各项系数是解题关键.11.▱ABCD中,对角线AC、BD交于点O,若AC=8,BD=6,则边AB长的取值X围为1<AB<7 .【考点】平行四边形的性质;三角形三边关系.【分析】根据平行四边形对角线互相平分可得AO=4,BO=3,再根据三角形的三边关系可得4﹣3<AB <4+3,再解即可.【解答】解:∵四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AC=8,BD=6,∴AO=4,BO=3,∴4﹣3<AB<4+3,解得:1<AB<7.故答案为:1<AB<7.【点评】此题主要考查了三角形的三边关系以及平行四边形的性质,关键是掌握平行四边形的对角线互相平分.12.顺次连接一个对角线互相垂直的四边形各边中点,所得的四边形是矩形.【考点】中点四边形.【分析】根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形.【解答】解:矩形.理由如下:∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,(三角形的中位线平行于第三边)∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)∵AC⊥BD,EF∥AC,EH∥BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).【点评】本题考查的是矩形的判定方法,常用的方法有三种:①一个角是直角的平行四边形是矩形.②三个角是直角的四边形是矩形.③对角线相等的平行四边形是矩形.13.从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与随机抽取两个数相乘,积是正数的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,随机抽取两个数相乘,积是正数的有2种情况,∴随机抽取两个数相乘,积是正数的概率是:=.故答案为:.【点评】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.14.在△ABC中,已知∠A、∠B、∠C的度数之比为1:2:3,AB边上的中线长为4cm,则△ABC面积等于8cm2.【考点】解直角三角形;直角三角形斜边上的中线.【分析】根据比例设∠A、∠B、∠C的度数分别为k、2k、3k,然后利用三角形的内角和定理列式求出三个角的度数,再根据直角三角形斜边上的中线等于斜边的一半求出AB的长,根据直角三角形30°角所对的直角边等于斜边的一半求出BC的长,利用勾股定理列式求出AC的长,然后利用三角形的面积公式列式计算即可得解.【解答】解:设∠A、∠B、∠C的度数分别为k、2k、3k,根据题意得,k+2k+3k=180°,解得k=30°,所以,∠A、∠B、∠C的度数分别为30°、60°、90°,∵AB边上的中线长为4cm,∴AB=2×4=8cm,BC=AB=×8=4cm,在Rt△ABC中,AC===4cm,△ABC面积=AC•BC=×4×4=8cm2.故答案为:8.【点评】本题考查了解直角三角形,直角三角形斜边上的中线等于斜边的一半和直角三角形30°角所对的直角边等于斜边的一半的性质,利用“设k法”求出△ABC三个内角的度数是解题的关键,作出图形更形象直观.15.若关于x的方程3x2+mx+m﹣6=0有一根是0,则m= 6 .【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义求解.把x=0代入方程求出m的值.【解答】解:∵x=0是方程的根,由一元二次方程的根的定义,可得m﹣6=0,解此方程得到m=6.【点评】本题逆用一元二次方程解的定义易得出m的值.16.如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,则∠BOE 的度数为75 度.【考点】矩形的性质;等边三角形的判定与性质.【专题】计算题.【分析】根据矩形的性质可得△BOA为等边三角形,得出BA=BO,又因为△BAE为等腰直角三角形,BA=BE,由此关系可求出∠BOE的度数.【解答】解:在矩形ABCD中,∵AE平分∠BAD,∴∠BAE=∠EAD=45°,又知∠EAO=15°,∴∠OAB=60°,∵OA=OB,∴△BOA为等边三角形,∴BA=BO,∵∠BAE=45°,∠ABC=90°,∴△BAE为等腰直角三角形,∴BA=BE.∴BE=BO,∠EBO=30°,∠BOE=∠BEO,此时∠BOE=75°.故答案为75°.【点评】此题综合考查了等边三角形的判定、等腰三角形的性质、矩形的性质等知识点.17.如图所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC中点E处,点A落在E处,折痕为MN,则线段的长是3cm .