最短路径问题13章

合集下载

数学人教版八年级上第十三章134 课题学习 最短路径问题

数学人教版八年级上第十三章134 课题学习 最短路径问题

13.4 课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】课本P85页问题1练习、如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址【例2】P86页问题2【课堂检测】课本P93页、15题。

人教版数学八年级上册13.4最短路径问题教案

人教版数学八年级上册13.4最短路径问题教案
首先,我发现通过生活中的实际问题引入新课,极大地激发了学生的兴趣。他们能够将数学知识与现实生活联系起来,感受到数学的实用性和趣味性。在今后的教学中,我还要多设计一些贴近生活的案例,让学生感受到数学的无处不在。
其次,在新课讲授环节,我发现学生们对轴对称性质的理解较为扎实,但在将其应用于最短路径问题的求解过程中,部分学生还是显得有些吃力。针对这一点,我在讲解过程中尽量放慢速度,通过详细的步骤解析和直观的图形演示,帮助他们理解。在之后的课堂中,我还需要加强对学生的个别辅导,确保他们能够真正掌握这一知识点。
(2)确定最短路径问题中的对称轴:在实际问题中,确定对称轴可能较为困难,尤其是当问题涉及多个线段或点时。
难点解析:通过具体例子,展示如何寻找和确定线段、点到线段的最短路径问题中的对称轴。
(3)计算最短路径长度的方法:在确定对称轴和对称点后,如何进行有效计算,避免复杂和繁琐的步骤。
难点解析:教授学生运用几何图形的直观和代数计算相结合的方法,简化计算过程,如利用勾股定理等。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了轴对称的基本概念、最短路径问题的求解方法及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂上,我们探讨了人教版数学八年级上册13.4节“最短路径问题”。这节课让我感受到了学生们对几何问题的热情,也让我意识到了一些教学中的亮点和需要改进的地方。
4.培养学生的团队合作意识,通过小组讨论和合作完成最短路径问题的求解,提高学生的沟通与协作能力。
三、教学难点与重点
1.教学重点
(1)轴对称图形的性质及其应用:轴对称图形的对称轴、对称点等基本概念,以及如何利用这些性质解决最短路径问题。

人教版初中八年级数学上册第十三章13. 4 课题学习 最短路径问题 优秀教案

人教版初中八年级数学上册第十三章13. 4 课题学习 最短路径问题 优秀教案

13. 4课题学习最短路径问题通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短.重点应用所学知识解决最短路径问题.难点选择合理的方法解决问题.一、创设情境多媒体展示:如图,一个圆柱的底面周长为20 cm,高AB为4 cm,BC是底面的直径,一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路径.这是一个立体图形,要求蚂蚁爬行的最短路径,就是要把圆柱的侧面展开,利用“两点之间,线段最短”求出最短路径.那么怎样求平面图形中的最短路径问题呢?二、自主探究探究一:最短路径问题的概念1.多媒体出示图①和图②,提出问题:(1)图①中从点A走到点B哪条路最短?(2)图②中点C与直线AB上所有的连线中哪条线最短?2.教师总结:“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等问题,我们称之为最短路径问题.探究二:河边饮马问题多媒体出示问题1:牧马人从A地出发,到一条笔直的河边l饮马,然后到B地,牧马人从河边什么地方饮马,可使所走的路径最短?提出问题:如果点A和点B分别位于直线的两侧,如何在直线l上找到一点,使得这个点到点A和点B的距离的和最短?思考:如果点A和点B位于直线的同侧,如何在直线l上找到一点,使得这个点到点A 和点B的距离的和最短?教师引导学生讨论,明确找点的方法.让学生对刚才的方法通过逻辑推理的方法加以证明.教师巡视指导学生的做题情况,有针对性地进行点拨.探究三:造桥选址问题多媒体出示问题2.(教材第86页)提出问题:(1)根据问题1的探讨你对这道题有什么思路和想法?(2)这个问题有什么不同?(3)要保证路径AMNB最短,应该怎样选址?学生对这个三个问题展开讨论,得出结论:要保证AMNB最短,就是要保证AM+MN +NB最小.尝试选址作出图形.多媒体展示教材图13.4-7,13.4-8,13.4-9,引导学生分析、观察,让学生根据刚才的分析,完成证明过程.根据问题1和问题2,你有什么启示?三、知识拓展已知长方体的长为2 cm、宽为1 cm、高为4 cm,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?[让学生讨论有几种爬行的方法,计算出每种方案中的路程,再进行比较]四、归纳总结1.本节课你学到了哪些知识?2.怎样解决最短路径问题?本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题学习,让学生经历将实际问题抽象为数学问题的线段和最小问题,再利用轴对称将线段和最小的问题转化为“两点之间,线段最短”问题.。

13.4课题学习 最短路径问题 课件(共31张PPT) 初中数学人教版八年级上册

13.4课题学习  最短路径问题   课件(共31张PPT)  初中数学人教版八年级上册
∙B A∙
l C
B′
【探究2】如图,A 和 B 两地在一条河的两岸,现要在河上 造一座桥 MN. 桥造在何处可使从 A 到 B 的路径 AMNB 最 短(假定河的两岸是平行的直线,桥要与河垂直)?
如图所示:将河的两岸看成两条平行线 a 和 b,N 为直线 b上的一个动点,MN 垂直于直线 b,交直线 a 于点 M.当 点 N 在什么位置的时候,AM+MN+NB 的值最小?
P 地把河水引向 M、N 两地.下列四种方案中,最节省材料的是( D )
A.
B.
C.
D.
解析:依据垂线段最短,以及两点之间,线段最短, 可得最节省材料的是:
故选:D.
练习 6 如图所示,某条护城河在 CC 处直角转弯,河宽均为 5m,
从 A 处到达 B 处,须经过两座桥(桥宽不计,桥与河垂直),设 护城河以及两座桥都是东西、南北方向的,如何选址造桥可使从 A 处到 B 处的路程最短?请确定两座桥的位置.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′.
A
即A′N+NB+MN<A′N′+BN′+M′N′. A′ ∴AM+NB+MN<AM′+BN′+M′N′.
即AM+NB+MN的值最小.
M′
M
N′ N
B
a b
练习 1 如图所示,军官从军营 C 出发先到河边(河流用 AB 表示)饮马,再 去同侧的 D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将
A
点C,则点C 即为所求的位置, 可以使得 AC+BC 的值最小.

1最短路径问题

1最短路径问题

一叶知秋,题海不是解决问题 的最好办法,如果能够深入研 究我们的典型题和一些基本数 学模型,相信所有的题目都万 变不离其宗。
谢 谢 聆 听
M
N
M
.. AB
N
变式训练
2.如图:E、F分别为两边OM、ON上一个动点,当点E、点F
在OM、ON的什么位置时,AE+EF的距离之和最短?
O
O
E
F
A'
.
A
.
A
M
N
M
做对称 再做垂
N
中考链接
1.(2018年新疆中考9,5分)如图,点P是边长为1的菱形ABCD 对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则 MP+PN的最小值是( )
O 如图A:EE、+F分EF别+为F两B边的OM距、O离N上之一个和动最点,短那?么,上述问题可转化为:当点E、点F在OM、ON的什么位置时, AE+EF+FB的距离之和最短?
.
.
M
A
BN
题目解析 O
.A .B
E
F
L
如图:E、F分别为两边OM、ON上一个动点,那么,上述问题可转化为:当点E、点F在OM、ON的什么位置时,
即:A'T+TP+PB'>A'E+EF+FB' ∴AE+EF+FB<AT+TP+BP, 即沿AE-EF-FB路线走是最短的路线.
变式训练
1.如图:E、F分别为两边OM、ON上一个动点,那么,上述
问题可转化为:当点E、点F在OM、ON的什么位置时,
AF+EF+EB的距离之和最短?