【考点】翻折变换(折叠问题).【分析】设=x,则EN=DN=8﹣x,在RT△ENC中利用勾股定理列出方程解方程即可.【解答】解:设=x,∵四边形ABCD是正方形,∴AB=BC=CD=AD=8,∵BE=EC=4,在RT△ENC中,∵=x,EN=DN=8﹣x,EC=4,∴(8﹣x)2=x2+42,∴x=3,∴=3cm.故答案为3cm.【点评】本题考查正方形的性质、勾股定理.翻折不变性等知识.解题关键是用方程的思想去思考,利用勾股定理列出方程解决问题,属于2016届中考常考题型.18.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD,若AB=4,AD=6,∠ABC=60°,PD的长2,四边形ABEF的面积8.【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AD∥BC,从而得到∠AFB=∠FBE,再由∠ABF=∠FBE,推出∠ABF=∠AFB,于是得到AB=AF,同理得出AB=BE,四边形ABEF是菱形,由菱形的性质得出AE⊥BF,得到∠ABF=30°,∠BAP=∠FAP=60°从而得出AB=AE=4,AP=2,过点P作PM⊥AD于M,得到PM=,AM=1,从而得到DM=5,由勾股定理求出PD、PB的长,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠FBE,∵∠ABF=∠FBE,∴∠ABF=∠AFB,∴AB=AF,同理AB=BE,∴四边形ABEF是菱形,∴AE⊥BF,∵∠ABC=60°,∴∠ABF=30°,∠BAP=∠FAP=60°,△ABE为等边三角形,∴AB=AE=4,∵AB=4,∴AP=2,过点P作PM⊥AD于M,如图所示:∴PM=,AM=1,∵AD=6,∴DM=5,∴PD===2;BP===2,∴菱形ABEF的面积=2×BP•AE=2××2×4=8;故答案为:2,8.【点评】本题主要考查了平行四边形的性质、平行线的性质、菱形的判定与性质、含30°角的直角三角形性质、勾股定理,等边三角形的判定与性质、菱形面积的计算等知识;熟练掌握菱形的判定与性质是解决问题的关键.三、解答题19.解方程(1)2x2+4x﹣3=0(配方法解)(2)5x2﹣8x+2=0(公式法解)(3)3(x﹣5)2=2(5﹣x)(4)(3x+2)(x+3)=x+14.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)先把二次项系数化为1,再进行配方,进而开方求出方程的解;(2)首先找出方程中a,b和c的值,求出△=b2﹣4ac的值,进而代入求根公式即可;(3)先提取公因式(x﹣5)得到(x﹣5)(3x﹣13)=0,再解两个一元一次方程即可;(4)先去括号,把方程化为一般形式,再利用因式分解法解方程即可.【解答】解:(1)∵2x2+4x﹣3=0,∴x2+2x﹣=0,∴x2+2x+1﹣1﹣=0,∴(x+1)2=,∴x+1=±,∴x1=﹣1+,x2=﹣1﹣;(2)∵5x2﹣8x+2=0,∴a=5,b=﹣8,c=2,∴△=b2﹣4ac=64﹣40=24,∴x==,∴x1=,x2=;(3)∵3(x﹣5)2=2(5﹣x),∴(x﹣5)(3x﹣13)=0,∴x﹣5=0或3x﹣13=0,∴x1=5,x2=;(4)∵(3x+2)(x+3)=x+14,∴3x2+11x+6=x+14,∴3x2+10x﹣8=0,∴(3x﹣2)(x+4)=0,∴3x﹣2=0或x+4=0,∴x1=,x2=﹣4.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.20.小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)若出现紫色,则小明胜.此游戏的规则对小明、小芳公平吗?试说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)根据题意,用列表法将所有可能出现的结果,即可得答案;(2)由(1)的表格,分析可能得到紫色的概率,得到结论.【解答】解:(1)用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.红(红,红)(蓝,红)(黄,红)蓝(红,蓝)(蓝,蓝)(黄,蓝)红(红,红)(蓝,红)(黄,红)黄(红,黄)(蓝,黄)(黄,黄)红蓝黄(2)上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是=,即小明获胜的概率是;故小芳获胜的概率是.而<,故小芳获胜的可能性大,这个“配色”游戏对双方是不公平的.【点评】本题考查的是游戏公平性的判断.实际考查概率的计算与游戏公平性的理解,要求学生根据题意,结合实际情况,计算并比较游戏者的胜利的概率,进而得到结论.用到的知识点为:概率=所求情况数与总情况数之比.21.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:(1)△ABE≌△ADF;(2)∠AEF=∠AFE.【考点】菱形的性质;全等三角形的判定与性质.【专题】证明题.【分析】在菱形中,由SAS求得△ABF≌△ADF,再由等边对等角得到∠AEF=∠AFE.【解答】证明:(1)∵ABCD是菱形,∴AB=AD∠B=∠D.又∵BE=DF,∴△ABE≌△ADF.(2)∵△ABE≌△ADF,∴AE=AF,∴∠AEF=∠AFE.【点评】本题利用了菱形的性质和全等三角形的判定和性质,等边对等角求解.22.某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的市场调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出1辆.该4S店要想平均每周的销售利润为90万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?【考点】一元二次方程的应用.【专题】销售问题.【分析】销售利润=一辆汽车的利润×销售汽车数量,一辆汽车的利润=售价﹣进价,降低售价的同时,销售量就会提高,“一减一加”,根据每辆的盈利×销售的件数=90万元,即可列方程求解.【解答】解:设每辆汽车的降价为x万元,根据题意得:(25﹣x﹣15)(8+)=90,解得x1=1,x2=5,当x=1时,总成本为15×(8+2×1)=150(万元);当x=5时,总成本为15×(8+2×5)=270(万元),为使成本尽可能的低,则x=1,即25﹣x=25﹣1=24(万元),答:每辆汽车的定价应为24万元.【点评】此题主要考查了一元二次方程的应用,本题关键是会表示一辆汽车的利润,销售量增加的部分.找到关键描述语,找到等量关系:每辆的盈利×销售的件数=90万元是解决问题的关键.23.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.【解答】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得x(25﹣2x+1)=80,化简,得x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,答:所围矩形猪舍的长为10m、宽为8m.【点评】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.24.D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点,O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?为什么?(3)当OA与BC满足OA⊥BC时,四边形DGEF是一个矩形(直接填答案,不需证明.)【考点】中点四边形.【分析】(1)首先利用三角形中位线的性质得出DE∥BC,DE=BC,同理,GF∥BC,GF=BC,即可得出DE∥GF,DE=GF即可得出四边形DGFE是平行四边形;(2)利用(1)中所求,只要邻边再相等即可得出答案.(3)利用(1)中所求,只要邻边相互垂直的平行四边形即为矩形.【解答】(1)证明:∵D、E分别是边AB、AC的中点.∴DE∥BC,DE=BC.同理,GF∥BC,GF=BC.∴DE∥GF,DE=GF.∴四边形DEFG是平行四边形.(2)解:解法一:点O的位置满足两个要求:AO=BC,且点O不在射线CD、射线BE上.。
山西省太原市2023-2024学年九年级上学期月考数学试题(含解析)
2023-2024学年第一学期九年级教学质量检测考试(10月月考)数学(北师)注意事项:1.本试卷考查范围:第1、2章完。
本试卷共8页,满分120分,考试时间为120分钟。
2.本试卷采用网阅形式阅卷,请将答题信息与答题过程在配套的答题卡上完成。
试卷上答题无效。
3.答卷前,考生务必将自己的姓名、准考证号等相关信息填写在本试卷配套答题卡的相应的位置里.4.考试结束后,将本试卷和答题卡一并交回.第I 卷 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分。
在每小题的四个选项中,只有一项最符合题意,请选出并在答题卡上将该项涂黑。