2020年八年级数学上册第十三章13.4 课题学习 最短路径问题

2020年八年级数学上册第十三章13.4 课题学习 最短路径问题
来自速对答案提示:点击 进入习题
16
2
详细答案 点击题序
3
详细答案 点击题序
1.如图,∠AOB=30°,点 M、N 分别是射线 OA、 OB 上的动点,OP 在∠AOB 内,且 OP=6,则△ PMN 周长的最小值为 6 .
2.尺规作图(保留作图痕迹):如图,已知直线 l 及 其两侧两点 A、B.
(1)在直线 l 上求一点 Q,使到 A、B 两点距离之和 最短;
(2)在直线 l 上求一点 P,使 PA=PB. 解:(1)如图,连接 AB 与直线 l 的交点 Q 即为所求. (2)作线段 AB 的垂直平分线 MN,直线 MN 与直线 l 的 交点 P 即为所求.
3.(1)如图①,在直线 AB 一侧有 C、D 两点,在 AB 上找一点 P,使 C、D、P 三点组成的三角形的周长 最短; 解:如图所示.
(1)若要使自来水厂到A,B两村的 距离相等,则应选择在哪建厂(要 求:尺规作图,保留作图痕迹, 不必写文字说明)?
分析:(1)欲求到A、B两村的距离相等的厂址,即 作出线段AB的垂直平分线与EF的交点即可; 解:(1)如图,点M即为所求.
(2)若要使自来水厂到A,B两村的距离之和最短, 应建在什么地方? 分析:(2)作出A点关于直线EF的对称点A′,再连 接A′B,找到A′B与EF的交点即可. (2)如图,点N即为所求.
(2)如图②,在∠AOB 内部有一点 P,在 OA、OB 上 分别存在点 E、F,使得 E、F、P 三点组成的三角 形的周长最短,请找出 E、F 两点. 解:如图所示.
知识要点 最短路径问题
定义
关于“两点的所有连线中, 线段 最短
”“连接直线外一点与直线上各点的所 有线段中, 垂线段最短”等的问题,

最短路径问题-(PPT课件) 公开课

最短路径问题-(PPT课件)  公开课
第十三章 轴对称
故事引入
导入新课
复习旧知
1.如图,连接A、B两点的所有连线中,哪条最短?

为什么?

②最短,因为两点之间,线段最短
A ③B
2.如图,点P是直线l外一点,点P与该直线l上各点连
接的所有线段中,哪条最短?为什么?
P
PC最短,因为垂线段最短
A BC
Dl
3.如图,如何作点A关于直线l的对称点?
B
A
C
l
联想旧知
B
A
C
l
B′
用旧知解决新知
A
C
l
B
提示:本题也可作A点关于直线l的对称点
典例精析
例1 如图,已知点D、点E分别是等边三角形ABC
中BC、AB边的中点,AD=5,点F是AD边上的动
点,则BF+EF的最小值为( B )
A.7.5
B.5
C.4
D.不能确定
解析:△ABC为等边三角形,点D是BC边的中点,即点B与点 C关于直线AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小 值可转化为求CF+EF的最小值,故连接CE即可,线段CE的长 即为BF+EF的最小值.
l2
l2
2.关键: 作对称点,利用轴对称的性质将线段转化, 从而利用“两点之间,线段最短”来解决
作法及思路分析
1.作点A关于直线 l 的对称点A′ ,连接CA′。
B A
l
C
A′
2.由上步可知AC+CB=B_′_A_C_+_C_B_′ ___
思考:当C在直线 l 的什么位置时AC +CB′最短?
3.如图,如何作点A关于直线l的对称点?

人教版八年级数学上册教学设计:13.4 课题学习 最短路径问题

人教版八年级数学上册教学设计:13.4  课题学习  最短路径问题

人教版八年级数学上册教学设计:13.4 课题学习最短路径问题一. 教材分析人教版八年级数学上册第十三章第四节“课题学习最短路径问题”主要是让学生了解最短路径问题的背景和意义,掌握利用图的性质和算法求解最短路径问题的方法。

通过本节课的学习,学生能够将所学的图的知识应用到实际问题中,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了图的基本概念和相关性质,如顶点、边、连通性等。

同时,学生也学习了一定的算法知识,如排序、查找等。

因此,学生在学习本节课时,能够将已有的知识和经验与最短路径问题相结合,通过自主探究和合作交流,理解并掌握最短路径问题的求解方法。

三. 教学目标1.了解最短路径问题的背景和意义,能运用图的性质和算法求解最短路径问题。

2.提高学生将实际问题转化为数学问题的能力,培养学生的逻辑思维和解决问题的能力。

3.增强学生合作交流的意识,提高学生的团队协作能力。

四. 教学重难点1.教学重点:最短路径问题的求解方法及其应用。

2.教学难点:理解并掌握最短路径问题的求解算法,能够灵活运用到实际问题中。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。

2.算法教学法:以算法为主线,引导学生了解和掌握最短路径问题的求解方法。

3.合作学习法:学生进行小组讨论和合作交流,共同解决问题,提高团队协作能力。

六. 教学准备1.准备相关实际问题的案例,如城市间的道路网络、网络通信等。

2.准备算法教学的PPT,以便在课堂上进行讲解和演示。

3.准备练习题和拓展题,以便进行课堂练习和课后巩固。

七. 教学过程1.导入(5分钟)通过展示实际问题案例,如城市间的道路网络,引导学生了解最短路径问题的背景和意义。

提问:如何找到两点之间的最短路径?引发学生的思考和兴趣。

2.呈现(10分钟)讲解最短路径问题的求解方法,如迪杰斯特拉算法、贝尔曼-福特算法等。

通过PPT演示算法的具体步骤和过程,让学生清晰地了解算法的原理和应用。

13.4 课题学习 最短路径问题

13.4 课题学习 最短路径问题

A
点B“移”到l 的另一侧B′处,
l
满足直线l 上的任意一点C,
都保持CB 与CB′的长度相等?
利用轴对称,作出点B关于直线l的对称点B′.
方法揭晓
作法: (1)作点B 关于直线l 的对称点B′; (2)连接AB′,与直线l 相交于点C.
B
则点C 即为所求.
A
C l
B′
问题3 你能用所学的知识证明AC +BC最短吗?
中BC、AB边的中点,AD=5,点F是AD边上的动
点,则BF+EF的最小值为( B )
A.7.5
B.5
C.4
D.不能确定
解析:△ABC为等边三角形,点D是BC边的中点,即点B与点 C关于直线AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小 值可转化为求CF+EF的最小值,故连接CE即可,线段CE的长 即为BF+EF的最小值.
问题1 现在假设点A,B分别是直线l异侧的两个点,如 何在l上找到一个点,使得这个点到点A,点B的距离的 和最短?
连接AB,与直线l相交于一点C.
A
根据是“两点之间,线段
C
最短”,可知这个交点即
l
为所求.
B
问题2 如果点A,B分别是直线l同侧的两个点,又应该如 何解决?
B
想一想:对于问题2,如何将
方法归纳 解决最短路径问题的方法
在解决最短路径问题时,我们通常利用轴对 称等变换把未知问题转化为已解决的问题,从而 作出最短路径的选择.
课堂小结
原理 线段公理和垂线段最短
最 短 牧马人饮 路 径 马问题 问题
解题方法 轴对称知识+线段公理
造桥选 址问题