)1.下列方程中,属于一元二次方程的是( )A .B .C .D .2.一元二次方程配方后可变形为( )A .B .C .D .3.方程的解是( )A .B .C .D .4.用求根公式解一元二次方程时a ,b ,c 的值是( )A .B .C .D .5.如图,在中,,D 是AB 的中点,,则CD 的长为()A .4B .5C .6D .86.如图,两张等宽的纸条交叉叠放在一起,重合部分构成四边形ABCD .测得A 、B 的距离为6,A 、C 的距离为4,则B 、D 的距离是()21x y -=223x x+=2240x y -+=2210x x -+=2810x x --=2(4)17x +=2(4)15x +=2(4)17x -=2(4)15x -=25x x =5x =0x =125;0x x =-=125;0x x ==2324x x -=3,2,4a b c ==-=3,4,2a b c ==-=3,4,2a b c ==-=-3,4,2a b c ===-Rt ABC △90ACB ∠=︒8AB =A .B .8C .D .7.电影《满江红》于2023年1月22日在中国大陆上映,某地第一天票房约2亿元,以后每天票房按相同的增长率增长,三天后票房收入累计达7亿元,若把增长率记作x ,则方程可以列为()A .B .C .D .8.若关于x 的一元二次方程有实数根,则k 的取值范围是( )A .B .C .且D .且9.如图,中,,点D 是AB 边上的动点,过点D 作边AC ,BC 的垂线,垂足分别为E 、F 连接EF ,则EF 的最小值为()A .3B .2.4C .4D .2.510.如图、正方形ABCD 的边长为4,G 是对角线BD 上一动点,于点E ,于点F ,连接EF ,给出四种情况:①若G 为BD 的中点,则四边形CEGF 是正方形;②若G 为BD 上任意一点,则;2(1)7x +=22(1)7x +=222(1)7x ++=222(1)2(1)7x x ++++=2690kx x -+=1k <1k ≤1k <0k≠1k ≤0k ≠Rt ABC △9034ACB AC BC ∠=︒==,,GE CD ⊥GF BC ⊥AG EF =③点G 在运动过程中,的值为定值4;④点G 在运动过程中,线段EF 的最小值为正确的有( )A ①②③④B .①②③C .①②④D .①③④第Ⅱ卷 非选择题(共90分)二、填空题(本题共5个小题,每小题3分,共15分。
人教版九年级上册数学月考试卷(含答案)
人教版九年级上册数学月考试卷(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.函数1y x =-的自变量x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1≥x2.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .86.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A.40°B.45°C.50°D.55°9.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°10.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(-2,3),AD=5,若反比例函数kyx=(k>0,x>0)的图象经过点B,则k的值为()A.163B.8 C.10 D.323二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2(32)(32)=__________.2.分解因式:33a b ab-=___________.3x2-x的取值范围是__________.4.如图,已知菱形ABCD的周长为16,面积为83E为AB的中点,若P为对角线BD 上一动点,则EP +AP 的最小值为__________.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.3.如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC 上有一点P ,使PO+PA 的值最小,求点P 的坐标;(3)在x 轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表 借阅图书的次数 0次 1次 2次 3次 4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、B4、C5、C6、B7、D8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)12、ab (a+b )(a ﹣b ).3、x 2≥4、5、6、①③④.三、解答题(本大题共6小题,共72分)1、2x =2、(1)6m <且2m ≠;(2)12x =-,243x =- 3、(1)y=﹣x 2+2x+3;(2)P (97 ,127);(3)当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似.4、(1)答案略;(2)45°.5、()117、20;()22次、2次;()372;()4120人.6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。