八年级数学上册第十三章《轴对称》13.4课题学习最短路径问题课件(新版)新人教版

八年级数学上册第十三章《轴对称》13.4课题学习最短路径问题课件(新版)新人教版

综合能力提升练
7.某班举行文艺晚会,桌子摆成如图所示的两直排( 图中的AO,BO ),AO桌面上摆满了
橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮 助他设计一条行走路线,使其所走的总路程最短.
解:作C点关于OA的对称点C1,作D点关于OB的对称点D1,连接C1D1, 分别交OA,OB于点P,Q,那么小明沿C→P→Q→D的路线行走,所走 的总路程最短.
拓展探究突破练
8.如图,安徽省某大学建立分校,校本部与分校隔着两条平行的小河,l1∥l2表示
Hale Waihona Puke 小河甲,l3∥l4表示小河乙,A为校本部大门,B为分校大门,为方便人员来往,要在两条小河上各建 一座桥,桥面垂直于河岸.请你设计一条路线,使A,B两点间来往的路程最短.
拓展探究突破练
解:把点A向下平移河甲的宽度后得到A',把点B向上平移河乙的宽度后得到B',连接A'B'交l2于点 D,交l3于点E,作CD⊥l1于点C,EF⊥l4于点F,连接AC,BF.则在CD,EF处建桥就是使得A点到B点总 路程最短的桥的位置.
13.4 课题学习 最短路径问题
知识要点基础练
知识点 最短路径问题 1.如图,直线l是一条河,A,B两地相距10 km,A,B两地到l的距离分别为8 km,14 km,欲在l上的某点 M处修建一个水泵站,向A,B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺 设的管道最短的是 ( B )
4.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线 MN上的一个动点,当PC+PD最小时,∠PCD的度数是 30° .
综合能力提升练
5.如图,在四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN 周长最小,则此时∠AMN+∠ANM的度数为 120° .

最短路径问题最短路径(完整版)4

最短路径问题最短路径(完整版)4

3.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上 有一点B,当△PAB的周长取最小值时,求∠APB的度数. 解:如图,依题意,分别作点P关于ON、OM的 对称点P1、P2,连接P1P2交ON于点B,交OM于
点A,依次连接A、B、P,此时△PAB的周长为
最小值.
祝你学业有成
角形,就是最短路径。
求解原理 两点之间,线段最短
A1
m
B A
C
n
A2
探索新知
知识点1 将军饮马问题
例1 如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点
,AD=5,F是AD边上的动点,则BF+EF的最小值为( )
A.7.5
B.5
C.4
D.不能确定
E BF
EF B
E BF
探索新知
知识点1 将军饮马问题
l
A


将两地抽象为A、B两个 点,将河抽象为直线l .
B 数 学 问 题
引例
将两地抽象为A、B两个点,将河抽象为直线l .
A
问题一 你能用自己的语言把问题抽象为
l
数学问题吗?
C B
连接AB,与l 交于C点
在直线l 上找一点C,使AC+BC最短
问题二 点C应该在哪里? 为什么呢?
两点之间线段最短
知识点1 将军饮马问题
例1 如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点
,AD=5,F是AD边上的动点,则BF+EF的最小值为(B )
A.7.5
B.5
C.4
D.不能确定
【解析】∵△ABC为等边三角形,D是BC边的中点,∴

13.4课题学习++最短路径问题-讲练课件-2023-2024学年+人教版+八年级数学上册

13.4课题学习++最短路径问题-讲练课件-2023-2024学年+人教版+八年级数学上册
涂黑,且满足下列条件:
(1)涂黑部分的面积是原正方形面积的一半;
(2)涂黑部分成轴对称图形.如图2是一种涂法,请在图4-6中分别设计
出另外三种涂法.(在所设计的图案中,若涂黑部分全等,则认为是同一
种涂法,如图2与图3)
解:如图所示.(答案不唯一,合理即可)
数学活动
活动3 等腰三角形中相等的线段
例3 综合探究探索等腰三角形中相等的线段.
3.如图,点A,点B为直线MN外两点,且在MN异侧,点A,B到直
线MN的距离不相等,试求一点P,同时满足下面两个条件:
①点P在MN上;②PA+PB最小.
解:如图所示,点P即为所求.
4.如图,铁路l的同侧有A,B两个工厂,要在路边建一个货物站C,
使A,B两厂到货物站C的距离之和最小,那么点C应该在l的哪里呢?画出
数学(RJ)版八年级上册
第十三章 轴对称
课题学习
最短路径问题
新课学习
单动点问题—— 两点在直线异侧
例1 如图,在直线l上找一点P,使得PA+PB的和最小.
解:如图,连接AB,AB与l的交点即为所求点P.
1.如图,高速公路l的两侧有M,N两个城镇,要在高速公路上建一个出
口P,使M,N两城镇到出口P的距离之和最短,请你找出点P的位置.
你找的点C.
解:如图所示,点C即为所求.
5.(2022·珠海市期末)在如图所示的平面直角坐标系中,点A的坐标
为(4,2),点B的坐标为(1,-3),在y轴上有一点P使PA+PB的值最小,
则点P的坐标为(
D
)
A.(2,0)
B.(-2,0)
C.(0,2)
D.(0,-2)
第5题图
6.如图,直线l1与l2交于点O,P为其平面内一定点,OP=3,M,N