四川省成都市七中英才学校2024-2025学年九年级上学期10月考数学试卷(无答案)
初2022级学习能力阶段性反馈(一)数学A 卷(共100分)一、选择题(本大题共8个小题,每小题4分,共32分。
每小题均有四个选项,其中只有一项符合题目要求)1在实数范围内有意义,则实数x 的取值范围是( )A .B .C .D .2.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.若,则下列变形正确的是( )A .B .C .D .4.下列方程中,是关于x 的一元二次方程的是( )A .B .C .D .5.下列各组中的四条线段不能成比例的是( )A .B .C .D .6.如图,在平面直角坐标系中,直线和相交于点,不等式的解集为( )A .B .C .D . 7.如图,,若,则等于( )0x ≥1x ≥1x ≤0x <a b <11a b ->-44a b >33a b ->-1212a b-<-210x y -+=2x y +=210x -=210x x-=4cm 2cm 6cm 3cm 、、、6cm 10cm 3cm 5cm 、、、6cm 4cm 9cm 6cm 、、、3cm 2cm 8cm 6cm、、、2y x =- 1.2y ax =+(,1)A m 2 1.2x ax -<+12x >-1x >1x <12x <-123l l l ∥∥3,2AB BC ==DE DFA. B . C . D .8.如图,四边形ABCD 是菱形,对角线于点H ,且DH 与AC 交于点G ,则DH 的长为( )AB C . D二、填空题(本大题共5小题,每小题4分,共20分)9.分解因式:________.10.若,则________.11.若关于x 的一元二次方程无实数根,则k 的取值范围是________.12.四边形ABCD 的四边长分别是3,4,7,9,四边形四边形,四边形的最长边是15,则四边形ABCD 与四边形的相似比是________.13.如图,在中,CD 是AB 边上的高,分别以点A ,C 为圆心,以大于的长为半径作弧,两弧交于点E ,F ,连接EF ,分别交CB ,CD ,CA 于点G ,M ,N ,若,则AC 的长为________.三、解答题(本大题共5小题,共48分)14.(12分)解方程:(1) (2)233225354cm,2cm,AC BD DH AB ==⊥8cm 52233ax ay -=223x y y -=x y=220x x k +-=ABCD ∽A B C D ''''A B C D ''''A B C D ''''ABC △12AC 35AD CM ==,2250x x --=(23)46x x x +=+15.(8分)先化简,再求值:,从,2,4中选一个合适的数作为x 的值代入求值.16.(8分)如图,利用一面墙(墙EF 最长可利用),围成一个矩形花园ABCD .与墙平行的一边BC 上要预留宽的入口(如图中MN 所示,不用砌墙).用砌长的墙的材料.(1)当矩形的长BC 为多少米时,矩形花园的面积为;(2)能否围成的矩形花园?请通过计算说明理由.17.(10分)如图,已知四边形ABCD 是菱形,点E 是对角线AC 上的一点,连接BE 并延长交AD 于点F ,交CD 的延长线于点G ,连接DE .(1)求证:;(2)求证:.18.(10分)在菱形ABCD 中,,P 是直线BD 上一动点,以AP 为边向右侧作等边(A ,P ,E 按逆时针排列),点E 的位置随点P 的位置变化而变化.图1 图2 图3(1)如图1,当点P 在线段BD 上,且点E 在菱形ABCD 内部或边上时,连接CE ,则BP 与CE 的数量关系是________,BC 与CE 的位置关系是________;(2)如图2,当点P 在线段BD 上,且点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;2241244x x x x x -⎛⎫-÷ ⎪--+⎝⎭2-28m 2m 60m 2300m 2500m G ADE ∠=∠2EB EF EG =⋅60ABC ∠=︒APE △(3)当点P 在直线BD 上时,其他条件不变,连接BE .若的面积.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.若实数a ,b ,c 满足,且,则________.20.若是方程的两个实数根,则代数式的值等于________.21.如图,点D ,E 分别在的边AB ,AC 上,且,过点A 作,分别交,的平分线于点F ,G .若,CG 平分线段BD ,则________.22.如果关于x 的一元二次方程有两个不相等的实数根,且其中一个根为另一个根的2倍,则称这样的方程为“2倍根方程”.