八年级数学上册第十三章等腰三角形《课题学习最短路径问题》

八年级数学上册第十三章等腰三角形《课题学习最短路径问题》

教学设计2024秋季八年级数学上册第十三章等腰三角形《课题学习最短路径问题》一、教学目标(核心素养)1.知识与技能:学生能够理解并应用“两点之间线段最短”及“轴对称性质”解决现实生活中的最短路径问题。

2.数学思维:培养学生的空间想象能力、逻辑推理能力和数学建模能力,学会将实际问题抽象为数学问题。

3.问题解决:通过小组合作,提高学生分析问题、解决问题的能力,以及面对复杂问题时的决策能力。

4.情感态度:激发学生对数学的兴趣,培养探索精神和创新意识,体验数学在解决实际问题中的价值。

二、教学重点•理解并应用轴对称性质解决最短路径问题。

•掌握将实际问题转化为数学模型的方法。

三、教学难点•如何准确识别并构建出符合轴对称性质的最短路径模型。

•灵活运用所学知识解决复杂情境下的最短路径问题。

四、教学资源•多媒体课件(包含生活实例图片、动画演示最短路径形成过程)。

•实物模型(如镜子、纸张等,用于直观展示轴对称)。

•练习题卡(分层次设计,从基础到拓展)。

•小组合作任务单。

五、教学方法•情境导入法:通过生活实例引入最短路径问题,激发学生兴趣。

•直观演示法:利用多媒体和实物模型展示轴对称和最短路径的形成过程。

•探究学习法:小组合作,共同探究解决方案,培养自主学习能力。

•讨论交流法:鼓励学生分享解题思路,促进思维碰撞。

•总结归纳法:引导学生总结解题规律,形成知识体系。

六、教学过程1. 导入新课•情境引入:展示一个农场主想要从家中到河边取水,再回到家中,问如何走路径最短?引导学生思考并讨论。

•提出问题:引出本节课的主题——最短路径问题,并简要介绍轴对称性质在其中的应用。

2. 新课教学•概念讲解:•回顾“两点之间线段最短”的原理。

•介绍轴对称性质,通过实物模型(如镜子)演示对称点的概念。

•例题分析:•例1:基础题,直接应用轴对称性质找到最短路径。

通过多媒体动画展示路径形成过程,引导学生理解。

•例2:稍复杂情境,如加入障碍物,需先找到对称点再连接。

人教版数学八年级上册1课题学习最短路径问题课件

人教版数学八年级上册1课题学习最短路径问题课件
个交点即为所求.
l
·B
探索新知
如果我们能把点B移到l的另一侧B′处,同时对直线l 上的任意一
点C,都保持CB 与CB′的长度相等,就可以把问题转化为上面的情况.
作出点B关于l的对称点B′ ,
利用轴对称的性质可以得到
CB′=CB.
B
A
l
C
B′
探索新知
B
·
连接AB ′,与直线l 相交于点C. A
·
则点C 即为所求.
造桥选址问题
利用轴对称、平移
等变化把已知问题
转化为容易解决的
问题
作业布置
1.完成练习册本课时的习题。
2.复习
l
C
B′
探索新知
你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C
不重合),连接AC′,BC′,B′C′.
由轴对称的性质知,BC =B′C,
BC′=B′C′.
∴ AC BC= AC +B′C = AB′,
AC′+BC′ = AC′+B′C′.
在△AB′C′中,
AB′<AC′+B′C′,
R·八年级上册
第十三章 轴对称
13.4 最短路径问题
目录
01
02
03
04
05




















情境导入
唐朝诗人李颀的诗《古从军行》开头两句说:"白日登山望烽火,
黄昏饮马傍交河。"诗中隐含着一个有趣的数学问题。传说亚历山
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智考一对一教育学科辅导讲义
复习导入
问题:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦。

有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:
从图中的A地出发,到一条笔直的海边L饮马,然后到B地。

到河边什么地方饮马可使他所走路线最短?
【知识点一】两点在一条直线异侧
例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。

解:连接AB,线段AB与直线L的交点P ,就是所求。

(根据:两点之间线段最短.)
【知识点二】两点在一条直线同侧
例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.
解:只有A、C、B在一直线上时,才能使AC+BC最小.
作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.
【知识点三】一点在两相交直线内部
例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.
解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON
于点B、点C,则点B、点C即为所求
分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小、一点在两相交直线内部
【知识点四】两点在两条相交线的内部
例:如图:C为马厩,D为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线。

作法:1.作点C关于直线OA 的对称点点F,
2.作点D关于直线OB的对称点点E,
3.连接EF分别交直线OA.OB于点G.H,则CG+GH+DH最短
思考:1.作点C关于直线OB 的对称点点F,
2.作点D关于直线OA的对称点点E,
3.连接EF分别交直线OA.OB于点G.H,则CG+GH+DH最短
典型例题
1.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()
A.4 B.5 C.6 D.7
2.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP 最小值的是()
A.BC B.CE C.AD D.AC
3.在平面直角坐标系中,点A(4,-2),B(0,2),C(a,-a),a为实数,当△ABC的周长最小时,a的值是()
A.-1 B.0 C.1 D.
2
4.如图,某河的同侧有A,B两个工厂,它们垂直于河边的小路的长度分别为AC=2km,BD=3km,这两条小路相距5km.现要在河边建立一个抽水站,把水送到A,B两个工厂去,若使供水管最短,抽水站应建立的位置为()A.距C点1km处B.距C点2km处C.距C点3km处D.CD的中点处
5.已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB的值最小,则下列作法正确的是()
A.B.C.D.
6.已知点P(0,1),Q(5,4),点M在x轴上运动,当MP+MQ的值最小时,点M的坐标为()A.(0,0)B.(1,0)C.(3,0)D.(5,0)
7.如图,直线l是一条河,P,Q两地在直线l的同侧,欲在l上的某点M处修建一个水泵站,分别向P,Q两
地供水.现有如下四种铺设方案,则铺设的管道最短的方案是()
C.D.
A.
B.
8.如图,OA、OB分别是线段MC、MD的垂直平分线,MD=5cm,MC=7cm,CD=10cm,一只小蚂蚁从点M出发爬到OA 边上任意一点E,再爬到OB边上任意一点F,然后爬回M点处,则小蚂蚁爬行的路径最短可为()
A.12cm B.10cm C.7cm D.5cm
9.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点则CE+EF的最小值为()
10.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()
A.25°B.30°C.35°D.40°
11.如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()
A.转化思想
B.三角形的两边之和大于第三边
C.两点之间,线段最短
D.三角形的一个外角大于与它不相邻的任意一个内角
拓展知识
1、如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)
解:1.将点B沿垂直与河岸的方向平移一个河宽到E,
2.连接AE交河对岸与点M, 则点M为建桥的位置,MN为所建的桥。

证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE,
所以A.B两地的距:AM+MN+BN=AM+MN+EM=AE+MN,
若桥的位置建在CD处,连接AC.CD.DB.CE,
则AB两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,
在△ACE中,∵AC+CE>AE,
∴AC+CE+MN>AE+MN,
即AC+CD+DB >AM+MN+BN
所以桥的位置建在CD处,AB两地的路程最短。

2、求圆上点,使这点与圆外点的距离最小的方案设计
在此问题中可根据圆上最远点与最近点和点的关系可得最优设计方案。

例:一点到圆上的点的最大距离为9,最短距离为1,则圆的半径为多少?
(5或4)
3、点在圆柱中可将其侧面展开求出最短路程
.。

相关文档
最新文档