(1)方程________“2倍根方程”(填“是”或“不是”);(2)若是“2倍根方程”,则代数式的值为________.23.如图,在平行四边形ABCD 中,,点E 为射线AD 上一动点,连接BE ,将BE 绕点B 逆时针旋转得到BF ,连接AF ,则AF 的最小值为________.二、解答题(本大题共3个小题,共30分)24.(8分)成都“蒲江猕猴桃”是维C 含量特别高的红心猕猴桃,营养丰富,老少皆宜,某种植基地2020年开始种植“猕猴桃”200亩,该基地这两年“猕猴桃”种植面积的平均年增长率为.(1)求到2022年“猕猴桃”的种植面积达到多少亩?(2)市场调查发现,当“猕猴桃”的售价为20元/千克时,每天能售出200千克,售价每降价2元,每天可多售出80千克,①若降价x ()元,每天能售出多少千克?(用x 的代数式表示)②为了推广宣传,基地决定降价促销,同时尽量减少库存,己知该基地“猕猴桃”的平均成本价为10元/千克,若要销售“猕猴桃”每天获利2160元,则售价应降低多少元?AB BE ==APE △234a b c k ===2340a b c ++=k =12,x x 2620230x x --=211242x x x -+ABC △DE BC ∥AF BC ∥AED ∠ACB ∠2BD AD =FG BC=20(0)ax bx c a ++=≠2680x x -+=2(3)30(0)ax a b x b a -++=≠32a b a b-+1245AB ABC =∠=︒,60︒50%020x ≤≤25.(10分)如图,在平面直角坐标系中,直线AB 与x 轴交于点,与y 轴交于点,a ,b 满足,直线AC 经过y 轴负半轴上的点C ,且.备用图(1)求直线AC 的函数表达式;(2)平移直线AC ,平移后的直线与直线AB 交于点D ,与y 轴交于点;①已知平面内有一点,连接CD ,MD ,当的值最小时,求t 的值;②若平移后的直线与x 轴交于点E ,是否存在点F ,使以点A ,C ,D ,E 为顶点的四边形为平行四边形?若存在,请直接写出点F 的坐标;若不存在,请说明理由.26.(12分)在中,D 为BC 的中点,E ,F 分别为AC ,AD 上任意一点,连接EF ,将线段EF 绕点E 顺时针旋转得到线段EG ,连接FG ,AG .图1 图2 图3(1)如图1,点E 与点C 重合,且GF 的延长线过点B ,若点P 为FG 的中点,连接PD ,求PD 的长;(2)如图2,EF 的延长线交AB 于点M ,点N 在AC 上,且,求证:;(3)如图3,F 为线段AD 上一动点,E 为AC 的中点,连接BE ,H 为直线BC 上一动点,连接EH ,将沿EH 翻折至所在平面内,得到,连接,请求出线段的最小值. (,0)A a (0,)B b 2(4)0a ++=45ACO ∠=︒(0,)F t (5,6)M CD MD +ABC △90BAC AB AC ∠=︒==,90︒AGN AEG ∠=∠GN MF =AM AF +=BEH △ABC △B EH '△B G 'B G '。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级上学期数学10月月考试卷A卷
姓名:________ 班级:________ 成绩:________
考试须知:
1、请首先按要求在本卷的指定位置填写您的姓名、班级等信息。
2、请仔细阅读各种题目的回答要求,在指定区域内答题,否则不予评分。
一、单选题 (共12题;共24分)
1. (2分) (2019九上·湖北月考) 下列关于x的方程中,一定是一元二次方程的为()
A . ax2+bx+c=0
B . x2 -2=(x+3)2
C . x2 +3y −5=0
D . x2-1=0
2. (2分)(2016·临沂) 二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:
x…﹣5﹣4﹣3﹣2﹣10…
y…40﹣2﹣204…
下列说法正确的是()
A . 抛物线的开口向下
B . 当x>﹣3时,y随x的增大而增大
C . 二次函数的最小值是﹣2
D . 抛物线的对称轴是x=﹣
3. (2分)已知x=1是方程x2+ax+2=0的一个根,则方程的另一个根为()。
A . 2
B . -2
C . 3
D . -3
4. (2分)二次函数y=﹣(x+1)2﹣2的顶点是()
A . (﹣1,2)
B . (﹣1,﹣2)
C . (1,2)
D . (1,﹣2)
5. (2分) (2019九上·江都月考) 定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程.已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()
A .
B .
C .
D .
6. (2分) (2019九上·湖州月考) 下列二次函数的图象通过平移能与二次函数y=x2-2x-1的图象重合的是()
A . y=2x2-x+1
B . y=x2+2x+1
C . y= x2-2x-1
D . y= x2+2x+1
7. (2分)(2019·荆门模拟) 已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()
A . k<
B . k>-
C . k<且k≠0
D . k>- 且k≠0
8. (2分) (2018九上·深圳期中) 如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2 .若设道路的宽为xm,则下面所列方程正确的是()
A . (32-x)(20-x)=32×20-570
B . 32x+2×20x=32×20-570
C . 32x+2×20x-2x2=570
D . (32-2x)(20-x)= 570
9. (2分) (2016九上·栖霞期末) 方程x(x+2)=0的解是()
A . ﹣2
B . 0,﹣2
C . 0,2
D . 无实数根
10. (2分)(2019·玉林) 已知抛物线C:y=(x﹣1)2﹣1,顶点为D,将C沿水平方向向右(或向左)
平移m个单位,得到抛物线C1 ,顶点为D1 , C与C1相交于点Q,若∠DQD1=60°,则m等于()
A . ±4
B . ±2
C . ﹣2或2
D . ﹣4或4
11. (2分) (2017八下·庐江期末) 如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为()
A . 1
B . ﹣4
C . 1或﹣4
D . ﹣1或3
12. (2分)边长为1的正方形OA1B1C1的顶点A1在x轴的正半轴上,如图将正方形OA1B1C1绕顶点O顺时针旋转75°得正方形OABC,使点B恰好落在函数y=ax2(a<0)的图象上,则a的值为()
A . -
B . -
C . -2
D . -
二、填空题 (共4题;共4分)
13. (1分)(2019·滨城模拟) 若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是________.
14. (1分)(2019·平房模拟) 已知二次函数y=x2﹣8x+m的最小值为1,那么m的值等于________.
15. (1分) (2019八下·深圳期末) 设x1 , x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=________.
16. (1分)(2019·三门模拟) 如图,在-张直径为20 cm的半圆形纸片上,剪去-个最大的等腰直角三角形,剩余部分恰好组成-片树叶图案,则这片树叶的面积是________cm².
三、解答题 (共8题;共80分)
17. (10分) (2018九上·开封期中) 解方程:x2﹣2x﹣8=0.
18. (10分)解下列方程:
(1)(x﹣1)2=4
(2) x2﹣3x=1.
19. (5分)求二次函数y=﹣2(x﹣3)2﹣5的顶点坐标.
20. (10分) (2018九上·武威月考) 已知关于的方程 .
(1)求证:不论取何实数,该方程都有两个不相等的实数根;
(2)若该方程的一个根为,求的值及该方程的另一根;
(3)直接写出该方程一个不可能的根.
21. (10分) (2018九上·秦淮月考) 我们把形如x2=a(其中a是常数且a≥0)这样的方程叫做x的完全平方方程.
如x2=9,(3x﹣2)2=25,…都是完全平方方程.
那么如何求解完全平方方程呢?
探究思路:
我们可以利用“乘方运算”把二次方程转化为一次方程进行求解.
如:解完全平方方程x2=9的思路是:由(+3)2=9,(﹣3)2=9可得x1=3,x2=﹣3.
解决问题:
(1)解方程:(3x﹣2)2=25.
解题思路:我们只要把3x﹣2看成一个整体就可以利用乘方运算进一步求解方程了.
解:根据乘方运算,得3x﹣2=5或3x﹣2=________.
分别解这两个一元一次方程,得x1= ,x2=﹣1.
(2)解方程 .
22. (10分) (2018九上·哈尔滨月考) 已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB 的延长线于点F.
(1)求证:△ADE≌△BFE;
(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.
①求证:HC=2AK;
②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.
23. (10分) (2019九上·沭阳开学考) 已知关于的方程.x2+2x+a-2=0
(1)若该方程有两个不相等的实数根,求实数a的取值范围;
(2)若该方程的一个根为1,求a的值及该方程的另一根.
24. (15分) (2019九下·桐乡月考) 如图,抛物线y=ax2+bx经过点A(7,0),B(-1,4),经过点B的直线与抛物线的另一个交点C在第四象限.已知△ABC的面积为14.
(1)求抛物线的函数关系式;
(2)求点C的坐标#
(3)设P是线段BC延长线上的点,作直线PD∥x轴,交抛物线于点D、E(点D在点E的左侧).若DE=PE,求点P的横坐标.
参考答案一、单选题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共4分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共8题;共80分) 17-1、
18-1、
18-2、
19-1、
20-1、
20-2、20-3、21-1、
21-2、22-1、
第11 页共12 页22-2、
23-1、
23-2、
24-1、
24-2、
24-3、
第12 页共12 页。